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ABSTRACT

Automatic handwriting recognition is the process of converting online and offline letters
or words as a graphical form into its text format. Automatic Arabic Handwriting words
recognition using deep learning neural networks is still in the early stages in terms of
research. There are no general, complete, and reliable Arabic Handwritten Words (AHW)
database (lexicon) that can be used as a reference or a benchmark for all researchers who
want to extend the work on automatic Arabic handwriting word recognition. Also, many
historic Arabic manuscripts have deteriorated because of inappropriate storage and most
of them have not been digitized due to the lack of reliable database that can be used to
recognize the words of Arabic manuscripts.

Deep Convolutional Neural Networks (DCNNs) can be used to solve the problems of
automatic Arabic handwriting words recognition. In this work, a new DCNN algorithm
applied to a new dataset of Handwritten Arabic words representing the seven days of the
week named Arabic Handwritten Weekdays Dataset (AHWD) has been programmed,
tested, and analyzed. Our dataset contains 21,357 words equally distributed between the
seven classes and prepared by 1000 people. So, it can be used for training and testing on a
reliable DCNN model that will be able, after training, to generalize to new datasets.

The model works by training a (DCNN) model on a balanced-randomly-selected dataset
using different structures. The results are improved by adding drop-out, image
regularization, proper learning rate to avoid overfitting of the data. Finally, a blind test has
been performed on the hidden test set and the performance was reported using a confusion
matrix and learning curves as a validation tool for the model.

Results show that our model’s performance is promising, achieving accuracy rate of
99.76% with error rate of 0.0230 using AHWD dataset, accuracy rate of 99.87% with error
rate of 0.0181 using IFN/ENIT dataset, and accuracy rate of 99.90% with error rate of
0.0074 using augmented AHWD.
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CHAPTER 1 INTRODUCTION
1.1 Background

Arabic language is an old, ancient language spoken by 420 million people across
the world [1]. Modern Standard Arabic (MSA) is the standardized language that is used to
communicate officially between Arabic communities. Nowadays, each language has a
handwritten language style and a digital language style [1] [2]. The following sections

explain the general characteristics and features of Arabic letters and words,

1.1.1 General Characteristics of Arabic Letters and Words

There are many challenges in Arabic character writing in terms of morphology and
the way of writing, Arabic letters (characters) and words are written from right to left in
cursive way. It applies ligature (combining two letters or more), and letters have between
2 to 4 shapes [2]. There are 28 characters in Arabic language, 16 letters have from one to
three dots which differentiate between letters that have the same loop or shape such as (<«
BAA), (< TAA), (< THAA), (¢ AIN), ( ¢ KHAIN) and so on as shown in Figure 1.1
and Figure 1.2 [4]. The real meaning of the words in Arabic language depends on the
diacritics marks (vowels) and Nunation, it is called it in Arabic (TASH_KEEL J:s&ill) Such
as: Fat Hah (,(*>% Dha Mmah (,(e= Ka_Srah(s_,~S) and Soo_Koon(usS+) as shown in
Figure 1.1

{ Iha_Slmaah Y
\ 1, -———a n ¥ F
. . Bt e,

Figure 1.1 Diacritics marks on Arabic letters with single (Fat Hah, Dha Mmabh,
Ka_Srah, and Soo_Koon).
Nunation in Arabic has three forms: double Fat Hah(,(3~3L (s double

Dha Mmah (deall 0 55%) and double Ka_Srah (3_~SIb (2533 ) as shown in Figure 1.2.
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Figure 1.2 Diacritics marks on Arabic letters with double (Fat Hah, Dha Mmah,
and Soo Koon).

A character may have up to four positions in the word as shown in Table 1.1. Words
in Arabic language are composed of connected letters and each word is separated by space;
however, some letters are not connected with the word, but they compose the word such as
(<43 went), the letter () is not connected with the word, but it is one of the letters
composing the word (=43 went). Some letters of a word are not connected such as (J\

visited), (jﬁRice) and (303 Papers) but they make words in Arabic language.

Table 1.1 The Arabic letters’ positions and shapes.

Arabic letter | Arabic Arabic letters positions and shapes (forms)
name in | letter Isolated Beginning | Middle End
English

ALEEF ) ) ) T o
BAA < < — —_ -
TAA Iy B/ 3 5 Ry
THAA & & 4 A &
JEEM - ~ =
HAA - — =
KHAA d d —A — &
DAL 2 3 3 . =
THAL k] k] k] kK kS
RAA J J J > >
ZAIN J J 3 - 5
SEEEN o o — . o
SHEEN ] ] =& —d o
SAAD ol ] —a —_ o=
DHAD wa ua —a —ia oA




Arabic letter | Arabic Arabic letters positions and shapes (forms)
name  in | letter Isolated | Beginning | Middle End
English

TTAA h ) 2 3 ko
TTHAA L 5 3 2 ko
AIEN 3 3 — — -
GHAIN ¢ £ —= e ©
FAA o o -8 —& i
QAAF 3 3 = = o
KAAF 4 4 —= —< o€
LAAM J d - - J-
MEEM . s — — —
NOON O O . — -
HAA ° ° —2 — “
WAAW 3 3 3 > =
YAA s ¢ - - -

Note. This amended table demonstrates how many positions each letter can have [3].

1.1.2 Feature Extraction Classification

It is very important to know the features of the character or the word to use them as
an input into all classifiers in the traditional methods depicted in Figure 1.3. These features
are classified into classes, Structural features classification, Statistical features
classification and neural network features classification. Structural features classification
includes dots, concave loops, convex loops, endpoints, and branch points. Statistical
features classification like number of image pixels, intensity histogram, and the pixels
neighbor relationships, means, variance, energy, and diagonal moments, etc. Neural
network features work as a black box method which depends on training the neural network
to make it learn the pattern for right classification to reach the appropriate interconnection
between the input and the output. Deep Convolutional Neural Networks (DCNN) extract

features from raw image pixels automatically [4] - [5].
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Figure 1.3 A general model of Arabic offline handwritten text and word recognition [4].

1.2 Problem Statement

Arabic language is a cursive style, written from right to left. It contains similar
letters and can be written using assorted styles. These properties create many challenges
that prevent recognizing text in Arabic manuscript. In fact, Automatic Arabic Handwriting
Word Recognition using deep learning neural network is still at the early stages. Most of
the research using Deep Neural Networks were done on Arabic Optical Characters
Recognition (AOCR) and digital number recognition [6] [7]. There are no general,
complete, and reliable Arabic Handwritten words database that can be used as a reference
to all researchers who want to extend the work on Automatic Arabic Handwriting Word
Recognition. There are some efforts of using Arabic sub words to synthesize many words
as labeled dataset [8]. This is not a complete representation of the Arabic handwritten
words because it does not reflect the reality of the natural Arabic language. By having this
complete database (large number of Arabic words), a typical model can be created using
DCNN to solve the problems of Automatic Arabic Handwriting Words Recognition.

Arabic has different writing styles such as Naskh, Ruq’a, and decorating styles
(diwani, thuluth, andalusi). Theis leads to the misinterpretation of the words. For example,
there are superimposed letters in the same word as shown in Table 1.2; errors associated
with dots positions as shown in Table 1.3; errors associated with diacritics marks positions

as shown in Table 1.4; ascending and descending letters on the baseline and unrecognized
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words by deleted or hidden letters. All these errors are problematic for segmentation and
challenging for traditional methods, such as Hidden Markov Model (HMM), Artificial
Neural Network (ANN), Support Vector Machine (SVM), K Nearest Neighbor (k-NN),
and syntactical methods, all of them depend on feature extraction. A survey was done by
Parvez et al. [4] that explains all these traditional methods.

Table 1.2 Arabic writing style and superimposed letters, these words are from AHWD.

Andalusi Thuluth Diwani Rug’a Naskh Superimposed letters
ENEENOYY PSS T D T SN L ) D T > -

a2 e P [es¥ oS0 (2D
e [0 2D [~ 2L et | e
Ao D) ai___;__/l n;,_:,_,r@) =) ST, Do

Many Arabic manuscripts are deteriorating because of inappropriate storage, and most of
them have not been digitized. This is due to the lack of reliable databases that can be used

to recognize the words of Arabic manuscripts by using a typical model using deep learning.

Most of the models are restricted to a specific dataset and cannot be generalized [6].

Table 1.3 Writing Positions of the three types of dots, these words are from AHWD.

Right position

Wrong Pagition

Wrong writing

Right Writing

Description

PACRER

5L&th\

5E¢@K

PACKER

Three Dots

yois VI

E@A;__'L'Dl

gD

P

Two Dots

i I

Qi3 D

QL3

O
BB

NS ER

One Dot

Table 1.4 Writing positions of diacritic marks, these words are from AHWD.

Right position | Wrong Position Wrong writing | Right Writing Description
O BN [ o)) e 2 [ e DI | Fat Hah ()
S TS T B3a ) @ ma ©f) | Dhe Mmah(es)
VY [ dop DY [ BR[| £(5g,33) |Kasmht9
PERORY ,;LB@)EJ \ (589,350 jgjj \ | Soo Koon(us)




1.3 Objectives

A number of studies have been done on offline and online handwritten recognition
whether on characters, words or text line in English languages and lot of results were
satisfactory results. The Arabic language still suffers from the lack of typical handwriting
digital dataset [10] and from a learning algorithm for Arabic Handwritten Word (AHW)
recognition. This is a good motivation to design a complementary system that overcomes
all the problems that were investigated in the previous section.

The overarching aim of this work is to create a database that contains many Arabic
writing styles and handwriting variations as shown in Table 1.2, starting by Arabic
weekdays as a preliminary study. By amassing data from a variety of Arabic people to
create a large dataset, then a model can be designed to satisfy the purpose of this research.
The dataset that were collected depends on calligraphy, which means every person writes
the weekdays on the paper naturally. Since Arabic language has many writing styles,
people would choose the way that they feel comfortable to express their skills in terms of
writing. Many Arabic handwritten weekdays words that were collected represent many
Arabic writing styles, this would make the collected dataset varied and includes most of
the writing format that is needed in this thesis. More than 21000 Arabic handwritten
weekday words divided into seven classes, each class containing more than 3000 words.
For example, the Saturday class contains more than 3000 words of Arabic Handwritten
“Saturdays” with different writing styles. This is the same for all other classes. More on
our database is in the dataset chapter.

The specific objectives of this research are:

1- To create a large train dataset of Arabic handwriting of weekday words coming from
many people to capture all the expected variations of the handwriting. Then, prepare the
data in binary image or gray image format so it will be used for training and testing the
model.

2- Develop a new DCNN model on a balanced-randomly-selected set using different
DCNN structures and improve the results by adding drop-out, image regularization, and
learning rate to avoid overfitting of data. Finally, perform a blind test on the hidden

testing dataset and report results using the confusion matrix and learning curves.



1.4 Outline
This dissertation shows how Deep Convolutional Neural Network (DCNN) can

help solve the problems of automatic Arabic handwriting word recognition by creating a
new Arabic dataset and by designing a new DCNN model, then test the new model using
this dataset. This thesis is organized as following:
Chapter 1 is the introduction, which discusses the nature of Arabic language and its
widespread characteristics and its general features.
Chapter 2 presents the state of the art in Arabic handwriting image recognition.
Chapter 3 explains the analysis, the organization, and the design of datasets that
are used in the proposed DCNN model.
Chapter 4 describe the optimization of DCNN model.
Chapter 5 demonstrates the Experimental setup.
Chapter 6 explains the analysis of the result.

Chapter 7 explains the conclusion and the future work.



CHAPTER 2 LITERATURE REVIEW
2.1 Background

The history of pattern recognition is very interesting to analyze from the first spark
where an Optical Character Recognition (OCR) was discovered until nowadays where the
Deep Neural Network is considered the dominant technique for pattern recognition and

other applications.

2.1.1 Optical Character Recognition

In the early 1950s, the first commercial machine was invented called OCR (Optical
Character Recognition), this machine was hardware based. Then in 1970, machines that
were software based were invented [11]. The OCR is the process of converting any written
text, either handwritten or printed, into computer language format to increase the
interaction by enhancing the interfacing between humans and computers in automatic ways
[12].

In 1975, Nazif. [13] produced the first Arabic Recognition System called Arabic
Optical Text Recognition (AOTR). His system was based on the idea of extracting strokes
(20 Radicals) to recognize the Arabic letters. The work on Arabic characters recognition
carried on [14] to include the recognition of separated handwritten Arabic characters which
led to an online system named Iterative Recognition of Arabic Character (IRAC). Then
Amin et al. [15] produced a new work for recognizing multi-font Arabic characters in
offline mode. Moreover, a segmentation stage was tested and done on the cursive Arabic
writing [16] [17] [18] they have built up a system that recognizes isolated offline cursive
words by using many approaches such as letter and word segmentation by applying local
minima with low vertical profiles and detecting base line.

In 1987, Almuallim et al. [19] built a structural system technique that recognizes
offline Arabic cursive handwriting by segmenting words (preprocessing) to strokes (sub-
words) was designed and created, where later these strokes were classified based on their
geometrical and topological properties into strokes with loop, stroke without loop and
complementary characters. In the nineties, the commercial OCR for English were available
to be used by computers Personal Computer (PC) or Macintosh (MAC) and the systems

had the ability to read handwritten and printed writing even in other language such as
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Chinese, Korean, Cyrillic, Arabic and Japanese [20], [21]. In 1990, an on-line system was
developed for Arabic handwritten recognition by El-Sheikh et al. [22]. This system is based
on segmentation where the character position has four sets within the word (beginning,
middle, ending, and isolated) and each set is classified into another sub-set called strokes.
In terms of statistical technique, an approach was developed by Al-Yousefi et al. [23]. This
approach recognizes Arabic handwritten characters by using vertical and horizontal
projections momentarily.

In 1996, Olivier et al. [24] developed a system which dealt with segmentation and
handwritten word coding by individual monitoring to automate the processing of the
handwritten Arabic script, image, or document. This system was composed of three stages.
The first stage segmented the word into its characters (graphemes), the second stage
analyzed these characters (graphemes) by a series of attention or observations which is like
human processing, and finally, they collected the outcome from both stages and utilized
them in the recognition stage. This system worked under two main predefined cases to keep
the minima in safe side. The first case is that there is no loop under the minima, and second
case is that the mean width of the word must be greater than the sub-word (stroke) width
in the minima area.

According to [25] [26], recognition of an Arabic system was developed; the system
depends on shape primitives by using mathematical operation in terms of morphology.
Chen et al. [27] developed a system to recognize handwritten words by using Hidden
Markov Model (HMM). HMM has two parameters, transition probability and emission
probability (output probability). Each time the system in state x produces y observation
based on the probability that is correlated with state x. In1995, Emam [28] developed an
OCR system that recognized Arabic handwritten script by using the feature of border
transition descriptor. Motawa et al. [9] used the projection-based algorithm and produced
a technique that used mathematical morphology based on the theory that most of the time
the Arabic characters are connected by horizontal lines.

In [29] the contour-based algorithms were used where the local minima points are
located for all the upper contour and the local maxima points are located for all the lower
contour of each word in the text. All these points are considered as Potential Letter

Boundaries (PLB) by using some rules on lower and upper PLB they remove any bad PLB



that might affect the right matching technique between lower and upper PLB. Sakher and
OmniPage products have developed an Arabic OCR system by using Defense Advanced
Research  Projects  Agency/Science  Applications  International — Corporation
(DARPA/SAIC) database and the accuracy was 86.89 as a real observation as shown by
Kanungo et al [30].

As demonstrated in [31] Bolt Beranek and Newman Technologies (BBN), General
Telephone and Electronic corporation (GTE) have developed a new methodology for OCR
using continuous speech recognition. That resulted in successful technology that depends
on Hidden Markov Models (HMM) and shows many features such as script-independent
feature extraction and speech recognition. The new system was tested using DARPA
Arabic OCR Corpus. Natarajan et al. [32] produced porting the BBN BYBLOS OCR
System to other languages, such as Arabic, in three steps. These steps collect the required
data, choose the right training model and system optimization. In 2001, Trenkle et al. [33]
produced many enhanced improvements to a system which has being used to recognize
Arabic and Farsi script in low resolution, low quality, and binary images by using
ensembles of decision trees as recognition method instead of neural nets.

A new OCR Arabic system was created and developed by Hamami and Berkani
[34] [35]where they could handle multi font and multi style characters. The problem of
over segmented characters was solved for some of them by using a structural approach
which didn’t need to use skeleton portioning (time killing), and the proposed system could
be used in Arabic and Latin because the geometrical characters were adapted to the two
languages. In 2003, Pechwitz et al. [36] developed an offline system for Arabic recognition
depending on a semi-continuous 1- dimensional HMM by using the height, length, and
baseline skew as normalized parameters with features that were gathered by using the
sliding windows method. They have accomplished and obtained 89% of word recognition
by using IFN/ENIT database.

In 2003, Amin [37] developed a system to recognize Arabic characters using
machine learning automatically, the system achieved 86.65% of character recognition by
using handwriting character database which was written from different people with low to
high quality. A new OCR system called; An Automatic Arabic Handwritten Text
Recognition (AHTR) was designed as shown by Jannoud [38] . The system used the
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segmentation as the main stage, where the word or sub word must be thinned, and the base
line is calculated by horizontal projection. For more details, a survey was conducted as
shown by Althobaiti and Lu [39], summarizing the complications and challenges of Arabic
Optical Character Recognition (OCR). They divided their difficulties analysis into three

categories, “general challenges, handwritten text challenges and Arabic text challenges™.

2.1.4 Deep Neural Network

Deep Neural Networks (DNN) have been the dominant star for a long time
compared to the visual recognition models such as character and text recognition [46].
Automatic handwritten, Image recognition [8], [42], [47], [48], [49] and Face Recognition
[50], [51]. Convolutional neural network (CNN) is one of (DNN) that consists of three
main parts, Convolutional layers, Max-pooling layers, and fully connected layers. Wshah
et al. [52] has proposed a method using CNN for lexicon size reduction. This method
applies the dot descriptor with a piece of Arabic words to eliminate unlike words. They
used the IFN/ENIT database of 26459 Arabic Handwritten Word images in their
experimental work and got 87% as a reduction rate and 93% as an accuracy rate.

The first successful work for Visual recognition (Computer Vision) was in 2017 by
AlexNet which employed Convolutional Neural Network as an architecture for image
classification [53]. They achieved a top-1 test error rate of 37.5% and top-5 error rate of
17.0% by using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) -2010
dataset. A new benchmark was developed by Wang et al. [46], where they took advantage
of multilayers neural network with unsupervised feature learning to create a model that
acutely trains the network. They achieved a classification accuracy rate of 82.2% with
recognition model of 180 filters, classification accuracy rate of 83.4% with recognition
model of 360 and filters classification accuracy rate of 83.9% with recognition model of
720 filters on International Conference on Document Analysis and Recognition dataset
(ICDAR) 2003.

A new system was proposed by Mars et al. [54] that recognizes online Arabic
handwriting (letters and words) based on Time Delay Neural Network (TDNN) and Multi-
layer perceptron. They applied the system on their database which contains 6090 characters
and 1080 words. By using their own dataset, they achieved a high accuracy rate of 98.50%

for characters recognition and 96.90% for words recognition. A new method in Arabic
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handwritten recognition was proposed by Alani [55], the method was proposed in two
stages. The first stage extracted the features from the raw data by using Restricted
Boltzmann Machine (RBM), and then the second stage fed the extracted features into
Convolutional Neural Network (CNN). They trained and tested their model on Center for
Microprocessor Applications for Training Education and Research (CMATER 3.3.1) and
the Arabic handwritten digit dataset and achieved an accuracy rate of 98.59%. In 2017,
Ashiquzzaman et al. [56], a new system was proposed by using two ways for enhancing
the Arabic offline handwritten recognition. First, they used Rectified Linear Unit (ReLU)
as an activation function in their model (Input layer, hidden layer and softmax ‘classifier’
layer) with the use of dropout regularization which chooses a random number of neurons
in each layer in order not to update their gradient to avoid overfitting. Second, they used
Convolutional Neural Network which employed Backpropagation algorithm for training to
update the weights and the bias. They achieved an accuracy rate of 97.4% as a new state-
of-the-art on CMATER database.

Upgrading work on Arabic Handwritten Words Recognition was done by Alexnet
by Almodfer et al. [S57]. This work reduced error and avoided overfitting through using the
dropout regularization technique. They used the IFN/ENIT Dataset to train and test their
model with many settings of experiments to achieve classification accuracy rate of 92.13%
and 92.55% as a new state-of-the-art. A new consecutive method for Offline Arabic
Handwritten Recognition was proposed by Ghanim et al. [7] where they employed the
Hierarchical Agglomerative Clustering (HAC) method to divide the IFN/ENIT database
into associate clusters (a, b, ¢, d) for training and (e) for testing to show the database as a
large search tree to cut down the complications while comparing every test image with a
cluster. They proposed a system to evaluate the outcome of six various Deep Convolutional
Neural networks (AlexNet, VGG-16, GoogleNet, Res50 Net, ResNeXt Net, DenseNet) on
the recognition rate and the accuracy. At the end they concluded that their proposed method
using CNN as features extraction and AlexNet as a classifier reached 95.6% as a
recognition rate, and AlexNet had the best accuracy rate by applying three different
learning rates on each of the six different DCNN. 89% as an accuracy rate with 0.0001 as
a learning rate, 90% as an accuracy rate with 0.001 as a learning rate and 99% as an

accuracy rate with 0.01 as a learning rate. The drawback of this method is, they only use
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11% of the total 859 database class to reduce recognition complexity while in deep learning
more data is needed to get valid results.

Ashiquzzaman at el. [59] have used seven types of deep learning transfer models,
AlexNet, GoogleNet, Residual Network 18(ResNet18), Residual Network 50(ResNet50),
Residual Network 110(ResNetl110), Visual Geometry Group 16(VGG16), and Visual
Geometry Group 19(VGG19). The purpose of using these seven types is to determine
which model is good to be used for classification using two Arabic handwritten images
datasets written by native and non-native people. They have used the original datasets and
augmented datasets for (training 60%) and (testing 40%) by all seven types and the
GoogleNet had the best performance. The performance was measured based on accuracy,
sensitivity, and specificity. Accuracy represents the correctness of the deep learning
classifier; 93.2% for the original data and 95.5% for the augmented data. Sensitivity (Sens)
which represent the correctness of non-native language classification; 92.4% for the
original data and 93.9% for the augmented data. Specificity (Spec) which represents the
correctness of native language classification; 93.9% for the original data and 97.0% for the

augmented data.
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CHAPTER 3 ANALYSIS AND DESIGN OF DATASETS
3.1 Datasets

A perfect dataset needs to meet all the requirements for problem solving to get a
beneficial and long usage. Also, to be valuable and long-lasting, a dataset must reflect a
sufficiently difficult problem [60]. Datasets are critical and a necessary component of any
pattern recognition, image classification, computer vision work. Because a single dataset
may only cover a single job, having a large and diverse range of datasets is critical for
taking a more comprehensive approach to measuring and reviewing algorithm
performance. By creating a benchmark dataset, a classification and comparison work
would be created and used by researchers on variant machine learning methods, and the

work would be quite easy, fast, and precise [61].

3.2 Arabic Handwritten Weekdays Dataset (AHWD)

In this section, a new dataset is represented and called the Arabic Handwritten
Weekdays Dataset (AHWD). AHWD is the collection of Arabic handwritten weekday
words that was written in Libya by different Arabic speakers (Libyan, Tunisian, Algerian,
Saudi, Palestinian, Syrian, Omani, and Sudani) with different range of ages: students in
grades 5 to 9, as well as high school students, undergraduate and postgraduate university
students. Also, people on the street, senior people and many other Arabic nationalities were
asked to participate in this database. The aim was to collect between 20,000 to 30,000
Arabic handwritten weekday words. More than 20,000 words were collected and divided
into seven classes, each one containing more than 3,000 words of the same weekday words
with different morphological and calligraphic styles. For collecting the data, more than
1,000 A4 papers (form with 70 empty blocks) were used, each paper is divided into seventy
empty equal rectangular shapes, ten empty rows in seven empty columns. The participants
would write at least 3 rows including all weekdays as shown in Figure 3. 1 with excellent
quality and Figure 3. 2 with low quality. AHWD is a dataset that can be used to study

Arabic handwritten words recognition and, in this work, specifically.
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Figure 3. 1 Sample of collected data before preprocessing with good quality.

Many schools, and universities were targeted to collect the data from. More than

five primary schools, seven junior high schools, ten high schools, Zawia university, Tripoli

university, and Sabratha university were visited to collect the data.
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Figure 3. 2 Sample of collected data before preprocessing with low quality.

Regarding the data that was collected from the public, supermarkets, government

administration offices, sport clubs, and workshop places were visited. In general, many of

them were helpful and happy to participate while only a few of them declined.
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3.1.1 Preprocessing the AHWD

More than 1,000 people filled out the Arabic handwritten weekdays words forms
the first stage. This was followed by stage two with some work needed to be done such as
scanning all the Arabic handwritten weekday words forms as an image using MS-paint
program and some preliminary work on each word. This included getting a clear resolution,
without touching the milestone of the original word and saving the form that contained the
preprocessed seventy-word image as .JPG format as shown in Figure 3. 3. The JPG image
file format was created by Joint Photographic Experts Group (JPEG) in 1992, the group
recognized the need to reduce the size of large photographic files so that they could be
shared more easily. Figure 3. 4 shows the preprocessing work that was done for one sample
as an example. Figure 3. 3 is the preprocessed of Figure 3. 1. Around 70% of the data was

preprocessed, and 30% did not require preprocessing.
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Figure 3. 3 Sample of collected data after preprocessing Figure 3. 1

The preprocessing work included removing any noise, fixing the position of the
dots, fixing the position of the diacritic marks, fixing superimposed letters as shown in
Figure 3. 3 and Figure 3. 4 and fixing some letters to look acceptable to get clean and clear
images. All the work was done carefully and precisely without changing the meaning of
the original word. The preprocessing took more than seven months to get the data ready

for stage three, where each weekday word was separated and saved in its proper folder.
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The preprocessing here is to fix some week words which were written by the
participants in unreadable manner to avoid reading them wrongly by the model and lose
the words. As mentioned earlier, this dataset is the first step toward creating a complete
database for handwritten Arabic words to be used in all research purposes. Once this

complete database is done the model would be ready to classify any handwritten Arabic

words.
A comparison of collected data sample
Before preprocessing Figure 3.1 After preprocessing Figure 3.3
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Figure 3. 4 comparison of collected data between Figure 3. 1 before processing and
Figure 3. 3 after preprocessing.

The third stage was opening each saved seventy-word form image file using MS-
paint and cut each Arabic handwritten weekday word and save it in MS-word program as
shown in Figure 3. 5 to do more work on it later in stage four. Seven MS-word files were
created, each file contained the same weekdays word name. For example, all cropped
preprocessed Saturday words would be saved under Saturday.doc file as shown in Figure

3. 5, and the same applied to all the other six files.
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Figure 3.5 Sample of preprocessed Arabic handwritten Saturdays after cropping.

Another example of cropped preprocessed weekdays is Monday’s words would be

saved under Monday.doc file as shown in Figure 3. 6.
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Figure 3. 6 Sample of preprocessed Arabic handwritten Monday after cropping.

In stage four seven folders were created and named as following, Saturday’s folder,
Sunday’s folder, Monday’s folder, Tuesday’s folder, Wednesday’s folder, Thursday’s
folder, and Friday’s folder as shown in Figure 3. 7. The following work was to open each

MS-word file which was created in stage 3 and cut each cropped preprocessed Arabic
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handwritten weekday word and paste it back to MS-paint program and then to save it later
as .JPG in the specified weekday folder, such as Saturday’s folder or Monday’s folder with
range of 32 x 64 pixel to 38 x 78 pixel as shown in Figure 3. 8 and Figure 3. 9, all same
weekday words grouped in one folder. The purpose of the size range is to avoid any time
wasting in fixed images. there is a way to fix the image during feeding the image as an

input into our model, the size will be resized to 32 x 64 pixel as a power of 2.

(—w - 1 » ThisPC » NORI(F:) » PhD and all my Work » My PhD Final Work » My Data » datad »

A Esvontes Name ’ Date modified Type Size

Bl Desktop Friday 1/25/2022 2:12 PM File folder

& Downloads Monday 1/2 File folder

= Recent places Saturday 1 File folder

Sunday File folder

@» OneDrive - Dalhousie Thursday File folder

Tuesday 1 File folder

*d, Homegroup Wednesday 1/25/202 File folder

Figure 3. 7 Seven folders of AHWD

3.1.2 Organization of AHWD

To fit the model with the AHWD dataset, the AHWD dataset was organized as
follows:
[(0: Saturday 3048 <uwudl samples), (1: Sunday 3014 =Y samples), (2: Monday &Y
3080 samples), (3: Tuesday 3059 <G5 samples), (4: Wednesday 3017 «=,¥) samples), (5:
Thursday 3059 sl samples), (6: Friday 3077 42l samples)]. Each weekdays folder contained
several samples, these samples refer to the weekday names. For example, Saturday’s folder
contains 3048 Saturday’s image, Monday’s folder contains 3014 Monday’s image, and so on, as

shown in Figure 3. 8 and Figure 3. 9.
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Figure 3. 8 Sample of Saturday’s folder with .JPG format
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Figure 3.9 Sample of Monday’s folder with .JPG format

3.3 IFN/ENIT Dataset

In this section the IFN/ENIT dataset is described and reorganized to test the model
and compare the results with AHWD and augmented AHWD. IFN/ENIT is a handwritten
Arabic Tunisian town/village names dataset which was collected in Tunis for the purpose

of education and research. 2,265 forms were filled out by 411 different writers to guarantee
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the wide range of writing style. The dataset contains 26,459 handwritten Tunisian

town/village names as shown in Table 3. 1. IFN/ENIT is a very well-known dataset, is

being used in many Arabic machine learning research and is the most popular dataset.

Table 3. 1 Details of IFN/ENIT dataset [62].

Quantity of words | Quantity of town | Quantity of PAW’s | Quantity of
in town names name images characters

1 12992 40555 76827

2 10826 54722 98828

3 2599 20120 36004

4 42 188 552

Total 26459 115585 212211

3.3.1 Reorganization of IFN/ENIT Dataset

Some work had to be done to reorganize most of IFN/ENIT to fit the model without
changing the core of the words. There was a need to edit the dataset to make it work with

the model by creating 21 folders as shown in Figure 3. 10, to promote code organization

and reusability. Each folder contains the resemble Arabic handwritten words.

- - T . v ThisPC » MNORI(F) » PhD and all my Work » IFM-EMNIT-General » IFM_EMIT »

¢ Favorites MName - Date modified Type Size

Bl Desktop J Akoda File folder

& Downloads . Al_Faaied File folder

<! Recent places . Al_Fakkah File folder

. Al Manzahb File folder

@ OneDrive - Dalhousie . Al_Manzah9 File folder

. Al_Sharaia File folder

#% Homegroup . Al_Shawamek File folder

. Dukhania File folder

1% This PC . Khaleej File folder

m Desktop . Kurbus File folder

| Documents . Marth File folder

& Downloads . Maggah File folder

o Music . Mahhal File folder

=| Pictures . Oteek File folder

T PVConnect (Home . Raddah File folder

H Videos . Sedi_Ahmed File folder

= Windows8_05 (C:) . Sedi_Bobaker File folder

w LEMNOVO (D) . Sedi_Zaher File folder

= NORI (F) . Shmakh File folder

. TataweenT7MNow File folder

€ Metwork . Zanocosh File folder

I8E L EMOVO_MORI
% MNORIALZRROG

Figure 3. 10 Re-organization of IFN/ENIT to 21 folders
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Each folder contains the same towns and villages names written by different writers

as shown in Figure 3. 11, Figure 3. 12, and Figure 3. 13 as an example.
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Figure 3. 11 Akoda village.
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Figure 3. 12 Al Shawamek town.
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The final re-organization of the data to be fitted into the model is as follows:

[(0: Akoda 987 3258 samples), (1: Al Faaied 987 o=\l samples), (2: Al Fakkah1012 4sd
samples), (3: Al Manzah6 920 6 :3ll samples), (4: Al Manzah9 99655 !l samples), (5:
Al Sharaia 907 @& & samples), (6: Al Shawamek 1065 &4l samples), (7: Dukhania
1011 4x1al samples), (8: Khaleej 1037 w31l samples), (9: Kurbu 968 u=: 2 samples), (10:
Marth 1018 &k samples), (11: Naggah 1009 4 samples), (12: Nahhal 1054 J~i samples),
(13: Oteek 1062 <Lisl samples), (14: Raddah 1034 gLV samples), (15: Sedi Ahmed s
995 2al samples), (16: Sedi Bobaker 1024 sS:s: saw samples), (17: Sedi Zaher _aUall s
972 samples), (18: Shmakh 1022 #Wi samples), (19: Tataween7Nov _més 7 (st
1000 _samples), (20: Zanoosh 1042 (s samples)].
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Figure 3. 13 Sedi_Bobaker village.
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3.4 Augmented AHWD

The successful application of various deep learning models requires high-quality
and plentiful data. Data augmentation is frequently employed in the context of deep
learning since the volume and quality of the data are just as essential as the algorithm. Data
augmentation is the process of applying one or more deformations on an available dataset
to generate new, supplementary training data.

Therefore, several picture deformations were used in the data augmentation in our
research such as artificial noise, noisy data, rotated data and shifted data. Each image was
subjected to a random mix of the aforementioned deformations to generate different
images. In this section the augmented AHWD is described as follows:

e Artificial noise.
e Noisy data.

e Rotated data.

e Shifted data.

Artificial noise, which was created by adding a random 100 black pixel to each image as

shown in Figure 3.14
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Figure 3.14 Artificial noise.

- Noisy data, which was created by adding gaussian noise with mean =0 and var=0.5 to

each image as shown in Figure 3.15. The benefit of Gaussian noise is that the
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distribution itself behaves well. It's named the normal distribution for a reason: it has
useful features and is frequently employed in scientific and social sciences. It is
frequently used to simulate random variables whose true distribution is uncertain. In
other words, white Gaussian noise where the values are equally distributed and
statistically independent at any two times (and hence uncorrelated). White noise has a
zero mean, a constant variance, and is time independent. White noise, as the name

indicates, has a power spectrum that is equally distributed throughout all allowed

frequencies.
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Figure 3.15 Noisy data

Rotated data, which was created by rotating the image 5° counterclockwise as shown
in Figure 3. 16. In this method of augmentation, additional life-like examples are
introduced from which our model can learn. The images can be rotated by 0 to 360
degrees clockwise or counterclockwise. The purpose is to make the pixels of the image
rotate in this method and change the position of the object. A rotating image rotates left
or right along an axis while maintaining the same face toward you. When you flip an
image, it rolls over, either vertically or horizontally, to become a mirror image. The
choice of rotating by 5° is to save processing time because thousands of rotated images
would fit in the model during the real time execution. The more degree of image

rotation the more processing time needed to fit the data.
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Figure 3. 16 Rotated data.
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Shifted data, which was created by shifting data 5 pixels to the right as shown in Figure 3.
17. The choice of shifting by 5 pixels is to save processing time because thousands of
shifted images would fit in the model during the real time execution. The more pixels of

image shifting the more processing time needed to fit the data.
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Figure 3. 17 Shifted data.
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Table 3.2 The size of AHWD before and after data augmentation explains in detail the

size of AHWD and the size of augmented AHWD in terms of image’s number and how

many images each folder has.

Table 3.2 The size of AHWD before and after data augmentation

Number Weekdays folder Initial size After augmentation
1 Saturdays 3048 10509
2 Sundays 3014 10430
3 Mondays 3080 10609
4 Tuesdays 3059 10535
5 Wednesdays 3017 10490
6 Thursdays 3059 10660
7 Fridays 3077 10482
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CHAPTER 4 OPTIMIZATION

In this chapter, firstly, background on gradient descent is presented. Secondly,
optimizer algorithms are described. Thirdly, the hyperparameters are optimized. Fourthly,

how the optimal capacity can be reached using hyperparameters is analyzed.

4.1 Background

In deep machine learning, optimization refers to the process of getting the lowest
error function (cost function, loss function) which will be used to fit the machine learning
algorithm. During optimization, the algorithm goes through all potential variants of its
parameter combinations to find the optimum one that permits the accurate mapping of
characteristics and classes during training. A mapping function from inputs to outputs is
learned by deep learning neural networks. This is accomplished by updating the network's
weights in response to the errors the model makes on the training dataset. Updates are done
to continuously lower this error until a suitable model is discovered. Optimization function
(optimizer) is used to alter or change the neural network's attributes such as learning rate
and weights to minimize the error (loss). Where weight is a model parameter and learning
rate and batch size are model hyperparameters. Model parameter value starts with a random
value and then updates itself during the execution process. Whereas the hyperparameter
value is set prior to training and remains constant during training session. So, finding the
best value for hyperparameters is called hyperparameter optimization (tuning). Size
normalization is commonly used to reduce size variation and adjust the character or word
sizes to an identical size, in the proposed model the size is normalized by 64x32 pixels [62]

[63].
4.2 Gradient Based Optimization Algorithms

Gradient descent is an optimization process that locates the minimum of an
objective function by following the negative gradient of the function. Gradient descent has
the drawback of bouncing around the search space (search through a landscape) on
optimization problems with many curvature or noisy gradients, as well as being trapped in
flat regions of the search landscape with no gradient, where the landscape is referred to as

an error surface. Through this landscape, the optimization algorithm iteratively moves

28



around, adjusting the weights and looking for good or low-elevation regions. Finding the
bottom of a landscape with basic optimization issues is straightforward; in fact, it is so
simple that extremely effective algorithms may be created to discover the optimal answer.
The landscape has the shape of a large bowl. Convex is a mathematical term used to

describe these kinds of optimization problems as shown in Figure 4. 1 [64] [65].

Local mimima

Global minima

Figure 4. 1 Local and global minima

When optimizing the weights of a neural network while the navigated error surface
is not shaped like a bowl, this means there are several hills and valleys in the landscape.
Non-convex is a mathematical term used to describe these kinds of optimization problems
as shown in Figure 4. 1. There is no method that can identify the best set of weights for a
neural network in polynomial time. In mathematics, the optimization issue can be solved
by neural network training, known as NP-complete. NP-complete is an abbreviation for a
nondeterministic polynomial-time complete and defined as the complexity class of
decision problems with a high degree of complexity for which solutions may be verified
for correctness by using an algorithm whose execution time scales polynomially with the
amount of the input [63] [64] [66]. The optimization of neural network weights is a
challenging task because of several factors, including local minima and Saddle point (flat
regions).

Local minima or local optima refer to the many locations of the error landscape
(valleys) where the loss is small as shown in Figure 4. 1. The valley has a high elevation
when looking at the entire landscape and better alternatives could be available. It is best
practice to start the optimization process with a lot of noise so that the landscape may be

sampled broadly before choosing a valley to fall into since it might be difficult to tell if the
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optimization algorithm is in a local minimum or not [63] [64] [66]. Weights are updated
based on the lowest error in the network.

The global minimum is the location where the landscape is at its lowest level and
leads to the lowest error that is needed as shown in Figure 4. 1. The difficulty is that the
distinction between the local and global minima may not be incredibly significant in neural
networks, which may have one or more global minima. This has the implication that getting
a good enough set of weights is frequently more feasible and, hence, more acceptable than
finding a global optimum or best set of weights [63] [64] [67]. Global minima are the key
solution to find the lowest error and in turn to find the generalization error.

Saddle point or flat regions as shown in Figure 4. 2 is a place on the landscape
where there is no gradient (zero value). These can be discovered at the base of valleys or
in the spaces between hills. A zero gradient is problematic since it shows that the
optimization algorithm is unclear about the optimum path to take to improve the model,
the solution for this problem is to add the momentum hyperparameter to avoid the zero

gradient [63] [64] [66].

Figure 4. 2 Saddle point
4.2.1 Stochastic Gradient Descent algorithm (SGD)

The Stochastic Gradient Descent Algorithm is a fast optimization method
(optimizer) and is an algorithm that trains the deep neural network by estimating the
gradience of the error momently in each state and updates the weights of the model by
using backpropagation algorithm. All weights of the neural network are calculated by

empirical optimization approach not by analytical approach. Using mini-batch sizes can
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approximate a good gradient descent using limited data samples, and they typically are
powers of 2, such as 16, 32, 64, 128, 256, 512, 1024, and so on. The reason for using
powers of 2 is to help mathematically facilitate the resources efficiently such as Graphic

Processor Units (GPU) [64].

learning
rate

gradient

Nesterov

Figure 4. 3 Evolutionary map of optimizers [65].

4.2.2 Adaptive Gradient Algorithm (AdaGrad)

Adaptive gradient algorithm (AdaGrad) adjusts the parameters that are appropriate
for the learning rate, to make large updates for discrete parameters and small updates for
frequent parameters. By conducting training, it is suitable for processing scattered data, but
the problem lies in some cases where the learning rate will decrease due to the
accumulation of gradients from the beginning of the training. In addition, there is a point
that the model will not learn again because the learning rate is almost zero, Adam's

algorithm worked to solve it by making the learning rate go towards stability [63] [64] [65].
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4.2.3 Root Mean Square Propagation Algorithm (RMSprop)

The Root Mean Square Propagation algorithm (RMSprop) is a derivative of the
adaptive gradient algorithm. The learning of each coefficient depends on it (i.e., its overall
learning rate is constant), but it computes the slope with an exponential mean regression
instead of the sum of the scores of it. As a result, it automatically adjusts and responds to
changing specific learning rates to prevent the overall learning rate of the model from
drifting out of bounds and backtracking, the algorithm has excellent performance in

unstable problems [63] [64] [65].

4.2.4 Momentum Algorithm

Momentum is an addition to the gradient descent optimization process that enables
the search to develop inertia in a direction in the search space and get around noisy gradient
oscillations and cruise over flat areas of the search space. Momentum is the process of
moving to a new location in the search space by introducing an extra hyperparameter that
regulates the quantity of history (momentum) to incorporate in the update equation. The
hyperparameter's value is described as falling between 0.0 and 1.0, and it frequently has a
value of 0.8, 0.9, or 0.99, which is near to 1.0. Gradient descent with no momentum is

equivalent to a momentum of 0 [63] [64] [65].

4.2.4 Adam Algorithm

Adam algorithm is a method for stochastic optimization. It is the most popular
optimizer in classification of deep learning neural network and is used to update the
network weights iteratively based on training data. Adam is a new optimization method
that takes the place of the old stochastic gradient descent approach. Adam optimizer uses
both Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation
(RMSProp). Adam algorithm is called first order optimization algorithm because it uses
the first derivative of the function. Figure 4. 3 shows the developments of gradient descent
algorithms, from this figure, Adam optimizer is originated of RMSprop optimizer,

AdaGrad optimizer and Momentum optimizer algorithms [63] [64] [65].
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4.3 Optimization of Hyperparameters

Most deep learning algorithms accompany numerous hyperparameters that control
many parts of the algorithm's way of behaving to get the optimum values and reach the
optimization. A portion of these hyperparameters influence the time and memory cost of
running the algorithm. Some of these hyperparameters influence the nature of the model
capacity and the model quality by the training process and the ability to get the predicted
results when a new dataset is used. There are two ways to search for these hyperparameters:

Automatic hyperparameter search and Manual hyperparameter search.

4.3.1 Automatic Hyperparameter Search

= Random search
Describe a search space as a bounded domain of hyperparameter values and
randomly select points within that domain.

=  Qrid search
Creates a grid of hyperparameter values to represent a search space, and then
analyses each point in the grid. An estimator using grid search must do an
exhaustive search across the provided hyperparameter values. Grid search is a
challenge since it needs significant computer resources to examine more
parameters.

=  Bayesian search
Create a probability model for the objective function, then use it to choose the most

promising hyperparameters to test against the real goal function.

4.3.2 Manual Hyperparameter Search

Utilizing Manual search requires knowledge, experience and understanding of what
hyperparameters, and their relationships really do and how machine learning algorithms
accomplish a satisfied generalization. Understanding the relationship between
hyperparameters such as learning rate and batch size, training error, validation error, test
error, generalization error, and available computing resources such as GPU, CPU, memory
and run time setting up a strong establishment on the basic thoughts concerning

the successful capacity of a learning algorithm. The benefit of manual search is to find the
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proper hyperparameters for the learning algorithm to reach the optimal capacity or effective
capacity. Optimal capacity can be reached by increasing the representational capacity of
the model by adding more neurons in the hidden layers to accommodate more complicated
functions, and by minimizing the cost function of the model to reach the generalization

error.
4.4 Regularization Methods

Regularization is a family of techniques that provide more information to an ill-posed issue
to change it into a more stable, well-posed problem for optimization. The most basic and
possibly most often used regularization strategy is to apply a penalty to the loss function
according to the amount of the weights in the model. The most common regularization
methods are regularization L1, L2 are used with weight decay, early stop, dropout, and data
augmentation. Dropout was used in the model by 20% after trying other percentages and
got the best results in terms of low error and high accuracy. Data augmentation was created
using AHWD dataset and used in the model. The more training the model the best results
are produced. So, the augmented data was used and got the best results of the model as

explained in chapter 7.

4.4 Model Capacity

The capacity of deep neural network model determines the range of mapping functions that
it can learn. There are two characteristics of a model that can influence the neural network's
capacity: number of nodes and number of layers. By expanding the model's capability,
underfitting problem can be solved. When a model has greater capacity, it can perform a
wider range of functions for mapping inputs to outputs. Capacity describes the model's
ability to perform a range of tasks by altering the model's structure, and by including extra
layers and/or nodes. It is more typical to have an overfit model since an underfit model is
so readily rectified. Monitoring the model's performance throughout training by assessing
it on both a training dataset and a holdout validation dataset makes it simple to identify an
overfitting model. By plotting graphs, the effectiveness of the capacity during training

would be noticeably clear, these graphs are called learning curves [68] [69].
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The model learns from existing samples and generalizes from those existing examples to
upcoming examples. To measure the model's capacity for generalization, techniques like
train/test split and k-fold cross-validation are employed. It is challenging to learn new
things and apply them to new situations. The model will perform badly on both training
dataset and on fresh data if there is insufficient learning and if the model learns too much,
it will perform well on the training examples but badly on new data, over-analyzing the
problem. So, the model has no generalization in either situation. There are three situations
where the model can go [64] [68] [69].

» Underfitting model: a model that is unable to adequately learn the problem,

performs badly on a training dataset, and is unsatisfactory on a holdout sample.

» Opverfitting model: a model that performs well on the training dataset but poorly on

a holdout sample because it learns the training dataset too well.

» Good fitting model: a model that correctly notices the training dataset and applies
effectively to the testing dataset.

Having a lot of layers can frequently boost the model's capability, functioning as a
computational and learning shortcut to modelling a problem. A model with one hidden
layer of twenty nodes, for example, is not equal to a model with two hidden levels of ten
nodes each, the latter has much more capacity. The concern is that a model with more
capacity (too many nodes,) than needed may overfit the training data. Similarly, to a model
with too many layers, it will be unable to learn the training dataset, thereby becoming lost
or stuck during the optimization phase. In general, models with a higher number of
parameters are said to have high capacity, and they require a bigger amount of data to

obtain generalization power to unknown test data [68] [69].

According to [68] [69], the complexity of models is a fundamental issue in deep
learning. They did a thorough review of the most recent papers on deep learning model
complexity. Deep learning model complexity may be divided into expressive capacity and
effective model complexity. They examine previous research on those two categories in
terms of four key factors: model framework, model size, optimization technique, and data
complexity. Furthermore, they reviewed current studies on effective complexity from two
perspectives: broad measurements of effective complexity and the high-capacity low-

reality issue. There was a discussion over the use of deep learning model complexity,
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particularly in generalization capabilities, optimization, model selection, and design. Deep
learning model complexity is still in its infancy. There are several intriguing difficulties for
future works. They also explore deep learning model complexity applications such as

comprehending model generalization, model optimization, and model selection and design.
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CHAPTER 5 EXPERIMENTAL SETUP

This chapter outlines the processing platforms and the proposed DCNN model

implementation,

5.1 Processing Platform and Frameworks

This section explains how the work was done in terms of training and testing the
model with standalone machine and online server. The comparison between the two
platforms is important in terms of the resources needed in machine learning. The
standalone machine was limited in executing the model whereas the online server was good

in executing the model.

5.1.1 Portable computer

Initially, a Lenovo portable computer with the following specifications was used:

e Processor Intel Core™ i5-3230M CPU @ 2.60 GHz,

¢ Installed memory (RAM) 8.00 GB,

e System type: 64-bit Windows 8.1 Operating System with x64 based
processor,

e and Hard disc capacity 500 Gb.

Then Anaconda Navigator (anaconda3) was installed and the Jupyter notebook was
used for to provide the interface. This system did not satisfy the required amount of

resources to run the DCNN and an alternative environment was sought.

5.1.2 Online Server

Due to the limited resources a final decision was made to subscribe with Google
Colab pro+ with unlimited resources and quick processing, and access to GPU. The work

was much easier and more accurate when all three datasets were used.

5.1.3 Frameworks
Keras and Tensorflow were used as the framework. Keras is the high-level

Application Programming Interface (API) of TensorFlow 2.
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5.2 Activation Functions

The activation function is a transfer function. It is a mathematical method used by
each neuron in the neural network to activate. It fires the output of the neuron to the next
neuron or to the network output if it satisfies the condition. By using an activation function,
a non-linearity input transformation in the Neural Network is there. Activation functions
must be well chosen; each model has many appropriate activation functions that are used
to get accurate output and make the model simple and function well [67] [70]. There are
many activation functions; such as sigmoid function, tangents hyperbolicus function (tanh),

Rectified Linear Unit (ReLU) and Softplus.

5.2.1 Sigmoid Activation Function

The sigmoid function is a nonlinear activation function and transforms the values

between 0 and 1. The formula of the sigmoid function is represented as:

00 =13
There are two problems with using sigmoid function. First, the upper and lower slope tail
are almost equal to one and zero, respectively. This is called sigmoid function saturability
due to an exceptionally large or an exceedingly small input values which in turn makes the
value of the gradient almost zero. Second, the output of sigmoid functions is not zero
centered; this means if all the data entering a neuron always has positive value, then the
gradient value would be all negative values or all positive values during the training stage

(backpropagation). So, it is not suitable for our model [71].

5.2.2 Tangents Hyperbolicus Activation Function (TanH)

The tanh function is a nonlinear activation function and due to the drawbacks with
the sigmoid function as explained in the previous section, there was too much work to
overcome these problems. The tanh function is considered an enhanced version of sigmoid
function, overcame the problem of non-zero-centered output to become symmetric output
(zero centered). The formula of the tanh function is represented as:

1— e—ZX
) =1 e
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The range of the tanh function values is between -1 and 1, so the inputs to the layers
would be negative or positive. The slope of the tanh function finds the differentiation value
of that point. The gradients are free to move in a different direction, which tells that the

gradient diffusion problem still around.

5.2.3 Rectified Linear Unit Activation Function (ReLU)

The ReLU function is a nonlinear activation function and unsaturated because the
issue of the gradient diffusion is resolved. The output value of ReLU function is zero if the
input is negative or zero, and the output value would be the same if otherwise. The formula

of ReLU function is represented as:

f(x) = {0, if x<O0

X, Otherwise Or  f(x) = max(o,x)

The ReLU function makes the model learn amazingly fast and perform much better than
sigmoid and tanh functions due to the resolved gradient problem. ReLU function is
considered as a default activation function in multilayered neural networks and
Convolutional Neural Networks (CNN). Based on all the previous advantages, ReLU was

chosen in our model.

5.2.4 Softplus Activation Function

The softplus function is a nonlinear activation function and unsaturated because the
issue of the gradient diffusion is resolved. It functions as ReLU activation function. The
formula of the softplus function is represented as:

f(x) =In (14 €%

5.3 Deep Convolutional Neural Network model (DCNN)

This section defines the Deep Convolutional Neural Network model (DCNN) used
for Arabic handwritten words pattern recognition and outlines how the model was

implemented, and which layers, functions and methods were used to improve the

performance on the three datasets: AHWD, IFN/ENIT, AND augmented AHWD.
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The proposed model was finalized with an input layer, three hidden layers and a
fully connected layers after building many others models with four hidden layers, five
hidden layers, and seven hidden layers. After traing and testing all the models, the
conclusion was to have less number of layers with many filters in terms of Deep
Convolutional Neural Network. The proposed model was chosen because it has given the
best results of all measures that were used in the model such as accuracy rate and testing

error rate (Generalization Error Rate).

5.3.1 Input Layer

In Keras, the input layer is a tensor rather than a layer, the beginning tensor is
transmitted to the first hidden layer. For simplicity it is called an input layer. The input
layer is a pixel image with size H x W x D, where H is the height, W is the width, and D is
the depth. Since the image is the main core here, there is a consideration whether it is
colored or grayscale, which can be done by adding 3 as colored RGB image or by adding
1 as grayscale image. It is critical to understand that input images are represented as arrays
of hundreds, thousands, or millions of pixels. Each pixel is represented by a single point
and may differ in color from its neighbors. Grayscale images are used in our model with
the size of (32 x 64 x 1) pixels in a two-dimensional array format analogous to a matrix in
grayscale. Specifically, the computer records the values that describe each image’s pixel.
Keras will require the input shape in the first layer because it is the only one that must be
defined when implementing the model. So, our input shape = (32,64,1), this is the

representation of the grayscale input images.

5.3.2 Hidden Layers

In this section, the main components of hidden layers in CNN are outlined and how
do they work with each other in the proposed model. Hidden layers are composed of
convolutional layers, Pooling layers, and fully connected layers.

Convolutional layer is an essential part of CNN components, and its main function
is to extract the features from the input image (input matrix, raw image, or raw matrix H x
W x D) by using weighted filters (kernels, or feature detector). These features could be

edges, dots, endpoints, corners, ascending and descending letters, lower and higher
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diacritic dots, diacritic marks, and letter loops. All the information of these features are

saved from loss by applying padding in all convolutional layers.

The filter size is identified by (N x N x R) where N is the height, and the width and
R is the number of channels. Our model is composed of three convolutional layers. The
first convolutional layer is loaded by an input matrix as an input shape (32 x 64 x 1), this
is only done when the new image is loaded. After loading the raw image, the size and the
number of filters to be used are determined , the start is to use 32 filters with a size of (3 x
3), then a multiplication process would start by multiplying each element in the kernel (3
x 3 x 32) with each element in the input matrix (binary image input) and sum each result
of multiplication and save it in the feature (activation) map, then repeat the same procedure
by shifting one pixel right each time and doing the multiplication with the filter until the

last pixel then save the result in the feature map.

Next, one pixel is shifted down (if stride = 1) from the beginning of the input matrix
and do the multiplication and save the result in the feature map as shown in Figure 5. 1 and
Figure 5. 2. this way is continued until the end of the input matrix. The feature map with

(32 x 64 x 32) has been created after applying a ReLU activation function.
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Figure 5. 1 DCNN of our model using AHWD.
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Figure 5. 2 DCNN of our model using IFN/ENIT.

The pooling layer comes after the feature map and watch the features in the
perception scope and extracts the dominant features in the area to lower the number of
hyper-parameters such as filter size, padding, and Pooling method and in turn reduce the
inner dimensionality of the feature map (subsampling).

After getting the feature map with (32 x 64 x 32), max-pooling with pool-size = (2
x 2) is applied to get another feature map with (16 x 32 x 32). In the second convolutional
layer, the input would be the feature map with (16 x 32 x 32) and by applying 64 filters
with the size of (3 x 3) and ReLU activation function a new feature map with (16 x 32 x
64) is produced, and by applying max-pooling with pool-size = (2 x 2) a new activation
map with (8 x 16 x 64) is produced. In the third (final) convolutional layer, the input would
be the feature map with (8 x 16 x 64) and by applying 128 filters with the size of (3 x 3)
and ReLU activation function a new feature map with (8 x 16 x 128) is created, and by
applying max-pooling with pool-size = (2 x 2) a new activation map with (4 x 8 x 128) is

created.
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5.3.3 Fully Connected Layer.

After all the calculation in terms of summing learned features weights in the
previous layers (convolutional layer and pooling layer), there is a third layer called a fully
connected layer with ReLU activation function which is constructed of many neurons. Each
neuron is connected to all other neurons as a fully connection. The output from the final
convolutional layer would be flattened and converted into one dimensional array of vectors
and is passed to fully connected layer where each input with trainable weight is hooked up
with an appropriate output as shown in Figure 5. 1 and Figure 5. 2. Flattening is considered

as an input layer for the Artificial Neural Network (ANN).

5.3.4 Output Layers

In the proposed model, each dataset has its own number of classes, when using
AHWD and augmented AHWD the output layer is 7 class softmax layer. On the other hand,
when using IFN/ENIT dataset the output layer is 21 class softmax layer. The final stage is
the classification where the softmax works as classifier to classify all the features to its

labeled class.

5.4 Hyperparameters

Manual hyperparameter search was used to find the best values of hyperparameters
and their relationships with each other to reach the optimal model by observing the results
and adjusting the values of the hyperparameters. In this section, a complete study would

be done in the hyperparameters used in the proposed model.

5.4.1 Learning Rate

The learning rate is a hyperparameter that specifies how much the model should
change in response to the predicted error each time the model weights are updated. In the
proposed model, trial and error approach is used with five different values of learning rate
(1073 to 1077), each one is associated with seven batch sizes (16, 32, 64, 128, 256, 512,
1024), and all the experiments are done using the three datasets: AHWD, IFN/ENIT, and
augmented AHWD. Results are analyzed in the next chapter 6.
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5.4.2 Batch Size

Seven batch sizes (16, 32, 64, 128, 256, 512, 1024) were used in the proposed
model. Since the manual hyperparameter is used, it is noticeably clear to report how the
model performs in each batch size. Batch normalization was not used in the proposed
model because Batch Normalization has traditionally performed badly when the batch

size is too small [72].

5.4.3 Random_state=42

Random_state is set to 42 as a default value. However, any integer can be used if
we want the system to be deterministic. Moreover, if the system runs every time without
specifying the value of random_state, the results would be different each time, the system

1s not deterministic.

5.4.4 Validation_split=0.2

Since Keras is used in this proposed model, 20% of training datasets are set into a
validation dataset and test the performance of the proposed model on that validation dataset
in each epoch to tune the hyperparameters. It might be useful to visualize the effect of a
single hyperparameter on the training and validation scores to see whether the estimator is

overfitting or underfitting for certain hyperparameter values.

5.4.5 Epochs

In machine learning, an epoch is defined as one full iteration of the training dataset
through the algorithm. The number of epochs in the proposed model is equal to 3000
epochs as a standard number to avoid any variation in the results. These results are
evaluated by the accuracy rate, error rate, the convergence between the training accuracy
curve and the validation accuracy curve in the learning curve plot, the convergence
between the training loss curve and the validation loss curve in the learning curve plot, and

confusion matrix.

5.4.6 Relationships between Learning Rate, Batch Size, and Epoch

Increasing the learning rate accelerates the model's learning but risks exceeding its

minimal loss. By reducing batch size, the model utilizes less data to calculate the loss in
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each training process. When learning rate is low, batch size is small, and high epoch
number, the system would learn in a slow manner. If the learning algorithm has fine-tuned
learning rate and fine-tuned batch size but with a small number of epochs, the system may
not perform well and has a bad generalization. Since the manual hyperparameters are used

in this proposed model, the results are checked and compared with the previous results.
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Chapter 6 Result Analysis

This chapter discusses the performance of the DCNN algorithm for three
experimental phases for each dataset: AHWD, IFN/ENIT, and augmented AHWD. All
results are analysed and discussed to choose the best accuracy rate and the lowest error rate
or the Generalization Error Rate (GER). A comparison is also made with current state-of-

the-art.
6.1 AHWD Experimental Phase

As mentioned in Chapter 5, the model is evaluated by using the testing dataset. On
AHWD, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested.
Also, learning rates of 1073, 107%,107°,107°, and 10~7 were evaluated with epochs
equal to 3000. With each learning rate, the model was trained with 7 different batch sizes.
Five tables of results were produced, and each table consists of one learning rate and 7
batch sizes with results (training iteration number, testing iteration number, accuracy rate,
loss rate, and confusion matrix errors) where the loss rate here is considered as the GER.
The results between the five tables are evaluated based on the following criteria:

e Learning rate values ( 1073 to 1077 ) and batch sizes.

e A low loss error rate or Generalization Error Rate (GER) has the highest priority.

e High accuracy rate.

e Confusion matrix errors.

e Model response speed by looking at the learning curve graph and determine in
which epoch number the accuracy curve starts rising and in which epoch number
does the loss curve start coming down.

After the evaluation by using these criteria, the best performance from each table has been

collected.

First, when learning rate = 1072 and batch sizes (16, 32, 64, 128, 256, 512, 1024)

are used, the results would be as shown in Table 6.1.

By looking at Table 6.1, the best accuracy rate is 99.86%, the lowest error rate is 0.5773,

and the lowest confusion matrix error number is 9.
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Table 6.1 AHWD dataset with learning rate = 1073,

Batch | Epoch | Iteration Accrate| Lossrate | Confusion
size Train | Test GER Matrix Errors
16 3000 716 441 | 09973 | 658.0825 12
32 3000 358 221 | 09970 | 249.3682 11
64 3000 179 111 | D.9980 | 158.4381 11
128 3000 20 56 0.9983 | 51.5822 8
256 3000 45 28 0.9986 | 5.9887 10
512 3000 23 14 0.9982 | 3.4738 10
02« 3000 12 7 D.9986 | 0.5773 )

This conclusion is acceptable in this training and testing condition but cannot be
generalized because Figure 6.1 shows an overfitting after epoch 2000; that is, the validation
loss curve starts to diverge up off the training loss curve. In conclusion, the model
generalization cannot be achieved for the AHWD dataset with a learning rate = 1073 and

for batch sizes 1024.
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Figure 6.1 LC and CM with LR = 1072 and BS = 1024 AHWD.
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All other results in Table 6.1 have very high error rates, and this leads to overfitting

and cannot be generalized as shown in Figure 6.2 to Figure 6.7.
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Second, when learning rate = 107* and batch sizes (16, 32, 64, 1024) are used, the

results are shown in Table 6.2.

By looking at Table 6.2 and by rounding up, all the accuracy rates are the same as 99.70%.
So, by choosing the lowest error rate (GER) = 0.0349, a low confusion matrix error number
=9 is obtained, and the lowest iteration is for (training =12 and testing = 7) which in turn
takes less computing time. This conclusion is the best and is accepted in this training and
testing session with batch size = 1024 as shown in Figure 6.8 where the convergence
between the training accuracy curve and validation accuracy curve starts approximately at
epoch = 300 and continue all the way straight. Moreover, the convergence between the
training loss curve and the validation loss curve starts to come down right from the

beginning until it reached epoch 100 where the convergence started to be steady, and the

error is the lowest.

Table 6.2 AHWD dataset with learning rate = 10~*

Batch | Epoch | Iteration Acc rate| Loss rate | Confusion
size Train | Test GER Matrix Errors
16 3000 716 441 0.9973 0.6848 9
32 3000 358 221 0.9977 | 0.3508 15
64 3000 179 111 09966 | 0.2413 11
128 3000 o0 56 0.9965 | 0.1557 10
256 3000 | 45 28 09969 | 0.0926 g
512 3000 23 14 09970 | 0.0520 11

022 3000 12 7 0.9965 | 0.0349 0

In Table 6.2, there are some low error rates 0.0926 and 0.0520 with no overfitting
as shown in Figure 6.10 and Figure 6.10 respectively. However, there are error rates

0.6848, 0.3508, 0.2413 and 0.1557 with overfitting as shown in Figure 6.11 to Figure 6.14

respectively. None of these results were chosen because they are not the best.
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Figure 6.8 LC and CM with LR = 10~* and BS = 1024 AHWD.
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Figure 6.13 LC and CM with LR = 10~* and BS = 64 AHWD.
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Figure 6.14 LC and CM with LR = 10™* and BS = 128 AHWD.

Third, for learning rate = 10~> and batch sizes (16, 32, 64, 1024), the results are shown
in Table 6.3.
By looking at Table 6.3, the highest accuracy rates are 99.76%, with low error rate
(GER) =0.0230, low confusion matrix error number = 11 errors, and low iteration (training
=23 and testing = 14) which in turn takes less computing time. This conclusion is the best
performance and is accepted in this training and testing session with batch size = 512 as
shown in Figure 6.15, where the convergence between the training accuracy curve and
validation accuracy curve starts approximately at epoch = 400 and continue all the way
straight. Moreover, the convergence between the training loss curve and the validation loss
curve starts to come down right from the beginning until it reached epoch 200 where the

convergence started to be steady, and the error is the lowest.
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Table 6.3 AHWD dataset with learning rate = 107>

Batch | Epoch | Iteration Acc rate| Loss rate | Confusion

size Train | Test GER Matrix Errors

16 3000 716 441 0.9957 | 0.0555 11

32 3000 | 358 | 221 0.9965 | 0.0522 16

64 3000 179 111 0.9972 | 0.0342 16

128 3000 20 56 0.9963 | 0.0299 14

256 3000 | 45 28 0.9963 | 0.0280 15
G12) [3000 |23 |14 | 09976 | 0.0230 11

1024 | 3000 | 12 7 0.9965 | 0.0194 14
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Figure 6.15 LC and CM with LR = 107° and BS = 512 AHWD.

In Table 6.3, all error rates are considered low, and all accuracy rates are high, too.
The error rate 0.0191 with batch size 1024 and accuracy rate is the lowest but has been
excluded because of the slowing performance in model response speed as shown in Figure

6.16, where the training accuracy curve and validation accuracy curve start raising up in
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convergence fashion at epoch 350 until approximately epoch 1,000 where the convergence
goes all the way long, whereas in Figure 6.15 the convergence the convergence between
the training accuracy curve and validation accuracy curve starts approximately at epoch =
400 and continue all the way straight. Moreover, the convergence between the training loss
curve and the validation loss curve starts to come down right from the beginning until it

reached epoch 200 where the convergence started to be steady, and the error is the lowest.
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Figure 6.16 LC and CM with LR = 1075 and BS = 1024 AHWD.

Fourth, for a learning rate = 107 and batch sizes (16, 32, 64, 128, 256, 512, 1024), the

results are shown in Table 6.4.

By looking at Table 6.4, the highest accuracy rate is 99.72%, with lowest error rate
(GER) = 0.0177, and low confusion matrix error number = 16 errors. This conclusion is
the best performance and is accepted in this training and testing session with batch size 64
as shown in Figure 6.17, where the training accuracy curve and validation accuracy curve
start raising up in convergence fashion from the beginning until approximately epoch 1000
where the convergence goes all the way long, Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from the
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beginning until it reached epoch 400 where the convergence started to be steady, and the

error is the lowest.

Table 6.4 AHWD dataset with learning rate = 10~

Batch | Epoch | Iteration Acc rate| Loss rate | Confusion
size Train | Test GER Matrix Errors
16 3000 | 716 | 441 | 0.9957 | 0.0264 15
32 3000 | 358 | 221 | 0.9955 | 0.0288 16
3000 | 179 | 111 | 0.9972 | 0.0177 16
128 3000 | 90 56 0.9953 | 0.0231 18
256 3000 | 45 28 0.9934 | 0.0219 20
512 3000 |23 14 0.9872 | 0.0473 111
1024 | 3000 |12 7 0.9725 | 0.0948 360
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Figure 6.17 LC and CM with LR = 107% and BS = 64 AHWD.
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In Table 6.4, some results in training and testing sessions with batch size 16 with
accuracy rate 99.57%, and with loss rate (GER) 0.0264; and batch size 32 with accuracy
rate 99.55%, and with loss rate (GER) 0.0288; and batch size 128 with accuracy rate
99.53%, and with error rate 0.0231; and batch size 256 with accuracy rate 99.34%, and
with 0.0219 are acceptable but not chosen because the error rates are high comparing to
the chosen error rate 0.0177 with accuracy rate 99.72%.

However, for a batch size 512 with an accuracy rate 98.72%, and with error rate 0.0473;
and batch size 1024 with accuracy rate 97.25%, and with 0.0948 are not accepted in this
training and testing session because the error rates are high, the confusion matrix errors
numbers are high, and the model response speed is low in both as shown in Figure 6.18
and Figure 6.19, the conclusion with the last two results is that the system is unstable and

the batch sizes 512 and 1024 are not suitable here.
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Figure 6.18 LC and CM with LR = 107¢ and BS = 512 AHWD.
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Figure 6.19 LC and CM with LR = 107¢ and BS = 1024 AHWD.

Fifth, when the learning rate = 10~7 and for batch sizes (16, 32, 64, 128, 256, 512,
1024), the results are as shown in Table 6.5.

By looking at Table 6.5, the best accuracy rate is 96.10%, error rate (GER) =
0.1530, and the confusion matrix error = 663. This conclusion is not accepted in this
training and testing session with batch size = 32 because the error rate is high, and the
confusion matrix error number is remarkably high, and the model is unstable as shown in
Figure 6.20
In more detail, using learning rate = 10~7is not suitable for the proposed model since all
the training and testing session using 1077 with batch sizes are (16, 32, 64, 128, 256, 512,
1024) make the proposed model unstable and unrobust as shown in Figure 6.20 to Figure

6.26.
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Table 6.5 AHWD dataset with learning rate = 10~/

AHWD dataset LR = 0.0000001 =1le-7

Batch | Epoch | Iteration Acc rate| Loss rate | Confusion
size Train | Test GER Matrix Errors
16 3000 | 716 441 | 0.9296 | 0.2223 1065
32 3000 | 358 221 | 0.9610 | 0.1530 663

64 3000 179 111 | 0.7995 | 0.6671 3849
128 3000 | 90 56 0.7705 | 0.8354 > 6000
256 3000 | 45 28 0.6556 | 1.0785 > 6000
512 3500 | 23 14 0.2225 | 1.9288 No diagonal
1024 | 3500 12 7 0.2256 | 2.0243 No diagonal
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By looking at Figure 6.20 to Figure 6.26, there is instability in the proposed model
when using a learning rate = 1077, The learning rate here is very small makes the gradient
erratic and the convergence between the training accuracy curve and validation accuracy
cannot be realized. Moreover, as the batch size increases:

e Both the training and validation loss curve diverge, and this divergence is clear in
Figure 6.26.
e The number of confusion matrix errors increases, the classification accuracy rate

decrease, and the error rate increases, as well.

The Adam optimizer is used to evaluate the performance when applying AHWD
using the proposed model. For the loss function, the categorical cross-entropy loss is used.
After training the DCNN model to calculate the probability of each image over the classes,
the model is evaluated by using the testing dataset. On AHWD, different batch sizes equal
to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of
1073, 107%,107>,107°, and 10~7 were evaluated with epochs equal to 3000. With each
learning rate, the model was trained with 7 different batch sizes. So, five tables of results
were produced, and each table consists of one learning rate and 7 batch sizes with results
(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered
as the GER. The results between the five tables are evaluated based on the following
criteria:

e Learning rate values ( 1073 to 1077 ) and batch sizes.

e Low loss error rate (GER) has the highest priority.

e High accuracy rate.

e Confusion matrix errors.

e Model response speed by looking at the learning curve graph and determine in which
epoch number the accuracy curve starts rising and in which epoch number does the loss

curve start coming down.

After applying these criteria, a table summarizing the conditions to obtain the best

results is compiled for each dataset. The result is shown in Table 6.6 for AHWD. After
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applying the above criteria on Table 6.6, it was concluded that the best accuracy rate is

99.76% and error rate GER = 0.0230 for the following reasons:

The learning rate (10~>) is low which makes the model train at a reasonable speed and
allows the gradient descent to produce a smooth output.

There is a reasonable number of epochs (3000 epochs with 23 training iterations and
14 testing iterations for each epoch) required and batch size is = 512. These conditions

allow relatively fast computing time.

Table 6.6 Best of the five tables of AHWD dataset

Learming | Batch | Epoch | Iteration Acc rate| Loss rate Confusion
rate size : GER Matrix Errors
Train | Test
10" % | 1024 | 3000 | 12 7 0.9986 | 0.5773 9
10-% | 1024 | 3000 12 7 0.9965 | 0.0349 9
10°° [312) [3000 [23 |14 [0.9976 |C0.0230> 11
10" ° | 64 3000 179 111 0.9972 | 0.0177 16
107 | 32 3000 358 221 0.9610 | 0.1530 663

The lowest error rate 0.0177 with high accuracy rate was not chosen because by looking
at Figure 6.17, the training accuracy curve and validation accuracy curve start raising
up in convergence fashion from the beginning until approximately epoch 1,000 where
the convergence goes all the way long, Moreover, the convergence between the training
loss curve and the validation loss curve starts to come down right from the beginning
until it reached epoch 400 where the convergence started to be steady, and the error is
the lowest. Whereas Figure 6.15 shows that the convergence between the training
accuracy curve and validation accuracy curve starts approximately at epoch =400 and
continue all the way straight. Moreover, the convergence between the training loss
curve and the validation loss curve starts to come down right from the beginning until
it reached epoch 200 where the convergence started to be steady, and the error is the

lowest which 1s 0.0230. Now, by comparing Figure 6.15 with error rate 0.0230 and
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Figure 6.17 with error rate 0.0177 in terms of model response speed in the accuracy
curve and the loss curve. The conclusion is that Figure 6.15 with error rate 0.0230
shows faster response than Figure 6.17 with an error rate of 0.0177.

e By looking at Table 6.6 a setting converging to (GER =0.0230) is selected even though
there are lower values of GER in the table. This choice was made because the accuracy
rate (99.76%) is the highest on the table. Also, as can be observed from Table 6.6 the
number of errors in the confusion matrix for the chosen setting is low compared to other

results.

6.2 IFN/ENIT Experimental Phase

As mentioned in Chapter 5, The model is evaluated by using the testing dataset. On
IFN/ENIT, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested.
Also, learning rates of 1073, 107%,107°,107%, and 10~7 were evaluated with epochs
equal to 3000. With each learning rate, the model was trained with 7 different batch sizes.
So, five tables of results were produced, and each table consists of one learning rate and 7
batch sizes with results (training iteration number, testing iteration number, accuracy rate,
loss rate, and confusion matrix errors) where the loss rate here is considered as the GER.
The results between the five tables are evaluated based on the following criteria:

e Learning rate values ( 1073 to 1077 ) and batch sizes.

e A low loss error rate or Generalization Error Rate (GER) has the highest priority.

e High accuracy rate.

e Confusion matrix errors.

e Model response speed by looking at the learning curve graph and determine in
which epoch number the accuracy curve starts rising and in which epoch number

does the loss curve starts coming down.
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After the evaluation by using these criteria, the best performance from each table has been

collected.

e First, when learning rate = 1073 and batch sizes (16, 32, 64, 128, 256, 512, 1024)

the results would be as shown in Table 6. 7.

Table 6. 7 IFN/ENIT dataset with learning rate = 1073

Batch | Epoch | Iteration Acc rate| Loss rate Confusion
size , GER Matrix Errors
Train Test
16 3000 707 436 | 0.9983 637.5007 16
32 3000 353 218 | 0.9981 | 403.5989 20
64 3000 177 109 | 0.9977 | 107.2415 18
128 3000 890 55 0.0977 | 37.1814 20
256 3000 45 28 0.99%3 6.6885 16
512 3000 23 14 0.9973 | 25058 18
02« 3000 12 7 0.9991 0.5749 8]

By looking at Table 6. 7, the best accuracy rate is 99.91%, the lowest error rate
(GER) =0.5749, and the lower confusion matrix error = 9. This is acceptable in this training
and testing session but cannot be generalized because Figure 6.27 shows an overfitting
after epoch 1800; that is, the validation loss curve starts to diverge up off the training loss
curve. In the conclusion, the proposed model cannot generalized on IFN/ENIT dataset with
learning rate = 1073 and batch sizes 1024.
All other results in Table 6. 7 have a remarkably high error rates, and this would lead to

overfitting and cannot be generalized as shown in Figure 6.28 to Figure 6.33.
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Figure 6.27 LC and CM with LR = 1073 and BS = 1024 using IFN/ENIT dataset.
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Figure 6.29 LC and CM with LR = 1073 and BS = 32 using IFN/ENIT dataset.
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Figure 6.30 LC and CM with LR = 1073
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Figure 6.31 LC and CM with LR = 1073 and BS = 128 using IFN/ENIT dataset.
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Figure 6.33 LC and CM with LR = 1073 and BS = 512 using IFN/ENIT ddf8§¢t.

e Second, when learning rate = 10~* and batch sizes (16, 32, 64, 128, 256, 512, 1024)

the results would be as shown in Table 6.8.

Table 6.8 IFN/ENIT dataset with learning rate = 10™*

Batch | Epoch | Iteration Accrate | Loss rate | Confusion
size , GER Matrix Errors
Train Test

16 3000 707 436 | 0.9975 0.0917 10

32 3000 353 218 | 0.9980 0.0806 14

64 3000 177 109 0.9086 0.0610 14

128 3000 89 55 0.9973 0.0677 0

256 3000 45 28 0.9984 0.0266 0
:512 > 3000 23 14 09087 0.0181 8

1024 3000 12 7 0.9971 0.0255 13

Table 6.8 depicts that the best accuracy rate is 99.87%, the lowest error rate (GER)
= 0.0181, and the lowest confusion matrix error number = 8. This conclusion is the best

performance and is acceptable in this training and testing session with batch size = 512
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because it has lower error rate with highest accuracy rate, and the lowest confusion matrix
error number.

Figure 6.34 depicts that the training accuracy curve and validation accuracy curve
start up in convergence fashion from the beginning until approximately epoch 100 where
the convergence goes all the way along. Moreover, the convergence between the training
loss curve and the validation loss curve starts to come down right from the beginning until
it reached epoch 50 where the convergence started to be steady, and the error is the lowest.
The curves never touch each other, the gap between them is called a generalization gap.

The rest of the results in Table 6.8 are acceptable except the training and testing
sessions with batch size 16 and batch size 32, and with error rate 0.0917 and error rate
0.0806 consecutively because by looking at Figure 6.35 and Figure 6.36 there is data
overfitting, and the conclusion would be that the proposed model cannot be generalized

utilizing learning rate 10~* hyperparameter with batch size 16 and 32.
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Figure 6.34 LC and CM with LR = 10~* and BS = 512 using IFN/ENIT dataset
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e Third, when learning rate = 107> and batch sizes (16, 32, 64, 128, 256, 512, 1024)

the results would be as shown in Table 6.9.

Table 6.9 IFN/ENIT dataset with learning rate = 107>

Batch | Epoch | Iteration Acc rate| Loss rate | Confusion
size Train | Test GER Matrix Errors
16 3000 TO7 436 | 0.9961 0.0200 o
32 3000 353 218 | 0.9961 | 0.0210 9
64 3000 177 109 | 0.9967 | 0.0215 16

28 3000 89 55 0.9967 | 0.0178 13
256 3000 45 28 0.9966 | 0.0187 15
512 3000 23 14 0.9966 | 0.0178 15
1024 3000 12 7 0.9974 | 0.0242 13

Table 6.9 shows that all results are acceptable. However, the proposed model is

measured to find the best performance, there are some equivalent results in Table 6.9. To
find the best performance, there must be a complete analysis of the results. Analysis
includes, lowest error rate, highest accuracy rate, model response speed using the
associated learning curve graphs and number of confusion matrix errors.
By rounding up most of the values of the classification accuracy rates in Table 6.9, a valid
value for the accuracy rates is equal to 99.70% except the first two values with batch size
16 and batch size 32 are 99.60%. The lowest error rate is 0.0178 and is associated with two
accuracy rates 99.67% and 99.66% with batch size 128 and 512 respectively. By looking
at Figure 6.37 and Figure 6.38 and see the model response speed in terms of the accuracy
curve and the loss curve the analysis is as follows:

Figure 6.37 depicts that the training accuracy curve and validation accuracy curve
start raising up in convergence fashion from the beginning until approximately epoch 200
where the convergence goes all the way along. Moreover, the convergence between the
training loss curve and the validation loss curve starts to come down right from the
beginning until it reached epoch 100 where the convergence started to be steady, and the

error is the lowest. The curves never touch each other.
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Figure 6.38 LC and CM with LR = 107> and BS = 512 using IFN/ENIT dataset

Figure 6.38 depicts that the training accuracy curve and validation accuracy curve

start up in convergence fashion from the beginning until approximately epoch 500 where
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the convergence goes all the way along. Moreover, the convergence between the training
loss curve and the validation loss curve starts to come down right from the beginning until
it reached epoch 200 where the convergence started to be steady, and the error is the lowest.
Both curves never touch each other.

Analysis showed that the best accuracy rate is 99.87%, the lowest error rate (GER) is
0.0178 with epoch 128 and confusion matrix error number = 13. This conclusion is the best

performance and is acceptable in this training and testing session.

e Fourth, when the learning rate = 107° and batch sizes (16, 32, 64, 128, 256, 512,
1024) the results would be as shown in Table 6.10.

Table 6.10 depicts that the highest accuracy rates are 99.68%, with lowest error rate (GER)

= 0.0195, and low confusion matrix error number = 18 errors. This conclusion is the best

performance and is accepted in this training and testing session with batch size = 32 as

shown in Figure 6.39. where the training accuracy curve and validation accuracy curve

Table 6.10 IFN/ENIT dataset with learning rate = 107°

Batch | Epoch | Iteration Acc rate | Loss rate | Confusion

size Train | Test GER Matrix Errors

16 3000 | 707 | 436 | 0.9961 | 0.0244 15
@ 3000 | 353 | 218 | 0.9968 | 0.0195 18

64 3000 | 177 109 | 0.9963 | 0.0241 18

128 3000 | 89 55 0.9947 | 0.0302 18

256 3000 | 45 28 0.9964 | 0.0216 18

512 3000 |23 14 0.9955 | 0.0282 39

1024 | 3000 |12 7 0.4215 | 1.9947 No Diagonal

start raising up in convergence fashion from epoch 100 until approximately epoch 750
where the convergence goes all the way long, Moreover, the convergence between the
training loss curve and the validation loss curve starts to come down right from epoch 200
until it reaches epoch 300 where the convergence starts to be steady, and the error is the

lowest. So, the proposed model can be generalized using batch size 32.
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Figure 6.39 LC and CM with LR = 10~° and BS = 32 using IFN/ENIT dataset

Table 6.10 shows that as the batch size increases the error rate (loss rate) and the
confusion matrix error number increases, and the accuracy rate decreases. This conclusion
leads to model instability using batch sizes 512 and 1024 as shown in Figure 6.40 and
Figure 6.41, and the proposed model cannot be generalized with batch sizes 512, and 1024.
However, the proposed system is acceptable with the batch size hyperparameters 16, 64,

128, and256 as shown in Figure 6.42 to Figure 6.45.
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Figure 6.40 LC and CM with LR = 10~° and BS = 512 using IFN/ENIT dataset
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Figure 6.42 LC and CM with LR = 107% and BS = 16 using IFN/ENIT dataset
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Figure 6.45 LC and CM with LR = 107° and BS = 256 using IFN/ENIT dataset

e Fifth, when learning rate = 1077 and batch sizes (16, 32, 64, 128, 256, 512, 1024) we

the results would be as shown in Table 6.11.

Table 6.11 shows that the training and testing sessions with batch sizes 16, 32, and
64 have acceptable accuracy rates 97.73%, 97.93, and 95.29% and error rate (loss rate)
0.0966, 0.0853, and 0.1723, respectively. However, Table 6.11 depicts that, as the batch
size hyperparameter increases the error rate and the confusion matrix error number

increases, and the accuracy rate decreases.
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Table 6.11 IFN/ENIT dataset with learning rate = 10~

Batch | Epoch | Iteration Accrate | Loss rate | Confusion
size Train | Test GER Matrix Errors
16 3000 707 436 0.9773 0.0966 263
32 3000 353 218 0.9703 0.0853 226
64 3000 177 109 0.9529 0.1723 779
128 3000 89 55 0.2090 2.7252 No Diagonal
256 3000 45 28 0.7555 0.9723 No Diagonal
512 3000 23 14 0.0714 3.0376 No Diagonal
1024 3000 12 7 0.1721 2.7306 No Diagonal

The conclusion is that using learning rate = 10~7 cannot be generalized and is not
suitable for the proposed model on IFN/ENIT dataset. All the training and testing sessions
using learning rate 10”7 with batch sizes (16, 32, 64, 128, 256, 512, 1024) make the
proposed model unstable, unrobust, and convergence between the training accuracy curve
and the validation accuracy curve would not be stable in all training and testing sessions

and at some points the two curves would cross each as shown in Figure 6.46 to Figure 6.52.
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Figure 6.46 LC and CM with LR = 1077 and BS = 16 using IFN/ENIT dataset



Figure 6.47 LC and CM with LR = 1077 and BS = 32 using IFN/ENIT dataset
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Figure 6.48 LC and CM with LR = 1077 and BS = 64 using IFN/ENIT dataset
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Figure 6.49 LC and CM with LR = 1077 and BS = 128 using IFN/ENIT dataset
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Figure 6.51 LC and CM with LR = 1077 and BS = 512 using IFN/ENIT dataset

018

016

e © o
[
= Y™

accuracy

s o
[= =1
@ @

0.04

Figure 6.52 LC and CM with LR = 10~7 and BS = 1024 using IFN/ENIT dataset

model accuracy IFN_ENIT Batch_Size_1024_LR=le-7

= Taining Accuracy
~ Validation Accuracy

T T T T
1500 2000 2500 3000

epoch

T T
] 500 1000

model loss IFN_ENIT Batch_Size_1024_LR=le-7

—— Taining Loss
—— Validation Loss

T T T T
0 500 1500 2000 2500 3000

epoch

T
1000

Real Class Values

Confusion Matrix

Hoda 0 0 0 0 0 0 0 0 2 0 0 00 000 0 0 &
o Fasied O 0 00 40 2 0000000000 0 0
N_mm 9 0 00 0 0 O 0O ODGOOGS5 000 0O D

,,H_wm 01 00 20 00D0O0O0O0O0 D000 0D 9
,,_Mwm 40 00 00 000020000000 00D
A_‘ — 00 00 40000 OD0GO0 0D D0 D DD D
Msn—a“mk 00 00 005 0000 O0D D00 D0 DD D
- Dukhania 6 0 00 20 200 00O0O OO0 O OD 2
Knalee| 12 0 3 00 4 0 300 O0O0O0CDO OO0 O D D
Kurbus 00 00 B0 DD 00 00 D0 DD
Mart 0 0 00 00 O0O0OD0ODO0O0D D0 D 0D D
Naggeh O 0 00 0 3 0 001 0O0O0D0O0 OO0 0 O
Nahhal o 0 0 0120 0 O0O0O0OCDODO0S4C0O0 OO0 0 2
ceek BB 7 O 0 0 0 0 0 0 0 0 0 0 0 O 0 O O O 0 O
Raddah 0 3 00 3% 000000010 OO0D0 0D D
Secll Ahmed 00 00 DO 40 00 00 D00 DD 1

et ;ahal(er 00 00 000 O0D0O0O0 0D D0 D0 DD D
sg-ui Zaner 00 00 000 O0D0D0DO0 0D DO 20D D
s-wmann 6 0 0013 00O 3 000200000 D

BtaweenTNow 0 00 00 200 0D0OD0DO0O0O0 D000 0D D
Zanoosh 00 00 D0 DD 0 (] 001

' L b & I & & ‘ ; \*u“l
“’i«"’f\”f g}gﬁ{f}ﬁ%@* S ”ﬂ”f‘t’f‘;ﬁifff

No diagonal

85

600

500

400

300

200

100

00

600

500

400

300

200

100



By looking at Figure 6.46 to Figure 6.52, there is instability in the proposed model
on IFN/ENIT dataset when using learning rate = 1077, The learning rate here is very small
which would make the gradient moves uneven and the convergence between the training
accuracy curve and validation accuracy curve inaccurate. Moreover, as the batch size
increases.

e Both the training and validation loss curve diverge, and this divergence is clear in

Figure 6.Figure 6.52

e The number of confusion matrix errors increases and reaches to the No diagonal
state, and the classification accuracy rate will decrease.

The conclusion is, the hyperparameters such as learning rate = 107 with batch sizes (16,

32, 64, 128, 256, 512, 1024) when applying IFN/ENIT is not suitable, and the system is

unstable.

The Adam optimizer is used to evaluate the performance when applying IFN/ENIT
using the proposed model. For the loss function, the categorical cross-entropy loss is used.
After training the DCNN model to calculate the probability of each image over the classes,
the model is evaluated by using the testing dataset. On IFN/ENT, different batch sizes equal
to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of
1073, 107%,107>,107, and 10~7 were evaluated with epochs equal to 3000. With each
learning rate, the model was trained with 7 different batch sizes. So, five tables of results
were produced, and each table consists of one learning rate and 7 batch sizes with results
(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered
as the GER. The results between the five tables are evaluated based on the following
criteria:

e Learning rate values ( 1073 to 1077 ) and batch sizes.
e Low loss error rate (GER).
e High accuracy rate.

e (Confusion matrix errors.
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e Model response speed by looking at the learning curve graph and determine in which

epoch number the accuracy curve starts rising and in which epoch number does the loss

curve start coming down.

After applying these criteria, a table summarizing the conditions to obtain the best

results is compiled for each dataset. The result is shown in Table 6.12 for IFN/ENIT

dataset. After applying the above criteria on Table 6.6, it was concluded that the best

accuracy rate is 99.87% and the error rate GER = 0.0181 for the following reasons:

e The learning rate (10™%) is low which makes the model train at a reasonable speed and

allows the gradient descent to produce a smooth output.

e There is a reasonable number of epochs (3000 epochs with 23 training iterations and

14 testing iterations for each epoch) required and batch size is = 512. These conditions

allow relatively fast computing time.

Table 6.12 Best of the five tables of IFN/ENIT dataset

Learning| Batch | Epoch | Iteration Acc rate| Loss rate Confusion
rate size - GER Matrix Errors
Train| Test
1073 | 1024 3000 12 7 0.9991 | 0.5749 0
10 *[G12> [ 3000 |23 14 | 0.9987 KD.018T> 8
10" 2| 128 3000 20 55 0.9067 | 0.0178 13
109 32 3000 353 218 | 0.9068 | 0.0195 18
1007 32 3000 353 218 | 0.9793 | 0.0853 226

e The lowest error rate 0.0178 with high accuracy rate was not chosen because by looking

at Figure 6.37, the training accuracy curve and validation accuracy curve start raising

up in convergence fashion from the beginning until approximately epoch 200 where

the convergence goes all the way along. Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from the

beginning until it reached epoch 100 where the convergence started to be steady, and

the error is the lowest. Whereas Figure 6.34, shows that the convergence between the
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training accuracy curve and validation accuracy curve starts approximately at epoch =
100 and continue all the way as a straight line. Moreover, the convergence between
the training loss curve and the validation loss curve starts to come down right from the
beginning until it reached epoch 20 where the convergence started to be steady, and the
error is the lowest which is 0.0181. Now, by comparing Figure 6.34 with error rate
0.0181 and Figure 6.37 with error rate 0.0178 in terms of model response speed in the
accuracy curve and the loss curve, the conclusion is that Figure 6.34 with error rate
0.0181 shows faster response than Figure 6.37 with an error rate of 0.0178.

By looking at Table 6.6 a setting converging to (GER =0.0181) is selected even though
there are lower values of GER in the Table 6.12. This choice was made because the
accuracy rate (99.87%) is high and the number of errors in the confusion matrix for the

chosen setting is the lowest compared to other results.

6.3 Augmented AHWD Experimental Phase

As mentioned in Chapter 5, The model is evaluated by using the testing dataset. On

augmented AHWD, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were

tested. Also, learning rates of 1073, 107%,107>,107°, and 1077 were evaluated with

epochs equal to 1000. With each learning rate, the model was trained with 7 different batch

sizes. So, five tables of results were produced, and each table consists of one learning rate

and 7 batch sizes with results (training iteration number, testing iteration number, accuracy

rate, loss rate, and confusion matrix errors) where the loss rate here is considered as the

GER. The results between the five tables are evaluated based on the following criteria:

e Learning rate values ( 1073 to 1077 ) and batch sizes.
e A low loss error rate or Generalization Error Rate (GER) has the highest priority.
e High accuracy rate.

e (Confusion matrix errors.

88



e Model response speed by looking at the learning curve graph and determine in
which epoch number the accuracy curve starts rising and in which epoch number
does the loss curve start coming down.

After the evaluation by using these criteria, the best performance from each table has been

collected.

e First, when learning rate = 1073 and batch sizes (16, 32, 64, 128, 256, 512, 1024)

are used, the results would be as shown in Table 6.13.

Table 6.13 Augmented AHWD dataset with learning rate = 1073,

Batch | Epoch | Iteration Acc rate| Loss rate | Confusion
size Train | Test GER Matrix Errors
16 1000 2470 1521 | 0.1427 | 1.9461 No Diagonal
32 1000 1235 | 761 0.8086 | 0.4965 =>5000
64 1000 618 381 0.7665 | D.8864 =5000
128 1000 309 191 0.9938 | 0.9282 251
256 1000 155 96 0.9984 | 2.0016 21
512 1000 78 48 0.9990 | 0.6597 21
@ 1000 39 24 0.9984 | 0.1148 23

By looking at Table 6.13, the lowest error rate (GER) is 0.1148, with accuracy rate
99.84%, and lower confusion matrix error = 23. This is acceptable in this training and
testing session but cannot be generalized because Figure 6.53 shows an overfitting starts
to rise after epoch 900; that is, the validation loss curve starts to diverge up off the training
loss curve. In the conclusion, the proposed model cannot generalized on augmented

AHWD with learning rate = 1073 and batch sizes 1024.
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Figure 6.53 LC and CM with LR = 1073 and BS = 1024 using augmented AHWD

All other results in Table 6.13 have a high error rate, and this would lead to
overfitting or instability in the system, then cannot be generalized as shown in Figure 6.54

to Figure 6.59
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Figure 6.54 LC and CM with LR = 1073 and BS = 16 using augmented AHWD
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Figure 6.56 LC and CM with LR = 1073 and BS = 64 using augmented AHWD
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Figure 6.57 LC and CM with LR = 1073 and BS = 128 using augmented AHWD
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Figure 6.58 LC and CM with LR = 1072 and BS = 256 using augmented AHWD.
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Figure 6.59 LC and CM with LR = 1073 and BS = 512 using augmented AHWD.

e Second, when learning rate hyperparameter = 10~* and batch sizes hyperparameters

(16,32, 64, 128,256, 512, 1024) are used, the results would be as shown in Table 6.14.

Table 6.14 Augmented AHWD dataset with learning rate = 10™%.

Batch | Epoch | Iteration Acc rate| Loss rate | Confusion
size Train | Test GER Matrix Errors
16 1000 2470 1521 | 0.9991 02076 20

32 1000 1235 761 0.0080 0.1037 17

64 1000 618 381 0.9991 0.0554 18

128 1000 309 191 0.9989 0.0365 15
256 1000 155 96 0.9088 0.0182 22

512 1000 78 48 0.9088E 0.0149 20
1000 | 39 24 | 09990 | 0.0074 22

Table 6.14 depicts that the best accuracy rate is 99.90%, the lowest error rate (GER)

= 0.0074, and low confusion matrix error number = 22. This conclusion is the best
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performance, can be generalized, and is acceptable in this training and testing session with
batch size hyperparameter = 1024 because it has lowest error rate with the highest accuracy

rate, and the lowest processing time. Figure 6.60 depicts that the training accuracy curve
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Figure 6.60 LC and CM with LR = 10~* and BS = 1024 using augmented AHWD
an

approximately epoch 125 where the convergence goes all the way long. Moreover, the
convergence between the training loss curve and the validation loss curve starts to come
down right from the beginning until it reached epoch 50 where the convergence started to
be steady, and the error is the lowest. Both curves never touch each other, there is a gap between

them called a generalization gap.

The results in Table 6.14 with batch sizes hyperparameters 256 and 512 are
acceptable and no overfitting is produced as shown in Figure 6.61 and Figure 6.62.
However, the results in Table 6.14 with batch sizes hyperparameters 16, 32, 64, and 128
are not acceptable because of the overfitting as shown in Figure 6.63 to Figure 6.66. The
conclusion is that the proposed model cannot be generalized utilizing learning rate
hyperparameter 10~* with batch sizes hyperparameters 16, 32, 64, and 128. So, it is

unstable and not robust.
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Figure 6.61 LC and CM with LR = 10~* and BS = 256 using augmented AHWD
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Figure 6.63 LC and CM with LR = 10™* and BS = 16 using augmented AHWD
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Figure 6.66 LC and CM with LR = 10™* and BS = 128 using augmented AHWD
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e Third, when learning rate hyperparameter = 107> and batch sizes hyperparameters
(16, 32, 64, 128, 256, 512, 1024) are applied, the results would be as shown in Table
6.15.

All results in Table 6.15 are acceptable and the accuracy rates are 99.90%, 99.90%,
99.86%, 99.86%, 99.88%, 99.81%, and 99.77% when using batch sizes 16, 32, 64, 128,
256, 512, and 1024 with error rates (GER) are 0.0116, 0.0091, 0.0111, 0.0070, 0.0086,
0.0094, and 0.0100 respectively, and the number of confusion matrix error is 20, 17, 27,

22,24, 27, and 22, respectively. There is no overfitting in all the training sessions.

Table 6.15 Augmented AHWD dataset with learning rate = 1075,

Batch | Epoch | Iteration Acc rate| Loss rate | Confusion

size Train | Test GER Matrix Errors

16 1000 2470 1521 | 0.9990 0.0116 20

32 1000 1235 761 0.9990 0.0091 17

64 1000 618 381 0.9986 00111 27
@ 1000 309 191 0.9986 0.0070 22

256 1000 155 96 0.9988 0.0086 24

512 1000 78 48 0.9981 0.0094 27

1024 1000 39 24 0.9977 0.0100 22

By rounding up the accuracy rate values, most of the values would be 99.90%.
However, Table 6.15 depicts that the lowest error rate (GER) = 0.0070, with high accuracy
rate 99.86% (99.90% rounded up), and low confusion matrix error number = 22. This
conclusion is the best performance, can be generalized, and is acceptable in this training

and testing session with batch size hyperparameter = 128 as shown in Figure 6.67.

Figure 6.67 depicts that the training accuracy curve and validation accuracy curve
start up in convergence fashion from the beginning until approximately epoch 100 where
the convergence goes all the way along. Moreover, the convergence between the training
loss curve and the validation loss curve starts to come down right from the beginning until

it reached epoch 50 where the convergence started to be steady, and the error is the lowest.
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Both curves never touch each other, there is a gap between them called a generalization

gap.
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Figure 6.67 LC and CM with LR = 107> and BS = 128 using augmented AHWD

e Fourth, when learning rate hyperparameter = 10~° and batch sizes hyperparameters
(16, 32, 64, 128, 256, 512, 1024) are applied, the results would be as shown in Table
6.16.

All results in Table 6.16 are acceptable, but not all of them can be generalized, the
lowest error rate (GER) = 0.0090, with the highest accuracy rate 99.81%, and the lowest
confusion matrix error number = 25. This conclusion is the best performance, can be
generalized, and is acceptable in this training and testing session with batch size

hyperparameter = 16 as shown in Figure 6.68.
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Table 6.16 Augmented AHWD dataset with learning rate = 107°.

Batch | Epoch | Iteration Acc rate | Loss Confusion
size Train | Test rate Matrix Errors
@ 1000 2470 1521 0.9981 0.0090 25

32 1000 1235 761 0.9976 0.0094 27

64 1000 618 381 D.0066 0.0129 46
128 1000 309 191 D.9926 0.0222 02
256 1000 155 06 0D.9910 0.0322 215
512 1000 78 48 0D.9808 0.0730 8901
1024 1000 39 24 D.OBR2 0.1204 1842

Figure 6.68 depicts that the training accuracy curve and validation accuracy curve

start raising up in convergence fashion from the beginning until approximately epoch 300

where the convergence goes all the way long, Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from the

beginning until it reached epoch 100 where the convergence started to be steady, and the

error is the lowest. The curves never touch each other, there is a gap between them called

a generalization gap.
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In this training and testing session using learning rate = 1076, as the batch size increases
as the convergence between training accuracy curve and validation accuracy curve widens,
the error rate (GER) increases, and the confusion matrix errors number increases. This
conclusion shows the instability of the proposed model, and it is not robust as shown in

Figure 6.69 to Figure 6.71.
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Figure 6.71 LC and CM with LR = 107° and BS = 1024 using augmented AHWD

¢ Fifth, when learning rate = 1077 and batch sizes are (16, 32, 64, 128, 256, 512,

1024) are used, the results would be as shown in Table 6.17.

Table 6.17 Augmented AHWD dataset with learning rate = 1077,

Batch | Epoch | Iteration

Acc rate | Loss rate | Confusion

GER Matrix Errors

size Train | Test

16 1000 2470 1521 | 0.9672 0.1240 1868
32 1000 1235 761 0.86095 0.4728 =5000
4 1000 618 381 0.9224 0.2907 =5000

128 1000 309 191

0.3497 1.7497 No Diagonal

256 1000 155 06

0.7278 | 1.0409 No Diagonal

512 1000 78 48

0.1789 1.9063 No Diagonal

1024 1000 39 24

0.2402 1.8649 No Diagonal
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By looking at Table 6.17, best accuracy rate is 96.72%, error rate (GER) = 0.1240,
and the confusion matrix error = 1868. This conclusion is somewhat acceptable in this
training and testing session with batch size = 16. However, Table 6.17 shows that the error
rate is high, the confusion matrix error number is high, and the processing time is high in
terms of higher training iteration, higher testing iteration for each epoch.

So, as shown in Figure 6.72, the convergence between the training accuracy curve
and the validation accuracy curve is indeterminate and very wide. From Table 6.17, as the
batch size increases the classification accuracy rate decreases, the error rate (GER)
increases, and the confusion matrix error increases. In more detail, the conclusion is that
using learning rate = 10~ ’is not suitable for the proposed model on augmented AHWD
since all the training and testing session using learning rate 10~ with batch sizes (16, 32,
64, 128, 256, 512, 1024) make the proposed model unstable and unrobust as shown in
Figure 6.72 to Figure 6.78.
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Figure 6.72 LC and CM with LR = 1077 and BS = 16 using augmented AHWD
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Figure 6.73 LC and CM with LR = 1077 and BS = 32 using augmented AHWD
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Figure 6.74 LC and CM with LR= 1077 and BS = 64 using augmented AHWD
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Figure 6.76 LC and CM with LR = 1077 and BS = 256 using augmented AHWD
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Figure 6.77 LC and CM with LR = 1077 and BS = 512 using augmented AHWD
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By looking at Figure 6.72 to Figure 6.78, the conclusion that there is instability in
the proposed model when using learning rate = 10~7. The learning rate here is very small
which would make the gradient moves uneven and the convergence between the training
accuracy curve and validation accuracy curve improbable. Moreover, as the batch size
increases:

e Both the training and validation loss curve diverge, and this divergence is clear in

Figure 6.Figure 6.78.

e The number of confusion matrix errors increases and reaches to the No diagonal
state, and the classification accuracy rate will decrease.

The learning rate hyperparameter with value 1077, with batch size hyperparameters (16,

32, 64, 128, 256, 512, 1024) when applying augmented AHWD are not suitable, and the

system is unstable.

Adam optimizer is used to evaluate the performance when applying augmented AHWD
using the proposed model. For the loss function, the categorical cross-entropy loss is used.
After training the DCNN model to calculate the probability of each image over the classes,
the model is evaluated by using the testing dataset. On augmented AHWD, different batch
sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of
1073, 107%,107°,107°, and 107 were evaluated with epochs 1000. With each learning
rate, the model was trained with 7 different batch sizes. So, five tables of results were
produced, and each table consists of one learning rate and 7 batch sizes with results
(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered
as the GER. The results between the five tables are evaluated based on the following
criteria:

e Learning rate values ( 1073 to 10~7 ) and batch sizes.

e Low loss error rate (GER) has the highest priority.

e High accuracy rate.

e Confusion matrix errors.

e Model response speed by looking at the learning curve graph and determine in which

epoch number the accuracy curve starts rising and in which epoch number does the loss

curve start coming down.
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After applying these criteria, a table summarizing the conditions to obtain the best results

is compiled for each dataset. The result is shown in Table 6.18 for augmented AHWD.

Table 6.18 Best of the five tables of augmented AHWD dataset

Learning | Batch | Epoch | Iteration Acc rate| Lossrate | Confusion
rate size — GER Matrix Errors
Tramn | Test

10°3 | 1024 | 1000 | 39 24 0.9984 | 0.1148 23

10 * (254) 1000 | 39 24 0.9990 (Q.GGT:I ) 22
10-5 | 128 1000 | 309 | 191 | 0.9986 | 0.0070 22
10°° | 64 1000 | 618 | 381 | 0.9966 | 0.0129 46
1007 | 16 1000 | 2470 | 1521 | 0.9672 | 0.1240 1868

By applying the above criteria in Table 6.18, it is concluded that the best accuracy

rates are 99.90% and 99.86%, with error rates GER = 0.0074 and 0.0070, with confusion

matrix errors 22 and 22 using batch sizes 1024 and 128 using learning rates

10~* and 10~ >respectively. The classification accuracy rate = 99.90% with lower error

rate = 0.0074 were chosen as the best hyperparameters for the proposed model for the

following reasons:

The learning rate (10~%) is appropriate which makes the model train at a reasonable
speed and allows the gradient descent to produce a smooth output.

1000 epochs with 39 training iterations and 24 testing iterations for each epoch and
batch size is = 1024. These conditions allow relatively less processing time and
reliable computing in terms of any overfitting and guide the proposed model to be
robust.

By observing Table 6.18, the loss rate 0.0074 with learning rate 10~* is chosen
even though there is less value of loss rate in the table which is 0.0070 with learning
rate 107>, This choice was made because 99.90% is the highest accuracy rate and
has the lowest processing time comparing to the one using learning rate 1075,

The model response speed has not been considered because both training sessions

with learning rate 10~* with batch size 1024 and 10™* with batch size 128 has
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almost the same model response speed in accuracy curve and in loss curve as shown

in Figure 6.79and Figure 6.80.
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Figure 6.79 LC and CM with LR = 10~* and BS = 1024 using augmented AHWD
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6.4 Comparison with Neural Networks-based Systems

Table 6.19 shows a comparison between our achieved results based on Neural Network

using IFN/ENIT dataset, AHWD, and augmented AHWD and other system’s results.

Table 6.19 Comparative results of Neural Networks -based systems.

Classifier Feature extraction Datasets Evaluation metric References
Accuracy rate | Error rate
CNN CNN IFN/ENIT (abcd-e) 97.07% 2.93 WER (Poznanski et al., 2016) [74]
IFN/ENIT (abcde-f) 96.76% 3.24 WER
IFN/ENIT (abcde-s) 94.09% 5.91 WER
IFN/ENIT (abc-d) 99.29% 0.71 WER
SVM CNN IFN/ENIT 7.05 CER (Elleuch et al., 2016)  [75]
CNN CNN IFN/ENIT 8.5 CER (Almodfer et al., 2017) [76]
CNN CNN(AlexNet+ReLU) IFN/ENIT 92.13% (Almodfer et al., 2018) [77]
CNN CNN(AlexNet+TanH) IFN/ENIT 92.55%
HMM CNN IFN/ENIT (abcd-e) 89.23% - (Amrouch et al., 2018) [78]
HMM CNN IFN/ENIT (abc-d) 88.95%
AlexNet CNN IFN/ENIT 95.6% - (Ghanim et al., 2020)  [7]
DBN DBN IFN/ENIT (abcd-e) 94.99% 6.5 CER
CNN CNN IFN/ENIT 99.87% 0.0181 GER Proposed model.
CNN CNN AHWD 99.76% 0.0230 GER Proposed model.
CNN CNN Augmented AHWD 99.90% 0.0074 GER Proposed model.

The CNN was applied as feature extraction and as classifier on IFN/ENIT dataset
using some sets as training and one as testing as explained in [74]. Specifically, when using
sets, a, b, ¢, and d for training and set e for testing they achieved 97.07% classification
accuracy rate and 2.93 WER. When using sets, a, b, and c for training and set d for testing
they achieved a 99.29% classification accuracy rate and 0.71 WER. In another study
described in [77] , the CNN was used as feature extraction and as a classifier on IFN/ENIT
dataset using sets, a, b, ¢, and d for training and set e for testing they achieved 92.13%
classification accuracy rate using ReLU activation function, and 92.55% classification
accuracy rate using TanH activation function.

According to [78] CNN was applied as a feature extraction and HMM as a classifier
on IFN/ENIT dataset and achieved 89.23% classification accuracy rate when using sets, a,
b, ¢, and d as training sets and set e as testing set. They achieved 88.95% classification

accuracy rate when using sets, a, b, and c as training sets and set d as testing set.
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Ghanim et al., [7] achieved 95.60% classification accuracy rate when they used
CNN as a feature extraction and as a classifier using AlexNet on IFN/ENIT.
For the proposed model, the CNN was applied as a feature extraction and as a classifier on
AHWD, an accuracy rate of 99.76% and a Generalization Error Rate of 0.0230 were
achieved. When CNN was applied as a feature extraction technique and as a classifier on
[FN/ENIT dataset, an accuracy rate of 99.87% and Generalization Error Rate of 0.0181
were achieved. When CNN was applied as a feature extraction technique and as a classifier
on Augmented AHWD, an accuracy rate of 99.90% and Generalization Error Rate of
0.0074 were achieved.

In comparison to other systems, our proposed system achieved the highest
classification accuracy rate with a very low GER on IFN/ENIT dataset, on AHWD, and on
augmented AHWD.
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of the thesis and discusses issues related to the
developed techniques. Limitations in the proposed methods and the used data are also discussed.
Finally, future research directions relevant to analysis and recognition of Arabic Handwritten

Words (AHW) are discussed.

7.1 Summary of Thesis Contributions

So far, research on AHW recognition and analysis has focused on the extraction of features
from text lines and from image documents. Very few researchers have investigated deep learning
for AHW documents. Moreover, many recent works focus on word isolation and extraction of
global and/or local features of the word. The Fourier descriptor, the hue moment, histograms,
zarniac moments and other structural features are examples of features. There is existing literature
using features with neural classifier such as Support Vector Machine (SVM), K- Nearest Neighbor
(KNN), Radial Basis Function (RBF) and Multilayer perception.

AHW identification remains a challenging application. It is carried out as a pattern
recognition problem to allocate and identify images of handwritten samples/patterns to one class.
Therefore, the process of image identification can be defined as an algorithm to assign a
handwriting sample to one of the classes. While several AHW identification systems have been
developed for various applications including document analysis and image classification, it is still
receiving significant interest by the research community, because many issues are still unresolved
such as insufficiency of datasets and handwriting material in different languages. The main aim of
this work is to develop an accurate handwritten recognition system by investigating new techniques
based on deep learning for the classification and analysis of AHW depending on different

Convolution Neural Networks (CNN).

Another aim is to create a large set of AHW to support further studies in text conversion.
Therefore, the general objectives of this thesis were to plan, analyze, design, build, and test novel
classification algorithms and tools to support automatic recognition of AHW. In this work, some
automatic AHW recognition approaches using advanced machine learning techniques have been

investigated and the obtained results led to the following specific contributions to knowledge:

® This thesis presented analyses, design, building, and testing of learning algorithms of

enhanced DCNN structure for classification. It also investigated the use of an end-to-end
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open-source platform for machine learning namely Keras and Tensorflow with
parallel processing.
® Thorough experimental tests and validation of the algorithm have been carried out using
different datasets and the results obtained suggest that the proposed technique yields
attractive results when compared to similar algorithms.
® A large data set was created and then augmented with different word variations created for
system training and testing.
® The system was also tested on another data set known as [FN/ENIT and the results achieved
excellent accuracy.
® A new datasets called the Arabic Handwritten Weekdays Dataset (AHWD) and
augmented AHWD have been presented. The proposed model applied on AHWD,
IFN/ENIT dataset, and augmented AHWD, produced respectively an accuracy rate
01 99.76% with error rate 0.0230, an accuracy rate 99.87% with error rate 0.0181,
and an accuracy rate 99.90% with error rate 0.0074. These results are excellent and
compare favorably against previous work.
This work can be applied to the datasets where it should be horizontally extended to include
more words to cover all the Arabic characters. It would be impossible to include all words
in the dataset, that the system could predict outside of its domain by analyzing the word at
the character level. The system could also be used for signature classification and fraud

detection of signatures.
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