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Abstract

Intrinsically disordered proteins (IDPs) are a group of proteins that lack the ability

to fold into a well-defined 3D structure. The free energy landscapes of these proteins

are assumed to have many competing low-energy states leading to an absence of a

single tertiary structure. Characterizing their conformational spaces can be difficult

by using standard experimental and computational techniques. Amyloid-β (Aβ) pep-

tide, a prototypic IDP, aggregates into fibrils that are implicated in the pathogenesis

of Alzheimers disease (AD). This thesis focuses on defining conformational states of

the Aβ42 monomer using molecular dynamics (MD) simulations to better understand

conformational changes of IDPs. The beginning of the amyloid aggregation includes

a conformational transition from α- to β-dominated form of the Aβ42 monomer.

We conducted simulations starting from one helical structure and one monomeric

unit of the β-sheet fibril in aqueous solution. We observed that simulations from

both directions would converge to a collection of conformational states during the

α-to-β transition. MD simulations were performed in aqueous solution starting from

monomeric systems based on various atomic structures. By merging structural en-

sembles into the same trajectory, the conformational space of the Aβ42 monomer was

summarized using the principal component analysis. This ensemble suggests possi-

ble paths between configurational states. In the absence of a single fixed structure,

I classified these heterogeneous conformers using alternative and novel approaches.

Combining these, I have re-defined key structural elements of the monomeric form

of Aβ42 tertiary structures. MD simulations of the Aβ42 monomer in ethanol-water

cosolvents were implemented successively as a function of ethanol composition, mim-

icking the change of environment polarity. I demonstrated that the monomeric form

reverts to an extended α-helix in a low polarity environment. Also, the α-to-β tran-

sition could be reversible by altering the solvent polarity. Observations and analyses

on Aβ42 interacting with ethanol suggest similar behaviors of the peptide as when

it binds with lipid membranes. Significantly, the central methodology of this thesis

could be applicable for characterizing and categorizing structures of other IDPs.
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Chapter 1

Introduction

Proteins are macromolecules that are able to fold into well-defined tertiary structures

that exhibit specific functions. However, a large number of natural occurring proteins

can carry out biological roles without forming a well-folded structure [1, 2]. These

proteins could appear fully or partially disordered. The discovery of these intrinsically

disordered proteins (IDPs) has challenged the traditional sequence-structure-function

paradigm [3–5]. Their importance is due to their high frequency in proteomes. Forty-

four percent of human protein-coding genes contain encode disordered segments whose

length is larger than 30 amino acids [6]. Importantly, IDPs not only play a central

role in cellular signaling and regulatory networks [7, 8], but also are associated with

various human disorders [5]. Some IDPs possess diverse states containing transient

structural elements [9], or exist as molten-globules showing a compact structure with

some secondary structure content [2]. Despite the fact that these dynamic motions

and large-scale conformational changes are critical elements of their function, we still

do not fully understand how dynamics and conformational changes link a protein’s

shape and its function [10,11].

IDPs do not adopt stable secondary or tertiary structures. Their high flexibility

inherently encoded in their primary amino acid sequence, thereby IDPs exist as en-

sembles of many different metastable conformations. The timescale of the structural

interconversion is much faster than the transition from the folded to unfolded state

of a globular protein (Figure 1.1). The unique features of IDPs, such as structural

heterogeneity, distinct response to the environmental conditions, multifunctionality,

and structural plasticity make it challenging for their structural determination with

traditional techniques.

X-ray crystallography has been the most important protein structure determi-

nation technique. 90% of 140,000 structures in the Protein Data Bank (PDB) are

determined using X-ray crystallography. However, high resolution models are usually

1
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Figure 1.1: Schematics for free energy landscape of a globular protein (A) and an
intrinsically disordered protein (B), where the xy plane represents the conformational
space can be sampled of the corresponding peptide and z axis measures the relative
free energies of its conformations. A globular protein has a funnel-shaped global
energy minimum whereas an IDP has multiple local energy minima separated by
small barriers. This figure is adapted from Fisher and Stultz [22], published in Current
Option in Structural Biology with permission from c©2011 Elsevier.



3

only available for endpoints of dynamic processes or structures captured during the

protein motion and conformational changes. This technique provides indirect informa-

tion to roughly measure the protein flexibility accompaning by atomic displacement

parameters or B-factors [11–15]. Nuclear magnetic resonance (NMR) spectroscopy is

the main experimental technique that allows the investigation of IDPs at the atomic

level. It also provides ”indirect dynamic data” [14] but a richer source of information

including nuclear overhauser effects (NOEs), chemical shifts, three bond scalar cou-

pling (3J), residual dipolar coupling, paramagnetic relaxation enhancements, etc [16].

It is not trivial to transform these observables into 3D models, thus, a combination

with theoretical methods is beneficial [17, 18]. Other techniques such as small-angle

X-ray scattering (SAXS) [19], hydrogen-deuterium exchange mass spectrometry [20],

and recently cryo-electron microscopy (cryo-EM) [21] contribute to studies of struc-

tural determination and conformational dynamics of IDPs. Similar to X-ray crystal-

lography and NMR, these methods are unable to give information about individual

conformations in the ensemble but yield statistical averages of an entire ensemble.

The intrinsic difficulties of experimental techniques to provide direct information

on protein dynamics have encouraged the development of simulation approaches. For

the past decade, computational methods have proven to be crucial to study dynamics

of IDPs [17, 23]. Molecular dynamics (MD) simulates a set of interacting atoms of

a given molecular system over the evolution of time by solving Newton’s equation

of motion. With recent advances in computational power and algorithms, the MD

method has made it possible to study larger biological systems at time scales from

nanoseconds, microseconds to milliseconds [24, 25]. In this thesis, we are investigat-

ing large-scale conformational changes and structures of the intrinsically disordered

amyloid-β (Aβ) peptide using MD combined with the clustering method, principal

component analysis and other bioinformatic tools (see Chapter 2).

A large-scale conformational change is a significant conformational transition of

a protein structure over a cellular process, such as ligand binding or protein fold-

ing in the response to a environmental change [26]. In this context, a large-scale

conformational change indicates a series of drastic geometric changes of Aβ42 re-

lated to the misfolding and aggregation. In the misfolding, this change refers to a
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conformational transition from a soluble membrane-attached α-helix structure to β-

rich aggregation-prone-state in the extracellular environment. In the progression of

amyloid aggregation, misfolded forms undergo further conformational changes and

self-assemble into insoluble amyloid fibrils (see Section 1.3.2). Using MD to simulate

IDP (such as Aβ) produces a trajectory including snapshots of conformations, many

with large structural dissimilarities. To deal with such dissimilarity, a protocol of MD

trajectory analysis is introduced in Chapter 3.

In the rest of this chapter, a brief summary of amyloid cascade hypothesis will

be presented (Section 1.2). The hypothesis emphasizes the central role of Aβ in ex-

plaining the etiology and pathogenesis of Alzheimer’s disease (AD). Then, a review

of Aβ including amyloid precursor protein (APP), amyloid aggregation models, its

suggested monomeric, oligomeric and fibrillar structures from experimental observa-

tions is described (see Section 1.3). In Section 1.4, a brief introduction of recent

computational techniques and bioinformatic approaches applied in structural biology

is presented. Lastly, a review of MD studies of monomeric Aβ folding in the published

literature is presented in Section 1.5.

1.1 Intrinsically Disordered Proteins and Human Diseases

Many proteins are associated with neurodegeneration [9, 27], diabetes [28], cardio-

vascular diseases [29], genetic diseases [30, 31] and other amyloidosis [32, 33] are ei-

ther intrinsically disordered or contain long intrinsically disordered regions (IDRs).

Approximately 70% of human cancer-related proteins are predicted to contain long

unstructured regions [34, 35]. Some of these disorders involve a conversion of the

functional state of specific proteins into an aggregate state that accumulate as fibrils.

These misfolded proteins deposit as amyloid fibrils and are called amyloidogenenic

proteins. Generally, the amyloidogenic proteins can be divided in two types: 1) prion

proteins that present a well-defined structure with partially disordered region(s) on

the molecule; and 2) proteins that show changes over the entire chain such as Amyloid-

β (Aβ), tau, α-synclein and huntingtin protein. This behaviour of misfolding and

aggregation of IDRs/IDPs are especially common in neurodegenerative diseases such

as Alzheimer’s [36,37], Parkinson’s [38] and Huntington’s disease [39].
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1.2 Amyloid-β Peptide and Alzheimer’s Disease

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disease that

causes progressive loss of cognitive and functional abilities. Many hypotheses about

AD have been developed, among which the amyloid cascade hypothesis is widely ac-

cepted. This hypothesis was first proposed by Hardy and Higgins [40] which proposed

Aβ as the central figure in the overall disease mechanism. They also suggested that

the mis-metabolism of amyloid precursor protein (APP) (see Section 1.3.1) and Aβ

accumulation were the primary events in AD. The full hypothesis has been described

as a cascade of Aβ deposition, tau phosphorylation, neurofibrillary tangles formation,

neuronal death and dementia. Many preclinical and clinial studies provided steady

experimental data to increasingly support the hypothesis. Today, the presence of Aβ

deposits or senile plaques on the hippocampus and the overlying cortical regions is

considered as one of the definitive features of AD [41, 42]. The current strategies for

AD treatment based on the amyloid hypothesis are mainly targeting the inhibition

of Aβ aggregation [43].

Although many studies tried to confirm Aβ’s central role in AD pathogenesis,

the exact mechanisms are still unclear [36, 44, 45]. A huge number of studies showed

inconsistent evidence [46] against the amyloid cascade hypothesis, which denies the

direct correlation between Aβ accumulation and neuronal loss and cognitive decline

[47]. The amyloid hypothesis was the most tested one for AD. Percentage of clinical

trials based on this hypothesis reached to 22.3% in 2019 [43]. Sadly, there is still

no significant progress on clinical trials related to amyloid hypothesis to the present

day. The reasons for these controversial results are still under debate [48, 49]. One

of the explanations is that this hypothesis ignores physiological functions of Aβ.

The presence of the peptide is throughout the lifespan, and it has been found in all

vertebrates examined up to 2018 [50]. Also, its molecular sequence shows a high

degree of conservation. A variety of physiological roles of Aβ peptide have been

proposed including antimicrobial properties [51], helping recovery from brain injury

[52], prevention of blood-brain barrier leakage [53] etc. Further details can be seen in

current reviews [50,54]. Some valid evidence demonstrated the biological significance

of Aβ peptide and its possible involvement in the protection and repair of central

nervous system, which makes the relationship between the peptide and AD even



6

more complicated.

1.3 Amyloid-β Peptide

As Aβ peptides are the major components of senile plaques and the complicated

correlation between the peptide and AD, it is essential to understand their structure

and biochemical properties at the molecular level. Aβ, a 39- to 43- residue peptide, is

produced by the sequential proteolytic cleavages of a much larger protein, the amyloid

precursor protein (APP) [55]. The most abundant species are Aβ40 and Aβ42, and

the latter one is considered to be more neurotoxic. The sequences of Aβ40 and Aβ42

are shown in Figure 1.2. The peptide has an intra-membrane region ranging from

G29 to V40 or A42 with all hydrophobic residues, which also reduces its solubility.

Histidine 14 shows significance in formation and stabilization of a loop region in

the Aβ42 fibrilization [56]. Six glycine residues of the chain have been reported to

be crucial for its chemical and physical properties [56, 57]. Particular regions on

the 42-residue peptide ((16KLVFFA21 and 37GGVVIA42) are described as two key

amyloid-forming segments [58]. Despite the large number of studies on Aβ fragments

that contribute further complex but sometimes inconsistent data on its properties, a

more accurate and detailed model of the full-length peptide is needed.

1.3.1 Amyloid Precursor Protein

APP is a 770-residue post-translationally modified transmembrane protein with a

large extracellular domain and a short cytoplasmic domain. It contains several con-

served motifs in both the extracellular region and intracellular domain. Interestingly,

the Aβ sequence is not conserved and unique to APP. Two pathways have been de-

scribed in the reaction of proteolytic cleavage of APP by various enzymes (see Figure

1.2). In the dominant non-amyloidogenic pathway, α-secretase cleaves in the middle of

the segment containing Aβ of the extracellular domain, releasing the N-terminal frag-

ment into the medium. The C-terminal fragment that remains anchored to the mem-

brane, is further cleaved by a γ-secretase complex inside the transmembrane domain,

producing APP intracellular domain and Aβ fragments (Aβ(17-40), Aβ(17-42)). In

the amyloidogenic pathway, APP is cleaved by a β-secretase in the extracellular re-

gion at a specific position followed by a second cleavage within the transmembrane
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. KM DAEFR HDSGY EVHHQ KLVFF AEDVG SNKGA IIGLM VGGVV IA TVIV
1 5 10 15 20 25 30 35 40 42

671 672 687 688 713 714

Inside membraneExtracellular region
outside membrane

β-secretase α-secretase γ-secretase

Figure 1.2: The amino acids sequence of Aβ (upper numbers) and the section of the
APP (lower numbers). Negatively and positive charged residues are red and blue,
hydrophobic residues are shown in green and other residues are in black. Residues
that are out of the regions of Aβ are coloured in brown.
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domain by γ-secretase, yielding a mixture of Aβ components. Among them, Aβ40

and Aβ42 are the dominant species. Compared to Aβ40, Aβ42 is less soluble and has

higher propensity to self-aggregation.

1.3.2 Amyloid Aggregation

Although proteins fold into 3D structures intrinsically, the process is complex and sus-

ceptible to errors [59]. Generally, misfolded or partially folded proteins are degraded

by quality control systems (Figure 1.3) such as the proteasome and autophagy [60,61].

Dysfunction of this system or overloading caused by the protein aggregation leads to

protein misfolding and further fibrilization in turn. This phenomenon is much more

widespread in medicine and biology. Some amyloid aggregates were reported to de-

liver physiological functions in particular biologicial systems in bacteria, plants and

mammals [62]. Our interests in this area arise from considerations that understand-

ing protein misfolding and aggregation may (1) help to elucidate the physiochemical

features of proteins folding; and (2) is expected to shed light on the pathogenesis of

neurodegenerative diseases.

Two mechanisms are usually proposed for amyloid aggregation: nucleated poly-

merization [63,64] and nucleated conformational conversion [65]. Their common fea-

tures on aggregation pathways are described in three phases: a lag phase, an expo-

nential growth phase and a plateau regime (see Figure 1.3). The formation of a stable

oligomeric nucleus that forms from misfolded monomers occurs during the lag phase.

To be specific, the misfolding of Aβ usually refers to a conformational transition

from membrane-bound α-helix structure to an aggregation-prone-state with largely

β character [66]. Chapter 3 focuses on investigating this mechanistic pathway of con-

formational conversion at a molecular level using MD. The kinetics of the lag phase

depends on the monomer concentration and the presence of aggregation nuclei. The

formation of the nuclei is thermodynamically unfavourable and thus a rate-limiting

step. The assembling rate starts to increase exponentially once stable oligomeric

nuclei are generated. The system enters the saturation phase if the monomer concen-

tration becomes significantly low. Addition of nuclei seeds in the rate-limiting step

can shorten the lag time and activate the production of mature fibrils.

Previous proposed kinetics models [67–69] represent the aggregation process with
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Figure 1.3: Proposed mechanism of amyloid aggregation includes three phases: a lag
phase starts with formation of oligomers from misfolded monomers, a fibril elongation
phase and a final plateau with highly ordered structured fibrils formed. A misfolded
protein can be (1) refolded or (2) degraded, or (3) undergo aggregation [76].
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a sigmiodal curve to model the observed growth of fibrils. These models provide a

molecular-level description including primary nucleation, secondary nucleation and

elongation. Primary nucleation involves only monomers in solution [70] or the at-

tachment of monomers on the foreign surface [71–73]. The nucleus is formed as a

secondary nucleation on the surface of the existing aggregates. This can be treated as

an induced-fit reaction that is catalyzed by the parent aggregate seed with the same

type of monomeric building block. Sometimes, a fragmentation step is also included

in these kinetics models, where fibrils break into pieces exposing more elongation

ends [74,75].

It is challenging to study the amyloid aggregation mechanism for a few reasons.

First, the formation of oligomeric nuclei limits the rates of fibrilization. Furthermore,

off-pathway non-fibrillar aggregates can be formed competing with on-pathway nucle-

ated polymerization [77,78], which is common in experimental studies. Also, amyloid

proteins are sensitive to different conditions (such as solution or surface system),

leading to slow primary nucleation.

1.3.3 The Definition of Aβ Misfolding

As previously stated, the amyloid cascade hypothesis overshadows the evidence that

Aβ serves several important biologcal functions. It is necessary to discuss the defi-

nition of Aβ misfolding in the context of this work. Many results show that Aβ has

antimicrobial properties. The monomer may capture and perforate microbes with its

hairpin loop, while oligomers and aggregates may behave as an extracellular trap to

immobile microbes. Fibrils could insert into cell membrane of microbes to create pas-

sages which allow solutes through the membrane, leading to the death of microbes [79].

Once the soluble monomer is released to the solution, in each stages of the following

conformational changes plus self-aggregation, a monomer or aggregated species may

serve as a particular function. Considering this, Aβ may not misfold but fold into

a variety of functional states with different physiological purposes. It is reasonable

to assume that the whole aggregation process described in the nucleated polymer-

ization model or the nucleated conformational conversion model can be treated as

a complete folding progression of the peptide with multiple biologicial functions. In

the rest of this chapter, misfolding will be mentioned to indicate the initial stages of
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a series conformational changes in the aggregation models. More details and a more

appropriated definition will be discussed in chapter 3.

1.3.4 Structure of the Aβ Peptide Monomer

NMR and MD simulations are two major techniques used for structural elucidation of

Aβ monomers. Neither Aβ40 nor Aβ42 crystallizes thus there is no X-ray structure

of the monomer in any form. In a membrane-mimicking environment, both of the

peptides show high proportions of α-helix conformation on the chain. Aβ40 displays

mainly an α-helix conformation over the chain with a loop between G25-N27 (PDB

ID: 1BA4) [80] (Figure 1.4A). The N-terminus is unstructured ranging from D1-H14.

Aβ42 adopts two α-helix regions over residues S8-V25 and L28-V38, separated by a

β-turn (PDB ID: 1IYT) [81] (Figure 1.4C). In water-containing solutions, there is a

loss of helical content on both peptides. Aβ40 forms a 310-helix between H13-D23 in a

complete aqueous environment with no structures neither on N- nor C-terminus (PDB

ID: 2LFM) [82] (Figure 1.4B). There is a decreased proportion of helix structure of

Aβ42 in 70% aqueous solution (PDB ID: 1Z0Q) (Figure 1.3.4D). The region between

W10-D23 remains in α-helix, while the portion between L34-G38 contains helical

structure in some degree. The turn region mentioned in the structure solved in

membrane-mimicking environment remains present [83].

1.3.5 Structure of Aβ Oligomers

Aβ oligomers are widely regarded as the neurotoxic and pathogenic form of Aβ

[84–87]. They appear as transient species that undergo conformational conversion

from their monomeric precursors to more massive and stable fibrils. Their hetero-

geneity in structure and size [88–90] and low kinetic stability make it difficult to

elucidate atomic-level structures and assembling pathways. Several structural mod-

els of Aβ oligomers have been proposed based on high-resolution X-ray crystallogra-

phy and NMR data. Tay et al. [91], Yu et al. [92] and Amhed et al. [89] agree in

a general sense with predictions of oligomer structures of Aβ42 with mixed parallel

and anti-parallel β-sheet structure using NMR, which is different from reported fibril

structure containing only a parallel β-sheet structure [93]. However, there are also
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Figure 1.4: A list of structures of full-length Aβ: A) Aβ40 monomer structure in
water-micelle like environment (PDB: 1BA4); B) Aβ40 monomer structure in pure
water (PDB: 2LFM); C) Aβ42 monomer structure (PDB: 1IYT) in a water/HFIP
mixture of 20:80 (v/v); D) Aβ42 monomer structure (PDB: 1Z0Q) in a water/HFIP
mixture of 70:30 (v/v). All structures are shown in cartoon representation using
Visual Molecular Dynamics (VMD) software version 1.9.4a37 [96]. The peptides are
shown in the orientation of N-terminus on the left and C-terminus on the right.
Secondary structure are shown in different colours, in which α-helix is in purple,
310-helix is blue, turn is cyan, and coil is white.
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inconsistency between their results. Yu et al predicts the parallel intermolecular ar-

rangement between β-strands formed on the region of L34 and V40, while Tay et al.

indicates the intermolecular contacts are between F19-I31. Amhed et al. proposed a

model for pentameric disc-shape oligomers without in-register parallel β-sheets. Some

oligomeric structures of Aβ fragments are also reported. Pham et al. [94] presented

the crystallography structure of oligomeric assemblies formed by the Aβ (15-23) pep-

tides. Spencer et al. [95] proposed oligomeric formation of Aβ(17-36) using X-ray

crystallography, including the forms of trimers and other higher-order oligomers.

1.3.6 Aβ Fibrils

Amyloid fibrils are the most abundant Aβ aggregates in AD brain tissues. They

are insoluble and non-crystalline, which makes them incompatible with X-ray crys-

tallography and solution NMR studies. In vitro, other techniques such as X-ray

diffraction [97], solid-state NMR (ss-NMR) [98], cryo-EM [99], transmission elec-

tron microscopy (TEM) [100], atomic force microscopy (AFM) [101] and MD simu-

lations [102] were used to study Aβ fibril structures. These have provided on both

structural insights and information on the mechanisms of stacking and elongation

pathways.

Early X-ray diffraction studies first found that amyloid fibrils contain cross-β

structures, which is the fundamental property for the future development of struc-

tural models [103–105]. In ss-NMR and other studies [106, 107], preliminary model

of Aβ40 fibrils were described as a U-shaped or hairpin conformation containing sep-

arated in-register parallel β-sheets. A hydrophobic core is formed between two β-

sheets. Four stabilizing factors support this topology; 1) hydrogen bonding between

the backbone amide groups of adjacent chains, 2) Van der Waal interactions between

top and bottom β-sheets within the hydrophobic core, 3) increased entropy of water

molecules from the hydrophobic effect around the β-sheets, and 4) intramolecular salt

bridge between D23 and L28.

Different Shapes of Aβ Fibrils

Three main types of fibril structures for Aβ42 are U-shaped, S-shaped and the most

recently published LS-shaped structures. By using hydrogen/deuterium-exchange
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Figure 1.5: Examples of three main types of Aβ fibril structures, which are (A)
U-shaped (PDB: 2BEG), (B) S-shaped (PDB: 2MXU) and (C) LS-shaped (PDB:
5OQV) structures. All structures are shown in cartoon representation using VMD
[96]. Secondary structures are shown in colours, in which extended-β is in yellow,
bridged-β is in tan, and coil is in white. Corresponding salt bridges are shown in
bond representation.
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NMR, Lührs et al. [93] reported a U-shaped topology containing two intermolecu-

lar, parallel, in-register β-sheets in regions of V18-S26 and I31-A42. Unlike the Aβ40

fibril structure, Aβ42 fibrils are stabilized by intermolecular domain swapping side-

chain interactions. This includes an intermolecular salt bridge between D23 and L28

(Figure 1.5A). Three recent NMR studies [108–110] have revealed an S-shaped con-

formation of Aβ42 fibrils with three intramolecular β-sheets (β1(12-18), β2(24-33)

and β3(36-40)) and an intramolecular salt bridge formed between L28 and A42 car-

boxyl terminus (Figure 1.5B). The LS-shaped structure was determined by cryo-EM

combined with ss-NMR, in which the N-terminus is L-shaped and C-terminus is S-

shaped [58]. The subunit conformation is stabilized by three hydrophobic clusters:

1) A2, V36, F4 and L34, 2) L17, I31 and F19, and 3) A30, I32, M35 and V40. It

contains three salt bridges between D1-L28, D7 and R5, and E11 and H6 and H13,

particularly the last one is considered to stabilize the kink in the N-terminus of the

β-sheet around Y10 (Figure 1.5C).

Different Arrangement of the Aβ Fibril Interface

The basic propagating unit of Aβ40 could be a dimer with 2-fold symmetry or a trimer

with 3-fold symmetry, while Aβ42 fibril usually propagates over a 2-fold symmetric

dimer structure. In the 2-fold symmetry, Aβ fibrils contain two symmetric strands

that form separate β-sheets in a double layered cross-β motifs. Both U-shaped and

S-shaped fibrils could be elongated on the basis on a planar 2-fold symmetric unit.

Paravastu et al. [107] elucidated that residue M35 plays an important role in stabi-

lizing the 2-fold symmetric Aβ40 fibril protofilament via the interaction along and

across the fibril axis (Figure 1.6A). Colvin et al. [108] and Wälti [109] observed dif-

ferent S-shaped Aβ42 fibril structures, however, both of them arrange in the 2-fold

symmetry. In the first structure, intermolecular contacts between Q15, L17, L34 and

M35 are considered to maintain the 2-fold symmetry (Figure 1.6B). The dimeric sys-

tem of the second structure is stabilized by two hydrophobic cores involves M35 and

either Q15 or L17 (Figure 1.6C). In the LS-shaped Aβ42 fibril structure, salt bridges

that are formed between D1 and L28 from different units stabilize its 2-fold symme-

try (Figure 1.6D). Different from the S-shaped 2-fold symmetric unit, the LS-shaped

system is not a true dimer. The dimeric interface is not planar but has a staggered
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Figure 1.6: Fibril structures that were solved in vitro, which are (A) 2-fold symmetry
of U-shaped (PDB: 2LMN), (B) 2-fold symmetry of S-shaped (PDB: 5KK3), (C)
another 2-fold symmetry of S-shaped (PDB: 2NAO), (D) 2-fold symmetry of LS-
shaped (PDB: 5OQV) and (E) a proposed structural model of 3-fold U-shaped. All
structures are shown in cartoon representation using VMD [96]. Secondary structures
are shown in colours, in which extended-β is in yellow, bridged-β is in tan, and coil
is in white. Corresponding key residue contacts are shown in bond representation.
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arrangement. One chain within the dimer rises along the fibril axis from the N- to the

C-terminus, generating grooves and curbs at the interface of the fibril ends. During

the elongation, each monomer binds alternatively to the curb, where two identical

binding sites would be seen. A 3-fold symmetric U-shaped Aβ40 fibril unit consists of

three β-strands that form separate β-sheets in a triangular cross-β motif. Paravastu

et al. [107] elucidated that this model contains an interior channel induced by G33

and G37, and M35 sidechains are observed to point to the center of the fibril (Figure

1.6E). Both in the 2-fold and 3-fold symmetry, the protofilaments could aggregate

along the fibril growth direction and have a helical symmetry along the axis.

Structure of Aβ Fibrils in Brain Tissues

As Aβ peptides aggregate into polymorphic fibrils in vitro and various forms of

oligomers and protofibrillar aggregates under different conditions, it is important

to clarify which structure develops in brain tissues. Lu et al. [111] investigated Aβ40

fibril structures derived from brain tissues of two AD patients using ss-NMR and

electron microscopy. Surprisingly, experimental data indicated a single predominant

Aβ40 fibril structure in different regions of the cerebral cortex from each patient.

However, one structure showed significant differences from the other. The structure

model based on Aβ40 fibril from patient I developed (Figure 1.7A), which implied the

protofilaments in 3-fold symmetry. Conformational features in this structure include

a twist at region of F19-D23 and a kink at G33 that allows sidechains of I32 and L34

to establish intermolecular interactions with different sets of Aβ40 molecules. Key

intermolecular residue contacts include F4-V24, R5-V24, D7-S26, S8-V24, A30-V40

and I32-V39. Compared to the 3-fold symmetric Aβ40 fibril structure in vitro, this

structure is apparently different and more complex. A recent cryo-EM study [112]

reported discovery of multiple species of Aβ fibrils (Figure 1.7B and 1.7C) that were

derived from brain tissues of three AD patients with a low ratio of Aβ42. All the

brain-derived fibrils are right-hand twisted and contain a similarly internal structure

of protofilaments. Their subunits fold in a C-shape that is in a different manner

compared to previous Aβ fibril structures identified in vitro.
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Figure 1.7: Two fibril structures that were observed in vivo, which are (A) 3-fold sym-
metry of Aβ40 fibril (PDB: 2M4J), (B) Cross-sectional density of fibril morphologies
I-III (gray) superimposed with the molecular model obtained with morphology I [112],
(C) A close look between the protofilament interface in morphology II [112]. Struc-
ture (A) is shown in cartoon representation using VMD [96]. Secondary structures
are shown in colours, in which extended-β is in yellow, bridged-β is in tan, and coil is
in white. Corresponding key residue contacts are shown in the bond representation.
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1.4 Molecular Dynamics

Molecular dynamics is a computer simulation method to explore conformational space

for macromolecules. It is a powerful tool for predicting structures of systems that are

hard to study with experimental techniques. The method has also been applied

to study other fundamental problems of in biochemistry, including protein folding,

protein-ligand binding and protein self-aggregation. Early studies on Aβ structures

focused on exploring the structural role of short Aβ segments. This was due to

the high computational demands to sample the conformational ensemble of the full-

length of Aβ peptide. Coarse-grained and atomistic models were used to investigate

the amyloid aggregation phenomenon because of the long timescale of the process.

With advance in fine-tuning calculations, parallelization, and widely availability of

graphical processing units (GPUs), the performance of MD simulations have been

largely improved. It is now possible to study the full-length Aβ peptide using all-

atom MD simulations in explicit solvent at various temperatures and pH conditions.

Furthermore, aggregation studies of around 20 amyloidogenic peptides by the means

of explicit solvent atomistic simulations can reach to micro- or even millisecond scales.

This work simulated a total of 15.2 µs of the Aβ42 monomer in different environments.

1.4.1 Challenges and Limitations of MD Simulations on Conformational

Space Exploration of the Aβ Peptide and Conformational

Transition in Amyloid Aggregation

It is challenging to explore the conformational space of monomeric and oligomeric Aβ

using MD simulations. First, it is not guaranteed that the broad conformational space

of the Aβ42 could be thoroughly explored via a single simulation [113]. Enhanced

sampling methods such as replica exchange molecular dynamics (REMD) will provide

new insights into the structural transitions of the full-length Aβ peptide. Also, these

simulations do not reproduce accurate and heterogeneous physiological conditions.

The heterogeneity of monomers and oligomers and polymorphism of fibril structures

are dependent on the conditions. In vivo, amyloid formation is affected by both

intracellular and extracellular environments, such as oxidative stress, fluctuations

in temperature, pH, and metal ion concentrations [114]. Third, the conformational
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conversion of Aβ operates on a huge range of length- and timescale [115], which is still

challenging for current MD simulation ability. For example, the aggregation rate of

the initial stages of oligomerization is on a second-level timescale. Lastly, the accuracy

of force fields for disordered proteins is less validated. The accuracy of classical MD

simulations exploring protein structure and dynamics depends on the accuracy of the

force field selected including parameters for protein, water, ions and other molecules.

Modern force fields have been refined on well-folded proteins, however, those for IDPs

are not well optimized due to the difficulty in obtaining experimental data and models

for these sytems. Previous MD studies reported diverse structural features of the Aβ

peptide because of different selections of structural input, applied force fields, and

water models. Several benchmarking studies of force fields for Aβ peptide or IDPs

are provided elsewhere [116–118].

1.4.2 Analysis of MD simulations

Many MD trajectory analysis softwares [119–121] were introduced for the last decade.

These softwares take advantage of techniques in math, statistics and computer sci-

ence to process large data sets, such as interactive computing [122], clustering meth-

ods [123], dimensionality reduction [124], network analysis [125], machine learn-

ing [126] and visualization [127]. However, very few trajectory analyses were de-

veloped specially for IDPs. In this thesis, we are focusing on capturing the major

structural characteristics in the folding of Aβ and discovering possible common struc-

tural features. We designed a protocol using clustering methods, principal component

analysis, and network analysis.

1.5 Recent Progress on MD studies Related to Aβ Monomer Structures

In this work, we use all-atom MD to study the full-length Aβ monomer (namely

Aβ40 and Aβ42) structures. MD studies of oligomer structures, fibril structures

and aggregation mechanisms will not be discussed, but some recent papers are listed

here [128–136]. Both classic MD and REMD are applied to investigate the monomer

structural features in different conditions (solvents, temperature and pH). REMD

is an enhanced sampling method, where several copies (replicas) of the system are

simulated in parallel using MD simulations at different temperature. The number of
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replicas depends on the total number of atoms present in the system including the

solvent molecules, ions and other molecules. Thus, the simulation can easily become

computationally expensive.

To understand the conformational conversion of Aβ monomers in misfolding, clas-

sic MD simulations were performed both in the aqueous and membrane environment.

Luttmann et al. [137] observed the formation of a turn region at A21-G33 and high

flexibility of the N-terminus in the aqueous environment. Xu et al. [138] studied

Aβ40 using all-atom MD in both aqueous and biomembrane environment. A helix

to coil transition was observed in the full conformational change of α-helix-β-sheet

in an aqueous solution. Four glycines (G25, G29, G33 and G37) were considered to

play important roles to convert the helix-conformation to β-sheet via a β-rich inter-

mediate. In the work combining REMD and dihedral principal component analysis

(dPCA), Xu et al. proposed the structural characteristics of the Aβ42 in an aqueous

solution. The chain contains 60%-80% coils, 10%-20% β-strands and a significantly

low content of helices (<10%).

The structures were compared under different environmental conditions. For ex-

ample, Flock et al. [139] researched on the misfolding of the peptide in the aqueous

solution at different temperature and pH, suggesting that at least one of the helices

of the membrane-bound structure was rapidly converted into a coil or β-strands.

The influence of various solvents on Aβ42 conformation was discussed by Yang et

al. [140]. Helix regions on the chain are maintained in the low polarity solvents

including hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE), while an

α-helix to β-sheet conformational change was observed in aqueous solution.

The dynamic behaviour of two termini of the peptide was also of interest to

researchers. Valerio et al. [141] proposed the importance of hydrophobicity, flexibility

and mobility of N-terminus for the monomer to remain in a misfolded form. Another

MD study revealed that the first 10 residues of N-terminus for both Aβ40 and Aβ42

are unstructured. A reduction of electrostatic repulsion between the two terminal

regions aids the formation of β-sheet of Aβ42 [142]. In an REMD study, Miyashita et

al. [143] discovered distinct preferences of the termini in different environments that

C-terminal region favours membrane and N-terminal region prefers aqueous solution.

The structural comparison between Aβ40 and Aβ42 were discussed in many



22

REMD studies. The two extra residues on the C-terminus of Aβ42 are considered to

be responsible for a higher propensity for aggregation. This was confirmed by Yang et

al. based on the observation of higher stability of the β-structures of Aβ42 compared

to that of Aβ40. Another extended REMD study performed by Sgourakis et al. [144]

provided an explanation that the C-terminus of Aβ42 is more structured than that

of Aβ40. In a recent study, Song et al. [145] revealed the heterogeneous conformation

ensemble of Aβ40 and Aβ42 at equilibrium by performing all-atom MD in water.

Two major conformations, collapsed and extended, were observed that both adopted

around 35% β-strand and about 60% unstructured coils.

Other studies also provided interesting observations on the monomer structures

under different circumstances. Rosenman et al. [116] explored the structural proper-

ties of Aβ40 using three force fields in water, which showed similar results. There was

also a proposed acceleration mechanism of the oligomer formation at the interface in

a combination study of MD simulations and NMR experiments [146]. They observed

that a stable attachment of the Aβ40 peptide on the hydrophilic/hydrophobic inter-

face. MD studies related to mutations on the peptide were also examined through

all-atom MD simulations. A detailed review is provided elsewhere [147].

Based on various MD studies of full-length Aβ monomer structures, some common

features can be summarized. First, there is a conformational conversion of α-helix

to β-sheet observed in the misfolding process. The N-terminus is usually observed

to be coils, whilst the C-terminus is more structured in an aqueous solution. The

two termini prefer membrane and aqueous environment respectively. The C-terminus

plays an essential role for the stability of the β-structure in water. To conclude,

the peptide chain could be treated as four regions, which are the unstructured N-

terminus (D1-Y10), a helical region (Y10-A21), a turn region (around A21-A30), and

a β-structured C-terminus (A30-A42).

1.6 Thesis Objectives and Organization

Proteins are fascinating molecular machines that are able to perform operations with

other biomolecules for basic cellular functions in the requirement of converting chem-

ical energy into mechanical work. To serve as protein machines, it was long assumed

that a protein is necessary to fold properly into a specific 3D structure. The fact
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that IDPs without unique structures play crucial roles in biological processes chal-

lenges our understanding of protein science. Misfolding diseases including numerous

neurodegenerative diseases and amyloidoses are considered to associated with the ag-

gregation of specific IDPs from their soluble functional monomeric states into stable,

highly ordered, filamentous amyloid fibrils.

Alzheimer’s disease is a debilitating neurodegenerative disorder without a known

clear mechanistic pathology or effective treatment. The most widely accepted amyloid

cascade hypothesis and various studies based on this hypothesis theory suggest that

there is a complex relationship between the accumulation of amyloid fibrils and the

disease. Many questions have been raised regarding the validity of this hypothesis

since there are more than 200 failed clinical trials over the past three decades of

drugs targeting this peptide. The molecular dynamics and structures of the peptide

itself as well as the process of aggregation remain unclear. Large-scale conformational

changes, structural heterogeneity and environmental sentitivity all contribute to the

complexity of this system.

Out of our interests of unique conformational behaviors of IDPs in various envi-

ronmental conditions, we use Aβ42 as the model to study IDPs via MD simulations.

First, we simulate the molecular mechanism of misfolding. Although the observation

of a conformational conversion was reported from both experimental and computa-

tional studies, there is a lack of explicit definition of misfolding and description of

the complete process in molecular details. Due to limited computational power and

the absence of a parent fibril, we designed a simulation model coined as a double-

ended search in Chapter 3 to recover the misfolding process. On the other hand, MD

simulations generate huge data sets so that a proper trajectory analysis specially for

IDPs with large-scale conformational changes (Aβ42 in this case) is required. I also

proposed an analysing protocol, combining network analysis, dimensionality reduc-

tion, clustering method and self-designed visualization to deal with the data from

classic and simulated annealing (SA) MD simulations. The results showed the pres-

ence of interconversion between collapsed and extended conformations and provided

identification of possible metastable species in the misfolding events. A summarized

mechanistic pathway is provided and key structural features are compared with pre-

viously published results.
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Considering the existence of heterogeneous monomer and fibril subunit structures,

we carried out MD simulations starting from two monomeric 42-residue structures

and 5 fibril subunits to sample the conformational space of the monomeric Aβ42.

To enhance sampling, we also performed replicas of several original MD simulations

and applied simulated annealing for two of the starting structures. According to a

total of 14 MD simulations, we observed the existence of consistent structural features

through all trajectories. In Chapter 4, we proposed that there are common geometric

features in Aβ42 even though the soluble peptide is intrinsically disordered. Principal

component analysis (PCA) was employed to visualize conformational landscapes and

free energy maps. By simulating the monomers in Chapter 3, we realized that the

dynamic conformational space of the Aβ42 peptide is large. Instead of creating the

landscape on one simulation, we combined all simulations to extend to a global view of

the conformational space. We also took advantage of multiple self-designed methods

for characterizing this space. Identified common structural features in water are

concluded in a comprehensive visualization on a proposed structural model.

In Chapter 5, we tested the environmental sensitivity of the Aβ42 monomer by

adding ethanol to the aqueous environment. In the modelling within the mixed

solvent, we observed different dynamic behaviors of the peptide on the ethanol/water

interface than that in pure water. The adsorption kinetics, dynamics and stability

were discussed, which prompts further investigations of Aβ42 interacting with the

fluid or membrane interface.



Chapter 2

Methods: Molecular Modelling to Molecular Simulation

2.1 Molecular Mechanics

One of the major challenges for studying chemical systems using computational mod-

els is the accurate description of the interaction between atoms and molecules. In

principle, quantum mechanics (QM) can be utilized to predict the time evolution of a

molecular system by solving the time-dependent Schödinger’s equation with no input

of empirical parameters. It is generally applicable to achieve first principle in the

description of the motion of atomic nuclei and surrounding electrons [148]. In reality,

this equation have never been solved exactly for any chemical systems except for the

hydrogen atoms. Although many QM-based methods have been developed [149–152],

the prohibitive computational costs dramatically limits the size of the system that

can be modeled.

Molecular mechanics (MM) allows the modeling of large biomolecular complexes.

It describes a molecular system using principles of classic mechanics, where a molecule

is treated as a collection of point masses (nuclei) connected by spings (bonds). This

method calculates the structure and energy of molecules based on nulear motions

because it is assumed that the optimum distribution of eletrons can be found once

the positions of the nuclei are located. Under this assumption, nuclear motions such

as vibrations and rotations are treated separately from electrons. The theoretical

basis of this assumption is rooted in QM via the Born-Oppenheimer’s approximation

that nulei are much heavier than electrons so that the mass of electrons is considered

negligible small. With this simplification, the potential energy surface of a molecular

system described by the potential energy function in MM is in its electronic ground

state. As electronics are not treated, MM is unable to describe the formation and

cleavage of covalent chemical bonds.

25
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2.2 Force Fields for Biomolecules

The potential energy function of MM is a combination of simple potential formulations

such as bond lengths, bond angle, non-bonded interactions. All of the contants in

these potential energy terms are obtained from data determined by QM calculations

and physical measurements of small molecules. A set of mathmetical expressions

together with empirical parameters is referred to a force field that provides a versatile

and efficient description of chemical systems. In the past half century, huge efforts

were devoted to build up databases of classes of molecules. A variety of force fields

have been developed in the modeling of macromolecules (see section 2.2.4). The

general form of the potential energy function employed in most MM force fields is,

Etotal = Ebonds + Eangles + Edihedrals + Eimproper + Enb + [special terms]. (2.1)

2.2.1 Bonded Interactions

The first four terms define the energy contribution from intramolecular interactions,

which represent the covalent bond stretching (Ebonds), bond angle bending Eangles),

dihedrals or bond torsion (Edihedrals) and the planar dihedral angles terms (Eimproper),

respectively. Considering that bonds are described as springs in a molecule, bond

stretching and bending are evaluated as harmonic potentials centered on equilibrium

values for lengths and angles by using Hooke’s law. Thus, Ebonds and Eangles can be

expressed as,

Ebonds =
∑
bonds

kb(b− b0)2 (2.2)

Eangles =
∑
angles

kθ(θ − θ0)2. (2.3)

In equation 2.2 and 2.3, b and θ represent the current values of bond lengths and

bond angles, while constants b0 and θ0 are the reference bond length and bond angle.

The parameters kb and kθ are the equilibrium force constants for bonds and angles,

respectively. The energetic contribution from both potential terms are calculated by

summing up all bonds and all angles in the system. The third sum of the expression
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refers to the torsion angle potential function. It models the presence of steric barriers

between atoms separated by 3 covalent bonds (1, 4 pairs), thus, it is important

for describing molecular conformations. Torsional angle rotations differ from bond

stretching and bending as its potential is periodic through a 360◦/n rotation. The

equation takes the form of,

Edihedrals =
∑

dihedrals

∑
n

kχ(1 + cos(nχ− δ), (2.4)

where χ is the dihedral angle, three parameters kχ, n, and δ are the height of the

rotational barrier, the multiplicity or the periodicity of the rotational barrier and the

reference angle (or phase angle). The value of n is usually between 1 and 4, and two

or more multiplicities are often used for a give torsion angle to improve the accuracy

in predicting the change in energy as the torsion angle rotation can be large. The

last bonded interaction term refers to “improper” torsions or out-of-plane-bending,

which function as correction factors for out-of-plane-deviations, for example, to keep

aromatic rings planar.

2.2.2 Non-Bonded Interactions

The energy term represents the non-bonded interactions in the potential energy func-

tion including predominantly van der Waals interaction energy and electrostatic in-

teraction energy. As it is assumed that a force field developed based on a small set of

molecules can be applied to predict a broader set of molecules with similar chemical

groups, the accuracy of modeling these interactions is particularly essential to deter-

mine the transferability of a force field. Non-bonded interactions act only between

atoms between molecules or separated by at least three bonds, and are pairwise addi-

tive. The total energic contribution from the non-bonded forces accounts for the sum

of all interacting atomic pairs in a system. The potential function of van der Waals

interactions is implemented as Lennard-Jones potential,

ELJ(r) = (
rmin
r

)12 − 2(
rmin
r

)6, (2.5)

where rmin is the most favorable distance between atoms. The first term of the

Equation 2.5 represents a repulsive force at the distance where the electronic shells
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overlap between an atomic pair. The second term represents the attractive force, also

refers to the dispersion force, which arises from fluctuations in the charge distribution

in the electron cloud. ELJ(r) is dependent on the distance r of the atoms. Both of

the effects become significant as r decreases, and decay to zero rapidly as r increases.

The electrostatic energy is the function describes the differences in the charge

distribution within a molecule, which accounts for the interations of polar and charge

groups. The energy contribution for the potential is modeled using Coulombic po-

tentials,

ECoul(r) =
qiqj
εr

, (2.6)

where qi and qj are the point charges of atom i and j, and ε represents the dielectric

constant. Coumloub potential is computed for all partial and fully charged atomic

pairs in the system. The accuracy of the electrostatic term is dependent on the

“correct” assignment of charges on each atom. However, it is a crude approximation

to consider atoms as fixed point charge since electrons delocalized around nuclei and

bonds.

2.2.3 Special Terms

Based on the general form of the potential energy function, a variety of special terms

can be taken into account. This differentiation in forms of equations can affect the

choice of force field and parameters for the systems of interest. For example, a cross

term that reflects the coupling between adjacent bonds can be found in the form of

Ecross(b1, b2) = Kb1,b2(b1 − b1,0)(b2 − b2,0). Other cross terms of bond-angle, bond-

torsion and angle-torsion can be introduced in a similar fashion. These energy terms

serve as corrections due to the intramolecular energy. These improve the accuracy of

reproduction of experimental measurements for model compounds. Hydrogen bond-

ing is an important type of electrostatic interaction and a powerful driving force for the

protein folding. Some early versions of force fields employed an extra term to improve

the accuracy of the hydrogen bonding energy [153]. However, it is well demonstrated

that hydrogen bonding can be usually reproduced by an adequate choice of van der

Waals parameters and electrostatic potential terms [153,154].
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2.2.4 GROMOS Force Field

In the need of extended scope of research, force fields have been developed to model

complex phenomena such as polarization [155–157], and to be applicable to a wider

range of environments such as lipid membranes [158], solid-state interfaces and metals.

Examples of force fields that have been designed for biomolecular simulations are

CHARMM [159–161], AMBER [162–164], GROMOS [165–169], and OPLS [170,171].

To improve the accuracy on diverse systems, some of these force fields have specialized

versions (e.g AMBER-99 [172], AMBER-03 [173], CHARMM-22 [161], CHARMM-

36 [174]; GROMOS-96 53A6 [169], GROMOS 54A7 [175]). GROMOS 54A7 was used

to perform MD simulations in this work.

The GROMOS (GROningen MOlecular Simulation) force field and the associated

biomolecular simulation package was developed by W. F. van Gunsteren and cowork-

ers (at Harvard University (USA), the University of Groningen (The Netherlands) and

the Swiss Federal Institution of Technology (Switzerland)) since 1978. The central

idea for the design and parameterization of GROMOS force field is to reach a balance

between an accurate description of the interaction energy as function of conformation

and a simplicity of the potential energy function. The initial parameters of bonded

interactions were obtained from crystallographic and spectroscopic data for small

molecules. Non-bonded interaction parameters were obtained from crystallographic

data and atomic polarizabilities and then refined to improve agreement with experi-

mental data. The parameterization of non-bonded interaction was further improved

by the application of statistical-mechanical approaches. Combination of experimental

and ab initio quantum-chemical data were used for the development of parameters.

With the increased computational power and in the accuracy of methods, the second

generation force fields such as GROMOS 45A4 allowed the calculation of liquid pos-

sible and condensed-phase thermodynamic data in the parameterization procedure.

The subsequent generation of the GROMOS force field parameter sets 53A5 and

53A6 was reparameterized against free enthalpies of hydration and solvation for the

purpose of simulating solvation effects and partition properties in the biomolecular

processes. Another aim in this reparameterization was to allow simulations of pro-

teins and lipid membranes using one force field. However, an underestimated stability
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of short α-helix was diagnosed in the validation of the force field, leading to a fur-

ther reparameterization of torsional angle terms against a large set of high-resolution

crystal structures for version 54A7. Modification in 54A7 refined secondary structure

elements stability, while retaining the agreement with other experimental data.

2.3 Molecular Dynamics

MD uses an algorithm to simulate time evolution of a set of interacting atoms under

the influence of a specific force field by solving the Newton’s equation of motion. QM

and MM give a mathematical description of chemical phenomena, while MD serves

as a tool to implement experiments, enabling us to observe biomolecular processes

and providing coarse information about microscopic states.

The fundamental elements for a MD simulation are (1) the forces on the particles

which can be calculated from the potential energy of interacting atoms and (2) solving

the equation of motion for the description of the system dynamics. In a system

composed of N interacting atoms, the potential energy is approximated by a MM

force field described above. The force on an atom i, at time t, is given by

~Fi = −∇iE = −∂V
∂~ri

, i = 1, 2, 3, ..., N, (2.7)

where E is the potential energy function, and the variable ri represents spatial

coodinates of the atom i. According to the Newton’s second law of motion, the

acceleration ~ai of the atom i is calculated from

~ai(t) =
~Fi
mi

, (2.8)

where mi is the atom mass. The velocity of the atom i at a subsequent time step

~vi(t+ δt) (usually on the order of femtosecond (fs)) is calculated from

~vi(t+ δt) = ~vi(t) +

∫ t+δt

t

~ai(t)dt = ~vi(t) + ~ai · δt (2.9)

Then the position of atom i at time t+ δt is given by

~xi(t+ δt) = ~xi(t) + ~vi(t)δt+
~ai(t)δt

2

2
(2.10)
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To describe the evolution of the system, the velocities and positions of sets of in-

teracting atoms (Equations 2.9 and 2.10) are approximated numerically at every time

step using a time-intergration algorithm. Various schemes of intergration are avail-

able, such as the leapfrog [176] and the velocity algorithms [177]. A small intergration

time step δt ranging from 1 to 4 fs is typically chosen to maintain numerical stability.

During the time interval, forces acting on each atom is assumed to be constant. Once

the positions and velocities are computed, atoms are moved to new positions and

subsquent interatomic forces are updated based on the new coordinates. This process

is repeated to obtain coordinates of the system at future time steps.

2.3.1 Temperature and Pressure

Temperature is a measure of the average kinetic energy of the particles in a system.

The instantaneous temperature of a macroscopic system can be calculated using the

kinetic energy of every atom. According to the equipartition theorem in a (classical)

many-body system at the thermal equilibrium, the average kinetic energy (K) per

degree of freedom is related to temperature (T ). This relation is expressed as

K =
1

N

N∑
i=1

1

2
miv

2
i =

3

2
kBT, (2.11)

where mi and vi are the mass and velocity of the atom i, N is the number of atoms

and kB is Boltzmann constant. This equation is used as an operational definition of

the temperature in MD. Temperature of a system is determined by the total kinetic

energy normalized by the number of degrees of freedom:

T (t) =
1

3
N

N∑
i=1

miv
2
i (t)

kB
(2.12)

Pressure P in a MD simulation is evaluated via an emsemble average of the mi-

croscopic or instantaneous pressure P [178]. In a system of N particles in a volume

V , the microscopic pressure is expressed as

P =
1

V

(
1

3

∑
i

mivi · vi +
1

3

∑
i

ri · fi

)
, (2.13)
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where mi is the mass, ri is the position, vi is the velocity and fi is the force acting

on particle i. Then, the macroscopic pressure P can be simply obtained as P = 〈P〉,
where the angular brackets imply a time or statistical average over the appropri-

ate ensemble. For the system with pairwise interaction, the pressure is commonly

computed by taking the average of an intantaneous pressure function, that is

P =

〈
NkBT

V
+

1

3

∑
i

∑
j<i

rij · fij

〉
, (2.14)

where T is the temperature, rij is an intermolecular vector between a molecular

pair, and fij is the corresponding intermolecular force. The first and second terms in

Equation 2.14 represent the kinetic energy of the particles and the residual contribu-

tion arising from the inter-particle interactions, respectively.

2.3.2 Statistical Ensemble and Averages

MD simulations generate information at the microscopic level (such as positions, ve-

locities, individual kinetic and potential energies) of a macroscopic system. Statistical

mechanics connects microscopic properties of a system to its macroscopic thermody-

namics quantities such as temperature, chemical potential and free energy. In a

physical measurement, macroscopic observables are determined from an average over

all possible microstates of a system, which is referred as the ensemble average. In a

MD simulation, a time-trajectory of positions of atoms in the system is generated,

thus, average quantities can be evaluated by performing time averaging along the

trajectory in phase-space.

MD simulations can be carried out either in the canonical (NVT) ensemble, which

is characterized by a constant particle number (N ), volume (V ) and temperature (T )

or in the isothermal-isobaric (NPT) ensemble, where the number of particles and tem-

perature are fixed values, while the volume is replaced by the average pressure (P ).

These thermodynamic variables can be treated as control parameters that specify

the conditions under which a MD simulation is performed. Simulations are typi-

cally carried out in the NPT ensemble since it is the closest to typical experimental

conditions.

The probability for the canonical ensemble to find a system in the microstate i,
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with an energy Ei is given by the Boltzmann distribution,

pi =
1

Z
e

−Ei
kT , (2.15)

in which

Z =
∑
i

e
−Ei
kT

. (2.16)

Equation 2.16 is the partition function of the system from which any thermody-

namic variable can be derived, such as the Gibbs free energy (G) for a system in the

NPT ensemble, and the Helmholtz free energy (A) for a system in the NVT ensem-

ble. The relative free energy ∆G is a central thermodynamic quantity in the field

of biochemistry. It measures the difference between two states of interest, indicating

whether a reversible biochemical process will occur spontaneously. For any two states

0 and 1, ∆G can be computed via their respective probability p0 and p1,

∆G = −kBT ln
p0
p1
. (2.17)

If a system is allowed to evolve for long enough time, the system will eventually

visit all possible states. Thus, the time average of any of its macroscopic property is

equivalent to its ensemble average. This is called the ergodic hypothesis which is one

of the fundamental assumptions in statistical mechanics [179]. In practice, this means

that if a fixed duration MD simulation explores all relevant regions of the phase space

using a feasible amount of computer resources, statistically-meaningful experimental

quantities can be estimated from this simulation.

2.3.3 Advanced Sampling Techniques and Simulated Annealing

A simulation timescale of at least micro/millosecond is required for a MD simulation

to adequately sample a potential energy surface, which is computationally expensive.

Also, transitions between conformations that are seperated by high-energy barriers

appear to be rare events in a classical MD simulation. Considering that biomolecular

systems generally have rugged energy landscapes, many important states may not

be visited by a typical length of simulation. It is more challenging to explore the

conformational space of a disordered protein due to the existence of a large number
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of conformational states in its ensemble [180]. To enhance the ability of MD sampling

and enable extended timescales, many advanced sampling techniques such as REMD,

metadynamics and simulated annealing (SA) are used for biomolecular simulations. A

brief review of SAMD is provided below. Detailed reviews of other enhanced sampling

methods are available elsewhere [181,182].

The SA algorithm [183] developed based on the Monte Carlo algorithm is a tech-

nique to find the minimum energy configuration of a system. The method depends

on an artificial temperature that decreases during the simulation. The algorithm usu-

ally starts the simulation at high temperature to overcome energy barriers followed

by gradually cooling to reach low energy regimes. It is common to combine the SA

simulation with an extended classical simulation at room temperature for the final

refinement.

2.3.4 Periodic Boundary Conditions

MD simulations are usually performed on finite size of systems containing a few

thousand and sometimes up to millions of particles. However, the behaviour of finite

systems is distinct from that of infinite systems. In a finite system, a non-negligible

fraction of particles in a MD simulation are located in the vicinity of the boundaries

of the simulation cell (or “box”). In order to simulate bulk systems, it is essential to

choose boundary conditions that mimics the presence of an infinite bulk surrounding.

Periodic boundary conditions (PBC) are a set of equations applied on a simulation

cell to mimic an infinite lattice of replicated cells. With PBC, only the particles

in the central box are modeled. When a particle leaves the simulation region, an

image particle will re-enter the box on the opposite side. This way, the surface

effects are eliminated and the system can be treatred as a bulk system. To avoid

counting duplicated interactions from multiple adjacent image cells, the minimum

image criterion is applied that among all images of particles, only the pairs with the

closest distances are considered as interacting pairs.
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2.3.5 Preparing a Biomolecular System for MD Simulation Using

GROMACS

GROMACS (GROningen MAchine for Chemical Simulations) is one of the widely

used open-source software package. It primarily aims to perform dynamic simula-

tions of biomolecules, which supports for different force fields and offers a toolkit for

preparation, calculation and trajectory analysis. A workflow is provided (Figure 2.1)

to illustrate a typical MD protocol.

 Initial coordinates (PDB)
❏ Structural data modification

GROMACS  initial setup
❏ Topology file created
❏ Simulation box defined
❏ GRO structure file generated

GROMACS solvation, adding ions 
and other procedures
❏ Water molecules added
❏ Sodium or chloride ions added
❏ Compounds of interest added
❏ Solvent mixture prepared

GROMACS energy minimization

NVT equilibration
❏ Temperature convergence check

NPT equilibration
❏ Pressure convergence check

MD simulation

Figure 2.1: The basic GROMACS workflow including additional procedures due to
various experimental purposes.

The initial geometric input of a known system (either from crystallography or

NMR) that can be prepared as Carterian coordinates or internal coordinates is usually

extracted from the PDB (https://www.rcsb.org/). This structural data may require

a modification. For example, missing residues are modelled into the protein or a

monomeric structure is abstracted from its polymer system. In the case of a crystal

structure, the information of hydrogen atoms is added to the model. A topology is
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prepared based on this input, which contains all the information required to describe

the system for the purposes of simulation including atom masses, bond lengths, bond

angles and charges. To create this topology, a force field and water model is then

selected. The next step is to define the shape and size of a simulation box.

To closely mimic in vitro conditions, the protein molecule is solvated with water

molecules and other compounds such as ligands, metal ions, and salt are added to

the simulation box. In Chapter 5, structures of Aβ monomers and oligomers are

prepared in various concentrations (v/v) of ethanol in water, wherein the number of

ethanol molecules under a certain concentration is calculated according to the total

volume of the generated simulation box. After inserting the target number of ethanol

molecules, water molecules are added to fill the rest volume of the box. Sodium or

chloride ions are automatically added to neutralize the charge of the system.

Energy minimization is usually performed on the system to remove any unusual

geometry that could have been introduced during the system preparation. Prior to

performing the production simulation, two stages of equilibration (NVT and NPT

ensemble) are applied to remove inherent bias in the initial structure in terms of

geometry and solvent orientation. An equilibration phase is conducted as a short

simulation to allow solvent molecules to relax around the protein and for the system

to reach thermal equilibrium. Typically, 50-100 ps of equilibration is sufficient to

reach a plateau at the intended value.

2.4 Analysis of MD Trajectories

MD simulations of an IDP such as Aβ result in geometric data sets in high dimen-

sionality due to the complex dynamics of and transient conformations explored by the

protein [184]. Some properties are hidden in the complexity of the data and difficult

to be characterized. Two statistical techniques, a clustering method (or community

detection algorithm) and PCA are used to resolve Aβ42‘s structural properties in

this work. Clustering groups members of the ensemble with similar topologies, while

PCA projects members of the ensemble into a maximally informative low dimensional

space.



37

2.4.1 Clustering with Community Detection in Networks

Definitions of Graph, Network, and Community Structure

In mathematics, a graph consists of a set of vertices that are connected by edges [185].

It provides a convenient way to represent various kinds of mathematical objects.

Graph theory is the study of graphs that allows us to model pairwise relations be-

tween objects. This concept is further applied to network theory that takes advantage

of graph representation to model and analyze the real-world structures [185]. Such

applications include a number of fields, and of particular interest here is the imple-

mentation in biological sciences, such as protein-protein interaction networks [186],

gene regulatory networks [187] and metabolic networks [188]. One of the most rele-

vant properties of real-world networks is the community structure or clustering that

the vertices are organized into communities or clusters, with higher density of within-

group edges than between-group edges [189]. Generally, a community or cluster can

be treated as an independent compartment of the structure, containing a group of

vertices sharing common features [190,191]. In this thesis, a conformation in the sam-

pled ensemble is abstracted as a vertice and a weighted edge represents a measure of

similarity. Two similar structures are connected by an edge with a highly weighted

degree, while dissimilar structures are weakly or not connected at all. Then, the

detection of the community structure depends on pairwise geometric similarities.

Community Detection Algorithms and Modularity

Identifying community structure is an analytic strategy for understanding different

structures of networks [192]. Community detection or clustering refers to the idenfi-

cation of community structure in a network. A detailed review on different commu-

nity detection algorithms, benchmarking and comparison is provided elsewhere [193].

The modularity-based algorithm proposed by Newman and Girvan [192] is briefly

described here.

A graph partition is the procedure to divide vertices into clusters, such that each

vertex belongs to one cluster. To evaluate the “goodness” of a partition, Newman

and Girvan proposed a quality function, the modularity index Q, to quantitatively

rank partitions based on their scores given by the quality function:
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Q =
∑
i

(eii − ai2), (2.18)

where eii is the fraction of edges that fall within the group, while ai =
∑

j eij is

the fraction of edges that connect to vertices in community i. Then, all the edges

that link between vertices without regard for their belonging communities, eij, equals

to aiaj. A large positive value of Q is expected to indicate a good partition, thus,

executing modularity becomes a problem of modularity maximization. In a network

of n nodes and m edges, the computational cost of this algorithm is O(m2n).

Newman proposed to use greedy optimization to maximize the modularity in-

dex Q. Later on, Clauset et al. [194] (i.e., fast-greedy) provided a better approach

based on the greedy optimization that lowers the order of cost to O(nlog n2). In this

algorithm, the modularity index is re-defined as:

Q = (
1

2m
)
∑
vw

(Avw − (
kvkw
2m

)δ(Cv, Cw)), (2.19)

where Avw is the weight of the edge between two vertices v and w, while kv =∑
v Avw and kw =

∑
v Avw represent the weighted degree of vertices v and w, defining

as the summary of edge weights that has vertex v and w respectively as an endpoint.

Cv and Cw are the communities that vertices v and w belong to. The δ is a binary

function where δ(Cv, Cw) equals to 1 if both v and w are in the same community, and

0 otherwise. This modularity index Q ranges between -1 and 1, and describes the

fraction of the within-community edge weights against the expected fraction of the

same edges from a randomized weighted network regardless of the partition. There-

fore, a positive value of modularity indicates there are more connections within the

community than one would expect by random chance [195]. In this work, this fast-

greedy approach [194] was utilized for community detection and we assume that the

maximal Q community assignment is the true clustering of these data.

2.4.2 Principal Component Analysis of MD Simulations

An MD trajectory for a system of N atoms can be treated as an ordered set of 3N -

dimensional vectors. To deal with these data, I reduce the description of the highly
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correlated molecular motion of 3N atomic coordinates to a smaller set to explain a

phenomena of interest.

Principal component analysis (PCA) [196] is a multivariate technique used to

systematically reduce the number of dimensions required to describe protein dynamics

through a decomposition process. To be specific, a multivariate data set (such as high-

dimensional MD data) has p correlated variables, r = (r1, r2, ..., rp). PCA reduces its

dimensionality by finding combinations of the data set based on variances to produce

a transformed set of variables, x = (x1, x2, ..., xp), that are uncorrelated. The indices

of ri are called the principal components (PCs). The calculated number of PCs

equals to the number of p original variables. Usually, only a few PCs will account for

most of the variation from x. Thus, the dimensionality reduction can be achieved by

choosing the value of m that is much less than p, where m is the number of PCs that

are necessary to involve the majority of the variation in the data set.

The linear transformation of the Cartersian coordinates of the structure to PCs

starts with the construction of the p× p covariance matrix. It is important to realize

that index selection (such as all atoms, all-nonhydrogen atoms or all Cα) in the

analysis biases PCA to extract information including large-scale motions. It was

reported that a selection of all-atom in the analysis for localized events may fail to

discover the localized motions [197]. In the case of a molecule with N atoms and

selection of all Cα, the covariance matrix is described as,

σij = 〈(ri − 〈ri〉)(rj − 〈rj〉)〉 , (2.20)

where r1, ..., r3N are the Cartesian coordinates of all Cα in the system. The angular

bracket represents the average over all sampled conformations. Diagonalization of the

covariance matrix yields in 3N eigenvectors (vi) and eigenvalues (λi) which describe

the modes of the collective motion and their corresponding amplitudes. By sorting

the eigenvectors in the decreasing order based on their corresponding eigenvalues, the

observed motions are filtered from the largest to the smallest spatial scales. The PCs,

Vi = vi · r (2.21)

are the projections of the data r = (r1, ..., r3N)T onto the eigenvectors. Assuming
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that large-scale motions are along the first few PC modes and the small-scale mo-

tions are along the rest PC modes, the largest part of the system’s fluctuations can

be described in a few PC modes having the greatest variances. Usually, the first two

or three PCs are sufficient to account for enough of the variance to describe the most

important motions of a protein, or the “essential dynamics” [198,199]. Furthermore,

the first two or three PCs may serve as reaction coordinate to represent the confor-

mational space of a biomolecular system (see Chapter 3). Specifically, this resulting

low-dimensional representation of the dynamics x is often utilized to construct a free

energy landscape (see Chapter 3 and 4), via,

∆G(x) = −kBT lnP (x), (2.22)

where kB is the Boltzmann constant, and P is the probability distruction of the

MD data along x. Characterizing the minima (which represents the conformational

states of the system) and connection between the minima (which represents the bar-

riers) reveals the metastable and transition states of the system, which allows us to

identify pathways of their kinetics in a biomolecular process [200–206]. This approach

has been useful in the study of structural dynamics of protein folding and for exploring

aggregation pathways of IDPs [207–209].

Besides Cartesian coordinates (cPCA), PCA of MD data can also be performed

on internal motions of the system, such as backbone dihedral angles PCA (dPCA),

Cα-distance-based PCA (CαPCA) and contact-based PCA (conPCA). A detailed dis-

cussion on using Cartesian coordinates versus internal coordinates to perform PCA

of a MD trajectory is available elsewhere [201, 210]. PCA based on internal coordi-

nates may provide better separation of internal and overal motion. It can also miss

relevant motions that correspond to major transitions in Cartesian space [211]. Many

components may be required in using dPCA, which leads to a high dimensionality of

the reaction coordinate to generate conformational space or energy landscape [201].

Cartesian coordinates PCA is, in general, convenient to use for the visualization of

the molecular structure. In the following chapters, cPCA is used to generated con-

formational space explored by the MD simulations.
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3.1 Introduction

Alzheimer‘s disease is a pathological neurodegenerative condition that is character-

ized by the aggregation of the Aβ protein into extracellular senile plaques and the

formation of intracellular neurofibrillary tangles. Aβ peptides exist in lengths varying

from 39 to 43 residues. They are produced by the intramembrane proteolytic cleav-

age of the APP in the amyloidogenic pathway by β- and γ-secretases. Among these,

Aβ42 is found to aggregate much faster and be more abundant in the brains of AD

patients [212]. In the past two decades, Aβ oligomers have been reported to possi-

bly be the primary neurotoxic agents rather than its monomers or fibrils [213–215].

Oligomers are produced via the rate-limiting primary nucleation process of the amy-

loid aggregation that monomers spontaneously self-associate into the oligomeric nu-

clei. The formation of new aggregates is mediated by the addition of monomers to

the template fibrillar species in the secondary nucleation phase. This monomer to

oligomer transition is thought to be initiated by the misfolding of the monomer to an

aggregation-prone conformation [216, 217]. As a result, both types of the nucleation

required a detailed investigation at the molecular level.

Compared to well-elucidated aggregation pathways of the Aβ peptide [218–220],

our understanding of the nature, structure, and dynamics of its misfolding process is

limited. It is difficult to study the misfolding mechanism with experimental methods

since the peptide aggregates rapidly and their fibrils are insoluble in water. This

encourages the application of simulation strategies, the MD simulation technique

in particular, to fill this gap by investigating these molecular events. Experiments

reported various oligomeric forms of the Aβ42 containing primary β-sheet-rich struc-

ture, and their β-sheet contents increase with higher-order oligomers [221]. NMR

studies suggested that Aβ fragments and monomers employed compact coil structure

or transient secondary structures in solution [222–227]. In the simulation the mis-

folding process of the Aβ42, it is expected to observe a conformational conversion of

the peptide into an intermediate, partially folded conformation that shows a propen-

sity for the formation of β-strands [228]. To identify this kind of conformation, we

proposed a simulation protocol called double-ended search, where two sets of MD sim-

ulations are performed from opposite ends of a monomer-to-oligomer/fibril pathway

towards a soluble monomeric intermediate state. To be specific, one MD simulation
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starts from the membrane-bound structure of the Aβ42, and the other is simulated

from one subunit of the fibril structure. It is expected that the former will mimic the

structural transition from an α-helical to a β-rich intermediate state A. In a fibril

structure, the stabilization of a subunit usually comes from the support from adjacent

units. By using a single subunit as the starting structure representing the other end

of misfolding, the sampling is expected to explore structures from fibril to the inter-

mediate state B, sharing some common topological characters with A. Therefore, the

goal is to reach convergence between MD simulations from two directions, adopting

structural ensembles that fulfill the above description of the intermediate state(s).

With the convergence, the route of the misfolding pathway can be explored. This

double-ended search lowers the computational expense by simulating along a specific

pathway, and allows us to search for the structure of aggregation-prone state without

a priori knowledge. Considering that the conformational space of monomeric Aβ can

be broad, with limited sampling ability, two SAMD simulations were also performed

starting from both ends. In the high temperature environment of an SAMD, the

system has an increased possibility to cross high energy barriers and explore a larger

conformational space. A slow cooling phase (400 ns in this case) was applied to allow

for a thorough exploration for the surrounding energy landscape since quick cooling

may trap the system in a sub-optimal local energy well [183,229].

Diverse conformational ensembles are generated from MD simulations of monomeric

Aβ in solution. One obstacle in interpreting these dynamical datasets is to find a

simplified representation to summarize transient structures. Here, an MD trajectory

is treated as a graph network made of n samples, where each sample structure is

abstracted as a node and each pair of nodes are connected an edge weighted by the

pair’s similarity. This graph-based representation reduces complex 3D geometric data

into an abstraction retaining only connectivity information (i.e., structural similar-

ity in this case). Such a technique has been applied in trajectory analysis of IDPs

to deal with charactization of large-scale conformational changes [184, 230]. A com-

munity detection method (or clustering method) is used to compare these different

conformations to partition structures into ”communities”, based on their structural

similarity. A general definition of a community is a group of nodes that share more

correlation within than with structures outside [231]. In this case, clustering classifies
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similar configurations into the same community. As MD sampling progresses accord-

ing to a Boltzmann distribution, lower energy substates will be more populated than

higher energy ones, leading to different sizes of communities. In general, clustering

gives a refined view of how an MD simulation samples particular energy wells.

Another obstacle is to decode the high dimensionality of the geometric dataset

of MD trajectories. To deal with this, PCA, a multivariate statistical technique, is

carried out in the Cartesian space (cPCA) to extract essential motions obtained from

MD simulations [198]. Here, we focus on the two most explanatory dimensions as re-

action coordinates for the conformational space construction. Although this simplifies

the representation of the conformational space, it is sufficient to reveal the direction

of ensemble-encoded conformational changes. On this PC space, MD trajectory data

are shown as compact and well separated subspaces. The resulting communities from

actual clustering are then projected onto this 2D space. An agreement between the

formation of subspaces and community structure is expected since this application of

PCA is considered as a useful means for visual community validation [232].

In this chapter, we explored the misfolding pathway of Aβ42 monomer using

classical and SAMD simulations. We implemented the double-ended search simula-

tion protocol, where MD simulations were performed from the opposite ends of a

monomer-to-oligomer/fibril pathway. The secondary structure profiles and ranges of

β-strands on the peptide in our simulations are in agreement with circular dichroism

(CD) estimations and NMR measurements respectively. Our simulation data showed

that the secondary structural transition may initiate from both terminal regions of the

Aβ42. Fast and frequent structural interconversions between collapsed and extended

states were observed on β-dominated monomeric structures from the current simula-

tions. PCA was used as a tool to construct the free energy landscape of monomeric

Aβ42, showing a possible pathway between the two ends of a simulated misfolding.

We further used a systematic approach to characterize major conformational states

of the whole space and intermediates along the pathway. Finally, we used a novel

method to show transitional motions between major states by discretizing along the

first two principal components, resulting in series of average structures that capture

the large-scale folding events in the misfolding process. Combining our results and

the previous knowledge, we propose a possible molecular description of the misfolding
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mechanism.

3.2 Methods

3.2.1 System Preparation

Two initial structures for the ends of the misfolding pathway were defined as the

membrane-bound, two-helix Aβ42 monomer (Sα-np), and the hairpin-shaped (or U-

shaped) subunit of Aβ42 fibril (S2β) (Table 3.1, Figure 3.1). The membrane-bound

conformation was based on the NMR structure of Aβ42 peptide (PDB ID: 1IYT) [81])

solved in the non-polar solution that mimics the lipid environment of membranes.

This structure is boomerang-shaped and consists of two helices, over S8-V24 and

K28-G38, separated by a 3-residue kink. The hairpin-shape subunit conformation

was extracted from the U-shaped Aβ42 fibril structure (PDB ID: 2BEG [93]) that

was solved in aqueous solution. One subunit structure presents a hairpin shape that

consists two β-strands connected by a loop region of N27-A30, where the β1 region

ranges from L17-S26 and the β2 region includes I31-A42. The disordered region (D1-

K16) of the N-terminus was added manually in PyMol [233] to create a full length of

Aβ42 (Table 3.1).

Table 3.1: Summary of MD Simulation.

PDB ID Modificationa Starting
Structure
Label

Classical
Simulation

Time (µs)(T)b Annealing
Simulation

Time (µs)(T)

1IYTc - Sα-npd MDα 1.2 (300 K) MDα-ann 0.4 (475 K - 300 K)
0.4 (300 K)

2BEGe Spliced
subunit,
N-terminus
added

S2βf MDβ 1.2 (300 K) MDβ-ann 0.4 (475 K - 300 K)
0.4 (300 K)

a Modification made for starting structures preparation b Temperature c [81]
d α stands for the helix-kink-helix structure, and np represents that it was solved in the non-polar en-
vironment. e [93] f 2β stands for its structure of 2 β-strands.

MD simulations starting from Sα-np and S2β were respectively named as MDα

and MDβ (Table 3.1, Figure 3.1). The expected simulating directions were: (1)

forward conversion – from the α-helix structure to an intermediate state of β-strand

dominated species and (2) reverse conversion – from the a single fibril subunit back to
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the intermediate state. Two SA experiments were labeled as MDα-ann and MDβ-ann,

respectively (Table 3.1, Figure 3.1).

3.2.2 Molecular Dynamics Setup of the Monomeric Aβ42

All simulations were performed with GROMACS 5.1.4 package [234], applying GRO-

MOS 54a7 force field [175] on the peptide and solvent molecules in an SPC/E [235]

water box. The following parameters were used for all simulations in this study un-

less otherwise noted. The leapfrog Verlet integration algorithm was used with an

integration time step of 2 fs. A rhombic dodecahedron box was used with periodic

boundary conditions. Long range electrostatics interactions were calculated by the

Particle Mesh Ewald summation with a Fourier spacing of 0.12 nm and a cubic in-

terpolation order [236]. Coulomb and van der Waals cut-off distances were both set

to 1.0 nm. Verlet cut-off scheme [237] was used to reach high performance when

computing non-bonded interactions. A maximum force less than 100 kJ mol−1 nm−1

was obtained for both systems at the end of the energy minimization. A 100 ps NVT

simulation was conducted at 300 K. The LINCS method [238] was used to restrain

all bonds for an integration step of 2 fs. The protein and the solvent were coupled

separately to a modified Berendsen thermostat called V-rescale [239]. Then, a 100 ps

NPT simulation was performed at 300 K to generated the initial structure for sub-

sequent production run. The Parrinello-Rahman barostat [240, 241] at 1.0 bar with

a compressibility of 4.5× 10−5 bar was used for pressure coupling. All parameters

in the production simulations were set to the same as the NPT equilibration. The

coordinates were saved every 20 ps for a total similation time of 1.2 µs.

3.2.3 Simulated Annealing of the Monomeric Aβ42

An 800-ns SA experiment was executed with the SPC/E water model for each starting

structure. For each simulation, energy minimization and equilibration was achieved

with the same settings in classical MD simulations described above before SA. Short-

range electrostatics and van der Waals were treated with a 1.0-nm cutoff. Long-range

electrostatics were treated via the particle-mesh Ewald algorithm with a 0.16-nm

Fourier spacing and a cubic interpolation. The systems were started at 475 K and

gradually cooled down to 300 K linearly for 400 ns at a cooling rate of 0.1 K per
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Monomer-fibril pathway

Figure 3.1: The double-ended search for the Aβ misfolding, where A, B, C and D
represent Sα-np, S2β, Aβ42 fibril and a collection of intermedate states.
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120 ps. This initial temperature (i.e., 475 K) was selected after a few tests. SA MD

simulations with this temperature allow structural rearrangment of the peptide within

100 ns. While systems were cooled down, Berendsen weak-coupling algorithm [242]

was used with a reference temperature of 300 K. The systems were kept at room

temperature after SA for 400 ns by using the V-rescale ensemble and Parrinello-

Rahman barostat. The second half of both simulations were performed with the

settings in classical MD simulations described above.

3.2.4 Trajectory Analysis Protocol

Clustering and Principal Component Analysis

Here we develop a trajectory protocol to characterize conformational ensemble into

groups of structures with unique structural features. The procedures are listed below:

1. MD simulations starting from both ends are combined. Abstract each configu-

ration as a shape using landmarks (Section Definition of landmark).

2. Align all structures in the combined trajectory (Section Structural alignment).

3. Create an all-versus-all similarity matrix (Section Similariy matrix).

4. Generate a network where each sample in the trajectory is a node and every

pair of samples is connected by a weighted edge (Section Graph abstraction).

The values of the weights are extracted from the similarity matrix.

5. Apply the clustering method to partition the defined graph to clusters based on

the structural similarity information (Section Community structure (or cluster-

ing optimization)). Define each inferred community with its major structural

characteristics by calculating the average structure.

6. Apply principal component analysis of Cartesian coordinates (cPCA) to con-

struct the conformational space formed by PC1 and PC2. Project the clustering

results onto the PC space to show the community structure (Section Principal

component analysis).

7. Construct the free energy landscape based on cPCA of the combined trajectory

(Section Free energy landscape).
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Definition of landmark– A landmark is a point of correspondence on a shape

object (protein structure in the MD trajectory in this case) that matches between

and within the population [243]. Each residue in the structure was assigned by a

landmark point. Here, a landmark is defined as the centroid position (x, y, z) of the

residue, i.e., the average Cartesian coordinates in three dimensions by calculating

over all the heavy atoms of the residue.

Structural alignment– Generalized procrustes analysis (GPA) is a statistical

shape analysis to provide optimized superimposition of two or multiple configurations

[244]. In this method, a set of shapes are superimposed by translating, rotating and

scaling one shape towards the other, where a shape is described by a set of homologous

landmark points. A partial GPA [245,246] was used to align the structures to remove

the interference of rotations and translations. In this approach, each structure is

abstracted as a shape by assigning landmarks to residues [247]. Each configuration of

landmarks are aligned to the initial estimated mean shape by translating and rotating.

A new calculated mean shape is taken for further registration, involving only rotation.

This process is iterated until the mean shape does not change significantly. The

implementation of the method was based on the R package shapes [248].

Input data– Each MD trajectory was sampled for every 20 ps. All 4 MD simula-

tions were added into a single file, resulting in a combined trajectory of 200,000 frames

in the total simulation time of 4 µs. GPA was performed over all 200,000 frames in

the combined trajectory. The first 100 ns of trajectory data in each simulation was

discarded due to large structural changes. In the consideration of efficiency, 1800

aligned frames (per 20 ns) were selected as input data for clustering and construction

of conformational space using PCA.

Similarity matrix– A pairwise distance matrix is created over all samples of

the combined trajectory. This distance is represented by a similarity metric that

is computed as per the equation R =
1

RMSD + 0.00001
(R-score), where RMSD

(root-mean-square-deviation of atomic positions) was calculated at Cα atoms of each

residue. The added term to the denominator is to avoid calculation errors in the

unlikely case of two identical structures due to the limited precision of the coordinate

system. This R-score is a measure of similarity between samples that a larger value

of the score indicates higher shared structural similarity of them.
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Graph abstraction– Assume that in a trajectory of n samples, each sample is

abstracted as a node. An edge is connected between each pair of nodes. Let G =

(N,M) be a complete and undirected graph, where N is the set of nodes representing

all samples, and M is a set of edges derived from the similarity matrix. Each R-score

pre-calculated in the matrix M is used to assign an edge weight to the corresponding

sample pair.

Community structure (or clustering optimization)– Within the defined

graph, the community structure is evaluated using a modularity-based algorithm fast-

greedy approach [194] due to its efficiency for detecting clusters. Communites in this

case are defined based on structural (vertices on the graph) similarity, which means

that groups of similar structures should be interconnected with higher weighted edges.

The community detection is resolved by finding a graph partitioning that maximizes

the modularity index (Q) [195] (Section 2.4.1). The number of communities is de-

termined by the optimization procedure with no requirement of a priori knowledge

about this information. The output is a series of community memberships in the order

of snapshot generation in the trajectory. Each trajectory sample obtains a member-

ship number that indicates the community to which it belongs. Structures within

a single community are considered to contain distinguishing and common structural

features. In formula, the community structure S is represented as a set of subsets

C = C1, ..., Ck, such that S =
⋃k
i=1Ci and Ci ∩ Cj = ∅ for i 6= j. Consequently, any

instance in S belongs to exactly one and only one subset. An average structure is

computed and displayed in cartoon mode (using PyMOL ver. 1.4.1 [233]) to represent

the common structural characteristics owned by a community.

Principal Component Analysis of MD Simulations– PCA was performed

on a data matrix converted from the Cartesian coordinates of structures in the tra-

jectory (i.e., cPCA). In the data matrix, each row is a structure and each column

corresponds to coordinates (x, y, z) of centroids of all residues in the structures, i.e.,

42× 3 columns in a row in this case. A linear transformation is used in the data ma-

trix to generate a 3N × 3N covariance matrix C. Diagonalization of the covariance

matrix generates 3N eigenvectors (vi)and eigenvalues (λi). The eigenvectors give a

vectorial description of each component of the collective motion with indication of the
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direction of the motion, while an eigenvalue for the corresponding eigenvector repre-

sents the amount of contribution of this particular component of the motion. Thus,

a time-independent low-dimensional conformational space of Aβ42 monomer can be

constructed by projecting the trajectory with the first two PCs. In this work, cPCA

was performed by using the pca function provided in the package Scikit-learn [249] in

Python 2.7 [250]. Visulization of inferred communities determined by the modularity

optimization was achieved by projecting the membership vector on the 2D cPCA

space.

Free energy landscape– On the basis of cPCA, the free energy landscape (FEL)

was constructed via

∆G(r) = −kBT [lnP (r)− lnPmax], (3.1)

where P is the probability distribution of the molecular system along the coordi-

nate r. Here, r is defined as count of points in each unit cell over the total number of

points, where the size of each cells equals to n×n that is resulted from the pixelation

of the 2D cPCA space. Pmax denotes the maximum of P (r), which is subtrated to

ensure that ∆G = 0 is the lowest free energy minimum.

Discretizing Principal Component Axes

As the first few PCs are expected to represent the essential motions in the trajectory,

it is plausible to hypothesize that the variance displacement along a PC coordinate

corresponds to a specific series of motion changes. To explore this intuitive meaning

of PC, on a constructed 2D PC space, the first two components were discretized

(DPC) into bins with an equal size (r) along the axes. Each bin area is represented

by an average structure (Sn). The set of average structures captures the major

conformational changes in a time-independent manner. Because r is an arbitrary

value, the number of discretized bin area i varies along the axis.

For example, Figure 3.2 shows the cPCA space that was generated based on the

combined trajectory of all four MD simulations, where the PC1 axis ranges between

−105.4, 140.65. In the case of r = 50, then i = 11, which means a total of 11 average

structures is calculated. With abstraction of the most covariance (25.17% in this case)

shown in PC1, the largest-scale of conformational changes of the Aβ42 monomer from
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Figure 3.2: An example of binning through PC1 axis resulting in 11 pieces in the
discretizing size of 50.
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the sampled area can be represented by these 11 structures instead of examination

of the whole geometric data set. To include more variances and visualize the changes

of smaller motions, one can discretize lower PC modes by using the same method.

In this way, a decreasing scale of motions may be separated by discretizing from the

highest to the lowest PC modes. DPC can be useful to abstract major motions from

the complex dynamics of an IDP without the consideration of timescale.

3.3 Results

3.3.1 Validation of the Conformational Ensembles

Two sets of simulations were generated for both helix-starting (i.e., Sα-np) and

hairpin-starting (i.e., S2β) structures, each containing a 1.2 µs classical MD sim-

ulation and a 800 ns SA simulation. Validation of the samplings was made through

comparison of the back-calculated three-bond J-coupling constant and chemical shifts

with the experimental measurements. Description of the method and the results of

the comparison are provided in Sections 4.2.3 and 4.3.1 of Chapter 4.

3.3.2 Secondary Structure Transition in Misfolding

The simulation data on the monomeric form of Aβ suggested large-scale conforma-

tional changes and an inherent propensity to form β-rich structures in water. The

DSSP (the dictionary of protein secondary structure) [251] algorithm was carried out

on the simulation data to determine the secondary structure content on Aβ monomers.

For each MD simulation, the proportion of helical and β structures in each sample

was evaluated over time (Figure 3.3). β-strands and coil/bend/turn are the dominant

secondary structure elements for all simulations, regardless of the initial structure.

The helix-starting structure undergoes a quick conformational transition in water,

whose occupancy of β-strand and coil/bend/turn are ∼ 30% and ∼ 60%, respectively

(Figure 3.3A). This result is consistent with CD estimations [252,253] and other mea-

sures from other computational work [145]. Higher occupancy of β-strands was shown

on the peptide in MDβ, which averages ∼ 57% (Figure 3.3C). In the SA simulations,

high temperature environment triggers vigorous structural dynamics of Aβ, which

can be seen from the significant fluctuation of β-content. Until they cool fully to the
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room temperature, there is a relatively stable conformation with ∼ 40% and ∼ 63%

of β-strand-content displayed on the peptide in MDα-ann and MDβ-ann (Figure

3.3B-D), resectively. Despite the effect of high temperature, Aβ42 monomer in the

hairpin-starting conformation comprises higher β-strand-content than the monomer

in helix-starting structure in an aqueous solution. The high percentage of β-structure

transformation was also reported from previous computational studies [145,254]. An-

other study also demonstrated the strong correlation between the high β-propensity

and aggregation rate of Aβ peptide [255].

A significant structural transition of Aβ peptide from α-helix to β-sheet is observed

in MDα (Figure 3.3A). The helical content drops from ∼ 67% to ∼ 10% at 0-200

ns and a further decreasing was observed at ∼ 980 ns. The retaining region of

helices sites at E22-I31, which usually displays as the U-turn shape on the Aβ40

and Aβ42 protofilaments [93, 106, 256]. In contrast, no structural transition from

β-sheet to α-helix was observed in MDβ in an aqueous solution (Figure 3.3C). A

rapid conformational transition was observed in SA simulation starting from Sα-np.

The helical content drops sharply at 475 K and remains less than 1% for most of

the simulation. This implies that high temperature induces the rate-limiting primary

nucleation process of amyloid aggregation, which is consistent with a recent study

suggesting high temperature may accelerate the formation of β-sheet on monomeric

Aβ [257].

The conformational transition to β-rich structure starts from the flexible termini.

In MDα, the starting structure Sα-np shows a two-helix conformation at regions β1

(L17-S26) and β2 (I31-A42) of S2β (Figure 3.1A). The β1 region loses its helical

content at ∼ 10 ns, while helix structures over the β2 regions last until 110 ns. Two

termini (D1-F4 (a1) and G38-A42 (a2)) form two β-strands and move towards each

other in the first 200 ns (Figure 3.4A1). An antiparallel β-sheet is formed between two

termini, acting as the interlocking teeth of a zipper, then collapsed into a core with

the middle of the chain (Figure 3.4A2). The structural stability improves due to this

formation of hydrophobic cluster, leading to a slower transtion to β-structure (Figure

3.4A4). A transient helical region forms between A21-I32 during 210-476 ns (Figure

3.4A3, A4). This is similar to Reddy et al. in that F19-V24 displays a propensity

to form α-helix [216]. Ball et al. also observed the existing helical conformation on
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Figure 3.3: The proportion change of helix and β in every sample in MDα (A), MDα-
ann (B), MDβ (C) and MDβ-ann (D). The purple line shows the change of helical
elements (α-helix, 310- helix and π-helix) in the trajectory. The cyan line shows the
change of β elements (isolated β-bridge and extended strand) in the trajectory.
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monomeric Aβ42, however, on different regions which are H14-L17 and I32-M35 [227].

The packed conformation of antiparallel β-sheet and the helix region is maintained

until the end of the simulation.

3.3.3 Conformational Interconversion between Collapsed and Extended

States

Two dominant conformational states, collapsed and extended states (CS and ES),

were observed in MDβ, MDα-ann and MDβ-ann. Previous studies [145,258] reported

similar observation on conformational equilibrium of monomeric Aβ40 and Aβ42 be-

tween the two states. Also, they provided detailed description of CS and ES of Aβ

monomers. Based on these, a CS is described as a highly dynamic globule with its

hydrophobic residues collapsed into a core, while polar and charged residues at the

surface are facing to the solvent. An ES displays a long, more stretched shape that

the main stablizing factor is the hydrogen bonds between β-strands instead of hy-

drophobic clustering. Representative conformations of the two states were shown for

each MD simulation in Figure 3.4. Hydrophobic clusters of collapsed conformations

are higlighted, where the most frequently observed hydrophobic residues forming the

hydrophobic core include F4, Y10, V12, L17, V18, F19, F20, L34, M35 and V36. This

result is in better agreement with the observation from Song et al. (i.e., F4, V18,

F20, A21, I31, L34 and V36) [145]) and from Bossie et al. (i.e., L17-A21) [259], but

some differences from Ball et al. that hydrophobic cluster is formed between K16-A21

and G29-V36 [227].

Between three simulations, CS and ES exhibit conformational heterogeneity in

ranges of β-strands and loops. Interestingly, a haipin-like conformation is observed in

the beginning of MDα-ann due to the formation of a β-sheet around the C-terminal

region. Two to four moving ranges of β-strands on the Aβ42 were observed from our

simulations (Figure 3.4), which matches the results from Liu et al. [260] and Ball et

al. [261]. Among them, three β-strands formed in both MDβ and MDα-ann, locating

at E3-S8 (b1)/ K16-A21 (b2)/L34-V39 (b3), and E3-H6 (c1)/V12-D23 (c2)/G33-

I41 (c3), respectively (Figure 3.4B, C). For MDβ-ann, four β-strands are shown on

the chain, involving F4-D7 (d1)/E11-H14 (d2)/L17-D23 (d3)/L34-V40 (d4) (Figure

3.4D). In contrast to U-shaped Aβ fibril [93], b2 and c2 are formed at locations closer
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to the N-terminus side comparing to β1 (L17-S26). Structures simulated from MDβ-

ann adopted two strands d2 and d3 around the region of β1. Regions of b3, c3, d4

and β2 (I31-A42) are located around the same area. All structures from the MD

simulations display wider loop regions (E22-G33, V24-I32 and V24-G33 for MDβ,

MDα-ann, and MDβ-ann) in comparison with Sα-np and S2β.

Interconversions between collapsed and extended conformations were observed in

MDβ, MDα-ann and MDβ-ann (Figure 3.4B-D), which matches the observation from

a previous computational work [262]. Our results revealed two types of the conversion

between two states resulting from distinct β-sheet arrangements. One type shows a

bending motion in the middle of the double-hairpin structure (Figure 3.4B, D), leading

to an open/close folding event. The other conversion is between the ES of a single-

hairpin-shape at the C-terminus with a long and mobile N-terminus (Figure 3.4C1),

and the CS of a second β-sheet formed on the side of the single hairpin that is between

β-strands on two termini (Figure 3.4C2). In this CS, the C-terminus orientation

adjusts its orientation to increase the possibility of hydrophobic interactions between a

loop region (G9-Q15) and itself, forming a dynamic core (Figure 3.4C2, C3). Another

stabilizing factor in this conformation is the salt bridge established between D23 and

K28. This is in agreement with NMR measurements in the U-shaped fibril structure

[93]. To show the frequency of the interconversion, the solvent accessible surface

area (SASA) of the residues that are most involved in the hydrophobic collapses was

computed for all samples versus trajectory time (Figure 3.5A-D), where CS and ES

conformations are observed below 7.0 nm2 and above 8.0 nm2. Typical conformations

of two states mentioned in Figure 3.4 are labeled. Compact conformations of the Aβ42

are observed to be favorable in solution in ranges of 300 K to 475 K (Figure 3.5E).

High temperature increases its structural dynamics, leading to higher frequency of

the conformational conversion, and larger probability to stay in ES (Figure 3.5C,

D). Compared to frequent interconversions in SA simulations, the open/close folding

event in MDβ showed a slow and gradual transitions between states (Figure 3.5B).

Simulations starting from Sα-np suggested the preference of staying in a collapsed

conformation, where the probability of CS and ES are ∼ 89.0%/∼ 0.3% and ∼
88.0%/∼ 2.8% for MDα and MDα-ann- respectively. Lower ratios of CS/ES (i.e.,
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higher probability staying at ES) are shown in simulations starting from hairpin-

starting-structure. These are ∼ 51.0%/∼ 15.0% and ∼ 47.0%/∼ 21.8% for MDβ and

MDβ-ann, respectively.

3.3.4 Construction of a Connected Conformational Space Based on the

Combined Trajectory

PCA was carried out to construct conformational space of Aβ42 monomer from Carte-

sian coordinates. Two classical MD simulations (CT1), classical MD simulations and

first half of two SA simulations (CT2), and all simulations (CT3) (Table 3.2) were

projected onto the plane formed by the first two components (Figure 3.6A, B and C).

Each simulation with the first 100 ns discarded were combined into a single file as the

input for PCA. To identify the possible misfolding pathway between two end-states,

part of the simulation data before steady states were included in the projection. Each

point in the landscape represent an individual structure. The gradient colors indicates

a third coordinate of simulation time.

Table 3.2: Summary of combined trajectories.

Combined
Trajectory

CT1 CT2 CT3

Simulations MDα MDα MDα
MDβ MDβ MDβ

MDα-ann (cooling)a MDα-ann (all)b

MDβ-ann (cooling) MDβ-ann (all)

a the cooling phase of SA simulations (or first 400 ns)
b the whole SA simulation (800 ns)

The projection of CT1 revealed a bi-partition of the conformational landscape

that structures from each MD simulation are located mainly on the positive and

negative side of the PC1 axis (Figure 3.6A). The division indicated that conformations

sampled from MDα and MDβ share less common structural characteristics along the

mean axes (Figure 3.6A) since PCA was able to separate the conformational states

with distinct features into different locations on the plane without a priori knowledge

of memberships. The exploration space sampled by MDβ occupied a broad domain

on the landscape plot. This may be explained by the occurrence of a large-scale

conformational change that was simulated in MDβ, while the helix-starting-structure

experienced dynamics due to the early formation of a compact structure (see Section
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3.3.2 and 3.3.3 for details). The combined 2.4 µs sampling is insufficient to cover the

full misfolding pathway.

The sampled space is connected between two ends by adding SA simulations into

the dataset. Figure 3.6B shows the projection of combined trajectory in the addition

of the first half (cooling phase) of MDα-ann and MDβ-ann (CT2). With the addition,

a subspace is shown on the blank area between MDα and MDβ, but closer to the

side of negative values along PC1 axis. This insertion bridges the disconnected space

without altering shapes of the PCA plot for MDα and MDβ. A 3-armed-shaped

conformational landscape is created by adding the rest parts of the SAMDs (CT3)

(Figure 3.6C). One effect of this addition is that the structural ensemble in MDα-

ann is pushed into a third direction forming a condensed area, while structures in

MDβ-ann stay at relatively the same location in the projection. The ranges of two

PC coordinates extends with the additions, while the summed variances of two PC

modes decreases from 64.08% to 48.10% and then to 41.24%. Our results show that

cPCA on CT2 gives a visual representation of the misfolding pathway of monomeric

Aβ42 from the double-ended search. On the other hand, cPCA of CT3 displayed the

existence of a third conformational state that is separated from the pathway. In this

application of dimensional reduction, increasing amount of geometric input leads to

less variance included in the first two PCs, however, cPCA managed to decode the

complex geometric information and revealed three subspaces of distinct orientated

conformational ensemble.

By performing cPCA of combined trajectories, free energy landscapes were con-

structed in −ln(density) of kBT units for identifying ensemble of similar structures,

where the cPCA space is pixelated by the value of n = 3 for CT1 (Figure 3.6D) and

n = 10 for CT2 and CT3 (Figure 3.6E, F). The cPCA landscape of CT1 exhibits

two minima, while in the cPCA of CT2, intermediate states appear that connect two

independent conformational states in the addition of SA simulations. Three major

minima and at least five intermediate states were characterized in the cPCA landscape

of CT3, where high energy barriers were identified on the conjunction area between

three minima. This minimal dimensionality of an FEL determined by the first few

PCs was reported to be valuble in describing protein folding dynamics [209]. A re-

cent computational study, exploring dynamics of Aβ(16-35) peptide, took advantage
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of this approach and with clustering methods revealed its structural interconversion

between multiple characterized metastable states [263].

Samples from MDα and MDβ were assigned into two communities in Figure 3.6G,

which is consistent with the disconnected sampled area of CT1 generated by PCA.

Clustering on CT2 also gives two communities, where structures of MDα-ann, MDβ

and MDβ-ann were arranged into the same community (cb1). This result is also

supported from the projection of CT2 using PCA that the samples from first half of

SA simulations show up closer to the MDβ subspace. Above this, a third community

(cc3) was identified from clustering of CT3 that is populated with samples mainly

from the second half of MDα-ann (Figure 3.6F). This result is in agreement with the

three dominant states identified from FEL of CT3. It seems that this application of

modularity based on RMSD focuses on characterizing major conformational states,

while intermediate states are merged into an adjacent minimum. The projection of

CT3 on the plane formed by the first three PC modes is also provided in Appendix

A.

3.3.5 Characterization of Conformational States along the Misfolding

Pathway

For each inferred community from clustering, an average structure is calculated to

visualize their main structural features (Figure 3.7B). The structures of the closest

RMSD against the geometric coordinates of average structures are also listed (Figure

3.7B). Community cc1 is represented by collapsed double U-shaped conformation in

the formation of two β-sheets which is similar to structure B1 and D3 in Figure 3.4B,

D. Representative of cc2 is a compact joint-ends conformation that is configurational

similar to A4 (Figure 3.4A). The newly formed helices on the C-terminal is shown in

the average structure, indicating its importance in formation of the hydrophobic core.

A collapsed conformation for community cc3 (i.e., as3) shares a similar topology to

C3 (Figure 3.4C). In this conformation, three major factors contribute to its stabi-

lization: hydrogen bonds between three β-strands, the hydrophobic cluster formed

between C-terminus and β-strands, and a salt bridge (D23-K28). All three structures

are compact due to a preference of Aβ42 monomers to stay in a collapsed state in
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an aqueous solution. According to SASA analysis in Section 3.3.3, collapsed con-

formations possesses higher stability with the formation of the hydrophobic cluster,

resulting in its longer residency time at both simulations, which agrees with results

from Song et al. [145].

The energy landscape of CT3 (all simulations) was characterized by 8 conforma-

tional states from a visual inspection. They were labeled from 1 to 8 in the order

of a decreasing population size (Figure 3.8A). The first 3 states account for ∼ 20%,

∼ 13%, and ∼ 13% of the total population, respectively. These are significantly

higher proportions than other states. Thus, these 3 states are considered to be the

major conformational states of the full sampling space. Their structural characteris-

tics represent the most important conformational ensemble sampled from MDβ (and

MDβ-ann), MDα, and MDα-ann, respectively. Compared with average structures

computed from the clustering result, their dominant structural features match with

structure 1-3. This agreement confirms the ability of the clustering method to capture

major conformational characteristics from an MD trajectory. The population sizes of

states 4-6 are relatively the same, which are between ∼ 4%-6%. Among them, state

4 was characterized from MDα, while both states 5 and 6 were from MDβ. States 7

and 8 comprise the lowest population (∼ 2% each) that are located between two ends

of the misfolding pathway.

Representative conformations labeled were computed for the 8 lowest free-energy

basins (Figure 3.8B). States 1, 5, 6, and 7 correspond to metastable conformational

states involved in the structural interconversion observed in MDβ and MDβ-ann that

are separated by small free energy barriers. Among them, structure 1 is in collapsed

shape; 5 and 6 are extended conformations; while 7 is the transitional structure

between them. It is interesting to notice that the C-terminus of structure 5 and 6

form β-sheets with the middle part of peptide on the opposite side. On the other

hand, a single energy well (basin 3) represents the collapsed conformations in MDα-

ann was characterized. The conformational space is connected from the 2D cPCA

representation, thereby only part of molecular details is shown. A longer time of

MD simulation initiating from helix-starting-structure or SA simulation starting at

a lower temperature (<475 K) is required to complete the mechanism in describing

further loss of helical content on the peptide.
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3.3.6 Exploring the Misfolding Pathway of the Aβ42 monomer Using

Dscretizing Principal Component

Using PCA and clustering, we characterized dominant conformational states; how-

ever, transitional structures between these states were not considered in the above

approaches. Characterizing transitional conformations could provide useful molecular

information about the Aβ monomer folding events. To do this, DPC is performed by

binning structures within tiles defined by a grid in the first two dimensions of PCA,

resulting in series of average structures. The application of this method ordinates

structural features across simulations in a time-independent manner. In other words,

one could visualize the coordination space in a simplified and ordered way.

To focus on the misfolding pathway, the DPC method is firstly applied on cPCA

of CT2 (see Section 3.3.4). Along PC1 (Figure 3.9 CT2), the binning spans from the

hairpin-starting-structure end to the helix-starting-structure end. The resulted aver-

age structures described the structural transitions from the joint-ends shape to double

U-shaped conformation (a10-a1) via three steps: (1) in the form of joint-ends struc-

ture, there is a gradual loss of helical content especially around the C-terminus; (2) an

extended conformation is formed with the complete loss of helices on the peptide; and

(3) the double U-shaped conformation is generated through the bending motion of the

extended conformation. The same method was performed along PC1 on the cPCA

projection of CT3 (Figure 3.9 CT3). From Sa1 to Sa4, the open/close folding event

is shown from the double-U-shape to the extended conformation. Then, Sa4 to Sa6

display the transtion from the extended to the 3-β-strands structure due to the inter-

actions between two termini. Sa7 to Sa13 describe the conformational formation of

joint-ends structure. It is obvious that there is a discontinuity of structural transfor-

mation from Sa6 to Sa7. From the PCA projection of CT3, the conformational state

of 3-β-strands appear on the location where is in the middle of the pathway along

PC1. When binning through this area along PC1, the involvement of the major state

dilutes the density of the transitional structures showing transformation from the

helix-retaining to the β-rich conformations. Therefore, it is more appropriate to use

cPCA of CT2 to display the molecular mechanism of the misfolding pathway using

DPC.

We also applied this method along PC2 based on cPCA projection of CT2 and
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CT2: PC1

a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

Sa6

Sa7

Sa1 Sa2 Sa3 Sa4 Sa5

Sa8 Sa9 Sa10 Sa11 Sa12 Sa13

CT3: PC1

Figure 3.9: Two series of average structures are obtained from DPC along PC1 based
on CT2 and CT3, respectively. The thickness and the color range of red-white-purple
of the average structures suggest the extent of RMSD changes among structures in the
corresponding binning area. All average structures are presented with the N-terminus
on the left and the C-terminus on the right.



69

CT3, respectively. Both of them concentrate on describing the open/close folding

event that mainly separates the collapsed and extended conformations on the negative

and positive coordinates of PC2 (see Appendix B). As PCA has the ability to abstract

the scale of conformational changes in a decreasing order via PC1, PC2, and etc., DPC

on the first principal component show the largest-scale motion in the transition from

one collapsed conformation to another through extended shapes.

3.4 Discussion

We carried out a double-ended search simulation protocol for predicting the route

of the misfolding pathway of monomeric Aβ42 in water. A membrane-bound struc-

ture and one subunit of fibril were selected to represent two ends of a monomer-to-

oligomer/fibril pathway and used as starting structures for MD simulations. Distinct

conformational ensembles were characterized from different simulations. By perform-

ing the MD simulation on the helix-starting structure (or membrane-bound struc-

ture), the α-to-β conformational transition was found to start from the two terminal

regions. Aβ42 was demonstrated to be more neurotoxic than Aβ40 due to its higher

aggregation propensity [218, 264]. It was proposed that this tendency may be re-

lated to the reduced flexibility of the C-terminus [264]. It was hypothesized that the

Aβ42 has more structure C-terminus with the two additional hydrophobic residues

(I41 and A42) compared to the shorter alloform (i.e., Aβ40), whihch was observed

in REMD simulations [145, 225]. A recent study reported the last two residues of

Aβ42 give a lower barrier on the energy landscape to the primary nucleation path-

way compared to the states of Aβ40 [265]. From our results, the conformational

transitions on the termini lead to the formation of an antiparallel β-sheet, then trig-

ger the helix-starting-structure to collapse into a state in higher kinetic stability.

The transition rate slows down and maintains after the peptide’s collapse (Figure

3.3A). Taking all this into consideration, we propose that the conformational transi-

tion to β-structure on the terminal regions of Aβ42 give rise to exhibit a kinetically

long-preserved intermediate state having a distinct surface shape of the hydrophobic

cluster. In an aqueous solution, monomers at such state could interact with each

other or the oligomers through the surfaces of their hydrophbic clusters in the nucle-

ation process. Since various collapsed conformations were discovered from different
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experiments [144, 145, 227, 261, 266, 267], their unique characteristics may determine

the aggregated states, leading to distinct oligomeric and fibrillar conformations [68].

The obtained ensemble from the present simulations revealed two dominant con-

formational states, collapsed and extended conformations, which was first proposed

by Song et al. [145]. Structural interconversions were discovered between these two

states from MD simulations starting from the hairpin-structure or at high tempera-

tures. The major contributing factor to the dynamics of interconversion is thought

to be the formation of the hydrophobic core in the collapsed conformations, where

their loop/turn regions usually play an important role in this formation (Figure 3.4).

The preference of the peptide to form a core matches the observations from previ-

ous studies [145,258]. The higher probability of Aβ42 monomer staying at collapsed

conformation may result in higher chances for the nucleation staring from this con-

formation. Apart from these, no extended shapes were discovered in MDα. This

may indicate that the structural interconversion will only occur after a complete loss

of helices. The obtained extended conformations exhibit higher β-content, forming

sheets that are the featured structure in oligomeric/fibrillar states of Aβ42. Then, it

is proposed that collapsed conformations could initiate the primary nucleation phase,

while extended shapes may involve more in the stage of secondary nucleation. Some

critical characteristics may be maintained in the further formation of higher-level

aggregates such as the β-sheet arrangment.

A conformational equilibium between collapsed and extended double hairpin struc-

ture was characterized from the SAMD simulation starting from the U-shaped con-

formation. Intrachain β-hairpin structure of the monomeric Aβ42 is critical for Aβ

oligomerization due to such motif extends the hydrophobic surface that exposes to

the solvent [89, 92, 268]. In contrast, the hydrophilic N-terminus of the Aβ42 was

reported to be primarily unstructured in NMR fibril structures [93, 109, 110]. Ob-

servation of a double-hairpin conformation of Aβ42 monomer was reported by Das

et al. [269] that the formation of a second hairpin is attributed to the hydrophobic

clustering between the N-terminus (D1-R5) and the central region (K16-A21). They

illustrated an increased population of double hairpin structure in monomers similar

to those reported in wild-type Aβ42 oligomers can be achieved by the A2V mutation.

A significant population of extended double-hairpin motif were formed under the high
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temperature environment from SAMD simulation, while the equilibrium shifts to the

collapsed states after returning to the room temperature condition. Topologically, this

recurrent interconversion is caused by the loop region between two hairpins bringing

loosely packed hydrophobic core. Such equilibrium provides varied probability of vis-

iting both states that enhances the chance of each conformation to follow different

aggregation pathway [258,270].

PCA allows us visualize a diverse conformational space from the combined tra-

jectory data. Performing SA simulations are finding shared states on the 2D cPCA

surfaces, suggesting that there exists a pathway from the two ends of the misfolding.

Our results suggest that the double-ended search simulation protocol could be applied

to recover a biochemical pathway by simulating from opposite conformational ends of

the pathway. By using free energy landscape and clustering, three discrete conforma-

tional states were characterized on the whole space. Their agreement in characterized

conformational ensemble exhibits the ability of trajectory modularity (or clustering

optimization) to capture large-scale conformational changes from folding events of

IDPs and distribute samples into well-defined communities/minima that own com-

mon structural features, but with distinct characteristics from each other. Besides

lowest energy basins, intermediate states were characterized on the free energy land-

scape along the misfolding pathway. However, energy barriers between them may be

much higher than the values shown on the calculated landscape since some of the

intermedate structures were sampled from SA simulations. Thus, transtions between

these states may be slow at physiological temperatures. This is also the phenomenon

we observed from MDβ that conversions between collapsed and extended conforma-

tions were less frequent than in SA simulations (Figure 3.5B comparing with D). The

separate state diverged from the pathway (Figure 3.7community cc3) exhibits very

different conformations due to its unique β-sheets arrangements, but similar ranges of

β-strands. It is suggested that Aβ42 could be treated as a peptide chain of high flex-

ibility but with frequent emergence of stable low-level structures on the same regions

of residues (see Chapter 4 for details).

We were able to capture a major range of motions by discretizing PCs. PCA is a

powerful tool to organize geometric covariance in such a way that common features

appearing at different time points can be arranged in adjacent space. This particular
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way of organizing sampled structures permits identification of a series of continuous

major structural motions from a MD trajectory for equilibria visualized in a time-

independent manner. Average structures calculated from discrete groups along the

first two princial components suggest that the conformational changes follow two

large-scale transitions: the secondary structure transition and the interconversion.

Based on these, we propose the misfolding mechanism that includes at least 5 stages.

(1) First, conformational transition starts on the termini or C-terminus. A previous

CD study elucidated that a primary nucleation pathway may be initiated from the

Aβ C-terminus [271]. The kinetics of transition on this region may strongly affect the

nucleation rate. (2) A kinetically stable collapsed conformation is then formed, and

the primary nucleation may begin via the face-to-face stacking mode of hydrophobic

clusters owned by collapsed structures. The amphiphilic nature of Aβ42 encourages

their preferential to maximize the hydrophobic force between the interpeptide hy-

drophobic patches [226, 272]. (3) The monomers undergo further transition within

the collapsed shape until a complete loss of helices occurs. It has been suggested that

water molecules are depleted between monomers when hydrophobic attraction brings

them close enough [226]. Formation of inter-sheet H-bonds becomes essential at this

stage since hydrogen bonds are stronger than hydrophobic interactions. (4) Higher

β-content on the peptide leads to various conformations in different β-sheet arrang-

ments. (5) At least 2 types of structural interconversions can be shown in this stage:

firstly, collapsed and extended conformations with the same β-sheets arrangement are

converted to each other, and secondly, one collapsed conformation could transform to

another via extended shapes, leading to the structure of different hydrophobic collapse

or an alloform with a different type of β-sheet arrangment. At the last stage, both

primary and secondary nucleation processes can occur since the convertion between

collapsed and extended shapes opens up a diversity of oligomers and fibrils assembly

pathways. It is noted here that the conformational selection mechanism may only be

applicable in the secondary nucleation [273].

3.5 Conclusions

By performing MD simulations following a double-ended search simulation protocol,

we were able to predict the route for a plausible misfolding pathway starting from
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a helical structure and progressing to a hairpin structure. Discrete conformational

ensembles were characterized by construction of free energy landscapes using PCA

and trajectory modularity along the pathway. The later approach takes advantage

of network representation of trajectory structures and community detection on the

established network system. Both methods reach an agreement in capturing three

major conformational states, showing distinct structural characteristics. Our results

suggest the important role of both terminal regions of Aβ42 in triggering conforma-

tional transition and forming a compact fold that may initiate the primary nucleation.

Furthermore, structural interconversions between collapsed and extended conforma-

tions were observed for monomeric structures with higher β-content, showing higher

aggregation propensity that may involved in both primary and secondary nucleation

processes. Along the complete misfolding pathway shown on cPCA space, we applied

discretizing PCs following the first two principal components, uncovering transition-

ing motions between populated ensemble. Taken together, we proposed a possible

mechanism for misfolding and early stage nucleation pathways including five distinct

and sequential structural stages.



Chapter 4

Defining the Homogeneous Segments from the Hetergeneous

Tertiary Structure Ensemble of the Aβ (1-42) Peptide
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4.1 Introduction

Intrinsically disordered proteins (IDPs), polypeptides that lack stable secondary and

tertiary structure, comprise 25-30% of protein-encoding sequences found in the hu-

man genome. They are involved in many essential biological processes and human

diseases. Aβ peptide, one of the most studied IDPs, is the primary constituent of the

senile plaque that is widely accepted as a pathological hallmark of Alzheimer’s disease.

The formation of the senile plaque originates from the appearance of the misfolded

Aβ peptide. The complex molecular pathways involve self-assembly events from a

misfolded monomer to an insoluble fibrillar deposit made of layered cross β-sheets.

Among these aggregates of Aβ, oligomers have been determined as the most neuro-

toxic species due to their influence in inducing membrane disorder in the extracellular

space. The presence of intracellular Aβ oligomers can provoke events of cellular dam-

age including elevated endoplasmic reticulum stress, mitochondria damage, altered

proteolysis, etc [274–276]. However, characterization of these oligomeric species chal-

lenge the classical structural biology in the aqueous media due to their metastability

and polymorphism [277]. Although the application of experimental techniques such

as NMR [278] and cryo-EM [112] provided insights in understanding the fibril forma-

tion in different external conditions, development of analytical/computational tools

are still required for an accurate description of statistical properties of the Aβ pep-

tide [17].

74
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Alternative theories have been proposed to describe the structures of monomeric

Aβ species in solution at the early stage of the amyloid aggregation. An early study

suggested that the amyloid fibrilization may occur by joining two monomers with the

topology of two β-strands on the most hydrophobic regions (L17-A21 and A30-V40),

separated by a turn in the central hydrophilic region (E22-G29) [279]. Urbanc et

al. suggested the stacking pattern of an Aβ42 oligomer is formed via intermolecular

interactions between I31-A42 C-terminal regions and K16-A21 [280]. Kirkitadze et

al. and Fezoui et al. observed intermediary helical states in the initial lag phase

of the aggregation [252, 281]. Based on this, another mechanism was hypothesized

that on-pathway helices-containing oligomers, assembled based on partially helical

monomers, could transform into β-sheet-containing oligomers and fibrils. A more re-

cent MD study observed the occurrence of the helix-retaining region (V12-G25) on the

monomeric Aβ42 in water [282]. They further elucidated that the molecular details of

the association between two α-helical monomers is via hydrophobic interactions be-

tween central hydrophobic domains. An alternative mechanism was proposed from a

recent NMR study that the early-stage intermediate of an Aβ aggregate is formed be-

tween monomers in irregular structures without high occupancy of β-content through

predominanly hydrophobic driven self-interaction [226]. The conformational selection

mechanism was also widely accepted for the understanding of the early aggregation.

A computational study mimicked the Aβ oligomerization by performing the protein-

protein docking between a NMR-determined ring-shaped fibril structure and a char-

acterized monomeric conformation with the same geometry. This result implied that

the polymorphism of oligomers could stem from the self-stacking based on various

monomeric conformers containing distinctive structural characteristics [270,283,284].

From these studies, a logical assumption is raised that many amyloidogenic path-

ways could exist along the aggregation process starting from self-interaction between

Aβ monomers with the particular aggregation-prone structure, leading to structural

heterogeneity in oligomeric and fibrillar states through their specific stacking pat-

terns. Therefore, characterizing the structural diversity of the Aβ42 monomer in

the aqueous environment is important for understanding the molecular mechanism
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of the amyloid aggregation and their association with the AD pathogenesis. A typi-

cal NMR-determined helix-kink-helix conformation of the Aβ42 monomer (PDB ID:

1IYT), solved in a non-polar solvent, comprises four distinct regions: a charged N-

terminal region (NTR; residues 1-15), a central hydrophobic cluster (CHC, residues

16-21), a hydrophilic turn region (HTR, residues 22-29), and a mostly hydrophobic

C-terminal region (CTR; residues 30-42). Previous computational studies revealed

the existence of common local conformations on Aβ alloforms in the aqueous medium

(Figure 4.1) [43,116,144,145,225,227,258,261,261,266,269,285–289]. When projecting

the regions onto an alignment of per-residue secondary structure preferences of the

Aβ42 in water from previous simulations, particular characteristics on the similar lo-

cations are found on the peptide even through the two-helix conformation was solved

in a different environment. This inspires us to hypothesize that the Aβ monomer

could be considered as the molten globule IDP that predominantly shows compact

states but largely disordered architecture with frequent emergence of stable low-level

structures on the same regions of residues. We refer to these regions as structured

segments or segments in the following context. If the specific ranges of structural

segments can be identified, it is possible to categorize Aβ42’s various conformations

into architectures based on their interacting patterns between segments.

It is difficult to explore the vast, flat and weakly structured energy landscape of an

IDP. By choosing multiple relevant starting configurations, rather than a single start-

ing structure, one could achieve more thorough sampling with affordable runtime.

This strategy was applied in other studies for more exploration of protein conforma-

tional space using REMD [290, 291]. Previous computational studies characterized

alternative conformational states with modified initial structures by manually adding

the missing residues to NMR structures of Aβ fragments [116, 145, 262]. Inspired by

these studies, we prepared the starting configurations of MD simulations not only

based on NMR structures of the Aβ42 monomer but also on subunits taken from

various protofibrils solved in NMR and cryo-EM studies. Solid-state NMR (ss-NMR)

measurements revealed the formation of two parallel, in-register β-strands between

residues around CHC and CTR, separated by the HTR (PDB ID: 2BEG). Further

studies reported structural polymorphism within Aβ fibrils, such as a triple β-motif

(PDB ID: 2MXU) or a U-shaped fold containing 4 β-strands (PDB ID: 5KK3). While
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Figure 4.1: Per-residue secondary structure preferences of the monomeric Aβ42 in
an aqueous solution are shown from previous simulations, indicating similar local
conformations in solution. Divided regions on the peptide are named as NTR, CHC,
a turn region and CHC based on a two-helix NMR solved conformation in a non-polar
environment (PDB ID: 1IYT).
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residues around CHC and CTR are the major contributors to the fibrillar structural

stability, the NTR appeared to be mostly disordered from these experiments. How-

ever, recent experimental studies suggested that the NTR is an important stabiliz-

ing factor to help form more compact fibrillar folds. For example, an NMR and

cryo-EM study determined the strucuture of an alternative polymorphic fibril, show-

ing a double-horseshoe-like cross-β-sheet with the NTR partially structured (PDB

ID: 2NAO). A following cryo-EM experiment also observed that the NTR formed

β-strand conformation in the fibril structure, resulting in an overall LS-shaped back-

bone alignments (PDB ID: 5OQV). In this study, configurations of the monomeric

unit fetched from fibril structures mentioned above and two NMR Aβ42 monomeric

structures (PDB ID: 1IYT and 1Z0Q) were used as initial structures to perform MD

simulations. To obtain plenty of Aβ42 topologies for the precise segmentation and

geometric classification, we also used simulated annealing (SA) and replicas for MD

samplings. An SA simulation allows for effective global exploration on a rugged en-

ergy landscape by starting with a high temperature and cooling the system gradually.

A replica refers to a repeated simulation of the same system with identical param-

eters, while the only change is a randomly generated initial velocity according to a

Maxwell distribution.

In the current study, we tried to classify the heterogeneous tertiary structure

ensembles of the monomeric Aβ42 in an aqueous solution based on its secondary

structure arrangements. We implemented 15 classical and SAMD simulations using

the force field of GROMOS96 54a7 in an aggregated simulation time of 8.4 µs starting

from 7 different conformations of the Aβ42 monomer. Our simulation data showed

good consistency with the three-bond-J-coupling constants and chemical shifts re-

ported in previous experimental work. The secondary structure profiles and ranges

of β-strands on the peptide from the present simulations were in agreement with CD

estimations and NMR measurements, respectively. In the analysis of local structures,

A-hinge-B-hinge-C arrangements were observed across all structural ensembles, where

A, B, and C are structured segments on the peptide determined from the secondary

structure analysis. Tertiary structure analysis using the frequency contact matrix also

indicated that the peptide adopted mainly three regions, in agreement with A, B, and

C in lengths. Therefore, various conformations of the Aβ peptide can be described
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and categorized by intra-region interactions, resulting in four contact patterns. Our

results suggested that there exists consistent local conformational segments on the

intrinsically disordered Aβ42 peptide. These segments are used as building blocks

for the peptide’s topological construction, giving some frequently emerging motifs

coupling with tertiary-level flexibility. Our classification of Aβ monomeric topolo-

gies helps us discretize conformational variability of the peptide and matches these

structures to different assembly pathways in the early stage of the Aβ42 aggregation

proposed from previous studies in the literature.

4.2 Methods

4.2.1 System Setup

Seven starting structures in three conformations, helix, U-shape, and S-shape were

downloaded from the PDB [292] (www.rcsb.org) and prepared for MD simulations.

Descriptions on Aβ42 monomeric and fibrillar conformations were provided in Sec-

tions 1.3.4 and 1.3.6. The helix-starting conformations (Helix-np and Helix-pl) were

fetched from two NMR structures of Aβ42 monomers solved in non-polar (PDB ID:

1IYT) and polar (PDB ID: 1Z0Q) solvents, respectively (see Figure 4.2). The U-

shaped-starting conformation was obtained from one of the subunits of the NMR

solved Aβ42 fibril structure (PDB ID: 2BEG) (See Figure 4.2). Four S-shaped -starting

structures (i.e., S-shape1, S-shape2, S-shape3, and S-shape4) were prepared by slicing

subunits from three ss-NMR (PDB ID: 2MXU, 5KK3, and 2NAO) and one cryo-EM

(PDB ID: 5OQV) Aβ42 fibril structures. Detailed information including methods,

structural features, and experimental conditions of the original protein structures

were summarized in Table 4.1. Missing residues of the N-terminus were modelled

into each monomer taken from the fibril structure by using PyMol [233] to create the

desired length of 42-residue. Each prepared monomeric structure was placed in the

center of a rhombic dodecahedron box with box edge 1.0 nm away from the peptide.

Each dodecahedron box was solvated with water molecules using extended simple

point charge (SPC/E) model and neutralized by counterions (Cl− and Na+).
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1IYT

2BEG

2MXU 5KK3 2NAO 5OQV

S-shaped starting structures

U-shaped starting structures

Helix starting structures

(Helix-np) 1Z0Q (Helix-pl)

(U-shape)

(S-shape1) (S-shape2) (S-shape3) (LS-shape)

Figure 4.2: Starting structures setup for MD simulations, including 7 structures in 3
conformations.
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4.2.2 MD Simulations of Aβ Monomers

All simulations of 7 Aβ monomeric systems (see Table 4.2) were carried out with

GROMACS 5.1.4 package [234], applying the GROMOS96 54a7 force field on the

peptides and solvents [175]. Classical and SAMD simulations (MD1, MD4, MD6,

and MD9) implemented in Chapter 3, starting from Helix-np and U-shape, were

involved in the following trajectory analysis protocol. Each of these simulations were

duplicated for 400 ns with different initial velocities to assess reproducibility (MD2,

MD3, MD5, MD7, MD8, and MD10). Related simulation details were discussed in

the Method section of Chapter 3.

Simulations starting from Helix-pl and 4 S-shaped structures were performed for

400 ns, respectively (MD11-MD15). After solvation and addition of ions, the potential

energy of each system was minimized using the steepest descent algorithm for 500

steps. The leapfrog Verlet integration algorithm was used with an integration time

step of 2 fs. Periodic boundary conditions were implemented in x, y, and z directions.

The long range electrostatics interactions were calculated using the Particle Mesh

Ewald summation with a Fourier grid spacing of 0.12 nm (MD12-MD15) or 0.14

nm (MD11) [236]. Coulomb and van der Waals cut-off distances were both set to

1.0 nm. The Verlet cut-off scheme [237] was used to reach high performance when

computing non-bonded interactions. A maximum force less than 100 kJ mol−1 nm−1

was obtained for both systems at the end of the energy minimization. NVT ensemble

was conducted for 100 ps. The LINCS method [238] was used to restrain all bonds

for an integration step of 2 fs. The protein and the solvent were coupled separately to

a modified Berendsen thermostat called V-rescale [239] at 300 K. NPT ensemble was

then conducted for 100 ps as well. Pressure coupling was requested in this phase to the

Parrinello-Rahman barostat [240,241] at 1.0 bar with a compressibility of 4.5 × 10−5

bar. In the production run, all parameters were set to the same step of equilibration

and the coordinates of the system were saved every 20 ps.
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4.2.3 Prediction of NMR Observables from Simulations

Predicted J-coupling constants (3JHNHA) and chemical shifts from the MD trajectories

were quantitatively compared with corresponding experimental data for validations

of the obtained ensembles. Chemical shifts of Cα, Cβ, N, and Hα were calculated from

simulation coordinates, whereas J-couplings were back-calculated from the simulation

coordinates using the Karplus equation:

J = A cos2(φ− 60◦) + B cos(φ− 60◦) + C (4.1)

where, A, B, and C are semi-empirically determined parameters and φ is the

peptide dihedral angle. The STRIDE [293] program was used to predict the φ angles

for each residue of Aβ42 at every selected snapshot from each MD simulation and

the combined trajectory. Five sets of Karplus parameters [225, 266, 294, 295] (Table

4.3) were used for computational derived J-couplings in comparison with previously

published data [225,226,266,296].

Table 4.3: Different sets of Karplus parameters
used for J-coupling back-calculations.

A B C

Vuister and Bax (1993) 6.51 -1.76 1.60
Sgourakis et al. (2007) 7.70 -1.90 0.06
Vögeli et al. (2007) 8.40 -1.36 0.33

Rosenman et al. (2013)a 6.92 -1.62 0.55
Rosenman et al. (2013)b 6.88 -6.50 -3.53

a for Aβ-M35ox(S), where S stands for l-methionine-(S)-
sulfoxide b for Aβ42

Both RMSD and Pearson correlation coefficient (PCC) were used to examine the

correlations of these observables between experiments and the MD ensemble average,

and PCC is defined as:

PCC =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)σxσy
(4.2)

where x and y are data setes in size n with the standard deviation σx, and σy,

respectively.



85

4.2.4 Trajectory Analysis Protocol

Input Data

Each MD trajectory was sampled for every 20 ps with the first 100 ns discarded due

to large structural changes. All 15 MD trajectories were combined into a single input

file, resulting in a combined trajectory of 270,000 frames in the total simulation time

of 8.4 µs. All structures were aligned using generalized procrustes analysis (GPA)

[245, 246] to the estimated mean structure by rotating and translating, while scaling

is not considered in this case. The mean structure was re-calculated and updated

in each iteration of the alignment until the convergence when the mean structure

does not change significantly within an iteration. The process of this alignment was

implemented based on the R package shapes [248]. The aligned frames are used as

the geometric input for validation of NMR observables, secondary structure analysis,

RMSD changes against simulation time, and identification of contact patterns. For

the efficiency, 2700 aligned frames (every 20 ns) were selected as the input data for

the clustering and constructing the monomeric Aβ42 conformational space.

Secondary Structure Logo

A sequence logo is a graphical method for displaying patterns in DNA/RNA or pro-

tein sequence conservation, providing assistance in discovering and analysing these

patterns [297]. Based on this method, we designed a secondary structure logo for pre-

senting consensus and diversity of secondary structure elements on a protein chain.

Secondary structure profiles were collected from the combined trajectory using the

DSSP algorithm [251] for each structure. Each residue in the sequences was recoded

to a one-letter secondary structure classification. The secondary structure logo was

created from the collection of recoded sequences using a web server named WebL-

ogo [298].

Aggregated Start-Stop Matrix

A start-stop matrix is defined for recording regions with continuous and consistent

signals of α-helical and β-strand structures on a protein structure. This matrix is a
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symmetric binary matrix, in which its columns and rows are residue numbers. Con-

sidering a MD trajectory of n structures s1,..., sn, a start-stop matrix was created for

each structure as A1,..., An. Within a matrix Ax, if an ordered segment was detected

between residues i and j on structure sx, element A[i, j] returned 1, otherwise, it

returned 0, where 1 ≤ i ≤ 42 and 1 ≤ j ≤ 42 in this case. The aggregated start-stop

matrix Aagg is the sum of all start-stop matrices and expressed as:

Aagg =
n∑
x=1

Ax. (4.3)

A higher value of an element in Aagg indicates higher conservation of an ordered

segment of the protein in its conformational dynamics.

Clustering Analysis Using Different Similarity Criteria

In a graph representation, let each structure in the trajectory be abstracted as a node.

The graph was fully connected with weighted edges. The weight was computed via

a similarity metric,
1

RMSD + 0.00001
(R-score), where RMSD was calculated at Cα

atoms of each residue. The addition to the denominator was to avoid calculation

errors in the unlikely case of two identical structures given the level of precision of

the coordinate system. Community structure was detected using a modularity-based

algorithm called fast-greedy approach [194] on the defined graph, yielding inferred

communities or clusters of similar structures. An average structure was calculated

and displayed in the cartoon mode (using PyMOL ver. 1.4.1 [233]) to represent the

common structural characteristics owned by a community. Detailed description on

this clustering analysis is provided in the Method section of Chapter 3.

Clustering analysis based on inter-residue contacts was also carried out for com-

paring with the assessed community structure using the R-score. Instead of using a

set of atomic coordinates, the 3D structure of a protein can also be described by a

set of spatial interactions, such as residue-residue contacts. Assume that structures

si and sj in the MD trajectory are presented by contact matrices Mi and Mj. To

evaluate the similarity between them, Mi and Mj were converted into a 1D entry of

integers, named as string Si and Sj, respectively. A Hamming distance (HDSij
[299]
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was calculated between Si and Sj, which measures the minimum number of substi-

tutions required to change Si to Sj. The equation
1

HDSij

(H-score) was used as a

second structural similarity criterion instead of the R-score for the community detec-

tion on the defined graph, where a larger value of the score indicates a higher shared

structural similarity. Other procedures in this clustering analysis are the same as the

demonstration above.

Principal Component Analysis

This section is identical to the paragraph Principal Component Analysis of MD Sim-

ulations in Section 3.2.4 of Chapter 3.

PCA on the combined trajectory PCA was performed on a data matrix con-

verted from the Cartesian coordinates of structures in the combined trajectory. In

the data matrix, each row is a structure and each column corresponds to coordinates

(x, y, z) of centroids of all residues in the structures, i.e., 42 × 3 columns. A linear

transformation is used in the data matrix to generate a 3N×3N covariance matrix C.

Diagonalization of the covariance matrix generates 3N eigenvectors (vi) and eigen-

values (λi). The eigenvectors gives a vectorial description of each component of the

collective motion with indication of the direction of the motion, while a eigenvalue for

the corresponding eigenvector represent the amount of contribution of this particular

component of the motion. Thus, a time-independent low-dimensional conformational

space of Aβ42 monomer can be constructed by projecting the trajectory with the

first two PCs. In this work, PCA was performed by using the pca function provided

in the package Scikit-learn [249] in Python 2.7 [250]. Visualization of inferred com-

munities determined by the modularity optimization was achieved by projecting the

membership vector on the 2D PCA space.

Construction of the free energy landscape On the basis of cPCA, the free

energy landscape (FEL) was constructed via,

∆G(r) = −kBT [lnP (r)− lnPmax] (4.4)

where P is the probability distribution of the molecular system along the coor-

dinate r. Here, r is defined as the number of points in each unit cell over the total

number of points, where the size of each cells equals to n × n that is resulted from
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the pixelation of the 2D cPCA space. Pmax denotes the maximum of r, which is

substrated to ensure that ∆G = 0 is the lowest free energy minimum. Here, the 2D

PCA space is pixelated by the value of n = 10.

Definition of Contacts

The 3D structure of a protein can be expressed as a contact map, in which residue-

residue contacts (or contacts) are pairs of spatially close residues. The definition

of contacts are mainly using Cα-Cα or Cβ-Cβ distances with a threshold at 7 or 8

Å [300, 301]. However, the accuracy of contacts predictions to the true contacts are

relatively low. Here, we define that a contact between two residues exists if the

distance between them is equal or less than 4.5 Å for all atoms. Thus, a contact

map/matrix of a protein structure is a symmetric binary matrix, where rows and

columns are residue numbers. The matrix is in the form:

M =


a11 . . . a1n

a21 . . . a2n
...

. . .
...

an1 . . . ann


where n = 42 in this case, and each element equals to either 1 in the case of

existing contact between corresponded residues, or 0 indicating no contacts detected.

Such an approach is more accurate with the considerations of the distances between

every pair of atoms in two side chains, which is chosen according to the results of

previous studies [201,302].

Frequency Contact Matrix

A contact matrix describes the 3D protein structure focusing on its spatial interactions

between residues. The residues frequently involved in such interactions or contacts

make great contribution to the structural stability at the tertiary-level. To identify

these residues and their contacts, a frequency contact matrix was generated from the

combined trajectory. Considering a MD trajectory of n structures, s1,..., sn, a binary

contact matrix was created for each structure as M1,..., Mn according to the contact

definition (Section 4.2.4). Then, a frequency contact matrix is expressed as:
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Mfreq =

n∑
x=1

Mx

n
. (4.5)

The contact frequency Mfreq[i, j] between residues i and j equals to the aggregated

number of such contact divided by n, in which 1 ≤ i ≤ 42 and 1 ≤ j ≤ 42 in this

case. The value of Mfreq[i, j] ranges between 0 to 1, where 0 means that there

is no contact between corresponded residues across all structures, and 1 indicates

the constantly existence of such contact by definition from the present simulation

data. The objective of this approach is to visualize the frequency of contacts across

an ensemble of simulations. A previous study gave a similar definition of contact

probability [303]. This application in characterizing the interatomic interaction of Aβ

fibril models provided useful information of their assembly patterns [304].

Definitions of Salt Bridge (SB)

A rigorous definition of SB was firstly adopted based on Kumar and Nussinov’s paper

[305] for the consideration of SBs in good geometries, where a SB is formed when (1)

the distance of the oppositely charged functional group centroids is less than 4.0 Å,

and (2) at least one pair of side-chain carboxyl oxygen atoms and side-chain nitrogen

atoms between the functional groups is within a 4.0 Å distance. Such a restrictive

definition may underestimate the SB population due to the ignorance of a major type

of SB forming from the backside of arginine and SB flexibility of the Aβ peptide [306].

The application of this restrictive definition resulted in overall low populations of SBs

(see Appendix F Figure F.1). Thus, the definition of Barlow and Thornton [307] was

then used to detect all possible SBs with an acidic residue defined as interacting with

a basic residue if any N-O atom pair is within a 4.0 Å cutoff. Only results obtained

from the second definition is discussed in the current chapter.

Frequency Hydrogen Bond Matrix

The STRIDE method [293] was employed to assign backbone hydrogen bonds (HBs)

from the present simulation data, where the hydrogen bond energy was calculated

using an empirical energy function [308].
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A backbone hydrogen bond matrix was used to present the intramolecular hydro-

gen bonding pattern of a protein structure. In a MD trajectory of n structures s1,...,

sn, a backbone hydrogen bond matrix was generated for each structure as HB1,...,

HBn, where rows and columns represent the donor and acceptor residue indices, re-

spectively. Within a matrix Hx, if a HB was determined between the donor residue i

and the acceptor residue j on the structure sx, element HB[i, j] returns 1, otherwise,

it returns 0. Here, 1 ≤ i ≤ 42 and 1 ≤ j ≤ 42. The frequency hydrogen bond

matrix HBfreq was generated based on the aggregated hydrogen bonding matrices

and expressed as:

HBfreq =

n∑
x=1

HBx

n
. (4.6)

The value of an element HBfreq[i, j] ranges between 0 to 1, where 0 means that

there is no HB between corresponded residues i and j across all structures, and 1

indicates the constantly presence of such HB in the current simulations.

4.3 Results

4.3.1 Comparison of Calculated 3JHNHA and Chemical Shifts to

Experimental Values

NMR spectroscopy is a well-suited experimental technology to study structures and

dynamics of IDPs in vitro and in vivo. Typically, chemical shifts, residual dipolar cou-

plings, J-couplings, and NOEs are used to investigate the propensities of secondary

structures [309]. Validation of the simulation samplings was made by comparing

the back-calculated 3JHNHA values and chemical shifts for NMR measurements. We

performed a total of 15 classical and SAMD simulations of length 0.4-1.2 µs that

start from 7 monomeric structures of Aβ42, yielding various transient states in dis-

tinct conformations. To validate sampled conformational ensemble from different MD

simulations, we characterized 13 most populated transient states by applying com-

munity detection method (or clustering) and PCA on the combined trajectory over

all production ensembles.

J-coupling is a scalar splitting between two correlated magnetic nuclei mediated by
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the intervening electrons through bonds, which generally display a strong dependence

on the molecular geometry. The 3JHNHA, a three-bond J-coupling, correlates with

secondary structure in polypeptides. The measurement of 3JHNHA is described as

a function of backbone angle φ in the empirically parameterized Karplus equation,

which not only takes accounts of the dependence of the coupling on the intervening

torsion angle but the impact by electronegativity of substituents. Thus, the values of

these couplings can be back-calculated based on the ensemble average of the dihedral

angles derived from the simulation data. The magnitude of 3JHNHA provides a quick

estimation of secondary structure content that low values (< 5.5 Hz) indicate α-helix,

high values (> 8.0 Hz) are correlated with β-sheet, and in the range of 5.5-8.0 Hz is

associated with random coil or a mixed ensemble of states [310].
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Figure 4.3: (A) The back-calculated 3JHNHA constants from the coordinates of the
present simulations compared with NMR measurements from Roche et al. [226]. The
simulation data were plotted as blue circles, and the error bars denote the standard
deviations among characterized conformational states from 15 MD trajectories. (B)
Correlation of predicted chemical shifts from the Aβ42 production ensemble compared
to experimentally determined values from Wälti et al. [311].
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Our simulations showed a generally good consistency with a recent and earlier re-

ported experimental 3JHNHA values [226,266]. Different parameter sets were inserted

into the Karplus equation for examining the sensitivity of back-calculated J-coupling

constants (see Section 4.2.3). The best fitting set, Vuister and Bax’s Karplus equa-

tion parameter set [294], was determined by a lower RMSD (0.818 and 1.196 Hz)

and higher PCC (0.648 and 0.529) (Table 4.4). Our results had less or comparable

agreement with experimental data in contrast with previous computational studies

using other force fields [144,145,225,227,254]. As observed in Figure 4.3A on the left,

residues E3-R5, S8, Q15 at the flexible N-terminus, F20 at the hydrophobic patch,

D23, N27, G29 at the turn region and C-terminus A42 exhibited higher values and the

largest deviations from the experimental data. In the comparison with experimental

measurements from Rosenman et al. [266], the N-terminus region (A2-R5, D7, and

E11-V12) F20, S26, K28, A30, and A42 displayed the most differences. Combining

these, the high flexibility over the region of F20-A30 with multiple charges may cause

the disagreement between our result and other experimental data. The bias towards

high values on the N-terminus region and A42 may indicate a possible over-sampling

of β-conformations when using the GROMOS96 54a7 force field. Small differences of

PCC values were detected by altering different parameter sets listed in Section 4.2.3.

It was also suggested by Rosenman [312] that the Vuister and Bax parameters of the

Karplus equation may not suitable for the system of Aβ monomer (Aβ40 in their

case). The segments of E3-R5, V18-A21, M35-V36, and V39-A42 showed the largest

3JHNHA values, which indicates a higher tendency to form β-conformations. This gen-

erally matches observations from a recent computational study [254]. Large standard

deviations of computed 3JHNHA values from the simulation data were observed as var-

ious conformational states were characterized from simulations with different starting

point. This observation was also reported from a previous computational study us-

ing the GROMOS force field [145]. These variations may imply the conformational

plasticity of Aβ42 in the aqueous medium within the microsecond-scale simulations.

Rosenman et al. suggested that long timescale simulations are required for conver-

gence in conformational sampling of Aβ monomers, and further improvement in the

consistency of properties comparison with the experimental ensemble.
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Table 4.4: PCC and RMSD of calculated 3JHNHA and chemical shifts for the present
simulations compared to experimentally and computationally determined values.

NMR Observables RMSD(Hz/ppm) PCC

3JHNHA
Roche 2016 0.818 0.648

Rosenman 2013 1.196 0.529

Chemical shifts

Cα 0.501 0.996
Cβ 0.677 0.998
N 1.753 0.938
Hα 0.204 0.894

Chemical shifts are the most information-rich data obtained by NMR spectroscopy

in the structural study of IDPs. The observed chemical shifts of IDPs are the average

of interconverting conformers in the timescale up to milliseconds since IDPs exist as in-

terconverting conformers in solution which is also observed for Aβ monomers from our

result (see Chapter 3 Section 3.3.3) and previous computational studies [145,258]. In

this work, chemical shifts are predicted from the simulation data using a hybrid chemi-

cal shift calculator SHIFTX2 [313] that combines a structure-based shift prediction al-

gorithm (SHIFTX+ [314]) and a sequence-based alignment method (SHIFTY+ [315]).

These computational programs were paramterized based on a training set of ordered

proteins, thus, they may not be competent for the structural study of IDPs. Never-

theless, SHIFTX2 (or SHIFTX+) and SPARTA+ [316] are widely utilized and seem

to be feasible in the previously relevant computational studies [227,254,312,317].

Predicted chemical shifts yield a generally good agreement with the experimental

data. Figure 4.3B depicts the correlation between calculated chemical shifts from

simulated ensemble with NMR measurements from Wälti et al. [311] for Cα, Cβ, N,

and Hα. The performance of consistency was evaluated in terms of RMSD and PCC

(Table 4.4). The primary PCCs of Cα, Cβ and N are of the similar magnitudes as the

values reported in SHIFTX2 [313], with the exception of Hα. Compared with RMSD

or PCC cited in previous computational studies simulating Aβ using other force

fields [227,254,312], our results displayed a better or comparable performance. Taken

together, the good agreement with NMR observables indicated that GROMOS96 54a7

produces a reliable prediction of the conformational shape of the Aβ42 monomer.

Earlier studies suggested that both alloforms may adopt similar secondary structure

content in an aqueous solution [145, 226, 254, 312]. We then compared previously
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reported 3JHNHA and chemical shifts of the Aβ40 and Aβ42 with the present results.

Although the soluble Aβ42 was described as close to random coil in conformation

according to the previously cited literatures for experimental measurements [226,

311], significant local conformations were observed on the characterized simulation

ensemble. This controversial result, simutaneously showing a high consistency with

NMR observables, may indicate that the average of many simulation ensembles of the

Aβ monomer in solution is close to a random coil.

4.3.2 Secondary Structure

Distinct morphologies of the Aβ42 monomer in solution were noticed by simulating

from different starting points. A diversity of local structural features were assigned

using the DSSP algorithm [251]. Table 4.5 summarizes the average occupancies of

helices and β-structures of the Aβ42 in MD simulations from different types of initial

structures. Among them, we observed ∼ 8.7% and ∼ 24.3% of helices and β-content

on the monomer from MD1 (1.2 µs simulation starting from Helix-np), which is in

high consistency with the CD spectroscopy results [252, 253]. Higher helical content

were identified from replicated but shorter MD simulations (MD2 and MD3) starting

from the membrane-bound structure (Helix-np), which were ∼ 22.9% and ∼ 25.4%,

respectively. A decreasing proportion of helices on the peptide is expected with

longer simulation time in the aqueous medium. We observed ∼ 13.5% and ∼ 23.0%

of β-content of Aβ42 in MD2 and MD3, indicating alternative local conformational

features possessed in the sampled ensemble from different replicated MD simulations

with randomly generated initial velocities. The NMR structure Helix-pl (PDB ID:

1Z0Q) was solved in a polar solution (30:70 HFIP1/H2O), showing significantly re-

tained helices on the N-terminus. The structural ensemble obtained from the 400-ns

simulation starting from this Helix-pl (i.e., MD14) still showed a high proportion

of helices in an aqueous solution, which was ∼ 37.5%. Simulations (MD6-8 and

MD12-15) starting from sliced subunits (i.e., the U-shaped and S-shaped monomers)

exhibited a preference of β-structure in the secondary structure compositions with

a low or none helical content. A richer β-content of the monomer was observed

in MD6 with longer simulation time. Comparing among simulations with starting

1Hexafluoroisopropanol
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configurations taken from different fibril structures, our result suggested that the U-

shaped conformation may exhibit higher propensity of β-structure formation within

the same simulation time. High temperature condition of SA simulations increased

the efficiency of forming β-structure on the peptide, which was detailedly discussed

in the Chapter 3. Also, previous and present simulation data implied an increasing

proportion of β-content on the peptide with longer simulation time in the aqueous

environment [145]. Thus, higher occupancies of β characters are expected in longer

MD simulations starting from the Helix-pl and S-shapes.

Table 4.5: Proportions of the average secondary
structure content of the Aβ42 for MD simulations
starting from initial structures in different shapes.

Starting Structure MD Simulation (µs) Helix Beta

Helix-np
MD1 (1.2) 0.087 0.243
MD2 (0.4) 0.229 0.135
MD3 (0.4) 0.254 0.230

Helix-np (ann)a
MD4 (0.8) 0.001 0.362
MD5 (0.4) 0.001 0.532

U-shape
MD6 (1.2) 0.000 0.576
MD7 (0.4) 0.000 0.343
MD8 (0.4) 0.000 0.259

U-shape (ann)
MD9 (0.8) 0.000 0.531
MD10 (0.4) 0.000 0.438

Helix-pl MD11 (0.4) 0.375 0.053

S-shape

MD12 (0.4) 0.010 0.144
MD13 (0.4) 0.000 0.234
MD14 (0.4) 0.004 0.178
MD15 (0.4) 0.000 0.174

a SAMD simulation

The two most stated hypotheses on the formation of an Aβ oligomer are based

on the β-sheet stacking topology [129, 265, 268, 318] and hydrophobic interaction be-

tween compact helical monomers. Considering this, characterizing local conforma-

tional features of Aβ peptide becomes one of the most fundamental tasks in under-

standing the monomer-to-oligomer structural evolution. We observed the emergence

of β-conformation on similar locations of the Aβ42 monomer by comparing the most

abundant secondary structure profiles over residues with the results of previous com-

putational studies. To accomplish this, we generated a secondary structure logo by
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aligning the secondary structure profiles collected from each sample in the combined

trajectory (Figure 4.4). Each column of the logo shows the relative frequency of the

secondary structure element detected at per-residue across all trajectory samples in

a decreasing order. The total height of the column (measured in the unit of bits)

represents the information content, which is a value related to the conservation of

secondary structure at this location. The scale of the vertical axis was adjusted due

to the varied information content of the input. As the most predominant local con-

formational element is placed at the top of every residue position in the logo, three

structured segments were identified with the highest propensity of forming β-strands,

locating at E3-R5, Q15-A21, and I31-V40. Per-residue secondary structure pref-

erence across various computational studies were summarized in an alignment and

compared with the logo. This alignment is identical to the one shown earlier in the

chapter [43,116,144,145,225,227,258,261,261,266,269,285–289]. Common regions of

β-conformation were recognized based on the alignment placing at E3-R5, K16-A21,

A30-V36, and V39-A41, which generally agrees with our result. Regions in-between

structured segments were defined here as hinges due to their preference in staying at

coil/turn/bend. The ranges of hinges roughly match the turn/bend regions reported

from previous studies mentioned above. Also, an outstanding signal of retaining he-

lices was showed around region of Y10-F19 mainly from the simulation starting from

the Helix-pl (MD11), which agrees with the observation from an earlier study [83].

Combining these, we proposed that the average ensemble of the Aβ42 monomer in

the aqueous environment could be seen as conformations containing three structured

segments connected by two hinge regions. Hinges fluctuate in lengths on the peptide

and provide tertiary-level flexibility, leading to heterogeneity in loop, β-arrangements,

and the overall topology. This concept could be used to demonstrate and analyse the

conformational variety of the intrinsically disordered Aβ42 from current and previous

studies [145,227,287].

The fluctuating ranges of these segments contribute to the complex dynamics of

Aβ42 monomer in solution, which allows the peptide to easily interchange between

conformational states (see Section 3.3.3). It is important to understand the secondary

structure dynamics prior to characterizing the varied architectures of the monomeric

Aβ42. To do it, we created a zero matrix with rows and columns defined as the
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Figure 4.4: Summary of per-residue secondary structure preferences from previous
simulations of the monomeric Aβ42 or wild-type Aβ42 and comparison with secondary
structure analysis from present simulations. The secondary structure logo obtained
from the combined trajectory provided a direct visualization of structured segments
and hinges of the Abeta42 monomer.
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start and stop residue indices in order to label the first and last residue numbers of

these segments. For each sample in the combined trajectory, we detected segments

containing α-helix or β-strands and recorded their spans in the aggregated start-stop

matrix (Figure 4.5). For example, a β-strand is locating at region E3-R5 on the

structure i, then cell a3,5 is updated by the addition of 1. The color variation of

blue-white-red indicates the magnitude of the count in a cell of the matrix.

Figure 4.5A depicts the resulted start-stop matrix over all trajectory structures,

where the original plot is shown on the left of panel B. This particular way of display

allowed us to discover four main features of the monomeric Aβ42’s secondary structure

distribution that could be hard to be obtained from a regular secondary structure

analysis. First, the graphic layout presents three triangle shapes A, B, and C in A2-

S8, S8-K28, and N27-I41 (that were coloured in red, yellow, and green), suggesting

that the monomeric Aβ42 prefers to form structured segments in these regions. In

constrast with the matrices generated accounting just for β-strand, and α-helix in

Figure 4.5B, the three-triangle shape of the aggregated matrix originated from the

formation of β characters in these regions. The helical content appeared mainly in

the region H6/Q15-V12/K28 (D), and E22/A30-S26/M35 (E), which overlaps with

the region B, and occupies the area between the region B and C. Second, the coloured

ranges of A, B, and C in Figure 4.5A indicated their maximum scope of a segment that

could be formed around the corresponding area. These three regions were intersected

by 1-2 residues, suggesting that the span of a segment is inversely proportional to

the range(s) of its adjacent hinge(s). Here, we proposed that a typical pattern of

the monomeric Aβ’s secondary structure distribution in the aqueous solution is A-

hinge-B-hinge-C. Third, amino acids that were frequently involved in a segment were

captured by the start-stop matrix. We then defined those shorter regions showing

significant local conformations in G9-E22, N27-I31, and G33-I41 as patch B1, C1,

and C2. To be specific, B1 occupied two segmental regions in Y10-F19, and Q15-A21

that were also identified using the secondary structure logo. Region C could be divided

into C1 and C2 connected by a short loop, forming a motif-like structure. Lastly, some

residues on the peptide showed low propensities in defining the termini of a segment,

such as S8-G9, V24-N27, G29, I32-G33, and G38. These locations included five out

of six glycine residues in Aβ42 sequence, and this phenomenon will be discussed later
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Figure 4.5: A regularly local conformational pattern of the Aβ42 monomer in solution
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start-stop matrix generated from the combined trajectory showing segments of α-
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in the chapter. Combining these, the local structure of the monomeric Aβ42 could

also be displayed as an A-hinge-B/B1-hinge-C1-hinge-C2 pattern.

4.3.3 Characterization of Structural Emsembles from MD Simulations

Using Different Starting Structures of Monomeric Aβ42

MD trajectories were produced via (1) various starting conformations, (2) controlling

heating and cooling of the system (SAMD), and (3) replicas of a certain type of a

MD simulation. A total of 15 MD trajectories with varied simulation lengths were

merged into one dataset. PCA was carried out based on the Cartesian coordinates

of the combined trajectory (cPCA) to identify one or several ensembles of similar

structures along MD trajectories (Figure 3.6A). Four of the simulations, classical and

SA simulations from the helix-np and U-shaped conformations, were discussed and

analysed in Chapter 3. The involvement of these data aimed to generate more broad

conformational space of the monomeric Aβ42 in solution, and for the comparison

between previously and currently projected energy landscapes.

PCA results projected onto a 2D space illustrated relations among MD simula-

tions of the monomeric Aβ42 using different simulating strategies. The proportion of

variance explained by the first few PC modes was relatively low with the inclusion

of all simulations, which accounted for 31.9% of PC 1 and PC2 and 41.1% of the

first three PCs (see Figure 3.6)A). On the projection, starting points (or starting

conformations) emerged and diffused at various locations. It was suggested that one

long MD simulation may only be able to sample at the local neighbourhood around

the starting point [319–321]. Our results also showed that the monomeric system in

one simulation tends to maintain at a similar phase of sampling after 200 ns even

though the Aβ peptide is intrinsically disordered in an aqueous solution. It is then

uncertain whether a fundamentally conformational change will occur in a longer sim-

ulation time (see Appendix D). To understand the dynamical behaviour of the Aβ42

peptide through its large-scale conformational changes, we concentrated on collecting

samples of the MD trajectory displaying the most conformational variability of the

peptide. Since one long simulation could get trapped in a local minimum, performing

replicas of this simulation allows for continuously sampling of the remaining solution

space [320]. Replicas of different initial velocies could produce different trajectories
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leading to better coverage of one or multiple free energy basins around the current lo-

cal state. Figure 3.6B presents the free energy landscape as a function of the first two

principal components of Cartesian coordinates. On the left, replicas from helix-np

expanded the local neighbourhood search significantly in comparison with the previ-

ous landscape projection generated in Chapter 3 (see Section 3.3.4). On the other

hand, another transient state exhibiting as a subspace on the right bottom corner

was sampled from the replica simulation starting from the U-shaped conformation.

SA simulations plus their replicas permit local and global search for energetically

favourable transient states. Our results showed that the sampled ensemble obtained

from classical MD simulations of helix-np and U-shaped conformations were differ-

entiated by positive and negative values along the PC1 axis on the projection. This

was also noticed in the previous projection that local states sampled from two long

MD simulations of these two initial structures were disconnected (see Section 3.3.4)

2. Due to the ruggedness of the energy landscape, local minima are usually separated

by high energy barriers. Although replicas of these two simulations extended the

explored solution space to some extent, a narrow gap still appeared between states.

We conducted SA simulations starting from both configurations with an initially high

temperature setting in order to overcome the barriers between states for a rapid solu-

tion space exploration. Each SA simulation in this experiment was performed with a

400-ns cooling-down phase from 475 K to 300 K followed by another 400-ns sampling

at the room temperature (see Section 3.2.3). The cooling-down phase of SA simula-

tions from the helix-np filled in the gap between two states on the 2D cPCA space,

thereby a conformational transition pathway was identified from the helix-np towards

the U-shaped Aβ42 on the energy landscape (Figure 3.6B). Compared with previously

calculated pathway (see Section 3.3.4), higher coverage of the surrounding solution

space along the pathway was achieved in the usage of both SA and replicas. Also,

an off-pathway conformational state was recognized through the after-cooling-down

phase sampling of SA simulations from both sides.

RMSD was unable to discriminate between very different conformations of the

Aβ42 monomer. Recall that discrete subspaces generated on the cPCA space can

2In Chapter 3, structures from simulations starting from Helix-np and U-shaped are located on
the opposite sides of the PC1 axis.
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be seen as conformational states identified from the MD sampling. Thus, an agree-

ment between this partition and determined community structure is expected for the

characterization of obtained structural ensembles. The community detection method

fast-greedy [194] was firstly applied on the combined trajectory using R-score as the

similarity metric (see Appendix C). The computed community structure presented 3

diffused network clusters that did not match the separation of PCA subspaces. Such

loosely defined communities may be resulted from the definition of the similarity met-

ric since one of the major drawbacks of RMSD is that it is more sensitive to the local

structure than the global topology when the value is large. For example, the RMSD

of two protein structures may return a high value when both of them share a similar

global topology as one of the loop region has different length or their C-terminal re-

gions show alternative orientations. This situation cannot be distinguished from the

case when the two structures have significantly different architectures. We obtained

diverse conformers in a wide range of geometric variance by simulating the Aβ42

monomer from various initial structures. Because of this, a distance metric with

higher sensitivity and specificity is required that different levels of pairwise struc-

tural dissimilarity (eg. local structure vs global topology) can be output as distant

numbers. H-score was defined based on the concept of residue-residue contact and

utilized as a new similarity criterion for the network partitioning (see Section 4.2.4

for detailed definition). Instead of representing a protein structure via a set of residue

centroids coordinates, a contact map discretizes the protein configuration at the level

of its potential intramolecular interactions among residues, leading to a reduced ef-

fect from local flexibility in proteins due to the definition of contacts. Then, the force

behind the formation of network clusters becomes the grouping of structures with a

certain type of contact pattern.

A general agreement has been reached between the clustering result based on the

H-score and the 2D cPCA space shape. Communities C2 to C6 capture distinct folds

from more than half of the combined trajectory data including ensembles obtained

from simulations starting with almost all types of initial structures except for Helix-pl

(Figure 4.6C). Table 4.6 lists the proportions of structures belonging to simulations

from different species of starting structures for each inferred community. An average

structure was calculated to indicate the unique structural features shared within each



105

cluster (Figure 4.6D). Configurations have the smallest RMSD against their averages

were selected to represent the conformational characteristics for the further analysis.

Table 4.6: Proportions of containing structures from
simulations of different initial structures for each
cluster.

Proportions (%) C1 C2 C3 C4 C5 C6

Helix-np 21.8 100 - - - -
Helix-np (ann)a 12.4 - 100 0.5 - -

U-shape 9.7 - - 74.6 100 -
U-shape (ann) 17.8 - - 24.9 - -

Helix-pl 8.9 - - - - -
S-shape 29.5 - - - - 100

a SAMD simulation

Transient or less-folded structures were grouped into a big cluster. Community C1

contained a collection of configurations with much larger H-score distribution than

other communities. Its highly geometric variance was reflected by the magnitude of

C1 over the whole projection. Figure 4.6C and Figure E.2 in Appendix E show that

this community comprised of one or more low-dimensional subspaces besides C2 and a

sparsely populated region connecting to all the other inferred communities. More and

better-defined communities might be needed to locate the positions of possible basins

within this region so that the covered terrain can be described more properly. Table

4.6 reveals that community C1 included configurations from simulations of all types

of initial structures, thereby it is highly probable that C1 was a mixture of transition

and meta-stable states. This phenomenon was also reported from a previous cluster-

ing study based on MD simulations of disordered proteins [230]. Nevertheless, such

loosely grouping still captured some common conformational characteristics owned

by the containing structures. We compared its average structure with seven selected

structures (s1-1 to s1-7) that are closest to the average geometric coordinates from

different simulations. All the topologies contained the intramolecular interactions of

the middle of the chain with both termini, yet there were a lack of contacts between

the termini. In contrast, C2-C6 featured structures with a higher contact volume

between the termini, allowing the peptide to collapse into a tightened core. To verify

this, we calculated the average radius of gyration (Rg) for each cluster with standard
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deviation. A reference Rg can be predicted for Aβ42 if it folds into a fully collapsed,

globular state using the empirical equation proposed by Kolinski and Skolnick [322],

which is:

〈
Rg

〉
= 0.22n0.38, (4.7)

where n is the number of residues. Then a Rg of 0.91 nm is expected for a well-

defined cluster of collapsed state. Table 4.7 demonstrates that the average Rg of

C2, C3, C5, and C6 range between 0.9-1.0 nm, which is in agreement with the Rg

of compact ensemble of Aβ42 reported from previous simulations [117, 261, 312, 323,

324]. As hypothesized, C1 has the largest distribution of structure sizes that many

transient states of extended conformations from all simulations were grouped into this

very community. C4 was another mixing state including the relevant extended and

collapsed conformations on the both sides of an interconverting equilibrium (Figure

4.6D).

Table 4.7: Radius of gyration (Rg) of each identified
community is reported in its mean values with standard
deviations, maximum and minimum values.

Cluster C1 C2 C3 C4 C5 C6

Mean (nm) 1.16 0.97 1.09 1.21 0.97 1.10
SDa(nm) 0.19 0.05 0.05 0.17 0.04 0.01

Maximum (nm) 2.45 1.13 1.45 1.78 1.06 1.14
Minimum (nm) 0.88 0.89 1.02 0.99 0.89 1.07

a standard deviation

4.3.4 Tertiary Structure

Contact Patterns

A frequency contact matrix was computed based on the average-ensemble contact

frequencies over all trajectory data, illustrating formation of local contacts all over

the chain. The matrix presents a characteristic contact pattern of tertiary structure

shared by the sampled Aβ42 populations, suggesting that their structures adopted

broadly three regions which are D1-S8, G9-S26, and N27-A42 (Figure 4.7a), in agree-

ment with the observation from Rosenman et al. [116]. Widths of these regions were
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amply equivalent to those of segments detected from the secondary structure analysis

which are A (A2-S8), B (S8-K28), and C (N27-I41). This confirms our hypothesis that

the structured segments of the Aβ42 peptide could be treated as the basic building

blocks of its various conformations.

The frequency contact matrix is further segmented by regions A, B, and C in

Figure 4.7b that are highlighted in primary colors red, yellow, and cyan. Contact

probability signals shown within forming contact blocks in secondary colors orange,

silver, and green indicate the presence of intra-region interactions between regions

that are described as contact pairs AB, AC, and BC, respectively. For simplification,

both AC1 and AC2 are counted as AC, and same as BC that comprises of BC1 and

BC2. A forth pair CC (or C1C2) is considered for the case of the region C in contact

with itself. Figure 4.7b depicts different contact pairs in monomeric structures with

matching colors that were used and described in the frequency contact matrix. The

matrix showed that frequencies of significant contacts are mostly below 60%, which

raises the question that if these four contact pairs always appear simultaneously in

every sampled structure. To explore this, contact patterns with different combinations

of contact pairs were calculated.

We classified all configurations from simulations into four types of architectures

based on the four contact pairs. Considering AB, AC, BC, and C1C2, possible con-

tact patterns are 24 − 1 in total, where the combinations could be the presence of

one pair, two pairs, three pairs, and four pairs of contacts. Four contact patterns

AB-BC, AB-BC-AC, AB-BC-CC, and AB-BC-AC-CC were found from the present

simulation data that account for 4.7%, 28.9%, 13.2%, and 53.2%, respectively (Fig-

ure 4.8b). Recall that two dominant conformational states of the Aβ42 peptide, the

collapsed and extended states, were observed from our conformational samplings (see

Section 3.3.3) and previous studies [145, 258]. To explore the correlation between a

certain contact pattern and the formation of collapsed or extended conformations,

we calculated the mean solvent accessible surface areas (SASA) of most frequently

observed hydrophobic residues in the hydrophobic clusters of collapsed conformations

(i.e. F4, Y10, F19, F20, L34, M35, and V36) for each contact pattern, where collapsed

and extended conformations are defined as SASA below 7.0 nm2, and above 8.0 nm2,

respectively (Figure 4.8c). AB-BC-AC and AB-BC-AC-CC patterns contained most
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AC BC

AB

A

B

a b

Figure 4.7: (a) Frequency contact map illustrates an all-atom average-ensemble con-
tact probability over all trajectory data. Invalid squares above, on and below the
diagonal that represent residue i in contact with itself and adjacent residues (i + 1
and (i+ 2) are not considered in the contact analysis. The multi-domain pattern was
demarcated with white lines, indicating intramolecular interactions between regions
D1-S8, G9-S26, and N27-A42. (b) The same frequency contact matrix was segregated
by regions A, B, and C determined from the secondary structure analysis. Contacts
shown within the resulted blocks of orange, silver, green, and blue (black dash square)
indicate existence of contact pairs AB, AC, BC, and C1C2 respectively. For each
contact pair, its represented intra-region interaction are displayed in structures with
matching colors.
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Figure 4.8: Obtained structural ensembles were classified based on contact patterns.
(a) An example contact map of an Aβ42 monomeric structure (Sa) with regions
A, B, and C highlighted in primary colors red, yellow, and cyan, forming contact
blocks in secondary colors. Existence of contacts within each block indicated the
presence of contact pairs AB, AC, BC, and CC(C1C2) on the Sa; (b) Populations
of structures in different contact patterns; (c) Solvent accessible surface area of the
hydrophobic residues that were frequently observed in the hydrophobic clustering of
collapsed conformations; (d) Probabilities of the Aβ42 peptide staying in collapsed
and extended conformations in each contact pattern.
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of the collapsed conformations, while structures of AB-BC and AB-BC-CC showed

as partially folded or extended topologies. Figure 4.8d also provides the probabilities

of collapsed and extended conformations in each contact pattern.

Each contact pair functions as a particular structural component in the folding of

the Aβ42 monomer. Representative structures for identified communities were exam-

ined and classified into matching categories of contact patterns under collapsed and

extended/transient conformations (Figure 4.9). Figure 4.8a gives an example con-

tact map of one representative structure with segmented contact blocks highlighted.

The corresponding intramolecular interactions were shown in the structure with bond

representation of matching colors. Besides each structure in Figure 4.9, the popula-

tion of its represented community or conformation over all sampled structures was

provided. By analysing these topologies using the contact pattern, we concluded

the specific function of each contact pair as a building block in the formation of the

monomeric architecture from the low-level structural conservation to high-level con-

formational plasticity of the Aβ42 peptide. A high preference of staying in collapsed

conformations was observed from present simulations. One of the crucial stabiliz-

ing factor in the formation of a compact structure is the hydrophobic clustering.

Contact pair BC existed in all structures, indicating the potential of forming a hy-

drophobic core in all states of the Aβ42 monomer since the half of the peptide on

the C-terminal side is mostly constructed by hydrophobic residues. Contact pair AB

was also discovered in all contact patterns, however, fairly low contact content were

shown in some topological types (e.g, s1-3, s1-6, s3, and s6 in Figure 4.9). This phe-

nomenon suggests that the N-terminus possesses high flexibility while in contact with

the central region, which also explains why such region was observed disordered in

previously solved fibril structures [93, 108, 110]. On the other hand, AC is related to

the formation of globular architecture of the Aβ42 peptide because contact patterns

that were lack of AC contacts (e.g, AB-BC and AB-BC-CC) accounted for mostly

partially unfolded structures. The interconversion between collapsed and extended

conformations accounts for the formation and loss of AC contacts (e.g, s4-collapsed

and s4-extended in Figure 4.9). This discovery supports the importance of two extra

C-terminal residues of the Aβ42 in the contribution of its structural stabilization.

We also observed that the β-sheet formed between termini stabilized the collapsed
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states by diminishing the overall conformational entropy (e.g, s1-4, s1-6, s2, s3, s5,

and s6 in Figure 4.9). Contact pair CC usually occurs in the transient structures be-

tween the collapsed and extended states, suggesting its main function in temporarily

stabilizing the C-terminus via the hydrophobic clustering (e.g, s1-1, s1-2, s1-5, s1-6,

and s1-7 in Figure 4.9). Two advantages of this type of hydrophobic clustering are:

(1) diminishing the overall conformational entropy via contacting with the region B

forming the hairpin motif; and (2) providing structural flexibility on the first half of

the peptide to some extent by reducing the contacts with the region A or B. Also,

among the representative structures, CC contacts formed within the s1-2, s1-5, and

s1-7 showed significantly high β-content that may enhance the aggregation propensity

via the C-terminal hydrophobic attraction between monomers.
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s1-7 (1.4%)

s1-4 (1.9%)s1-3 (4.2%)

s1-5 (3.6%)

Extended or Transient
Conformations

Figure 4.9: Continued on the following page.
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Figure 4.9: Classification of representative structures of communities according to
their contact patterns and degrees of folding. The latter is defined by SASA of the
most frequently observed hydrophobic residues in hydrophobic clusters of collapsed
conformations. Percentages of s2 to s6 were computed based on their represented
community sizes over all production ensembles. The percentages of structures in
community c1 were calculated via a similarity metric q. It is defined that a structure
s was considered to be similar enough to a representative structure (s1-1 to s1-7) if the
difference of their contact maps was less than 8.5%. This difference cutoff is an empir-
ical value evaluated by the Hamming distance. Maps below the structures illustrated
the contacts for residue centroids, wherein regions A, B, and C were highlighted. All
structures were presented with the N-terminus on the left and the C-terminus on the
right.

Electrostatic Interactions

The featured contact pattern shared by the equilibrated Aβ42 populations (Figure

4.10a left panel) demonstrates high frequencies of intramolecular interacting between

three portions which agree with the lengths of regions determined from the secondary

structure analysis. This suggests that the formation of significant contacts in Aβ42

monomeric structure may primarily arise from atomic hydrogen bonding although

the defined contacts discriminate the chemical natures of atomic interactions (i.e.,

electrostatics). Heterogeneity in β-sheet arrangements and loops were observed to

be the major factors for the polymorphism of the Aβ42 monomeric structure in this

experiment. Since most of HBs between backbone atoms are within a helix, sheet or

turn, a local hydrogen bond matrix of Aβ42 ensembles could be used to represent

its topologies in a graphically characteristic pattern. The right panel of Figure 4.10a

elucidates the occupancies of backbone HBs over all production ensembles, which also

exhibits a similar pattern compared to the frequency contact matrix as expected. Such

a pattern shows an approximate symmetry along a shifted anti-diagonal, indicating

that the presence of helices and short loops all over the chain. The matrix was

further demarcated by white lines according to spans of region A, B, and C, then

the segmented hydrogen bonding blocks were described in the concept of HB contact

pairs (which are the same as contact pairs).

The comparisons between these frequency contact matrices and hydrogen bonding

matrices in Figure 4.10b reveal that Aβ42 ensemble in a certain contact pattern also

shared a matching characteristic pattern of hydrogen bonding. The former matrices
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were used to discretize the spatial interactions in a level in order to uncover the

building blocks of Aβ42 folds from the simulations, while the later ones provided

specific information on the presence of significant motifs such as the hairpin formed

between region B and C. Differences in the backbone hydrogen bonding patterns

represent significant structural features among contact pattern populations. HBs

of A21-L34 and F19-V36 account for high occupancies, which 30.7% in AB-BC and

51.6% in AB-BC-CC, respectively. Both HBs were involved in the formation of the β-

sheet between regions B and C, wherein their donors and acceptors were exchangeable.

In contrast, structures of AB-BC-AC and AB-BC-AC-CC patterns showed higher

conformational variety due to lower contribution of HBs in the formation of β-sheets

but loops in the presence of the contact pair AC.

Besides β-sheets, another stabilizing factor in the formation of Aβ fibrils is the salt

bridge, wherein intra-chain SBs stabilize the turn region connecting two β-strands,

while inter-chain SBs function as linkers in the complementary packing between layers

or protofilaments [58, 93, 102, 106, 108–110, 325, 326]. NMR studies and a combined

NMR/cryo-EM approach suggested different types of SBs in various polymorphs of

Aβ fibrils, among these, SBs to K28 appear to the most essential ones. For example,

the U-shaped model exhibits a β-strand-turn-β-strand motif, reinforced by a D23-K28

SB between the two strands [102]. A K28-A42 SB formed mainly via an intramolec-

ular contact stabilizes the triple-β-sheet motif in the U-shaped Aβ42 fibril [108–110].

Inter-chain SB of D1-K28 was observed to establish the interactions between the

protofilaments in the LS-shaped fibril structure [58]. From the simulations starting

with monomeric units of these fibrils, we calculated the frequencies of intra-chain

SBs especially for the ones discovered in the original polymorphs and compared the

favoured SBs in different contact pattern populations.

R5 plays an important role in orienting N-terminal residues and stabilizing the

kink between the region A and B. Figure 4.12A depicts the populations of all 18

SBs formed by three positively and six negatively charged residues for the structural

ensemble of different contact patterns with adopting Barlow and Thornton‘s definition

described in Section 4.2.4. To investigate if SBs have any effect on the establishment

of contact network in Aβ42 configurations, we highlighted the SB matrix indicating
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the corresponding contact pairs demonstrated in Section 4.3.4. Two SBs to R5, E3-

R5 and R5-E11, showed occupancies up to 15.6% and 9.0%, respectively. Direct

observation of E3-R5 SB in community c3 ensemble (Figure 4.11B) suggested its

function in adjusting the E3-H6 β-strand to a range of angles in order to form a sheet

with the central region. This adjustment arises from the flexibility of the side-chain-

side-chain contact, leading to a variety of SB distances. Such a SB was observed in a

cryo-EM structure of Aβ40 fibrils in vivo that was formed between E3 and R5 from

adjacent protofilaments, which requires the β-sheets of both protofilaments to orient

their interface to expose the charged residues [112]. The presence of the SB R5-E11

was displayed on a collapsed conformation from community c4 (Figure 4.11B), driving

the formation of the a loop region between D7 to E11. A similar SB formed between

E11 and H6 was found to stabilize the kink around Y10 in the LS-shaped Aβ42 fibril

structure [58].

The most reported D23-K28 SB contributes in the formation of the cross-β struc-

tures of fibrils [93,102], however, a low propensity (i.e., 5.1%) was observed from the

MD trajectories. Similar observations were demonstrated using the same definition

of SB in the previous simulations performed with different force fields [116]. An early

computational study suggested that the significant motif of U-shaped amyloid fib-

ril structure including the pre-formed D23-K28 contact and an intact VGSN turn is

uncommon in monomeric conformations [327]. The formation of this SB in a stable

structure requires sufficient peptide concentration to overcome the large barrier for

the desolvation of D23 and K28. Figure 4.11B reveals that the D23-K28 SB stabilizes

the hydrophilic turn region between the E22 and G29 [226], which further implicates

that the formation of the C-terminal hairpin depends on the stability of the D23-K28

SB. Another SB formed between E22 and K28 (i.e., 2.9%) acted the same in the

collapsed conformations of the Aβ42 such as the s1-3 and s1-4. This is reasonable

because of the preference of the region E22-A30 exhibiting turn/bend/coil structure

shown on the secondary structure logo. Thus, residues E22/D23 and K28 on the

edge of the hinge formed a zipper-like motif, prompting the hydrophobic packing or

intra-sheet formation between the region B and C.

We further calculated populations of SBs among structural ensembles in different

contact patterns. SBs to R5 showed highest frequencies in all patterns (Figure 4.12),
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Figure 4.11: Populations of all 18 SBs formed by 3 positively charged and 6 negatively
charged residues for (A) all production ensembles using the Barlow and Thornton‘s
definition described in Section 4.2.4. Major SBs with relatively high populations were
reported in proportions. Original plot was generated white-gray-black. Regions A, B,
and C were colored onto the matrix with red, yellow, and cyan; (B) Representative
structures for the three most populated SBs were shown in the order of E3-R5, R5-
E11, and D23-K28 from left to right.
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tively charged residues over sampled structures in different contact patterns (A-D)
using the Barlow and Thornton‘s definition described in Section 4.2.4. Major SBs
with relatively high populations were reported in proportions. The original plot was
generated white-gray-black. Regions A, B, and C were colored onto the matrix with
red, yellow, and cyan.
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indicating the primary effect of SBs on ordering and stabilizing the N-terminus based

on the present simulations. Figure 4.12 also illustrates the emergence of distinct SBs

in Aβ42 topologies if different contact patterns. An E22-K28 SB showed an occupancy

of 5.1% in AB-BC, implying its minor contribution in stabilizing turn region between

the region B and C. In contrast, no SB related to the BC contact pair appeared in

AB-BC-CC but another AB type SB E3-K16 (i.e., 7.0%). The last charged amino

acid K28 is the first residue of the region C and the rest of the region (G29-A42)

is basically composed of hydrophobic residues. The lack of the SB in the BC type

may be explained by that the contact network formed within the region C diminishes

the overall conformational entropy via the hydrophobic clustering or intra-regional

sheet formation on the C-terminus. Contact patterns AB-BC-AC and AB-BC-AC-

CC included almost all collapsed conformations from the sampled ensembles with

complex contact networks. In AB-BC-AC, an E3-K28 SB had a propensity of 7.0%

that enhances the intra-regional contact binding between the region A and C. Such

a type of SB was not found in the AB-BC-AC-CC ensemble, however, an occupancy

of 6.8% D23-K28 SB was observed in supporting the stabilization of the C-terminus

beyond CC contacts.

4.3.5 Characterization of Structural Dynamics of Monomeric Aβ42

DPC method (see Section 3.2.4 for details) was applied to interpret the Aβ42 dynam-

ics especially for its conformational interconvertion between collapsed and extended

structures in solution. PCA was used to ordinate all structures from multiple simu-

lations along the axes, which characterizes the structural variation of Aβ42’s major

motions. We visualized the nature of the first two PCs by binning structures ac-

cording to these axes and computing average structures that capture the continuum

between extended and collapsed conformations.

By discretizing along PC1, the topology of the Aβ42 monomer evolved from (a)

a1-a5: several collapsed conformations with CC contacts and close termini (e.g s1-

2, s1-5, and s6), (b) a6-a7: an extended structure (e.g s1-7), (c) a8: a collapsed

conformation similar to s3, (d) a9-a10: the extended state of s4 to (e) the collapsed

state of s4 cotaining a double-hairpin motif. By using the concept of contact patterns,

this structural evolution can also be described as following: (a) AB-BC-AC-CC, (b)
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A: Along PC1

a1 a2 a3 a4 a5 a6

a8 a9 a10 a11 a12 a13

a7

B: Along PC2

AB-BC-AC-CC AB-BC-CC

AB-BC-AC AB-BC AB-BC-AC

losing AC contacts

Collapsed conformations

Extended conformations
AB-BC-AC-CC

b7

b1 b2 b3 b4 b5 b6

b8 b9 b10 b11 b12 b13

AB-BC-AC AB-BC

losing AC contacts

gaining AC contacts
losing CC contacts

gaining AC contacts

losing CC contacts

losing AC contacts

Figure 4.13: Two series of average structures were obtained via applying the DPC
along (A) PC1 and (B) PC2 based on the combined trajectory in the binning size of
25, respectively. Binning pieces over 200 (scores) along PC2 were discarded. Con-
tact patterns in collapsed and extended shapes were colored in orange and green,
respectively. The thickness and color range of red-white-purple of average structures
suggested the extent of RMSD changes among structures in the corresponding bin-
ning area. All average structures were presented with the N-terminus on the left and
the C-terminus on the right.
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AB-BC-CC, (c) AB-BC-AC, (d) AB-BC, and (e) AB-BC-AC, in which (a), (c), and

(e) are collapsed conformations while (b) and (d) are extended ones. Conversion

between a collapsed and extended conformation was thought to be related to the

presence and absence of AC contacts. Based on our sampling, two major ways of

establishing AC contacts were discovered, which were via (1) parallel or antiparallel

β-sheet formed between termini, i.e., (a), (b) to (c), and (2) hydrophobic clustering

between AB and BC β-sheets implying an open-closed movement, i.e., (d) to (e).

Thus, it is logical to assume that these collapsed states could be connected with each

other on the energy landscape via transient extended states.

On the other hand, the result obtained from discretizing along PC2 displayed

a different path for this collapsed-extended conversion. The architecture of the Aβ

monomer shifted from (e) b1-b6: the AB-BC-AC-CC pattern (e.g s6 and s2), (f) b7-

b9: the AB-BC-AC pattern (e.g between s4-collapsed and s4-extended) to (g) b10-

b13: the AB-BC pattern (e.g s4-extended). Specially, we observed a conformational

transformation from one collapsed state (e) directly to another (f) through the loss

of CC contacts while forming AC contacts between the termini. Region C or the C-

terminus can diminish the overall conformational entropy via contact with the region

B forming the hairpin motif or maintain the structural flexibility to some extent by

clustering with itself to reduce contacting with the central region. From one aspect,

this supports our speculation raised based on the clustering result that structures of

the AB-BC-AC-CC contact pattern showed less compactness in topologies. These

structures could be transient states bridging to other metastable states on the energy

landscape.

4.4 Discussion and Conclusions

Self-association of the Aβ peptide naturally yielding high order assemblies is widely

accepted as the signature of AD. Polymorphism of their structures lies in the forma-

tion of varied structural motifs such as the hairpin motif within the monomers that

affects the packing manners of the further formed multimers. Properly characterizing

the Aβ monomeric structures that comprise such motifs becomes essential in under-

standing the peptide aggregation process. A rough comparison of monomeric Aβ42

secondary structures characterized through NMR (PDB ID: 1IYT) and computer
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simulations (listed in the introduction) indicated the possible existence of structural

segments of α-helix or β-strand on the similar locations of the peptide in different en-

vironments or simulated using different force fields. To investigate this, we performed

classical and SAMD simulations by initiating from different monomeric conformers

of the full length Aβ42 with replicas while comparing calculated J-couplings and

chemical shifts with their experimental counterparts.

Secondary structural character determined from analysis of these trajectories (i.e.,

secondary structure logo) were consistent with previous CD estimations and recent

computational studies with the highest propensity of forming β-strands locating at

homogeneous regions. Further characterization of the Aβ42 ensemble with consis-

tent pieces of β-structures using start-stop matrix revealed the frequent emergence

of these segments even though these conformers were kinetically unstable. Our sim-

ulations suggested that the Aβ42 peptide adopts structures of three β-dominated

regions at E3-R5, Q15-A21 and I31-V40 with hinges between. Experimental data

suggested the importance of the β-strand formation at Q15-A21 within the Aβ42

fibril nucleus [?, 56, 58]. Comparison of the maximum ranges of these regions which

are A2-S8, S8-K28 and N27-I41 revealed that the lengths of the hinges could range

between zero to ten or more residues. Such mobility was caused by a structural

change from a defined secondary structure to a loop that simultaneously affected the

lengths of adjacent segments and further the peptide topology. Herein, glycines are

commonly known as secondary structure breakers due to their flexibility, locating

at the termini of secondary structures or within a loop [328]. In this experiment,

glycines were not only defining the end of these segments but also were key residues

for the formation of Aβ fibrils. To be specific, G9, G25 and G29 served as secondary

structure breakers, separating the secondary structure core within regions A, B, and

C from loops between. The hydrophobic C-terminal region of the Aβ42 peptide

contains a G25-XXX-G29-XXX-G33-XXX-G37 motif that is commonly found in the

transmembrane α-helices, termed a glycine zipper [329]. This motif can form a paral-

lel, in-register β-sheet by placing two glycines to the same face, creating the surface

notches or grooves for sheet-to-sheet packing [330]. Mutational analyses addressed

the importance of G33 and G37 that link to the aggregation dynamics of the pep-

tide [56, 331, 332]. For exmaple, one of the studies increased the hydrophobicity at
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positions of G29 and G33 by substituting the glycine to alanine and isoleucine. Aβ42

G33A and G33I peptides showed a preference of forming higher order of oligomers,

whereas G29 substututions have no effect [332]. G25 and G29 of the motif seem to

only function as flexible hinges. The start-stop matrix displayed the possibility of the

region C to form a β-strand or a small motif comprising C1 and C2 with a kink at

I32-G33. This indicates that G33 could both induce the aggregation propensity and

provide the backbone flexibility based on different Aβ42’s monomeric conformations.

Analysis of the frequency contact matrix suggested a constant set of intramolec-

ular interactions between three regions based on the equilibrated Aβ42 population,

matching identified structural segments in these ranges. Such an agreement supports

our hypothesis that the heterogeneous architectures of the Aβ42 monomer can be

described by the adopted secondary structure arrangements i.e., region A, B, and

C. Clustering on the obtained ensemble captured several distinct conformations that

agreed with previously identified signature motif of amyloid oligomers, i.e., the β-

pleated structure [145, 266], the turn-strand-turn-strand-turn-strand motif [283] and

the hairpin motif between the central region and the C-terminus of the peptide [89].

We further characterized these structures using regions A, B, and C as building blocks,

giving four contact patterns AB-BC, AB-BC-AC, AB-BC-CC, and AB-BC-AC-CC.

Herein, we noticed that AC contacts helped reduce solvent exposure of hydropho-

bic residues by forming a more compact structure. We thus further classified the

collapsed and extended states of various Aβ42 monomeric conformations into a few

types using the concept of contact patterns.

The hydrogen bond matrix and frequency contact matrix generated for the ensem-

ble of each contact pattern showed a similar characteristic pattern. This suggested

that the heterogeneous tertiary structure ensemble of Aβ42 peptide are driven by

secondary structure arrangements (i.e., structured segments). On the foundation of

ordered segments, the Aβ42 topology is built up via intra-regional interaction, form-

ing specific contact pairs. Each contact pair can supply three different functions in

contributing the topological construction depending on the locations of segments.

These functions are β-sheet formation, forming a loop to provide a certain orienta-

tion between regions and backbone flexibility, and the hydrophobic clustering. For

example, AB contacts in representative structures s3 of AB-BC-AC pattern in Figure
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4.9 were involved in a loop region to cause sheet formation between the region B

and C, and simultaneously establishing hydrophobic core with the region A. On the

other hand, s3 plus the other two structures of the same pattern (i.e., s4-collapsed

and s5) showed that there was no direction-specificity in monomeric conformations

between these regions. To be specific, by displaying the corresponding structures in

the aspect of direct intra-regional interactions, s3, s4-collapsed and s5 successively

give A-C-B, A-B-C, and C-A-B topologies, indicating the strong ability of the pep-

tide in conformational adaptability and plasticity. Another thing is that most of the

collapsed but less kinetically stable structures were in AB-BC-AC-CC pattern, which

also possessed the greatest population of the sampled ensemble. It is suggested here

that these transient structures are on the pathway between collapsed and extended

states, and their flexibility is attributed to CC contacts causing less contribution in

the overall stabilization. Also, all helical structures were found with AB-BC-AC-CC

pattern with the cross interaction between the termini motif.

Featured SBs in fibrillar architectures such as K28-A42 in S-shaped structures

[108, 110] and D1-K28, R5-D7 in the LS-shaped fibril were not characterized from

the present or earlier simulated ensembles. Low occupancies of E22/D23-K28 SBs

were found in the structural ensemble of the AB-BC and AB-BC-AC-CC pattern, re-

spectively, that contributes in stabilizing U-shaped protein aggregates [102]. Various

types of SBs identified from the ensemble were generally in low percentage, which

agrees with the earlier simulation data [116, 286]. Unlike those SBs found in fibrils,

our simulations showed that the most seen E3-R5 and R5-E11 SBs in monomers

function in orientating the N-terminus for the formation of β-strands. This supports

the viewpoint that the stabilization of the N-terminal domain of each monomeric

unit play an important role in the amyloid oligomerization and fibrilization [333,334].

These SBs in fibrils were also found absent in oligomers [335], which may be at-

tributed to the distinct aggregation mechanism between the primary and secondary

nucleation processes. It is proposed that the monomer-to-oligomer process follows a

conformational selection mechanism that the peptide oligomerization may be domi-

nantly driven by hydrophobic interactions due to the preference of monomers staying

at compact hydrophobic collapse with more ordered structures in aqueous solution.
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Subunits could undergo further geometric changes with an increasing β-content dur-

ing the oligomerization process since fibril subunits carry more extended topologies.

Within the fibrillar architecture, the β-sheet stacking and SBs become more essential

for the overall stabilization. The secondary nucleation was suggested to be catalyzed

by the existing Aβ fibril lateral surfaces. One mechanism hypothesized in a recent

computational study was that the monomer was recruited through an adsorption to

the fibril surface [336]. Herein, the helical structure showed higher propensity for the

adsorption and underwent a conformational extension while on the surface, which

suggests an induced-fit mechanism of the secondary nucleation. Lastly, a few SBs

showed up among the ensembles of different contact patterns, which can be explained

via their distinct ways of geometric construction.

In this study, we defined three regions on the Aβ42 peptide as the basic building

units to describe its various collapsed and extended conformations. We provide a

brief summary of applied analyses assisting us to identify the basic building units

for the Aβ42 topological construction. Figure 4.14 combines the secondary structure

logo, start-stop matrix, and frequency contact matrix to show that (1) the highest

propensity of β-strands (ordered segments) and hinges are characterized over the

structural ensemble; (2) the consistent secondary structure arrangement divides the

peptide into three regions; and (3) outstanding signals of intra-regional interactions

also reveal that the peptide adopts three regions which share the same lengths with

regions determined from (2). Combined these, we defined four contact pairs between

segments which are AB, BC, AC and C1C2, in which AB and BC are the fundamental

motifs in the Aβ42 monomer topological construction while AC and C1C2 contacts are

related to the formation of preferred collapsed conformations. Four combinations of

contact pairs (i.e., contact patterns) were identified from our simulation data, in which

β-dominanted structures in AB-BC-AC pattern possessed more steady topologies due

to the well-formed hydrophobic core and many interactions between regions.

Our simulations starting from different initial structures were recovering a spec-

trum of structures composed of collapsed and extended conformations of the Aβ42

monomer via hopping between structures that are driven by specific sequence ele-

ments. The flexibility of the peptide is attributed to the conversion between collapsed

and extended conformations, specifically, the gain and loss of AC contacts. Extended
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conformations were in much lower occupancies compared to the collapsed ones, how-

ever, they are important transient states bridging between the same or different com-

pact structures. We utilized the DPC method to discretize such complex dynamics

into the continuum of the soluble Aβ42 monomer structure from the extended to col-

lapsed states although it is unreasonable to expect any singular simulation to perform

this transition simply. Combining all these results, we conclude that the folding of

the Aβ42 monomer can be categorized into a few patterns although the peptide is in-

trinsically disordered. Also, various architectures built up based on different contact

patterns indicate molecular mechanisms of many self-assembly pathways for Aβ42 in

solution.



Chapter 5

Response of the Aβ42 Structure to Binary Solvent System

and Solvent Polarity Changes

Contributions : Simiao Lu conducted the research and wrote the chapter. Christian

Blouin provided editorial input and guidance.

5.1 Introduction

The previous two chapters described simulations that examined the metastability,

interconversion and polymorphism of the Aβ42 peptide. As discussed in the first

chapter, distinct oligomeric and fibrillar Aβ structures can exist depending on the

enviromental conditions. The landscape of an IDP such as Aβ lacks energetic bias

between local minima. Different environmental factors can modify the landscape by

lowering energy minima and/or raising energy barriers. As Aβ is mainly a hydropho-

bic peptide, I investigate in this work the effect of solvent polarity on monomeric

Aβ42 structure. We apply the methodology described in Chapters 3 and 4 to Aβ42

in ethanol-water mixtures to compare the structural behavior with those obtained in

other binary solvents and lipid bilayers.

5.1.1 Solvent Effect on the Tertiary Structure Formation of the Aβ

Monomer

The Aβ peptide is amphiphilic: it contains a hydrophilic N-terminus, a hydropho-

bic central region, and a hydrophobic C-terminus. Each of these segments prefers

certain conformations in the aqueous solution. Chapter 4 classifies heterogeneous

monomeric conformations of Aβ42 into a few topological types based on these seg-

ments. However, we know that environmental changes influence the propensity of

a peptide to particular secondary structures. Examples of environmental factors

could be pH, temperature, concentration, and the presence of metal ions or small

128
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molecules [83,337–340]. The physiochemical properties of Aβ segments modulate ag-

gregation behavior by affecting the assembly pathway in the nucleation and elongation

processes via conformational selection mechanism [44, 273, 283, 341]. Depending on

the surrounding conditions, various forms of Aβ may co-exist in vivo [264]. Also,

distinct fibril structures were derived in vivo that were different from fibrils formed

in vitro [111, 112, 264]. Although numerous structural analyses of Aβ responding to

changing environmental factors were provided from experimental and computational

studies, we have limited knowledge on the behavior of Aβ in the response to solvent

polarity changes.

It is thought that Aβ remains predominantly in the α-helical structure in a mem-

brane environment (or apolar organic solvent) [81], while it exhibits a tendency to

collaspe into conformations with mainly β-strand and unstructured coil in the aque-

ous solution [145, 226]. The α-to-β transition in water is discussed in Chapter 3.

Fluorinated alcohols, particularly HFIP1 and TFE2, are usually used as organic sol-

vents in setting up Aβ aggregation experiments in vitro [342, 343]. Under a range of

concentrations, fluorinated alcohols form solvent clusters that could reduce solvent

polarity around the solvated peptide/protein. Tomaselli et al. suggested that confor-

mational transition (or misfolding) of Aβ42 occurs when the water content is higher

than 80% (v/v) in an HFIP/water mixture [83]. Also, this conformational transition

can be reversible by modulating the HFIP composition. Pachahara et al. observed

that 20% and 50% HFIP/water mixtures favor the α-helical conformation on Aβ

alloforms which further prevents fibril formation [344]. Conformational variation of

Aβ monomer was also reported in TFE/water mixtures where the helix content was

gradually increased to about 80% with the 20% TFE composition [252]. DMSO3 is

another solvent commonly used to prepare Aβ stocks. Unlike fluorinated alcohols,

DMSO is presumed to maintain the monomeric state of the peptide in any dilution

with water [345]. To the best of our knowledge, few computational studies have fo-

cused on the influence of solvent on Aβ conformations and aggregation pathways.

One early study performed 20-ns MD simulations with the GROMOS96 43a1 force

field to explore the conformational preferences of Aβ42 in HFIP, TFE, DMSO, and

1hexafluoroisopropanol
2trifluoroethanol
3dimethyl sulfoxide
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water respectively [140]. Both fluorinated alcohols promoted the helix propensity

on the C-terminus, while C-terminal residues of the peptide adopted a random coil

structure in DMSO. A more recent computational investigation simulated the con-

formational changes of Aβ42 in DMSO, revealing decreasing numbers of hydrogen

bonds between the central zone and C-terminus compared with topologies observed

in simulated aqueous environments [346].

5.1.2 Structure of Ethanol-Water Solutions

The ethanol-water binary solution exhibits several structural and dynamic anoma-

lies, such as partial molar volume, diffusion coeffcient, viscosity, excess entropy, com-

pressibility, etc. Although controvertial results were reported according to different

studies [347–349], the existence of ethanol-rich clusters in the binary mixture has

been widely accepted. Franks and Ives first hypothesized that the anomalous behav-

iors arise from structural transformations in ethanol-water systems at low concentra-

tions [350]. They proposed the iceberg model by describing it as the formation of

a low entropy cage of water with strong hydrogen bonds around hydrophobic head-

groups of ethanol molecules in the binary solvent. This idea is supported by various

experimental and theoretical studies, while different perspectives were introduced for

the understanding of this phenomenon [347,351–354].

It is a widespread view that alcohol and water must be mixed homogeneously

at the molecular level. However, experimental studies reported the co-existence of

ethanol- and water-clusters at various concentrations. In a low frequency Raman

spectroscopy study, Nishi et al. observed a local structural evolution of the solution

at 0.2 mole fraction (≈ 35% vol) [355]. They indicated that the ethanol- and water-

aggregates are too weak to cause microscopic phase separation. A later neutron

diffraction analysis revealed the segregation between methanol and water, which was

due to incomplete mixing at the molecular level [347]. Guo et al. elucidated that most

methanol and water molecules exist as the structures similar to the ones found in

pure liquids according to an X-ray emission spectropscopy experiment [356]. Further

evidence using mass spectrometric analysis has helped clarify that the microscopic

phase separation occurs between a wide ratio range of 10-90% volume fraction of

ethanol [357].
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Other experimental and theoretical studies suggested that aberrant thermody-

namic properties are associated with the formation of clathrate-like structures in the

binary solution as a result of hydrophobic hydration [358–362]. The combination of

hydrophobic interactions between ethanol molecules and hydrogen bonding between

the hydroxyl groups of water and alcohol molecules may act synergistically to drive

each other on the formation of microheterogenerous clusters in the mixtures. Cipi-

ciani and coworkers suggested a significant change of the mixture properties at mole

fraction χ = 0.055 (≈ 15.8% ethanol by vol) [363]. With mass spectrometric analysis,

the formation of ethanol clusters was observed at 0.07 mole fraction (≈ 20% vol) [364].

Dolenko et al. calculated the enthalpies of formation/weakening of hydrogen bonds

for aqueous ethanol solutions of different compositions [365]. With other supporting

data, they confirmed the existence of clathrate-like structures in mixtures at around

20% ethanol (vol).

Computational studies using MD simulations were conducted in an attempt to

capture the structure of the ethanol-water mixture and its low concentration limits.

Banerjee et al. suggested that abnormal properties of binary mixtures are due to

the sudden appearence of a bicontinuous phase at the concentration range of 17-26%

ethanol (vol). Noskov et al. performed simulations for the structural characterization

of the mixtures at various compositions [353]. They found that there is a transi-

tion from a complete percolating network of hydrogen bonded water molecules at low

concentration to a nonpercolating hydrogen bonded network at high concentrations.

Ghoufi and coworkers also observed the transition of the hydrogen bonded network

at χ = 0.5 mole fraction (≈ 76.4% ethanol vol) [354]. Another computational study

suggested that the hydrophobic association of ethanol molecules is attributed to a

brittle hydration shell [366]. A recent study showed the anomalous behavior of phys-

ical and dynamic properties of the ethanol-water mixture at a composition range

(χ = 0.10 − 0.15 ≈ 26.4-36.3% ethanol vol). A change of hydrogen bonding pattern

of ethanol is found at similar concentrations [367].

5.1.3 Objectives

In this chapter, we explore the IDP sensitivity to solvent polarity. We perform

MD simulations on Aβ monomeric system by dissolving the peptide in a series of
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ethanol/water mixtures. We examine how the structural and dynamic properties of

the Aβ42 monomer change as a function of the ethanol composition. Our choice of

solvent mixture is based on the considerations of three perspectives. First, ethanol

lowers polarity without phase separation, and it is usually used as a model to in-

spect the balance of hydrophobic interactions and hydrogen bonds in the hydration

of proteins. Second, low to moderate consumption of alcoholic spirits may protect the

brains from aging and even reduces the development of AD [368,369]. This discovery

inspired studies to explore the effect of ethanol on Aβ aggregation. Combining ex-

perimental analyses in vitro and computational simulations have shown that ethanol

reduces the toxicity of Aβ by altering its structural stability [370]. New evidence

revealed that 8.3% (vol) ethanol composition affects the Aβ pentamer stability [371].

However, the molecular mechanisms of this association are largely unknown (to our

knowledge). Lastly, there is a lack of studies on molecular description on folding

events of IDPs (i.e., Aβ in this case) in the aqueous solution of ethanol. Understand-

ing the solvent polarity on amyloid fibrillization requires characterizing the structural

features of the monomer as it transitions from a polar to an apolar environment. Ex-

perimental techniques such as SAXS and CD [372–375] provide important information

on the protein structural properties in the presence of ethanol. These studies revealed

that the ethanol-induced conformational changes of proteins at various concentrations

arise because of the anomalous behaviors described above.

In the present study, we report the behavior of Aβ42 in the ethanol-water binary

solutions. To compare with previous results derived from aqueous solution, the system

of α-helical Aβ42 (PDBID: 1IYT) is simulated in the mixtures using the same force

field and water model combination as in Chapters 3 and 4. Here, our focuses are

monitoring the structural response of the peptide to the varying solution polarity

and determining how the monomer and ethanol affect each other. According to

this secondary and tertiary structure analysis, we found that the α-to-β transition

can be reversible depending on the solvent polarity. We also discuss our results

in terms of the structural stability of Aβ42 and its interactions with the ethanol

cluster at various ethanol concentrations. We observed the insertion of the Aβ42 C-

terminus into the ethanol aggregate when the water content was below 50%. As part

of the transmembrane protein, Aβ42 is initially embedded into the lipid bilayer before
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proteolytic cleavage. Understanding the Aβ-membrane interaction after the peptide

is produced is crucial for exploring the mechanisms of interfacial folding and the initial

stage of self-aggregation. These results suggested that environmental polarity could

be one of the key factors determining how Aβ and the membrane bind to each other.

5.2 Method

5.2.1 Molecular Simulations of the Aβ Monomer in Binary Mixtures

The NMR structure of Aβ peptide, solved in an apolar environment (PDB ID:

1IYT [81], was used as the starting structure and obtained from the Protein Data

Bank database [292] (www.rcsb.org). For system set-up, the monomeric structure

was modified using the PDBnet module [376], a Python library that allows the users

to manipulate MD trajectories, as well as perform various analyses. MD simulations

were performed using the GROMACS software package [234] and GROMOS96 54a7

force field for the peptide and mixed solvent [175]. For each simulation, the extended

simple point charge model (SPC/E) was used to simulate water. The coordinates

and topology of ethanol were generated in the GROMOS format using the PRODRG

online server [377]. The partial charges and torsional parameters of the topology

file were manually adjusted [378]. Inserted ethanol molecules were treated as united

atoms with the GROMOS96 54a7 force field, i.e., the full atomistic details have been

retained except for the hydrogen atoms attached to the carbon atoms. Dodecahedron

simulation boxes were generated containing ethanol and water in a series of compo-

sitions (5%, 10%, 15%, 20%, 25%, 30%, and 50% ethanol (vol)). Amino acids were

deprotonated, and then the prepared protein system was solvated into the simulation

box filled with the ethanol-water binary solution. Each simulation box was created

by using periodic boundary conditions, where the minimum distance between peptide

and the box edge was 1.0 nm. MD simulations of the ethanol-water binary solutions

without the protein system were also performed for comparison. More details of these

simulations including box sizes are summarized in Table 5.1.

The following parameters were used for all simulations in this study unless oth-

erwise noted. The monomeric Aβ42 structure was neutralized by adding counterions

(Cl− and Na+) before equilibration. The neutralized system was minimized in the
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pure water or mixed solvent environment by the steepest descent algorithm for 500

steps to relax the protein-solvent system. The leapfrog Verlet integration algorithm

was used with an integration time step of 2 fs. Periodic boundary conditions are

implemented in x, y, and z directions. The long range electrostatic interactions were

calculated using the Particle Mesh Ewald summation with a Fourier-spacing of 0.1

nm and an interpolation order of 4 [236]. Coulomb and van der Waals cut-off dis-

tances were both set to 1.0 nm. The Verlet cut-off scheme [237] was used to reach

high performance when computing non-bonded interactions. A maximum force less

than 100 kJ mol−1 nm−1 was obtained for both systems at the end of the energy min-

imization. A NVT simulation was conducted for 100 ps. The LINCS method [238]

was used to restrain all bonds of the solute and ethanol and water molecules for an

integration step of 2 fs. The protein and the solvent (water or ethanol/water) were

coupled separately to a modified Berendsen thermostat called V-rescale [239] at 300

K. Then, a NPT simulation was performed for 100 ps to generate the initial structure

for the production simulation. Pressure coupling was requested in this phase to the

Parrinello-Rahman barostat [240,241] at 1.0 bar with a compressibility of 4.5 × 10−5

bar. In the production run, all parameters were set to the same step of equilibration

and the coordinates of the system were saved for every 20 ps. For the simulations

of binary solutions, energy minimization and equilibration at constant temperature

and volume were performed. A production run for 20 ns at constant pressure and

temperature was then carried out after equilibration.
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Table 5.1: Proportions of the average secondary structure content of Aβ42 for
MD simulations starting from initial structures in different shapes.

EtOH/H2O v/v (%) Simulation Box
Volume, after

Solvation (nm3)

Number of
Molecules

(EtOH/H2O)

MD Simulation (µs)

EtOH/H2O Binary Mixture
10 272.480 280/8147 0.02
20 272.480 563/7459 0.02
30 272.480 844/6793 0.02

Aβ42 (PDBID: 1IYT) in EtOH-H2O Solutions
0 266.882 0/8696 0.8 + 0.4 (replica)a

5 265.548 88/8323 0.4
10 272.076 229/7957 0.8 + 0.4 (replica)
15 277.517 422/7544 0.4 + 0.4 (replica)
20 283.317 563/7182 0.8 + 0.4 (replica)
25 293.408 704/6855 0.4
30 294.342 792/6585 0.8 + 0.4 (replica)
50 325.545 1350/5413 0.4

a A repeated MD simulation of identical atomic coordinates and parameters with ran-
domly created initial velocity

5.2.2 Trajectory Analysis Protocol

Ensemble Analysis

To characterize the ensemble of Aβ monomer sampled in different solvent mixtures,

we clustered the obtained structures and abstracted the essential motions as per

Chapters 3 and 4. Detailed procedures are provided in Section 3.2.4 and Section

4.2.4.

We used the concept of contact pattern defined in Chapter 4 Section 4.3.4 to clas-

sify the Aβ42 ensembles obtained from simulations performed in 5%, 10%, 15%, 20%,

25%, 30% and 50% v/v ethanol/water mixtures into a few types of architectures. A

brief summary of the procedures are provided as follows. We first identified the range

of ordered segments using the secondary structure logo and start-stop matrix (see

Chapter 4, Sections 4.2.4 and 4.2.4 for details). An ordered segment was defined to

contain no less than four residues that carried consistent α-helix or β-strand character

on a certain structure Sn. For example, a pattern of three-segment separated by two

hinges was detected over the Aβ42 monomer structure in an aqueous solution, where

segments are defined as A, B, and C. Also, tertiary structure analysis (frequency con-

tact matrix) shows a characteristic pattern of intramolecular contacts, suggesting that
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monomeric structures break down into three regions separated by two hinges. The

robustness of this classification stems from the agreement of the locations between

secondary structure segments and regions of intramolecular interactions. Thus, these

segments could be considered as building blocks for the construction of Aβ42 tertiary

structure. Then, we tested the existence of intra-region contacts between segments

by generating the contact map for each structure in a simulation (see Section 4.2.4),

resulting in contact pairs (e.g., AB, BC, AC). Lastly, the possibilities of combina-

tions of contact pairs were calculated over the obtained ensemble (e.g., AB-BC and

AB-BC-AC), and each combination was called a contact pattern of Aβ42 peptide.

5.3 Results

Volume fraction is used for the ethanol/water mixtures in the following text (i.e., %

ethanol).

5.3.1 Secondary Structure of the Aβ42 Monomer in Ethanol-Water

Mixtures

Mixtures of water and ethanol significantly decelerate the α-to-β transition of Aβ42

even at low concentrations. Figure 5.1 includes the annotated content of all DSSP

secondary structural elements for each simulation shown in the format of a sequence

logo. Each logo is comprised of stacks of letters, with the height of each letter pro-

portional to the contribution to the information content of this secondary structure

assignment at this position over the obtained ensemble. The overall height of each

column (y-axis) is measured in bits and adjusted based on the information content of

the input. The initial conformation (or the NMR structure) with two helical regions

(S8-G25 and K28-G38) connected by a β-turn was formed in an 80% HFIP/water

v/v mixture that mimics the lipid membrane surroundings [81].

A following study tested the conformational transition of Aβ42 from an apolar to a

polar environment by increasing the water content in the mixtures [83]. They claimed

the occurrance of an α-to-β transition when the amount of water was greater than

80%. In contrast, no significant β-character of Aβ42 was found in the concentration

range of 5-50% ethanol/water mixtures. Low percentages of β-bridge emerge at a

few locations of terminal residues in 5% and 10% mixtures, indicating the structural
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Figure 5.1: A list of secondary structure logos generated from obtained Aβ42 struc-
tural ensembles simulated in 5%, 10%, 15%, 20%, 25%, 30% and 50% (vol) aqueous
ethanol solutions. In a logo, C, S, T, H, I and B represent for secondary structure
elements of coil, bend, turn α-helix, π-helix and β-bridge, respectively. S1, S2 and
S3 indicate segments showing highest propensity of forming α-helix according to the
corresponding logo. The α-helix content was calculated for each simulation.
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transition could start from two termini. Our simulation data showed a structural

conversion of N-terminal residues S8-H13 from helices to coil at low concentrations

(i.e., 5-10%), while the helical region on the C-terminus was retained. Instead, the

aforementioned investigation suggested that the C-terminal helix was lost first with

preserved N-terminal helicity with increasing polarity in the medium [83].

The Aβ42 monomer prefers the conformation of three helical segments in the low

polarity environment created by the addition of ethanol. Our sampling revealed a

relatively stable secondary structure arrangement on the Aβ42 monomer in the con-

centration range of 15-50% ethanol. This local organization consisted of three helical

segments S1, S2, and S3 (i.e., H6-Y10, H14-V24 and A30-V40) that are connected by

two hinges locating at V12-H13 and G25-G29 (see Figure 5.1). The long helicity in

the N-terminal part of the initial conformation evolved to two segments of α-helix (S1

and S2) separated by a hinge around V12-H13 when the ethanol content was raised

above 15%. Local conformational stability of S3 was observed across all ensembles

simulated in varied mixtures. High conformational flexibility around the β-turn (G25-

S26) was noticed in the mixtures below 50% ethanol composition, in agreement with

the previous observation of Aβ42 in 30% HFIP/water solvent [83].

A low polarity environment promotes peptide rigidity by affecting the structural

behavior of flexible residues such as histidines and glycines. Histidines (H13 and

H14) and glycines (G25 and G29) act as segment breakers in the formation of the

conformation of three helical segments. Previous structural studies using experimen-

tal and computational techniques suggested that H13 and H14 are part of a turn in

Aβ42 fibrils and support fibrillar stability [147, 379, 380]. Our results show that the

adjacent histidines could play different roles in the local arrangement. To be specific,

H13 contributes to the formation of a turn motif, while H14 stabilizes the turn by

maintaining secondary structural rigidity. A recent work using electron paramagnatic

resonance spectroscopy showed that H13 and H14 function differently in the Aβ nu-

cleation and elongation processes [56]. On the other hand, the G25XXXG29 motif of

the peptide shows π-helical character according to the DSSP definition in the concen-

tration range of 15-30%. This motif was considered to provide backbone flexibility

and induce contacts between the central and C-terminal regions (see Section 4.4 for
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Figure 5.2: Comparison between secondary structure logos generated from simulation
data of (A) Aβ42 monomer in an aqueous solution starting from different conformers
and (B) Aβ42 structure in various ethanol-water mixtures. Detailed description of
logo (A) is provided in Section 4.3.2. Logo (B) shows the frequencies of all DSSP
secondary structure over all ensemble populations obtained from simulations in 5%,
10%, 15%, 20%, 25%, 30% and 50% (vol) aqueous ethanol solutions. Segments of
β-strand, α-helix, and hinges are shown in green, blue, and pink, respectively.
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details). The presence of a π-helix implies the distortion of α-helix and increasing en-

tropy over the region, although DSSP version 3.0.0 may overestimate the occurence of

π-helices [381,382]. An increasing α-helix occupancy was observed when the ethanol

content reached 50% (Figure 5.1, logo at 50%). Histidines and glycines play impor-

tant roles in the formation of longer helical segments on the peptide, contributing to

the enhanced the overall rigidity. This result reveals the relation between fluctuating

residues and flexibility/rigidity of Aβ42 in response to the environmental polarity.

Localization of residues on the central and C-terminal regions of Aβ42 seed β-

strands in a polar environment, whereas a location migration might occur in the

transtion of N-terminal helix to β conformation. Figure 5.2B depicts the logo ex-

hibiting the content of secondary structure elements that was calculated over all

trajectory data simulated in binary solvents. This logo was then compared with the

one generated for Aβ42 obtained for ensembles in water (see Figure 5.2A and Section

4.3.2 for the display and generation details). Aβ42 peptide adopts wider hinges in a

polar medium, promoting changes in long-range contacts and flexibilities. In other

words, the solvent polarity effect on the local conformation of Aβ42 not only includes

the α-to-β transition but also the range and degree of the secondary structural con-

servation. Additionally, a migration of the N-terminal segment was recognized in the

structural transition. Helicity at H6-Y10 transform into a turn from less polar to

polar medium, whereas high β-propensity emerges at E3-R5. These observations are

believed to be attributed to the co-existence of hydrophobic and hydrophilic interac-

tions in the aqueous mixtures of ethanol, which will be discussed in more details in

Section 5.3.3.

5.3.2 Segmentation and Tertiary Structure of the Aβ42 Monomer in

Ethanol-Water Mixtures

A classification methodology, as described in Chapter 4, was applied to categorize the

obtained ensembles of Aβ42 in various ethanol-water mixtures into different structural

classes according to the interactions between local conformational regions. The local

conformational regions were determined through a start-stop matrix, with a region

defined as a certain range of residues on the peptide frequently forming a segment or

regular secondary structure of α-helix or β-strand. A start-stop matrix was computed
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based on the combined trajectory of all simulations, recording segment locations for

each snapshot conformation. Detail for the generation of a start-stop matrix were

described in Section 4.2.4.

The current matrix shown in Figure 5.3A (lower triangle) suggests that the Aβ42

monomer could be segmented into one to three structural elements, traversing from

H6-S8, H13-H14 or G25-A30 to D7-E11, V18-S26 or L34-V40. To classify the variable-

length segmentation on the peptide, regions a, b, and c were defined to include residues

H6-V12, H13-S26, and G25-V40, respectively, representing all three-segment confor-

mations. With these defined regions, structures containing one or two segments could

be categorized into one of 11 possible groups. Obtained ensembles yielded two dom-

inant segmentation types b,c and a,b,c with a combined occupancy of 89.2% (see

Figure 5.3B). The occupancy of segmentation types involved longer segments, such

as a+b, b+c, and a+b+c are low because the existence of the π-helix is not included

as part of a helical segment. Noncanonical helical conformations of π-helix character-

ized from the present simulation data showed an increased bending hinge flexibility,

leading to a potential to form a helical kink. The extent of the hinge bending was

observed to be controlled by the overall topology and interactions with the solvent

molecules.

The monomeric Aβ42 structure was described by the arrangement of two or three

helical segments in the range 5-50% ethanol. To investigate the solvent composition

effect on the segmentation of the Aβ42, we determined the segmentation groups with

the highest occupancies for each ensemble (see Figure 5.3C and D). The result suggests

that the Aβ42 monomer was frequently occupied with the two-segment arrangement

b,c at low concentrations (i.e., 5% and 10%), whereas the three-segment type a,b,c

dominates when the concentration reaches 50%. The peptide adopts both the b,c and

a,b,c types with similar occupancies in the range of 15-30% ethanol. One exception

is that the monomeric structure also populates with the one-segment conformation

a+b at the ethanol concentration of 25%. A gradual decreasing content of helices on

the C-terminal residues of the monomer was observed, with the segmentation type

transforming from a+b, c to a+b between 350-400 ns.

The formation of a structural motif on the Aβ42 peptide in ethanol-water mixtures

was also represented by a contact pair. The ensemble-averaged contact probabilities
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Figure 5.3: Various ordered segments on the Aβ42 monomer in 5%, 10%, 15%, 20%,
25%, 30% and 50% ethanol/water (v/v) mixtures. (A) (lower triangle) The start-stop
matrix illustrating emergence of helical segments over ensemble populations obtained
from various simulations in different ethanol-water mixtures. Arrows in matching
color along the y-axis and x-axis indicate the cutting positions for the segmentation.
(upper triangle) The frequency contact matrix illustrates the probability of contact for
all side-chain atoms, where two residues are defined to be in contact if the distance
between each possible pair of atoms in two side chains is equal or less than 4.5Å.
The multi-domain pattern is demarcated with white lines, indicating intramolecular
interactions between region pairs. These regions are assigned on the primary structure
as a, b and c according to the start-stop matrix, in the range of H6-V12, H13-S26
and G25-V40, respectively. (B) Six populated segmentation types of Aβ42 monomer
in the binary solvent are listed in the decreasing order of population. Segments in
different spans are expressed based on a, b, and c, where the ones divided by a hinge
are expressed in the combination of letters and a comma and the ones located in
connected regions are annotated by letters with a plus symbol. (C) Frequencies of
segmentation arrangments were computed for the structural ensemble obtained from
each simulation. Selected snapshot structures with highest-frequency segmentation
among the population in each simulation are shown in (D), generated by PyMOL
[233]. The color codes indicate the secondary structure elements that are α-helix in
purple, π-helix in red, turn in cyan, and coil in white. All structures are presented
with the N-terminus on the left and the C-terminus on the right.
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(Figure 5.3A, upper triangle) were calculated from frames of simulations under various

conditions, revealing low frequencies of long-range contacts between three parts of

Aβ42 that match regions a, b, and c determined from the segmentation classification.

The map is segregated into contact blocks based on this three-region pattern, giving

three contact pairs: ab, ac, and bc. Contact map also illustrates the probability of

contact within residues of region a (i.e., contact pair aa). These contacts exist mainly

due to the frequent formation of salt bridges between N-terminal charged residues.

The contact pair aa is not considered in the topological classification, instead, salt

bridges on the peptide will be discussed later. The teritiary structure of Aβ42 can

be described by the combination of these contact pairs, termed as a contact pattern.

Given three contact pairs, possible contact patterns are 23 − 1 in total, where the

combinations could be the presence of one pair, two pairs, and three pairs of contacts.

Two regions are recognized to be in contact by satisfying two conditions: (1) the

distance of any pairwise residues rx and ry from these regions is below the defined

threshold, and (2) rx and ry do not belong to the same segment based on the DSSP

secondary structure assignment for the consideration of conformations containing long

helical segment located at connecting regions (e.g., b+c).

The structural diversity and the compactness of the Aβ42 monomer is composition

and polarity dependent in low concentrations of ethanol. A low polarity environment

promotes structural homogeneity of the peptide, resulting in fewer topological pat-

terns compared with those in the polar medium. To distinguish from the annotations

of segmentation types, capital letters are used for the contact pattern identification.

Aβ42 peptide gave three dominant contact patterns: AB, BC, and AB-BC in the

ethanol-water mixtures. These topological patterns depended on secondary structure

segmentation, each of which corresponds to two out of six segmentation types listed

in Figure 5.3B. Conformations of AB pattern contained b+c segment plus a helical

or random coil N-terminus, whereas the ones of BC pattern possess a N-terminal

segment a+b with a disordered C-terminus. The latter pattern was populated in

the structural ensemble from 25% ethanol. The monomer in the binary solvent had

the highest population of AB-BC pattern, indicating its high propensity of breaking

into three parts, i.e., segmentation type of a,b,c or b,c. Ensembles obtained in low



144

Table 5.2: Population proportion of contact patterns for each simulation.

Concentration
(% v/v)

Contact Pattern (%)

AB AC BC AB-BC AB-AC AC-BC AB-AC-BC None

5 15.0 0.0 0.0 72.0 3.0 0.0 10.0 0.0
10 10.2 0.0 0.0 70.3 0.7 0.0 18.8 0.0
15 1.3 0.0 4.8 94.0 0.0 0.0 0.0 0.0
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ethanol content (i.e., 5-10%) sampled minor population of compact structures in-

volving interactions between termini, yielding AB-AC and AB-AC-BC patterns. The

addition of ethanol reduced the structural complexity of Aβ42 such that the peptide

presented only one pattern AB-BC when the water content dropped to 50%. This

could be related to a shifted preference of the peptide from staying in collapsed to

more extended state when lowing the solvent polarity. Figure 5.4A shows that the

average radius of gyration (Rg) value elevates significantly when the ethanol content

rises to 10%, then a plateau is reached in the concentration range of 10-30% ethanol.

As discussed in Chapter 4, an Rg of ∼0.9 nm is expected for Aβ42 if it collapses into

a completely folded conformation (see Equation 4.7). The mean values of Rg reside

between 1.22-1.26 nm with a larger variance than the values predicted for structures

simulated in aqueous solution. This indicates that Aβ42 tends to pack into low Rg

conformations when dissolving into the binary solvent, however, these MD ensembles

contain many extended populations. Considering the reducing structural heterogene-

ity, ethanol may enhance the conformational stability of extended conformations by

decreasing the contact volume between regions. The plateau may imply that ethanol

composition becomes a minor factor in affecting the peptide shapes and sizes when

it rises to 10% and above.

To further examine the effect of ethanol on the regional flexibility of Aβ42, we com-

puted the residue-based root mean square fluctations (RMSF) of the corresponding

backbones with respect to the NMR structure (i.e., the initial structure) over each

ensemble (see Figure 5.4B). As the NMR structure was obtained in a membrane-

mimicking environment, this plot also compares the local dyanmics of the peptide in

various ethanol-water mixtures to that in the aqueous solution. Overall, high ethanol

content restricted the conformational freedom of all regions of Aβ42. Residues in

between regions (E11-K16 and E22-K28) exhibited higher flexibility than those in

other parts in pure water and low ethanol content. In contrast, polarity changes

showed less effect on structural dynamics of hydrophobic components including a

C-terminal glycine zipper (i.e., L17-A21, G29-G33 and V36-V40). This observation

conveys the importance of the intrincially disordered Aβ in maintaining structural

rigidity to some extent, coordinating with other disordered parts for environmental

adaption. Inter- and intra-molecular interactions between these components have
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been considered fundamental in influencing the aggregation pathways [102,113,266].

5.3.3 Adsorption of the Helical Aβ42 to an Ethanol-Water Interface

Our simulation revealed that ethanol molecules cluster into aggregate(s) in the binary

solvent mixtures in the absence of Aβ42. To test the existence of ethanol clustering,

we first performed 100-ns MD simulations for ethanol-water binary mixtures at con-

centrations of 10% 20%, and 30% ethanol (v/v). Small clusters of ethanol molecules

were formed preferentially with dispersed ones surrounded by water molecules in

10% ethanol content. One main ethanol aggregate was formed with fewer sparse

molecules nearby at 20%, and 30% ethanol concentrations. According to the concept

of clathrate hydrates, water molecules crystallize into cage-like structures around the

suitable sized guest solutes [383,384]. A previous MD study revealed that the ethanol

guest is hosted by 24 water molecules via hydrogen bonds, forming a configuration

containing both hexagonal and pentagonal faces [385]. In comparison, the structure

of one ethanol-rich cluster was favored in 30% mixture, resulting in phase separation

at the molecular level. This could be explained by there being an insufficient number

of water molecules to provide clathrate cavities for all ethanol molecules [363]. Gen-

erally, these observations with specific mixing ratios agree with previous experimental

results [357,363].

The presence of Aβ42 affects the ethanol clustering especially at low concentra-

tions. The description below is for the simulation of Aβ42 in 10% ethanol-water mix-

ture. The C-terminal residues of Aβ42 tended to make a small number of hydrophobic

contacts first with the alkyl groups of ethanol molecules, forming a quasi-stable state.

At this early stage, most of ethanol molecules were spread over the simulation box

and the Aβ42 underwent conformational changes by losing N-terminal and G25-G29

regional helices. The formation of stable ethanol aggregates in the simulation with

a 10% ethanol-water mixture without the peptide required ∼3 ns. The existence of

a peptide-ethanol quasi-state slightly slowed the kinetics of ethanol clustering (≈ 6

ns). Over the course of the simulation, there was a combination of rapid increase in

peptide-ethanol and ethanol-ethanol contact formation. A polarity difference caused

by the initial peptide-ethanol interactions drove further ethanol clustering, leading to

less dispersed molecules compared to the simulation for the 10% ethanol-water binary
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Figure 5.5: Ethanol interaction of Aβ42 peptide in 5%, 10%, 15%, 20%, 25%, 30%,
and 50% ethanol/water (v/v) mixtures. (A) Primary sequence of the Aβ42 peptide
with basic and acidic amino acided indicated in blue and red, respectively. Hydropho-
bicity of the peptide is plotted against the residue index, with values according to the
hydrophobicity scale of Wimley and White [386] for proteins at a membrane interface.
(B) Average number of contacts on per-residue location to the ethanol surface over
each trajectory ensemble. Regions with the lowest average number of contacts with
ethanol molecules are highlighted with yellow rectangles. (C) Aggregated secondary
structure logo over all obtained ensembles in ethanol-water mixtures, which is identi-
cal to Figure 5.2B. (D) Average Cα distance to the spatially closest ethanol molecule
for each residue of Aβ42 over the production ensemble obtained from each simula-
tion. Residues that are closest to the ethanol surface are all glycines and labeled
specifically. (E) Average solvent accessible surface area (SASA) of each residue over
the production ensemble of Aβ simulations in various mixtures, where the SASA of
a certain Aβ42 conformation means its exposing area to the aqueous subphase.
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solvent. Upon fully binding to the ethanol surface, the thermodynamic unfolding of

Aβ42 was limited.

The Aβ42 monomer adopted an amphiphilic helical structure at the ethanol-water

interface, stabilized by a balance of electrostatic and hydrophobic interactions. In a

study of Aβ40 interacting with micelles, the peptide secondary structure and aggre-

gation behavior was strongly affected by the interacting surfactant molecules [387].

Similar structural behavior was observed for the Aβ42 peptide upon adsorption. As-

suming that ethanol molecules cluster to an aggregate in the micro-state, an interface

with a hydrophobicity difference is created between water and ethanol molecules. The

amphiphilic Aβ42 that contains the varying physiochemical properties of different

components (see Figure 5.5A), partitions residues with high and low hydrophobicity

towards ethanol and water subphases respectively via its helical structure. Large hy-

drophobic residues of Aβ42 establish high contact volume with the ethanol surface,

whereas polar regions such as E22-A30, exhibit the least average contacts, suggesting

that these regions are more solvated by water than other parts of the peptide (see

Figure 5.5B). Also, the helical Aβ42 adsorbs to the ethanol surface by using the best

space advantage. The monomer places itself closest to the ethanol aggregate’s exterior

by exposing the small-sized nonpolar amino acids (i.e., glycines and alanines) to the

surface (Figure 5.5D). This adsorption behavior helps the monomer preserve helicity

on its hydrophobic patches, biasing the α-helix to β-sheet transition. It also lowers

the opportunity for intramolecular interaction between the core and C-terminus of

the monomer (forming a hairpin motif), thereby effectively inhibiting the aggregation

process.

The adsorption dynamics of Aβ42 to the ethanol-water interface is correlated to

solvent polarity. In this experiment, the solvent polarity was controlled by altering

the number of ethanol and water molecules added to the simulation box. Thus, high

ethanol content or low polarity solvent results in the formation of relatively large

ethanol aggregates. The stabilization of Aβ42 depends on the interfacial network

formed between solvent molecules. Conversely, Aβ42 adsorption has an impact on

the interfacial hydrophobic/hydrophilic ratio, leading to different ethanol aggregate

surface shape. Figure 5.6 shows the Aβ42 configuration after interfacial adsorption in

various aqueous ethanol solutions. At a low ethanol concentration (see Figure 5.6A),
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Figure 5.6: Behavior of Aβ42 peptide at the ethanol-water interface in A) 5%, B)
20%, C) 25%, D) 30%, and E) 50% ethanol-water mixtures. Representative con-
formations of Aβ42 monomer interacting with the ethanol aggregate are displayed.
Protein is shown in stick representation and its positively charged, negatively charged,
polar, and nonpolar residues are blue, red, green, and white, respectively. Ethanol
aggregates are shown in surface representation with the ethyl and hydroxyl groups
colored cyan, and red, respectively. Each conformation is displayed in the order of N-
terminal, central, and C-terminal regions from left to right. Subplots of Aβ42-ethanol
structures were rendered using VMD [96]. Ribbon representation of the same protein
structure for each case is exhibited at the end of each row with the N-terminus placed
on the left. Secondary structure strips for each centroid, as calculated by DSSP [390],
are also shown, where α-helix, turn and coil are purple, cyan, and white, respectively.
Subplots of only the protein structure were rendered using PyMol [233].
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the peptide structure rearranged to maximize its interacting area with the interface

and exposed its hydrophobic residues towards the ethanol subphase. However, it

seems that ethanol molecules preferred self-clustering when the ethanol concentra-

tion was increased, resulting in higher SASA of Aβ42 hydrophobic patches to the

water subphase. Figure 5.6A-C shows that the immersion depth of helical Aβ42 in

the ethanol aggregate became shallow when the ethanol content changed from 5%

to 25%. The extent of exposure of Aβ42 to the polar subphase was also calculated

and is depicted in Figure 5.5E. The increasing solidity of the ethanol aggregate in

the concentration range of 5-25% ethanol allows highly solvent accessible to water

on the hydrophobic C-terminal region G29-A42. This promoted more extended con-

formations of Aβ42 and its structural transition to random coil (see Figure 5.6A-C).

This trend was reversed in the concentration range of 30-50% ethanol that the sol-

vent accessibility for C-terminal residues is decreased significantly (see Figure 5.5E)

due to the insertion of these regional helices into the aggregate (see Figure 5.6D-E).

This result was consistent with previous studies of the embedding Aβ42 in mem-

branes wherein C-terminal residues of the peptide adopted transmembrane helical

structure [388,389]. Lastly, we noted that the G25XXXG29 motif plays an important

role in the adsorption dynamics, interfacial structural rearrangments, and aggregate

insertion of Aβ42. The π-helix conformation formed around this region provided

backbone flexibility for the peptide’s bending movement with the changing shape of

the aggregate.

5.3.4 Salt Bridges

Hydrophobic contacts among β-strands and salt bridges (SB) are the two major con-

tributors to the structural stabilization of the Aβ42 monomer in an aqueous solution.

Due to the difficulty in forming β-structure over the peptide in the ethanol-water

binary solvent, the generation of intra-peptide SBs becomes critical for its conforma-

tional stability. Recall in Section 5.3.2 that E11-K16 and E22-K28 are the first two

components that undergoes secondary structural change due to their high dynamics.

This benefits the structural segmentation, thereby promoting the folding event of the

peptide by increasing the chances for intra-segmental contacts. Nevertheless, Aβ42

requires helical characteristics for the surface binding or insertion into the ethanol
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aggregate. SBs in this case support the preferential three-segment conformation in

two ways. First, these SBs, such as E11-K16 and E22/D23-K28, control the bending

movement over the loop regions to a certain degree to increase its adsorbed areas to

the ethanol-water interface (see Figure 5.7A). Second, Figure 5.7A-C revealed that

the formation of D3-R5, R5-D7, E11-K16, and D23-K28 SBs on Aβ42 could function

as zippers to prevent the loss or distortion of helices in a low polarity solvent.

The formation of SBs on Aβ42 in an ethanol-water mixture was correlated to its

adsorption behavior. Compared with overall low SB populations observed from the

sampled ensembles in water (Section 4.3.4 Chapter 4), high concentrations of ethanol

promote the formation of a diverse number of SBs of Aβ42 peptide due to the lack

of overall intramolecular contacts. As mentioned in Section 5.3.3, the destabilization

of Aβ42 conformation around 20-30% ethanol concentration was observed due to the

increasing solidity of the ethanol aggregate, exposing the peptide C-terminus towards

the polar subphase. Formation of SB E22/D23-K28 on the Aβ42 monomer at this

concentration range appeared to conpenstate for the increasing entropy on the C-

terminal region (see Figure 5.8). High occupancies of E3-R5, R5-D7 and D11-K16

SBs were identified at the concentrations of 5%, 10%, 15% and 50% ethanol. Sufficient

hydrophobic contact volume between Aβ42 and the ethanol surface were estabilished

that retained the helicity on the hydrophobic patches of the peptide. Therefore, only

SBs related to N-terminal stability were populated among these structural ensembles.

5.3.5 Conformational Variation of the Aβ42 Monomer in Ethanol-Water

Mixtures

Decreasing solvent polarity prevents the original α-helix on the Aβ42 monomer from

breaking up. To analyze the conformational variation of the Aβ42 monomer in dif-

ferent ethanol-water mixtures, we first merged the trajectory data generated under

each solvent mixture into a single geometric input file with the first 200 ns discarded

for each simulation. Principal component analysis was carried out over the Cartesian

coordinates of the combined trajectory (cPCA). The result was projected onto a 2D

plane formed by the first two principal components (PC), which involved an aggre-

gated 56.73% of the geometric variances (see Figure 5.9A). Ensembles obtained from

simulations showed a trend along PC 1 (containing 43.50% variances) with increasing



152

R5

D7

D3

D23

K28

E11

K16

E22

K28

E11
K16

K28D23

A B

C
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water mixture respectively, where residues are displayed in stick representation. The
backbone is colored based on the secondary structure elements, in which α-helix, turn,
and coil are purple, cyan, and white, respectively. All structures are presented with
the N-terminus on the left and the C-terminus on the right.
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ethanol concentrations. Figure 5.9B and C further depict this trend by comparing the

mean values of PC 1 with the standard deviation (SD) and the probability density of

PC 1 over the ensemble obtained under each condition. On the other hand, the ex-

pression of the major motion within each simulation is distributed over similar ranges

along the PC 2 axis (containing 13.23% variances), except for structures simulated in

the pure water. That the smallest SD and narrowest distribution of PC 1 coordinates

were observed for Aβ42 monomer structures simulated in water suggests that this con-

dition afforded relative steady dynamics as compared with other conditions. Large

conformational fluctuations for sampled ensembles in ethanol concentrations of 10%,

15%, and 20% were observed, which could be attributed to the changing shape of the

ethanol aggregate surface. A plateau of mean PC 1 coordinates is reached at 15-20%

(v/v) ethanol/water, indicating that no prominent conformational differences existed

between the ensembles at the current and higher concentrations of ethanol. Figure

5.4 shows a similar trend on the degree of conformational expansion of Aβ42. Com-

bining these results, the α-to-β transition of the Aβ monomer could be significantly

hindered when the water content reaches 85% and lower. A slightly higher ethanol

composition limit was reported from the previous NMR study using the HFIP-water

mixture at the HFIP concentration of 20% (v/v) or less [83].

Ethanol inhibits Aβ42 self-association by promoting the extended shape of the

peptide on the ethanol-water interface. With the ordination of all ensembles in the

PCA projection, the DPC method (see Section 3.2.4 for details) was utilized to show

how topological changes of the Aβ42 monomer correlated with the increasing ethanol

composition by binning along the PC 1 axis. This yielded in a series of average struc-

tures that captured the continuum of an open-close progression on the conformation

across the population of all ensembles in the decreasing order of the ethanol/water

concentration (see Figure 5.9D). This progression included the decline of helical con-

tent especially on the C-terminus, a decreasing distance between termini, and the

emergence of a hinge region firstly on the N-terminal side (a3-a5) and then on the

C-terminus (a6-a13). A loss of helical structure at the N-terminus was observed in all

ensemble populations, inducing an overall entropy on the extended conformations of

Aβ42 at relatively high concentrations of ethanol (a1-a9). These results suggest that

(1) the α-to-β transition may be reversed by changing the composition of water and
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ethanol, in agreement with a previous NMR study [83]; and (2) ethanol may reduce the

Aβ aggregation due to the absence of or low amount of β-structure formation at high

ethanol concentration. Another explanation could be that a concentrated ethanol-

water mixture prevents the hydrophobic clustering within the peptide, which further

blocks the hydrophobic interactions between collapsed monomers in the primary nu-

cleation process. An earlier experimental study revealed that ethanol prevented Aβ

dimerization in vitro [370].

5.4 Discussion

By dissolving Aβ42 monomer in the ethanol-water mixture, its structural and dy-

namic properties change as a function of the ethanol composition. Various simula-

tions performed in this study have shown that the kinetics and direction of the Aβ42

α-to-β transition could be manipulated by altering the solvent polarity. Combining

analyses of secondary structure character, structural segmentation, and contact pat-

tern classification, a misfolding mechanism may be proposed as follows. The loss

of helicity on the peptide starts at the N-terminus (around S8-H13) and two hinge

regions, resulting in the three-segment arrangement. Therefore, the mobility and

secondary structure content of the Aβ42 N-terminal region could serve as the de-

termining region governing the aggregation rate and fibrillar stability. Loop regions

play an essential role in providing backbone flexibility so that the peptide folds into

compact configurations via hydrphobic clustering between the central and C-terminal

regions. A further secondary structural transition on the Aβ42 monomer may occur

before and after its recruitment to the oligomer or fibril. A detailed description of

the last stage was provided in Chapter 3. Histidines and glycines are key residues

for defining the termini of segments, effectively separating ordered and disordered

components on the peptide. In this way, a limited number of segmentation types can

be formed on the peptide, thereby the oligomeric and fibrillar structures are subject

to the combination of secondary structural segments of their subunits. In addition,

high propensity of Aβ42 to adopt helical conformations in low polarity solvent. Such

phenomenon was reported in previous studies dissolving the peptide into other binary

solvents such as HFIP-water [81,391]. Different helical configurations of Aβ42 are fa-

vored, depending on the solvent conditions. This further affects the α-to-β transition



157

rate and formation of fibrillar and non-fibrillar aggregates [344]. Therefore, the fact

of heterogenerous structures of Aβ oligomers and the fibril obtained from different

experimental studies in vitro is expected. Future studies could focus on comparing

Aβ42 structural differences obtained under different conditions, where the effect of

multiple factors such as solvent polarity, temperature, and pH could be examined.

Ethanol molecules could cluster into multiple small ones or a single big aggregate

at the molecular level according to our simulations. Previous SANS study also dis-

covered the ethanol clustering when dissolving lysozyme into the binary solvent [392].

Aβ42 adopts a monolayer amphiphilic helical structure on the ethanol-water interface.

Our data have shown that the peptide adsorbs to the ethanol surface when ethanol

content is less than 25%, while an insertion of Aβ42 C-terminal residues (G29-A42)

into the ethanol aggregate was observed at ethanol concentrations above 25%. Both

cases were demonstrated in previous studies of Aβ species interactions with different

lipid environments [344, 389, 393–398]. The kinetics of ethanol clustering especially

at 25-30% has a major influence on the helical content of Aβ42 C-terminus. In-

sufficient contact formation between the peptide and ethanol molecules may result

in over-exposure of Aβ42 hydrophobic patches to the polar subphase, triggering a

loss of helicity. In this case, the peptide tends to stay on the ethanol surface rather

than embedding its C-terminus into the aggregate. We conclude that the occurrance

of Aβ42 adsorption or insertion to the ethanol aggregate seems to be dependent

on the solvent polarity and the helical content of the Aβ peptide. This point has

also been raised from a previous computational study of Aβ-membrane interactions

wherein the degree of Aβ42 embedded to the membrane is strongly correlated to the

cholesterol composition of the lipid membrane and the helical content retained on the

peptide [389].

As experimental data on IDPs at a fluid interface are scarce, we compare the

adsorption behavior of Aβ42 to interficial properties of globular protein adsorption to

an oil-water interface [399], as well as to globular protein lysozyme [392] and amyloid-

like aggregation of β-lactoglobulin [375] in an ethanol-water solution. Combining

these literature reports with our results, we summarize features of Aβ42 adsorption

to ethanol-water interface to provide insights for further studies associated with IDPs

binding and aggregating at the fluid or membrane interface. First, in the presence
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of a protein in the aqueous ethanol solution, ethanol molecules can either bind with

the protein or form clusters in the bulk. Second, the structural response of Aβ42

to the change of solvent polarity is attributed to a sensitive balance of hydrophobic

and polar interactions in the binary solvent. Third, increasing ethanol content or

decreasing solvent polarity drives structural rearrangement on the peptide including

higher helical compositions, larger bending angles around the hinge regions, and a

greater extent of exposing hydrophobic patches to the polar subphase.

The inhibition of Aβ aggregation in a low polarity medium can be accounted

for by several possible explanations. One is that low polarity solvent promotes he-

lical conformations of Aβ42. The driving force for oligomerization was suggested

to be the interpeptide association via a central hydrophobic cluster. Assembly of

β-sheets between interpeptide hydrophobic components is required for polymeric sta-

bility since hydrogen bonds are stronger than hydrophobic interactions [272, 400].

Deceleration and prevention of the α-to-β transition results in difficulty at the early

stage of amyloid nucleation. Another reason could be the sheltering of C-terminal

residues of Aβ42 from the polar subphase. The protection of the Aβ42 C-terminal

region not only removes the hydrophobic attraction force to some extent but also re-

stricts conformational freedom of the peptide to orient itself for oligomerization. The

formation of the U-shaped monomer was suggested to be aggregation prone due to its

configurational benefit in estabilishing more hydrophobic and favorable electrostatic

interactions (i.e., salt bridges and β-sheet hydrogen bonds) during fibrillization. Hy-

drophobic interactions of ethanol molecules around the protein significantly lower the

chances of contact between the central and C-terminal regions. The last element is

attributed to the positioning of GXXXG motif within the ethanol aggregate in the

insertion of Aβ42. It was demonstrated that the flat surface provided by the glycine

residues can be regarded as a framework for a wide variety of specific interactions

for dimerization [401]. Our simulation of Aβ42 at 50% ethanol content has shown

that the G25XXXG29 motif helps place the Aβ42 central helices on the aggregate

surface whereas the C-terminal helices are embeded. Such fixed helix orientation of

the central region would limit its hydrophobic interaction with another monomer.
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5.5 Conclusions

Aβ42 has a fascinating sequence design such that in polar solvent the peptide col-

lapses into a micelle-like structure while in low polarity or nonpolar solvents the

peptide forms a monolayer amphiphilic helix structure. The conformational variation

of Aβ42 in binary solvents with different ethanol content has been shown. A low

polarity environment restricts the peptide conformational freedom by first increasing

the local conformational conservation and minimizing the hinge ranges. The solvent

polarity has a direct effect on the fluctuating locations and lengths of helices. We

have observed a rigid C-terminal helical structure due to its hydrophobic interactions

with the ethanol molecules. The stabilization of C-terminal residues also hinders the

Aβ42 aggregation, including inhibition of the conformational transtion and formation

of the aggregation prone U-shaped structure. Alteration of ethanol concentration or

solvent polarity could control the α-to-β transition rate and also reverse the process.

By manipulating the surrounding conditions in the preparation Aβ42, distinctive

monomeric structures could be formed, leading to various aggregation pathways.

Our adsorption analysis suggests that (1) ethanol molecules cluster at the molec-

ular level; (2) Aβ42 adsorbs to the ethanol/water interface and forms a monolayer

amphiphilic helix structure; (3) the peptide has the ability to modify the surface

of ethanol aggregates and even insert into the ethanol layer at high concentration;

and (4) the structural behavior of the peptide in the binary mixture is composition-

dependent. As part of the transmembrane protein, Aβ42 is initially embedded into

the lipid bilayer before proteolytic cleavage. Understanding Aβ42-membrane interac-

tion after the peptide is produced is crucial for exploring the mechanisms of interfacial

folding and the initial stage of self-aggregation. These results suggest that environ-

mental polarity could be one of the key factors determining how Aβ42 and membranes

interact.



Chapter 6

Concluding Remarks and Future Work

6.1 Concluding Remarks

Intrinsically disordered proteins (IDPs) possess some fascinating biophysical features

that are far beyond the rules of classical structure-function paradigm. Not only the

concept of intrinsic disorder but also their active involvement in various biological

processes and association with human diseases inspire us to expand our knowledge

of these special members of the protein world. The primary objective of my research

was to characterize conformational states of intrinsically disordered Aβ42 in different

environments. To link the experimentally known conformations of Aβ42, exploration

of the vast conformational space was achieved by performing microsecond simulations

of the peptide monomer starting from different experimentally solved structures. We

learned that Aβ42 contains ordered and disordered segments that are not completely

independent. These parts have the ability to sense the environment and respond to

each other’s change. According to this theory, I have classified its tertiary struc-

tures into a few types based on the ordered segments. This work contributes to the

knowledge of some common behaviors shared with other IDPs. Also, a few designed

conformational characterization strategies could be applicable to structural and dy-

namic studies of other globular and disordered proteins.

Beginning in Chapter 3, a specific α-to-β transition or misfolding pathway of Aβ42

was examined by performing systematic simulations originated from defined opposite

conformation ends towards each other‘s direction in an aqueous solution. My results

indicated that Aβ42 frequently interconverts between collapsed and extended confor-

mations along the transition route. Extended states are intermediate states bridging

between different collapsed states on the free energy landscape of Aβ42. Due to the

flatness of Aβ‘s energy landscape (also for other IDPs), a certain folded configuration

could easily convert into another, revealing the conformational heterogeneity, com-

plexity of misfolding and aggregation pathway network and high structural plasticity

160
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of the peptide. This chapter was also featured by the use of principal component

analysis (PCA) in a way to break down and simplify the folding event into a series of

continuous motions.

Although Aβ species carry high flexbility in the aqueous medium, I noticed that

some parts of the peptide actually show homogeneous characters especially in sec-

ondary structure content. Chapter 4 aimed to identify these character and categorize

topologies based on the rigid segments into more specific classes rather than just

collapsed and extended conformations. Simulations initiated from different starting

points were carried out and combined into the same sampling space in the utiliza-

tion of PCA. By defining conformational states on the joint landscape, classifying

the conformations, and discretizing motions between these conformations, I was able

to organize complex dynamics from currently explored space into the continuum of

open/close folding events.

To test the robustness of previously applied approaches, I executed the aforemen-

tioned analyses on the sampled ensembles of Aβ42 in various ethanol-water mixtures

in Chapter 5. Another purpose of this chapter was to examine the structural sensitiv-

ity of Aβ42 to the change of a single environmental factor which is solvent polarity in

this case. The polarity alteration has a direct impact on the reaction rate and direc-

tions of the α-to-β transition. Surprisely, I observed that ethanol molecules cluster

into different sizes of aggregate in the binary mixture depending on the concentration

and the presence of protein. Aβ42 adsorbs to the ethanol surface at low concentra-

tions and embeds its C-terminus inside the aggregate when the ethanol content rises

to 50%. These results share consistency with the observation of the peptide behaviors

in different lipid environments. Moreover, I summarized the effect of low polarity on

inhibiting the Aβ aggregation.

Taken together, the results in Chapters 3 to 5 have demonstrated the applicability

of MD simulations in investigating structural features of IDPs for specific reaction

pathway and responses to effect of different environmental factors.

6.2 Future Directions

It would be interesting to further explore the questions addressed in this thesis using

different modeling techniques in order to verify the results reported here. However, the
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findings do correspond well with previously published work. A comparison between

my results and previously reported experimental data in Chapter 4 has shown a

generally good consistency. Since there is no force field specifically designed for IDPs,

the assessment of other reliable force fields such as CHARMM22 and OPLS-AA with

currently used GROMOS96 54a7 is necessary for the accuracy of structural sampling.

For the simulations testing the peptide reaction to environmental changes such as

solvent polarity, different sampling techniques including combinations of force fields

with other water models are needed for evalution. Also, other advanced sampling

methods such as replica-exchange molecular dynamics (REMD) should be employed

for a wider conformational space exploration in the future experiments.

6.2.1 Aβ42 Oligomers in the Aqueous Solution

Over two decades ago, emergence of studies proposed that small soluble oligomers

of Aβ can cause neurotoxicity rather than the mature fibrils [213, 402, 403]. One

hypothesized mechanism involves the ability of oligomeric species to penetrate into

the membrane and form unregulated ion channels in brain cells, leading to distur-

bances in neuronal Ca2+ homeostasis, alteration of synaptic information processing

and utimately inducing neurotoxicity [404, 405]. The original idea is attributed to

the significant correlation between intra-neuronal accumulation of Aβ and elevated

level of the calcium in the cortex of Alzheimer’s disease patients. Previous simulation

data revealed that the trimer to pentamer species of both Aβ alloforms are prone

to form pores that is sufficiently large for the access of water molecules and Ca2+

ions [406,407].

Initial systems of these simulations can be employed by extracting a single monomer

from the U-shaped Aβ42 full length fibril structure that was determined with the com-

bined NMR and EM data in vivo (PDB ID: 2NAO) [109]. The simulation box size

for dimeric and trimeric systems is enlarged by increasing the minimum distance be-

tween solute and the box boundry to 2.0 nm. To compare with previous simulations

of monomers, the same combination of force field and water model could be used.

Two 400-ns equilibration MD simulations have been performed for the dimeric and

trimeric system, respectively. However, more replicas with longer simulation time are

needed for the sufficient exploration of energy landscape. REMD is preferred in the
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B

1.7 nm

A C

D

Aβ42 dimer in H2O Aβ42 trimer in H2O

Figure 6.1: Selected snapshots of porous conformations of (A) Aβ42 dimer and (C)
trimer in solution are shown in the representations of Van der Waals surface using
Visual Molecular Dynamics (VMD) software version 1.9.4a37 [96]. Locations of pores
on the structures are indicated in white circles. β-Barrel-like motif are implied in
black cirles on (B) Aβ42 dimer and (C) trimer representative structures, where both
conformations are displayed from the front (upper) and top (lower) view. Basic,
acidic, polar and non-polar residues are blue, red, green, and white, respectively.
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consideration of sampling efficiency.

A preliminary result has shown that Aβ42 trimer can form porous conformations

that is water- and ion-permeable in solution. Figure 6.1A and C depict the formation

of pores on Aβ42 dimer and trimer topologies from the present simulation data even

in the absence of lipid bilayer. We utilized the MOLEonline 2018 update [408] to

determine the formation and calculate the size of pores in the obtained oligomer con-

figurations. Only a few dimeric configurations with pores were recognized, however,

the size of these channels are too narrow for water molecules and Ca2+ ions to pass

through. Porous conformations were observed more frequently on trimeric configu-

rations and usually formed between peptides via charged and polar residues sitting

between β11 and β2. The narrowest region of these channels are at the average of

1.7-2.0 Å, which is sizely large enough for water molecules and Ca2+ ions (about 1.4

Å) to travel through. This result is consistent with the observation from Nguyen et

al. [407] and Voelker et al. [406].

Both Aβ42 dimer and trimer form partially open barrel-like motif in water. β-

Barrels are common structures found in outer membrane of Gram-negative bacteria

and in the mitochondria membrane. Earlier studies tried to link the occurrence of

a barrel structure in Aβ oligomers with their formation of an ion channel in a lipid

bilayer [409, 410]. To investigate this, a number of computational studies modelling

different Aβ42 assemblies were conducted and revealed the emergence of barrel motif

on the oligomeric topologies [407,411,412]. Our simulation data showed the formation

of partially open barrel-shaped Aβ42 dimer and trimer configurations in solution

(Figure 6.1B and D), respectively. Different from previouly observed barrel-shaped

Aβ oligomer structures containing six to eight antiparallel β-strands [407, 412], the

barrel-like motifs within dimer and trimer are made by the mixing of parallel and

antiparallel β-strands mainly between hydrophobic residues located on regions of β2

and β4. Specifically, the dimer barrel is composed of five β-strands including an

intramolecular β-turn-β motif, while the trimer forms more complete cylinder-shape

containing six strands with an average diameter of 1.7 nm. The size of the β-barrel

in the trimer is larger than the observation from Nguyen et al. (which is about

1.2 nm) [407]. Such a difference could be caused by the use of different simulation

protocol i.e., selection of force field, sampling length and initial conformation. Since
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only a partially closed barrel-like structure were found from our sampled ensemble.

It is emphasized here that the β-barrel motif in our simulation is separated from the

location of porous conformation, which matches one case demonstrated by Nguyen et

al. [407].

6.2.2 Oligomerization of the Aβ42 in the Presence of Lipid Membranes

A previous computational study suggested that the fragment Aβ(25-35) interacts

with the model membranes in three stages including adsorption, nucleation on the

surface and penetration of the oligomeric form [413]. To examine the molecular mech-

anisms underlying these processes on the full-length peptide, simulations on different

stages could be conducted. First, the helical conformation of Aβ42 (PDBID: 1IYT)

is used as the starting conformation. The whole system would be then built build

with the helical peptide inserted with its longitudinal axis parallel to the membrane

axis. An appropriate lipid bilayer model and the composition of cholestrol would need

to be determined before the simulation set-up. Multiple simulations with different

cholestrol concentration could be tested with the presence of Aβ42 since membrane

polarity could affect the peptide surface behavior [389]. A initial simulation time

set to around 3 µs for equilibration would be appropriate. Another monomer would

be added into the simulation box at this point on the membrane surface to test for

possible dimerization. The formation of trimer is expected in the next step simu-

lation since a previous computational study demonstrated the emergence of porous

conformation on the Aβ42 trimer [407].
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3D PCA (Chapter 3)
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Figure A.1: Projection of all simulations (CT3) in a 3D space formed by the first three
principal components. The 3D plot rotates about the z-axis in the couterclockwise
by an angle A) 60◦, B) 120◦, C) 210◦ and D) 300◦.
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Discretizing along PC2 coordinate based on the cPCA of

CT2 and CT3
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CT2: PC2
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CT3: PC2

Figure B.1: Two series of average structures are obtained from DPC along PC1
and PC2 based on CT3. The thickness and the color range of red-white-purple of
the average structures suggest the extent of RMSD changes among structures in the
corresponding binning area.
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Clustering on the combined trajectory via R-score
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Figure C.1: Community structure detected from the clustering result on the combined
trajectory using R-score. Averages structures (C1 as to C4 as) were generated for
the representation of structural characteristics for each cluster. The thickness and
the color range of red-white-purple on the average structures suggest the extent of
RMSD changes among all structures in the corresponding community. Representive
structures that have smallest RMSD to each average are also shown.
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Structural changes of Aβ42 in RMSD against simulation

time in MD simulations
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Figure D.1: Evolution of the Cα-RMSD with respect to the corresponding Aβ42
starting structure of the MD simulations.
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3D PCA (Chapter 4)
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Figure E.1: Projection of the combined trajectory including 15 MD simulation data
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Figure E.2: Same projection as above and the cPCA space is colored by the formation
of clusters. The 3D plot rotates about the z-axis in the couterclockwise by an angle
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Appendix F

Salt bridges populations in different contact patterns

(Chapter 4)
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Figure F.1: Populations of all 18 salt bridges formed by 3 positively charged residues
and 6 negatively charged residues, calculated for structural ensemble of different con-
tact patterns (A-D) and over all structures (E) using the restrictive definition de-
scribed by Kumar and Nussinov’s paper (see Section 4.2.4 for details). Populations
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Obradovic, Lukasz Kurgan, et al. D2p2: database of disordered protein predic-
tions. Nucleic Acids Research, 41(D1):D508–D516, 2013.

[7] Peter E Wright and H Jane Dyson. Intrinsically disordered proteins in cellular
signalling and regulation. Nature Reviews Molecular Cell biology, 16(1):18–29,
2015.

[8] H Jane Dyson and Peter E Wright. Intrinsically unstructured proteins and their
functions. Nature Reviews Molecular Cell biology, 6(3):197–208, 2005.

[9] Vladimir N Uversky. Intrinsically disordered proteins and their (disordered)
proteomes in neurodegenerative disorders. Frontiers in Aging Neuroscience,
7:18, 2015.

[10] Mark Benhaim, Kelly K Lee, and Miklos Guttman. Tracking higher order
protein structure by hydrogen-deuterium exchange mass spectrometry. Protein
and Peptide Letters, 26(1):16–26, 2019.

[11] Modesto Orozco. A theoretical view of protein dynamics. Chemical Society
Reviews, 43(14):5051–5066, 2014.

174



175

[12] MJE Sternberg, DEP Grace, and DC Phillips. Dynamic information from pro-
tein crystallography: an analysis of temperature factors from refinement of the
hen egg-white lysozyme structure. Journal of Molecular Biology, 130(3):231–
253, 1979.

[13] Bertram Terence Martin Willis and Arthur William Pryor. Thermal vibrations
in crystallography, volume 50. Cambridge University Press Cambridge, 1975.

[14] Detlef Reichert, Tatiana Zinkevich, Kay Saalwächter, and Alexey Krushelnit-
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Joseph S Wall, Anja Böckmann, Peter Güntert, Beat H Meier, and Roland
Riek. Atomic-resolution structure of a disease-relevant aβ (1–42) amyloid fibril.
Proceedings of the National Academy of Sciences, 113(34):E4976–E4984, 2016.

[110] Yiling Xiao, Buyong Ma, Dan McElheny, Sudhakar Parthasarathy, Fei Long,
Minako Hoshi, Ruth Nussinov, and Yoshitaka Ishii. Aβ (1–42) fibril structure
illuminates self-recognition and replication of amyloid in alzheimer’s disease.
Nature Structural and Molecular Biology, 22(6):499–505, 2015.

[111] Jun-Xia Lu, Wei Qiang, Wai-Ming Yau, Charles D Schwieters, Stephen C
Meredith, and Robert Tycko. Molecular structure of β-amyloid fibrils in
alzheimers disease brain tissue. Cell, 154(6):1257–1268, 2013.

[112] Marius Kollmer, William Close, Leonie Funk, Jay Rasmussen, Aref Bsoul, An-
gelika Schierhorn, Matthias Schmidt, Christina J Sigurdson, Mathias Jucker,
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[139] Dagmar Flöck, Stefano Colacino, Giorgio Colombo, and Alfredo Di Nola. Mis-
folding of the amyloid β-protein: A molecular dynamics study. Proteins: Struc-
ture, Function, and Bioinformatics, 62(1):183–192, 2006.

[140] Cao Yang, Jinyu Li, Yu Li, and Xiaolei Zhu. The effect of solvents on the confor-
mations of amyloid β-peptide (1–42) studied by molecular dynamics simulation.
Journal of Molecular Structure: Theorem, 895(1-3):1–8, 2009.

[141] Mariacristina Valerio, Alfredo Colosimo, Filippo Conti, Alessandro Giuliani,
Alessandro Grottesi, Cesare Manetti, and Joseph P Zbilut. Early events in pro-
tein aggregation: molecular flexibility and hydrophobicity/charge interaction
in amyloid peptides as studied by molecular dynamics simulations. Proteins:
Structure, Function, and Bioinformatics, 58(1):110–118, 2005.

[142] Olujide O Olubiyi and Birgit Strodel. Structures of the amyloid β-peptides aβ1–
40 and aβ1–42 as influenced by ph and a d-peptide. The Journal of Physical
Chemistry B, 116(10):3280–3291, 2012.

[143] Naoyuki Miyashita, John E Straub, and D Thirumalai. Structures of β-amyloid
peptide 1- 40, 1- 42, and 1- 55- the 672- 726 fragment of app in a membrane
environment with implications for interactions with γ-secretase. Journal of the
American Chemical Society, 131(49):17843–17852, 2009.

[144] Nikolaos G Sgourakis, Myrna Merced-Serrano, Christos Boutsidis, Petros
Drineas, Zheming Du, Chunyu Wang, and Angel E Garcia. Atomic-level char-
acterization of the ensemble of the aβ (1–42) monomer in water using unbiased
molecular dynamics simulations and spectral algorithms. Journal of Molecular
Biology, 405(2):570–583, 2011.

[145] Wanling Song, Yuanyuan Wang, Jacques-Philippe Colletier, Huaiyu Yang, and
Yechun Xu. Varied probability of staying collapsed/extended at the conforma-
tional equilibrium of monomeric aβ 40 and aβ 42. Scientific Reports, 5:11024,
2015.

[146] Satoru G Itoh, Maho Yagi-Utsumi, Koichi Kato, and Hisashi Okumura. Ef-
fects of a hydrophilic/hydrophobic interface on amyloid-β peptides studied by
molecular dynamics simulations and nmr experiments. The Journal of Physical
Chemistry B, 123(1):160–169, 2018.
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[240] Shuichi Nosé and ML Klein. Constant pressure molecular dynamics for molec-
ular systems. Molecular Physics, 50(5):1055–1076, 1983.

[241] Michele Parrinello and Aneesur Rahman. Polymorphic transitions in single
crystals: A new molecular dynamics method. Journal of Applied Physics,
52(12):7182–7190, 1981.

[242] Herman JC Berendsen, JPM van Postma, Wilfred F van Gunsteren, ARHJ
DiNola, and Jan R Haak. Molecular dynamics with coupling to an external
bath. The Journal of Chemical Physics, 81(8):3684–3690, 1984.



195

[243] Ian L Dryden and Kanti V Mardia. Statistical shape analysis: Wiley series in
probability and statistics, 1998.

[244] John C Gower. Generalized procrustes analysis. Psychometrika, 40(1):33–51,
1975.

[245] J. T. Kent. New directions in shape analysis. In The art of statistical science.
A tribute to GS Watson (K. V. Mardia, ed.). Chichester (UK) Wiley, 1992.

[246] I. L. Dryden and K. V. Mardia. Statistical Shape Analysis, with Applications
in R. Second Edition. Wiley, Chichester, 2016.

[247] Jose Hleap. Comparative quantitative genetics of protein structures: A com-
posite approach to protein structure evolution. 2017.

[248] I. L. Dryden. shapes package. R Foundation for Statistical Computing, Vienna,
Austria, 2016. Contributed package, Version 1.1-13.

[249] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[250] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[251] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary struc-
ture: pattern recognition of hydrogen-bonded and geometrical features. Biopoly-
mers, 22(12):2577–2637, 1983.

[252] Youcef Fezoui and David B Teplow. Kinetic studies of amyloid β-protein fib-
ril assembly: differential effects of α-helix stabilization. Journal of Biological
Chemistry, 277(40):36948–36954, 2002.

[253] Kenjiro Ono, Margaret M Condron, and David B Teplow. Structure–
neurotoxicity relationships of amyloid β-protein oligomers. Proceedings of the
National Academy of Sciences, 106(35):14745–14750, 2009.

[254] Ziye Liu, Fan Jiang, and Yun-Dong Wu. Significantly different contact patterns
between aβ40 and aβ42 monomers involving the n-terminal region. Chemical
Biology & Drug Design, 94(3):1615–1625, 2019.

[255] Tran Thi Minh Thu, Nguyen Truong Co, Ly Anh Tu, and Mai Suan Li. Aggre-
gation rate of amyloid beta peptide is controlled by beta-content in monomeric
state. The Journal of Chemical Physics, 150(22):225101, 2019.



196

[256] Matthias Schmidt, Carsten Sachse, Walter Richter, Chen Xu, Marcus Fändrich,
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ics study of hydration in ethanol- water mixtures using a polarizable force field.
The Journal of Physical Chemistry B, 109(14):6705–6713, 2005.

[354] Aziz Ghoufi, Franck Artzner, and Patrice Malfreyt. Physical properties and
hydrogen-bonding network of water–ethanol mixtures from molecular dynamics
simulations. The Journal of Physical Chemistry B, 120(4):793–802, 2016.

[355] K Egashira and N Nishi. Low-frequency raman spectroscopy of ethanol- water
binary solution: evidence for self-association of solute and solvent molecules.
The Journal of Physical Chemistry B, 102(21):4054–4057, 1998.



205

[356] J-H Guo, Yi Luo, Andreas Augustsson, Stepan Kashtanov, J-E Rubensson,
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