
NOVEL MAPPING ALGORITHM FOR BILATERAL
TELEOPERATION OF BIPEDAL ROBOT USING A

MANIPULATOR

by

Koceila Cherfouh

Submitted in partial fulfillment of the requirements
for the degree of Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

April 2022

© Copyright by Koceila Cherfouh, 2022

Table of Contents

List of Tables . iv

List of Figures . vii

Abstract . viii

List of Abbreviations and Symbols Used ix

Acknowledgements . xvii

Chapter 1 Introduction . 1

1.1 Thesis Motivation . 1

1.2 History of Bilateral Teleoperation and Bipedal Robotic Systems . . . 4
1.2.1 History of Bilateral Teleoperation 4
1.2.2 History of Biped Robots . 4

1.3 Literature Review . 5

1.4 Applications . 8
1.4.1 Bilateral Teleoperation Applications 8
1.4.2 Bipedal Robots Applications 8

1.5 Contributions . 9

1.6 Thesis Outline . 10

Chapter 2 Control Systems and Kinematic and Dynamic Model of
Biped and Manipulator . 11

2.1 System Kinematics . 11

2.2 Inverse Kinematics . 12

2.3 System Dynamics . 16

2.4 Control System . 18
2.4.1 Master and Slave Control Systems 18
2.4.2 SLIP Control System . 20
2.4.3 Disturbance Observer . 21
2.4.4 Adaptive Feedforward Neural Network Compensator 22

2.5 Heuristic Optimization of Control System Parameters 23

ii

Chapter 3 Proposed Mapping Mapping Algorithm for Bilateral Tele-
operation . 25

3.1 Forward Mapping Algorithm . 27
3.1.1 Master Signal Interpretation and Targets 27
3.1.2 Step planning . 27
3.1.3 Trajectory Generation for SLIP model 30
3.1.4 3D SLIP Model States, Control, Simulation and Inverse Kine-

matics . 31
3.1.5 Step Detection and Switching 33

3.2 Inverse Mapping Algorithm . 35

3.3 Deep Learning Mapping Algorithms 36
3.3.1 Data Preprocessing . 36
3.3.2 Deep Learning Architectures 38
3.3.3 Training the Models . 43

Chapter 4 Simulation Results . 45

4.1 Control System Simulation Results 45
4.1.1 Methods . 45
4.1.2 Results and Analysis . 47

4.2 Bilateral Teleoperation Mapping Simulation Results 53
4.2.1 Methods . 53
4.2.2 Results and Analysis . 53

4.3 Deep Learning Mapping Algorithms Simulation Results 56

Chapter 5 Experimental Results . 61

5.1 Experimentation Description . 61

5.2 Experimentation Setup . 62

5.3 Experimentation Results . 62

Chapter 6 Conclusion and Future Work 66

6.1 Conclusion . 66

6.2 Future Works . 67

Bibliography . 69

iii

List of Tables

Table 2.1 DH parameters for master system 12

Table 2.2 DH parameters for slave system 12

Table 2.3 Genetic algorithm optimizer parameters 24

Table 3.1 Variable reinitialization following a completed step 34

Table 3.2 Random values assignment of critical variables for real-world

data generation for DL mapping Algorithms 37

Table 3.3 Time shifting preprocessing of training data 38

Table 4.1 Control architectures performance results under three parameter

tuning methods (lower is better) 47

Table 4.2 Control architecture model parameters 48

Table 4.3 Training parameters and results 59

Table 5.1 Servo motors rest positions . 62

iv

List of Figures

Figure 1.1 Bilateral teleoperation of biped using a manipulator 3

Figure 1.2 Early biped-like double inverted pendulum design to conduct

early balance and control testing in 1968 5

Figure 1.3 Atlas running over an obstacle 9

Figure 2.1 Coordinate frames for master and slave systems 13

Figure 3.1 System’s software flow diagram 26

Figure 3.2 Important definitions of the supporting foot during the stepping

motion . 29

Figure 3.3 Deep learning architectures . 39

Figure 3.4 Long-short term memory architecture 41

Figure 4.1 Control architectures performance results under three parame-

ter tuning methods (lower is better) 49

Figure 4.2 3-DoF manipulator’s position tracking of a 0.1 Hz sinusoid de-

sired trajectory with model uncertainties and external distur-

bances . 50

Figure 4.3 Applied control input torque of 3-DoF manipulator during a

0.1 Hz sinusoid desired trajectory with model uncertainties and

external disturbances . 51

Figure 4.4 Adaptive weights of RBFNN feedforward compensator during

a 0.1 Hz sinusoid system excitation with model uncertainties

and external disturbances . 51

v

Figure 4.5 System uncertainties and disturbances Vs. NDO response dur-

ing a 0.1 Hz Sinusoid System Excitation 52

Figure 4.6 Trajectory of master (Omni manipulator) and slave (Biped)

over a simulation period of 30 seconds. The user inputs three

different forces at fixed 10 seconds intervals to test the forward,

backward and stop motions. On the left, the trajectory of the

bipedal robot. On the right, the trajectory of the Omni end

effector. Color changing trajectory lines are used to emphasize

path over time . 54

Figure 4.7 Control input and operator input on master robot during 30-

seconds simulation period . 54

Figure 4.8 Biped position over time of the hip and ankle joints over time

in the Z-Axis . 55

Figure 4.9 Trajectory of master and slave robots over a simulation period

of 30 seconds. The user inputs three different forces at fixed

10-Seconds intervals to test the forward, backward and stop

motions. The communication time delay is 0.1s. 56

Figure 4.10 Trajectory of master and slave robots over a simulation period

of 30 seconds. The user inputs three different forces at fixed

10-Seconds intervals to test the forward, backward and stop

motions. The communication time delay is 0.5s. 57

Figure 4.11 Mel spectograms of the three joint angle inputs. First 33 sec-

onds, the biped walkds backwards. The next 33 seconds, the

biped stops moving. The last 33 seconds, the biped walks for-

ward . 58

Figure 4.12 CNN-LSTM mapping output Vs. Cartesian mapping output . 59

Figure 5.1 Semi-virtual experimentation setup 61

vi

Figure 5.2 3D trajectory of biped robot’s CM when moving backwards . . 63

Figure 5.3 Master robot trajectory tracking of the slave’s trajectory when

walking backwards . 63

Figure 5.4 Master robot trajectory tracking of the 10-point moving average

of the slave’s trajectory when walking backwards 64

vii

Abstract

Research on the Bilateral teleoperation of biped robots is limited. So far, researchers

have only studied bilateral teleoperation of bipedal robots using exoskeletons due to

the kinematic similarities. This is, however, not practical as it requires considerable

resources for the purchase, maintenance, and operator safety training.

This thesis presents a novel mapping algorithm for bilateral teleoperation of a bipedal

robot using a robotic manipulator. This research aims to control the gait of a biped

robot and receive haptic feedback representative of its movements along its center of

mass (CM). Two mapping methods are presented and compared: 1- a cartesian-based

mapping that relies on forward and inverse kinematics to map desired trajectories; 2-

a deep-learning approach that reduces complexity and computation time. Simulation

and experimental results on a 10-degrees of freedom (DoF) biped robot and 3-DoF

robotic manipulator are carried out to validate the feasibility of this proposal.

viii

List of Abbreviations and Symbols Used

CM Center of mass

CNN Convolutional neural network

DL Deep learning

DoF Degrees of freedom

FK Forward kinematics

FL Feedback linearization

FMA Forward mapping algorithm

GA Genetic algorithm

HRI Human-robot interaction

IK Inverse kinematics

IMA Inverse mapping algorithm

LSTM Long short-term memory

MASD Maximum Allowable stepping distance

MSSD Maximum situational stepping distance

NDO Nonliinear disturbance observer

PID Proportional, integral and derivative

ix

RBFNN Radial basis function neural network

SLIP Spring-loaded inverted pendulum

SMC Sliding-mode controller

SOSMC Second-order sliding-mode controller

SSP Single support phase

0
iT – Transformation matrix from coordinate frame 0 to i

xi – Coordinate position in the X-axis of the ith joint

yi – Coordinate position in the Y-axis of the ith joint

zi – Coordinate position in the Z-axis of the ith joint

ai – Link length. Measured from frame Zi−1 to Zi along Xi−1

αi – Link twist. Angle from frame Zi−1 to Zi measured about Xi−1

di – Link offset. Distance from Xi−1 to Xi measured along Zi−1

θi – Joint angle. Angle from Xi−1 to Xi measured about Zi

r, θ1, θ2 – Updated states of the 3D SLIP model

φ1, φ2..., φ10 – Biped desired trajectories. Derived from inverse kinematics

x

φ1md, φ2md, φ3md – Manipulator desired trajectories. Derived from inverse kine-

matics. These variable generate the haptic feedback

l1m, l2m – link 1 and 2 of the manipulator

xcm, ycm, zcm – Scaled center of mass position of the biped. This value is used for

input to the IK to generate haptic feedback

β1, β2 – Variables required to compute the IK

L – Lagrange equation

KE – Kinetic energy

PE – Potential energy

M – Inertia matrix

C – Coriolis vector

τi – Torque applied at joint i

τh – Human operator torque vector. Only applicable for the master robot

(manipulator)

δ – Stochastic noise and external disturbances

f – Reformulated dynamics vector. f = M−1(−C −G)

g – Reformulated dynamics matrix. g = M−1

rs, θ1s, θ2s – Measured states of 3D SLIP Model

xi

Mj, vj, Ij, ωj – Dynamic properties of the jth link. Mass, velocity, inertia and an-

gular velocity, respectively.

B – Inertia Matrix of the 3D- SLIP model

F – Reformulated dynamics vector of the 3D- SLIP model

s – Sliding surface of the SOSMC

λ – Scalar used to define the sliding surface

V – Lyapunov function

Xse – Error vector of the 3D SLIP model

K1 – Gain of the 3D SLIP FL controller

τ̂d, δ̂d – Estimated disturbance by the NDO

z – Auxialary variable vector required to compute disturbance estimate

L – Disturbance observer gain matrix

Kd – Disturbance observer gain

S1 – Input to the feedforward RBFNN compensator

Hn – Gaussian Kerna for RBFNN compensator

WRBF – Adaptive weights of the RBFNN compensator

xii

βRBF – Positive Constant

θe – State error vector

τtotal – Total control input vector

zdesired – Desired Z-position for the walking gait algorithm of the biped

xmaster, xEE – End effector position of the master manipulator

αmax – Threshold value between switching from forward, stop, backward motion

xhip, yhip, zhip – Coordinate position of the biped’s hip joint (also center of mass

position)

AMSD – Absolute maximum stepping distance

θmax – Maximum leaning angle of the biped in the Z-axis before losing stability

d0 – Euclidean distance between the ankle and the hip joint of the supporting leg

before taking a step

γ0 – Angle of the supporting leg before taking a step

N – This subscript denotes the time step at which a step is completed or when a

change in direction occurred

MSSD+ – Maximum situational stepping distance in the positive Z-direction

MSSD− – Maximum situational stepping distance in the negative Z-direction

xiii

z4 – Cartesian position of the hip joint

DP – Desired hip position

Ns – This subscript denotes the time step at which a step is completed

rd – Desired link length of the 3D SLIP model

ycm−d – Desired trajectory of the hip joint in the Y-axis. This generates the left-

to-right movement when walking

σl – Lateral standard deviation. Value used to compute ycm− d
zHIP−i – Coordinate of the hip join along the Z-axis at time step i

XHIP−i – Coordinate of the hip join along the X-axis at time step i

zSF−i – Coordinate of the supporting foot along the Z-axis at time step i

XSF−i – Coordinate of the supporting foot along the X-axis at time step i

Θsd – SLIP model desired trajectory vector

direction – Direction of the biped’s gait along the Z-axis

ft – LSTM forget gate

σ – Sigmoid function

xT – LSTM input

ht – LSTM hidden state

xiv

W0 – Weights

b0 – Bias

it – LSTM input layer at time t

zt – LSTM tanh layer that decides which information to store

Ct – LSTM Cell state

ot – LSTM output state

OReLU – Output of the rectified linear unit layer

iReLU – Input to the rectified linear unit layer

Ocnn – Output of cross-correlation operation in CNN

Icnn – Input to the cross-correlation operation in CNN

Fcnn – Filter of CNN kernel of fixed length

OFC – Output of the fully connected layer

IFC – Input to the fully connected layer

mt, vt – Exponentially decaying average first and second moments of the Adam

optimizer

ζ1, ζ2 – Decay rates of the Adam optimizer

xv

m̂t, v̂t – Updated moments

M̃, C̃, G̃ – Error in dynamics parameters between the estimated and true param-

eters

M̂, Ĉ, Ĝ – Estimated dynamics parameters

U – System total uncertainty and disturbacne

PRRP – Motor shaft’s position relative to its resting position

RAP – Relative angular position of the motor

RP – Resting Position

xvi

Acknowledgements

This work has resulted from continued support from numerous colleagues, friends,

and family members. First, I thank Dr. Jason Gu for the support, advice, and op-

portunities he offered through my master’s. Dr. Jason Gu supported me in many

aspects and motivated me to learn and experiment with new cutting-edge technolo-

gies through research publications and internship opportunities. I would also like to

thank my graduate committee supervisor, Dr. Kamal ElSankary, and Dr. Mae Seto

for their valuable suggestions. Next, I would like to thank my lab partners from the

Robotics Lab for Biomedical, Rehabilitation, and Assistive Technologies, including

Usman Asad and Dr. Umar Farooq. Dr. Umar guided and introduced me to research

publications and conferences and helped me publish numerous papers. I would also

like to thank my professors from the University of New Brunswick, namely Dr. Mary-

helen Stevenson, Dr. Brent Petersen, Dr. Howard Li, and professor Roy Lavigne for

supporting me to start my master’s. Finally, I want to thank my parents and sister

for their support throughout this journey. Thank you.

xvii

Chapter 1

Introduction

Chapter 1 outlines an introduction of bilateral teleoperation systems and the research

objectives of this thesis. More specifically, it includes the motivation of this study,

an in-depth literature review discussing the history, and a discussion of the recent

work conducted on bilateral teleoperation of biped robots. Finally, we discuss our

contribution and present the outline of the thesis.

1.1 Thesis Motivation

As artificial intelligence is increasingly becoming popular amongst researchers for var-

ious applications due to its adaptability and ease of use, the design of autonomous

robotic systems remains a challenging problem due to its large nonlinearities when

interacting with dynamic environments, thus requiring large amounts of training data

to achieve good performance. Bilateral teleoperation is an alternative to autonomous

systems. An operator can control a robot remotely to conduct tasks while simultane-

ously receiving haptic feedback representative of the controlled robot’s experienced

forces. This is typically achieved using a master-slave mapping algorithm that trans-

lates system trajectories between master and slave systems.

The simplest solution would be a 1-to-1 mapping algorithm, where both master

and slave systems are symmetric. An example of such a system is a pendulum model

for both master and slave systems, where one pendulum’s trajectory depends on

the position of the other. However, for most real-world applications, systems are

asymmetric, which complicates the design procedure. The most common asymmetries

found in bilateral teleoperation include kinematic asymmetries between master and

slave, environmental asymmetries, or communication time delay asymmetries. The

mapping algorithm must then be designed to account for the asymmetries in the

system.

1

2

The most used mapping methods in bilateral teleoperation literature are joint-

space mapping and workspace mapping. Joint space mapping assigns joint-to-joint

desired trajectories but is unsuitable when the master and slave systems have sig-

nificant kinematic asymmetries. On the other hand, the operating space mapping

relies on forward and inverse kinematics of the master and slave systems to map a

scaled Cartesian coordinate from one site to another. However, this method often re-

stricts the operator from accessing the complete workspace of the slave robot. Other

more refined mapping algorithms have been proposed, such as the machine learn-

ing approach or a combination of joint space and operating space mapping. As for

biped robots, they have received little attention from researchers in the application

of bilateral teleoperation due to their kinematic complexity.

So far, to minimize kinematic asymmetries and simplify the teleoperation of biped

robots, researchers used exoskeletons as the remote combined with joint-to-joint space

mapping. This simplifies the task because it removes the need to design a walking

gait algorithm and compute inverse kinematics for master and slave systems, meaning

that desired trajectories are directly fed into the joint state controllers. For this

application, one can argue that using exoskeletons as the remote is intuitive as it

allows direct haptic feedback on each joint of the biped. However, the purchase,

maintenance, and operator training costs are far too expensive. In this work, an

intuitive design aimed to reduce the purchase and maintenance costs by using a haptic

manipulator - instead of an exoskeleton - as the remote for the biped is proposed.

This new and modified operating space-based method allows the user to control

a biped robot using a manipulator while simultaneously feeling haptic feedback rep-

resenting the left-to-right and up-and-down movements of the biped robot’s center

of mass (CM). For the forward mapping algorithm (FMA), this approach computes

the forward kinematics of the manipulator’s end effector and maps it to the desired

position for the biped’s CM. The 3D spring-loaded inverted pendulum (SLIP) gait is

is chosen to control the robot to the desired position and drive the error to zero. The

3D SLIP was chosen because of its simplicity and accuracy in the model compared

to the linear inverted pendulum, which does not model the spring force at the knee

joint. The SLIP walking gait accepts the desired CM position and outputs desired

joint trajectories to the joint state controllers using the biped’s inverse kinematics. As

3

Figure 1.1: Bilateral teleoperation of biped using a manipulator

for the inverse mapping algorithm (IMA), the joint state positions of the biped robot

are used to compute the CM point with forward kinematics. Then, a scaled trajectory

of the CM is used as input to the manipulator’s inverse kinematics. This generates

joint trajectories for the manipulator that track the biped’s CM point, which is the

operator’s haptic feedback. However, this method proven to work by numerous re-

searchers is lengthy and prone to significant computational inefficiencies and a lack

of robustness to new situations.

Additionally, deep learning approaches have rarely been applied to the bilateral

teleoperation mapping field, as most currently existing work uses bilateral teleopera-

tion for robot task learning. This form of Human-robot interaction (HRI) using deep

learning from demonstration uses either recorded sensor data from robots, recorded

human videos, or move and capture waypoints. Over the years, researchers have ap-

plied long-short term memory (LSTM) neural network-based structures for mapping

human-to-robot interactions, given their ability to model order dependence in a se-

quence. Others improved the architecture and applied a combination of convolutional

neural networks (CNN) and LSTMs to capture long-term and short-term dependen-

cies. To test the performance of the proposed methods, a comparison between the

CNN-LSTM architecture and the modified operating space-based method is carried

out on a 3-DoF Omni manipulator and a 10-DoF bipedal robot through simulations

and experimentation.

4

1.2 History of Bilateral Teleoperation and Bipedal Robotic Systems

1.2.1 History of Bilateral Teleoperation

Teleoperation of robotic systems was first introduced in 1949 by early pioneer re-

searcher in robotics Raymon C. Goertz when he developed a mechanical master-slave

system to manipulate radioactive materials [1]. A few years later, Goertz developed

a bilateral master-slave system in which he laid out many of the fundamental con-

cepts of bilateral teleoperation [2]. In the early to late 1960s, Ferrell and Sheridan

studied the stability of asymmetric bilateral teleoperation systems and proposed su-

pervisory control as a method to address communication time delays [3, 4]. The

teleoperation field then shifted towards a control system-heavy research area in the

mid-1980s to early 1990s. Many of these breakthroughs include the passivity-based

control, the stability analysis through Lyapunov [5], and H∞ control to address time

delays. Now, the objective of many researchers is to develop a friendly and immersive

virtual environment to make the operator feel as if they are at a remote location

[6]. These advances include immersion by audio and visual feedback, thus allowing

various asymmetric systems like space and underwater systems to be implemented.

1.2.2 History of Biped Robots

Humanoid robots interest researchers for many reasons, including their design well

fit to interact with humans, their versatility in their movement, and the wide range

of applications. Originally, biped robots were first conceived by Japanese researcher

Ichiro Kato in 1967 and completed his first model in 1972 [7]. Of the many existing

bipedal gait algorithms, Miomir Vukobratović, a pioneer in legged robots and Serbian

mechanical engineer, developed the zero moment point concept currently widely used

in the stability analysis of bipedal locomotion [8]. This concept inspired the develop-

ment of a model for a human body gait using the inverted pendulum model [9, 10],

the spring-loaded inverted pendulum (SLIP) [11, 12], and other complex models with

numerous DoF. Over time, more sophisticated gait control algorithms emerged, such

as energy-efficient walking gaits using optimization techniques [13, 14], gaits based

on the natural human gait [15], and gaits based on artificial intelligence techniques

such as deep reinforcement learning [16, 17, 18].

5

Figure 1.2: Early biped-like double inverted pendulum design to conduct early balance
and control testing in 1968

1.3 Literature Review

In recent times, bilateral teleoperation is an area of robotics that has captured many

researchers’ attention due to its vast applications. Bilateral teleoperation has been

implemented in various medical, military, and space exploration fields. For instance,

[19, 20, 21] report bilateral teleoperation control algorithms for telesurgery. In [22,

23], algorithms for space robot bilateral teleoperation are presented, while bilateral

teleoperation algorithms are designed in [24, 25] for underwater exploration.

Bilateral teleoperation of biped robots has received little attention from researchers,

however. As of now, most researchers use exoskeletons as the remote (master robot) to

control a biped robot. [26] proposed an adaptive impedance controller to address the

challenge of system asymmetries for rehabilitation exoskeletons. [27] developed a new

architecture for bilateral teleoperation of biped robots using a seat-like whole-body

exoskeleton, while teleoperation of multi-DoF rehabilitation exoskeleton is discussed

6

in [28]. In general, most teleoperation applications of humanoid robots focus only

on robotic arm exoskeleton manipulation [29, 30, 31]. In the mentioned applications

of teleoperation above, one of the most significant challenges is to design a stable

system that accounts for system asymmetries such as differences in kinematic mod-

els, time-varying dynamic parameters, and time-varying communication delays and

packet loss.

Numerous control techniques have been implemented to address system asymme-

tries caused by communication time delays and instability in teleoperation systems.

[32] suggests that the most commonly used control techniques can be classified into

two categories: passivity and non-passivity-based control methods. Examples of such

controllers include wave transformation controllers [33, 34], time-domain passivity

control [35], proportional integral derivative (PID) control [36, 37], sliding mode

control[38, 39], and adaptive control [40]. Other researchers however focused on

communication linear [41, 42] and nonlinear [43] disturbance observers to address

communication time delays in teleoperation systems. Unfortunately, time delays are

not the only asymmetry to consider when designing a teleoperation system.

The master robot in teleoperation systems is often kinematically different from

the slave robot by size or shape. Thus, kinematic asymmetries in master-slave tele-

operation systems require specific mapping algorithms to operate as intended. Some

of the most popular mapping methods include joint space mapping and operating

space mapping. Joint space mapping is often used in kinematically similar systems

because it maps joint position and velocity states from one system to another. How-

ever, when the master-slave systems are kinematically different by size or shape, it

becomes exponentially more challenging to conduct meticulous tasks and control ac-

curately and intuitively. [44] proposed a solution to this problem using workspace

mapping. This mapping algorithm uses the scaled position trajectory of the master

robot’s end-effector obtained using forward kinematics as the desired trajectory for

the slave robot. The desired joint trajectories for the slave system are then derived

using the slave’s inverse kinematics. Haptic feedback for the master robot is derived

similarly. The advantage of this approach is that it allows the teleoperation of master-

slave systems with high kinematic differences. However, the main drawback of this

mapping method is not allowing the operator to use the entire operating space of the

7

slave/master robot. [45, 46] proposed a hybrid mapping approach for teleoperation

systems using both operating and workspace mapping with a transitioning algorithm

for smooth switching between the two operation modes. [31] proposed a cartesian-

based synergy algorithm using principal component analysis (PCA) to map the most

relevant components of a multi-DoF exoskeleton master system to a slave robot, while

[47] proposed a supervised neural network approach to map trajectories for bilateral

teleoperation systems.

Other mapping algorithms for HRI applications have been implemented. A recent

survey on mapping solutions for teleoperation [48] indicates that the existing methods

can be divided into two main sections: 1. hand pose estimation and 2. gesture recog-

nition. Hand pose estimation includes joint-to-joint space mapping and workspace

mapping, which were covered extensively previously. On the other hand, gesture

recognition comprises static and dynamic pose mapping using a camera. [49] used

video capture as input to an LSTM neural network to predict and map the user input

to a slave robot. Intuitive and personalized robot teleoperation was also achieved

using video capture input and machine learning models to map the commands to the

slave robot [50, 51].

Machine learning models have many advantages in terms of robustness, compu-

tation time, and adaptability instead of conventional methods. Sequence-to-sequence

regression models are considered to transform signals from one domain (master) to a

signal in another domain (slave). These models have received much attention lately

due to their vast potential applications, such as speech and video generation or stock

market prediction. In the past, sequence-to-sequence regression was solved in many

ways, namely using recurrent neural networks such as LSTMs [52, 53], CNN [54], or a

combination of both [55]. With numerous researchers proposing various ideas to solve

this problem, [56] introduces the idea of Transformer-like architecture for sequence-

to-sequence applications such as Natural Language Processing (NLP) using attention

mechanisms. This recent proposal was implemented in various sequence-to-sequence

regression problems [57, 58]. Inspired by the idea, [59] proposed an attention-based

reinforcement learning model for HRI navigation in crowded environments achieving

excellent results and outperforming state-of-the-art models in terms of efficiency in

completing tasks.

8

1.4 Applications

1.4.1 Bilateral Teleoperation Applications

Bilateral teleoperation was applied to various industrial, medical, and military fields.

Many advantages can be attributed to bilateral teleoperation, including increased

manipulation precision, reduced operating risks in hazardous applications, immersive

experience of the slave robot using haptic, visual, or audio feedback, and many more.

For most real-world applications, bilateral teleoperation is applied when control-

ling a robot in hazardous environments or when high precision is required. [60]

developed a platform to teleoperate industrial robots using a virtual visual interface.

[61] proposed an intuitive bilateral teleoperation architecture of cable-driven robots

for use in hazardous areas such as nuclear power plants. Similarly, [62] proposed a

signal filtering approach to bilateral teleoperation in dangerous environments such as

power plants, underwater and space exploration. Research has also been conducted

on bilateral teleoperation of underwater exploration robots [24, 25], and space robots

[63].

In the medical field, bilateral teleoperation has received much attention for ap-

plication in assisted surgery. Many advances were recently conducted in this field

focused on choosing the appropriate control strategy for safety-critical high precision

applications. [64] proposed a hybrid system for rate and admittance control to re-

duce human errors and increase precision, while other researchers focused on different

control strategies to achieve the same objectives [65, 66]

1.4.2 Bipedal Robots Applications

Bipedal robots interest many researchers due to their human-like kinematics and their

versatility in their movements. Over the years, these robots have been implemented

in various applications. The most advanced humanoid robots include Honda Mo-

tor Corporation’s Asimo, Sophia, the social humanoid robot, and Valkyrie, NASA’s

exploration humanoid robot. One of the leading companies in this field is Boston

Dynamics, specializing in robot control systems and movement versatility. Over the

years, this company implemented many-legged robots, including Big Dog and Spot

robots, two 4-legged dog-like robots used for hazardous terrain exploration. They

9

Figure 1.3: Atlas running over an obstacle

have also implemented Handle, a legged and wheeled robot used to handle heavy

loads. Yet their most popular robot is the Atlas robot, shown in Figure 1.3. This

robot was developed to have human-like movement agility and was conceived to con-

duct various search and rescue tasks. These robots were programmed to execute

highly-agile movements such as running, jumping, dancing, and even flipping.

1.5 Contributions

As mentioned previously, very little work has been done in the bilateral teleoperation

control of biped robots. Thus, the main contribution in this work is the design of

a new Cartesian-based mapping algorithm for bilateral teleoperation of biped robots

using a haptic manipulator.

So far, Most of the current work either uses exoskeletons or focuses on manipula-

tion tasks using humanoid robots. This work introduces a way to control the biped

robot’s trajectory by capturing the position of the master’s end effector then using it

as input to the walking gait and inverse kinematics algorithms to reach the desired

position. The feedback felt by the operator represents the left-to-right and up-and-

right movements of the biped’s center of mass as it is walking. This haptic feedback

model also allows for future expansion of movements such as lateral walking, jumping,

10

crouching, or running.

The performance of the proposed Cartesian-based mapping algorithm is then com-

pared to two deep-learning models. To the best of our knowledge, deep learning algo-

rithms have been used to predict and stabilize communication delays in teleoperation

systems or map desired trajectories in HRI applications. Little to no research has

thus been done to develop a deep learning model for asymmetric bilateral teleopera-

tion systems that maps and accounts for communication time delays in the bilateral

teleoperation field.

Lastly, this work is validated through simulation and semi-virtual experimenta-

tion. In the simulation, a 3-DoF manipulator, acting as the master device, sends

its end-effector position to a 10-DoF biped, acting as the slave device, to track its

position. Similarly, the biped’s CM position is sent back to the master robot for hap-

tic feedback. The results of this simulation are compared between the two mapping

methods. In the semi-virtual experimentation, we program a simple gait algorithm

on the ToniPy’s 10-DoF biped and collect the CM position data. The stored CM

position data is transferred into a simulation platform where we track the haptic

feedback on a simulated 3-DoF manipulator.

1.6 Thesis Outline

The thesis is presented as follows. Chapter 1 introduces bilateral teleoperation sys-

tems and biped robots, discussing research history and recent advances on these two

systems. Chapter 2 discusses the kinematic and dynamic models of the 3-DoF and

10-DoF models and the control system architecture to drive joint state errors to

zero. Chapter 3 outlines how the mapping algorithms are implemented, discussing

forward and inverse kinematics and the walking gait algorithm for the biped. Chap-

ter 4 discusses the simulation results of both methods and compares them based on

their trajectory tracking performance and adaptability. In Chapter 5, we cover an

application of the proposed mapping algorithm and discuss the obtained semi-virtual

experimental results on the ToniPy’s 10-DoF biped robot and a simulated 3-DoF

manipulator. Chapter 6 contains a discussion and a conclusion with suggestions for

future works.

Chapter 2

Control Systems and Kinematic and Dynamic Model of

Biped and Manipulator

This chapter discusses the low-level components needed to achieve the overall ob-

jective - bilateral teleoperation. First, the kinematics for both mast and slave are

presented. These are used to generate an animation of the robots and track the

joint’s Cartesian positions. Next, the dynamics needed to simulate the two robots

are discussed. Lastly, the chosen control system algorithms required to stabilize the

system are discussed and compared to other similarly performing methods. The sta-

bility of the system is verified using the Lyapunov stability criterion.

2.1 System Kinematics

To achieve bilateral teleoperation and to design the biped walking gait, it is essential

to compute the kinematics of the master and slave systems. The kinematics return

the Cartesian position of each joint given their respective joint angles and body di-

mensions. The Denavit-Hartenberg method is used to derive the kinematics. The

DH method states that given a set of space transformations for each joint as:

0
iT =0

1 T
1
2 T...

i−1
i T (2.1)

where i−1
i T is the transformation matrix:

i−1
i T =

cos θi − cosαi sin θi sinαi sin θi ai cos θi

sin θi cosαi cos θi − sinαi cos θi ai sin θi

0 sinαi cosαi di

0 0 0 1

 (2.2)

in which αi is the link twist, ai the link length, di the link twist, and θi the join angle,

we can derive the joint Cartesian position in 3-D space as:

xi =0
i T1,4 (2.3)

11

12

yi =0
i T2,4 (2.4)

zi =0
i T3,4 (2.5)

where (xi, yi, zi) is the Cartesian position of the ith joint end effector. The robots’

kinematic properties are modeled after the haptic Omni manipulator for the master

robot and the ThormanG3 biped robot, as specified in Tables 2.1 and 2.2. Figure 2.1

shows the coordinate transformation used to obtain the following DH parameters for

the master and slave systems.

Table 2.1: DH parameters for master system

Haptic Manipulator (Master)

ai (cm) αi(rad) di(cm) θi(rad)

1 0 −π
2

0 θ1m
2 13.2 0 0 θ2m
3 13.2 0 0 θ3m

Table 2.2: DH parameters for slave system

Biped Robot (Slave)

ai (cm) αi(rad) di(cm) θi(rad)

1 7 π
2

0 θ1
2 30 0 0 θ2
3 30 0 0 θ3
4 7 −π

2
0 θ4

5 18.6 0 0 θ5 − π
2

6 7 −π
2

0 θ6 − π
2

7 30 0 0 θ7
8 30 0 0 θ8
9 30 π

2
0 θ9

10 4.35 0 0 θ10 + π
2

2.2 Inverse Kinematics

The inverse kinematics computes the corresponding angular position of a joint given

its Cartesian position and body dimensions as specified in Tables 2.1 and 2.2. Inverse

kinematics is often used to compute joint desired trajectories for a system given some

13

Figure 2.1: Coordinate frames for master and slave systems

14

trajectory in 3-D space. For the bilateral teleoperation of a biped robot using a haptic

manipulator, inverse kinematics is used to determine the desired trajectories for the

master device’s haptic feedback and determine the desired trajectories of the bipedal

robot joints to achieve a stable walking gait.

The biped inverse kinematics are used to determine the specific trajectory for each

of the joints [12]. Using the SLIP’s states, we compute the trajectory of each joint

using inverse kinematics. The desired joint angles for the ankle, knee, and hip joints

of the supporting leg rotating about the Y-axis are thus computed as:

r cos θ1 = l2 cosφ2 + l3 cosφ3 (2.6)

r sin θ1 = −l2 sinφ2 + l3 sinφ3 (2.7)

in which r and θ1 are the two first states of the SLIP walking gait model computed at

each time step, l2 and l3 are the link lengths for the biped robot as defined in Table

2.2, and φ2 and φ3, the angular position for joints 2 and 3.

Rearranging Equations 2.6 and 2.7, we can obtain the corresponding joint position

φ2 and φ3:

cosφ2 =
1

2l2

[
r cos θ1 +

1

r

(
sin θ1

√
−l42 + 2l22l

2
3 − l43 + 2 (l22 + l23) r

2 − r4 +
(
l22 − l23

)
cos θ1

)]
(2.8)

cosφ3 =
1

2l3

[
r cos θ1 −

1

r

(
sin θ1

√
−l42 + 2l22l

2
3 − l43 + 2 (l22 + l23) r

2 − r4 +
(
l22 − l23

)
cos θ1

)]
(2.9)

To maintain a vertical upper body position and stabilize the biped robot, the hip

joint of the supporting leg is defined as:

φ4 = −φ2 − φ3 (2.10)

The swing leg also has to mimic the supporting leg to achieve a stable walking gait.

The kinematics for the remaining joint rotating about the Y-axis are defined similarly

as in Equations 2.8, 2.9, and 2.10:

φ7 = φ2 (2.11)

φ8 = φ3 (2.12)

15

To maintain the position of the swing foot flat about the Y-axis upon landing, joint

9 is defined as:

φ9 = −φ7 (2.13)

Lastly, we must consider the inverse kinematics of the joints rotating about the Z-

axis, joints 1, 5, 6, and 10. These are straightforward and must maintain the upper

body position upwards as in Equation 2.10 and must also maintain the foot of the

swing leg flat to prepare for landing as in Equation 2.13.

φ1 = θ2 (2.14)

φ5 = 0 (2.15)

φ6 = −φ1 (2.16)

φ10 = 0 (2.17)

where θ2 is the SLIP pendulum angle rotating about the Z-axis. In-depth details of

the derivation of the SLIP model are discussed in Section 2.3.

Below, we present the inverse kinematics of the 3-DoF haptic manipulator used to

control the biped robot. The manipulator’s inverse kinematics are used in the IMA.

The inverse kinematics are also used to provide haptic feedback to the operator. The

input to the inverse kinematics is the CM of the biped robot (xcm, ycm, zcm), and the

output is the desired joint trajectories used to generate the Omni haptic feedback.

The resulting joint trajectories of the master system φ1md, φ2md and φ3md are defined

as:

φ1md = atan2 (ycm, l1m + zcm) (2.18)

φ2md = atan2 (xcm,
√

(l1m + zcm)2 + (ycm)2) (2.19)

φ3md = atan2 (β1, β2) (2.20)

where l1m and l2m represent the link lengths of the haptic manipulator, and β1 and

β2 are defined as:

β1 =
√

1− β2 (2.21)

β2 =
(δ1xcm)2 + (δ2ycm)2 − l22m

2l1ml2m
(2.22)

16

2.3 System Dynamics

The system dynamics represent the forces and torques applied at each joint in a

body. The dynamic equations for both the master and slave devices in the bilateral

teleoperation system are essential to accurately simulate the biped and the haptic

manipulator. Additionally, we need the dynamics of the 3-D SLIP model used to

generate a stable walking gait for the biped robot. These are computed using the

Euler Lagrange dynamic equations described below.

The Euler-Lagrange method states that the equations of motion of any dynamical

system can be represented as follows:

τi =
d

dt

∂L

∂θ̇i
− ∂L

∂θi
(2.23)

where τi is the input torque or force applied at each joint i, and where L is the

Lagrange equation defined as:

L(θ, θ̇) = KE(θ, θ̇)− PE(θ) (2.24)

where KE is the total kinetic energy of the system and PE is the total potential

energy of the system. Deriving Equation 2.23 results in the dynamic equations of the

system:

M(θ)θ̈ + C(θ, θ̇) +G(θ) = τ + τh + δ (2.25)

where M is the inertia matrix C the Coriolis vector G the gravitational vector τ the

control input vector, τh the human operator input torque, and δ the noise vector

added to simulate real-world uncertainties and disturbances. Note that there is no

operator user input for the biped robot and 3D SLIP model τh = 0.

Rearranging Equation 2.25, we obtain the system dynamics of the form

θ̈ = f(θ, θ̇) + g(θ)(τ + τh + δ) (2.26)

given some initial conditions θi and control input τ , the system’s future states can be

simulated by integration.

The dynamics equations for the master and slave robots and the SLIP model for

the walking gait were derived using the method mentioned above using a MATLAB

Euler Lagrange Tool Package [67]. Below, we discuss the derivation of the 3D SLIP

dynamic model in greater detail as an example.

17

Let us define c1 = cos θ1s, c2 = cos θ2s, s1 = sin θ1 and s2 = sin θ2. Given that this

system is a 1-joint system revolving about the X and Y axes, the forward kinematics

of the SLIP model are simply as follows:

x = l sin θ1s (2.27)

y = l sin θ2s (2.28)

z = l cos θ1s cos θ2s (2.29)

The kinetic energy of the system can be computed by the formula

KE =
∞∑
j=1

Mjv
2
j

2
+
Ijω

2
j

2
(2.30)

in which Mj, vj, Ij, and ωj the mass, linear velocity, moment of inertia and angular

velocity of joint j, respectively. Equation 2.30 can be further expanded in the form:

KE =
M(ẋ2 + ẏ2 + ż2 + ṙs

2) + I(θ̇21s + θ̇22s)

2
(2.31)

In this case, deriving equations 2.27, 2.28, and 2.29 results in

ẋ = lc1θ̇1s + l̇s1 (2.32)

ẏ = lc2θ̇2s + l̇s2 (2.33)

ż = l1(s1c2θ̇1s + c1s2θ̇2s) + l̇c1c2 (2.34)

The potential energy is described as :

PE = Mgz +
K(l −R)2

2
(2.35)

where K is the spring constant and R the linear displacement of the spring relative

to the resting position. The Lagrange can now be defined as in Equation 2.23 and

the dynamics can be computed as per steps indicated in Equations 2.23 through 2.25

resulting in a form similar to that described by Equation 2.36:

Ẍs = B−1F +B−1τ + δ (2.36)

B =

M 0 0

0 I +Mc22r
2
S 0

0 0 I +Mr2s

 (2.37)

18

F =

K −Mrsθ̇1s −Mrsθ̇2s +Ms22rsθ̇1s

2

−M sin(2θ2s)r
2
s θ̇1sθ̇2s+ 2Mc22rsṙsθ̇1s

2Mrsṙsθ̇2s+
M sin 2θ2sr2θ̇21s

2
+ glMc2

 (2.38)

in which rs = l −R. and the Xs the state vector described as:

Xs =

rs

θ1s

θ2s

 (2.39)

2.4 Control System

A well-tuned control system is essential to maintain the stability of any dynamic

system. Over the years, many control approaches have been developed for various

applications. This section discusses the controller choice and derives the stability

analysis of the master and slave systems.

2.4.1 Master and Slave Control Systems

First, we discuss the control system of the haptic manipulator and biped robot. Ma-

nipulators and biped have been known to have large nonlinearities in their dynamic

model, which makes them harder to control accurately. In designing a control system

for these systems, we need to take into account some of the stochastic disturbances

and uncertainties of the system and potential external factors that could impact the

system’s overall performance. Additionally, given that the objective of this research

is bilateral teleoperation, one must also consider communication time delay variations

which could also lead to instability in the system.

For the reasons mentioned above, we chose a model-based nonlinear controller

given that we have the dynamic model of the manipulator. The selected controller

is a second-order sliding mode controller due to its known robustness to system un-

certainties and disturbances and its reduced chattering effect at the control input,

resulting in smooth and accurate operation of the manipulator’s actuators. As for

the communication time delay, we assume that they are negligible and do not affect

the system’s stability.

19

The super-twisting second-order sliding mode controller is widely used to suppress

the chattering problem of the first-order SMC. The control law for this algorithm is

straightforward. First, the sliding surface is designed as:

s =

(
d

dt
+ λ

)
θe (2.40)

where λ is a scalar and θe the error vector defined as:

θe = θmeasured − θdesired (2.41)

The control law of the second order sliding mode controller is then defined as:

τ = λ
√
|s|sign(s) + ω (2.42)

where ω is described as:

ω = β

∫
sign(s)dt (2.43)

and where β is a constant vector. The resulting control law can then be defined as

an addition of the equivalent and sliding continuous control:

τ = g−1
(
−f − λθ̇ − λ

√
|s|sign(s)−B

∫
sign(s)dt

)
(2.44)

with the control law defined, we can now validate the system’s stability with the

Lyapunov stability Criterion. First, we define a positive definite function and its

negative definite derivative

V =
1

2
sT s (2.45)

V̇ = sṡ ≤ 0 (2.46)

Substituting the derivative of Equation 2.40 into 2.46, we obtain:

V̇ = s(θ̈e + λθ̇e) (2.47)

Assuming that the derivative of θdesired is negligible and that the disturbance δ = 0,

we can substitute the dynamic equations of the system defined by Equation 2.36

V̇ = s(f(θ, θ̇) + g(θ)τ + λθ̇e) (2.48)

where τ is as defined by Equations 2.42, 2.43 and 2.44 resulting in the following:

V̇ = s

(
−λ
√
|s|sign(s)−B

∫
sign(s)dt

)
(2.49)

20

V̇ = −λ|s|
√
|s| −Bs

∫
sign(s)dt (2.50)

Given that λ and β are positive definite constants, given that the term |s|
√
|s| can

also be said to be positive semi-definite, and given that the term s
∫
sign(s)dt can be

said to be positive semi-definite over small integration periods, we can then confirm

that V̇ = sṡ ≤ 0.

2.4.2 SLIP Control System

Next, we discuss the control system needed for the SLIP model gait. This control

system takes for input a desired CM position for the biped and outputs future states

of the SLIP model used as inputs for the biped’s inverse kinematics described by

Equations 2.8 - 2.17. Section 3 will explain in greater detail how the SLIP model is

used to generate trajectories for the biped robot. We chose to use a simple feedback

linearization controller to stabilize the SLIP model described by Equation 2.36. Typ-

ically, feedback linearization controllers are not ideal in stabilizing highly nonlinear

systems due to uncertainties in the model; however, for simplicity, we will assume that

the dynamics of the SLIP model are ideal δ = 0. To stabilize the system described

by 2.36, the feedback linearization controller is described as:

τ = B(−B−1F −K1Xse) (2.51)

where Xse is the state error vector as in Equation 2.41, and K1 is a positive constant

vector. The stability proof for this controller is simple and is as follows. First, we

define a positive definite Lyapunov function

V =
1

2
X2
se (2.52)

V̇ = XseẊse (2.53)

substituting Equation 2.36 into Equation 2.53

V̇ = Xse(B
−1F +B−1τ) (2.54)

then, substituting Equation 2.51 into Equation 2.54

V̇ = Xse(B
−1F +B−1(B(−B−1F −K1Xse))) (2.55)

21

resulting in

V̇ = −K1X
2
se (2.56)

As long as the first derivative of the Lyapunov function described by Equation 2.56

is negative definite, the system is stable. To maintain this condition, K1 must be a

positive scalar.

2.4.3 Disturbance Observer

As mentioned previously, The precise control of highly nonlinear systems such as

biped or manipulator robots is challenging. There are often significant model uncer-

tainties and disturbances that may cause poor and inadequate control system perfor-

mance. Here, we implement a simple nonlinear disturbance observer (NDO), which

has to estimate the model uncertainties and external disturbances. The estimated

uncertainties are added to the control system as the NDO’s input.

The NDO’s input can be expressed as:

τ̂d = z − f(θ̇) (2.57)

where z is an auxiliary variable vector, and f(θ̇) is a function defined as:

f ˙(θ) = Lθ̇ (2.58)

where L is a scalar, and θ̇ is defined the joint angular velocity states. The auxiliary

variable vector is defined as:

z =

∫
L
(
f(θ, θ̇) + g(θ)(τ + τ̂d)

)
dt (2.59)

The total control input of the master and slave systems is then represented by com-

bining Equations 2.44 and 2.58:

τtotal = g−1
(
−f − λθ̇ − λ

√
|s|sign(s)−B

∫
sign(s)dt+ τ̂d

)
(2.60)

The stability proof of the NDO is simple. First, we compute the first derivative of

Equations 2.57 and 2.59:

˙̂τd = ż − Lθ̈ (2.61)

ż = L
(
f(θ, θ̇) + g(θ)(τ + τ̂d)

)
(2.62)

22

using the dynamics model previously derived in Equation 2.36, and substituting Equa-

tions 2.62 into 2.61, we get:

˙̂τd = L
(
f(θ, θ̇) + g(θ)(τ + τ̂d)

)
− L

(
f(θ, θ̇) + g(θ)(τ + δ)

)
(2.63)

For simplicity, we will redefine the NDO’s control input τ̂ as the estimated disturbance

δ̂. We then get:
˙̂
δd = Lg(θ)(δ̂d − δd) (2.64)

or simply:
˙̂
δd = Lg(θ)(ed) (2.65)

where ed is the error between the estimated and actual system disturbances and

uncertainties. Computing the first derivative of ed, we get:

ėd =
˙̂
δd − δ̇d (2.66)

which, assuming the disturbance and uncertainty to be constant, the term δ̇ is equal

to 0:

ėd =
˙̂
δd (2.67)

Substituting Equation 2.67 into 2.67, we get the following differential equation:

ėd = Lg(θ)ed (2.68)

We can ensure that the differential Equation 2.68 will converge as long as the

condition Lg(θ) < 0 is met. This is done by cancelling the inverse inertia matrix g(θ)

and defining the gain L as:

L = −Kdg
−1(θ) (2.69)

where Kd is a positive constant.

2.4.4 Adaptive Feedforward Neural Network Compensator

The adaptive neural network compensator is an additional tool along with the nonlin-

ear disturbance observer to compensate for any uncertainty in the system and reduce

trajectory tracking error. This feedforward neural network uses the desired trajectory

of the system as input and feeds it through a radial basis function neural network to

23

compute the torque compensation. The weights of this neural network are adaptively

calculated based on the previous output of the Gaussian operation and the current

error of the system.

For the haptic manipulator, the input to the feedforward compensator is defined

as:

S1 =

φ1md

φ2md

φ3md

 (2.70)

The input defined in Equation 2.70 is fed through the nth radial basis function neural

network with smooth Gaussian kernel defined as:

Hn = e
−S1−(µRBF+µO)

σ2
RBF (2.71)

where µRBF and σRBF are the mean and the standard deviation of the Gaussian

Function. KRBF is the number of Gaussian functions in the RBF neural network,

each separated by an interval µO.

The output of the operation defined by Equation 2.71 is then multiplied with the

adaptive weights using the dot product to generate the compensated torque YRBF .

These weights are defined as:

WRBF = βRBF θeHn (2.72)

where βRBF is a constant positive vector.

Equation 2.60 can once again be updated to include the feedforward adaptive

neural network compensator:

τtotal = g−1
(
−f − λθ̇ − λ

√
|s|sign(s)−B

∫
sign(s)dt+ τ̂d

)
− YRBF (2.73)

2.5 Heuristic Optimization of Control System Parameters

The genetic optimization algorithm was first introduced by [68] and has ever since

been utilized in various optimization applications. The genetic algorithm is based on

the evolutionary and natural selection process and has been extensively used in the

parameters tuning of control systems. The GA, which runs on a continuous loop of

generations to find the optimal solution, consists of three main steps: reproduction,

24

mutation, and crossover. The GA first begins by computing the performance of

the fitness function with an initial population of chromosomes. In the case of an

unoptimized solution, the population goes through selection, crossover, and mutation,

which generates a second candidate population for the fitness function.

In this research, the GA from MATLAB is used to obtain optimal gain values for

the presented controllers for the master and slave systems. The genetic algorithm

with a predefined population size of 50 iteratively computes the fitness function to

find the best solution. The GA completes its optimization under two conditions: 1-

if the number of consecutive stall generations is equal to the number of max stall

generations, set at 50 generations. A stall generation is defined as a generation where

the computed fitness function is not better than the previous generation. And 2- if

the weighted average relative change is smaller or equal to the function tolerance pa-

rameter. Table 2.3 shows the GA parameters used to optimize the presented systems.

Table 2.3: Genetic algorithm optimizer parameters

Parameter Value

Exploration Range [-1000 1000]
Population Size 50

Function Tolerance 10−6
Max Number of Stall Generation 50

Chapter 3

Proposed Mapping Mapping Algorithm for Bilateral

Teleoperation

So far in Chapter 2, we discussed the essential low-level components required for

bilateral teleoperation of a biped robot using a manipulator. The forward and inverse

kinematic models used in the master system for the FMA and the slave system for

IMA have been presented. The dynamic equations used to simulate both master

and robots have been derived, and the control systems used to stabilize the master

and slave systems were presented. This chapter presents the high-level components

needed to operate this system. More specifically, we discuss the forward and inverse

mapping algorithms used to map master and slave system trajectories to achieve

bilateral teleoperation. The architecture presented in Figure 3.1 illustrates how the

system’s components interact with each other.

First, we will discuss the FMA and how it operates. In this subsection, we discuss

how the forward kinematic of the haptic manipulator generates a command to the

slave and how the step planning and walking gait algorithms compute joint trajec-

tories for the bipedal Robot. More specifically, we will discuss how inputs from the

master device are interpreted, how and when a step has been completed, which leg to

use for the supporting phase of the next step, the parameter adaptation when switch-

ing from one leg to another, how the previously discussed SLIP model can track a

certain trajectory, and the inverse kinematics used to derive the joint trajectories.

Next, we discuss the IMA and how it can provide relevant haptic feedback of the

biped’s movements to the operator. This subsection will investigate which features of

the biped’s dynamics are chosen for haptic feedback and how the inverse kinematics

can provide an accurate representation of that.

Lastly, we compare the proposed Cartesian-based method to a deep learning-based

approach. Two deep learning models are used and tested to verify their performance

at predicting trajectory mapping under time delay circumstances. The deep learning

25

26

Figure 3.1: System’s software flow diagram

27

architecture includes an LSTM-based architecture and an LSTM-CNN architecture.

The data collection, preprocessing, and training parameters are discussed in depth.

3.1 Forward Mapping Algorithm

This subsection presents the forward mapping algorithm used to map trajectories

from the master system (manipulator’s end effector) to the slave system (biped’s

CM). More specifically, we discuss how each component interacts to form the FMA.

3.1.1 Master Signal Interpretation and Targets

This subsection describes the core of the forward mapping algorithm. It is what

translates master commands to slave commands for the biped robot gait. Given the

complexity of the two systems (master and slave), we decided that for simplicity,

we will only consider three possible actions that the operator can control: Forward

walking, backward walking, and stop.

These functions are dictated by the manipulator’s end-effector position in its coor-

dinate frame. First, we defined a dead zone at the center position of the manipulator

end effector’s coordinate frame for the ’stop’ action. This dead zone representing the

’stop’ action is defined bounded by αmin and αmax. Whenever xmaster ≤ αmin the

biped walks backward and whenever xmaster ≥ αmax:

zdesired =

−∞, xmaster ≤ αmin

zhip, αmin ≤ xmaster ≤ αmax

∞, xmaster ≥ αmax

(3.1)

Note that for the ’stop’ action, the zdesired variable is set to zhip = z4 to maintain the

biped’s current location and stop moving. This is explained below in Equation 3.8

where the error of the step planning algorithm is 0.

3.1.2 Step planning

The first step planning function computes the trajectories followed by the SLIP model

gait. It calculates the allowable hip joint distance that can be traveled in a single

step in each direction given the desired XYZ position by the master system’s forward

28

kinematics and the measured hip position, as shown in Figure 3.1. This function

computes the maximum situational step distance (MSSD). The error determines the

desired position for the CM of the biped based on the magnitude of the error. When

the error is less than the MSSD, or the target CM position can be reached with

a single step, the desired position is set to the error. Conversely, when the error

is greater than the MSSD, or the target requires multiple steps to be reached, the

desired position is set to the MSSD. In that case, to get to the target, a loop monitors

the biped’s states to determine if a step is completed to activate the next supporting

leg to converge to the target desired position. More details on the step monitoring

and switching are discussed in Section 3.1.5.

Before we compute the MSSD, we must first determine the absolute maximum

step distance (AMSD).

AMSD = 2l2l3 sin θmax (3.2)

We now introduce a set of parameters that we will use to compute the MSSD. These

parameters vary under two conditions:

1. when a step is completed,

2. when the walking direction has been altered (forward-to-backwards walking or

vice versa)

In a simpler way, these parameters are the initial conditions of the biped prior to

taking a new step:

d0 =
√

(x3N − x1N)2 + (z3N − z1N)2 (3.3)

γ0 = arctan

(
z3N − z1N
x3N − x1N

)
(3.4)

where d0 is the euclidean distance between the ankle and the hip joints of the sup-

porting leg before taking a step, γ0 the initial angle of the supporting leg, and N the

time step at which one of the two conditions above is met.

The MSSD is defined as the allowable distance that can be traveled by the hip

joint (COM) given the initial position of the supporting leg. The MSSD is computed

as:

MSSD+ =
√

(l2l3)2 + d20 − 2(l2l3)2 cos (θmax + γ0) (3.5)

29

Figure 3.2: Important definitions of the supporting foot during the stepping motion

The MSSD is a direction-dependent parameter, hence the subscript MSSD+ indicat-

ing the MSSD value when the desired direction is in the positive direction (forward

walking). Alternatively, the MSSD for the negative desired direction is given as:

MSSD− = AMSD −
√

(l2l3)2 + d20 − 2(l2l3)2 cos (θmax + γ0) (3.6)

Note that the MSSD is bounded by the AMSD

MSSD ≤ AMSD (3.7)

Figure 3.2 shows the definitions needed to complete the step planning algorithm.

Once these parameters are computed, we determine the error in position of the

hip joint

e = zdesired − z4 (3.8)

where zdesired and z4 is the desired hip position and the current position of the hip

joint, respectively.

We can determine the desired position for the CM with the computed error and

the maximum situational stepping distance. If the error is greater than the MSSD,

the desired hip position (DP) is set to the MSSD. By doing this, we ensure that the

30

movement of the SLIP is bounded to θmax. Conversely, when the error is smaller than

the MSSD, the desired CM position, DP, is set to the error itself.

DP =

e, e ≤MSSD

MSSD, e > MSSD
(3.9)

the desired angular position for the SLIP can then be computed as:

θ1d = arctan
DP − (z1Ns − z3Ns)

x3Ns − x1Ns
(3.10)

where the subscript Ns is an index to the last time a step was detected while the

direction is constant.

3.1.3 Trajectory Generation for SLIP model

The trajectory generation for a biped robot gait is crucial to the system’s stability.

In Equation 3.10, we defined the desired position of the SLIP model for the second

state θ1 of the 3D SLIP model defined in Equation 2.36. Additionally, the desired

trajectory for the first state of the 3D SLIP model is set to:

rd = l2 + l3 (3.11)

for simplicity. This is what generates the up-and-down movement of the biped’s CM

as it is walking. More specifically, when θ1 = θmax, the CM is at its lowest point, and

when the CM is aligned with the position of the supporting foot θ1 = 0, the CM is at

its highest position. In this subsection, we discuss how lateral movement is generated.

In natural biped robot gaits, there is a subtle left-to-right movement of the biped’s

CM as it is walking. This movement is often compared to Kepler’s laws of planetary

motion. This motion is typically defined by a hyperbolic function dependent on

parameters such as CM height and step length. In this study, we generate the left-to-

right movement using a simple Gaussian function as the desired trajectory to simplify

the task.

The desired trajectory in the Y-axis, which dictates the left-to-right movement,

is given by the Gaussian function as follows:

ycm−d = Ae
− (zHIP−i−zSF−i)

2

2σ2
l (3.12)

31

where zHIP−i and zSF−i is the coordinates of the hip joint and the supporting foot

along the Z-axis at time step i, and A and σ are tunable scalars.

The desired Cartesian position ycm−d is converted to an angular desired position

for the lateral movement as:

θ2d = arctan
ycm−d

xHIP−i − xSF−i
(3.13)

where xHIP−i and xSF−i is the coordinates of the hip joint and the supporting foot

along the X-axis at time step i.

Note that given that there is no joint rotating about the X-axis in the 10-DoF

biped model presented in Figure 2.1, and assuming that the biped robot walks solely

in the Z-axis, the coordinate for the hip joint are simply defined as:

xHIP = x4 (3.14)

zHIP = z4 (3.15)

and the coordinates for the supporting foot are as follows:

xSF = x0 (3.16)

zSF = z0 (3.17)

which can be obtained using the forward kinematics as discussed in Section 2.1.

The resulting desired trajectory for the 3D SLIP model is as follows:

Θsd =

l2 + l3

arctan DP−(z1i−z3i)
x3i−x1i

arctan ycm−d
xHIP−i−xSF−i

 (3.18)

3.1.4 3D SLIP Model States, Control, Simulation and Inverse

Kinematics

In this subsection, we use the previously derived SLIP dynamics, control system, and

desired trajectories as defined in Equations 2.36, 2.51, and 3.18, respectively.

First, we compute the SLIP’s system states using the output of the inverse kine-

matics. This can be done as:

Xs =

rs

θ1s

θ2s

 =

√

(x4i+x5i
2
− x0i)2 + (y4i+y5i

2
− y0i)2 + (z4i+z5i

2
− z0i)2

arctan
(
z4i−z1i
x4i−x1i

)
arctan

(
y4i+y5i

2
−y1i

x4i−x1i

)
 (3.19)

32

With the computed states and desired trajectories as in Equation 3.18, we define

the error:

Xse = Xs −Θsd (3.20)

where Xs and Xse were previously defined as the SLIP model’s state vector and state

error vector, respectively. With the state error vector now defined, we use Equation

2.51 to control the SLIP model using virtual inputs. Note that for optimal results,

the constant vector K1 must be defined as:

K1 =
1

dt2
ρ, ρ ∈ [0.1, 10] (3.21)

where dt is the sampling time, and ρ is a constant positive vector. The division by

dt2 is necessary for the simulation of the 3D SLIP model due to the state integration

during simulations.

The simulation of the SLIP model is straightforward. Here, we use the previously

derived SLIP dynamic model as shown in Equation 3.18 to simulate and predict the

future states of the system.

Given an initial position Xs0 and velocity Ẋs0 states given a virtual control input

defined by Equation 2.51, we simulate the future states of the SLIP dynamic model

Xsi+1 by double integrating the dynamic model defined by Equation 2.36:

Xsi+1 = Xs0 +

∫
Ẋs0 +

∫ (
B−1F +B−1τ + δ

)
dtdt (3.22)

In the discrete-time domain, the sampling time must be small enough to maintain the

system’s stability. However, integrating acceleration Ẍs with a small-time sampling

dt results in minor position and velocity changes per single sampling time. This is

the main reason why K1 in Equation 2.51 must be very large (multiplied by a factor

of 1
dt2

to cancel the double integration’s squared time sampling) to have a noticeable

effect on the SLIP model.

The result of the 3D SLIP simulation is the future state vector of the SLIP model:

Xsi+1 =

rs

θ1s

θ2s

 (3.23)

which is used as the input to the inverse kinematics discussed in Section 2.2. The

future states of the SLIP model are fed into Equations 2.8 to 2.17 to produce a joint

33

angle desired trajectory which will be tracked by the biped’s control system defined

in Equation 2.44.

3.1.5 Step Detection and Switching

In this subsection, we discuss the final component necessary for the slave system,

as shown in Figure 3.1. This component dictates how each step is detected in the

walking motion, and the other leg is activated to complete the next step. Given

that the slave system is assumed to be most often in the single support phase (SSP),

there are many components of the system that depend on the forward kinematics

and the dynamics at the state of the biped at time t. These variables that dictate

the operation of the system need to be organized accordingly anytime a new step is

completed to prepare for the following step and send appropriate control signals to

the actuators.

The step detection algorithm has in fact, two components mentioned previously

in Section 3.1.2:

1. when a step is completed, and the direction is constant,

2. when the walking direction has been altered (forward-to-backwards walking or

vice versa)

The first condition which detects when a step is detected during constant heading

direction (forward or backwards) monitors the error states θ1e and θ2e of the 3D SLIP

model state error vector Xse. Whenever these states maintain a small enough error

θ1e ≤ 1◦ and θ2e ≤ 1◦ for a certain period of time Tstep = 0.5seconds, then the

step flag is detected and the next-leg switch algorithm is triggered. When a step is

detected, we need to ensure that variables are correctly defined for the next step.

This is mainly done because the biped is modeled after its SSP, which affects its

kinematics and dynamics.

Table 3.1 shows a description of variables and their initialization before and after

taking a step. For instance, if the left leg is in the SSP and completes a step, the

forward kinematics saves the last values of x1, y1, and z1 as the new values of x10, y10,

and z10. This ensures that the initial conditions of the forward kinematics are correct

for the following step action. Similarly, joint position states q1 through q10 from the

34

Table 3.1: Variable reinitialization following a completed step

SSP Variables
Left Leg in SSP Right Leg SSP True Joint Variables

Forward Kinematics
x1 x10 X1

y1 y10 Y1
z1 z10 Z1

Control System states

q1 q10 Q1

q2 q9 Q2

q3 q8 Q3

q4 q7 Q4

q5 q6 Q5

q6 q5 Q6

q7 q4 Q7

q8 q3 Q8

q9 q2 Q9

q10 q1 Q10

Actuator Control Inputs

τ1 τ10 A1

τ2 τ9 A2

τ3 τ8 A3

τ4 τ7 A4

τ5 τ6 A5

τ6 τ5 A6

τ7 τ4 A7

τ8 τ3 A8

τ9 τ2 A9

τ10 τ1 A10

dynamics model in Equation 2.36 which are based off the SSP and not the true joint

of the robot Q1 through Q10, are initialized as q10 through q1, respectively, for the

following step. Most importantly. however, is the correct assignment of control input

signals to the appropriate joint actuators. Below we see that in the case of left leg in

SSP, control signals τ1 through τ10 are assigned directly to actuators A1 through A10,

while it is the inverse for the case that the right leg is in SSP. it is thus evident why

we need to properly store and initialize variables every time a step is detected.

Comparatively, the second condition detects whenever the walking direction is

altered. This is simple to see:

direction = sign(zdesired) (3.24)

35

where we arbitrarily define that direction = 1 indicates a forward walking motion

and direction = 0 a backwards walking motion. When detecting a direction change,

Equation 3.10 is altered to the following until a step is completed in the new direction:

θ1d = arctan
DP − (z9Nd − z6Nd)

x6Nd − x9Nd
(3.25)

where the subscript Nd is an index to the last time a change in direction was detected.

3.2 Inverse Mapping Algorithm

As Opposed to the FMA, the IMA is far easier to design, and it implements the

well-known and straightforward Cartesian-based mapping method. This method re-

lies on the computation of forward kinematics of the biped robot to obtain its CM

trajectory and the inverse kinematics to transform that same trajectory into readable

desired joint positions for the master manipulator to generate haptic feedback. Simple

amplitude shifting and scaling are necessary to account for the significant kinematic

asymmetries of the two systems.

Section 2.1 discusses the forward kinematics of the biped, and Section 2.2 discusses

the inverse kinematics of the haptic manipulator that is used as the master robot.

Using the forward kinematics, we obtain the hip position of the biped:

xhip−i = (x4i + x5i)/2 (3.26)

yhip−i = (y4i + y5i)/2 (3.27)

zhip−i = (z4i + z5i)/2 (3.28)

where xhip−i, yhip−i, and zhip−i are the (x,y,z) coordinates of the hip joint at time i.

Given that the manipulator and the biped robots lie on two different coordinate

frames (X, Y, Z axes in the master robot are Z, Y, X axes in the slave robot, respec-

tively), the input to the desired trajectory (xcm, ycm, zcm) is defined as:

xcm = l1m − δ1(zhip−i − zhip−Ns) (3.29)

ycm = δ2(yhip−i − yhip−Ns) (3.30)

zcm = l1m − δ3(xhip−i − xhip−Ns) (3.31)

36

where l1m is link 1 of the haptic manipulator as defined in table 2.1, and where δ1,

δ2, and δ3 are scalars.

Note the scaling variables δ1, δ2, and δ3, which are used to scale up the small tra-

jectory of the biped’s CM for haptic feedback. Given that the objective is to represent

the haptic feedback dictated by the CM’s left-to-right and up-and-down movements,

haptic feedback along the X-axis of the manipulator is not considered, resulting in

δ1 = 0. Additionally, an offset by xhip−Ns, yhip−Ns, and zhip−Ns representing the (x,y,z)

position of the CM at the time of the previous step is subtracted to account for the

height of the robot at the hip, the mean y and mean z location of the biped’s CM to

minimize large and misrepresentative haptic feedback to the operator.

3.3 Deep Learning Mapping Algorithms

This section discusses an alternative mapping algorithm based on deep neural net-

works. Two architectures are explored: (1) an architecture based on deep LSTM

networks and (2) an architecture based on the CNN-LSTM model. This section

demonstrates the data collection and preprocessing procedure, and the two architec-

tures are explained. The goal is to observe if the supervised deep learning models

can accurately predict and outperform mapping values for FMA and IMA algorithms

presented in Sections 3.1 and 3.2 under a unidirectional communication time delay of

dtc = 0.1s.

3.3.1 Data Preprocessing

It is essential to layout and understand how the data is collected and preprocessed

in a supervised learning task before training the model. The collected data is from

simulations of the previously discussed Cartesian-based FMA-IMA algorithms in this

task. In this simulation, we randomized parameters of the master and slave robots

such as the initial conditions, system dynamics, and user inputs to the master robot

to obtain real-world-like training data.

The deep learning model set to act as the new FMA accepts as input the Omni

manipulator’s joint position states θ1m, θ2m, and θ3m and outputs desired joint tra-

jectories for the biped θ1Bd, θ2Bd, ... θ10Bd. As for the IMA deep learning model, it

accepts the biped joint positions θ1B, θ2B, ... θ10B as inputs, and outputs the desired

37

joint trajectories for the Omni manipulator φ1md, φ2md, and φ3md. The collected data

set for the DL-FMA and IMA results from a simulation of 3600 seconds in which

the robot is set to conduct different operations based on piece-wise randomized user

inputs at randomized time intervals Tswitch.

Table 3.2 shows the randomized variables used to generate realistic training data

for the DL models. Note that variables with Gaussian distributions are centered with

mean 0 and have their range represent the standard deviation.

Table 3.2: Random values assignment of critical variables for real-world data gener-
ation for DL mapping Algorithms

Distribution Type Variable Description Range of Values

Uniformly Distributed
Pseudorandom Integers

Foot Start Foot (Left/Right) [0 1] ∈ Z

Tswitch
Interval Between New
User Inputs ×10−2(s)

[500, 2500] ∈ Z

Gaussian Distribution

x0 Forward Kinematics
Initial Conditions (cm)

0
y0 [-50, 50] ∈ R
z0 [-50, 50] ∈ R

τh
Human Operator

Control Input ×10−4(Nm)
[-5, 5] ∈ R

δO
Omni Manipulator

Disturbance ×10−6(Nm)
[-5, 5] ∈ R

δB
Biped Robot

Disturbance ×10−6(Nm)
[-5, 5] ∈ R

The generated training data then goes through a series of preprocessing steps.

Given that the goal is to test the forecasting accuracy given a fixed unidirectional

communication time delay of dtc = 0.1s, preprocessing on the training input and

output data must be applied. Given that dt = 0.01s, a time-shift is applied to the

input I and output O data to ensure that the input at time step 1 corresponds to the

output of time step 11. Table 3.3 clarifies the time-shifting operation of the training

data. Note M is the size of the data set.

Following the time-shifting operation, the next preprocessing operation’s objective

is to extract pertinent information from the data to enhance the models’ learning

capabilities. Standardization is a popular first preprocessing step in machine learning

because the data set is centered at 0 with unit standard deviation, which speeds up

the training process. However, standardized data maintains its outlier data points.

38

Table 3.3: Time shifting preprocessing of training data

Discarded Input Data Discarded

I1 I2 ... IM−11 IM−10 IM−9 ... IM

Output Data

O1 ... O10 O11 O12 ... OM−1 OM

Data normalization is the answer to noisy data sets as it bounds the data in the range

[0, 1].

There are many ways to extract features from signals using various signal pro-

cessing techniques. For example, the Fourier Transform is one of the most popular

features extraction techniques, as it allows us to observe the dominant frequencies

of a signal. In audio and other sequence-to-sequence machine learning applications,

various feature extraction techniques such as the linear prediction coefficient, the line

spectral frequencies, and the discrete wavelet transform. Below, we discuss how the

Mel frequency spectrogram is used to extract pertinent information from the original

data set.

To compute the Mel spectrogram of a signal, apply a window filter to the signal. A

fast Fourier transform is used on the windowed signal to obtain the frequency-domain

representation of the signal. The frequency-domain representation passes through a

logarithmically-spaced bank of Mel filters to output the spectral values. These values

are summed then concatenated with the other channels to form the Mel spectrogram.

3.3.2 Deep Learning Architectures

In this subsection, we go over the two proposed deep learning architectures used to

predict the Cartesian-based FMA and IMA presented in Sections 3.1 and 3.2. The

proposed deep learning architectures are 1- a deep LSTM architecture and 2- a deep

CNN and LSTM architecture. Figure 3.3 shows the proposed architectures. The

LSTM architecture is simple and is based on two cascaded LSTM networks. These

networks, which are a subset of recurrent neural networks, are often used in time

series forecasting and classification. The cascaded LSTM networks are separated by

rectified linear unit layers which introduce nonlinearity to the model and helps it

learn complex nonlinear data. The network then ends with a dropout layer, followed

39

Figure 3.3: Deep learning architectures

by a fully connected layer to generate the output of the model.

In the second architecture, convolutional neural network layers are added to cap-

ture the long-term dependencies of the data. This architecture often used in video

processing applications begins by folding the input data to input in the convolution

layers. Two cascaded convolution layers with ascending number of filters separated by

a ReLU activation function and a max-pooling layer are used to capture the sequen-

tial data’s long-term dependencies. A dropout is applied before sending the CNN’s

output to the unfolding layer. The data is then flattened and fed to a cascaded LSTM

network as in the first presented architecture.

Below, we describe the role of each layer of the DL architectures presented in

Figure 3.3.

40

Input Layer

The input layer accepts the Mel spectogram computed during the preprocessing of

the data.

LSTM Layer

A short-long term memory neural network is a type of recurrent neural network often

used in sequence-to-sequence applications. Figure 3.4 shows the architecture of the

LSTM network.

The LSTM network begins by assessing which information to keep or disregard

using the forget gate. A weighted sum of the hidden state at the previous time step

ht−1 and the input xt with added bias is used to generate a normalized value between

in the range [0, 1] to determine whether the information is to be kept or discarded. A

value of 1 maintains the information, and a 0 discards the information from the cell

state. The forget gate is described as:

ft = σ(Wo · [ht−1, xt] + b0) (3.32)

Next, we defined the input gate and the tanh layer that decides which new infor-

mation to store in the cell state. These are defined as:

it = σ(W1 · [ht−1, xt] + b1) (3.33)

zt = tanh (σ(W2 · [ht−1, xt] + b2)) (3.34)

Using Equations 3.32, 3.33, and 3.34, and given the previous cell state at time t− 1,

we define the new cell state as:

Ct = ftCt−1 + itzt (3.35)

Then a filtered output based on the current cell state is computed. This is done

by applying a tanh function on the current cell state and filter it using a sigmoid

activation function:

ot = σ(W3 · [ht−1, xt] + b3) (3.36)

ht = ot tanhCt (3.37)

where W0, W1, W2, W3, and b0, b1, b2, b3 are the weights and bias of the LSTM

network to be learned.

41

Figure 3.4: Long-short term memory architecture

ReLU Layer

The rectified linear unit is a commonly used activation function in deep learning

models. It is a nonlinear piecewise function that allows the model to learn complex

structures in the data. This function returns a 0 when the input iReLU is negative

and returns the input when the input is positive. The output of the ReLU layer can

be mathematically described as:

OReLU =

0, iReLU ≤ 0

iReLU , iReLU > 0
(3.38)

Dropout Layer

DL models’ dropout layer is used between neural network layers to avoid data over-

fitting. During the training process, the dropout behaves as a filter given that it

randomly creates a binary vector given a dropout probability εd and multiplies that

vector with the output of the previous neural network layer.

2D Convolution Layer

The convolution layers in sequence-to-sequence deep learning models are often used

to extract long-term dependencies from the data. These layers use filters to extract

42

features from the time series data. In DL models, the number of filters in each

convolution layer is often in ascending order the deeper the layer is located in the

model. This is because the first few layers capture high-level features from typically

noisy input data, while deeper layers extract lower-level abstract features.

The convolution layers apply the cross-correlation operator to the input data and

compares it to the trained filters to detect features. In signal processing, cross-

correlation, which can be described as the inverse operation of convolution, is a mea-

surement used to compare two or more time-series data and determine how and when

they best match up with each other. The output of the cross-correlation operation

Ocnn can be described as:

Ocnn = Icnn
⊗
Fcnn (3.39)

where Icnn is the input sequence and Fcnn the filter or kernel of fixed length. Expand-

ing Equation 3.39 for discrete-time systems results in

Ocnn[i, j] =
M∑

m=−M

N∑
n=−N

Icnn[m,n]Fcnn[m+ i, n+ j] (3.40)

where 2M and 2N is the filter size in the vertical and horizontal positions.

Given that the convolution layer receives for input the Mel spectogram 1D signal,

the cross correlation operation of the CNN layer is simplified to:

Ocnn[i] =
M∑

m=−M

Icnn[m]Fcnn[m+ i] (3.41)

2D Max Pooling Layer

The 2D max-pooling layer is typically used after convolutional layers to reduce over-

fitting by filtering and generating an abstract form of its input. A filter size Nf with

stride Sf is applied to the input and returns the maximum values at each filtered

iteration, thus returning a map of the dominant features of the input. In other

words, a max-pooling layer performs downsampling of the input data to enhance

performance and avoid over-fitting.

Sequence Folding and Unfolding Layer

The sequence-folding layer converts the input sequence data into a batch of images

that a convolutional layer can accept. Conversely, a sequence unfolding layer restores

43

the input data to its original form given its mini-batch size.

Flatten Layer

The flatten-layer collapses the input’s spatial dimension into the channel dimension.

In our case, as shown in Figure 3.3, the flatten layer is used in the LSTM-CNN

architecture to collapse the data into 1-D data to input into the LSTM layer.

Fully Connected Layer

A fully connected layer is a feed-forward neural network. These layers are often at the

end of DL models as they gather the previous layers’ extracted data and reformulate

it to a final output. A simple representation of a fully connected layer is as follows:

OFC = W0IFC + b0 (3.42)

where IFC , OFC , W0, and b0 are the input, output, weight matrix, bias vector of

the feedforward neural network, respectively.

3.3.3 Training the Models

The training process optimizes the DL model to minimize a loss function. Given a

set of hyper parameters, the optimizer iteratively modifies the weights and biases of

the DL model to minimize the loss function. In sequence-to-sequence regression, the

loss function is often dependent on some function of the error between the expected

and true outputs. In this work, the Adam optimizer is used to minimize the root

mean squared error (RMSE) and obtain a model representative of the FMA and IMA

algorithms discussed in Sections 3.1 and 3.2.

The adaptive moment estimation algorithm is an optimizer that adapts its learn-

ing rate for each parameter. Assuming that the gradient gt of the loss function is

already computed, we can calculate the exponentially decaying average first and sec-

ond moments mt and vt:

mt = ζ1 ·mt−1 + (1− ζ1) · gt (3.43)

vt = ζ2 · vt−1 + (1− ζ2) · g2t (3.44)

44

where ζ1 and ζ2 represent the decay rates of the first and second moments mt and vt,

respectively. Then, the bias-corrected moments m̂t and v̂t to achieve better estimates

of the moving averages are computed:

m̂t =
mt

1− ζt1
(3.45)

v̂t =
vt

1− ζt2
(3.46)

Now, the parameters can be updated as follows:

ψt = ψt−1 − αa ·
m̂t√
v̂t + εa

(3.47)

Note that the recommanded values for ζ1, ζ2 and ε are 0.9, 0.999 and 10−8, respec-

tively.

Chapter 4

Simulation Results

This chapter presents the simulation results obtained for the control system design

explained in Chapter 2 and the two mapping algorithms presented in Chapter 3. The

proposed algorithms, as shown by Figure 3.1 are tested via MATLAB simulation

using the previously derived forward kinematic and system dynamics in Sections 2.1

and 2.3. In the following sections, we first explain the methods used to simulate

the system, and then, we present the simulation results and a comparative study to

alternative methods.

4.1 Control System Simulation Results

4.1.1 Methods

When simulating a control system, one must consider many parameters to ensure

the system’s stability in a real-world application. These parameters include various

model uncertainties, external environmental disturbances, noisy sensor data, varying

communication time delay between master and slave systems, and much more. This

experimentation aims to test the control system’s trajectory tracking error under

model uncertainties and external disturbances. The simulation is conducted over

100 seconds with sensor sampling time of 10 ms. The system models are excited by a

sinusoidal desired trajectory with frequency F = 0.1 Hz and amplitude 0.1π rad. The

system dynamics equations defined in Section 2.3 are used to simulate and predict

the desired position of future time steps.

To test the adaptability of the designed control system in the simulation, we

introduce dynamic model errors M̃(θ), C̃(θ̇, θ) and G̃(θ):

M̃(θ) = M(θ)− M̂(θ) (4.1)

C̃(θ̇, θ) = C(θ̇, θ)− Ĉ(θ̇, θ) (4.2)

45

46

G̃(θ) = G(θ)− Ĝ(θ) (4.3)

where M̂(θ), Ĉ(θ̇, θ), and Ĝ(θ) are the estimated intertia, coriolis and gravitational

parameters of the system. For simplicity, the estimated paramneters are defined as:

M̂(θ) = 0.8 ·M(θ) (4.4)

Ĉ(θ̇, θ) = 0.8 · C(θ̇, θ) (4.5)

Ĝ(θ) = 0.8 ·G(θ) (4.6)

meaning that the error in the parameters is 20% of the true system parameters.

Additionally, an external disturbance applied as an impulse function with ampli-

tude 0.001Nm for a 10-second duration was applied at 45 seconds after the start of

the simulation. This impulse is defined as:

δ =

0, t < 45

0.001, 45 ≤ t ≤ 55

0, t > 55

(4.7)

The total uncertainty including external disturbances and other noise δ is defined

as:

U = M̃(θ)θ̈ + C̃(θ, θ̇) + G̃(θ) + δ (4.8)

Additionally, this section discusses the effects of the combined second order slid-

ing mode controller with a nonlinear disturbance observer and an adaptive RBFNN

feedforward compensator. More specifically, we test three cases:

1. The first is an unoptimized control architecture where the parameters are tuned

manually.

2. In the second case, we isolate the SOSMC and tune it using the GA optimizer as

described in Section 2.5. Then, the NDO and RBFNN feedforward compensator

are added to the architecture after the optimization. Here, The tuning of the

NDO and RBFNN feedforward compensator gains are done manually with trial

and error.

3. Lastly, and unlike the second case, the SOSMC is optimized using GA while

also considering the NDO and RBFNN compensators’ effects during the opti-

mization. Here the NDO and RBFNN compensators are also tuned manually.

47

4.1.2 Results and Analysis

The performance results by adding each component of the control system are de-

scribed in Table 4.1 by running a 100 seconds simulation with model uncertainties

and external disturbances as described in Equation 4.8. Here, the 3-DoF manipula-

tor is used as a plant for its simplicity in demonstrating the efficacy of the proposed

control architecture. Similar results were found when applied to the 10 DoF manip-

ulator. The performance is measured using four metrics defined by the average of all

joints errors: 1- the integral of the absolute error (IAE), 2- the integral of absolute

error multiplied by time (ITAE), 3- the integral of the error squared (ISE), 4- and the

root mean square error (RMSE). Figure 4.1 is a bar graph representing the RMSE

performance of the control methods shown in Table 4.1 that is used to provide a

better visual of the data.

The results obtained in Table 4.1 were obtained with the scalars described in

Section 2.4. These scalar are defined in Table 4.2. Figures 4.2 through 4.5 show

Table 4.1: Control architectures performance results under three parameter tuning
methods (lower is better)

Unoptimized Controllers

FL
FL

+NDO
SOSMC

SOSMC
+RBFNN

SOSMC
+NDO

SOSMC
+RBFNN

+NDO

IAE 1.0456e+03 27.7075 259.7389 178.9505 5.4025 5.2805
ITAE 5.3634e+04 1397.8 1.2195e+04 8800.9 261.1194 256.4761
ISE 1.0517e+04 7.2261 2261.1 1110.3 0.1904 0.1721

RMSE 0.1125 3.3e-03 0.0528 0.0353 5.1664e-04 4.8854e-04

GA Optimized SOSMC Without Compensators During Search

IAE - - 253.9123 44.6766 12.2323 9.2932
ITAE - - 1.1922e+04 1.9874e+03 634.4539 451.9765
ISE - - 2.2276e+03 40.9906 0.9995 0.5622

RMSE - - 0.0522 0.0079 0.0011 9.1339e-04

GA Optimized SOSMC With Compensators During Search

IAE - - Unstable 1.3538e+03 1.5911 1.5581
ITAE - - Unstable 7.1879e+04 70.2249 69.2794
ISE - - Unstable 1.1383e+04 0.0473 0.0453

RMSE - - Unstable 0.1294 2.6886e-04 2.6262e-04

48

Table 4.2: Control architecture model parameters

Parameter Values

Para-
meter

Not
Optimized

Optimized W/O
Compensator

Optimized W/
Compensators

SOSMC
λ 2 [1.003, 1.006, 1.824]T [8.621, 7.454, 9.463]T

β 2.3 7.144 1.129

FL K1 10 - -

NDO KD 150 150 150

RBFNN

µRBF 0 0 0
µO 0.1 0.1 0.1

KRBF 11 11 11
σRBF 0.05 0.05 0.05
βRBF [1, 0.1, 0.1]10−2 [1, 0.1, 0.1]10−2 [1, 0.1, 0.1]10−2

the simulation results of the 3-DoF manipulator when subjected to various uncer-

tainties and disturbances over a period of 100s. More specifically, figure 4.2 shows

the position tracking of the 3-DoF manipulator for each joint. Figure 4.3 shows the

control input to the 3-DoF manipulator’s actuators during the 100s simulation. The

adaptive weights generate the RBFNN compensator’s input YRBF over time shown

by Figure 4.4. Figure 4.5 shows the NDO compensator τ̂d and the total disturbance

and uncertainty computed by Equation 4.8.

From Table 4.1, we can make some critical observations. A GA-optimized control

architecture performs better than an unoptimized control architecture, given that the

search environment is identical to the testing environment. This can be seen where

we saw a 1.1% improvement in RMSE from the GA-optimized SOSMC architecture

without compensator during the search compared to the manually-tuned SOSMC.

The same can also be concluded when we compare the manually-tuned SOSMC-

RBFNN-NDO structure to the same structure but optimized with compensators,

where we saw an improvement of 46%, from an RMSE of 4.8854×10−4 to 2.6262×10−4.

Alternatively, we can also conclude that modifying the testing environment from the

optimization environment will often produce underperforming results. We can also

conclude that a manually tuned SOSMC architecture performs better than a manually

adjusted FL architecture. Even though this observation might be biased due to the

49

nature of trial and error in manual tuning, the FL algorithm is known to perform

poorly in situations where the system dynamic model used in designing the control

input is not identical to the true system dynamic model. This is the main reason why

we see over 53% increased performance in an uncertain system simply by using the

SOSMC. This control architecture is proven to be more robust to system uncertainties.

Furthermore, adding system compensators will typically always provide better

trajectory tracking performance than without the addition of compensators. In this

simulation, we specifically note that the RBFNN compensator performs less effec-

tively when compared to the NDO. This is because the NDO uses the estimated

dynamic model of the system combined with live state measurements of the system

to compute an accurate estimate of uncertainty. As shown in Figure 4.5, the NDO

computes a precise estimate of the disturbance and uncertainty experienced by the

Figure 4.1: Control architectures performance results under three parameter tuning
methods (lower is better)

50

system. This estimate is then applied as a compensated control input to cancel out

the uncertainties. The uncertainty error with the NDO average out to 0, as shown in

Figure 4.5.

Comparatively, the RBFNN compensator uses the desired trajectories as input and

computes the weights adaptively based on the error state. The RBFNN is thus not as

effective as the NDO in correcting model uncertainties and disturbances. Looking at

Table 4.1, we see that the RBFNN compensator provides at least 33% performance

improvement in RMSE. In contrast, the NDO compensator offers at least 97% perfor-

mance improvement in RMSE, regardless of whether it was optimized or not. Better

Figure 4.2: 3-DoF manipulator’s position tracking of a 0.1 Hz sinusoid desired tra-
jectory with model uncertainties and external disturbances

51

Figure 4.3: Applied control input torque of 3-DoF manipulator during a 0.1 Hz
sinusoid desired trajectory with model uncertainties and external disturbances

Figure 4.4: Adaptive weights of RBFNN feedforward compensator during a 0.1 Hz
sinusoid system excitation with model uncertainties and external disturbances

performance can be extracted from these compensators if we tune the parameters

identified in Table 4.2 using an optimizer.

Given this control architecture analysis, it is evident that the GA-optimized

52

Figure 4.5: System uncertainties and disturbances Vs. NDO response during a 0.1
Hz Sinusoid System Excitation

SOSMC, RBFNN, and NDO architecture is the best for trajectory tracking. In bi-

lateral teleoperation, having a responsive control system architecture is essential in

reducing the communication delay effect. This control architecture was thus also ap-

plied to the 10-DoF biped robot due to its excellent trajectory tracking and response

times.

53

4.2 Bilateral Teleoperation Mapping Simulation Results

4.2.1 Methods

This section tests the feasibility and practicality of the proposed bilateral teleopera-

tion mapping algorithms between a 3-DoF haptic manipulator and a 10-DoF biped

robot. In this simulation, we test the trajectory tracking of the master and slave

systems under various operator inputs and test the system response under various

communication time delays. The previously derived dynamics equations and control

systems are used to simulate the system.

An iterative loop in MATLAB was designed to test the proposed system as per

the architecture shown in Figure 3.1. The simulation is conducted over a period

of 30 seconds with a sampling rate of 100 Hz and is tested with a unidirectional

communication delay of 100ms and 500ms. The chosen communication latencies are

typically within the range of delays using WiFi as a communication method between

master and slave system. In the simulation, a force representing a user input is applied

to the Omni manipulator dynamics, τh 6= 0. The applied force changes at each 10

seconds interval to represent the three possible control cases described above.

4.2.2 Results and Analysis

Below, Figure 4.6 shows the results of the simulation. On the left, the states of the

biped are shown at t=0s, t=15s, and t=30s, where we see the biped walk backward,

stop, then go forward. The applied operator torque vector is:

τh =

[0,−0.0005,−0.0005]T t ≤ 10

[0, 0, 0]T 10 ≤ t ≤ 20

[0, 0.0005, 0.0005]T t ≥ 20

(4.9)

Yellow-to-magenta color-changing lines describe the start (yellow) and end (ma-

genta) of the left and right foot simulation. Similarly, A progressively red-to-blue

color-changing line demonstrates the path of the biped’s CM from the start (red) to

end (blue). The biped is represented in gray at the 15-second mark and a lighter gray

at the 30-second mark to show the progression of the biped’s position over time. On

the right of Figure 4.6, we see the end-effector trajectory of the Omni manipulator.

54

Figure 4.6: Trajectory of master (Omni manipulator) and slave (Biped) over a simu-
lation period of 30 seconds. The user inputs three different forces at fixed 10 seconds
intervals to test the forward, backward and stop motions. On the left, the trajectory
of the bipedal robot. On the right, the trajectory of the Omni end effector. Color
changing trajectory lines are used to emphasize path over time

Figure 4.7: Control input and operator input on master robot during 30-seconds
simulation period

Like for the biped’s CM trajectory, a red-to-blue color-changing line demonstrates

55

Figure 4.8: Biped position over time of the hip and ankle joints over time in the
Z-Axis

the path progression from start to end of the simulation. Fig. 4 shows that it is pos-

sible to capture the biped left-to-right and up-and-down movements of the CM using

the end effector of a 3-DoF manipulator. Also, note that the forward and backward

motion of the end effector is only affected by the user input torque τh.

Figure 4.9 shows three plots representing the biped’s CM trajectory and the

Omni’s end-effector trajectory in the X, Y, and Z axes. Figs. 5 and 6 are a con-

tinuation of Fig. 4 to demonstrate the matching trajectories of the master and slave

robots more clearly. The haptic feedback of the haptic manipulator was scaled to

better represent the trajectory tracking. This was scaled as:

Xs = (xEE − l2m) · 10 (4.10)

where xEE is the end-effector position of the master robot in the X-axis and Xs is the

scaled output. As mentioned previously, no haptic feedback is applied in the X-axis to

allow the user to control the biped’s walking gait forward or backward. As for the Y

and Z direction, the Omni’s scaled end-effector trajectory closely follows the biped’s

CM trajectory. Note that the Y-axis haptic feedback is multiplied by a -1 constant.

The results shown in Figures 4.6 through 4.9 have constants δ1 = −6, δ2 = −4, and

δ3 = 0. Figure 4.9 shows the response with a unidirectional communication delay

56

Figure 4.9: Trajectory of master and slave robots over a simulation period of 30
seconds. The user inputs three different forces at fixed 10-Seconds intervals to test
the forward, backward and stop motions. The communication time delay is 0.1s.

of 0.1s, whereas Figure 4.10 shows the response of the system with a unidirectional

communication delay of 0.5s.

4.3 Deep Learning Mapping Algorithms Simulation Results

The deep learning LSTM and CNN-LSTM models presented in Section 3.3 are trained

then simulated. Before training, preprocessing of the training and testing data is

57

Figure 4.10: Trajectory of master and slave robots over a simulation period of 30
seconds. The user inputs three different forces at fixed 10-Seconds intervals to test
the forward, backward and stop motions. The communication time delay is 0.5s.

done. First, we time-shift the data to account for a certain communication delay

as shown in Table 3.3. The three joint angles of the haptic manipulator are then

used as input to the deep learning model after the Mel spectrogram preprocessing.

Figure 4.11 shows the Mel Spectrograms of the three manipulator joint angle signals.

The Mel Spectograms highlight the dominant frequencies over time, essential when

working with sequence-to-sequence applications. In the mentioned figure, the Y-axis

58

Figure 4.11: Mel spectograms of the three joint angle inputs. First 33 seconds, the
biped walkds backwards. The next 33 seconds, the biped stops moving. The last 33
seconds, the biped walks forward

represents a range of frequencies from 0 to 50 Hz, which are separated by 32 horizontal

bands. These bands are color-coded using an amplitude of -20 dB (in yellow) for

dominant frequencies and -140 dB (in blue) for attenuated frequencies. The models

were trained using the simulation data as per the parameters defined in Table 3.2

using an I7 4790k intel 4th generation processor and 16 GB of DDR3 RAM. Training

parameters are set as shown below at the top half of Table 4.3. Figure 4.12 shows the

results obtained by training the two CNN-LSTM models, and Table 4.3 quantifies

tracking accuracy between models. We see that although the LSTM architecture

has good tracking of the desired trajectories, the CNN-LSTM architecture has much

better tracking of the desired trajectories. This is because the CNN layers capture

long-term dependencies far better than simple LSTMs, which lack this property.

From the documented results in Table 4.3, we can make some important obser-

vations regarding the performance of the three proposed mapping algorithms. The

LSTM architecture designed as per the parameters defined in Section 3.3.2 performs

59

Table 4.3: Training parameters and results

LSTM CNN-LSTM

Convolution 2D Layer 1 filter size - [3 1]
Convolution 2D Layer 1 number of filters - 8

Max Pooling Layer 1 Pool Size - [5 1]
Convolution 2D Layer 2 filter size - [3 1]

Convolution 2D Layer 2 number of filters - 16
Max Pooling Layer 2 Pool Size - [5 1]

Dropout 0.5 0.5
LSTM Layer 1 Number of Hidden Units 10 10

Fully Connected Layer number of Outputs 10 10
Epochs 1000 1000

Mini-Batch Size (N time steps) 5000 5000
Initial Learning Rate 0.01 0.01

Learning Rate Drop Factor 0.1 0.1

RMSE 0.098130 0.090004
Training Time (Seconds) 4909 25368

Figure 4.12: CNN-LSTM mapping output Vs. Cartesian mapping output

poorly with over 9% additional error in RMSE when compared to the CNN-LSTM ar-

chitecture. However, the LSTM requires only 19.4% of the LSTM-CNN architecture’s

60

training time.

In summary, although these architectures perform well on simulated training data,

much more data is required to achieve safe and usable models. More specifically, even

with the introduced randomness in Table 3.2, there still is not enough randomness in

the data to model real-life situations. It is thus recommended to train these models

using both simulated and experimental data to achieve the best results. Addition-

ally, introducing deeper models may highly improve the tracking accuracy and may

reduce the likelihood of errors in the trained model. The presented physic-approach

using forward and Inverse kinematics algorithms, for now, remains the safer opera-

tion method. However, we acknowledge that deep-learning models can provide even

greater depth in understanding the mapping between master and slave devices.

Chapter 5

Experimental Results

5.1 Experimentation Description

In this work, we use a semi-virtual setup to test the validity of the proposed mapping

algorithm. This is done using the 10-DoF tonyPi biped as the slave and a virtual 3-

DoF manipulator as the master. The 3-DoF manipulator controls the robot to walk

backward. During that time, the Cartesian position of the biped’s CM is tracked

using joint angles and forward Kinematics (refer to Section 2.1). The tracked CM

trajectory is stored, extracted from the biped’s embedded system, and applied as the

force feedback desired input to the 3-DoF manipulator.

Note that the experimental results do not reflect the simulation results because

the slave robot used in the simulation (THORMANG3) is different from that used

in experimentation (TonyPi). The objective of this experimentation is to confirm

that the mapping algorithms can in fact provide accurate up-down left-right haptic

feedback of the slave biped as it is walking.

Figure 5.1: Semi-virtual experimentation setup

61

62

Table 5.1: Servo motors rest positions

Joint Resting Position Resting Position (deg)

1 498 89.64
2 388 69.84
3 498 89.64
4 593 106.74
5 499 89.82
6 498 89.64
7 611 109.98
8 501 90.18
9 405 72.90
10 499 89.82

5.2 Experimentation Setup

The sensory data is accessed at a minimum sampling frequency of 30 Hz in the biped

code. This means that the biped robot also responds to changes in the slave system

at a frequency of 30 Hz, plus the communication delay, which is set to 0 seconds in

this case. The biped robot has a low-level joint motor PD controller that tracks the

trajectory input. On a higher level, the biped’s walking gait is controlled by a set of

predefined trajectories similar yet, simpler to those described in Section 3.1.

5.3 Experimentation Results

In Figures 5.2 through 5.4, we display the noisy sensor data obtained from the TonyPi

biped robot. This data originates from the joint angle motor encoders, which are

processed through the forward kinematics to obtain the CM of the biped. The sensors

return a specific value ranging between 0 to 1000, representing the motor shaft’s

position relative to its resting position (PRRP). The returned 0 to 1000 value is

then processed to determine the relative angular position (RAP) in radians using the

following equation:

RAP = PRRP · π

1000
(5.1)

However, the relative angular position of the motor shaft does not represent the

actual angular positions set by the frame in the Forward Kinematics Section. To

63

Figure 5.2: 3D trajectory of biped robot’s CM when moving backwards

adhere to the mentioned coordinate frame in Section 2.1, before the start of the

operation, we identify the biped’s resting position (RP) when it is standing up straight

and subtract it from the RAP to then compute the forward kinematics. In our case,

Figure 5.3: Master robot trajectory tracking of the slave’s trajectory when walking
backwards

64

Table 5.1 specifies the resting positions of each ten servo motor. The true joint angle

as defined in the Forward Kinematics Section can then be derived as:

θi = RAPi −RPi ·
π

1000
− π

2
(5.2)

In Figure 5.2, we display the CM trajectory of the biped robot. Here, we see the

biped do the left to right and up and down movement as it completes three steps

backward; This is a similar trajectory to what was obtained in the simulation results

in Section 4.2.2. To emphasize the oscillating trajectory in the gait, a 10-point moving

average was used to display a smoothed-out trajectory of the biped’s CM. This 10-

point moving-average filter is a basic low pass filter for the input of the master-side

control system. This reduces high-frequency noise in data and provides smoother

haptic feedback to the operator.

Figures 5.3 and 5.4 highlight the haptic manipulator’s tracking of the biped’s CM

Figure 5.4: Master robot trajectory tracking of the 10-point moving average of the
slave’s trajectory when walking backwards

65

trajectory. In Figure 5.3, it can be observed that the manipulator’s trajectory is

highly affected by all the noise originating from the sensors. This, however, provides

a much more accurate state of the biped during its operation. Conversely, in Figure

5.4, the haptic manipulator’s trajectory is smoother. However, the 10-point average

filtering only provides general information on the biped’s state. It may not provide

detailed information during extreme operation cases (i.e. when the biped falls and a

big change in the amplitude of the CM’s trajectory is observed).

Note that a significant overshoot occurred during the biped’s first step during

the experimentation. This overshoot typically happened at the 1.7 1.8 second mark,

where it is suspected that an internal issue with the microcontroller may be causing

this overshoot. The following steps during the experimentation occurred normally,

and this is reflected when exporting the experimental data to apply it as the force

feedback the simulated haptic manipulator.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we proposed a novel mapping algorithm for bilateral teleoperation of

bipedal robots using a haptic manipulator. This mapping algorithm was compared

to two other deep learning-based algorithms and was tested and validated through

simulation and semi-virtual experimentation.

The core of this work was the design of an adaptive and robust control system

architecture to reduce external disturbances that might affect the performance of the

proposed mapping algorithms. Through simulations, we determined that the ideal

control system must compose a GA-optimized feed-forward compensator, a nonlinear

disturbance observer, and a second-order sliding mode controller.

As for the Cartesian-based mapping algorithm, we successfully verified and con-

firmed our hypothesis - to teleoperate and control a biped using a manipulator. Many

components were required to map desired trajectories from one domain to another

due to the kinematic asymmetries. The forward mapping algorithm components re-

sponsible for controlling the bipedal robot included:

1. a computation of the forward kinematics of the master’s end-effector

2. a bipedal step planning algorithm that uses the master’s end-effector position

as its input

3. a walking gait algorithm based on the 3D SLIP model

4. a computation of the inverse kinematics, which outputs the desired trajectories

to the biped robot

Similarly, the inverse mapping algorithm components responsible for generating

the haptic feedback included:

66

67

1. a forward kinematic algorithm to determine the biped robot’s CM

2. an inverse kinematics algorithm that takes for input a scaled trajectory of the

biped’s CM to generate the desired trajectories of the manipulator

This Cartesian-based mapping algorithm was compared to two deep learning map-

ping algorithms. The chosen sequence-to-sequence models include 1- a long-short

term memory deep neural network, 2- a combined convolutional neural network, and

a long-short term memory neural network. Through the simulation, we observed

that the CNN-LSTM architecture performed better than the LSTM at tracking the

randomized simulation-generated training data of the Cartesian mapping algorithm.

This is because CNNs better capture long-term dependencies, whereas LSTMs are

more suited for short-term dependencies. However, although the deep learning models

could track the Cartesian mapping algorithm, they could not maintain stability when

applied to the biped-manipulator system. The Deep-learning model offers tremen-

dous potential for adaptability, but even our randomized simulation data was not

enough for this supervised-learning application to achieve stability in the system. We

suspect that deeper models with more simulated and experimental data will achieve

greater results.

Finally, the proposed Cartesian mapping was tested via semi-virtual experimenta-

tion using a 10-DoF biped robot and a 3-DoF haptic manipulator. The results shown

in Section 5 show that the expected up-down and left-right movements of a biped’s

CM as it is walking is successfully tracked by the simulated haptic manipulator. This

is precisely as shown in Section 4 where we display a similar trajectory tracking of

the biped’s CM. More experimentation is required to test the complete mapping algo-

rithm. However, these preliminary results show great promise in the bilateral control

of bipedal robots using manipulators.

6.2 Future Works

This new concept opens the door for more research in manipulator-biped bilateral

teleoperation. In this thesis, we demonstrated the feasibility of the concept by al-

lowing the user to control the biped robot in the forward and backward directions.

68

The control and haptic feedback can be expanded to support lateral walking, rota-

tion, jumping, crouching, among many other motions. Distance and visual sensors

can also generate haptic feedback when close to an obstacle, and velocity-based hap-

tic feedback can also be used when the biped carries a load or encounters external

forces such as wind drag. The number of math and physics equations needed for this

application is significant, and errors are likely to occur. In the future, we aim to de-

velop the deep learning approach further to reduce the computational requirements,

increase robustness, and reduce the effect of the communication delay by predicting

the user input.

Bibliography

[1] Peter F Hokayem and Mark W Spong. Bilateral teleoperation: An historical
survey. Automatica, 42(12):2035–2057, 2006.

[2] Mahdi Tavakoli, Rajni V Patel, Mehrdad Moallen, and Arash Aziminejad. Hap-
tics for teleoperated surgical robotic systems, volume 1. World Scientific, 2008.

[3] Thomas B Sheridan and William R Ferrell. Remote manipulative control with
transmission delay. IEEE Transactions on Human Factors in Electronics, (1):25–
29, 1963.

[4] William R Ferrell. Delayed force feedback. Human factors, 8(5):449–455, 1966.

[5] Fumio Miyazaki, S Matsubayashi, T Yoshimi, and Suguru Arimoto. A new con-
trol methodology toward advanced teleoperation of master-slave robot systems.
In Proceedings. 1986 IEEE International Conference on Robotics and Automa-
tion, volume 3, pages 997–1002. IEEE, 1986.

[6] Enrique Cano Marın. Recent advances in research teleoperation, telepresence
and virtual reality.

[7] Xiong Yang, Haotian She, Haojian Lu, Toshio Fukuda, and Yajing Shen. State
of the art: bipedal robots for lower limb rehabilitation. Applied Sciences,
7(11):1182, 2017.

[8] Miomir Vukobratović and Branislav Borovac. Zero-moment point—thirty five
years of its life. International journal of humanoid robotics, 1(01):157–173, 2004.

[9] Mariano Garcia, Anindya Chatterjee, Andy Ruina, and Michael Coleman. The
simplest walking model: stability, complexity, and scaling. 1998.

[10] Arthur D Kuo. A simple model of bipedal walking predicts the preferred speed–
step length relationship. J. Biomech. Eng., 123(3):264–269, 2001.

[11] Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Spring-mass running:
simple approximate solution and application to gait stability. Journal of theo-
retical biology, 232(3):315–328, 2005.

[12] Elvedin Kljuno and Robert L Williams. Humanoid walking robot: modeling,
inverse dynamics, and gain scheduling control. Journal of Robotics, 2010, 2010.

[13] Zhi Liu, Liyang Wang, CL Philip Chen, Xiaojie Zeng, Yun Zhang, and Yaonan
Wang. Energy-efficiency-based gait control system architecture and algorithm
for biped robots. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 42(6):926–933, 2011.

69

70

[14] Hongbo Zhu, Minzhou Luo, Tao Mei, Jianghai Zhao, Tao Li, and Fayong Guo.
Energy-efficient bio-inspired gait planning and control for biped robot based on
human locomotion analysis. Journal of Bionic Engineering, 13(2):271–282, 2016.

[15] Seung-Suk Ha, Jae-Hyoung Yu, Young-Joon Han, and Hern-Soo Hahn. Natural
gait generation of biped robot based on analysis of human’s gait. In 2008 Inter-
national Conference on Smart Manufacturing Application, pages 30–34. IEEE,
2008.

[16] Mohammadali Shahriari and Amir A Khayyat. Gait analysis of a six-legged
walking robot using fuzzy reward reinforcement learning. In 2013 13th Iranian
Conference on Fuzzy Systems (IFSC), pages 1–4. IEEE, 2013.

[17] Jae Won Kho, Dong Cheol Lim, and Tae Yong Kuc. Implementation of an
intelligent controller for biped walking robot using genetic algorithm. In 2006
IEEE International Symposium on Industrial Electronics, volume 1, pages 49–54.
IEEE, 2006.

[18] Shouyi Wang, Jelmer Braaksma, Robert Babuska, and Daan Hobbelen. Rein-
forcement learning control for biped robot walking on uneven surfaces. In The
2006 IEEE International Joint Conference on Neural Network Proceedings, pages
4173–4178. IEEE, 2006.

[19] Abdulrahman Albakri, Chao Liu, and Philippe Poignet. Stability and perfor-
mance analysis of three-channel teleoperation control architectures for medical
applications. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 456–462. IEEE, 2013.

[20] Sung Min Yoon, Won Jae Kim, Min Cheol Lee, and Woo Hyeok Choi. Bilateral
control for haptic laparoscopic surgery robot. In IEEE ISR 2013, pages 1–5.
IEEE, 2013.

[21] Hiroyuki Tanaka, Kouhei Ohnishi, Hiroaki Nishi, Toshikazu Kawai, Yasuhide
Morikawa, Soji Ozawa, and Toshiharu Furukawa. Implementation of bilateral
control system based on acceleration control using fpga for multi-dof haptic en-
doscopic surgery robot. IEEE Transactions on Industrial Electronics, 56(3):618–
627, 2008.

[22] Lei Li, Qing Wei, Zhilin Hou, and Lei Zhao. Design and realization of the exper-
imental platform of space robot bilateral teleoperation system. In Proceedings of
the 30th Chinese Control Conference, pages 3968–3972. IEEE, 2011.

[23] Takashi Imaida, Yasuyoshi Yokokohji, Toshitsugu Doi, Mitsushige Oda, and
T Yoshikwa. Ground-space bilateral teleoperation experiment using ets-vii robot
arm with direct kinesthetic coupling. In Proceedings 2001 ICRA. IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 01CH37164), volume 1,
pages 1031–1038. IEEE, 2001.

71

[24] Mariela Serna, Luis G Garcia-Valdovinos, Tomas Salgado-Jimenez, and Manuel
Bandala-Sanchez. Bilateral teleoperation of a commercial small-sized underwater
vehicle for academic purposes. In OCEANS 2015-MTS/IEEE Washington, pages
1–5. IEEE, 2015.

[25] Weidong Liu, Jianjun Zhang, et al. Fuzzy impedance and sliding mode bilateral
control in underwater ratio teleoperation based on observer. In OCEANS 2016-
Shanghai, pages 1–7. IEEE, 2016.

[26] Georgeta Bauer, Ya-Jun Pan, and Henghua Shen. Adaptive impedance control in
bilateral telerehabilitation with robotic exoskeletons. In 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pages 719–725. IEEE,
2020.

[27] Yasuhiro Ishiguro, Tasuku Makabe, Yuya Nagamatsu, Yuta Kojio, Kunio Ko-
jima, Fumihito Sugai, Yohei Kakiuchi, Kei Okada, and Masayuki Inaba. Bilat-
eral humanoid teleoperation system using whole-body exoskeleton cockpit tablis.
IEEE Robotics and Automation Letters, 5(4):6419–6426, 2020.

[28] Jessica Lanini, Toshiaki Tsuji, Peter Wolf, Robert Riener, and Domen Novak.
Teleoperation of two six-degree-of-freedom arm rehabilitation exoskeletons. In
2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pages
514–519. IEEE, 2015.

[29] Joao Rebelo, Thomas Sednaoui, Emiel Boudewijn Den Exter, Thomas Krueger,
and Andre Schiele. Bilateral robot teleoperation: A wearable arm exoskeleton
featuring an intuitive user interface. IEEE Robotics & Automation Magazine,
21(4):62–69, 2014.

[30] Xi Chen, Satoshi Nishikawa, Kazutoshi Tanaka, Ryuma Niiyama, and Yasuo
Kuniyoshi. Bilateral teleoperation system for a musculoskeletal robot arm using a
musculoskeletal exoskeleton. In 2017 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pages 2734–2739. IEEE, 2017.

[31] Anais Brygo, Ioannis Sarakoglou, Arash Ajoudani, NG Hernandez, Giorgio Gri-
oli, M Catalano, Darwin G Caldwell, and N Tsagarakis. Synergy-based interface
for bilateral tele-manipulations of a master-slave system with large asymmetries.
In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 4859–4865. IEEE, 2016.

[32] Georgeta Bauer and Ya-Jun Pan. Review of control methods for upper limb
telerehabilitation with robotic exoskeletons. Ieee Access, 2020.

[33] Fangping Yang, Hongyi Li, and Yuechao Wang. Wave-transformation-based con-
trol law for teleoperation with large time-varying delays. In 2012 IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO), pages 1610–1614.
IEEE, 2012.

72

[34] Carlo Benedetti, Matteo Franchini, and Paolo Fiorini. Stable tracking in variable
time-delay teleoperation. In Proceedings 2001 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. Expanding the Societal Role of Robotics
in the the Next Millennium (Cat. No. 01CH37180), volume 4, pages 2252–2257.
IEEE, 2001.

[35] Jee-Hwan Ryu, Carsten Preusche, Blake Hannaford, and Gerd Hirzinger. Time
domain passivity control with reference energy following. IEEE Transactions on
Control Systems Technology, 13(5):737–742, 2005.

[36] Zhong Shi, Xuexiang Huang, Qian Tan, and Tianjian Hu. Fractional-order pid
control method for space teleoperation. In 2015 IEEE International Conference
on Multimedia Big Data, pages 216–219. IEEE, 2015.

[37] A Roushandel, A Khosravi, and A Alfi. Bilateral control of teleoperation systems
via robust pid controllers based on lmi. In The 3rd International Conference on
Control, Instrumentation, and Automation, pages 16–21. IEEE, 2013.

[38] Fanghao Huang, Wei Zhang, Zheng Chen, Jianzhong Tang, Wei Song, and
Shiqiang Zhu. Rbfnn-based adaptive sliding mode control design for nonlinear
bilateral teleoperation system under time-varying delays. IEEE Access, 7:11905–
11912, 2019.

[39] Jong Hyeon Park and Hyun Chul Cho. Sliding-mode controller for bilateral tele-
operation with varying time delay. In 1999 IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics (Cat. No. 99TH8399), pages 311–316.
IEEE, 1999.

[40] Ali Shahdi and Shahin Sirouspour. Adaptive/robust control for time-delay tele-
operation. IEEE Transactions on Robotics, 25(1):196–205, 2009.

[41] Tianlin Zhu and Yijun Zhang. Observer-based control of bilateral teleoperation
with time delay. In 2018 5th International Conference on Information Science
and Control Engineering (ICISCE), pages 859–863. IEEE, 2018.

[42] Kenji Natori, Toshiaki Tsuji, Kouhei Ohnishi, Ales Hace, and Karel Jezernik.
Time-delay compensation by communication disturbance observer for bilateral
teleoperation under time-varying delay. IEEE Transactions on Industrial Elec-
tronics, 57(3):1050–1062, 2009.

[43] B Aboutalebian, HA Talebi, and AA Suratgar. Nonlinear disturbance observer
based adaptive control for nonlinear teleoperation systems. In 2015 3rd RSI
International Conference on Robotics and Mechatronics (ICROM), pages 091–
095. IEEE, 2015.

[44] Zhangfeng Ju, Chenguang Yang, Zhijun Li, Long Cheng, and Hongbin Ma. Tele-
operation of humanoid baxter robot using haptic feedback. In 2014 International

73

Conference on Multisensor Fusion and Information Integration for Intelligent
Systems (MFI), pages 1–6. IEEE, 2014.

[45] Zheng Chen, Shuifeng Yan, Mingxing Yuan, Bin Yao, and Jinfei Hu. Modu-
lar development of master-slave asymmetric teleoperation systems with a novel
workspace mapping algorithm. IEEE Access, 6:15356–15364, 2018.

[46] Septimiu E Salcudean, NM Wong, and Ralph L Hollis. Design and control of
a force-reflecting teleoperation system with magnetically levitated master and
wrist. IEEE Transactions on Robotics and Automation, 11(6):844–858, 1995.

[47] Xiao Gao, Joao Silvério, Emmanuel Pignat, Sylvain Calinon, Miao Li, and Xiao-
hui Xiao. Motion mappings for continuous bilateral teleoperation. IEEE Robotics
and Automation Letters, 6(3):5048–5055, 2021.

[48] Rui Li, Hongyu Wang, and Zhenyu Liu. Survey on mapping human hand motion
to robotic hands for teleoperation. IEEE Transactions on Circuits and Systems
for Video Technology, 2021.

[49] Liang Yan, Xiaoshan Gao, Xiongjie Zhang, and Suokui Chang. Human-robot
collaboration by intention recognition using deep lstm neural network. In 2019
IEEE 8th International Conference on Fluid Power and Mechatronics (FPM),
pages 1390–1396. IEEE, 2019.

[50] Matteo Macchini, Fabrizio Schiano, and Dario Floreano. Personalized teler-
obotics by fast machine learning of body-machine interfaces. IEEE Robotics and
Automation Letters, 5(1):179–186, 2019.

[51] Mengxi Li, Dylan P Losey, Jeannette Bohg, and Dorsa Sadigh. Learning user-
preferred mappings for intuitive robot control. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 10960–10967. IEEE,
2020.

[52] Jerome Connor, Les E Atlas, and Douglas R Martin. Recurrent networks and
narma modeling. In Advances in neural information processing systems, pages
301–308, 1992.

[53] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[54] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[55] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. Deepsleepnet: A model
for automatic sleep stage scoring based on raw single-channel eeg. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, 25(11):1998–2008,
2017.

74

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[57] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep transformer
models for time series forecasting: The influenza prevalence case. arXiv preprint
arXiv:2001.08317, 2020.

[58] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty,
and Carsten Eickhoff. A transformer-based framework for multivariate time
series representation learning. arXiv preprint arXiv:2010.02803, 2020.

[59] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. Crowd-robot
interaction: Crowd-aware robot navigation with attention-based deep reinforce-
ment learning. In 2019 International Conference on Robotics and Automation
(ICRA), pages 6015–6022. IEEE, 2019.

[60] Tayfun Abut and Servet Soygüder. Haptic industrial robot control and bilateral
teleoperation by using a virtual visual interface. In 2018 26th Signal Processing
and Communications Applications Conference (SIU), pages 1–4. IEEE, 2018.

[61] Hongseok Choi, Jinlong Piao, Eui-Sun Kim, Jinwoo Jung, Eunpyo Choi, Jong-
Oh Park, and Chang-Sei Kim. Intuitive bilateral teleoperation of a cable-driven
parallel robot controlled by a cable-driven parallel robot. International Journal
of Control, Automation and Systems, pages 1–14, 2020.

[62] Jun Ueda and Tsuneo Yoshikawa. Force-reflecting bilateral teleoperation with
time delay by signal filtering. IEEE Transactions on Robotics and Automation,
20(3):613–619, 2004.

[63] Takashi Imaida, Yasuyoshi Yokokohji, Toshitsugu Doi, Mitsushige Oda, and Tsu-
neo Yoshikawa. Ground-space bilateral teleoperation of ets-vii robot arm by di-
rect bilateral coupling under 7-s time delay condition. IEEE Transactions on
Robotics and Automation, 20(3):499–511, 2004.

[64] Takayuki Osa, Satoshi Uchida, Naohiko Sugita, and Mamoru Mitsuishi. Hy-
brid rate—admittance control with force reflection for safe teleoperated surgery.
IEEE/ASME Transactions on Mechatronics, 20(5):2379–2390, 2015.

[65] Jing Guo, Chao Liu, and Philippe Poignet. Enhanced position-force tracking of
time-delayed teleoperation for robotic-assisted surgery. In 2015 37th Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pages 4894–4897. IEEE, 2015.

[66] Francheska B Chioson, Noelle Marie D Espiritu, Francisco Emmanuel T Mun-
sayac, Ryan Christoper R Dajay, Michael Bryan S Santos, Renann G Baldovino,
and Nilo T Bugtai. Implementation of a bilateral teleoperation haptic feedback

75

controls to robotic minimally invasive surgery. In 2020 IEEE 12th International
Conference on Humanoid, Nanotechnology, Information Technology, Commu-
nication and Control, Environment, and Management (HNICEM), pages 1–5.
IEEE, 2020.

[67] Mischa Kim. Euler-lagrange tool package.

[68] John H Holland. Genetic algorithms and adaptation. In Adaptive Control of
Ill-Defined Systems, pages 317–333. Springer, 1984.

