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ABSTRACT 

 Automatic handwriting recognition is the process of converting online and offline letters 

or words as a graphical form into its text format. Automatic Arabic Handwriting words 

recognition using deep learning neural networks is still in the early stages in terms of 

research. There are no general, complete, and reliable Arabic Handwritten Words (AHW) 

database (lexicon) that can be used as a reference or a benchmark for all researchers who 

want to extend the work on automatic Arabic handwriting word recognition. Also, many 

historic Arabic manuscripts have deteriorated because of inappropriate storage and most 

of them have not been digitized due to the lack of reliable database that can be used to 

recognize the words of Arabic manuscripts.  

Deep Convolutional Neural Networks (DCNNs) can be used to solve the problems of 

automatic Arabic handwriting words recognition. In this work, a new DCNN algorithm 

applied to a new dataset of Handwritten Arabic words representing the seven days of the 

week named Arabic Handwritten Weekdays Dataset (AHWD) has been programmed, 

tested, and analyzed. Our dataset contains 21,357 words equally distributed between the 

seven classes and prepared by 1000 people. So, it can be used for training and testing on a 

reliable DCNN model that will be able, after training, to generalize to new datasets.  

The model works by training a (DCNN) model on a balanced-randomly-selected dataset 

using different structures. The results are improved by adding drop-out, image 

regularization, proper learning rate to avoid overfitting of the data. Finally, a blind test has 

been performed on the hidden test set and the performance was reported using a confusion 

matrix and learning curves as a validation tool for the model.  

Results show that our model’s performance is promising, achieving accuracy rate of 

99.76% with error rate of 0.0230 using AHWD dataset, accuracy rate of 99.87% with error 

rate of 0.0181 using IFN/ENIT dataset, and accuracy rate of 99.90% with error rate of 

0.0074 using augmented AHWD. 
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CHAPTER 1        INTRODUCTION 

1.1 Background 

  Arabic language is an old, ancient language spoken by 420 million people across 

the world [1]. Modern Standard Arabic (MSA) is the standardized language that is used to 

communicate officially between Arabic communities. Nowadays, each language has a 

handwritten language style and a digital language style [1] [2]. The following sections 

explain the general characteristics and features of Arabic letters and words,   

1.1.1 General Characteristics of Arabic Letters and Words 

 There are many challenges in Arabic character writing in terms of morphology and 

the way of writing, Arabic letters (characters) and words are written from right to left in 

cursive way. It applies ligature (combining two letters or more), and letters have between 

2 to 4 shapes [2]. There are 28 characters in Arabic language, 16 letters have from one to 

three dots which differentiate between letters that have the same loop or shape such as (    ب

BAA), (  ت TAA), (  ث THAA), ( ) ,(AIN   ع  KHAIN) and so on as shown in Figure 1.1   غ  

and Figure 1.2 [4]. The real meaning of the words in Arabic language depends on the 

diacritics marks (vowels) and Nunation, it is called it in Arabic (TASH_KEEL تشكيلال ) Such 

as: Fat_Hah ( ,فتحة(  Dha_Mmah (,)ضمة Ka_Srah(كسرة) and Soo_Koon(سكون) as shown in  

Figure 1.1 

 

Figure 1.1  Diacritics marks on Arabic letters with single (Fat_Hah, Dha_Mmah,         

                   Ka_Srah, and Soo_Koon). 

Nunation in Arabic has three forms: double Fat_Hah( بالفتحة (, تنوين   double 

Dha_Mmah (تنوين بالضمة) and double Ka_Srah (تنوين بالكسرة ) as shown in Figure 1.2. 
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Figure 1.2 Diacritics marks on Arabic letters with double (Fat_Hah, Dha_Mmah,   

                     and Soo_Koon). 
 

A character may have up to four positions in the word as shown in Table 1.1. Words 

in Arabic language are composed of connected letters and each word is separated by space; 

however, some letters are not connected with the word, but they compose the word such as 

( بذهََ  َ went), the letter ( ذ) is not connected with the word, but it is one of the letters 

composing the word ( هَبذَ  َ   went). Some letters of a word are not connected such as (زَار َ 

visited), (أرَُز ْ Rice) and (وَْرَق Papers) but they make words in Arabic language.  

Table 1.1 The Arabic letters’ positions and shapes. 

Arabic letter 

name in 

English 

Arabic 

letter 

Arabic letters positions and shapes (forms) 

Isolated Beginning Middle End 

ALEEF ــا  ــا  ا ا ا 

BAA ــب  ــبـــ بـــ ب ب 

TAA  / ة ت ة ت /   ة ــت / ــ ــتـــ تـــ   

THAA ــث  ــثـــ ثـــ ث ث 

JEEM ــج ــجـــ جـــ ج ج 

HAA ــح ــحـــ حـــ ح ح 

      

KHAA ــخ ــخـــ خـــ خ خ 

DAL ــد  ــد  د د د 

THAL ــذ  ــذ  ذ ذ ذ 

RAA ــر ــر ر ر ر 

ZAIN ــز ــز ز ز ز 

SEEEN ــ س س   ــ س  ــس ــس

SHEEN ــ ش ش   ــ ش  ــش ــش

SAAD ــ صــ ص ص   ــص  ــص

DHAD ــ ضــ ض ض   ــض  ــض
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  Note. This amended table demonstrates how many positions each letter can have [3]. 

1.1.2   Feature Extraction Classification 

 It is very important to know the features of the character or the word to use them as 

an input into all classifiers in the traditional methods depicted in Figure 1.3. These features 

are classified into classes, Structural features classification, Statistical features 

classification and neural network features classification. Structural features classification 

includes dots, concave loops, convex loops, endpoints, and branch points. Statistical 

features classification like number of image pixels, intensity histogram, and the pixels 

neighbor relationships, means, variance, energy, and diagonal moments, etc. Neural 

network features work as a black box method which depends on training the neural network 

to make it learn the pattern for right classification to reach the appropriate interconnection 

between the input and the output. Deep Convolutional Neural Networks (DCNN) extract 

features from raw image pixels automatically [4] - [5]. 

Arabic letter 

name in 

English 

Arabic 

letter 

Arabic letters positions and shapes (forms) 

Isolated Beginning Middle End 

TTAA ــط ــطــ طــ ط ط 

TTHAA ــظ ــظــ ظــ ظ ظ 

AIEN ــ ع ع   ــ عـ  ــع ــعـ

GHAIN ــ غ غ   ــ غـ  ــغ ــغـ

FAA ــ ف ف   ــف ــفـــ فـ

QAAF ــ ق ق   ــق ــقـــ قـ

KAAF ــ كـــ ك ك   ــك  ــكـ

LAAM ــ ل ل   ــ ل  ــل ــل

MEEM ــ مـــ م م   ــم ــمـ

NOON ــن  ــنـــ نـــ ن ن 

HAA ــ هـــ ه ه   ــه ــهـ

WAAW ــو ــو و و و 

YAA ــي ــيــ يــ ي ي 
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Figure 1.3   A general model of Arabic offline handwritten text and word recognition [4]. 

 

1.2 Problem Statement 

Arabic language is a cursive style, written from right to left. It contains similar 

letters and can be written using assorted styles. These properties create many challenges 

that prevent recognizing text in Arabic manuscript. In fact, Automatic Arabic Handwriting 

Word Recognition using deep learning neural network is still at the early stages. Most of 

the research using Deep Neural Networks were done on Arabic Optical Characters 

Recognition (AOCR) and digital number recognition [6] [7]. There are no general, 

complete, and reliable Arabic Handwritten words database that can be used as a reference 

to all researchers who want to extend the work on Automatic Arabic Handwriting Word 

Recognition. There are some efforts of using Arabic sub words to synthesize many words 

as labeled dataset [8]. This is not a complete representation of the Arabic handwritten 

words because it does not reflect the reality of the natural Arabic language. By having this 

complete database (large number of Arabic words), a typical model can be created using 

DCNN to solve the problems of Automatic Arabic Handwriting Words Recognition.  

Arabic has different writing styles such as Naskh, Ruq’a, and decorating styles 

(diwani, thuluth, andalusi). Theis leads to the misinterpretation of the words. For example, 

there are superimposed letters in the same word as shown in Table 1.2; errors associated 

with dots positions as shown in Table 1.3; errors associated with diacritics marks positions 

as shown in Table 1.4; ascending and descending letters on the baseline and unrecognized 
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words by deleted or hidden letters. All these errors are problematic for segmentation and 

challenging for traditional methods, such as Hidden Markov Model (HMM), Artificial 

Neural Network (ANN), Support Vector Machine (SVM), K Nearest Neighbor (k-NN), 

and syntactical methods, all of them depend on feature extraction. A survey was done by 

Parvez et al. [4] that explains all these traditional methods. 

Table 1.2 Arabic writing style and superimposed letters, these words are from AHWD. 

 

Many Arabic manuscripts are deteriorating because of inappropriate storage, and most of 

them have not been digitized. This is due to the lack of reliable databases that can be used 

to recognize the words of Arabic manuscripts by using a typical model using deep learning. 

Most of the models are restricted to a specific dataset and cannot be generalized [6]. 

  Table 1.3 Writing Positions of the three types of dots, these words are from AHWD. 

 

   Table 1.4 Writing positions of diacritic marks, these words are from AHWD. 
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1.3 Objectives  

A number of studies have been done on offline and online handwritten recognition 

whether on characters, words or text line in English languages and lot of results were 

satisfactory results. The Arabic language still suffers from the lack of typical  handwriting 

digital dataset [10] and from a learning algorithm for Arabic Handwritten Word (AHW) 

recognition. This is a good motivation to design a complementary system that overcomes 

all the problems that were investigated in the previous section.  

The overarching aim of this work is to create a database that contains many  Arabic 

writing styles and handwriting variations as shown in Table 1.2, starting by Arabic 

weekdays as a preliminary study. By amassing data from a variety of Arabic people to 

create a large dataset, then a model can be designed to satisfy the purpose of this research. 

The dataset that were collected depends on calligraphy, which means every person writes 

the weekdays on the paper naturally. Since Arabic language has many writing styles, 

people would choose the way that they feel comfortable to express their skills in terms of 

writing. Many Arabic handwritten weekdays words that were collected represent many 

Arabic writing styles, this would make the collected dataset varied and includes most of 

the writing format that is needed in this thesis. More than 21000 Arabic handwritten 

weekday words divided into seven classes, each class containing more than 3000 words. 

For example, the Saturday class contains more than 3000 words of Arabic Handwritten 

“Saturdays” with different writing styles. This is the same for all other classes. More on 

our database is in the dataset chapter. 

The specific objectives of this research are: 

1- To create a large train dataset of Arabic handwriting of weekday words coming from 

many people to capture all the expected variations of the handwriting. Then, prepare the 

data in binary image or gray image format so it will be used for training and testing the 

model. 

2- Develop a new DCNN model on a balanced-randomly-selected set using different 

DCNN structures and improve the results by adding drop-out, image regularization, and 

learning rate to avoid overfitting of data. Finally, perform a blind test on the hidden 

testing dataset and report results using the confusion matrix and learning curves.  
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1.4 Outline 

This dissertation shows how Deep Convolutional Neural Network (DCNN) can 

help solve the problems of automatic Arabic handwriting word recognition by creating a 

new Arabic dataset and by designing a new DCNN model, then test the new model using 

this dataset. This thesis is organized as following:  

Chapter 1 is the introduction, which discusses the nature of Arabic language and its   

                 widespread characteristics and its general features. 

Chapter 2 presents the state of the art in Arabic handwriting image recognition. 

Chapter 3 explains the analysis, the organization, and the design of datasets that 

                 are used in the proposed DCNN model. 

Chapter 4 describe the optimization of DCNN model. 

Chapter 5 demonstrates the Experimental setup. 

Chapter 6 explains the analysis of the result. 

Chapter 7 explains the conclusion and the future work. 
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CHAPTER 2        LITERATURE REVIEW 

2.1 Background 

    The history of pattern recognition is very interesting to analyze from the first spark 

where an Optical Character Recognition (OCR) was discovered until nowadays where the 

Deep Neural Network is considered the dominant technique for pattern recognition and 

other applications. 

2.1.1 Optical Character Recognition 

  In the early 1950s, the first commercial machine was invented called OCR (Optical 

Character Recognition), this machine was hardware based. Then in 1970, machines that 

were software based were invented [11]. The OCR is the process of converting any written 

text, either handwritten or printed, into computer language format to increase the 

interaction by enhancing the interfacing between humans and computers in automatic ways 

[12].  

    In 1975, Nazif. [13] produced the first Arabic Recognition System called Arabic 

Optical Text Recognition (AOTR). His system was based on the idea of extracting strokes 

(20 Radicals) to recognize the Arabic letters. The work on Arabic characters recognition 

carried on [14] to include the recognition of separated handwritten Arabic characters which 

led to an online system named Iterative Recognition of Arabic Character (IRAC). Then 

Amin et al. [15] produced a new work for recognizing multi-font Arabic characters in 

offline mode. Moreover, a segmentation stage was tested and done on the cursive Arabic 

writing [16] [17] [18] they have built up a system that recognizes isolated offline cursive 

words by using many approaches such as letter and word segmentation by applying local 

minima with low vertical profiles and detecting base line. 

     In 1987, Almuallim et al. [19] built a structural system technique that recognizes 

offline Arabic cursive handwriting by segmenting words (preprocessing) to strokes (sub-

words) was designed and created, where later these strokes were classified based on their 

geometrical and topological properties into strokes with loop, stroke without loop and 

complementary characters. In the nineties, the commercial OCR for English were available 

to be used by computers Personal Computer (PC) or Macintosh (MAC) and the systems 

had the ability to read handwritten and printed writing even in other language such as 
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Chinese, Korean, Cyrillic, Arabic and Japanese [20] , [21]. In 1990, an on-line system was 

developed for Arabic handwritten recognition by El-Sheikh et al. [22]. This system is based 

on segmentation where the character position has four sets within the word (beginning, 

middle, ending, and isolated) and each set is classified into another sub-set called strokes. 

In terms of statistical technique, an approach was developed by Al-Yousefi et al. [23]. This 

approach recognizes Arabic handwritten characters by using vertical and horizontal 

projections momentarily.      

     In 1996, Olivier et al. [24] developed a system which dealt with segmentation and 

handwritten word coding by individual monitoring to automate the processing of the 

handwritten Arabic script, image, or document. This system was composed of three stages. 

The first stage segmented the word into its characters (graphemes), the second stage 

analyzed these characters (graphemes) by a series of attention or observations which is like 

human processing, and finally, they collected the outcome from both stages and utilized 

them in the recognition stage. This system worked under two main predefined cases to keep 

the minima in safe side. The first case is that there is no loop under the minima, and second 

case is that the mean width of the word must be greater than the sub-word (stroke) width 

in the minima area.  

     According to [25] [26], recognition of an Arabic system was developed; the system 

depends on shape primitives by using mathematical operation in terms of morphology. 

Chen et al. [27] developed a system to recognize handwritten words by using Hidden 

Markov Model (HMM). HMM has two parameters, transition probability and emission 

probability (output probability). Each time the system in state x produces y observation 

based on the probability that is correlated with state x. In1995, Emam [28] developed an 

OCR system that recognized Arabic handwritten script by using the feature of border 

transition descriptor. Motawa et al. [9] used the projection-based algorithm and produced 

a technique that used mathematical morphology based on the theory that most of the time 

the Arabic characters are connected by horizontal lines. 

      In [29] the contour-based algorithms were used where the local minima points are 

located for all the upper contour and the local maxima points are located for all the lower 

contour of each word in the text. All these points are considered as Potential Letter 

Boundaries (PLB) by using some rules on lower and upper PLB they remove any bad PLB 



 

10 
 

that might affect the right matching technique between lower and upper PLB. Sakher and 

OmniPage products have developed an Arabic OCR system by using Defense Advanced 

Research Projects Agency/Science Applications International Corporation 

(DARPA/SAIC) database and the accuracy was 86.89 as a real observation as shown by 

Kanungo et al [30].  

 As demonstrated in [31] Bolt Beranek and Newman Technologies (BBN), General 

Telephone and Electronic corporation (GTE) have developed a new methodology for OCR 

using continuous speech recognition. That resulted in successful technology that depends 

on Hidden Markov Models (HMM) and shows many features such as script-independent 

feature extraction and speech recognition. The new system was tested using DARPA 

Arabic OCR Corpus. Natarajan et al. [32] produced porting the BBN BYBLOS OCR 

System to other languages, such as Arabic, in three steps. These steps collect the required 

data, choose the right training model and system optimization.  In 2001, Trenkle et al. [33] 

produced many enhanced improvements to a system which has being used to recognize 

Arabic and Farsi script in low resolution, low quality, and binary images by using 

ensembles of decision trees as recognition method instead of neural nets.  

 A new OCR Arabic system was created and developed by Hamami and Berkani 

[34] [35]where they could handle multi font and multi style characters. The problem of 

over segmented characters was solved for some of them by using a structural approach 

which didn’t need to use skeleton portioning (time killing), and the proposed system could 

be used in Arabic and Latin because the geometrical characters were adapted to the two 

languages. In 2003, Pechwitz et al. [36] developed an offline system for Arabic recognition 

depending on a semi-continuous 1- dimensional HMM by using the height, length, and 

baseline skew as normalized parameters with features that were gathered by using the 

sliding windows method. They have accomplished and obtained 89% of word recognition 

by using IFN/ENIT database.  

In 2003, Amin [37] developed a system to recognize Arabic characters using 

machine learning automatically, the system achieved 86.65% of character recognition by 

using handwriting character database which was written from different people with low to 

high quality. A new OCR system called; An Automatic Arabic Handwritten Text 

Recognition (AHTR) was designed as shown by Jannoud [38] . The system used the 
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segmentation as the main stage, where the word or sub word must be thinned, and the base 

line is calculated by horizontal projection. For more details, a survey was conducted as 

shown by Althobaiti and Lu [39], summarizing the complications and challenges of Arabic 

Optical Character Recognition (OCR). They divided their difficulties analysis into three 

categories, “general challenges, handwritten text challenges and Arabic text challenges”. 

2.1.4 Deep Neural Network 

Deep Neural Networks (DNN) have been the dominant star for a long time 

compared to the visual recognition models such as character and text recognition [46]. 

Automatic handwritten, Image recognition [8], [42], [47], [48], [49] and Face Recognition 

[50], [51]. Convolutional neural network (CNN) is one of (DNN) that consists of three 

main parts, Convolutional layers, Max-pooling layers, and fully connected layers. Wshah 

et al. [52] has proposed a method using CNN for lexicon size reduction. This method 

applies the dot descriptor with a piece of Arabic words to eliminate unlike words. They 

used the IFN/ENIT database of 26459 Arabic Handwritten Word images in their 

experimental work and got 87% as a reduction rate and 93% as an accuracy rate.  

The first successful work for Visual recognition (Computer Vision) was in 2017 by 

AlexNet which employed Convolutional Neural Network as an architecture for image 

classification [53]. They achieved a top-1 test error rate of 37.5% and top-5 error rate of 

17.0% by using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) -2010 

dataset. A new benchmark was developed by Wang et al. [46], where they took advantage 

of multilayers neural network with unsupervised feature learning to create a model that 

acutely trains the network. They achieved a classification accuracy rate of 82.2% with 

recognition model of 180 filters, classification accuracy rate of 83.4% with recognition 

model of 360 and filters classification accuracy rate of 83.9% with recognition model of 

720 filters on International Conference on Document Analysis and Recognition dataset 

(ICDAR) 2003.  

A new system was proposed by Mars et al. [54] that recognizes online Arabic 

handwriting (letters and words) based on Time Delay Neural Network (TDNN) and Multi-

layer perceptron. They applied the system on their database which contains 6090 characters 

and 1080 words. By using their own dataset, they achieved a high accuracy rate of 98.50% 

for characters recognition and 96.90% for words recognition. A new method in Arabic 
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handwritten recognition was proposed by Alani [55], the method was proposed in two 

stages. The first stage extracted the features from the raw data by using Restricted 

Boltzmann Machine (RBM), and then the second stage fed the extracted features into 

Convolutional Neural Network (CNN). They trained and tested their model on Center for 

Microprocessor Applications for Training Education and Research (CMATER 3.3.1) and 

the Arabic handwritten digit dataset and achieved an accuracy rate of 98.59%. In 2017, 

Ashiquzzaman et al. [56], a new system was proposed by using two ways for enhancing 

the Arabic offline handwritten recognition. First, they used Rectified Linear Unit (ReLU) 

as an activation function in their model (Input layer, hidden layer and softmax ‘classifier’ 

layer) with the use of dropout regularization which chooses a random number of neurons 

in each layer in order not to update their gradient to avoid overfitting. Second, they used 

Convolutional Neural Network which employed Backpropagation algorithm for training to 

update the weights and the bias. They achieved an accuracy rate of 97.4% as a new state-

of-the-art on CMATER database.  

Upgrading work on Arabic Handwritten Words Recognition was done by Alexnet 

by Almodfer et al. [57]. This work reduced error and avoided overfitting through using the 

dropout regularization technique. They used the IFN/ENIT Dataset to train and test their 

model with many settings of experiments to achieve classification accuracy rate of 92.13% 

and 92.55% as a new state-of-the-art. A new consecutive method for Offline Arabic 

Handwritten Recognition was proposed by Ghanim et al. [7] where they employed the 

Hierarchical Agglomerative Clustering (HAC) method to divide the IFN/ENIT database 

into associate clusters (a, b, c, d) for training and (e) for testing to show the database as a 

large search tree to cut down the complications while comparing every test image with a 

cluster. They proposed a system to evaluate the outcome of six various Deep Convolutional 

Neural networks (AlexNet, VGG-16, GoogleNet, Res50 Net, ResNeXt Net, DenseNet) on 

the recognition rate and the accuracy. At the end they concluded that their proposed method 

using CNN as features extraction and AlexNet as a classifier reached 95.6% as a 

recognition rate, and AlexNet had the best accuracy rate by applying three different 

learning rates on each of the six different DCNN. 89% as an accuracy rate with 0.0001 as 

a learning rate, 90% as an accuracy rate with 0.001 as a learning rate and 99% as an 

accuracy rate with 0.01 as a learning rate. The drawback of this method is, they only use 
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11% of the total 859 database class to reduce recognition complexity while in deep learning 

more data is needed to get valid results.  

Ashiquzzaman at el. [59] have used seven types of deep learning transfer models, 

AlexNet, GoogleNet, Residual Network 18(ResNet18), Residual Network 50(ResNet50), 

Residual Network 110(ResNet110), Visual Geometry Group 16(VGG16), and Visual 

Geometry Group 19(VGG19). The purpose of using these seven types is to determine 

which model is good to be used for classification using two Arabic handwritten images 

datasets written by native and non-native people. They have used the original datasets and 

augmented datasets for (training 60%) and (testing 40%) by all seven types and the 

GoogleNet had the best performance. The performance was measured based on accuracy, 

sensitivity, and specificity. Accuracy represents the correctness of the deep learning 

classifier; 93.2% for the original data and 95.5% for the augmented data. Sensitivity (Sens) 

which represent the correctness of non-native language classification; 92.4% for the 

original data and 93.9% for the augmented data. Specificity (Spec) which represents the 

correctness of native language classification; 93.9% for the original data and 97.0% for the 

augmented data. 
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CHAPTER 3       ANALYSIS AND DESIGN OF DATASETS                        

3.1 Datasets   

 A perfect dataset needs to meet all the requirements for problem solving to get a 

beneficial and long usage. Also, to be valuable and long-lasting, a dataset must reflect a 

sufficiently difficult problem [60]. Datasets are critical and a necessary component of any 

pattern recognition, image classification, computer vision work. Because a single dataset 

may only cover a single job, having a large and diverse range of datasets is critical for 

taking a more comprehensive approach to measuring and reviewing algorithm 

performance. By creating a benchmark dataset, a classification and comparison work 

would be created and used by researchers on variant machine learning methods, and the 

work would be quite easy, fast, and precise [61].  

3.2 Arabic Handwritten Weekdays Dataset (AHWD) 

 In this section, a new dataset is represented and called the Arabic Handwritten 

Weekdays Dataset (AHWD). AHWD is the collection of Arabic handwritten weekday 

words that was written in Libya by different Arabic speakers (Libyan, Tunisian, Algerian, 

Saudi, Palestinian, Syrian, Omani, and Sudani) with different range of ages: students in 

grades 5 to 9, as well as high school students, undergraduate and postgraduate university 

students. Also, people on the street, senior people and many other Arabic nationalities were 

asked to participate in this database. The aim was to collect between 20,000 to 30,000 

Arabic handwritten weekday words. More than 20,000 words were collected and divided 

into seven classes, each one containing more than 3,000 words of the same weekday words 

with different morphological and calligraphic styles. For collecting the data, more than 

1,000 A4 papers (form with 70 empty blocks) were used, each paper is divided into seventy 

empty equal rectangular shapes, ten empty rows in seven empty columns. The participants 

would write at least 3 rows including all weekdays as shown in Figure 3. 1 with excellent 

quality and Figure 3. 2 with low quality. AHWD is a dataset that can be used to study 

Arabic handwritten words recognition and, in this work, specifically. 
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Figure 3. 1 Sample of collected data before preprocessing with good quality. 

 Many schools, and universities were targeted to collect the data from. More than 

five primary schools, seven junior high schools, ten high schools, Zawia university, Tripoli 

university, and Sabratha university were visited to collect the data. 

 
Figure 3. 2 Sample of collected data before preprocessing with low quality. 

 Regarding the data that was collected from the public, supermarkets, government 

administration offices, sport clubs, and workshop places were visited. In general, many of 

them were helpful and happy to participate while only a few of them declined. 
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3.1.1   Preprocessing the AHWD  

 More than 1,000 people filled out the Arabic handwritten weekdays words forms 

the first stage. This was followed by stage two with some work needed to be done such as 

scanning all the Arabic handwritten weekday words forms as an image using MS-paint 

program and some preliminary work on each word. This included getting a clear resolution, 

without touching the milestone of the original word and saving the form that contained the 

preprocessed seventy-word image as .JPG format as shown in Figure 3. 3. The JPG image 

file format was created by Joint Photographic Experts Group (JPEG) in 1992, the group 

recognized the need to reduce the size of large photographic files so that they could be 

shared more easily. Figure 3. 4 shows the preprocessing work that was done for one sample 

as an example. Figure 3. 3 is the preprocessed of  Figure 3. 1. Around 70% of the data was 

preprocessed, and 30% did not require preprocessing.     

 

 

Figure 3. 3   Sample of collected data after preprocessing Figure 3. 1 

 

 The preprocessing work included removing any noise, fixing the position of the 

dots, fixing the position of the diacritic marks, fixing superimposed letters as shown in 

Figure 3. 3 and Figure 3. 4 and fixing some letters to look acceptable to get clean and clear 

images. All the work was done carefully and precisely without changing the meaning of 

the original word. The preprocessing took more than seven months to get the data ready 

for stage three, where each weekday word was separated and saved in its proper folder. 
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 The preprocessing here is to fix some week words which were written by the 

participants in unreadable manner to avoid reading them wrongly by the model and lose 

the words. As mentioned earlier, this dataset is the first step toward creating a complete 

database for handwritten Arabic words to be used in all research purposes. Once this 

complete database is done the model would be ready to classify any handwritten Arabic 

words.   

  

 
Figure 3. 4   comparison of collected data between Figure 3. 1 before processing and 

Figure 3. 3 after preprocessing. 

 

The third stage was opening each saved seventy-word form image file using MS-

paint and cut each Arabic handwritten weekday word and save it in MS-word program as 

shown in Figure 3. 5 to do more work on it later in stage four. Seven MS-word files were 

created, each file contained the same weekdays word name. For example, all cropped 

preprocessed Saturday words would be saved under Saturday.doc file as shown in Figure 

3. 5, and the same applied to all the other six files.   



 

18 
 

 

Figure 3. 5   Sample of preprocessed Arabic handwritten Saturdays after cropping. 

 

 Another example of cropped preprocessed weekdays is Monday’s words would be 

saved under Monday.doc file as shown in Figure 3. 6. 

  

Figure 3. 6   Sample of preprocessed Arabic handwritten Monday after cropping. 

 

In stage four seven folders were created and named as following, Saturday’s folder, 

Sunday’s folder, Monday’s folder, Tuesday’s folder, Wednesday’s folder, Thursday’s 

folder, and Friday’s folder as shown in Figure 3. 7. The following work was to open each 

MS-word file which was created in stage 3 and cut each cropped preprocessed Arabic 
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handwritten weekday word and paste it back to MS-paint program and then to save it later 

as .JPG in the specified weekday folder, such as Saturday’s folder or Monday’s folder with 

range of 32 x 64 pixel to 38 x 78 pixel as shown in Figure 3. 8 and  Figure 3. 9, all same 

weekday words grouped in one folder. The purpose of the size range is to avoid any time 

wasting in fixed images. there is a way to fix the image during feeding the image as an 

input into our model, the size will be resized to 32 x 64 pixel as a power of 2. 

 

 

Figure 3. 7   Seven folders of AHWD 

 

3.1.2 Organization of AHWD 

To fit the model with the AHWD dataset, the AHWD dataset was organized as 

follows: 

[(0: Saturday 3048  السبت _samples), (1: Sunday    3014الاحد _samples), (2: Monday  الاثنين

3080_samples), (3: Tuesday   3059الثلاثاء _samples), (4: Wednesday   3017الاربعاء _samples), (5: 

Thursday   3059الخميس  samples), (6: Friday   3077الجمعة _samples)]. Each weekdays folder contained 

several samples, these samples refer to the weekday names. For example, Saturday’s folder 

contains 3048 Saturday’s image, Monday’s folder contains 3014 Monday’s image, and so on, as 

shown in Figure 3. 8 and Figure 3. 9. 
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Figure 3. 8   Sample of Saturday’s folder with .JPG format 

 

 
Figure 3. 9   Sample of Monday’s folder with .JPG format 

 

 

3.3 IFN/ENIT Dataset 

 In this section the IFN/ENIT dataset is described and reorganized to test the model 

and compare the results with AHWD and augmented AHWD. IFN/ENIT is a handwritten 

Arabic Tunisian town/village names dataset which was collected in Tunis for the purpose 

of education and research. 2,265 forms were filled out by 411 different writers to guarantee 
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the wide range of writing style. The dataset contains 26,459 handwritten Tunisian 

town/village names as shown in Table 3. 1. IFN/ENIT is a very well-known dataset, is 

being used in many Arabic machine learning research and is the most popular dataset.   

Table 3. 1 Details of IFN/ENIT dataset [62]. 

     

3.3.1 Reorganization of IFN/ENIT Dataset 

Some work had to be done to reorganize most of IFN/ENIT to fit the model without 

changing the core of the words. There was a need to edit the dataset to make it work with 

the model by creating 21 folders as shown in Figure 3. 10, to promote code organization 

and reusability. Each folder contains the resemble Arabic handwritten words. 

 

 
Figure 3. 10   Re-organization of IFN/ENIT to 21 folders 
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Each folder contains the same towns and villages names written by different writers 

as shown in Figure 3. 11, Figure 3. 12, and Figure 3. 13 as an example.   

 

 

Figure 3. 11   Akoda village. 

 

 

 

Figure 3. 12   Al_Shawamek town. 
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The final re-organization of the data to be fitted into the model is as follows: 

 

[(0: Akoda     987أكودة _samples), (1: Al_Faaied    987الفايض _samples), (2: Al_Fakkah 1012الفكة _  

samples), (3: Al_Manzah6  920  6:  المنزة _samples), (4: Al_Manzah9  9965المنزة _samples), (5: 

Al_Sharaia    907الشرايع _samples), (6: Al_Shawamek    1065الشوامخ _samples), (7: Dukhania  

1011الدخانية   _samples), (8: Khaleej    1037الخليج _samples), (9: Kurbu     968قربص _samples), (10: 

Marth   1018مارث _samples), (11: Naggah   1009نقه _samples), (12: Nahhal    1054نحال _samples), 

(13: Oteek  1062أوتيك _samples), (14: Raddah 1034 ضاع رال _samples), (15: Sedi_Ahmed  سيدي

995أحمد   _samples), (16: Sedi_Bobaker   1024سيدي بوبكر _samples), (17: Sedi_Zaher   سيدي الظاهر

972_samples), (18: Shmakh     1022شماخ _samples), (19: Tataween7Nov   نوفمبر    7تطاوين

1000_samples), (20: Zanoosh   1042زنوش _samples)].  

 

 

 

Figure 3. 13   Sedi_Bobaker village. 
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3.4 Augmented AHWD   

 The successful application of various deep learning models requires high-quality 

and plentiful data. Data augmentation is frequently employed in the context of deep 

learning since the volume and quality of the data are just as essential as the algorithm. Data 

augmentation is the process of applying one or more deformations on an available dataset 

to generate new, supplementary training data.  

 Therefore, several picture deformations were used in the data augmentation in our 

research such as artificial noise, noisy data, rotated data and shifted data. Each image was 

subjected to a random mix of the aforementioned deformations to generate different 

images. In this section the augmented AHWD is described as follows: 

• Artificial noise. 

• Noisy data. 

• Rotated data. 

• Shifted data. 

 

Artificial noise, which was created by adding a random 100 black pixel to each image as 

shown in Figure 3.14 

 

Figure 3.14   Artificial noise. 

- Noisy data, which was created by adding gaussian noise with mean =0 and var=0.5 to 

each image as shown in Figure 3.15. The benefit of Gaussian noise is that the 
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distribution itself behaves well. It's named the normal distribution for a reason: it has 

useful features and is frequently employed in scientific and social sciences. It is 

frequently used to simulate random variables whose true distribution is uncertain. In 

other words, white Gaussian noise where the values are equally distributed and 

statistically independent at any two times (and hence uncorrelated). White noise has a 

zero mean, a constant variance, and is time independent. White noise, as the name 

indicates, has a power spectrum that is equally distributed throughout all allowed 

frequencies. 

 
Figure 3.15   Noisy data 

- Rotated data, which was created by rotating the image 5° counterclockwise as shown 

in Figure 3. 16. In this method of augmentation, additional life-like examples are 

introduced from which our model can learn. The images can be rotated by 0 to 360 

degrees clockwise or counterclockwise. The purpose is to make the pixels of the image 

rotate in this method and change the position of the object. A rotating image rotates left 

or right along an axis while maintaining the same face toward you. When you flip an 

image, it rolls over, either vertically or horizontally, to become a mirror image. The 

choice of rotating by 5° is to save processing time because thousands of rotated images 

would fit in the model during the real time execution. The more degree of image 

rotation the more processing time needed to fit the data.  
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Figure 3. 16   Rotated data. 

 

- Shifted data, which was created by shifting data 5 pixels to the right as shown in Figure 3. 

17. The choice of shifting by 5 pixels is to save processing time because thousands of 

shifted images would fit in the model during the real time execution. The more pixels of 

image shifting the more processing time needed to fit the data.  

 

-  

Figure 3. 17   Shifted data. 
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Table 3.2   The size of AHWD before and after data augmentation explains in detail the 

size of AHWD and the size of augmented AHWD in terms of image’s number and how 

many images each folder has.  

Table 3.2   The size of AHWD before and after data augmentation 

Number Weekdays folder Initial size After augmentation 

1 Saturdays 3048 10509 

2 Sundays 3014 10430 

3 Mondays 3080 10609 

4 Tuesdays 3059 10535 

5 Wednesdays 3017 10490 

6 Thursdays 3059 10660 

7 Fridays 3077 10482 
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CHAPTER 4        OPTIMIZATION 

In this chapter, firstly, background on gradient descent is presented. Secondly, 

optimizer algorithms are described. Thirdly, the hyperparameters are optimized. Fourthly, 

how the optimal capacity can be reached using hyperparameters is analyzed. 

4.1 Background   

In deep machine learning, optimization refers to the process of getting the lowest 

error function (cost function, loss function) which will be used to fit the machine learning 

algorithm. During optimization, the algorithm goes through all potential variants of its 

parameter combinations to find the optimum one that permits the accurate mapping of 

characteristics and classes during training. A mapping function from inputs to outputs is 

learned by deep learning neural networks. This is accomplished by updating the network's 

weights in response to the errors the model makes on the training dataset. Updates are done 

to continuously lower this error until a suitable model is discovered. Optimization function 

(optimizer) is used to alter or change the neural network's attributes such as learning rate 

and weights to minimize the error (loss). Where weight is a model parameter and learning 

rate and batch size are model hyperparameters. Model parameter value starts with a random 

value and then updates itself during the execution process. Whereas the hyperparameter 

value is set prior to training and remains constant during training session. So, finding the 

best value for hyperparameters is called hyperparameter optimization (tuning). Size 

normalization is commonly used to reduce size variation and adjust the character or word 

sizes to an identical size, in the proposed model the size is normalized by 64x32 pixels [62] 

[63]. 

4.2 Gradient Based Optimization Algorithms 

Gradient descent is an optimization process that locates the minimum of an 

objective function by following the negative gradient of the function. Gradient descent has 

the drawback of bouncing around the search space (search through a landscape) on 

optimization problems with many curvature or noisy gradients, as well as being trapped in 

flat regions of the search landscape with no gradient, where the landscape is referred to as 

an error surface. Through this landscape, the optimization algorithm iteratively moves 
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around, adjusting the weights and looking for good or low-elevation regions. Finding the 

bottom of a landscape with basic optimization issues is straightforward; in fact, it is so 

simple that extremely effective algorithms may be created to discover the optimal answer. 

The landscape has the shape of a large bowl. Convex is a mathematical term used to 

describe these kinds of optimization problems as shown in Figure 4. 1 [64] [65].  

 

Figure 4. 1 Local and global minima 

When optimizing the weights of a neural network while the navigated error surface 

is not shaped like a bowl, this means there are several hills and valleys in the landscape. 

Non-convex is a mathematical term used to describe these kinds of optimization problems 

as shown in Figure 4. 1. There is no method that can identify the best set of weights for a 

neural network in polynomial time. In mathematics, the optimization issue can be solved 

by neural network training, known as NP-complete. NP-complete is an abbreviation for a 

nondeterministic polynomial-time complete and defined as the complexity class of 

decision problems with a high degree of complexity for which solutions may be verified 

for correctness by using an algorithm whose execution time scales polynomially with the 

amount of the input [63] [64] [66]. The optimization of neural network weights is a 

challenging task because of several factors, including local minima and Saddle point (flat 

regions). 

Local minima or local optima refer to the many locations of the error landscape 

(valleys) where the loss is small as shown in Figure 4. 1. The valley has a high elevation 

when looking at the entire landscape and better alternatives could be available. It is best 

practice to start the optimization process with a lot of noise so that the landscape may be 

sampled broadly before choosing a valley to fall into since it might be difficult to tell if the 
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optimization algorithm is in a local minimum or not [63] [64] [66]. Weights are updated 

based on the lowest error in the network. 

The global minimum is the location where the landscape is at its lowest level and 

leads to the lowest error that is needed as shown in Figure 4. 1. The difficulty is that the 

distinction between the local and global minima may not be incredibly significant in neural 

networks, which may have one or more global minima. This has the implication that getting 

a good enough set of weights is frequently more feasible and, hence, more acceptable than 

finding a global optimum or best set of weights [63] [64] [67]. Global minima are the key 

solution to find the lowest error and in turn to find the generalization error. 

Saddle point or flat regions as shown in Figure 4. 2 is a place on the landscape 

where there is no gradient (zero value). These can be discovered at the base of valleys or 

in the spaces between hills. A zero gradient is problematic since it shows that the 

optimization algorithm is unclear about the optimum path to take to improve the model, 

the solution for this problem is to add the momentum hyperparameter to avoid the zero 

gradient [63] [64] [66]. 

 

Figure 4. 2 Saddle point 

4.2.1 Stochastic Gradient Descent algorithm (SGD) 

The Stochastic Gradient Descent Algorithm is a fast optimization method 

(optimizer) and is an algorithm that trains the deep neural network by estimating the 

gradience of the error momently in each state and updates the weights of the model by 

using backpropagation algorithm. All weights of the neural network are calculated by 

empirical optimization approach not by analytical approach. Using mini-batch sizes can 
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approximate a good gradient descent using limited data samples, and they typically are 

powers of 2, such as 16, 32, 64, 128, 256, 512, 1024, and so on. The reason for using 

powers of 2 is to help mathematically facilitate the resources efficiently such as Graphic 

Processor Units (GPU) [64].  

 

Figure 4. 3   Evolutionary map of optimizers [65]. 

4.2.2 Adaptive Gradient Algorithm (AdaGrad) 

Adaptive gradient algorithm (AdaGrad) adjusts the parameters that are appropriate 

for the learning rate, to make large updates for discrete parameters and small updates for 

frequent parameters. By conducting training, it is suitable for processing scattered data, but 

the problem lies in some cases where the learning rate will decrease due to the 

accumulation of gradients from the beginning of the training. In addition, there is a point 

that the model will not learn again because the learning rate is almost zero, Adam's 

algorithm worked to solve it by making the learning rate go towards stability [63] [64] [65]. 
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4.2.3 Root Mean Square Propagation Algorithm (RMSprop) 

The Root Mean Square Propagation algorithm (RMSprop) is a derivative of the 

adaptive gradient algorithm. The learning of each coefficient depends on it (i.e., its overall 

learning rate is constant), but it computes the slope with an exponential mean regression 

instead of the sum of the scores of it. As a result, it automatically adjusts and responds to 

changing specific learning rates to prevent the overall learning rate of the model from 

drifting out of bounds and backtracking, the algorithm has excellent performance in 

unstable problems [63] [64] [65]. 

4.2.4 Momentum Algorithm 

Momentum is an addition to the gradient descent optimization process that enables 

the search to develop inertia in a direction in the search space and get around noisy gradient 

oscillations and cruise over flat areas of the search space. Momentum is the process of 

moving to a new location in the search space by introducing an extra hyperparameter that 

regulates the quantity of history (momentum) to incorporate in the update equation. The 

hyperparameter's value is described as falling between 0.0 and 1.0, and it frequently has a 

value of 0.8, 0.9, or 0.99, which is near to 1.0. Gradient descent with no momentum is 

equivalent to a momentum of 0 [63] [64] [65]. 

4.2.4 Adam Algorithm 

Adam algorithm is a method for stochastic optimization. It is the most popular 

optimizer in classification of deep learning neural network and is used to update the 

network weights iteratively based on training data. Adam is a new optimization method 

that takes the place of the old stochastic gradient descent approach. Adam optimizer uses 

both Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation 

(RMSProp). Adam algorithm is called first order optimization algorithm because it uses 

the first derivative of the function. Figure 4. 3 shows the developments of gradient descent 

algorithms, from this figure, Adam optimizer is originated of RMSprop optimizer, 

AdaGrad optimizer and Momentum optimizer algorithms [63] [64] [65]. 
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4.3 Optimization of Hyperparameters 

Most deep learning algorithms accompany numerous hyperparameters that control 

many parts of the algorithm's way of behaving to get the optimum values and reach the 

optimization. A portion of these hyperparameters influence the time and memory cost of 

running the algorithm. Some of these hyperparameters influence the nature of the model 

capacity and the model quality by the training process and the ability to get the predicted 

results when a new dataset is used. There are two ways to search for these hyperparameters: 

Automatic hyperparameter search and Manual hyperparameter search. 

4.3.1 Automatic Hyperparameter Search 

▪ Random search  

Describe a search space as a bounded domain of hyperparameter values and 

randomly select points within that domain. 

▪   Grid search  

Creates a grid of hyperparameter values to represent a search space, and then 

analyses each point in the grid. An estimator using grid search must do an 

exhaustive search across the provided hyperparameter values. Grid search is a 

challenge since it needs significant computer resources to examine more 

parameters. 

▪ Bayesian search  

Create a probability model for the objective function, then use it to choose the most 

promising hyperparameters to test against the real goal function. 

4.3.2 Manual Hyperparameter Search 

  Utilizing Manual search requires knowledge, experience and understanding of what 

hyperparameters, and their relationships really do and how machine learning algorithms 

accomplish a satisfied generalization. Understanding the relationship between 

hyperparameters such as learning rate and batch size, training error, validation error, test 

error, generalization error, and available computing resources such as GPU, CPU, memory 

and run time setting up a strong establishment on the basic thoughts concerning 

the successful capacity of a learning algorithm. The benefit of manual search is to find the 
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proper hyperparameters for the learning algorithm to reach the optimal capacity or effective 

capacity. Optimal capacity can be reached by increasing the representational capacity of 

the model by adding more neurons in the hidden layers to accommodate more complicated 

functions, and by minimizing the cost function of the model to reach the generalization 

error. 

4.4 Regularization Methods 

Regularization is a family of techniques that provide more information to an ill-posed issue 

to change it into a more stable, well-posed problem for optimization. The most basic and 

possibly most often used regularization strategy is to apply a penalty to the loss function 

according to the amount of the weights in the model. The most common regularization 

methods are regularization L1, L2 are used with weight decay, early stop, dropout, and data 

augmentation. Dropout was used in the model by 20% after trying other percentages and 

got the best results in terms of low error and high accuracy. Data augmentation was created 

using AHWD dataset and used in the model. The more training the model the best results 

are produced. So, the augmented data was used and got the best results of the model as 

explained in chapter 7.  

4.4 Model Capacity 

The capacity of deep neural network model determines the range of mapping functions that 

it can learn. There are two characteristics of a model that can influence the neural network's 

capacity: number of nodes and number of layers. By expanding the model's capability, 

underfitting problem can be solved. When a model has greater capacity, it can perform a 

wider range of functions for mapping inputs to outputs. Capacity describes the model's 

ability to perform a range of tasks by altering the model's structure, and by including extra 

layers and/or nodes. It is more typical to have an overfit model since an underfit model is 

so readily rectified. Monitoring the model's performance throughout training by assessing 

it on both a training dataset and a holdout validation dataset makes it simple to identify an 

overfitting model. By plotting graphs, the effectiveness of the capacity during training 

would be noticeably clear, these graphs are called learning curves [68] [69]. 
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The model learns from existing samples and generalizes from those existing examples to 

upcoming examples. To measure the model's capacity for generalization, techniques like 

train/test split and k-fold cross-validation are employed. It is challenging to learn new 

things and apply them to new situations. The model will perform badly on both training 

dataset and on fresh data if there is insufficient learning and if the model learns too much, 

it will perform well on the training examples but badly on new data, over-analyzing the 

problem. So, the model has no generalization in either situation. There are three situations 

where the model can go [64] [68] [69]. 

➢ Underfitting model: a model that is unable to adequately learn the problem, 

performs badly on a training dataset, and is unsatisfactory on a holdout sample. 

➢ Overfitting model: a model that performs well on the training dataset but poorly on 

a holdout sample because it learns the training dataset too well. 

➢ Good fitting model: a model that correctly notices the training dataset and applies 

effectively to the testing dataset. 

Having a lot of layers can frequently boost the model's capability, functioning as a 

computational and learning shortcut to modelling a problem. A model with one hidden 

layer of twenty nodes, for example, is not equal to a model with two hidden levels of ten 

nodes each, the latter has much more capacity. The concern is that a model with more 

capacity (too many nodes,) than needed may overfit the training data. Similarly, to a model 

with too many layers, it will be unable to learn the training dataset, thereby becoming lost 

or stuck during the optimization phase. In general, models with a higher number of 

parameters are said to have high capacity, and they require a bigger amount of data to 

obtain generalization power to unknown test data [68] [69]. 

 According to [68] [69], the complexity of models is a fundamental issue in deep 

learning. They did a thorough review of the most recent papers on deep learning model 

complexity. Deep learning model complexity may be divided into expressive capacity and 

effective model complexity. They examine previous research on those two categories in 

terms of four key factors: model framework, model size, optimization technique, and data 

complexity. Furthermore, they reviewed current studies on effective complexity from two 

perspectives: broad measurements of effective complexity and the high-capacity low-

reality issue. There was a discussion over the use of deep learning model complexity, 
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particularly in generalization capabilities, optimization, model selection, and design. Deep 

learning model complexity is still in its infancy. There are several intriguing difficulties for 

future works. They also explore deep learning model complexity applications such as 

comprehending model generalization, model optimization, and model selection and design. 
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CHAPTER 5        EXPERIMENTAL SETUP 

This chapter outlines the processing platforms and the proposed DCNN model 

implementation,  

5.1 Processing Platform and Frameworks 

 This section explains how the work was done in terms of training and testing the 

model with standalone machine and online server. The comparison between the two 

platforms is important in terms of the resources needed in machine learning. The 

standalone machine was limited in executing the model whereas the online server was good 

in executing the model. 

5.1.1 Portable computer 

Initially, a Lenovo portable computer with the following specifications was used:  

• Processor Intel CoreTM i5-3230M CPU @ 2.60 GHz,  

• Installed memory (RAM) 8.00 GB,  

• System type: 64-bit Windows 8.1 Operating System with x64 based 

processor,  

• and Hard disc capacity 500 Gb.  

 

Then Anaconda Navigator (anaconda3) was installed and the Jupyter notebook was 

used for to provide the interface. This system did not satisfy the required amount of 

resources to run the DCNN and an alternative environment was sought.   

5.1.2 Online Server 

Due to the limited resources a final decision was made to subscribe with Google 

Colab pro+ with unlimited resources and quick processing, and access to GPU. The work 

was much easier and more accurate when all three datasets were used. 

5.1.3 Frameworks 

Keras and Tensorflow were used as the framework. Keras is the high-level 

Application Programming Interface (API) of TensorFlow 2. 
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5.2 Activation Functions 

The activation function is a transfer function. It is a mathematical method used by 

each neuron in the neural network to activate. It fires the output of the neuron to the next 

neuron or to the network output if it satisfies the condition. By using an activation function, 

a non-linearity input transformation in the Neural Network is there. Activation functions 

must be well chosen; each model has many appropriate activation functions that are used 

to get accurate output and make the model simple and function well  [67] [70]. There are 

many activation functions; such as sigmoid function, tangents hyperbolicus function (tanh), 

Rectified Linear Unit (ReLU) and Softplus. 

 5.2.1 Sigmoid Activation Function 

The sigmoid function is a nonlinear activation function and transforms the values 

between 0 and 1. The formula of the sigmoid function is represented as:  

f(x) =
1

1 +  e−1
 

There are two problems with using sigmoid function. First, the upper and lower slope tail 

are almost equal to one and zero, respectively. This is called sigmoid function saturability 

due to an exceptionally large or an exceedingly small input values which in turn makes the 

value of the gradient almost zero. Second, the output of sigmoid functions is not zero 

centered; this means if all the data entering a neuron always has positive value, then the 

gradient value would be all negative values or all positive values during the training stage 

(backpropagation). So, it is not suitable for our model [71]. 

 

 5.2.2 Tangents Hyperbolicus Activation Function (TanH) 

The tanh function is a nonlinear activation function and due to the drawbacks with 

the sigmoid function as explained in the previous section, there was too much work to 

overcome these problems. The tanh function is considered an enhanced version of sigmoid 

function, overcame the problem of non-zero-centered output to become symmetric output 

(zero centered). The formula of the tanh function is represented as:  

f(x) =
1 −  e−2x

1 +  e−2x
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The range of the tanh function values is between -1 and 1, so the inputs to the layers 

would be negative or positive. The slope of the tanh function finds the differentiation value 

of that point. The gradients are free to move in a different direction, which tells that the 

gradient diffusion problem still around. 

 

5.2.3 Rectified Linear Unit Activation Function (ReLU) 

The ReLU function is a nonlinear activation function and unsaturated because the 

issue of the gradient diffusion is resolved. The output value of ReLU function is zero if the 

input is negative or zero, and the output value would be the same if otherwise. The formula 

of ReLU function is represented as: 

f(x) = {
0, if  x < 0
x,  Otherwise 

     Or       f(x) = max(o, x) 

The ReLU function makes the model learn amazingly fast and perform much better than 

sigmoid and tanh functions due to the resolved gradient problem. ReLU function is 

considered as a default activation function in multilayered neural networks and 

Convolutional Neural Networks (CNN). Based on all the previous advantages, ReLU was 

chosen in our model. 

5.2.4 Softplus Activation Function 

The softplus function is a nonlinear activation function and unsaturated because the 

issue of the gradient diffusion is resolved. It functions as ReLU activation function. The 

formula of the softplus function is represented as:  

f(x) = ln (1 +  ex) 

 

5.3 Deep Convolutional Neural Network model (DCNN) 

This section defines the Deep Convolutional Neural Network model (DCNN) used 

for Arabic handwritten words pattern recognition and outlines how the model was 

implemented, and which layers, functions and methods were used to improve the 

performance on the three datasets: AHWD, IFN/ENIT, AND augmented AHWD. 
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The proposed model was finalized with an input layer, three hidden layers and a 

fully connected layers after building many others models with four hidden layers, five 

hidden layers, and seven hidden layers. After traing and testing all the models, the 

conclusion was to have less number of layers with many filters in terms of Deep 

Convolutional Neural Network. The proposed model was chosen because it has given the 

best results of all measures that were used in the model such as accuracy rate and testing 

error rate (Generalization Error Rate).  

5.3.1 Input Layer 

In Keras, the input layer is a tensor rather than a layer, the beginning tensor is 

transmitted to the first hidden layer. For simplicity it is called an input layer. The input 

layer is a pixel image with size H x W x D, where H is the height, W is the width, and D is 

the depth. Since the image is the main core here, there is a consideration whether it is 

colored or grayscale, which can be done by adding 3 as colored RGB image or by adding 

1 as grayscale image. It is critical to understand that input images are represented as arrays 

of hundreds, thousands, or millions of pixels. Each pixel is represented by a single point 

and may differ in color from its neighbors. Grayscale images are used in our model with 

the size of (32 x 64 x 1) pixels in a two-dimensional array format analogous to a matrix in 

grayscale. Specifically, the computer records the values that describe each image’s pixel. 

Keras will require the input shape in the first layer because it is the only one that must be 

defined when implementing the model. So, our input_shape = (32,64,1), this is the 

representation of the grayscale input images. 

5.3.2 Hidden Layers  

In this section, the main components of hidden layers in CNN are outlined and how 

do they work with each other in the proposed model. Hidden layers are composed of 

convolutional layers, Pooling layers, and fully connected layers.   

 Convolutional layer is an essential part of CNN components, and its main function 

is to extract the features from the input image (input matrix, raw image, or raw matrix H x 

W x D) by using weighted filters (kernels, or feature detector). These features could be 

edges, dots, endpoints, corners, ascending and descending letters, lower and higher 
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diacritic dots, diacritic marks, and letter loops. All the information of these features are 

saved from loss by applying padding in all convolutional layers.  

 The filter size is identified by (N x N x R) where N is the height, and the width and 

R is the number of channels. Our model is composed of three convolutional layers. The 

first convolutional layer is loaded by an input matrix as an input shape (32 x 64 x 1), this 

is only done when the new image is loaded. After loading the raw image, the size and the 

number of filters to be used are determined , the start is to use 32 filters with a size of (3 x 

3), then a multiplication process would start by multiplying each element in the kernel (3 

x 3 x 32) with each element in the input matrix (binary image input) and sum each result 

of multiplication and save it in the feature (activation) map, then repeat the same procedure 

by shifting one pixel right each time and doing the multiplication with the filter until the 

last pixel then save the result in the feature map.  

 Next, one pixel is shifted down (if stride = 1) from the beginning of the input matrix 

and do the multiplication and save the result in the feature map as shown in Figure 5. 1 and 

Figure 5. 2. this way is continued until the end of the input matrix. The feature map with 

(32 x 64 x 32) has been created after applying a ReLU activation function.  

 

Figure 5. 1   DCNN of our model using AHWD. 
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Figure 5. 2   DCNN of our model using IFN/ENIT. 

 

 The pooling layer comes after the feature map and watch the features in the 

perception scope and extracts the dominant features in the area to lower the number of 

hyper-parameters such as filter size, padding, and Pooling method and in turn reduce the 

inner dimensionality of the feature map (subsampling).  

After getting the feature map with (32 x 64 x 32), max-pooling with pool-size = (2 

x 2) is applied to get another feature map with (16 x 32 x 32). In the second convolutional 

layer, the input would be the feature map with (16 x 32 x 32) and by applying 64 filters 

with the size of (3 x 3) and ReLU activation function a new feature map with (16 x 32 x 

64) is produced, and by applying max-pooling with pool-size = (2 x 2) a new activation 

map with (8 x 16 x 64) is produced. In the third (final) convolutional layer, the input would 

be the feature map with (8 x 16 x 64) and by applying 128 filters with the size of (3 x 3) 

and ReLU activation function a new feature map with (8 x 16 x 128) is created, and by 

applying max-pooling with pool-size = (2 x 2) a new activation map with (4 x 8 x 128) is 

created.  
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5.3.3 Fully Connected Layer. 

After all the calculation in terms of summing learned features weights in the 

previous layers (convolutional layer and pooling layer), there is a third layer called a fully 

connected layer with ReLU activation function which is constructed of many neurons. Each 

neuron is connected to all other neurons as a fully connection. The output from the final 

convolutional layer would be flattened and converted into one dimensional array of vectors 

and is passed to fully connected layer where each input with trainable weight is hooked up 

with an appropriate output as shown in Figure 5. 1 and Figure 5. 2. Flattening is considered 

as an input layer for the Artificial Neural Network (ANN). 

5.3.4 Output Layers  

In the proposed model, each dataset has its own number of classes, when using 

AHWD and augmented AHWD the output layer is 7 class softmax layer. On the other hand, 

when using IFN/ENIT dataset the output layer is 21 class softmax layer. The final stage is 

the classification where the softmax works as classifier to classify all the features to its 

labeled class.   

5.4 Hyperparameters 

Manual hyperparameter search was used to find the best values of hyperparameters 

and their relationships with each other to reach the optimal model by observing the results 

and adjusting the values of the hyperparameters. In this section, a complete study would 

be done in the hyperparameters used in the proposed model. 

5.4.1 Learning Rate  

 The learning rate is a hyperparameter that specifies how much the model should 

change in response to the predicted error each time the model weights are updated. In the 

proposed model, trial and error approach is used with five different values of learning rate 

(10−3 to 10−7), each one is associated with seven batch sizes (16, 32, 64, 128, 256, 512, 

1024), and all the experiments are done using the three datasets: AHWD, IFN/ENIT, and 

augmented AHWD. Results are analyzed in the next chapter 6. 
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5.4.2 Batch Size 

Seven batch sizes (16, 32, 64, 128, 256, 512, 1024) were used in the proposed 

model. Since the manual hyperparameter is used, it is noticeably clear to report how the 

model performs in each batch size. Batch normalization was not used in the proposed 

model because Batch Normalization has traditionally performed badly when the batch 

size is too small [72].  

5.4.3 Random_state=42 

Random_state is set to 42 as a default value. However,  any integer can be used if 

we want the system to be deterministic. Moreover, if the system runs every time without 

specifying the value of random_state, the results would be different each time, the system 

is not deterministic. 

5.4.4 Validation_split=0.2 

 Since Keras is used in this proposed model, 20% of training datasets are set into a 

validation dataset and test the performance of the proposed model on that validation dataset 

in each epoch to tune the hyperparameters. It might be useful to visualize the effect of a 

single hyperparameter on the training and validation scores to see whether the estimator is 

overfitting or underfitting for certain hyperparameter values. 

5.4.5 Epochs 

In machine learning, an epoch is defined as one full iteration of the training dataset 

through the algorithm. The number of epochs in the proposed model is equal to 3000 

epochs as a standard number to avoid any variation in the results. These results are 

evaluated by the accuracy rate, error rate, the convergence between the training accuracy 

curve and the validation accuracy curve in the learning curve plot, the convergence 

between the training loss curve and the validation loss curve in the learning curve plot, and 

confusion matrix. 

5.4.6 Relationships between Learning Rate, Batch Size, and Epoch 

Increasing the learning rate accelerates the model's learning but risks exceeding its 

minimal loss. By reducing batch size, the model utilizes less data to calculate the loss in 
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each training process. When learning rate is low, batch size is small, and high epoch 

number, the system would learn in a slow manner. If the learning algorithm has fine-tuned 

learning rate and fine-tuned batch size but with a small number of epochs, the system may 

not perform well and has a bad generalization. Since the manual hyperparameters are used 

in this proposed model, the results are checked and compared with the previous results. 
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Chapter 6      Result Analysis 

This chapter discusses the performance of the DCNN algorithm for three 

experimental phases for each dataset: AHWD, IFN/ENIT, and augmented AHWD. All 

results are analysed and discussed to choose the best accuracy rate and the lowest error rate 

or the Generalization Error Rate (GER). A comparison is also made with current state-of-

the-art.   

6.1 AHWD Experimental Phase 

As mentioned in Chapter 5, the model is evaluated by using the testing dataset. On 

AHWD, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested. 

Also, learning rates of 10−3,  10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs 

equal to 3000. With each learning rate, the model was trained with 7 different batch sizes. 

Five tables of results were produced, and each table consists of one learning rate and 7 

batch sizes with results (training iteration number, testing iteration number, accuracy rate, 

loss rate, and confusion matrix errors) where the loss rate here is considered as the GER. 

The results between the five tables are evaluated based on the following criteria: 

• Learning rate values ( 10−3 to 10−7 ) and batch sizes. 

• A low loss error rate or Generalization Error Rate (GER) has the highest priority. 

• High accuracy rate. 

• Confusion matrix errors. 

• Model response speed by looking at the learning curve graph and determine in 

which epoch number the accuracy curve starts rising and in which epoch number 

does the loss curve start coming down.  

After the evaluation by using these criteria, the best performance from each table has been 

collected. 

First, when learning rate =  10−3 and batch sizes (16, 32, 64, 128, 256, 512, 1024)   

     are used, the results would be as shown in Table 6.1. 

By looking at Table 6.1, the best accuracy rate is 99.86%, the lowest error rate is 0.5773, 

and the lowest confusion matrix error number is 9.  
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  Table 6.1 AHWD dataset with learning rate = 10−3. 

 

This conclusion is acceptable in this training and testing condition but cannot be 

generalized because Figure 6.1 shows an overfitting after epoch 2000; that is, the validation 

loss curve starts to diverge up off the training loss curve. In conclusion, the model 

generalization cannot be achieved for the AHWD dataset with a learning rate =  10−3 and 

for batch sizes 1024. 
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Figure 6.1  LC and CM with LR = 10−3 and BS = 1024 AHWD. 
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All other results in Table 6.1 have very high error rates, and this leads to overfitting 

and cannot be generalized as shown in Figure 6.2 to Figure 6.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  LC and CM with LR = 10−3 and BS = 16 AHWD. 
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Overfitting 

 
 
 
 

Figure 6.3  LC and CM with LR = 10−3and BS = 32 AHWD. 
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Figure 6.5  LC and CM with LR = 10−3 and BS = 128 AHWD. 
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Figure 6.4  LC and CM with LR =10−3 and BS = 64 AHWD. 
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 Figure 6.6  LC and CM with LR = 10−3 and BS = 256 AHWD. 

 

 

 

 

 

 

 

 

7 Errors 

10 Errors 

Overfitting 

 
 
 
 

Overfitting 

 
 
 
 Figure 6.7  LC and CM with LR = 10−3 and BS = 512 AHWD. 
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Second, when learning rate =  10−4 and batch sizes (16, 32, 64, 1024) are used, the     

                results are shown in Table 6.2. 

By looking at Table 6.2 and by rounding up, all the accuracy rates are the same as 99.70%. 

So, by choosing the lowest error rate (GER) = 0.0349, a low confusion matrix error number 

= 9 is obtained, and the lowest iteration is for (training =12 and testing = 7) which in turn 

takes less computing time. This conclusion is the best and is accepted in this training and 

testing session with batch size = 1024 as shown in Figure 6.8 where the convergence 

between the training accuracy curve and validation accuracy curve starts approximately at 

epoch = 300 and continue all the way straight.  Moreover, the convergence between the 

training loss curve and the validation loss curve starts to come down right from the 

beginning until it reached epoch 100 where the convergence started to be steady, and the 

error is the lowest. 

 

Table 6.2   AHWD dataset with learning rate = 10−4 

 

 

In Table 6.2, there are some low error rates 0.0926 and 0.0520 with no overfitting 

as shown in Figure 6.10 and Figure 6.10 respectively. However, there are error rates 

0.6848, 0.3508, 0.2413 and 0.1557 with overfitting as shown in Figure 6.11 to Figure 6.14 

respectively. None of these results were chosen because they are not the best. 
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 Figure 6.8  LC and CM with LR = 10−4 and BS = 1024 AHWD. 
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Figure 6.9  LC and CM with LR = 10−4 and BS = 256 AHWD. 
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 Figure 6.10  LC and CM with LR = 10−4 and BS = 512 AHWD. 

 

 
Figure 6.11  LC and CM with LR = 10−4 and BS = 16 AHWD. 
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Figure 6.12  LC and CM with LR = 10−4 and BS = 32 AHWD. 

 

Figure 6.13  LC and CM with LR = 10−4 and BS = 64 AHWD. 
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Third, for learning rate =  10−5 and batch sizes (16, 32, 64, 1024), the results are shown 

in Table 6.3. 

By looking at Table 6.3, the highest accuracy rates are 99.76%, with low error rate 

(GER) = 0.0230, low confusion matrix error number = 11 errors, and low iteration (training 

=23 and testing = 14) which in turn takes less computing time. This conclusion is the best 

performance and is accepted in this training and testing session with batch size = 512 as 

shown in Figure 6.15, where the convergence between the training accuracy curve and 

validation accuracy curve starts approximately at epoch = 400 and continue all the way 

straight.  Moreover, the convergence between the training loss curve and the validation loss 

curve starts to come down right from the beginning until it reached epoch 200 where the 

convergence started to be steady, and the error is the lowest. 

 

 

 Figure 6.14  LC and CM with LR = 10−4  and BS = 128 AHWD. 
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Table 6.3  AHWD dataset with learning rate = 10−5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 6.3, all error rates are considered low, and all accuracy rates are high, too. 

The error rate 0.0191 with batch size 1024 and accuracy rate is the lowest but has been 

excluded because of the slowing performance in model response speed as shown in Figure 

6.16, where the training accuracy curve and validation accuracy curve start raising up in 

 

 Figure 6.15  LC and CM with LR = 10−5 and BS = 512 AHWD. 
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convergence fashion at epoch 350 until approximately epoch 1,000 where the convergence 

goes all the way long, whereas in Figure 6.15 the convergence the convergence between 

the training accuracy curve and validation accuracy curve starts approximately at epoch = 

400 and continue all the way straight. Moreover, the convergence between the training loss 

curve and the validation loss curve starts to come down right from the beginning until it 

reached epoch 200 where the convergence started to be steady, and the error is the lowest.  

 

 

 

 

 

 

 

 

 

 

 

Fourth, for a learning rate =  10−6 and batch sizes (16, 32, 64, 128, 256, 512, 1024), the                    

              results are shown in Table 6.4. 

By looking at Table 6.4, the highest accuracy rate is 99.72%, with lowest error rate 

(GER) = 0.0177, and low confusion matrix error number = 16 errors. This conclusion is 

the best performance and is accepted in this training and testing session with batch size 64 

as shown in Figure 6.17, where the training accuracy curve and validation accuracy curve 

start raising up in convergence fashion from the beginning until approximately epoch 1000 

where the convergence goes all the way long, Moreover, the convergence between the 

training loss curve and the validation loss curve starts to come down right from the 

Figure 6.16  LC and CM with LR = 10−5 and BS = 1024 AHWD. 
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beginning until it reached epoch 400 where the convergence started to be steady, and the 

error is the lowest. 

 

Table 6.4  AHWD dataset with learning rate = 10−6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17  LC and CM with LR = 10−6 and BS = 64 AHWD. 
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In Table 6.4, some results in training and testing sessions with batch size 16 with 

accuracy rate 99.57%, and with loss rate (GER) 0.0264; and batch size 32 with accuracy 

rate 99.55%, and with loss rate (GER) 0.0288; and batch size 128 with accuracy rate 

99.53%, and with error rate 0.0231; and batch size 256 with accuracy rate 99.34%, and 

with 0.0219 are acceptable but not chosen because the error rates are high comparing to 

the chosen error rate 0.0177 with accuracy rate 99.72%.  

However, for a batch size 512 with an accuracy rate 98.72%, and with error rate 0.0473; 

and batch size 1024 with accuracy rate 97.25%, and with 0.0948 are not accepted in this 

training and testing session because the error rates are high, the confusion matrix errors 

numbers are high, and the model response speed is low in both as shown in Figure 6.18 

and Figure 6.19, the conclusion with the last two results is that the system is unstable and 

the batch sizes 512 and 1024 are not suitable here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.18  LC and CM with LR = 10−6 and BS = 512 AHWD. 
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Fifth, when the learning rate =  10−7 and for batch sizes (16, 32, 64, 128, 256, 512,      

           1024), the results are as shown in Table 6.5. 

By looking at Table 6.5, the best accuracy rate is 96.10%, error rate (GER) = 

0.1530, and the confusion matrix error = 663. This conclusion is not accepted in this 

training and testing session with batch size = 32 because the error rate is high, and the 

confusion matrix error number is remarkably high, and the model is unstable as shown in 

Figure 6.20 

In more detail, using learning rate = 10−7is not suitable for the proposed model since all 

the training and testing session using 10−7 with batch sizes are (16, 32, 64, 128, 256, 512, 

1024) make the proposed model unstable and unrobust as shown in Figure 6.20 to Figure 

6.26. 

 

 

 

 Figure 6.19  LC and CM with LR = 10−6 and  BS = 1024 AHWD. 
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Table 6.5  AHWD dataset with learning rate = 10−7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.20  LC and CM with LR = 10−7 and BS = 32 AHWD. 
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Figure 6.21  LC  and CM with LR = 10−7 and BS = 16 AHWD. 

 

Figure 6.22  LC and CM with LR = 10−7 and BS= 64 AHWD. 
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Figure 6 23  LC and CM with LR = 10−7 and BS = 128 AHWD. 

 

Figure 6.24  LC and CM with LR = 10−7 and BS = 256 AHWD. 
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Figure 6.25  LC and CM with LR = 10−7 and BS = 512 using AHWD. 

 

Figure 6.26  LC and CM with LR = 10−7 and BS = 1024 using AHWD. 
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By looking at Figure 6.20 to Figure 6.26, there is instability in the proposed model 

when using a learning rate =  10−7. The learning rate here is very small makes the gradient 

erratic and the convergence between the training accuracy curve and validation accuracy 

cannot be realized. Moreover, as the batch size increases: 

• Both the training and validation loss curve diverge, and this divergence is clear in 

Figure 6.26. 

• The number of confusion matrix errors increases, the classification accuracy rate 

decrease, and the error rate increases, as well. 

 

The Adam optimizer is used to evaluate the performance when applying AHWD 

using the proposed model. For the loss function, the categorical cross-entropy loss is used. 

After training the DCNN model to calculate the probability of each image over the classes, 

the model is evaluated by using the testing dataset. On AHWD, different batch sizes equal 

to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of 

10−3,  10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs equal to 3000. With each 

learning rate, the model was trained with 7 different batch sizes. So, five tables of results 

were produced, and each table consists of one learning rate and 7 batch sizes with results 

(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered 

as the GER. The results between the five tables are evaluated based on the following 

criteria: 

• Learning rate values ( 10−3 to 10−7 ) and batch sizes. 

• Low loss error rate (GER) has the highest priority. 

• High accuracy rate. 

• Confusion matrix errors. 

• Model response speed by looking at the learning curve graph and determine in which 

epoch number the accuracy curve starts rising and in which epoch number does the loss 

curve start coming down.  

After applying these criteria, a table summarizing the conditions to obtain the best 

results is compiled for each dataset. The result is shown in Table 6.6 for AHWD. After 
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applying the above criteria on Table 6.6, it was concluded that the best accuracy rate is 

99.76% and error rate GER = 0.0230 for the following reasons: 

• The learning rate (10−5 ) is low which makes the model train at a reasonable speed and 

allows the gradient descent to produce a smooth output. 

• There is a reasonable number of epochs (3000 epochs with 23 training iterations and 

14 testing iterations for each epoch) required and batch size is = 512. These conditions 

allow relatively fast computing time. 

 

Table 6.6  Best of the five tables of AHWD dataset 

 

 

• The lowest error rate 0.0177 with high accuracy rate was not chosen because by looking 

at Figure 6.17, the training accuracy curve and validation accuracy curve start raising 

up in convergence fashion from the beginning until approximately epoch 1,000 where 

the convergence goes all the way long, Moreover, the convergence between the training 

loss curve and the validation loss curve starts to come down right from the beginning 

until it reached epoch 400 where the convergence started to be steady, and the error is 

the lowest. Whereas Figure 6.15 shows that the convergence between the training 

accuracy curve and validation accuracy curve starts approximately at epoch = 400 and 

continue all the way straight.  Moreover, the convergence between the training loss 

curve and the validation loss curve starts to come down right from the beginning until 

it reached epoch 200 where the convergence started to be steady, and the error is the 

lowest which is 0.0230. Now, by comparing Figure 6.15 with error rate 0.0230 and 
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Figure 6.17 with error rate 0.0177 in terms of model response speed in the accuracy 

curve and the loss curve. The conclusion is that Figure 6.15 with error rate 0.0230 

shows faster response than Figure 6.17 with an error rate of 0.0177. 

• By looking at  Table 6.6 a setting converging to (GER = 0.0230) is selected even though 

there are lower values of GER in the table. This choice was made because the accuracy 

rate (99.76%) is the highest on the table. Also, as can be observed from Table 6.6 the 

number of errors in the confusion matrix for the chosen setting is low compared to other 

results.  

 

 

6.2 IFN/ENIT Experimental Phase 

As mentioned in Chapter 5, The model is evaluated by using the testing dataset. On 

IFN/ENIT, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested. 

Also, learning rates of 10−3,  10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs 

equal to 3000. With each learning rate, the model was trained with 7 different batch sizes. 

So, five tables of results were produced, and each table consists of one learning rate and 7 

batch sizes with results (training iteration number, testing iteration number, accuracy rate, 

loss rate, and confusion matrix errors) where the loss rate here is considered as the GER. 

The results between the five tables are evaluated based on the following criteria: 

• Learning rate values ( 10−3 to 10−7 ) and batch sizes. 

• A low loss error rate or Generalization Error Rate (GER) has the highest priority. 

• High accuracy rate. 

• Confusion matrix errors. 

• Model response speed by looking at the learning curve graph and determine in 

which epoch number the accuracy curve starts rising and in which epoch number 

does the loss curve starts coming down.  
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After the evaluation by using these criteria, the best performance from each table has been  

collected. 

• First, when learning rate =  10−3 and batch sizes (16, 32, 64, 128, 256, 512, 1024) 

the results would be as shown in Table 6. 7. 

 

Table 6. 7   IFN/ENIT dataset with learning rate = 10−3 

 

By looking at Table 6. 7, the best accuracy rate is 99.91%, the lowest error rate 

(GER) = 0.5749, and the lower confusion matrix error = 9. This is acceptable in this training 

and testing session but cannot be generalized because Figure 6.27 shows an overfitting 

after epoch 1800; that is, the validation loss curve starts to diverge up off the training loss 

curve. In the conclusion, the proposed model cannot generalized on IFN/ENIT dataset with 

learning rate =  10−3 and batch sizes 1024. 

All other results in Table 6. 7 have a remarkably high error rates, and this would lead to 

overfitting and cannot be generalized as shown in Figure 6.28 to Figure 6.33.  
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Figure 6.27  LC and CM with LR = 10−3 and BS = 1024 using IFN/ENIT dataset. 

 

 

 Figure 6.28  LC and CM with LR = 10−3 and BS = 16 using IFN/ENIT dataset. 
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Figure 6.29  LC and CM with LR = 10−3 and BS = 32 using IFN/ENIT dataset. 

 

Figure 6.30  LC and CM with LR = 10−3 and BS = 64 using IFN/ENIT dataset. 
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Figure 6.31  LC and CM with LR = 10−3 and BS = 128 using IFN/ENIT dataset. 

 

Figure 6.32  LC and CM with LR = 10−3 and BS = 256 using IFN/ENIT dataset. 
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• Second, when learning rate =  10−4 and batch sizes (16, 32, 64, 128, 256, 512, 1024) 

the results would be as shown in Table 6.8. 

 

Table 6.8 IFN/ENIT dataset with learning rate = 10−4 

 

Table 6.8 depicts that the best accuracy rate is 99.87%, the lowest error rate (GER) 

= 0.0181, and the lowest confusion matrix error number = 8. This conclusion is the best 

performance and is acceptable in this training and testing session with batch size = 512 

 

 Figure 6.33  LC and CM with LR = 10−3 and BS = 512 using IFN/ENIT dataset. 
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because it has lower error rate with highest accuracy rate, and the lowest confusion matrix 

error number.  

Figure 6.34 depicts that the training accuracy curve and validation accuracy curve 

start up in convergence fashion from the beginning until approximately epoch 100 where 

the convergence goes all the way along. Moreover, the convergence between the training 

loss curve and the validation loss curve starts to come down right from the beginning until 

it reached epoch 50 where the convergence started to be steady, and the error is the lowest. 

The curves never touch each other, the gap between them is called a generalization gap. 

The rest of the results in Table 6.8 are acceptable except the training and testing 

sessions with batch size 16 and batch size 32, and with error rate 0.0917 and error rate 

0.0806 consecutively because by looking at Figure 6.35 and Figure 6.36 there is data 

overfitting, and the conclusion would be that the proposed model cannot be generalized 

utilizing learning rate 10−4  hyperparameter with batch size 16 and 32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.34   LC and CM with LR = 10−4 and BS = 512 using IFN/ENIT dataset 
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Figure 6.35   LC and CM with LR = 10−4 and BS = 16 using IFN/ENIT dataset 
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Figure 6.36   LC and CM with LR = 10−4 and BS = 32 using IFN/ENIT dataset 
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• Third, when learning rate =  10−5 and batch sizes (16, 32, 64, 128, 256, 512, 1024) 

the results would be as shown in Table 6.9. 

Table 6.9  IFN/ENIT dataset with learning rate = 10−5 

 

Table 6.9 shows that all results are acceptable. However, the proposed model is 

measured to find the best performance, there are some equivalent results in Table 6.9. To 

find the best performance, there must be a complete analysis of the results. Analysis 

includes, lowest error rate, highest accuracy rate, model response speed using the 

associated learning curve graphs and number of confusion matrix errors.  

By rounding up most of the values of the classification accuracy rates in Table 6.9, a valid 

value for the accuracy rates is equal to 99.70% except the first two values with batch size 

16 and batch size 32 are 99.60%. The lowest error rate is 0.0178 and is associated with two 

accuracy rates 99.67% and 99.66% with batch size 128 and 512 respectively. By looking 

at Figure 6.37 and Figure 6.38 and see the model response speed in terms of the accuracy 

curve and the loss curve the analysis is as follows: 

Figure 6.37 depicts that the training accuracy curve and validation accuracy curve 

start raising up in convergence fashion from the beginning until approximately epoch 200 

where the convergence goes all the way along. Moreover, the convergence between the 

training loss curve and the validation loss curve starts to come down right from the 

beginning until it reached epoch 100 where the convergence started to be steady, and the 

error is the lowest. The curves never touch each other. 
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Figure 6.38 depicts that the training accuracy curve and validation accuracy curve 

start up in convergence fashion from the beginning until approximately epoch 500 where 

 

 

 

Figure 6.37   LC and CM with LR = 10−5 and BS = 128 using IFN/ENIT dataset 

 

 

 

 

Figure 6.38   LC and CM with LR = 10−5 and BS = 512 using IFN/ENIT dataset 
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the convergence goes all the way along. Moreover, the convergence between the training 

loss curve and the validation loss curve starts to come down right from the beginning until 

it reached epoch 200 where the convergence started to be steady, and the error is the lowest. 

Both curves never touch each other. 

Analysis showed that the best accuracy rate is 99.87%, the lowest error rate (GER) is 

0.0178 with epoch 128 and confusion matrix error number = 13. This conclusion is the best 

performance and is acceptable in this training and testing session. 

 

• Fourth, when the learning rate =  10−6 and batch sizes (16, 32, 64, 128, 256, 512, 

1024) the results would be as shown in Table 6.10. 

Table 6.10 depicts that the highest accuracy rates are 99.68%, with lowest error rate (GER) 

= 0.0195, and low confusion matrix error number = 18 errors. This conclusion is the best 

performance and is accepted in this training and testing session with batch size = 32 as 

shown in Figure 6.39. where the training accuracy curve and validation accuracy curve 

Table 6.10  IFN/ENIT dataset with learning rate = 10−6 

 

start raising up in convergence fashion from epoch 100 until approximately epoch 750 

where the convergence goes all the way long, Moreover, the convergence between the 

training loss curve and the validation loss curve starts to come down right from epoch 200 

until it reaches epoch 300 where the convergence starts to be steady, and the error is the 

lowest. So, the proposed model can be generalized using batch size 32. 
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Table 6.10 shows that as the batch size increases the error rate (loss rate) and the 

confusion matrix error number increases, and the accuracy rate decreases. This conclusion 

leads to model instability using batch sizes 512 and 1024 as shown in Figure 6.40 and 

Figure 6.41, and the proposed model cannot be generalized with batch sizes 512, and 1024. 

However, the proposed system is acceptable with the batch size hyperparameters 16, 64, 

128, and256 as shown in Figure 6.42 to Figure 6.45.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.39   LC and CM with LR = 10−6 and BS = 32 using IFN/ENIT dataset 
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Figure 6.40   LC and CM with LR = 10−6 and BS = 512 using IFN/ENIT dataset 
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Figure 6.41   LC and CM with LR = 10−6 and BS = 1024 using IFN/ENIT dataset 

 

 

No diagonal 

 

 

 

Figure 6.42   LC and CM with LR = 10−6 and BS = 16 using IFN/ENIT dataset 
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Figure 6.43   LC and CM with LR = 10−6 and BS = 64 using IFN/ENIT dataset 

 

 

Figure 6.44   LC and CM with LR = 10−6 and BS = 128 using IFN/ENIT dataset 
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• Fifth, when learning rate =  10−7 and batch sizes (16, 32, 64, 128, 256, 512, 1024) we 

the results would be as shown in Table 6.11. 

 

Table 6.11 shows that the training and testing sessions with batch sizes 16, 32, and 

64 have acceptable accuracy rates 97.73%, 97.93, and 95.29% and error rate (loss rate) 

0.0966, 0.0853, and 0.1723, respectively. However, Table 6.11 depicts that, as the batch 

size hyperparameter increases the error rate and the confusion matrix error number 

increases, and the accuracy rate decreases.    

 

 
Figure 6.45   LC and CM with LR = 10−6 and BS = 256 using IFN/ENIT dataset 
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Table 6.11  IFN/ENIT dataset with learning rate = 10−7 

 

 The conclusion is that using learning rate = 10−7 cannot be generalized and is not 

suitable for the proposed model on IFN/ENIT dataset. All the training and testing sessions 

using learning rate 10−7 with batch sizes (16, 32, 64, 128, 256, 512, 1024) make the 

proposed model unstable, unrobust, and convergence between the training accuracy curve 

and the validation accuracy curve would not be stable in all training and testing sessions 

and at some points the two curves would cross each as shown in Figure 6.46 to Figure 6.52.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 6.46   LC and CM with LR = 10−7 and BS = 16 using IFN/ENIT dataset 

 

263 Errors 



 

83 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

226 Errors 

 

 

 

779 Errors 

Figure 6.47   LC and CM with LR = 10−7 and BS = 32 using IFN/ENIT dataset 

 

Figure 6.48   LC and CM with LR = 10−7 and BS = 64 using IFN/ENIT dataset 
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Figure 6.49   LC and CM with LR = 10−7 and BS = 128 using IFN/ENIT dataset 

 

Figure 650   LC and CM with LR = 10−7 and BS = 256 using IFN/ENIT dataset 
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Figure 6.51   LC and CM with LR = 10−7 and BS = 512 using IFN/ENIT dataset 

 

Figure 6.52   LC and CM with LR = 10−7 and BS = 1024 using IFN/ENIT dataset 
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By looking at  Figure 6.46 to Figure 6.52, there is instability in the proposed model 

on IFN/ENIT dataset when using learning rate =  10−7. The learning rate here is very small 

which would make the gradient moves uneven and the convergence between the training 

accuracy curve and validation accuracy curve inaccurate. Moreover, as the batch size 

increases. 

• Both the training and validation loss curve diverge, and this divergence is clear in 

Figure 6.Figure 6.52 

• The number of confusion matrix errors increases and reaches to the No diagonal 

state, and the classification accuracy rate will decrease. 

The conclusion is, the hyperparameters such as learning rate = 10−7 with batch sizes (16, 

32, 64, 128, 256, 512, 1024) when applying IFN/ENIT is not suitable, and the system is 

unstable.  

 

 

The Adam optimizer is used to evaluate the performance when applying IFN/ENIT 

using the proposed model. For the loss function, the categorical cross-entropy loss is used. 

After training the DCNN model to calculate the probability of each image over the classes, 

the model is evaluated by using the testing dataset. On IFN/ENT, different batch sizes equal 

to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of 

10−3,  10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs equal to 3000. With each 

learning rate, the model was trained with 7 different batch sizes. So, five tables of results 

were produced, and each table consists of one learning rate and 7 batch sizes with results 

(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered 

as the GER. The results between the five tables are evaluated based on the following 

criteria: 

• Learning rate values ( 10−3 to 10−7 ) and batch sizes. 

• Low loss error rate (GER). 

• High accuracy rate. 

• Confusion matrix errors. 
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• Model response speed by looking at the learning curve graph and determine in which 

epoch number the accuracy curve starts rising and in which epoch number does the loss 

curve start coming down.  

After applying these criteria, a table summarizing the conditions to obtain the best 

results is compiled for each dataset. The result is shown in Table 6.12 for IFN/ENIT 

dataset. After applying the above criteria on Table 6.6, it was concluded that the best 

accuracy rate is 99.87% and the error rate GER = 0.0181 for the following reasons: 

• The learning rate (10−4 ) is low which makes the model train at a reasonable speed and 

allows the gradient descent to produce a smooth output. 

• There is a reasonable number of epochs (3000 epochs with 23 training iterations and 

14 testing iterations for each epoch) required and batch size is = 512. These conditions 

allow relatively fast computing time. 

 

 

Table 6.12  Best of the five tables of IFN/ENIT dataset 

 

• The lowest error rate 0.0178 with high accuracy rate was not chosen because by looking 

at Figure 6.37, the training accuracy curve and validation accuracy curve start raising 

up in convergence fashion from the beginning until approximately epoch 200 where 

the convergence goes all the way along. Moreover, the convergence between the 

training loss curve and the validation loss curve starts to come down right from the 

beginning until it reached epoch 100 where the convergence started to be steady, and 

the error is the lowest. Whereas Figure 6.34, shows that the convergence between the 
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training accuracy curve and validation accuracy curve starts approximately at epoch = 

100 and continue all the way as a straight line.  Moreover, the convergence between 

the training loss curve and the validation loss curve starts to come down right from the 

beginning until it reached epoch 20 where the convergence started to be steady, and the 

error is the lowest which is 0.0181. Now, by comparing Figure 6.34 with error rate 

0.0181 and Figure 6.37 with error rate 0.0178 in terms of model response speed in the 

accuracy curve and the loss curve, the conclusion is that Figure 6.34 with error rate 

0.0181 shows faster response than Figure 6.37 with an error rate of 0.0178. 

• By looking at Table 6.6 a setting converging to (GER = 0.0181) is selected even though 

there are lower values of GER in the Table 6.12. This choice was made because the 

accuracy rate (99.87%) is high and the number of errors in the confusion matrix for the 

chosen setting is the lowest compared to other results.  

 

 

 

6.3 Augmented AHWD Experimental Phase 

As mentioned in Chapter 5, The model is evaluated by using the testing dataset. On 

augmented AHWD, different batch sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were 

tested. Also, learning rates of 10−3,  10−4, 10−5 , 10−6, and 10−7 were evaluated with 

epochs equal to 1000. With each learning rate, the model was trained with 7 different batch 

sizes. So, five tables of results were produced, and each table consists of one learning rate 

and 7 batch sizes with results (training iteration number, testing iteration number, accuracy 

rate, loss rate, and confusion matrix errors) where the loss rate here is considered as the 

GER. The results between the five tables are evaluated based on the following criteria: 

• Learning rate values ( 10−3 to 10−7 ) and batch sizes. 

• A low loss error rate or Generalization Error Rate (GER) has the highest priority. 

• High accuracy rate. 

• Confusion matrix errors. 
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• Model response speed by looking at the learning curve graph and determine in 

which epoch number the accuracy curve starts rising and in which epoch number 

does the loss curve start coming down.  

After the evaluation by using these criteria, the best performance from each table has been 

collected. 

• First, when learning rate =  10−3 and batch sizes  (16, 32, 64, 128, 256, 512, 1024) 

are used, the results would be as shown in  Table 6.13. 

 Table 6.13  Augmented AHWD dataset with learning rate = 10−3. 

 

 

 By looking at Table 6.13, the lowest error rate (GER) is 0.1148, with accuracy rate 

99.84%, and lower confusion matrix error = 23. This is acceptable in this training and 

testing session but cannot be generalized because Figure 6.53 shows an overfitting starts 

to rise after epoch 900; that is, the validation loss curve starts to diverge up off the training 

loss curve. In the conclusion, the proposed model cannot generalized on augmented 

AHWD with learning rate =  10−3 and batch sizes 1024. 
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 All other results in Table 6.13 have a high error rate, and this would lead to 

overfitting or instability in the system, then cannot be generalized as shown in Figure 6.54 

to Figure 6.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.53   LC and CM with LR = 10−3 and BS = 1024 using augmented AHWD 
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Figure 6.54  LC and CM with LR = 10−3 and BS = 16 using augmented AHWD 

 

Figure 6.55  LC and CM with LR = 10−3 and BS = 32 using augmented AHWD 

 

Figure 6.56  LC and CM with LR = 10−3 and BS = 64 using augmented AHWD 
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Figure 6.57   LC and CM with LR = 10−3 and BS = 128 using augmented AHWD 

 

Figure 6.58  LC and CM with LR = 10−3 and BS = 256 using augmented AHWD. 

 

Overfitting 

 
 
 
 

Overfitting 

 
 
 
 



 

93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Second, when learning rate hyperparameter =  10−4 and batch sizes hyperparameters 

(16, 32, 64, 128, 256, 512, 1024) are used, the results would be as shown in Table 6.14. 

Table 6.14   Augmented AHWD dataset with learning rate = 10−4. 

 

Table 6.14 depicts that the best accuracy rate is 99.90%, the lowest error rate (GER) 

= 0.0074, and low confusion matrix error number = 22. This conclusion is the best 

Figure 6.59  LC and CM with LR = 10−3 and BS = 512 using augmented AHWD. 
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performance, can be generalized, and is acceptable in this training and testing session with 

batch size hyperparameter = 1024 because it has lowest error rate with the highest accuracy 

rate, and the lowest processing time. Figure 6.60 depicts that the training accuracy curve  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and validation accuracy curve starts rising in convergence fashion from the beginning until 

approximately epoch 125 where the convergence goes all the way long. Moreover, the 

convergence between the training loss curve and the validation loss curve starts to come 

down right from the beginning until it reached epoch 50 where the convergence started to 

be steady, and the error is the lowest. Both curves never touch each other, there is a gap between 

them called a generalization gap. 

 

The results in Table 6.14 with batch sizes hyperparameters 256 and 512 are 

acceptable and no overfitting is produced as shown in Figure 6.61 and Figure 6.62. 

However, the results in Table 6.14 with batch sizes hyperparameters 16, 32, 64, and 128 

are not acceptable because of the overfitting as shown in Figure 6.63 to Figure 6.66. The 

conclusion is that the proposed model cannot be generalized utilizing learning rate 

hyperparameter 10−4  with batch sizes hyperparameters 16, 32, 64, and 128. So, it is 

unstable and not robust. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.60  LC and CM with LR = 10−4 and BS = 1024 using augmented AHWD 
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Figure 6.61   LC and CM with LR = 10−4 and BS = 256 using augmented AHWD 

 

Figure 6.62   LC and CM with LR = 10−4 and BS = 512 using augmented AHWD 
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Figure 6.63    LC and CM with LR = 10−4 and BS = 16 using augmented AHWD 

 

Figure 6.64   LC and CM with LR = 10−4 and BS = 32 using augmented AHWD 
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Figure 6.65   LC and CM with LR = 10−4 and BS = 64 using augmented AHWD 

 

Figure 6.66   LC and CM with LR = 10−4 and BS = 128 using augmented AHWD 
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• Third, when learning rate hyperparameter =  10−5 and batch sizes hyperparameters 

(16, 32, 64, 128, 256, 512, 1024) are applied, the results would be as shown in Table 

6.15. 

All results in Table 6.15 are acceptable and the accuracy rates are 99.90%, 99.90%, 

99.86%, 99.86%, 99.88%, 99.81%, and 99.77% when using batch sizes 16, 32, 64, 128, 

256, 512, and 1024 with error rates (GER) are 0.0116, 0.0091, 0.0111, 0.0070, 0.0086, 

0.0094, and 0.0100 respectively, and the number of confusion matrix error is 20, 17, 27, 

22, 24, 27, and 22, respectively. There is no overfitting in all the training sessions. 

Table 6.15   Augmented AHWD dataset with learning rate = 10−5. 

 

 

By rounding up the accuracy rate values, most of the values would be 99.90%. 

However, Table 6.15 depicts that the lowest error rate (GER) = 0.0070, with high accuracy 

rate 99.86% (99.90% rounded up), and low confusion matrix error number = 22. This 

conclusion is the best performance, can be generalized, and is acceptable in this training 

and testing session with batch size hyperparameter = 128 as shown in Figure 6.67.  

Figure 6.67 depicts that the training accuracy curve and validation accuracy curve 

start up in convergence fashion from the beginning until approximately epoch 100 where 

the convergence goes all the way along. Moreover, the convergence between the training 

loss curve and the validation loss curve starts to come down right from the beginning until 

it reached epoch 50 where the convergence started to be steady, and the error is the lowest. 



 

99 
 

Both curves never touch each other, there is a gap between them called a generalization 

gap. 

 

 

 

 

 

 

 

 

 

 

 

• Fourth, when learning rate hyperparameter =  10−6 and batch sizes hyperparameters 

(16, 32, 64, 128, 256, 512, 1024) are applied, the results would be as shown in Table 

6.16. 

All results in Table 6.16 are acceptable, but not all of them can be generalized, the 

lowest error rate (GER) = 0.0090, with the highest accuracy rate 99.81%, and the lowest 

confusion matrix error number = 25. This conclusion is the best performance, can be 

generalized, and is acceptable in this training and testing session with batch size 

hyperparameter = 16 as shown in Figure 6.68. 

 

 

 

 

 

Figure 6.67   LC and CM with LR = 10−5 and BS = 128 using augmented AHWD 
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Table 6.16   Augmented AHWD dataset with learning rate = 10−6. 

 

Figure 6.68 depicts that the training accuracy curve and validation accuracy curve 

start raising up in convergence fashion from the beginning until approximately epoch 300 

where the convergence goes all the way long, Moreover, the convergence between the 

training loss curve and the validation loss curve starts to come down right from the 

beginning until it reached epoch 100 where the convergence started to be steady, and the 

error is the lowest. The curves never touch each other, there is a gap between them called 

a generalization gap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.68   LC and CM with LR = 10−6 and BS = 16 using augmented AHWD 
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In this training and testing session using learning rate = 10−6, as the batch size increases 

as the convergence between training accuracy curve and validation accuracy curve widens, 

the error rate (GER) increases, and the confusion matrix errors number increases. This 

conclusion shows the instability of the proposed model, and it is not robust as shown in 

Figure 6.69 to Figure 6.71. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.69   LC and CM with LR = 10−6 and BS = 256 using augmented AHWD 

 

Figure 6.70   LC and CM with LR = 10−6 and BS = 512 using augmented AHWD 
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• Fifth, when learning rate =  10−7 and batch sizes are (16, 32, 64, 128, 256, 512,   

            1024) are used, the results would be as shown in Table 6.17. 

Table 6.17   Augmented AHWD dataset with learning rate = 10−7. 

 

 

 

 

 

 

 

 

 

Figure 6.71   LC and CM with LR = 10−6 and BS = 1024 using augmented AHWD 
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By looking at Table 6.17, best accuracy rate is 96.72%, error rate (GER) = 0.1240, 

and the confusion matrix error = 1868. This conclusion is somewhat acceptable in this 

training and testing session with batch size = 16. However, Table 6.17 shows that the error 

rate is high, the confusion matrix error number is high, and the processing time is high in 

terms of higher training iteration, higher testing iteration for each epoch.  

So, as shown in Figure 6.72, the convergence between the training accuracy curve 

and the validation accuracy curve is indeterminate and very wide. From Table 6.17, as the 

batch size increases the classification accuracy rate decreases, the error rate (GER) 

increases, and the confusion matrix error increases. In more detail, the conclusion is that 

using learning rate = 10−7is not suitable for the proposed model on augmented AHWD 

since all the training and testing session using learning rate 10−7 with batch sizes (16, 32, 

64, 128, 256, 512, 1024) make the proposed model unstable and unrobust as shown in 

Figure 6.72 to Figure 6.78.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.72   LC and CM with LR = 10−7 and BS = 16 using augmented AHWD 
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Figure 6.73   LC and CM with LR = 10−7 and BS = 32 using augmented AHWD 

 

Figure 6.74   LC and CM with LR= 10−7 and BS = 64 using augmented AHWD 
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Figure 6.75   LC and CM with LR = 10−7 and BS = 128 using augmented AHWD 

 

Figure 6.76   LC and CM with LR = 10−7 and BS = 256 using augmented AHWD 
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Figure 6.77   LC and CM with LR = 10−7 and BS = 512 using augmented AHWD 

 

Figure 6.78   LC and CM with LR = 10−7 BS = 1024 using augmented AHWD 
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By looking at  Figure 6.72 to Figure 6.78, the conclusion that there is instability in 

the proposed model when using learning rate =  10−7. The learning rate here is very small 

which would make the gradient moves uneven and the convergence between the training 

accuracy curve and validation accuracy curve improbable. Moreover, as the batch size 

increases: 

• Both the training and validation loss curve diverge, and this divergence is clear in 

Figure 6.Figure 6.78. 

• The number of confusion matrix errors increases and reaches to the No diagonal 

state, and the classification accuracy rate will decrease. 

The learning rate hyperparameter with value 10−7, with batch size hyperparameters (16, 

32, 64, 128, 256, 512, 1024) when applying augmented AHWD are not suitable, and the 

system is unstable.  

 

Adam optimizer is used to evaluate the performance when applying augmented AHWD 

using the proposed model. For the loss function, the categorical cross-entropy loss is used. 

After training the DCNN model to calculate the probability of each image over the classes, 

the model is evaluated by using the testing dataset. On augmented AHWD, different batch 

sizes equal to 16, 32, 64, 128, 256, 512, and 1024 were tested. Also, learning rates of 

10−3,  10−4, 10−5 , 10−6, and 10−7 were evaluated with epochs 1000. With each learning 

rate, the model was trained with 7 different batch sizes. So, five tables of results were 

produced, and each table consists of one learning rate and 7 batch sizes with results 

(accuracy rate, loss rate, and confusion matrix errors) where the loss rate here is considered 

as the GER. The results between the five tables are evaluated based on the following 

criteria: 

• Learning rate values ( 10−3 to 10−7 ) and batch sizes. 

• Low loss error rate (GER) has the highest priority. 

• High accuracy rate. 

• Confusion matrix errors. 

• Model response speed by looking at the learning curve graph and determine in which 

epoch number the accuracy curve starts rising and in which epoch number does the loss 

curve start coming down.  
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After applying these criteria, a table summarizing the conditions to obtain the best results 

is compiled for each dataset. The result is shown in Table 6.18 for augmented AHWD.  

    

Table 6.18   Best of the five tables of augmented AHWD dataset 

 

By applying the above criteria in Table 6.18, it is concluded that the best accuracy 

rates are 99.90% and 99.86%, with error rates GER = 0.0074 and 0.0070, with confusion 

matrix errors 22 and 22 using batch sizes 1024 and 128 using learning rates 

10−4 and 10−5respectively. The classification accuracy rate = 99.90% with lower error 

rate = 0.0074 were chosen as the best hyperparameters for the proposed model for the 

following reasons: 

• The learning rate (10−4) is appropriate which makes the model train at a reasonable 

speed and allows the gradient descent to produce a smooth output. 

• 1000 epochs with 39 training iterations and 24 testing iterations for each epoch and 

batch size is = 1024. These conditions allow relatively less processing time and 

reliable computing in terms of any overfitting and guide the proposed model to be 

robust. 

• By observing Table 6.18, the loss rate 0.0074 with learning rate 10−4 is chosen 

even though there is less value of loss rate in the table which is 0.0070 with learning 

rate 10−5. This choice was made because 99.90% is the highest accuracy rate and 

has the lowest processing time comparing to the one using learning rate 10−5.  

• The model response speed has not been considered because both training sessions 

with learning rate 10−4 with batch size 1024 and 10−4 with batch size 128 has 
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almost the same model response speed in accuracy curve and in loss curve as shown 

in Figure 6.79and Figure 6.80. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.79   LC and CM with LR = 10−4 and BS = 1024 using augmented AHWD 

 

Figure 6.80   LC and CM with LR = 10−5 and BS = 128 using augmented AHWD 
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6.4 Comparison with Neural Networks-based Systems 

Table 6.19 shows a comparison between our achieved results based on Neural Network 

using IFN/ENIT dataset, AHWD, and augmented AHWD and other system’s results.  

Table 6.19  Comparative results of Neural Networks -based systems. 

Classifier Feature extraction Datasets Evaluation metric References 

Accuracy rate Error rate 

CNN CNN IFN/ENIT (abcd-e) 
IFN/ENIT (abcde-f) 

IFN/ENIT (abcde-s) 

IFN/ENIT (abc-d) 
 

97.07% 

96.76% 

94.09% 

99.29% 

 

2.93  WER 

3.24  WER 

5.91  WER 

0.71  WER 

 

(Poznanski et al., 2016) [74] 
 

SVM CNN IFN/ENIT  7.05  CER (Elleuch et al., 2016)      [75] 

 

CNN CNN IFN/ENIT  8.5   CER (Almodfer et al., 2017)   [76] 

 

CNN 

CNN 
CNN(AlexNet+ReLU) 

CNN(AlexNet+TanH) 
IFN/ENIT 

IFN/ENIT 
92.13% 

92.55% 

 

 (Almodfer et al., 2018)   [77] 

 

HMM 

HMM 

CNN 

CNN 

IFN/ENIT (abcd-e) 

IFN/ENIT (abc-d) 
89.23% 

88.95% 

 

- 
- 

(Amrouch et al., 2018)   [78] 

 

AlexNet 

DBN 

CNN 

DBN 

IFN/ENIT 

IFN/ENIT (abcd-e) 

95.6% 

94.99% 

- 

6.5  CER 
 

(Ghanim et al., 2020)      [7] 

  

CNN CNN IFN/ENIT 99.87% 0.0181  GER Proposed model. 

 

CNN CNN AHWD 99.76% 0.0230  GER Proposed model. 

 

CNN CNN Augmented AHWD 99.90% 0.0074  GER Proposed model. 

 

 

The CNN was applied as feature extraction and as classifier on IFN/ENIT dataset 

using some sets as training and one as testing as explained in [74]. Specifically, when using 

sets, a, b, c, and d for training and set e for testing they achieved 97.07% classification 

accuracy rate and 2.93 WER. When using sets, a, b, and c for training and set d for testing 

they achieved a 99.29% classification accuracy rate and 0.71 WER. In another study 

described in [77] , the CNN was used as feature extraction and as a classifier on IFN/ENIT 

dataset using sets, a, b, c, and d for training and set e for testing they achieved 92.13% 

classification accuracy rate using ReLU activation function, and 92.55% classification 

accuracy rate using TanH activation function.  

According to [78] CNN was applied as a feature extraction and HMM as a classifier 

on IFN/ENIT dataset and achieved 89.23% classification accuracy rate when using sets, a, 

b, c, and d as training sets and set e as testing set. They achieved 88.95% classification 

accuracy rate when using sets, a, b, and c as training sets and set d as testing set.  
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Ghanim et al., [7] achieved 95.60% classification accuracy rate when they used 

CNN as a feature extraction and as a classifier using AlexNet on IFN/ENIT.  

For the proposed model, the CNN was applied as a feature extraction and as a classifier on 

AHWD, an accuracy rate of 99.76% and a Generalization Error Rate of 0.0230 were 

achieved.  When CNN was applied as a feature extraction technique and as a classifier on 

IFN/ENIT dataset, an accuracy rate of 99.87% and Generalization Error Rate of 0.0181 

were achieved. When CNN was applied as a feature extraction technique and as a classifier 

on Augmented AHWD, an accuracy rate of 99.90% and Generalization Error Rate of 

0.0074 were achieved.  

In comparison to other systems, our proposed system achieved the highest 

classification accuracy rate with a very low GER on IFN/ENIT dataset, on AHWD, and on 

augmented AHWD. 
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CHAPTER 7        CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the contributions of the thesis and discusses issues related to the 

developed techniques. Limitations in the proposed methods and the used data are also discussed. 

Finally, future research directions relevant to analysis and recognition of Arabic Handwritten 

Words (AHW) are discussed. 

7.1 Summary of Thesis Contributions 

So far, research on AHW recognition and analysis has focused on the extraction of features 

from text lines and from image documents. Very few researchers have investigated deep learning 

for AHW documents. Moreover, many recent works focus on word isolation and extraction of 

global and/or local features of the word. The Fourier descriptor, the hue moment, histograms, 

zarniac moments and other structural features are examples of features. There is existing literature 

using features with neural classifier such as Support Vector Machine (SVM), K- Nearest Neighbor 

(KNN), Radial Basis Function (RBF) and Multilayer perception. 

AHW identification remains a challenging application. It is carried out as a pattern 

recognition problem to allocate and identify images of handwritten samples/patterns to one class. 

Therefore, the process of image identification can be defined as an algorithm to assign a 

handwriting sample to one of the classes. While several AHW identification systems have been 

developed for various applications including document analysis and image classification, it is still 

receiving significant interest by the research community, because many issues are still unresolved 

such as insufficiency of datasets and handwriting material in different languages. The main aim of 

this work is to develop an accurate handwritten recognition system by investigating new techniques 

based on deep learning for the classification and analysis of AHW depending on different 

Convolution Neural Networks (CNN). 

Another aim is to create a large set of AHW to support further studies in text conversion. 

Therefore, the general objectives of this thesis were to plan, analyze, design, build, and test novel 

classification algorithms and tools to support automatic recognition of AHW. In this work, some 

automatic AHW recognition approaches using advanced machine learning techniques have been 

investigated and the obtained results led to the following specific contributions to knowledge: 

⚫ This thesis presented analyses, design, building, and testing of learning algorithms of 

enhanced DCNN structure for classification. It also investigated the use of an end-to-end 
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open-source platform for machine learning namely Keras and Tensorflow with 

parallel processing.  

⚫ Thorough experimental tests and validation of the algorithm have been carried out using 

different datasets and the results obtained suggest that the proposed technique yields 

attractive results when compared to similar algorithms. 

⚫ A large data set was created and then augmented with different word variations created for 

system training and testing.  

⚫ The system was also tested on another data set known as IFN/ENIT and the results achieved 

excellent accuracy.  

⚫ A new datasets called the Arabic Handwritten Weekdays Dataset (AHWD) and 

augmented AHWD have been presented. The proposed model applied on AHWD, 

IFN/ENIT dataset, and augmented AHWD, produced respectively an accuracy rate 

of 99.76% with error rate 0.0230, an accuracy rate 99.87% with error rate 0.0181, 

and an accuracy rate 99.90% with error rate 0.0074.  These results are excellent and 

compare favorably against previous work.    

This work can be applied to the datasets where it should be horizontally extended to include 

more words to cover all the Arabic characters. It would be impossible to include all words 

in the dataset, that the system could predict outside of its domain by analyzing the word at 

the character level. The system could also be used for signature classification and fraud 

detection of signatures. 
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