

Deep Learning Applications to Offline Arabic Handwriting Words Recognition

Using Convolutional Neural Network

by

Nori Alzrrog

Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

at

Dalhousie University

Halifax, Nova Scotia

January 2023

© Copyright by Nori Alzrrog, 2023

ii

DEDICATION PAGE

I dedicate this thesis to God Almighty my creator, my strong pillar, my source of

inspiration, wisdom, knowledge and understanding. He has been the source of my strength

throughout this program. I also dedicate this dissertation to the memory of my parents, my

wife Najat Musa, and Prof. Mohamed El-Hawary. Although they were my inspiration to

pursue my doctoral degree, they were unable to see my graduation. This is for them. This

dissertation is dedicated to my wife Rowaeda Mosa who encouraged me to pursue my

dreams and finish my dissertation.

iii

TABLE OF CONTENTS

LIST OF TABLES .. vi

LIST OF FIGURES... vii

ABSTRACT ... xi

LIST OF ABBREVIATIONS USED ... xii

ACKNOWLEDGEMENTS ... xiv

CHAPTER 1 INTRODUCTION .. 1

1.1 Background .. 1

1.1.1 General Characteristics and Features of Arabic Letters and Words. . 1

1.1.2 Feature Extraction Classification .. 3

1.2 Problem Statement .. 4

1.3 Contributions ... 6

1.4 Outline ... 7

CHAPTER 2 LITERATURE REVIEW .. 8

2.1 Background .. 8

2.1.1 Optical Character Recognition .. 8

2.1.4 Deep Neural Network ... 11

CHAPTER 3 ANALYSIS AND DESIGN OF DATASETS 14

3.1 Datasets ... 14

3.2 Arabic Handwritten Weekdays Dataset (AHWD) 14

3.1.1 Preprocessing the AHWD ... 16

3.1.2 Organization of AHWD ... 19

3.3 IFN/ENIT Dataset .. 20

3.3.1 Reorganization of IFN/ENIT Dataset .. 21

3.4 Augmented AHWD .. 24

CHAPTER 4 OPTIMIZATION ... 28

4.1 Background .. 28

4.2 Gradient Based Optimization Algorithm. .. 28

4.2.1 Stochastic Gradient Descent algorithm (SGD) .. 30

4.2.2 Adaptive Gradient Algorithm (AdaGrad) .. 31

4.2.3 Root Mean Square Propagation Algorithm (RMSprop) 32

iv

4.2.4 Momentum Algorithm .. 32

4.2.4 Adam Algorithm ... 32

4.3 Optimization of Hyperparameters .. 33

4.3.1 Automatic Hyperparameter Search .. 33

4.3.2 Manual Hyperparameter Search .. 33

4.4 Model Capacity ... 34

CHAPTER 5 EXPERIMENTAL SETUP ... 37

5.1 Processing Platform and Frameworks ... 37

5.1.1 Lenovo portable computer ... 37

5.1.2 Online Server .. 37

5.1.3 Frameworks ... 37

5.2 Activation Functions ... 38

5.2.1 Sigmoid Activation Function .. 38

5.2.2 Tangents Hyperbolicus Activation Function (TanH) 38

5.2.3 Rectified Linear Unit Activation Function (ReLU) 39

5.2.4 Softplus Activation Function .. 39

5.3 Deep Convolutional Neural Network model (DCNN) 39

5.3.1 Input Layer .. 40

5.3.2 Hidden Layers ... 40

5.3.3 Fully Connected Layer. .. 43

5.3.4 Output Layers ... 43

5.4 Hyperparameters .. 43

5.4.1 Learning Rate .. 43

5.4.2 Batch Size ... 44

5.4.3 Random_state=42 .. 44

5.4.4 Validation_split=0.2 ... 44

5.4.5 Epochs ... 44

5.4.6 Relationships between Learning Rate, Batch Size, and Epoch 44

Chapter 6 Result Analysis ... 46

6.1 AHWD Experimental Phase ... 46

6.2 IFN/ENIT Experimental Phase ... 67

6.3 Augmented AHWD Experimental Phase .. 88

v

6.4 Comparison with Neural Networks-based Systems 110

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 112

7.1 Summary of Thesis Contributions .. 112

BIBLIOGRAPHY .. 114

vi

LIST OF TABLES

Table 1.1 The Arabic letters’ positions and shapes. .. 2

Table 1.2 Arabic writing style and superimposed letters, words are from AHWD. 5

Table 1.3 Writing Positions of the three types of dots, these words are from AHWD. ... 5

Table 1.4 Writing positions of diacritic marks, these words are from AHWD. 5

Table 3.1 Details of IFN/ENIT dataset [62]. ... 21

Table 3.2 The size of AHWD before and after data augmentation 27

Table 6.1 AHWD dataset with learning rate = 10-3 . .. 47

Table 6.2 AHWD dataset with learning rate = 10-4 ... 51

Table 6.3 AHWD dataset with learning rate = 10-5 .. 56

Table 6.4 AHWD dataset with learning rate = 10-6 .. 58

Table 6.5 AHWD dataset with learning rate = 10-7 .. 61

Table 6.6 Best of the five tables of AHWD dataset ... 66

Table 6.7 IFN/ENIT dataset with learning rate = 10-3 .. 68

Table 6.8 IFN/ENIT dataset with learning rate = 10-4 .. 72

Table 6.9 IFN/ENIT dataset with learning rate = 10-5 .. 75

Table 6.10 IFN/ENIT dataset with learning rate = 10-6 .. 77

Table 6.11 IFN/ENIT dataset with learning rate = 10-7 .. 82

Table 6.12 Best of the five tables of IFN/ENIT dataset .. 87

Table 6.13 Augmented AHWD dataset with learning rate = 10-3. 89

Table 6.14 Augmented AHWD dataset with learning rate = 10-4. 93

Table 6.15 Augmented AHWD dataset with learning rate = 10-5. 98

Table 6.16 Augmented AHWD dataset with learning rate = 10-6. 100

Table 6.17 Augmented AHWD dataset with learning rate = 10-7. 102

Table 6.18 Best of the five tables of augmented AHWD dataset 108

Table 6.19 Comparative results of Neural Networks -based systems. 110

vii

LIST OF FIGURES

Figure 1.1 Diacritics marks on Arabic letters with single(Fat_Hah, Dha_Mmah, 1

Figure 1.2 Diacritics marks on Arabic letters with double (Fat_Hah, Dha_Mmah, 2

Figure 1.3 A general model of Arabic offline handwritten text and word recognition . .. 4

Figure 3.1 Sample of collected data before preprocessing with good quality. 15

Figure 3.2 Sample of collected data before preprocessing with low quality. 15

Figure 3.3 Sample of collected data between after preprocessing Figure 3. 1 16

Figure 3.4 comparison of collected data between Figure 3. 1 before processing and

Figure 3.3 after preprocessing... 17

Figure 3.5 Sample of preprocessed Arabic handwritten Saturdays after cropping........ 18

Figure 3.6 Sample of preprocessed Arabic handwritten Monday after cropping. 18

Figure 3.7 Seven folders of AHWD .. 19

Figure 3.8 Sample of Saturday’s folder with .JPG format ... 20

Figure 3.9 Sample of Monday’s folder with .JPG format.. 20

Figure 3.10 Re-organization of IFN/ENIT to 21 folders ... 21

Figure 3.11 Akoda village. ... 22

Figure 3.12 Al_Shawamek town.. 22

Figure 3.13 Sedi_Bobaker village.. 23

Figure 3.14 Artificial noise. ... 24

Figure 3.15 Noisy data ... 25

Figure 3.16 Rotated data .. 26

Figure 3.17 Shifted data ... 26

Figure 4.1 Local and global minima .. 29

Figure 4.2 Saddle point .. 30

Figure 4.3 Evolutionary map of optimizers [65]. .. 31

Figure 5.1 DCNN of our model using AHWD ... 41

Figure 5.2 DCNN of our model using IFN/ENIT ... 42

Figure 6.1 LC and CM with LR = 10-3 and BS = 1024 AHWD. 47

file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191947

viii

Figure 6.2 LC and CM with LR = 10-3 and BS = 16 AHWD. .. 48

Figure 6.3 LC and CM with LR = 10-3 and BS = 32 AHWD. .. 48

Figure 6.4 LC and CM with LR = 10-3 and BS = 64 AHWD. .. 49

Figure 6.5 LC and CM with LR = 10-3 and BS = 128 AHWD. 49

Figure 6.6 LC and CM with LR = 10-3 and BS = 256 AHWD. 50

Figure 6.7 LC and CM with LR = 10-3 and BS = 512 AHWD. 50

Figure 6.8 LC and CM with LR = 10-4 and BS = 1024 AHWD. 52

Figure 6.9 LC and CM with LR = 10-4and BS = 256 AHWD. 52

Figure 6.10 LC and CM with LR = 10-4 and BS = 512 AHWD. 53

Figure 6.11 LC and CM with LR = 10-4 and BS = 16 AHWD. 53

Figure 6.12 LC and CM with LR = 10-4and BS = 32 AHWD. 54

Figure 6.13 LC and CM with LR = 10-4and BS = 64 AHWD. 54

Figure 6.14 LC and CM with LR = 10-4and BS = 128 AHWD. 55

Figure 6.15 LC and CM with LR = 10-5 and BS = 512 AHWD. 56

Figure 6.16 LC and CM with LR = 10-5 and BS = 1024 AHWD. 57

Figure 6.17 LC and CM with LR = 10-6 and BS = 64 AHWD. 58

Figure 6.18 LC and CM with LR = 10-6 and BS = 512 AHWD. 59

Figure 6.19 LC and CM with LR = 10-6 and BS = 1024 AHWD. 60

Figure 6.20 LC and CM with LR = 10-7 and BS = 32 AHWD. 61

Figure 6.21 LC and CM with LR = 10-7 and BS = 16 AHWD. 62

Figure 6.22 LC and CM with LR = 10-7 and BS= 64 AHWD. 62

Figure 6.23 LC and CM with LR = 10-7 and BS = 128 AHWD. 63

Figure 6.24 LC and CM with LR = 10-7 and BS = 256 AHWD. 63

Figure 6.25 LC and CM with LR = 10-7 and BS = 512 using AHWD. 64

Figure 6.26 LC and CM with LR = 10-7 and BS = 1024 using AHWD......................... 64

Figure 6.27 LC and CM with LR = 10-3 and BS = 1024 using IFN/ENIT dataset. 69

Figure 6.28 LC and CM with LR = 10-3 and BS = 16 using IFN/ENIT dataset. 69

Figure 6.29 LC and CM with LR = 10-3 and BS = 32 using IFN/ENIT dataset. 70

Figure 6.30 LC and CM with LR = 10-3 and BS = 64 using IFN/ENIT dataset. 70

Figure 6.31 LC and CM with LR = 10-3 and BS = 128 using IFN/ENIT dataset. 71

file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191948
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191949
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191950
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191951
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191952
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191953
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191954
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191955
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191956
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191957
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191958
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191959
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191960
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191961
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191962
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191963
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191964
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191965
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191966
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191967
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191968
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191969
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191970
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191971
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191972
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191973
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191974
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191975
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191976
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191977

ix

Figure 6.32 LC and CM with LR = 10-3 and BS = 256 using IFN/ENIT dataset. 71

Figure 6.33 LC and CM with LR = 10-3 and BS = 512 using IFN/ENIT dataset. 72

Figure 6.34 LC and CM with LR = 10-4 and BS = 512 using IFN/ENIT dataset 73

Figure 6.35 LC and CM with LR = 10-4 and BS = 16 using IFN/ENIT dataset 74

Figure 6.36 LC and CM with LR = 10-4 and BS = 32 using IFN/ENIT dataset 74

Figure 6.37 LC and CM with LR = 10-5and BS = 128 using IFN/ENIT dataset 76

Figure 6.38 LC and CM with LR = 10-5 and BS = 512 using IFN/ENIT dataset 76

Figure 6.39 LC and CM with LR = 10-6 and BS = 32 using IFN/ENIT dataset 78

Figure 6.40 LC and CM with LR = 10-6 and BS = 512 using IFN/ENIT dataset 78

Figure 6.41 LC and CM with LR = 10-6 and BS = 1024 using IFN/ENIT dataset 79

Figure 6.42 LC and CM with LR = 10-6 and BS = 16 using IFN/ENIT dataset 79

Figure 6.43 LC and CM with LR = 10-6 and BS = 64 using IFN/ENIT dataset 80

Figure 6.44 LC and CM with LR = 10-6 and BS = 128 using IFN/ENIT dataset 80

Figure 6.45 LC and CM with LR = 10-6 and BS = 256 using IFN/ENIT dataset 81

Figure 6.46 LC and CM with LR = 10-7 and BS = 16 using IFN/ENIT dataset 82

Figure 6.47 LC and CM with LR = 10-7 and BS = 32 using IFN/ENIT dataset 83

Figure 6.48 LC and CM with LR = 10-7 and BS = 64 using IFN/ENIT dataset 83

Figure 6.49 LC and CM with LR = 10-7 and BS = 128 using IFN/ENIT dataset 84

Figure 6.50 LC and CM with LR = 10-7 and BS = 256 using IFN/ENIT dataset 84

Figure 6.51 LC and CM with LR = 10-7 and BS = 512 using IFN/ENIT dataset 85

Figure 6.52 LC and CM with LR = 10-7 and BS = 1024 using IFN/ENIT dataset 85

Figure 6.53 LC and CM with LR = 10-3 and BS = 1024 using augmented AHWD 90

Figure 6.54 LC and CM with LR = 10-3 and BS = 16 using augmented AHWD 91

Figure 6.55 LC and CM with LR = 10-3 and BS = 32 using augmented AHWD 91

Figure 6.56 LC and CM with LR = 10-3 and BS = 64 using augmented AHWD 91

Figure 6.57 LC and CM with LR = 10-3 and BS = 128 using augmented AHWD 92

Figure 6.58 LC and CM with LR = 10-3 and BS = 256 using augmented AHWD. 92

Figure 6.59 LC and CM with LR = 10-3 and BS = 512 using augmented AHWD. 93

Figure 6.60 LC and CM with LR = 10-4 and BS = 1024 using augmented AHWD 94

Figure 6.61 LC and CM with LR = 10-4 and BS = 256 using augmented AHWD 95

file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191978
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191979
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191980
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191981
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191982
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191983
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191984
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191985
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191986
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191987
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191988
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191989
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191990
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191991
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191992
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191993
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191994
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191995
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191996
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191997
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191998
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120191999
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192000
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192001
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192002
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192003
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192004
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192005
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192006
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192007

x

Figure 6.62 LC and CM with LR = 10-4 and BS = 512 using augmented AHWD 95

Figure 6.63 LC and CM with LR = 10-4 and BS = 16 using augmented AHWD 96

Figure 6.64 LC and CM with LR = 10-4 and BS = 32 using augmented AHWD 96

Figure 6.65 LC and CM with LR = 10-4 and BS = 64 using augmented AHWD 97

Figure 6.66 LC and CM with LR = 10-4 and BS = 128 using augmented AHWD 97

Figure 6.67 LC and CM with LR = 10-5 and BS = 128 using augmented AHWD 99

Figure 6.68 LC and CM with LR = 10-6 and BS = 16 using augmented AHWD 100

Figure 6.69 LC and CM with LR = 10-6 and BS = 256 using augmented AHWD 101

Figure 6.70 LC and CM with LR = 10-6 and BS = 512 using augmented AHWD 101

Figure 6.71 LC and CM with LR = 10-6 and BS = 1024 using augmented AHWD ... 102

Figure 6.72 LC and CM with LR = 10-7 and BS = 16 using augmented AHWD 103

Figure 6.73 LC and CM with LR = 10-7 and BS = 32 using augmented AHWD 104

Figure 6.74 LC and CM with LR= 10-7 and BS = 64 using augmented AHWD 104

Figure 6.75 LC and CM with LR = 10-7 and BS = 128 using augmented AHWD 105

Figure 6.76 LC and CM with LR = 10-7 and BS = 256 using augmented AHWD 105

Figure 6.77 LC and CM with LR = 10-7 and BS = 512 using augmented AHWD 106

Figure 6.78 LC and CM with LR = 10-7 and BS = 1024 using augmented AHWD .. 106

Figure 6.79 LC and CM with LR = 10-4 and BS = 1024 using augmented AHWD .. 109

Figure 6.80 LC and CM with LR = 10-5 and BS = 128 using augmented AHWD 109

file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192008
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192009
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192010
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192011
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192012
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192013
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192014
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192015
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192016
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192017
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192018
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192019
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192020
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192021
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192022
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192023
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192024
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192025
file:///F:/Dissertations%20_PhD_%20Format/Final%20Version%20of%20My%20Thesis/Defence%20copy%20of%20my%20thesis_Bousq_Teri_fixing.docx%23_Toc120192026

xi

ABSTRACT

 Automatic handwriting recognition is the process of converting online and offline letters

or words as a graphical form into its text format. Automatic Arabic Handwriting words

recognition using deep learning neural networks is still in the early stages in terms of

research. There are no general, complete, and reliable Arabic Handwritten Words (AHW)

database (lexicon) that can be used as a reference or a benchmark for all researchers who

want to extend the work on automatic Arabic handwriting word recognition. Also, many

historic Arabic manuscripts have deteriorated because of inappropriate storage and most

of them have not been digitized due to the lack of reliable database that can be used to

recognize the words of Arabic manuscripts.

Deep Convolutional Neural Networks (DCNNs) can be used to solve the problems of

automatic Arabic handwriting words recognition. In this work, a new DCNN algorithm

applied to a new dataset of Handwritten Arabic words representing the seven days of the

week named Arabic Handwritten Weekdays Dataset (AHWD) has been programmed,

tested, and analyzed. Our dataset contains 21,357 words equally distributed between the

seven classes and prepared by 1000 people. So, it can be used for training and testing on a

reliable DCNN model that will be able, after training, to generalize to new datasets.

The model works by training a (DCNN) model on a balanced-randomly-selected dataset

using different structures. The results are improved by adding drop-out, image

regularization, proper learning rate to avoid overfitting of the data. Finally, a blind test has

been performed on the hidden test set and the performance was reported using a confusion

matrix and learning curves as a validation tool for the model.

Results show that our model’s performance is promising, achieving accuracy rate of

99.76% with error rate of 0.0230 using AHWD dataset, accuracy rate of 99.87% with error

rate of 0.0181 using IFN/ENIT dataset, and accuracy rate of 99.90% with error rate of

0.0074 using augmented AHWD.

xii

LIST OF ABBREVIATIONS USED

AdaGrad Adaptive Gradient algorithm

API Application Programming Interface

AHTR Arabic Handwritten Text Recognition

AHWD Arabic Handwritten Weekdays dataset

AHW Arabic Handwritten Words

AOCR Arabic Optical Characters Recognition

AOTR Arabic Optical Text Recognition

ANN Artificial Neural Network

BLSTM Bidirectional Long Short-Term Memory

BBN

Batch Size

Bolt Beranek and Newman Technologies

Batch Size

CMATER Center for Microprocessor Applications for Training

Education and Research

CV

CM

Computer Vision

Confusion Matrix

CNN Convolutional neural network

DCNN Deep Convolutional Neural Network

DARPA/SAIC Defense Advanced Research Projects Agency/

Science Applications International Corporation

GTE General Telephone and Electronic corporation

GER Generalization Error Rate

HMM Hidden Markov Model

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IFN/ENIT I Institut für Nachrichtentechnik / Ecole Nationale

d'Ingénieurs de Tunis

ICDAR International Conference on Document Analysis

and Recognition dataset

IRAC Iterative Recognition of Arabic Character

k-NN K Nearest Neighbor

KFUPM King Fahd University of Petroleum and Minerals

xiii

KHATT

LC

LR

King Fahd University of Petroleum and Minerals

Handwritten Arabic TexT

 Learning Curve

Learning Rate

MAC Macintosh

MSA Modern Standard Arabic

OCR Optical Character Recognition

PC Personal Computer

PLB Potential Letter Boundaries

ReLU Rectified Linear Unit

ResNet110 Residual Network 110

ResNet18 Residual Network 18

ResNet50 Residual Network 50

RBM Restricted Boltzmann Machine

RMSprop Root Mean Square Propagation algorithm

SGD Stochastic Gradient Descent algorithm

SVM Support Vector Machine

TanH Tangents Hyperbolicus activation function

TDNN Time Delay Neural Network

VGG16 Visual Geometry Group 16

VGG19 Visual Geometry Group 19

xiv

ACKNOWLEDGEMENTS

All praises due to God who has permitted us and has given us the ability to complete this

research work.

I would like to thank and express my gratitude to my supervisor, Prof. Jean-François

Bousquet, and my co-supervisor Prof. Idris El-Feghi for invaluable patience, feedback, and

for allowing me to undertake on such a journey through my doctoral research program.

Their ongoing assistance and support enabled me to explore a challenging problem with

confidence and courage. I would also like to thank the members of my supervisory

committee for their helpful and constructive comments and contributions on my thesis

work.

I would like to thank my family members; my wife, my sons, and my daughters for all the

love and support they have provided. Special worm thanks go to my wife Rowaeda. Her

constant support is always my power to make progress. Thanks also go to all my brothers,

my sisters, my relatives, and my friends who helped me by recommendations and by

collecting the data.

I would like to thank and express my gratitude to Teri Colter (the principal of Westmount

Elementary School, Halifax) for reviewing this thesis.

I would like to express my deepest appreciation to my Defense Committee Members for

their valuable time, their valuable comments about my PhD thesis, and express my

gratitude to them.

Finally, I would like to thank all the students and people who helped me by writing the

dataset and appreciate their patience with me.

Obtaining a PhD is undoubtedly a difficult journey; therefore, this assistance and support

is critical to me. Obtaining a PhD also improved my knowledge and broadened my

horizons. Every time I think I've solved a problem; an unknown frontier appears. It is now

time to draw a conclusion, and this dissertation is a compilation of my years of work. I

hope it contributes to technological advancement.

https://www.dal.ca/faculty/engineering/electrical/faculty-staff/our-faculty/associate-professors/bousquet-jean-francois.html

1

CHAPTER 1 INTRODUCTION

1.1 Background

 Arabic language is an old, ancient language spoken by 420 million people across

the world [1]. Modern Standard Arabic (MSA) is the standardized language that is used to

communicate officially between Arabic communities. Nowadays, each language has a

handwritten language style and a digital language style [1] [2]. The following sections

explain the general characteristics and features of Arabic letters and words,

1.1.1 General Characteristics of Arabic Letters and Words

 There are many challenges in Arabic character writing in terms of morphology and

the way of writing, Arabic letters (characters) and words are written from right to left in

cursive way. It applies ligature (combining two letters or more), and letters have between

2 to 4 shapes [2]. There are 28 characters in Arabic language, 16 letters have from one to

three dots which differentiate between letters that have the same loop or shape such as (ب

BAA), (ت TAA), (ث THAA), () ,(AIN ع KHAIN) and so on as shown in Figure 1.1 غ

and Figure 1.2 [4]. The real meaning of the words in Arabic language depends on the

diacritics marks (vowels) and Nunation, it is called it in Arabic (TASH_KEEL تشكيلال) Such

as: Fat_Hah (,فتحة(Dha_Mmah (,)ضمة Ka_Srah(كسرة) and Soo_Koon(سكون) as shown in

Figure 1.1

Figure 1.1 Diacritics marks on Arabic letters with single (Fat_Hah, Dha_Mmah,

 Ka_Srah, and Soo_Koon).

Nunation in Arabic has three forms: double Fat_Hah(بالفتحة (, تنوين double

Dha_Mmah (تنوين بالضمة) and double Ka_Srah (تنوين بالكسرة) as shown in Figure 1.2.

2

Figure 1.2 Diacritics marks on Arabic letters with double (Fat_Hah, Dha_Mmah,

 and Soo_Koon).

A character may have up to four positions in the word as shown in Table 1.1. Words

in Arabic language are composed of connected letters and each word is separated by space;

however, some letters are not connected with the word, but they compose the word such as

(بذهََ َ went), the letter (ذ) is not connected with the word, but it is one of the letters

composing the word (هَبذَ َ went). Some letters of a word are not connected such as (زَار َ

visited), (أرَُز ْ Rice) and (وَْرَق Papers) but they make words in Arabic language.

Table 1.1 The Arabic letters’ positions and shapes.

Arabic letter

name in

English

Arabic

letter

Arabic letters positions and shapes (forms)

Isolated Beginning Middle End

ALEEF ــا ــا ا ا ا

BAA ــب ــبـــ بـــ ب ب

TAA / ة ت ة ت / ة ــت / ــ ــتـــ تـــ

THAA ــث ــثـــ ثـــ ث ث

JEEM ــج ــجـــ جـــ ج ج

HAA ــح ــحـــ حـــ ح ح

KHAA ــخ ــخـــ خـــ خ خ

DAL ــد ــد د د د

THAL ــذ ــذ ذ ذ ذ

RAA ــر ــر ر ر ر

ZAIN ــز ــز ز ز ز

SEEEN ــ س س ــ س ــس ــس

SHEEN ــ ش ش ــ ش ــش ــش

SAAD ــ صــ ص ص ــص ــص

DHAD ــ ضــ ض ض ــض ــض

3

 Note. This amended table demonstrates how many positions each letter can have [3].

1.1.2 Feature Extraction Classification

 It is very important to know the features of the character or the word to use them as

an input into all classifiers in the traditional methods depicted in Figure 1.3. These features

are classified into classes, Structural features classification, Statistical features

classification and neural network features classification. Structural features classification

includes dots, concave loops, convex loops, endpoints, and branch points. Statistical

features classification like number of image pixels, intensity histogram, and the pixels

neighbor relationships, means, variance, energy, and diagonal moments, etc. Neural

network features work as a black box method which depends on training the neural network

to make it learn the pattern for right classification to reach the appropriate interconnection

between the input and the output. Deep Convolutional Neural Networks (DCNN) extract

features from raw image pixels automatically [4] - [5].

Arabic letter

name in

English

Arabic

letter

Arabic letters positions and shapes (forms)

Isolated Beginning Middle End

TTAA ــط ــطــ طــ ط ط

TTHAA ــظ ــظــ ظــ ظ ظ

AIEN ــ ع ع ــ عـ ــع ــعـ

GHAIN ــ غ غ ــ غـ ــغ ــغـ

FAA ــ ف ف ــف ــفـــ فـ

QAAF ــ ق ق ــق ــقـــ قـ

KAAF ــ كـــ ك ك ــك ــكـ

LAAM ــ ل ل ــ ل ــل ــل

MEEM ــ مـــ م م ــم ــمـ

NOON ــن ــنـــ نـــ ن ن

HAA ــ هـــ ه ه ــه ــهـ

WAAW ــو ــو و و و

YAA ــي ــيــ يــ ي ي

4

Figure 1.3 A general model of Arabic offline handwritten text and word recognition [4].

1.2 Problem Statement

Arabic language is a cursive style, written from right to left. It contains similar

letters and can be written using assorted styles. These properties create many challenges

that prevent recognizing text in Arabic manuscript. In fact, Automatic Arabic Handwriting

Word Recognition using deep learning neural network is still at the early stages. Most of

the research using Deep Neural Networks were done on Arabic Optical Characters

Recognition (AOCR) and digital number recognition [6] [7]. There are no general,

complete, and reliable Arabic Handwritten words database that can be used as a reference

to all researchers who want to extend the work on Automatic Arabic Handwriting Word

Recognition. There are some efforts of using Arabic sub words to synthesize many words

as labeled dataset [8]. This is not a complete representation of the Arabic handwritten

words because it does not reflect the reality of the natural Arabic language. By having this

complete database (large number of Arabic words), a typical model can be created using

DCNN to solve the problems of Automatic Arabic Handwriting Words Recognition.

Arabic has different writing styles such as Naskh, Ruq’a, and decorating styles

(diwani, thuluth, andalusi). Theis leads to the misinterpretation of the words. For example,

there are superimposed letters in the same word as shown in Table 1.2; errors associated

with dots positions as shown in Table 1.3; errors associated with diacritics marks positions

as shown in Table 1.4; ascending and descending letters on the baseline and unrecognized

5

words by deleted or hidden letters. All these errors are problematic for segmentation and

challenging for traditional methods, such as Hidden Markov Model (HMM), Artificial

Neural Network (ANN), Support Vector Machine (SVM), K Nearest Neighbor (k-NN),

and syntactical methods, all of them depend on feature extraction. A survey was done by

Parvez et al. [4] that explains all these traditional methods.

Table 1.2 Arabic writing style and superimposed letters, these words are from AHWD.

Many Arabic manuscripts are deteriorating because of inappropriate storage, and most of

them have not been digitized. This is due to the lack of reliable databases that can be used

to recognize the words of Arabic manuscripts by using a typical model using deep learning.

Most of the models are restricted to a specific dataset and cannot be generalized [6].

 Table 1.3 Writing Positions of the three types of dots, these words are from AHWD.

 Table 1.4 Writing positions of diacritic marks, these words are from AHWD.

6

1.3 Objectives

A number of studies have been done on offline and online handwritten recognition

whether on characters, words or text line in English languages and lot of results were

satisfactory results. The Arabic language still suffers from the lack of typical handwriting

digital dataset [10] and from a learning algorithm for Arabic Handwritten Word (AHW)

recognition. This is a good motivation to design a complementary system that overcomes

all the problems that were investigated in the previous section.

The overarching aim of this work is to create a database that contains many Arabic

writing styles and handwriting variations as shown in Table 1.2, starting by Arabic

weekdays as a preliminary study. By amassing data from a variety of Arabic people to

create a large dataset, then a model can be designed to satisfy the purpose of this research.

The dataset that were collected depends on calligraphy, which means every person writes

the weekdays on the paper naturally. Since Arabic language has many writing styles,

people would choose the way that they feel comfortable to express their skills in terms of

writing. Many Arabic handwritten weekdays words that were collected represent many

Arabic writing styles, this would make the collected dataset varied and includes most of

the writing format that is needed in this thesis. More than 21000 Arabic handwritten

weekday words divided into seven classes, each class containing more than 3000 words.

For example, the Saturday class contains more than 3000 words of Arabic Handwritten

“Saturdays” with different writing styles. This is the same for all other classes. More on

our database is in the dataset chapter.

The specific objectives of this research are:

1- To create a large train dataset of Arabic handwriting of weekday words coming from

many people to capture all the expected variations of the handwriting. Then, prepare the

data in binary image or gray image format so it will be used for training and testing the

model.

2- Develop a new DCNN model on a balanced-randomly-selected set using different

DCNN structures and improve the results by adding drop-out, image regularization, and

learning rate to avoid overfitting of data. Finally, perform a blind test on the hidden

testing dataset and report results using the confusion matrix and learning curves.

7

1.4 Outline

This dissertation shows how Deep Convolutional Neural Network (DCNN) can

help solve the problems of automatic Arabic handwriting word recognition by creating a

new Arabic dataset and by designing a new DCNN model, then test the new model using

this dataset. This thesis is organized as following:

Chapter 1 is the introduction, which discusses the nature of Arabic language and its

 widespread characteristics and its general features.

Chapter 2 presents the state of the art in Arabic handwriting image recognition.

Chapter 3 explains the analysis, the organization, and the design of datasets that

 are used in the proposed DCNN model.

Chapter 4 describe the optimization of DCNN model.

Chapter 5 demonstrates the Experimental setup.

Chapter 6 explains the analysis of the result.

Chapter 7 explains the conclusion and the future work.

8

CHAPTER 2 LITERATURE REVIEW

2.1 Background

 The history of pattern recognition is very interesting to analyze from the first spark

where an Optical Character Recognition (OCR) was discovered until nowadays where the

Deep Neural Network is considered the dominant technique for pattern recognition and

other applications.

2.1.1 Optical Character Recognition

 In the early 1950s, the first commercial machine was invented called OCR (Optical

Character Recognition), this machine was hardware based. Then in 1970, machines that

were software based were invented [11]. The OCR is the process of converting any written

text, either handwritten or printed, into computer language format to increase the

interaction by enhancing the interfacing between humans and computers in automatic ways

[12].

 In 1975, Nazif. [13] produced the first Arabic Recognition System called Arabic

Optical Text Recognition (AOTR). His system was based on the idea of extracting strokes

(20 Radicals) to recognize the Arabic letters. The work on Arabic characters recognition

carried on [14] to include the recognition of separated handwritten Arabic characters which

led to an online system named Iterative Recognition of Arabic Character (IRAC). Then

Amin et al. [15] produced a new work for recognizing multi-font Arabic characters in

offline mode. Moreover, a segmentation stage was tested and done on the cursive Arabic

writing [16] [17] [18] they have built up a system that recognizes isolated offline cursive

words by using many approaches such as letter and word segmentation by applying local

minima with low vertical profiles and detecting base line.

 In 1987, Almuallim et al. [19] built a structural system technique that recognizes

offline Arabic cursive handwriting by segmenting words (preprocessing) to strokes (sub-

words) was designed and created, where later these strokes were classified based on their

geometrical and topological properties into strokes with loop, stroke without loop and

complementary characters. In the nineties, the commercial OCR for English were available

to be used by computers Personal Computer (PC) or Macintosh (MAC) and the systems

had the ability to read handwritten and printed writing even in other language such as

9

Chinese, Korean, Cyrillic, Arabic and Japanese [20] , [21]. In 1990, an on-line system was

developed for Arabic handwritten recognition by El-Sheikh et al. [22]. This system is based

on segmentation where the character position has four sets within the word (beginning,

middle, ending, and isolated) and each set is classified into another sub-set called strokes.

In terms of statistical technique, an approach was developed by Al-Yousefi et al. [23]. This

approach recognizes Arabic handwritten characters by using vertical and horizontal

projections momentarily.

 In 1996, Olivier et al. [24] developed a system which dealt with segmentation and

handwritten word coding by individual monitoring to automate the processing of the

handwritten Arabic script, image, or document. This system was composed of three stages.

The first stage segmented the word into its characters (graphemes), the second stage

analyzed these characters (graphemes) by a series of attention or observations which is like

human processing, and finally, they collected the outcome from both stages and utilized

them in the recognition stage. This system worked under two main predefined cases to keep

the minima in safe side. The first case is that there is no loop under the minima, and second

case is that the mean width of the word must be greater than the sub-word (stroke) width

in the minima area.

 According to [25] [26], recognition of an Arabic system was developed; the system

depends on shape primitives by using mathematical operation in terms of morphology.

Chen et al. [27] developed a system to recognize handwritten words by using Hidden

Markov Model (HMM). HMM has two parameters, transition probability and emission

probability (output probability). Each time the system in state x produces y observation

based on the probability that is correlated with state x. In1995, Emam [28] developed an

OCR system that recognized Arabic handwritten script by using the feature of border

transition descriptor. Motawa et al. [9] used the projection-based algorithm and produced

a technique that used mathematical morphology based on the theory that most of the time

the Arabic characters are connected by horizontal lines.

 In [29] the contour-based algorithms were used where the local minima points are

located for all the upper contour and the local maxima points are located for all the lower

contour of each word in the text. All these points are considered as Potential Letter

Boundaries (PLB) by using some rules on lower and upper PLB they remove any bad PLB

10

that might affect the right matching technique between lower and upper PLB. Sakher and

OmniPage products have developed an Arabic OCR system by using Defense Advanced

Research Projects Agency/Science Applications International Corporation

(DARPA/SAIC) database and the accuracy was 86.89 as a real observation as shown by

Kanungo et al [30].

 As demonstrated in [31] Bolt Beranek and Newman Technologies (BBN), General

Telephone and Electronic corporation (GTE) have developed a new methodology for OCR

using continuous speech recognition. That resulted in successful technology that depends

on Hidden Markov Models (HMM) and shows many features such as script-independent

feature extraction and speech recognition. The new system was tested using DARPA

Arabic OCR Corpus. Natarajan et al. [32] produced porting the BBN BYBLOS OCR

System to other languages, such as Arabic, in three steps. These steps collect the required

data, choose the right training model and system optimization. In 2001, Trenkle et al. [33]

produced many enhanced improvements to a system which has being used to recognize

Arabic and Farsi script in low resolution, low quality, and binary images by using

ensembles of decision trees as recognition method instead of neural nets.

 A new OCR Arabic system was created and developed by Hamami and Berkani

[34] [35]where they could handle multi font and multi style characters. The problem of

over segmented characters was solved for some of them by using a structural approach

which didn’t need to use skeleton portioning (time killing), and the proposed system could

be used in Arabic and Latin because the geometrical characters were adapted to the two

languages. In 2003, Pechwitz et al. [36] developed an offline system for Arabic recognition

depending on a semi-continuous 1- dimensional HMM by using the height, length, and

baseline skew as normalized parameters with features that were gathered by using the

sliding windows method. They have accomplished and obtained 89% of word recognition

by using IFN/ENIT database.

In 2003, Amin [37] developed a system to recognize Arabic characters using

machine learning automatically, the system achieved 86.65% of character recognition by

using handwriting character database which was written from different people with low to

high quality. A new OCR system called; An Automatic Arabic Handwritten Text

Recognition (AHTR) was designed as shown by Jannoud [38] . The system used the

11

segmentation as the main stage, where the word or sub word must be thinned, and the base

line is calculated by horizontal projection. For more details, a survey was conducted as

shown by Althobaiti and Lu [39], summarizing the complications and challenges of Arabic

Optical Character Recognition (OCR). They divided their difficulties analysis into three

categories, “general challenges, handwritten text challenges and Arabic text challenges”.

2.1.4 Deep Neural Network

Deep Neural Networks (DNN) have been the dominant star for a long time

compared to the visual recognition models such as character and text recognition [46].

Automatic handwritten, Image recognition [8], [42], [47], [48], [49] and Face Recognition

[50], [51]. Convolutional neural network (CNN) is one of (DNN) that consists of three

main parts, Convolutional layers, Max-pooling layers, and fully connected layers. Wshah

et al. [52] has proposed a method using CNN for lexicon size reduction. This method

applies the dot descriptor with a piece of Arabic words to eliminate unlike words. They

used the IFN/ENIT database of 26459 Arabic Handwritten Word images in their

experimental work and got 87% as a reduction rate and 93% as an accuracy rate.

The first successful work for Visual recognition (Computer Vision) was in 2017 by

AlexNet which employed Convolutional Neural Network as an architecture for image

classification [53]. They achieved a top-1 test error rate of 37.5% and top-5 error rate of

17.0% by using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) -2010

dataset. A new benchmark was developed by Wang et al. [46], where they took advantage

of multilayers neural network with unsupervised feature learning to create a model that

acutely trains the network. They achieved a classification accuracy rate of 82.2% with

recognition model of 180 filters, classification accuracy rate of 83.4% with recognition

model of 360 and filters classification accuracy rate of 83.9% with recognition model of

720 filters on International Conference on Document Analysis and Recognition dataset

(ICDAR) 2003.

A new system was proposed by Mars et al. [54] that recognizes online Arabic

handwriting (letters and words) based on Time Delay Neural Network (TDNN) and Multi-

layer perceptron. They applied the system on their database which contains 6090 characters

and 1080 words. By using their own dataset, they achieved a high accuracy rate of 98.50%

for characters recognition and 96.90% for words recognition. A new method in Arabic

12

handwritten recognition was proposed by Alani [55], the method was proposed in two

stages. The first stage extracted the features from the raw data by using Restricted

Boltzmann Machine (RBM), and then the second stage fed the extracted features into

Convolutional Neural Network (CNN). They trained and tested their model on Center for

Microprocessor Applications for Training Education and Research (CMATER 3.3.1) and

the Arabic handwritten digit dataset and achieved an accuracy rate of 98.59%. In 2017,

Ashiquzzaman et al. [56], a new system was proposed by using two ways for enhancing

the Arabic offline handwritten recognition. First, they used Rectified Linear Unit (ReLU)

as an activation function in their model (Input layer, hidden layer and softmax ‘classifier’

layer) with the use of dropout regularization which chooses a random number of neurons

in each layer in order not to update their gradient to avoid overfitting. Second, they used

Convolutional Neural Network which employed Backpropagation algorithm for training to

update the weights and the bias. They achieved an accuracy rate of 97.4% as a new state-

of-the-art on CMATER database.

Upgrading work on Arabic Handwritten Words Recognition was done by Alexnet

by Almodfer et al. [57]. This work reduced error and avoided overfitting through using the

dropout regularization technique. They used the IFN/ENIT Dataset to train and test their

model with many settings of experiments to achieve classification accuracy rate of 92.13%

and 92.55% as a new state-of-the-art. A new consecutive method for Offline Arabic

Handwritten Recognition was proposed by Ghanim et al. [7] where they employed the

Hierarchical Agglomerative Clustering (HAC) method to divide the IFN/ENIT database

into associate clusters (a, b, c, d) for training and (e) for testing to show the database as a

large search tree to cut down the complications while comparing every test image with a

cluster. They proposed a system to evaluate the outcome of six various Deep Convolutional

Neural networks (AlexNet, VGG-16, GoogleNet, Res50 Net, ResNeXt Net, DenseNet) on

the recognition rate and the accuracy. At the end they concluded that their proposed method

using CNN as features extraction and AlexNet as a classifier reached 95.6% as a

recognition rate, and AlexNet had the best accuracy rate by applying three different

learning rates on each of the six different DCNN. 89% as an accuracy rate with 0.0001 as

a learning rate, 90% as an accuracy rate with 0.001 as a learning rate and 99% as an

accuracy rate with 0.01 as a learning rate. The drawback of this method is, they only use

13

11% of the total 859 database class to reduce recognition complexity while in deep learning

more data is needed to get valid results.

Ashiquzzaman at el. [59] have used seven types of deep learning transfer models,

AlexNet, GoogleNet, Residual Network 18(ResNet18), Residual Network 50(ResNet50),

Residual Network 110(ResNet110), Visual Geometry Group 16(VGG16), and Visual

Geometry Group 19(VGG19). The purpose of using these seven types is to determine

which model is good to be used for classification using two Arabic handwritten images

datasets written by native and non-native people. They have used the original datasets and

augmented datasets for (training 60%) and (testing 40%) by all seven types and the

GoogleNet had the best performance. The performance was measured based on accuracy,

sensitivity, and specificity. Accuracy represents the correctness of the deep learning

classifier; 93.2% for the original data and 95.5% for the augmented data. Sensitivity (Sens)

which represent the correctness of non-native language classification; 92.4% for the

original data and 93.9% for the augmented data. Specificity (Spec) which represents the

correctness of native language classification; 93.9% for the original data and 97.0% for the

augmented data.

14

CHAPTER 3 ANALYSIS AND DESIGN OF DATASETS

3.1 Datasets

 A perfect dataset needs to meet all the requirements for problem solving to get a

beneficial and long usage. Also, to be valuable and long-lasting, a dataset must reflect a

sufficiently difficult problem [60]. Datasets are critical and a necessary component of any

pattern recognition, image classification, computer vision work. Because a single dataset

may only cover a single job, having a large and diverse range of datasets is critical for

taking a more comprehensive approach to measuring and reviewing algorithm

performance. By creating a benchmark dataset, a classification and comparison work

would be created and used by researchers on variant machine learning methods, and the

work would be quite easy, fast, and precise [61].

3.2 Arabic Handwritten Weekdays Dataset (AHWD)

 In this section, a new dataset is represented and called the Arabic Handwritten

Weekdays Dataset (AHWD). AHWD is the collection of Arabic handwritten weekday

words that was written in Libya by different Arabic speakers (Libyan, Tunisian, Algerian,

Saudi, Palestinian, Syrian, Omani, and Sudani) with different range of ages: students in

grades 5 to 9, as well as high school students, undergraduate and postgraduate university

students. Also, people on the street, senior people and many other Arabic nationalities were

asked to participate in this database. The aim was to collect between 20,000 to 30,000

Arabic handwritten weekday words. More than 20,000 words were collected and divided

into seven classes, each one containing more than 3,000 words of the same weekday words

with different morphological and calligraphic styles. For collecting the data, more than

1,000 A4 papers (form with 70 empty blocks) were used, each paper is divided into seventy

empty equal rectangular shapes, ten empty rows in seven empty columns. The participants

would write at least 3 rows including all weekdays as shown in Figure 3. 1 with excellent

quality and Figure 3. 2 with low quality. AHWD is a dataset that can be used to study

Arabic handwritten words recognition and, in this work, specifically.

15

Figure 3. 1 Sample of collected data before preprocessing with good quality.

 Many schools, and universities were targeted to collect the data from. More than

five primary schools, seven junior high schools, ten high schools, Zawia university, Tripoli

university, and Sabratha university were visited to collect the data.

Figure 3. 2 Sample of collected data before preprocessing with low quality.

 Regarding the data that was collected from the public, supermarkets, government

administration offices, sport clubs, and workshop places were visited. In general, many of

them were helpful and happy to participate while only a few of them declined.

16

3.1.1 Preprocessing the AHWD

 More than 1,000 people filled out the Arabic handwritten weekdays words forms

the first stage. This was followed by stage two with some work needed to be done such as

scanning all the Arabic handwritten weekday words forms as an image using MS-paint

program and some preliminary work on each word. This included getting a clear resolution,

without touching the milestone of the original word and saving the form that contained the

preprocessed seventy-word image as .JPG format as shown in Figure 3. 3. The JPG image

file format was created by Joint Photographic Experts Group (JPEG) in 1992, the group

recognized the need to reduce the size of large photographic files so that they could be

shared more easily. Figure 3. 4 shows the preprocessing work that was done for one sample

as an example. Figure 3. 3 is the preprocessed of Figure 3. 1. Around 70% of the data was

preprocessed, and 30% did not require preprocessing.

Figure 3. 3 Sample of collected data after preprocessing Figure 3. 1

 The preprocessing work included removing any noise, fixing the position of the

dots, fixing the position of the diacritic marks, fixing superimposed letters as shown in

Figure 3. 3 and Figure 3. 4 and fixing some letters to look acceptable to get clean and clear

images. All the work was done carefully and precisely without changing the meaning of

the original word. The preprocessing took more than seven months to get the data ready

for stage three, where each weekday word was separated and saved in its proper folder.

17

 The preprocessing here is to fix some week words which were written by the

participants in unreadable manner to avoid reading them wrongly by the model and lose

the words. As mentioned earlier, this dataset is the first step toward creating a complete

database for handwritten Arabic words to be used in all research purposes. Once this

complete database is done the model would be ready to classify any handwritten Arabic

words.

Figure 3. 4 comparison of collected data between Figure 3. 1 before processing and

Figure 3. 3 after preprocessing.

The third stage was opening each saved seventy-word form image file using MS-

paint and cut each Arabic handwritten weekday word and save it in MS-word program as

shown in Figure 3. 5 to do more work on it later in stage four. Seven MS-word files were

created, each file contained the same weekdays word name. For example, all cropped

preprocessed Saturday words would be saved under Saturday.doc file as shown in Figure

3. 5, and the same applied to all the other six files.

18

Figure 3. 5 Sample of preprocessed Arabic handwritten Saturdays after cropping.

 Another example of cropped preprocessed weekdays is Monday’s words would be

saved under Monday.doc file as shown in Figure 3. 6.

Figure 3. 6 Sample of preprocessed Arabic handwritten Monday after cropping.

In stage four seven folders were created and named as following, Saturday’s folder,

Sunday’s folder, Monday’s folder, Tuesday’s folder, Wednesday’s folder, Thursday’s

folder, and Friday’s folder as shown in Figure 3. 7. The following work was to open each

MS-word file which was created in stage 3 and cut each cropped preprocessed Arabic

19

handwritten weekday word and paste it back to MS-paint program and then to save it later

as .JPG in the specified weekday folder, such as Saturday’s folder or Monday’s folder with

range of 32 x 64 pixel to 38 x 78 pixel as shown in Figure 3. 8 and Figure 3. 9, all same

weekday words grouped in one folder. The purpose of the size range is to avoid any time

wasting in fixed images. there is a way to fix the image during feeding the image as an

input into our model, the size will be resized to 32 x 64 pixel as a power of 2.

Figure 3. 7 Seven folders of AHWD

3.1.2 Organization of AHWD

To fit the model with the AHWD dataset, the AHWD dataset was organized as

follows:

[(0: Saturday 3048 السبت _samples), (1: Sunday 3014الاحد _samples), (2: Monday الاثنين

3080_samples), (3: Tuesday 3059الثلاثاء _samples), (4: Wednesday 3017الاربعاء _samples), (5:

Thursday 3059الخميس samples), (6: Friday 3077الجمعة _samples)]. Each weekdays folder contained

several samples, these samples refer to the weekday names. For example, Saturday’s folder

contains 3048 Saturday’s image, Monday’s folder contains 3014 Monday’s image, and so on, as

shown in Figure 3. 8 and Figure 3. 9.

20

Figure 3. 8 Sample of Saturday’s folder with .JPG format

Figure 3. 9 Sample of Monday’s folder with .JPG format

3.3 IFN/ENIT Dataset

 In this section the IFN/ENIT dataset is described and reorganized to test the model

and compare the results with AHWD and augmented AHWD. IFN/ENIT is a handwritten

Arabic Tunisian town/village names dataset which was collected in Tunis for the purpose

of education and research. 2,265 forms were filled out by 411 different writers to guarantee

21

the wide range of writing style. The dataset contains 26,459 handwritten Tunisian

town/village names as shown in Table 3. 1. IFN/ENIT is a very well-known dataset, is

being used in many Arabic machine learning research and is the most popular dataset.

Table 3. 1 Details of IFN/ENIT dataset [62].

3.3.1 Reorganization of IFN/ENIT Dataset

Some work had to be done to reorganize most of IFN/ENIT to fit the model without

changing the core of the words. There was a need to edit the dataset to make it work with

the model by creating 21 folders as shown in Figure 3. 10, to promote code organization

and reusability. Each folder contains the resemble Arabic handwritten words.

Figure 3. 10 Re-organization of IFN/ENIT to 21 folders

22

Each folder contains the same towns and villages names written by different writers

as shown in Figure 3. 11, Figure 3. 12, and Figure 3. 13 as an example.

Figure 3. 11 Akoda village.

Figure 3. 12 Al_Shawamek town.

23

The final re-organization of the data to be fitted into the model is as follows:

[(0: Akoda 987أكودة _samples), (1: Al_Faaied 987الفايض _samples), (2: Al_Fakkah 1012الفكة _

samples), (3: Al_Manzah6 920 6: المنزة _samples), (4: Al_Manzah9 9965المنزة _samples), (5:

Al_Sharaia 907الشرايع _samples), (6: Al_Shawamek 1065الشوامخ _samples), (7: Dukhania

1011الدخانية _samples), (8: Khaleej 1037الخليج _samples), (9: Kurbu 968قربص _samples), (10:

Marth 1018مارث _samples), (11: Naggah 1009نقه _samples), (12: Nahhal 1054نحال _samples),

(13: Oteek 1062أوتيك _samples), (14: Raddah 1034 ضاع رال _samples), (15: Sedi_Ahmed سيدي

995أحمد _samples), (16: Sedi_Bobaker 1024سيدي بوبكر _samples), (17: Sedi_Zaher سيدي الظاهر

972_samples), (18: Shmakh 1022شماخ _samples), (19: Tataween7Nov نوفمبر 7تطاوين

1000_samples), (20: Zanoosh 1042زنوش _samples)].

Figure 3. 13 Sedi_Bobaker village.

24

3.4 Augmented AHWD

 The successful application of various deep learning models requires high-quality

and plentiful data. Data augmentation is frequently employed in the context of deep

learning since the volume and quality of the data are just as essential as the algorithm. Data

augmentation is the process of applying one or more deformations on an available dataset

to generate new, supplementary training data.

 Therefore, several picture deformations were used in the data augmentation in our

research such as artificial noise, noisy data, rotated data and shifted data. Each image was

subjected to a random mix of the aforementioned deformations to generate different

images. In this section the augmented AHWD is described as follows:

• Artificial noise.

• Noisy data.

• Rotated data.

• Shifted data.

Artificial noise, which was created by adding a random 100 black pixel to each image as

shown in Figure 3.14

Figure 3.14 Artificial noise.

- Noisy data, which was created by adding gaussian noise with mean =0 and var=0.5 to

each image as shown in Figure 3.15. The benefit of Gaussian noise is that the

25

distribution itself behaves well. It's named the normal distribution for a reason: it has

useful features and is frequently employed in scientific and social sciences. It is

frequently used to simulate random variables whose true distribution is uncertain. In

other words, white Gaussian noise where the values are equally distributed and

statistically independent at any two times (and hence uncorrelated). White noise has a

zero mean, a constant variance, and is time independent. White noise, as the name

indicates, has a power spectrum that is equally distributed throughout all allowed

frequencies.

Figure 3.15 Noisy data

- Rotated data, which was created by rotating the image 5° counterclockwise as shown

in Figure 3. 16. In this method of augmentation, additional life-like examples are

introduced from which our model can learn. The images can be rotated by 0 to 360

degrees clockwise or counterclockwise. The purpose is to make the pixels of the image

rotate in this method and change the position of the object. A rotating image rotates left

or right along an axis while maintaining the same face toward you. When you flip an

image, it rolls over, either vertically or horizontally, to become a mirror image. The

choice of rotating by 5° is to save processing time because thousands of rotated images

would fit in the model during the real time execution. The more degree of image

rotation the more processing time needed to fit the data.

26

Figure 3. 16 Rotated data.

- Shifted data, which was created by shifting data 5 pixels to the right as shown in Figure 3.

17. The choice of shifting by 5 pixels is to save processing time because thousands of

shifted images would fit in the model during the real time execution. The more pixels of

image shifting the more processing time needed to fit the data.

-

Figure 3. 17 Shifted data.

27

Table 3.2 The size of AHWD before and after data augmentation explains in detail the

size of AHWD and the size of augmented AHWD in terms of image’s number and how

many images each folder has.

Table 3.2 The size of AHWD before and after data augmentation

Number Weekdays folder Initial size After augmentation

1 Saturdays 3048 10509

2 Sundays 3014 10430

3 Mondays 3080 10609

4 Tuesdays 3059 10535

5 Wednesdays 3017 10490

6 Thursdays 3059 10660

7 Fridays 3077 10482

28

CHAPTER 4 OPTIMIZATION

In this chapter, firstly, background on gradient descent is presented. Secondly,

optimizer algorithms are described. Thirdly, the hyperparameters are optimized. Fourthly,

how the optimal capacity can be reached using hyperparameters is analyzed.

4.1 Background

In deep machine learning, optimization refers to the process of getting the lowest

error function (cost function, loss function) which will be used to fit the machine learning

algorithm. During optimization, the algorithm goes through all potential variants of its

parameter combinations to find the optimum one that permits the accurate mapping of

characteristics and classes during training. A mapping function from inputs to outputs is

learned by deep learning neural networks. This is accomplished by updating the network's

weights in response to the errors the model makes on the training dataset. Updates are done

to continuously lower this error until a suitable model is discovered. Optimization function

(optimizer) is used to alter or change the neural network's attributes such as learning rate

and weights to minimize the error (loss). Where weight is a model parameter and learning

rate and batch size are model hyperparameters. Model parameter value starts with a random

value and then updates itself during the execution process. Whereas the hyperparameter

value is set prior to training and remains constant during training session. So, finding the

best value for hyperparameters is called hyperparameter optimization (tuning). Size

normalization is commonly used to reduce size variation and adjust the character or word

sizes to an identical size, in the proposed model the size is normalized by 64x32 pixels [62]

[63].

4.2 Gradient Based Optimization Algorithms

Gradient descent is an optimization process that locates the minimum of an

objective function by following the negative gradient of the function. Gradient descent has

the drawback of bouncing around the search space (search through a landscape) on

optimization problems with many curvature or noisy gradients, as well as being trapped in

flat regions of the search landscape with no gradient, where the landscape is referred to as

an error surface. Through this landscape, the optimization algorithm iteratively moves

29

around, adjusting the weights and looking for good or low-elevation regions. Finding the

bottom of a landscape with basic optimization issues is straightforward; in fact, it is so

simple that extremely effective algorithms may be created to discover the optimal answer.

The landscape has the shape of a large bowl. Convex is a mathematical term used to

describe these kinds of optimization problems as shown in Figure 4. 1 [64] [65].

Figure 4. 1 Local and global minima

When optimizing the weights of a neural network while the navigated error surface

is not shaped like a bowl, this means there are several hills and valleys in the landscape.

Non-convex is a mathematical term used to describe these kinds of optimization problems

as shown in Figure 4. 1. There is no method that can identify the best set of weights for a

neural network in polynomial time. In mathematics, the optimization issue can be solved

by neural network training, known as NP-complete. NP-complete is an abbreviation for a

nondeterministic polynomial-time complete and defined as the complexity class of

decision problems with a high degree of complexity for which solutions may be verified

for correctness by using an algorithm whose execution time scales polynomially with the

amount of the input [63] [64] [66]. The optimization of neural network weights is a

challenging task because of several factors, including local minima and Saddle point (flat

regions).

Local minima or local optima refer to the many locations of the error landscape

(valleys) where the loss is small as shown in Figure 4. 1. The valley has a high elevation

when looking at the entire landscape and better alternatives could be available. It is best

practice to start the optimization process with a lot of noise so that the landscape may be

sampled broadly before choosing a valley to fall into since it might be difficult to tell if the

30

optimization algorithm is in a local minimum or not [63] [64] [66]. Weights are updated

based on the lowest error in the network.

The global minimum is the location where the landscape is at its lowest level and

leads to the lowest error that is needed as shown in Figure 4. 1. The difficulty is that the

distinction between the local and global minima may not be incredibly significant in neural

networks, which may have one or more global minima. This has the implication that getting

a good enough set of weights is frequently more feasible and, hence, more acceptable than

finding a global optimum or best set of weights [63] [64] [67]. Global minima are the key

solution to find the lowest error and in turn to find the generalization error.

Saddle point or flat regions as shown in Figure 4. 2 is a place on the landscape

where there is no gradient (zero value). These can be discovered at the base of valleys or

in the spaces between hills. A zero gradient is problematic since it shows that the

optimization algorithm is unclear about the optimum path to take to improve the model,

the solution for this problem is to add the momentum hyperparameter to avoid the zero

gradient [63] [64] [66].

Figure 4. 2 Saddle point

4.2.1 Stochastic Gradient Descent algorithm (SGD)

The Stochastic Gradient Descent Algorithm is a fast optimization method

(optimizer) and is an algorithm that trains the deep neural network by estimating the

gradience of the error momently in each state and updates the weights of the model by

using backpropagation algorithm. All weights of the neural network are calculated by

empirical optimization approach not by analytical approach. Using mini-batch sizes can

31

approximate a good gradient descent using limited data samples, and they typically are

powers of 2, such as 16, 32, 64, 128, 256, 512, 1024, and so on. The reason for using

powers of 2 is to help mathematically facilitate the resources efficiently such as Graphic

Processor Units (GPU) [64].

Figure 4. 3 Evolutionary map of optimizers [65].

4.2.2 Adaptive Gradient Algorithm (AdaGrad)

Adaptive gradient algorithm (AdaGrad) adjusts the parameters that are appropriate

for the learning rate, to make large updates for discrete parameters and small updates for

frequent parameters. By conducting training, it is suitable for processing scattered data, but

the problem lies in some cases where the learning rate will decrease due to the

accumulation of gradients from the beginning of the training. In addition, there is a point

that the model will not learn again because the learning rate is almost zero, Adam's

algorithm worked to solve it by making the learning rate go towards stability [63] [64] [65].

32

4.2.3 Root Mean Square Propagation Algorithm (RMSprop)

The Root Mean Square Propagation algorithm (RMSprop) is a derivative of the

adaptive gradient algorithm. The learning of each coefficient depends on it (i.e., its overall

learning rate is constant), but it computes the slope with an exponential mean regression

instead of the sum of the scores of it. As a result, it automatically adjusts and responds to

changing specific learning rates to prevent the overall learning rate of the model from

drifting out of bounds and backtracking, the algorithm has excellent performance in

unstable problems [63] [64] [65].

4.2.4 Momentum Algorithm

Momentum is an addition to the gradient descent optimization process that enables

the search to develop inertia in a direction in the search space and get around noisy gradient

oscillations and cruise over flat areas of the search space. Momentum is the process of

moving to a new location in the search space by introducing an extra hyperparameter that

regulates the quantity of history (momentum) to incorporate in the update equation. The

hyperparameter's value is described as falling between 0.0 and 1.0, and it frequently has a

value of 0.8, 0.9, or 0.99, which is near to 1.0. Gradient descent with no momentum is

equivalent to a momentum of 0 [63] [64] [65].

4.2.4 Adam Algorithm

Adam algorithm is a method for stochastic optimization. It is the most popular

optimizer in classification of deep learning neural network and is used to update the

network weights iteratively based on training data. Adam is a new optimization method

that takes the place of the old stochastic gradient descent approach. Adam optimizer uses

both Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation

(RMSProp). Adam algorithm is called first order optimization algorithm because it uses

the first derivative of the function. Figure 4. 3 shows the developments of gradient descent

algorithms, from this figure, Adam optimizer is originated of RMSprop optimizer,

AdaGrad optimizer and Momentum optimizer algorithms [63] [64] [65].

33

4.3 Optimization of Hyperparameters

Most deep learning algorithms accompany numerous hyperparameters that control

many parts of the algorithm's way of behaving to get the optimum values and reach the

optimization. A portion of these hyperparameters influence the time and memory cost of

running the algorithm. Some of these hyperparameters influence the nature of the model

capacity and the model quality by the training process and the ability to get the predicted

results when a new dataset is used. There are two ways to search for these hyperparameters:

Automatic hyperparameter search and Manual hyperparameter search.

4.3.1 Automatic Hyperparameter Search

▪ Random search

Describe a search space as a bounded domain of hyperparameter values and

randomly select points within that domain.

▪ Grid search

Creates a grid of hyperparameter values to represent a search space, and then

analyses each point in the grid. An estimator using grid search must do an

exhaustive search across the provided hyperparameter values. Grid search is a

challenge since it needs significant computer resources to examine more

parameters.

▪ Bayesian search

Create a probability model for the objective function, then use it to choose the most

promising hyperparameters to test against the real goal function.

4.3.2 Manual Hyperparameter Search

 Utilizing Manual search requires knowledge, experience and understanding of what

hyperparameters, and their relationships really do and how machine learning algorithms

accomplish a satisfied generalization. Understanding the relationship between

hyperparameters such as learning rate and batch size, training error, validation error, test

error, generalization error, and available computing resources such as GPU, CPU, memory

and run time setting up a strong establishment on the basic thoughts concerning

the successful capacity of a learning algorithm. The benefit of manual search is to find the

34

proper hyperparameters for the learning algorithm to reach the optimal capacity or effective

capacity. Optimal capacity can be reached by increasing the representational capacity of

the model by adding more neurons in the hidden layers to accommodate more complicated

functions, and by minimizing the cost function of the model to reach the generalization

error.

4.4 Regularization Methods

Regularization is a family of techniques that provide more information to an ill-posed issue

to change it into a more stable, well-posed problem for optimization. The most basic and

possibly most often used regularization strategy is to apply a penalty to the loss function

according to the amount of the weights in the model. The most common regularization

methods are regularization L1, L2 are used with weight decay, early stop, dropout, and data

augmentation. Dropout was used in the model by 20% after trying other percentages and

got the best results in terms of low error and high accuracy. Data augmentation was created

using AHWD dataset and used in the model. The more training the model the best results

are produced. So, the augmented data was used and got the best results of the model as

explained in chapter 7.

4.4 Model Capacity

The capacity of deep neural network model determines the range of mapping functions that

it can learn. There are two characteristics of a model that can influence the neural network's

capacity: number of nodes and number of layers. By expanding the model's capability,

underfitting problem can be solved. When a model has greater capacity, it can perform a

wider range of functions for mapping inputs to outputs. Capacity describes the model's

ability to perform a range of tasks by altering the model's structure, and by including extra

layers and/or nodes. It is more typical to have an overfit model since an underfit model is

so readily rectified. Monitoring the model's performance throughout training by assessing

it on both a training dataset and a holdout validation dataset makes it simple to identify an

overfitting model. By plotting graphs, the effectiveness of the capacity during training

would be noticeably clear, these graphs are called learning curves [68] [69].

35

The model learns from existing samples and generalizes from those existing examples to

upcoming examples. To measure the model's capacity for generalization, techniques like

train/test split and k-fold cross-validation are employed. It is challenging to learn new

things and apply them to new situations. The model will perform badly on both training

dataset and on fresh data if there is insufficient learning and if the model learns too much,

it will perform well on the training examples but badly on new data, over-analyzing the

problem. So, the model has no generalization in either situation. There are three situations

where the model can go [64] [68] [69].

➢ Underfitting model: a model that is unable to adequately learn the problem,

performs badly on a training dataset, and is unsatisfactory on a holdout sample.

➢ Overfitting model: a model that performs well on the training dataset but poorly on

a holdout sample because it learns the training dataset too well.

➢ Good fitting model: a model that correctly notices the training dataset and applies

effectively to the testing dataset.

Having a lot of layers can frequently boost the model's capability, functioning as a

computational and learning shortcut to modelling a problem. A model with one hidden

layer of twenty nodes, for example, is not equal to a model with two hidden levels of ten

nodes each, the latter has much more capacity. The concern is that a model with more

capacity (too many nodes,) than needed may overfit the training data. Similarly, to a model

with too many layers, it will be unable to learn the training dataset, thereby becoming lost

or stuck during the optimization phase. In general, models with a higher number of

parameters are said to have high capacity, and they require a bigger amount of data to

obtain generalization power to unknown test data [68] [69].

 According to [68] [69], the complexity of models is a fundamental issue in deep

learning. They did a thorough review of the most recent papers on deep learning model

complexity. Deep learning model complexity may be divided into expressive capacity and

effective model complexity. They examine previous research on those two categories in

terms of four key factors: model framework, model size, optimization technique, and data

complexity. Furthermore, they reviewed current studies on effective complexity from two

perspectives: broad measurements of effective complexity and the high-capacity low-

reality issue. There was a discussion over the use of deep learning model complexity,

36

particularly in generalization capabilities, optimization, model selection, and design. Deep

learning model complexity is still in its infancy. There are several intriguing difficulties for

future works. They also explore deep learning model complexity applications such as

comprehending model generalization, model optimization, and model selection and design.

37

CHAPTER 5 EXPERIMENTAL SETUP

This chapter outlines the processing platforms and the proposed DCNN model

implementation,

5.1 Processing Platform and Frameworks

 This section explains how the work was done in terms of training and testing the

model with standalone machine and online server. The comparison between the two

platforms is important in terms of the resources needed in machine learning. The

standalone machine was limited in executing the model whereas the online server was good

in executing the model.

5.1.1 Portable computer

Initially, a Lenovo portable computer with the following specifications was used:

• Processor Intel CoreTM i5-3230M CPU @ 2.60 GHz,

• Installed memory (RAM) 8.00 GB,

• System type: 64-bit Windows 8.1 Operating System with x64 based

processor,

• and Hard disc capacity 500 Gb.

Then Anaconda Navigator (anaconda3) was installed and the Jupyter notebook was

used for to provide the interface. This system did not satisfy the required amount of

resources to run the DCNN and an alternative environment was sought.

5.1.2 Online Server

Due to the limited resources a final decision was made to subscribe with Google

Colab pro+ with unlimited resources and quick processing, and access to GPU. The work

was much easier and more accurate when all three datasets were used.

5.1.3 Frameworks

Keras and Tensorflow were used as the framework. Keras is the high-level

Application Programming Interface (API) of TensorFlow 2.

38

5.2 Activation Functions

The activation function is a transfer function. It is a mathematical method used by

each neuron in the neural network to activate. It fires the output of the neuron to the next

neuron or to the network output if it satisfies the condition. By using an activation function,

a non-linearity input transformation in the Neural Network is there. Activation functions

must be well chosen; each model has many appropriate activation functions that are used

to get accurate output and make the model simple and function well [67] [70]. There are

many activation functions; such as sigmoid function, tangents hyperbolicus function (tanh),

Rectified Linear Unit (ReLU) and Softplus.

 5.2.1 Sigmoid Activation Function

The sigmoid function is a nonlinear activation function and transforms the values

between 0 and 1. The formula of the sigmoid function is represented as:

f(x) =
1

1 + e−1

There are two problems with using sigmoid function. First, the upper and lower slope tail

are almost equal to one and zero, respectively. This is called sigmoid function saturability

due to an exceptionally large or an exceedingly small input values which in turn makes the

value of the gradient almost zero. Second, the output of sigmoid functions is not zero

centered; this means if all the data entering a neuron always has positive value, then the

gradient value would be all negative values or all positive values during the training stage

(backpropagation). So, it is not suitable for our model [71].

 5.2.2 Tangents Hyperbolicus Activation Function (TanH)

The tanh function is a nonlinear activation function and due to the drawbacks with

the sigmoid function as explained in the previous section, there was too much work to

overcome these problems. The tanh function is considered an enhanced version of sigmoid

function, overcame the problem of non-zero-centered output to become symmetric output

(zero centered). The formula of the tanh function is represented as:

f(x) =
1 − e−2x

1 + e−2x

39

The range of the tanh function values is between -1 and 1, so the inputs to the layers

would be negative or positive. The slope of the tanh function finds the differentiation value

of that point. The gradients are free to move in a different direction, which tells that the

gradient diffusion problem still around.

5.2.3 Rectified Linear Unit Activation Function (ReLU)

The ReLU function is a nonlinear activation function and unsaturated because the

issue of the gradient diffusion is resolved. The output value of ReLU function is zero if the

input is negative or zero, and the output value would be the same if otherwise. The formula

of ReLU function is represented as:

f(x) = {
0, if x < 0
x, Otherwise

 Or f(x) = max(o, x)

The ReLU function makes the model learn amazingly fast and perform much better than

sigmoid and tanh functions due to the resolved gradient problem. ReLU function is

considered as a default activation function in multilayered neural networks and

Convolutional Neural Networks (CNN). Based on all the previous advantages, ReLU was

chosen in our model.

5.2.4 Softplus Activation Function

The softplus function is a nonlinear activation function and unsaturated because the

issue of the gradient diffusion is resolved. It functions as ReLU activation function. The

formula of the softplus function is represented as:

f(x) = ln (1 + ex)

5.3 Deep Convolutional Neural Network model (DCNN)

This section defines the Deep Convolutional Neural Network model (DCNN) used

for Arabic handwritten words pattern recognition and outlines how the model was

implemented, and which layers, functions and methods were used to improve the

performance on the three datasets: AHWD, IFN/ENIT, AND augmented AHWD.

40

The proposed model was finalized with an input layer, three hidden layers and a

fully connected layers after building many others models with four hidden layers, five

hidden layers, and seven hidden layers. After traing and testing all the models, the

conclusion was to have less number of layers with many filters in terms of Deep

Convolutional Neural Network. The proposed model was chosen because it has given the

best results of all measures that were used in the model such as accuracy rate and testing

error rate (Generalization Error Rate).

5.3.1 Input Layer

In Keras, the input layer is a tensor rather than a layer, the beginning tensor is

transmitted to the first hidden layer. For simplicity it is called an input layer. The input

layer is a pixel image with size H x W x D, where H is the height, W is the width, and D is

the depth. Since the image is the main core here, there is a consideration whether it is

colored or grayscale, which can be done by adding 3 as colored RGB image or by adding

1 as grayscale image. It is critical to understand that input images are represented as arrays

of hundreds, thousands, or millions of pixels. Each pixel is represented by a single point

and may differ in color from its neighbors. Grayscale images are used in our model with

the size of (32 x 64 x 1) pixels in a two-dimensional array format analogous to a matrix in

grayscale. Specifically, the computer records the values that describe each image’s pixel.

Keras will require the input shape in the first layer because it is the only one that must be

defined when implementing the model. So, our input_shape = (32,64,1), this is the

representation of the grayscale input images.

5.3.2 Hidden Layers

In this section, the main components of hidden layers in CNN are outlined and how

do they work with each other in the proposed model. Hidden layers are composed of

convolutional layers, Pooling layers, and fully connected layers.

 Convolutional layer is an essential part of CNN components, and its main function

is to extract the features from the input image (input matrix, raw image, or raw matrix H x

W x D) by using weighted filters (kernels, or feature detector). These features could be

edges, dots, endpoints, corners, ascending and descending letters, lower and higher

41

diacritic dots, diacritic marks, and letter loops. All the information of these features are

saved from loss by applying padding in all convolutional layers.

 The filter size is identified by (N x N x R) where N is the height, and the width and

R is the number of channels. Our model is composed of three convolutional layers. The

first convolutional layer is loaded by an input matrix as an input shape (32 x 64 x 1), this

is only done when the new image is loaded. After loading the raw image, the size and the

number of filters to be used are determined , the start is to use 32 filters with a size of (3 x

3), then a multiplication process would start by multiplying each element in the kernel (3

x 3 x 32) with each element in the input matrix (binary image input) and sum each result

of multiplication and save it in the feature (activation) map, then repeat the same procedure

by shifting one pixel right each time and doing the multiplication with the filter until the

last pixel then save the result in the feature map.

 Next, one pixel is shifted down (if stride = 1) from the beginning of the input matrix

and do the multiplication and save the result in the feature map as shown in Figure 5. 1 and

Figure 5. 2. this way is continued until the end of the input matrix. The feature map with

(32 x 64 x 32) has been created after applying a ReLU activation function.

Figure 5. 1 DCNN of our model using AHWD.

42

Figure 5. 2 DCNN of our model using IFN/ENIT.

 The pooling layer comes after the feature map and watch the features in the

perception scope and extracts the dominant features in the area to lower the number of

hyper-parameters such as filter size, padding, and Pooling method and in turn reduce the

inner dimensionality of the feature map (subsampling).

After getting the feature map with (32 x 64 x 32), max-pooling with pool-size = (2

x 2) is applied to get another feature map with (16 x 32 x 32). In the second convolutional

layer, the input would be the feature map with (16 x 32 x 32) and by applying 64 filters

with the size of (3 x 3) and ReLU activation function a new feature map with (16 x 32 x

64) is produced, and by applying max-pooling with pool-size = (2 x 2) a new activation

map with (8 x 16 x 64) is produced. In the third (final) convolutional layer, the input would

be the feature map with (8 x 16 x 64) and by applying 128 filters with the size of (3 x 3)

and ReLU activation function a new feature map with (8 x 16 x 128) is created, and by

applying max-pooling with pool-size = (2 x 2) a new activation map with (4 x 8 x 128) is

created.

43

5.3.3 Fully Connected Layer.

After all the calculation in terms of summing learned features weights in the

previous layers (convolutional layer and pooling layer), there is a third layer called a fully

connected layer with ReLU activation function which is constructed of many neurons. Each

neuron is connected to all other neurons as a fully connection. The output from the final

convolutional layer would be flattened and converted into one dimensional array of vectors

and is passed to fully connected layer where each input with trainable weight is hooked up

with an appropriate output as shown in Figure 5. 1 and Figure 5. 2. Flattening is considered

as an input layer for the Artificial Neural Network (ANN).

5.3.4 Output Layers

In the proposed model, each dataset has its own number of classes, when using

AHWD and augmented AHWD the output layer is 7 class softmax layer. On the other hand,

when using IFN/ENIT dataset the output layer is 21 class softmax layer. The final stage is

the classification where the softmax works as classifier to classify all the features to its

labeled class.

5.4 Hyperparameters

Manual hyperparameter search was used to find the best values of hyperparameters

and their relationships with each other to reach the optimal model by observing the results

and adjusting the values of the hyperparameters. In this section, a complete study would

be done in the hyperparameters used in the proposed model.

5.4.1 Learning Rate

 The learning rate is a hyperparameter that specifies how much the model should

change in response to the predicted error each time the model weights are updated. In the

proposed model, trial and error approach is used with five different values of learning rate

(10−3 to 10−7), each one is associated with seven batch sizes (16, 32, 64, 128, 256, 512,

1024), and all the experiments are done using the three datasets: AHWD, IFN/ENIT, and

augmented AHWD. Results are analyzed in the next chapter 6.

44

5.4.2 Batch Size

Seven batch sizes (16, 32, 64, 128, 256, 512, 1024) were used in the proposed

model. Since the manual hyperparameter is used, it is noticeably clear to report how the

model performs in each batch size. Batch normalization was not used in the proposed

model because Batch Normalization has traditionally performed badly when the batch

size is too small [72].

5.4.3 Random_state=42

Random_state is set to 42 as a default value. However, any integer can be used if

we want the system to be deterministic. Moreover, if the system runs every time without

specifying the value of random_state, the results would be different each time, the system

is not deterministic.

5.4.4 Validation_split=0.2

 Since Keras is used in this proposed model, 20% of training datasets are set into a

validation dataset and test the performance of the proposed model on that validation dataset

in each epoch to tune the hyperparameters. It might be useful to visualize the effect of a

single hyperparameter on the training and validation scores to see whether the estimator is

overfitting or underfitting for certain hyperparameter values.

5.4.5 Epochs

In machine learning, an epoch is defined as one full iteration of the training dataset

through the algorithm. The number of epochs in the proposed model is equal to 3000

epochs as a standard number to avoid any variation in the results. These results are

evaluated by the accuracy rate, error rate, the convergence between the training accuracy

curve and the validation accuracy curve in the learning curve plot, the convergence

between the training loss curve and the validation loss curve in the learning curve plot, and

confusion matrix.

5.4.6 Relationships between Learning Rate, Batch Size, and Epoch

Increasing the learning rate accelerates the model's learning but risks exceeding its

minimal loss. By reducing batch size, the model utilizes less data to calculate the loss in

45

each training process. When learning rate is low, batch size is small, and high epoch

number, the system would learn in a slow manner. If the learning algorithm has fine-tuned

learning rate and fine-tuned batch size but with a small number of epochs, the system may

not perform well and has a bad generalization. Since the manual hyperparameters are used

in this proposed model, the results are checked and compared with the previous results.

46

Chapter 6 Result Analysis

This chapter discusses the performance of the DCNN algorithm for three

experimental phases for each dataset: AHWD, IFN/ENIT, and augmented AHWD. All

results are analysed and discussed to choose the best accuracy rate and the lowest error rate

or the Generalization Error Rate (GER). A comparison is also made with current state-of-

the-art.

6.1 AHWD Experimental Phase

As mentioned in Chapter 5, the model is evaluated by using the testing dataset. On

AHWD, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested.

Also, learning rates of 10−3, 10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs

equal to 3000. With each learning rate, the model was trained with 7 different batch sizes.

Five tables of results were produced, and each table consists of one learning rate and 7

batch sizes with results (training iteration number, testing iteration number, accuracy rate,

loss rate, and confusion matrix errors) where the loss rate here is considered as the GER.

The results between the five tables are evaluated based on the following criteria:

• Learning rate values (10−3 to 10−7) and batch sizes.

• A low loss error rate or Generalization Error Rate (GER) has the highest priority.

• High accuracy rate.

• Confusion matrix errors.

• Model response speed by looking at the learning curve graph and determine in

which epoch number the accuracy curve starts rising and in which epoch number

does the loss curve start coming down.

After the evaluation by using these criteria, the best performance from each table has been

collected.

First, when learning rate = 10−3 and batch sizes (16, 32, 64, 128, 256, 512, 1024)

 are used, the results would be as shown in Table 6.1.

By looking at Table 6.1, the best accuracy rate is 99.86%, the lowest error rate is 0.5773,

and the lowest confusion matrix error number is 9.

47

 Table 6.1 AHWD dataset with learning rate = 10−3.

This conclusion is acceptable in this training and testing condition but cannot be

generalized because Figure 6.1 shows an overfitting after epoch 2000; that is, the validation

loss curve starts to diverge up off the training loss curve. In conclusion, the model

generalization cannot be achieved for the AHWD dataset with a learning rate = 10−3 and

for batch sizes 1024.

9 Errors

Figure 6.1 LC and CM with LR = 10−3 and BS = 1024 AHWD.

9 Errors

48

All other results in Table 6.1 have very high error rates, and this leads to overfitting

and cannot be generalized as shown in Figure 6.2 to Figure 6.7.

Figure 6.2 LC and CM with LR = 10−3 and BS = 16 AHWD.

12 Errors

11 Errors

Overfitting

Figure 6.3 LC and CM with LR = 10−3and BS = 32 AHWD.

49

Figure 6.5 LC and CM with LR = 10−3 and BS = 128 AHWD.

11 Errors

8 Errors

Overfitting

Overfitting

Figure 6.4 LC and CM with LR =10−3 and BS = 64 AHWD.

50

 Figure 6.6 LC and CM with LR = 10−3 and BS = 256 AHWD.

7 Errors

10 Errors

Overfitting

Overfitting

 Figure 6.7 LC and CM with LR = 10−3 and BS = 512 AHWD.

51

Second, when learning rate = 10−4 and batch sizes (16, 32, 64, 1024) are used, the

 results are shown in Table 6.2.

By looking at Table 6.2 and by rounding up, all the accuracy rates are the same as 99.70%.

So, by choosing the lowest error rate (GER) = 0.0349, a low confusion matrix error number

= 9 is obtained, and the lowest iteration is for (training =12 and testing = 7) which in turn

takes less computing time. This conclusion is the best and is accepted in this training and

testing session with batch size = 1024 as shown in Figure 6.8 where the convergence

between the training accuracy curve and validation accuracy curve starts approximately at

epoch = 300 and continue all the way straight. Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from the

beginning until it reached epoch 100 where the convergence started to be steady, and the

error is the lowest.

Table 6.2 AHWD dataset with learning rate = 10−4

In Table 6.2, there are some low error rates 0.0926 and 0.0520 with no overfitting

as shown in Figure 6.10 and Figure 6.10 respectively. However, there are error rates

0.6848, 0.3508, 0.2413 and 0.1557 with overfitting as shown in Figure 6.11 to Figure 6.14

respectively. None of these results were chosen because they are not the best.

52

 Figure 6.8 LC and CM with LR = 10−4 and BS = 1024 AHWD.

9 Errors

Figure 6.9 LC and CM with LR = 10−4 and BS = 256 AHWD.

8 Errors

53

 Figure 6.10 LC and CM with LR = 10−4 and BS = 512 AHWD.

Figure 6.11 LC and CM with LR = 10−4 and BS = 16 AHWD.

Overfitting

11 Errors

9 Errors

54

Figure 6.12 LC and CM with LR = 10−4 and BS = 32 AHWD.

Figure 6.13 LC and CM with LR = 10−4 and BS = 64 AHWD.

Overfitting

Overfitting

15 Errors

11 Errors

55

Third, for learning rate = 10−5 and batch sizes (16, 32, 64, 1024), the results are shown

in Table 6.3.

By looking at Table 6.3, the highest accuracy rates are 99.76%, with low error rate

(GER) = 0.0230, low confusion matrix error number = 11 errors, and low iteration (training

=23 and testing = 14) which in turn takes less computing time. This conclusion is the best

performance and is accepted in this training and testing session with batch size = 512 as

shown in Figure 6.15, where the convergence between the training accuracy curve and

validation accuracy curve starts approximately at epoch = 400 and continue all the way

straight. Moreover, the convergence between the training loss curve and the validation loss

curve starts to come down right from the beginning until it reached epoch 200 where the

convergence started to be steady, and the error is the lowest.

 Figure 6.14 LC and CM with LR = 10−4 and BS = 128 AHWD.

10 Errors
Overfitting

56

Table 6.3 AHWD dataset with learning rate = 10−5

In Table 6.3, all error rates are considered low, and all accuracy rates are high, too.

The error rate 0.0191 with batch size 1024 and accuracy rate is the lowest but has been

excluded because of the slowing performance in model response speed as shown in Figure

6.16, where the training accuracy curve and validation accuracy curve start raising up in

 Figure 6.15 LC and CM with LR = 10−5 and BS = 512 AHWD.

57

convergence fashion at epoch 350 until approximately epoch 1,000 where the convergence

goes all the way long, whereas in Figure 6.15 the convergence the convergence between

the training accuracy curve and validation accuracy curve starts approximately at epoch =

400 and continue all the way straight. Moreover, the convergence between the training loss

curve and the validation loss curve starts to come down right from the beginning until it

reached epoch 200 where the convergence started to be steady, and the error is the lowest.

Fourth, for a learning rate = 10−6 and batch sizes (16, 32, 64, 128, 256, 512, 1024), the

 results are shown in Table 6.4.

By looking at Table 6.4, the highest accuracy rate is 99.72%, with lowest error rate

(GER) = 0.0177, and low confusion matrix error number = 16 errors. This conclusion is

the best performance and is accepted in this training and testing session with batch size 64

as shown in Figure 6.17, where the training accuracy curve and validation accuracy curve

start raising up in convergence fashion from the beginning until approximately epoch 1000

where the convergence goes all the way long, Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from the

Figure 6.16 LC and CM with LR = 10−5 and BS = 1024 AHWD.

14 Errors

58

beginning until it reached epoch 400 where the convergence started to be steady, and the

error is the lowest.

Table 6.4 AHWD dataset with learning rate = 10−6

Figure 6.17 LC and CM with LR = 10−6 and BS = 64 AHWD.

16 Errors

59

In Table 6.4, some results in training and testing sessions with batch size 16 with

accuracy rate 99.57%, and with loss rate (GER) 0.0264; and batch size 32 with accuracy

rate 99.55%, and with loss rate (GER) 0.0288; and batch size 128 with accuracy rate

99.53%, and with error rate 0.0231; and batch size 256 with accuracy rate 99.34%, and

with 0.0219 are acceptable but not chosen because the error rates are high comparing to

the chosen error rate 0.0177 with accuracy rate 99.72%.

However, for a batch size 512 with an accuracy rate 98.72%, and with error rate 0.0473;

and batch size 1024 with accuracy rate 97.25%, and with 0.0948 are not accepted in this

training and testing session because the error rates are high, the confusion matrix errors

numbers are high, and the model response speed is low in both as shown in Figure 6.18

and Figure 6.19, the conclusion with the last two results is that the system is unstable and

the batch sizes 512 and 1024 are not suitable here.

Figure 6.18 LC and CM with LR = 10−6 and BS = 512 AHWD.

111 Errors

60

Fifth, when the learning rate = 10−7 and for batch sizes (16, 32, 64, 128, 256, 512,

 1024), the results are as shown in Table 6.5.

By looking at Table 6.5, the best accuracy rate is 96.10%, error rate (GER) =

0.1530, and the confusion matrix error = 663. This conclusion is not accepted in this

training and testing session with batch size = 32 because the error rate is high, and the

confusion matrix error number is remarkably high, and the model is unstable as shown in

Figure 6.20

In more detail, using learning rate = 10−7is not suitable for the proposed model since all

the training and testing session using 10−7 with batch sizes are (16, 32, 64, 128, 256, 512,

1024) make the proposed model unstable and unrobust as shown in Figure 6.20 to Figure

6.26.

 Figure 6.19 LC and CM with LR = 10−6 and BS = 1024 AHWD.

370 Errors

61

Table 6.5 AHWD dataset with learning rate = 10−7

Figure 6.20 LC and CM with LR = 10−7 and BS = 32 AHWD.

663 Errors

62

Figure 6.21 LC and CM with LR = 10−7 and BS = 16 AHWD.

Figure 6.22 LC and CM with LR = 10−7 and BS= 64 AHWD.

3849 Errors

1056 Errors

63

Figure 6 23 LC and CM with LR = 10−7 and BS = 128 AHWD.

Figure 6.24 LC and CM with LR = 10−7 and BS = 256 AHWD.

> 6000 Errors

> 6000 Errors

64

Figure 6.25 LC and CM with LR = 10−7 and BS = 512 using AHWD.

Figure 6.26 LC and CM with LR = 10−7 and BS = 1024 using AHWD.

No diagonal

No diagonal

65

By looking at Figure 6.20 to Figure 6.26, there is instability in the proposed model

when using a learning rate = 10−7. The learning rate here is very small makes the gradient

erratic and the convergence between the training accuracy curve and validation accuracy

cannot be realized. Moreover, as the batch size increases:

• Both the training and validation loss curve diverge, and this divergence is clear in

Figure 6.26.

• The number of confusion matrix errors increases, the classification accuracy rate

decrease, and the error rate increases, as well.

The Adam optimizer is used to evaluate the performance when applying AHWD

using the proposed model. For the loss function, the categorical cross-entropy loss is used.

After training the DCNN model to calculate the probability of each image over the classes,

the model is evaluated by using the testing dataset. On AHWD, different batch sizes equal

to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of

10−3, 10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs equal to 3000. With each

learning rate, the model was trained with 7 different batch sizes. So, five tables of results

were produced, and each table consists of one learning rate and 7 batch sizes with results

(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered

as the GER. The results between the five tables are evaluated based on the following

criteria:

• Learning rate values (10−3 to 10−7) and batch sizes.

• Low loss error rate (GER) has the highest priority.

• High accuracy rate.

• Confusion matrix errors.

• Model response speed by looking at the learning curve graph and determine in which

epoch number the accuracy curve starts rising and in which epoch number does the loss

curve start coming down.

After applying these criteria, a table summarizing the conditions to obtain the best

results is compiled for each dataset. The result is shown in Table 6.6 for AHWD. After

66

applying the above criteria on Table 6.6, it was concluded that the best accuracy rate is

99.76% and error rate GER = 0.0230 for the following reasons:

• The learning rate (10−5) is low which makes the model train at a reasonable speed and

allows the gradient descent to produce a smooth output.

• There is a reasonable number of epochs (3000 epochs with 23 training iterations and

14 testing iterations for each epoch) required and batch size is = 512. These conditions

allow relatively fast computing time.

Table 6.6 Best of the five tables of AHWD dataset

• The lowest error rate 0.0177 with high accuracy rate was not chosen because by looking

at Figure 6.17, the training accuracy curve and validation accuracy curve start raising

up in convergence fashion from the beginning until approximately epoch 1,000 where

the convergence goes all the way long, Moreover, the convergence between the training

loss curve and the validation loss curve starts to come down right from the beginning

until it reached epoch 400 where the convergence started to be steady, and the error is

the lowest. Whereas Figure 6.15 shows that the convergence between the training

accuracy curve and validation accuracy curve starts approximately at epoch = 400 and

continue all the way straight. Moreover, the convergence between the training loss

curve and the validation loss curve starts to come down right from the beginning until

it reached epoch 200 where the convergence started to be steady, and the error is the

lowest which is 0.0230. Now, by comparing Figure 6.15 with error rate 0.0230 and

67

Figure 6.17 with error rate 0.0177 in terms of model response speed in the accuracy

curve and the loss curve. The conclusion is that Figure 6.15 with error rate 0.0230

shows faster response than Figure 6.17 with an error rate of 0.0177.

• By looking at Table 6.6 a setting converging to (GER = 0.0230) is selected even though

there are lower values of GER in the table. This choice was made because the accuracy

rate (99.76%) is the highest on the table. Also, as can be observed from Table 6.6 the

number of errors in the confusion matrix for the chosen setting is low compared to other

results.

6.2 IFN/ENIT Experimental Phase

As mentioned in Chapter 5, The model is evaluated by using the testing dataset. On

IFN/ENIT, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested.

Also, learning rates of 10−3, 10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs

equal to 3000. With each learning rate, the model was trained with 7 different batch sizes.

So, five tables of results were produced, and each table consists of one learning rate and 7

batch sizes with results (training iteration number, testing iteration number, accuracy rate,

loss rate, and confusion matrix errors) where the loss rate here is considered as the GER.

The results between the five tables are evaluated based on the following criteria:

• Learning rate values (10−3 to 10−7) and batch sizes.

• A low loss error rate or Generalization Error Rate (GER) has the highest priority.

• High accuracy rate.

• Confusion matrix errors.

• Model response speed by looking at the learning curve graph and determine in

which epoch number the accuracy curve starts rising and in which epoch number

does the loss curve starts coming down.

68

After the evaluation by using these criteria, the best performance from each table has been

collected.

• First, when learning rate = 10−3 and batch sizes (16, 32, 64, 128, 256, 512, 1024)

the results would be as shown in Table 6. 7.

Table 6. 7 IFN/ENIT dataset with learning rate = 10−3

By looking at Table 6. 7, the best accuracy rate is 99.91%, the lowest error rate

(GER) = 0.5749, and the lower confusion matrix error = 9. This is acceptable in this training

and testing session but cannot be generalized because Figure 6.27 shows an overfitting

after epoch 1800; that is, the validation loss curve starts to diverge up off the training loss

curve. In the conclusion, the proposed model cannot generalized on IFN/ENIT dataset with

learning rate = 10−3 and batch sizes 1024.

All other results in Table 6. 7 have a remarkably high error rates, and this would lead to

overfitting and cannot be generalized as shown in Figure 6.28 to Figure 6.33.

69

Figure 6.27 LC and CM with LR = 10−3 and BS = 1024 using IFN/ENIT dataset.

 Figure 6.28 LC and CM with LR = 10−3 and BS = 16 using IFN/ENIT dataset.

9 Errors

16 Errors

Overfitting

Overfitting

70

Figure 6.29 LC and CM with LR = 10−3 and BS = 32 using IFN/ENIT dataset.

Figure 6.30 LC and CM with LR = 10−3 and BS = 64 using IFN/ENIT dataset.

20 Errors

18 Errors

Overfitting

Overfitting

71

Figure 6.31 LC and CM with LR = 10−3 and BS = 128 using IFN/ENIT dataset.

Figure 6.32 LC and CM with LR = 10−3 and BS = 256 using IFN/ENIT dataset.

20 Errors

16 Errors

Overfitting

Overfitting

72

• Second, when learning rate = 10−4 and batch sizes (16, 32, 64, 128, 256, 512, 1024)

the results would be as shown in Table 6.8.

Table 6.8 IFN/ENIT dataset with learning rate = 10−4

Table 6.8 depicts that the best accuracy rate is 99.87%, the lowest error rate (GER)

= 0.0181, and the lowest confusion matrix error number = 8. This conclusion is the best

performance and is acceptable in this training and testing session with batch size = 512

 Figure 6.33 LC and CM with LR = 10−3 and BS = 512 using IFN/ENIT dataset.

18 Errors

Overfitting

73

because it has lower error rate with highest accuracy rate, and the lowest confusion matrix

error number.

Figure 6.34 depicts that the training accuracy curve and validation accuracy curve

start up in convergence fashion from the beginning until approximately epoch 100 where

the convergence goes all the way along. Moreover, the convergence between the training

loss curve and the validation loss curve starts to come down right from the beginning until

it reached epoch 50 where the convergence started to be steady, and the error is the lowest.

The curves never touch each other, the gap between them is called a generalization gap.

The rest of the results in Table 6.8 are acceptable except the training and testing

sessions with batch size 16 and batch size 32, and with error rate 0.0917 and error rate

0.0806 consecutively because by looking at Figure 6.35 and Figure 6.36 there is data

overfitting, and the conclusion would be that the proposed model cannot be generalized

utilizing learning rate 10−4 hyperparameter with batch size 16 and 32.

 Figure 6.34 LC and CM with LR = 10−4 and BS = 512 using IFN/ENIT dataset

8 Errors

74

Figure 6.35 LC and CM with LR = 10−4 and BS = 16 using IFN/ENIT dataset

10 Errors

Figure 6.36 LC and CM with LR = 10−4 and BS = 32 using IFN/ENIT dataset

Overfitting

Overfitting

10 Errors

75

• Third, when learning rate = 10−5 and batch sizes (16, 32, 64, 128, 256, 512, 1024)

the results would be as shown in Table 6.9.

Table 6.9 IFN/ENIT dataset with learning rate = 10−5

Table 6.9 shows that all results are acceptable. However, the proposed model is

measured to find the best performance, there are some equivalent results in Table 6.9. To

find the best performance, there must be a complete analysis of the results. Analysis

includes, lowest error rate, highest accuracy rate, model response speed using the

associated learning curve graphs and number of confusion matrix errors.

By rounding up most of the values of the classification accuracy rates in Table 6.9, a valid

value for the accuracy rates is equal to 99.70% except the first two values with batch size

16 and batch size 32 are 99.60%. The lowest error rate is 0.0178 and is associated with two

accuracy rates 99.67% and 99.66% with batch size 128 and 512 respectively. By looking

at Figure 6.37 and Figure 6.38 and see the model response speed in terms of the accuracy

curve and the loss curve the analysis is as follows:

Figure 6.37 depicts that the training accuracy curve and validation accuracy curve

start raising up in convergence fashion from the beginning until approximately epoch 200

where the convergence goes all the way along. Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from the

beginning until it reached epoch 100 where the convergence started to be steady, and the

error is the lowest. The curves never touch each other.

76

Figure 6.38 depicts that the training accuracy curve and validation accuracy curve

start up in convergence fashion from the beginning until approximately epoch 500 where

Figure 6.37 LC and CM with LR = 10−5 and BS = 128 using IFN/ENIT dataset

Figure 6.38 LC and CM with LR = 10−5 and BS = 512 using IFN/ENIT dataset

13 Errors

15 Errors

77

the convergence goes all the way along. Moreover, the convergence between the training

loss curve and the validation loss curve starts to come down right from the beginning until

it reached epoch 200 where the convergence started to be steady, and the error is the lowest.

Both curves never touch each other.

Analysis showed that the best accuracy rate is 99.87%, the lowest error rate (GER) is

0.0178 with epoch 128 and confusion matrix error number = 13. This conclusion is the best

performance and is acceptable in this training and testing session.

• Fourth, when the learning rate = 10−6 and batch sizes (16, 32, 64, 128, 256, 512,

1024) the results would be as shown in Table 6.10.

Table 6.10 depicts that the highest accuracy rates are 99.68%, with lowest error rate (GER)

= 0.0195, and low confusion matrix error number = 18 errors. This conclusion is the best

performance and is accepted in this training and testing session with batch size = 32 as

shown in Figure 6.39. where the training accuracy curve and validation accuracy curve

Table 6.10 IFN/ENIT dataset with learning rate = 10−6

start raising up in convergence fashion from epoch 100 until approximately epoch 750

where the convergence goes all the way long, Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from epoch 200

until it reaches epoch 300 where the convergence starts to be steady, and the error is the

lowest. So, the proposed model can be generalized using batch size 32.

78

Table 6.10 shows that as the batch size increases the error rate (loss rate) and the

confusion matrix error number increases, and the accuracy rate decreases. This conclusion

leads to model instability using batch sizes 512 and 1024 as shown in Figure 6.40 and

Figure 6.41, and the proposed model cannot be generalized with batch sizes 512, and 1024.

However, the proposed system is acceptable with the batch size hyperparameters 16, 64,

128, and256 as shown in Figure 6.42 to Figure 6.45.

Figure 6.39 LC and CM with LR = 10−6 and BS = 32 using IFN/ENIT dataset

18 Errors

Figure 6.40 LC and CM with LR = 10−6 and BS = 512 using IFN/ENIT dataset

39 Errors

79

Figure 6.41 LC and CM with LR = 10−6 and BS = 1024 using IFN/ENIT dataset

No diagonal

Figure 6.42 LC and CM with LR = 10−6 and BS = 16 using IFN/ENIT dataset

15 Errors

80

Figure 6.43 LC and CM with LR = 10−6 and BS = 64 using IFN/ENIT dataset

Figure 6.44 LC and CM with LR = 10−6 and BS = 128 using IFN/ENIT dataset

18 Errors

18 Errors

81

• Fifth, when learning rate = 10−7 and batch sizes (16, 32, 64, 128, 256, 512, 1024) we

the results would be as shown in Table 6.11.

Table 6.11 shows that the training and testing sessions with batch sizes 16, 32, and

64 have acceptable accuracy rates 97.73%, 97.93, and 95.29% and error rate (loss rate)

0.0966, 0.0853, and 0.1723, respectively. However, Table 6.11 depicts that, as the batch

size hyperparameter increases the error rate and the confusion matrix error number

increases, and the accuracy rate decreases.

Figure 6.45 LC and CM with LR = 10−6 and BS = 256 using IFN/ENIT dataset

18 Errors

82

Table 6.11 IFN/ENIT dataset with learning rate = 10−7

 The conclusion is that using learning rate = 10−7 cannot be generalized and is not

suitable for the proposed model on IFN/ENIT dataset. All the training and testing sessions

using learning rate 10−7 with batch sizes (16, 32, 64, 128, 256, 512, 1024) make the

proposed model unstable, unrobust, and convergence between the training accuracy curve

and the validation accuracy curve would not be stable in all training and testing sessions

and at some points the two curves would cross each as shown in Figure 6.46 to Figure 6.52.

Figure 6.46 LC and CM with LR = 10−7 and BS = 16 using IFN/ENIT dataset

263 Errors

83

226 Errors

779 Errors

Figure 6.47 LC and CM with LR = 10−7 and BS = 32 using IFN/ENIT dataset

Figure 6.48 LC and CM with LR = 10−7 and BS = 64 using IFN/ENIT dataset

84

No diagonal

No diagonal

Figure 6.49 LC and CM with LR = 10−7 and BS = 128 using IFN/ENIT dataset

Figure 650 LC and CM with LR = 10−7 and BS = 256 using IFN/ENIT dataset

85

No diagonal

No diagonal

Figure 6.51 LC and CM with LR = 10−7 and BS = 512 using IFN/ENIT dataset

Figure 6.52 LC and CM with LR = 10−7 and BS = 1024 using IFN/ENIT dataset

86

By looking at Figure 6.46 to Figure 6.52, there is instability in the proposed model

on IFN/ENIT dataset when using learning rate = 10−7. The learning rate here is very small

which would make the gradient moves uneven and the convergence between the training

accuracy curve and validation accuracy curve inaccurate. Moreover, as the batch size

increases.

• Both the training and validation loss curve diverge, and this divergence is clear in

Figure 6.Figure 6.52

• The number of confusion matrix errors increases and reaches to the No diagonal

state, and the classification accuracy rate will decrease.

The conclusion is, the hyperparameters such as learning rate = 10−7 with batch sizes (16,

32, 64, 128, 256, 512, 1024) when applying IFN/ENIT is not suitable, and the system is

unstable.

The Adam optimizer is used to evaluate the performance when applying IFN/ENIT

using the proposed model. For the loss function, the categorical cross-entropy loss is used.

After training the DCNN model to calculate the probability of each image over the classes,

the model is evaluated by using the testing dataset. On IFN/ENT, different batch sizes equal

to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of

10−3, 10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs equal to 3000. With each

learning rate, the model was trained with 7 different batch sizes. So, five tables of results

were produced, and each table consists of one learning rate and 7 batch sizes with results

(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered

as the GER. The results between the five tables are evaluated based on the following

criteria:

• Learning rate values (10−3 to 10−7) and batch sizes.

• Low loss error rate (GER).

• High accuracy rate.

• Confusion matrix errors.

87

• Model response speed by looking at the learning curve graph and determine in which

epoch number the accuracy curve starts rising and in which epoch number does the loss

curve start coming down.

After applying these criteria, a table summarizing the conditions to obtain the best

results is compiled for each dataset. The result is shown in Table 6.12 for IFN/ENIT

dataset. After applying the above criteria on Table 6.6, it was concluded that the best

accuracy rate is 99.87% and the error rate GER = 0.0181 for the following reasons:

• The learning rate (10−4) is low which makes the model train at a reasonable speed and

allows the gradient descent to produce a smooth output.

• There is a reasonable number of epochs (3000 epochs with 23 training iterations and

14 testing iterations for each epoch) required and batch size is = 512. These conditions

allow relatively fast computing time.

Table 6.12 Best of the five tables of IFN/ENIT dataset

• The lowest error rate 0.0178 with high accuracy rate was not chosen because by looking

at Figure 6.37, the training accuracy curve and validation accuracy curve start raising

up in convergence fashion from the beginning until approximately epoch 200 where

the convergence goes all the way along. Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from the

beginning until it reached epoch 100 where the convergence started to be steady, and

the error is the lowest. Whereas Figure 6.34, shows that the convergence between the

88

training accuracy curve and validation accuracy curve starts approximately at epoch =

100 and continue all the way as a straight line. Moreover, the convergence between

the training loss curve and the validation loss curve starts to come down right from the

beginning until it reached epoch 20 where the convergence started to be steady, and the

error is the lowest which is 0.0181. Now, by comparing Figure 6.34 with error rate

0.0181 and Figure 6.37 with error rate 0.0178 in terms of model response speed in the

accuracy curve and the loss curve, the conclusion is that Figure 6.34 with error rate

0.0181 shows faster response than Figure 6.37 with an error rate of 0.0178.

• By looking at Table 6.6 a setting converging to (GER = 0.0181) is selected even though

there are lower values of GER in the Table 6.12. This choice was made because the

accuracy rate (99.87%) is high and the number of errors in the confusion matrix for the

chosen setting is the lowest compared to other results.

6.3 Augmented AHWD Experimental Phase

As mentioned in Chapter 5, The model is evaluated by using the testing dataset. On

augmented AHWD, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were

tested. Also, learning rates of 10−3, 10−4, 10−5 , 10−6, and 10−7 were evaluated with

epochs equal to 1000. With each learning rate, the model was trained with 7 different batch

sizes. So, five tables of results were produced, and each table consists of one learning rate

and 7 batch sizes with results (training iteration number, testing iteration number, accuracy

rate, loss rate, and confusion matrix errors) where the loss rate here is considered as the

GER. The results between the five tables are evaluated based on the following criteria:

• Learning rate values (10−3 to 10−7) and batch sizes.

• A low loss error rate or Generalization Error Rate (GER) has the highest priority.

• High accuracy rate.

• Confusion matrix errors.

89

• Model response speed by looking at the learning curve graph and determine in

which epoch number the accuracy curve starts rising and in which epoch number

does the loss curve start coming down.

After the evaluation by using these criteria, the best performance from each table has been

collected.

• First, when learning rate = 10−3 and batch sizes (16, 32, 64, 128, 256, 512, 1024)

are used, the results would be as shown in Table 6.13.

 Table 6.13 Augmented AHWD dataset with learning rate = 10−3.

 By looking at Table 6.13, the lowest error rate (GER) is 0.1148, with accuracy rate

99.84%, and lower confusion matrix error = 23. This is acceptable in this training and

testing session but cannot be generalized because Figure 6.53 shows an overfitting starts

to rise after epoch 900; that is, the validation loss curve starts to diverge up off the training

loss curve. In the conclusion, the proposed model cannot generalized on augmented

AHWD with learning rate = 10−3 and batch sizes 1024.

90

 All other results in Table 6.13 have a high error rate, and this would lead to

overfitting or instability in the system, then cannot be generalized as shown in Figure 6.54

to Figure 6.59

Figure 6.53 LC and CM with LR = 10−3 and BS = 1024 using augmented AHWD

Overfitting

91

Figure 6.54 LC and CM with LR = 10−3 and BS = 16 using augmented AHWD

Figure 6.55 LC and CM with LR = 10−3 and BS = 32 using augmented AHWD

Figure 6.56 LC and CM with LR = 10−3 and BS = 64 using augmented AHWD

92

Figure 6.57 LC and CM with LR = 10−3 and BS = 128 using augmented AHWD

Figure 6.58 LC and CM with LR = 10−3 and BS = 256 using augmented AHWD.

Overfitting

Overfitting

93

• Second, when learning rate hyperparameter = 10−4 and batch sizes hyperparameters

(16, 32, 64, 128, 256, 512, 1024) are used, the results would be as shown in Table 6.14.

Table 6.14 Augmented AHWD dataset with learning rate = 10−4.

Table 6.14 depicts that the best accuracy rate is 99.90%, the lowest error rate (GER)

= 0.0074, and low confusion matrix error number = 22. This conclusion is the best

Figure 6.59 LC and CM with LR = 10−3 and BS = 512 using augmented AHWD.

Overfitting

94

performance, can be generalized, and is acceptable in this training and testing session with

batch size hyperparameter = 1024 because it has lowest error rate with the highest accuracy

rate, and the lowest processing time. Figure 6.60 depicts that the training accuracy curve

and validation accuracy curve starts rising in convergence fashion from the beginning until

approximately epoch 125 where the convergence goes all the way long. Moreover, the

convergence between the training loss curve and the validation loss curve starts to come

down right from the beginning until it reached epoch 50 where the convergence started to

be steady, and the error is the lowest. Both curves never touch each other, there is a gap between

them called a generalization gap.

The results in Table 6.14 with batch sizes hyperparameters 256 and 512 are

acceptable and no overfitting is produced as shown in Figure 6.61 and Figure 6.62.

However, the results in Table 6.14 with batch sizes hyperparameters 16, 32, 64, and 128

are not acceptable because of the overfitting as shown in Figure 6.63 to Figure 6.66. The

conclusion is that the proposed model cannot be generalized utilizing learning rate

hyperparameter 10−4 with batch sizes hyperparameters 16, 32, 64, and 128. So, it is

unstable and not robust.

Figure 6.60 LC and CM with LR = 10−4 and BS = 1024 using augmented AHWD

95

Figure 6.61 LC and CM with LR = 10−4 and BS = 256 using augmented AHWD

Figure 6.62 LC and CM with LR = 10−4 and BS = 512 using augmented AHWD

96

Figure 6.63 LC and CM with LR = 10−4 and BS = 16 using augmented AHWD

Figure 6.64 LC and CM with LR = 10−4 and BS = 32 using augmented AHWD

Overfitting

Overfitting

97

Figure 6.65 LC and CM with LR = 10−4 and BS = 64 using augmented AHWD

Figure 6.66 LC and CM with LR = 10−4 and BS = 128 using augmented AHWD

Overfitting

Overfitting

98

• Third, when learning rate hyperparameter = 10−5 and batch sizes hyperparameters

(16, 32, 64, 128, 256, 512, 1024) are applied, the results would be as shown in Table

6.15.

All results in Table 6.15 are acceptable and the accuracy rates are 99.90%, 99.90%,

99.86%, 99.86%, 99.88%, 99.81%, and 99.77% when using batch sizes 16, 32, 64, 128,

256, 512, and 1024 with error rates (GER) are 0.0116, 0.0091, 0.0111, 0.0070, 0.0086,

0.0094, and 0.0100 respectively, and the number of confusion matrix error is 20, 17, 27,

22, 24, 27, and 22, respectively. There is no overfitting in all the training sessions.

Table 6.15 Augmented AHWD dataset with learning rate = 10−5.

By rounding up the accuracy rate values, most of the values would be 99.90%.

However, Table 6.15 depicts that the lowest error rate (GER) = 0.0070, with high accuracy

rate 99.86% (99.90% rounded up), and low confusion matrix error number = 22. This

conclusion is the best performance, can be generalized, and is acceptable in this training

and testing session with batch size hyperparameter = 128 as shown in Figure 6.67.

Figure 6.67 depicts that the training accuracy curve and validation accuracy curve

start up in convergence fashion from the beginning until approximately epoch 100 where

the convergence goes all the way along. Moreover, the convergence between the training

loss curve and the validation loss curve starts to come down right from the beginning until

it reached epoch 50 where the convergence started to be steady, and the error is the lowest.

99

Both curves never touch each other, there is a gap between them called a generalization

gap.

• Fourth, when learning rate hyperparameter = 10−6 and batch sizes hyperparameters

(16, 32, 64, 128, 256, 512, 1024) are applied, the results would be as shown in Table

6.16.

All results in Table 6.16 are acceptable, but not all of them can be generalized, the

lowest error rate (GER) = 0.0090, with the highest accuracy rate 99.81%, and the lowest

confusion matrix error number = 25. This conclusion is the best performance, can be

generalized, and is acceptable in this training and testing session with batch size

hyperparameter = 16 as shown in Figure 6.68.

Figure 6.67 LC and CM with LR = 10−5 and BS = 128 using augmented AHWD

100

Table 6.16 Augmented AHWD dataset with learning rate = 10−6.

Figure 6.68 depicts that the training accuracy curve and validation accuracy curve

start raising up in convergence fashion from the beginning until approximately epoch 300

where the convergence goes all the way long, Moreover, the convergence between the

training loss curve and the validation loss curve starts to come down right from the

beginning until it reached epoch 100 where the convergence started to be steady, and the

error is the lowest. The curves never touch each other, there is a gap between them called

a generalization gap.

Figure 6.68 LC and CM with LR = 10−6 and BS = 16 using augmented AHWD

101

In this training and testing session using learning rate = 10−6, as the batch size increases

as the convergence between training accuracy curve and validation accuracy curve widens,

the error rate (GER) increases, and the confusion matrix errors number increases. This

conclusion shows the instability of the proposed model, and it is not robust as shown in

Figure 6.69 to Figure 6.71.

Figure 6.69 LC and CM with LR = 10−6 and BS = 256 using augmented AHWD

Figure 6.70 LC and CM with LR = 10−6 and BS = 512 using augmented AHWD

102

• Fifth, when learning rate = 10−7 and batch sizes are (16, 32, 64, 128, 256, 512,

 1024) are used, the results would be as shown in Table 6.17.

Table 6.17 Augmented AHWD dataset with learning rate = 10−7.

Figure 6.71 LC and CM with LR = 10−6 and BS = 1024 using augmented AHWD

103

By looking at Table 6.17, best accuracy rate is 96.72%, error rate (GER) = 0.1240,

and the confusion matrix error = 1868. This conclusion is somewhat acceptable in this

training and testing session with batch size = 16. However, Table 6.17 shows that the error

rate is high, the confusion matrix error number is high, and the processing time is high in

terms of higher training iteration, higher testing iteration for each epoch.

So, as shown in Figure 6.72, the convergence between the training accuracy curve

and the validation accuracy curve is indeterminate and very wide. From Table 6.17, as the

batch size increases the classification accuracy rate decreases, the error rate (GER)

increases, and the confusion matrix error increases. In more detail, the conclusion is that

using learning rate = 10−7is not suitable for the proposed model on augmented AHWD

since all the training and testing session using learning rate 10−7 with batch sizes (16, 32,

64, 128, 256, 512, 1024) make the proposed model unstable and unrobust as shown in

Figure 6.72 to Figure 6.78.

Figure 6.72 LC and CM with LR = 10−7 and BS = 16 using augmented AHWD

104

Figure 6.73 LC and CM with LR = 10−7 and BS = 32 using augmented AHWD

Figure 6.74 LC and CM with LR= 10−7 and BS = 64 using augmented AHWD

105

Figure 6.75 LC and CM with LR = 10−7 and BS = 128 using augmented AHWD

Figure 6.76 LC and CM with LR = 10−7 and BS = 256 using augmented AHWD

106

Figure 6.77 LC and CM with LR = 10−7 and BS = 512 using augmented AHWD

Figure 6.78 LC and CM with LR = 10−7 BS = 1024 using augmented AHWD

107

By looking at Figure 6.72 to Figure 6.78, the conclusion that there is instability in

the proposed model when using learning rate = 10−7. The learning rate here is very small

which would make the gradient moves uneven and the convergence between the training

accuracy curve and validation accuracy curve improbable. Moreover, as the batch size

increases:

• Both the training and validation loss curve diverge, and this divergence is clear in

Figure 6.Figure 6.78.

• The number of confusion matrix errors increases and reaches to the No diagonal

state, and the classification accuracy rate will decrease.

The learning rate hyperparameter with value 10−7, with batch size hyperparameters (16,

32, 64, 128, 256, 512, 1024) when applying augmented AHWD are not suitable, and the

system is unstable.

Adam optimizer is used to evaluate the performance when applying augmented AHWD

using the proposed model. For the loss function, the categorical cross-entropy loss is used.

After training the DCNN model to calculate the probability of each image over the classes,

the model is evaluated by using the testing dataset. On augmented AHWD, different batch

sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of

10−3, 10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs 1000. With each learning

rate, the model was trained with 7 different batch sizes. So, five tables of results were

produced, and each table consists of one learning rate and 7 batch sizes with results

(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered

as the GER. The results between the five tables are evaluated based on the following

criteria:

• Learning rate values (10−3 to 10−7) and batch sizes.

• Low loss error rate (GER) has the highest priority.

• High accuracy rate.

• Confusion matrix errors.

• Model response speed by looking at the learning curve graph and determine in which

epoch number the accuracy curve starts rising and in which epoch number does the loss

curve start coming down.

108

After applying these criteria, a table summarizing the conditions to obtain the best results

is compiled for each dataset. The result is shown in Table 6.18 for augmented AHWD.

Table 6.18 Best of the five tables of augmented AHWD dataset

By applying the above criteria in Table 6.18, it is concluded that the best accuracy

rates are 99.90% and 99.86%, with error rates GER = 0.0074 and 0.0070, with confusion

matrix errors 22 and 22 using batch sizes 1024 and 128 using learning rates

10−4 and 10−5respectively. The classification accuracy rate = 99.90% with lower error

rate = 0.0074 were chosen as the best hyperparameters for the proposed model for the

following reasons:

• The learning rate (10−4) is appropriate which makes the model train at a reasonable

speed and allows the gradient descent to produce a smooth output.

• 1000 epochs with 39 training iterations and 24 testing iterations for each epoch and

batch size is = 1024. These conditions allow relatively less processing time and

reliable computing in terms of any overfitting and guide the proposed model to be

robust.

• By observing Table 6.18, the loss rate 0.0074 with learning rate 10−4 is chosen

even though there is less value of loss rate in the table which is 0.0070 with learning

rate 10−5. This choice was made because 99.90% is the highest accuracy rate and

has the lowest processing time comparing to the one using learning rate 10−5.

• The model response speed has not been considered because both training sessions

with learning rate 10−4 with batch size 1024 and 10−4 with batch size 128 has

109

almost the same model response speed in accuracy curve and in loss curve as shown

in Figure 6.79and Figure 6.80.

Figure 6.79 LC and CM with LR = 10−4 and BS = 1024 using augmented AHWD

Figure 6.80 LC and CM with LR = 10−5 and BS = 128 using augmented AHWD

110

6.4 Comparison with Neural Networks-based Systems

Table 6.19 shows a comparison between our achieved results based on Neural Network

using IFN/ENIT dataset, AHWD, and augmented AHWD and other system’s results.

Table 6.19 Comparative results of Neural Networks -based systems.

Classifier Feature extraction Datasets Evaluation metric References

Accuracy rate Error rate

CNN CNN IFN/ENIT (abcd-e)
IFN/ENIT (abcde-f)

IFN/ENIT (abcde-s)

IFN/ENIT (abc-d)

97.07%

96.76%

94.09%

99.29%

2.93 WER

3.24 WER

5.91 WER

0.71 WER

(Poznanski et al., 2016) [74]

SVM CNN IFN/ENIT 7.05 CER (Elleuch et al., 2016) [75]

CNN CNN IFN/ENIT 8.5 CER (Almodfer et al., 2017) [76]

CNN

CNN
CNN(AlexNet+ReLU)

CNN(AlexNet+TanH)
IFN/ENIT

IFN/ENIT
92.13%

92.55%

 (Almodfer et al., 2018) [77]

HMM

HMM

CNN

CNN

IFN/ENIT (abcd-e)

IFN/ENIT (abc-d)
89.23%

88.95%

-
-

(Amrouch et al., 2018) [78]

AlexNet

DBN

CNN

DBN

IFN/ENIT

IFN/ENIT (abcd-e)

95.6%

94.99%

-

6.5 CER

(Ghanim et al., 2020) [7]

CNN CNN IFN/ENIT 99.87% 0.0181 GER Proposed model.

CNN CNN AHWD 99.76% 0.0230 GER Proposed model.

CNN CNN Augmented AHWD 99.90% 0.0074 GER Proposed model.

The CNN was applied as feature extraction and as classifier on IFN/ENIT dataset

using some sets as training and one as testing as explained in [74]. Specifically, when using

sets, a, b, c, and d for training and set e for testing they achieved 97.07% classification

accuracy rate and 2.93 WER. When using sets, a, b, and c for training and set d for testing

they achieved a 99.29% classification accuracy rate and 0.71 WER. In another study

described in [77] , the CNN was used as feature extraction and as a classifier on IFN/ENIT

dataset using sets, a, b, c, and d for training and set e for testing they achieved 92.13%

classification accuracy rate using ReLU activation function, and 92.55% classification

accuracy rate using TanH activation function.

According to [78] CNN was applied as a feature extraction and HMM as a classifier

on IFN/ENIT dataset and achieved 89.23% classification accuracy rate when using sets, a,

b, c, and d as training sets and set e as testing set. They achieved 88.95% classification

accuracy rate when using sets, a, b, and c as training sets and set d as testing set.

111

Ghanim et al., [7] achieved 95.60% classification accuracy rate when they used

CNN as a feature extraction and as a classifier using AlexNet on IFN/ENIT.

For the proposed model, the CNN was applied as a feature extraction and as a classifier on

AHWD, an accuracy rate of 99.76% and a Generalization Error Rate of 0.0230 were

achieved. When CNN was applied as a feature extraction technique and as a classifier on

IFN/ENIT dataset, an accuracy rate of 99.87% and Generalization Error Rate of 0.0181

were achieved. When CNN was applied as a feature extraction technique and as a classifier

on Augmented AHWD, an accuracy rate of 99.90% and Generalization Error Rate of

0.0074 were achieved.

In comparison to other systems, our proposed system achieved the highest

classification accuracy rate with a very low GER on IFN/ENIT dataset, on AHWD, and on

augmented AHWD.

112

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of the thesis and discusses issues related to the

developed techniques. Limitations in the proposed methods and the used data are also discussed.

Finally, future research directions relevant to analysis and recognition of Arabic Handwritten

Words (AHW) are discussed.

7.1 Summary of Thesis Contributions

So far, research on AHW recognition and analysis has focused on the extraction of features

from text lines and from image documents. Very few researchers have investigated deep learning

for AHW documents. Moreover, many recent works focus on word isolation and extraction of

global and/or local features of the word. The Fourier descriptor, the hue moment, histograms,

zarniac moments and other structural features are examples of features. There is existing literature

using features with neural classifier such as Support Vector Machine (SVM), K- Nearest Neighbor

(KNN), Radial Basis Function (RBF) and Multilayer perception.

AHW identification remains a challenging application. It is carried out as a pattern

recognition problem to allocate and identify images of handwritten samples/patterns to one class.

Therefore, the process of image identification can be defined as an algorithm to assign a

handwriting sample to one of the classes. While several AHW identification systems have been

developed for various applications including document analysis and image classification, it is still

receiving significant interest by the research community, because many issues are still unresolved

such as insufficiency of datasets and handwriting material in different languages. The main aim of

this work is to develop an accurate handwritten recognition system by investigating new techniques

based on deep learning for the classification and analysis of AHW depending on different

Convolution Neural Networks (CNN).

Another aim is to create a large set of AHW to support further studies in text conversion.

Therefore, the general objectives of this thesis were to plan, analyze, design, build, and test novel

classification algorithms and tools to support automatic recognition of AHW. In this work, some

automatic AHW recognition approaches using advanced machine learning techniques have been

investigated and the obtained results led to the following specific contributions to knowledge:

⚫ This thesis presented analyses, design, building, and testing of learning algorithms of

enhanced DCNN structure for classification. It also investigated the use of an end-to-end

113

open-source platform for machine learning namely Keras and Tensorflow with

parallel processing.

⚫ Thorough experimental tests and validation of the algorithm have been carried out using

different datasets and the results obtained suggest that the proposed technique yields

attractive results when compared to similar algorithms.

⚫ A large data set was created and then augmented with different word variations created for

system training and testing.

⚫ The system was also tested on another data set known as IFN/ENIT and the results achieved

excellent accuracy.

⚫ A new datasets called the Arabic Handwritten Weekdays Dataset (AHWD) and

augmented AHWD have been presented. The proposed model applied on AHWD,

IFN/ENIT dataset, and augmented AHWD, produced respectively an accuracy rate

of 99.76% with error rate 0.0230, an accuracy rate 99.87% with error rate 0.0181,

and an accuracy rate 99.90% with error rate 0.0074. These results are excellent and

compare favorably against previous work.

This work can be applied to the datasets where it should be horizontally extended to include

more words to cover all the Arabic characters. It would be impossible to include all words

in the dataset, that the system could predict outside of its domain by analyzing the word at

the character level. The system could also be used for signature classification and fraud

detection of signatures.

114

BIBLIOGRAPHY

[1] G. F. Simons, D. Charles and F. (eds.), "Ethnologue: Languages of the World,

Twenty-first edition.," in SIL International Online Version:

http://www.ethnoloque.com, Dallas, Texas, 2018.

[2] L. M. Lorigo and V. Govindaraju, "Offline Arabic handwriting recognition: a

survey," in IEEE transactions on pattern analysis and machine intelligence. Vol. 28,

no. 5, pp.712- 724, 2006.

[3] B. Al-Badr and S. A. Mahmoud, "Survey and bibliography of Arabic optical text

recognition," in Signall Processing, vol. 41, pp. 49-77, Amsterdam: Elsevier B.V,

1995.

[4] M. T. Parvez and S. A. Mahmoud, "Offline Arabic handwritten text recognition:

survey," in ACM Comput. Survey, vol. 45, no. 2, p. 23, 2013.

[5] R. Lippmann, "An introduction to computing with neural nets," in IEEE Assp

magazine, 4(2), 4-22, 1987.

[6] K. Adam, S. Al-Maadeed and A. Bouridane, "based classification of Arabic scripts

style in ancient Arabic manuscripts: Preliminary results," in IEEE 1st International

Workshop on Arabic Script Analysis and Recognition (ASAR), pp. 95-98, 2017.

[7] T. M. Ghanim, M. I. Khalil and H. M. Abbas, "Comparative study on deep

convolution neural networks DCNN-based offline Arabic handwriting recognition,"

in IEEE Access, vol. 8, pp. 95465–95482, 2020.

[8] R. Alaasam, B. Kurar, M. Kassis and J. El-Sana, "Experiment study on utilizing

convolutional neural networks to recognize historical Arabic handwritten text," in 1st

International Workshop on Arabic Script Analysis and Recognition (ASAR), pp.

124-128, 2017.

[9] D. Motawa, A. Amin and R. Sabourin, "Segmentation of Arabic cursive script," in In

Proceedings of the fourth international conference on document analysis and

recognition, Vol. 2, pp. 625–628, 1997.

[10] A. Alsaeedi, H. Al Mutawa, S. Snoussi, S. Natheer, K. Omri and W. Al Subhi,

"Arabic words Recognition using CNN and TNN on a Smartphone," in In IEEE 2nd

International Workshop on Arabic and Derived Script Analysis and Recognition

(ASAR), 2018, March.

115

[11] J. Smith and Z. Merali, "Optical character recognition: the technology and its

application in information units and libraries," in Boston Spa, Wetherby, West

Yorkshire: The British Library, LS23 7BQ,UK, 1985.

[12] F. Alkhateeb, I. A. Doush and A. Albsoul , "Arabic optical character recognition

software: A review," in Pattern Recognition and Image Analysis., 27(4), pp.763-776,

2017.

[13] A. Nazif, "A system for the recognition of the printed Arabic characters," in M.Sc.

Thesis. Cairo University, Cairo,Eygpt, 1975.

[14] A. Amin, "Handwritten Arabic Character Recognition by the IRAC system," in In

5th international conference on pattern recognition, pp. 729-731, Miami, Florida,

USA, 1980.

[15] A. Amin and G. Masini, "Machine recognition of multifont printed Arabic texts," in

In Proc. 8th Int. Conf. on Pattern Recognition, pp. 392-295, 1986, October.

[16] A. Nouh , A. Sultan and R. Tolba, "An Approach for Arabic Characters Recognition,"

in J. Eng. Science, vol. 6, pp. 185-191, 1980.

[17] K. Badi and M. Shimura, "Machine recognition of Arabic cursive scripts," in Trans.

Inst. Electron. Commun. Eng, 65(2), pp. 107-114, 1982.

[18] R. M. Bozinovic and S. N. Srihari , "Off-line cursive script word recognition," in

IEEE Transactions on pattern analysis and machine intelligence, 11(1), pp. 68-83.,

1989.

[19] H. Almuallim and S. Yamaguchi, "A method of recognition of Arabic cursive

handwriting," in IEEE transactions on pattern analysis and machine intelligence, (5),

pp. 715-722., 1987.

[20] D. McClelland, "OCR: teaching your Mac to read," in Macworld November, pp. 169-

178., 1991.

[21] E. M. Welch, "Can you read this? OCR software," in MacUser, Vol. 9, No. 8, pp.

169-178., 1993.

[22] T. S. El-Sheikh and S. G. El-Taweel, "Real-time Arabic handwritten character

recognition," in Pattern recognition, 23(12), pp. 1323-1332, 1990.

[23] H. Al-Yousefi and S. S. Upda , "Recognition of Arabic characters.," in IEEE

Transactions on Pattern Analysis & Machine Intelligence, (8), pp. 853-857, 1992.

116

[24] G. Olivier, H. Miled, K. Romeo and Y. Lecourtier, "Segmentation and coding of

Arabic handwritten words," in In Proceedings of 13th International Conference on

Pattern Recognition (Vol. 3, pp. 264-268). IEEE, 1996, August.

[25] B. Al-Badr and R. M. Haralick , "A segmentation-free approach to text recognition

with application to Arabic text," in International Journal on Document Analysis and

Recognition 1(3), pp. 147-166., 1998.

[26] B. Al-Badr and R. M. Haralick, "Segmentation-free word recognition with

application to Arabic," in In Proceedings of 3rd International Conference on

Document Analysis and Recognition (Vol. 1, pp. 355-359). IEEE, 1995, August.

[27] M. Y. Chen, a. Kundu and J. Zhou, "Off-line handwritten word recognition using a

hidden Markov model type stochastic network," in IEEE transactions on Pattern

analysis and Machine Intelligence, 16(5), pp. 481- 496, 1994.

[28] A. Emam , "Designing a reader machine for the blind," in Ph.D. Thesis. University

of Alexandria, Alexandria, Egypt, 1995.

[29] K. Mostafa and A. M. Darwish, "Robust baseline-independent algorithms for

segmentation and reconstruction of Arabic handwritten cursive script," in In

Document Recognition and Retrieval VI (Vol. 3651, pp. 73-83). International Society

for Optics and Photonics., 1999, January.

[30] T. Kanungo, G. A. Marton and O. Bulbul, "OmniPage vs. Sakhr: Paired model

evaluation of two Arabic OCR products," in In Document Recognition and Retrieval

VI (Vol. 3651, pp. 109-120). International Society for Optics and Photonics, 1999,

January.

[31] J. Makhoul, R. Schwartz, C. Lapre and I. Bazzi, "A script-independent methodology

for optical character recognition," in Pattern Recognition, 31(9), 1285-1294., 1998.

[32] P. Natarajan, R. Schwartz, M. Decerbo and T. Keller, "Porting the BBN BYBLOS

OCR system to new languages," in In Symposium on Document Image

Understanding Technologies (pp. 47-52)., 2003, April.

[33] J. Trenkle, A. Gillies, E. Erlandson, S. Schlosser and S. Cavin, "Advances in Arabic

text recognition," in In Proc. Symp. Document Image Understanding Technology.,

2001, April.

[34] L. Hamami-Mitiche, "Segmentation of an Arab Text Paragraph Printed in

Characters.," In Proceedings of the 8th International Conference on Computer

Theory and Applications, ICCTA’98, Alexandria, Egypt (pp. 15-17)., 1998,

September.

117

[35] L. Hamami and D. Berkani, "Recognition system for printed multi-font and multi-

size Arabic characters," in Arabian Journal for Science and Engineering, 27(1), 57-

72., 2002.

[36] M. Pechwitz and V. Maergner, "HMM based approach for handwritten Arabic word

recognition using the IFN/ENIT-database," in In Seventh International Conference

on Document Analysis and Recognition, 2003. Proceedings. (pp. 890-894). IEEE,

2003, August.

[37] A. Amin, "Recognition of hand-printed characters based on structural description and

inductive logic programming," in Pattern recognition letters, 24(16), 3187-3196,

2003.

[38] I. A. Jannoud, "Automatic Arabic handwritten text recognition system," in American

Journal of Applied Sciences, 4(11), 857-864., ISSN 1546-9239, 2007.

[39] H. Althobaiti and C. Lu, "A survey on Arabic Optical Character Recognition and an

isolated handwritten Arabic Character Recognition algorithm using encoded freeman

chain code," in In 2017 51st Annual Conference on Information Sciences and System,

2017, March.

[40] T. M. Rath, T. M. and R. Manmatha, "Word spotting for historical documents," in

International Journal of Document Analysis and Recognition (IJDAR), 9(2-4), pp.

139-152., 2007.

[41] J. L. Rothfeder, S. Feng and T. M. Rath, "Using corner feature correspondences to

rank word images by similarity," in In 2003 Conference on Computer Vision and

Pattern Recognition Workshop (Vol. 3, pp. 30-30). IEEE., 2003, June.

[42] A. P. Giotis, G. Sfikas, B. Gatos and C. Nikou, "A survey of document image word

spotting techniques," in Pattern Recognition, 68, pp. 310-332., 2017.

[43] D. H. Hubel and T. N. Wiesel, "Receptive fields of single neurons in the cat's striate

cortex," in The Journal of physiology, 148(3), 574, 1959.

[44] R. A. Kirsch, "Talks about The Variable Shaped Pixel," in 2011 talk.

https://vimeo.com/22179638, at ANKA Gallery in Portland, OR on Apr. 7th 2011.

[45] L. G. Roberts, "Machine perception of three-dimensional solids (Doctoral

dissertation," in Massachusetts Institute of Technology, Dept. of Electrical

Engineering), 1963.

118

[46] T. Wang, D. J. Wu, A. Coates and A. Y. Ng, "End-to-end text recognition with

convolutional neural networks," in In Proceedings of the 21st international

conference on pattern recognition (ICPR2012) (pp. 3304-3308). IEEE., 2012,

November.

[47] R. F. &. ,. R. F. Moghaddam and M. Cheriet, "Application of multi-level classifiers

and clustering for automatic word spotting in historical document images," in In 2009

10th International Conference on Document Analysis and Recognition (pp. 511-515).

IEEE., 2009, July.

[48] M. Eltay, A. Zidouri and I. Ahmad, "Exploring Deep Learning Approaches to

Recognize Handwritten Arabic Texts," in IEEE Access, 8, pp. 89882-89898, 2020.

[49] I. Ahmad and G. A. Fink, "Handwritten Arabic text recognition using multi-stage

sub-core-shape HMMs," in International Journal on Document Analysis and

Recognition (IJDAR), 22(3), PP. 329-349, 2019.

[50] T. Ahonen, A. Hadid and M. Pietikainen, "Face description with local binary

patterns: Application to face recognition.," in IEEE transactions on pattern analysis

and machine intelligence, 28(12), pp. 2037-2041., 2006.

[51] H. Zhang, A. Jolfaei and M. Alazab, "A face emotion recognition method using

convolutional neural network and image edge computing," in IEEE Access, 7, pp.

159081-159089., 2019.

[52] S. Wshah, V. Govindaraju, Y. Cheng and H. Li, "A novel lexicon reduction method

for Arabic handwriting recognition," in In 2010 20th International Conference on

Pattern Recognition (pp. 2865-2868). IEEE., 2010, August.

[53] A. Krizhevsky , I. Sutskever and G. E. Hinton , "ImageNet classification with deep

convolutional neural networks," in Communications of the ACM, 60(6),pp, 84-90,

2017.

[54] A. Mars and G. Antoniadis, "Arabic online handwriting recognition using neural

network," in International Journal of Artificial Intelligence and Applications (IJAIA),

7(5), 2016.

[55] A. A. Alani, "Arabic handwritten digit recognition based on restricted Boltzmann

machine and convolutional neural networks," in Information, 8(4), 142, 2017.

[56] A. Ashiquzzaman and A. K. Tushar, "Handwritten Arabic numeral recognition using

deep learning neural networks," in In 2017 IEEE International Conference on

Imaging, Vision & Pattern Recognition (icIVPR) (pp. 1-4). IEEE, 2017, February.

119

[57] R. Almodfer, S. Xiong, M. Mudhsh and P. Duan, "Enhancing AlexNet for arabic

handwritten words recognition using incremental dropout," in In 2017 IEEE 29th

International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 663-669),

2017, November.

[58] C. Neche, A. Belaid and A. Kacem-Echi, "Arabic handwritten documents

segmentation into text-lines and words using deep learning," in In 2019 International

Conference on Document Analysis and Recognition Workshops (ICDARW) (Vol. 6,

pp. 19-24, 2019, September.

[59] A. A. Almisreb, S. Turaev, M. A. Saleh and S. A. M. Al Junid, "Arabic Handwriting

Classification using Deep Transfer Learning Techniques," in Pertanika Journal of

Science & Technology, 30(1), 2022.

[60] G. J. Orchard, A. ayawant, G. K. CoheN and N. Thakor, "Converting static image

datasets to spiking neuromorphic datasets using saccades," in Frontiers in

neuroscience, 9, 437., 2015.

[61] G. Cohen , S. Afshar, J. Tapson and A. Van Schaik, "EMNIST: Extending MNIST

to handwritten letters," in In 2017 international joint conference on neural networks

(IJCNN) (pp. 2921-2926). IEEE, 2017, May.

[62] J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, :

Journal of machine learning research, 13(2), 2012.

[63] C. C. Aggarwal, Aggarwal and Lagerstrom-Fife., Linear algebra and optimization for

machine learning, Springer International Publishing, 2020.

[64] J. . Brownlee, Better deep learning: train faster, reduce overfitting, and make better

predictions, Machine Learning Mastery, 2018.

[65] R. B. Karim. [Online]. Available: https://www.kdnuggets.com/2019/06/gradient-

descent-algorithms-cheat-sheet.html.

[66] C. C. Aggarwal, Neural networks and deep learning, Springer; 10, 978-3, 2018.

[67] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, tools, and techniques to build intelligent systems, O'Reilly Media, Inc,

2019.

[68] X. Hu, L. Chu, J. Pei, W. Liu and J. Bian, " Model complexity of deep learning: A

survey," in Knowledge and Information Systems (2021) 63:2585–2619,

https://link.springer.com/article/10.1007/s10115-021-01605-0, August 2021.

120

[69] X. Hu , W. Liu, J. Bian and J. Pei, "Measuring model complexity of neural networks

with curve activation function," in In Proceedings of the 26th ACM SIGKDD

international conference on knowledge discovery, 2020.

[70] W. Ballard, Hands-on deep learning for images with TensorFlow: build intelligent

computer vision applications using TensorFlow and Keras, : Packt Publishing Ltd.,

2018.

[71] Y. Wang, Y. Li, Y. Song and X. Rong, "The influence of the activation function in a

convolution neural network model of facial expression recognition," in Applied

Sciences, 10(5), 1897, 2020.

[72] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training

by reducing internal covariate shift," in In International conference on machine

learning (pp. 448-456). PMLR., 2015, June.

[73] A. Melton, J. Ko and V. E. Guzik, "DATAQUEST," 3 January 2018. [Online].

Available: https://www.dataquest.io/blog/learning-curves-machine-learning/.

[Accessed July 2022].

[74] A. Poznanski and L. Wolf, "Cnn-n-gram for handwriting word recognition," in in

InProceedings of the IEEE conference on computer vision and pattern recognition

(pp. 2305-2314), 2016.

[75] M. Elleuch, R. Maalej and M. Kherallah, "A new design based-SVM of the CNN

classifier architecture with dropout for offline Arabic handwritten recognition," in in

Proceding Computer Science, 80, 1712-1723, 2016.

[76] R. Almodfer, S. Xiong, M. Mudhsh and DuanP, "Multi-column deep neural network

for offline Arabic handwriting recognition," in in In International Conference on

Artificial Neural Networks (pp. 260-267). Springer, Cham, September, 2017.

[77] R. Almodfer, S. Xiong, M. Mudhsh and P. Duan, "Enhancing alexnet for Arabic

handwritten words recognition using incrementaldropout," in in Proceedings -

International Conference on Tools with Artificial Intelligence, ICTAI, Jun. 2018, vol.

2017-November.

[78] M. Amrouch, M. Rabi and Y. Es-Saady, "Convolutional feature learning and CNN

based HMM for Arabic handwriting recognition," in in In International conference

on image and signal processing (pp. 265-274). Springer, Cham, July, 2018.

[79] M. Pechwitz, S. S. Maddouri, V. Märgner, N. Ellouze and H. Amiri, "IFN/ENIT-

database of handwritten Arabic words," in In Proc. of CIFED (Vol. 2, pp. 127-136).

Citeseer., 2002, October.

121

[80] T. M. Ghanim, M. I. Khalil and H. M. Abbas, "Comparative study on deep

convolution neural networks DCNN-based offline Arabic handwriting recognition,"

in IEEE Access, vol. 8, pp. 95465–95482, 2020.

