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Abstract

This thesis explores the application of Generative Adversarial Networks (GANs) in

augmenting insider threat detection datasets to alleviate class imbalance. In ad-

dition, a machine learning based insider threat detection system is proposed that

augments datasets to improve detection rates while maintaining precision. WCGAN-

GP, a promising new GAN variant, is trained on a publicly available synthetic insider

threat dataset and used to generate realistic samples for multiple insider scenarios.

The generated samples are used to augment the dataset, which is then used to train

supervised classifiers to detect insider threats. The WCGAN-GP based augmentation

strategy outperforms the baseline (under-sampled) strategy on a large feature set, in-

creasing the detection rate while preserving a low false-positive rate. The framework

was further tested on two later versions of the dataset which contain modified be-

haviour and new insider scenarios. The results show that the proposed approach is

robust and can generalize to novel insider threat scenarios.
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Chapter 1

Introduction

Insider threats are a growing cyber-security concern for organizations in both public

and private sectors. These threats can range from disgruntled IT administrators

sabotaging core infrastructure, to opportunistic defectors ex-filtrating customer leads

before joining a rival firm. This is a challenging topic due to highly imbalanced data,

limited ground truth and possible changes to user and organizational behavior over

time. The behaviour of both regular users and insider threats can take many forms,

making it difficult to build a detection solution that can generalize without flagging

benign users. This prompted the application of numerous machine learning methods,

including Generative Adversarial Networks (GANs).

GANs were originally proposed in the field of computer vision and quickly gained

popularity due to their ability to generate hyper-realistic images. Since then, they

have been applied to fields ranging from music generation, drug discovery and text-

to-image synthesis [21]. GANs have also been used within the cyber security domain

[10]. Some of these applications include stenography, password cracking, malware

detection and even malware synthesis. GANs have a wide range of uses within cyber

security and privacy because they effectively model the adversarial nature of the

fields themselves. Cyber Security is often viewed as a game of cat and mouse, where

an attacker is always looking for new ways to compromise a defender’s systems. In

response, the defender must find ways to curb the novel offences and create robust

obstacles against future attacks. This paradigm is also mirrored by the adoption of red

teams and blue teams within organizations. Red teams attempt to emulate realistic

threats facing organizations, actively looking for exploitable gaps in their systems.

On top of detecting legitimate threats to an organization, blue teams can evaluate

their performance and adjust accordingly based on feedback from the red team’s

exercises. This has the added benefit of fine-tuning the allocation of finite security

resources and funding to best address real threats. These manifestations of attack
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and defense are perfect analogs for the generator and discriminator sub-networks of

the GAN. The generator aims to generate samples that fool the discriminator, while

the discriminator attempts to spot the fake samples from the real. Training these

networks together as adversaries results in increasingly realistic generated samples

and ever-more robust detection of fakes.

The primary research objective of this thesis is to explore the ability of GANs to

augment insider threat datasets to improve supervised classification performance (par-

ticularly on minority insider classes). To this effect, recent advances in GAN architec-

tures are applied to solving the class imbalance problem of insider threat detection.

Namely, the WCGAN-GP GAN variant is leveraged to generate realistic samples for

multiple insider scenarios that can be used to augment insider threat datasets. This

work also proposes a high-level framework that detects insider threats by training

supervised classifiers on augmented datasets. Existing preprocessing techniques are

utilized to reduce complex log-based user behaviour and organizational structure to

daily feature vectors [27]. The publicly available CERT insider threat datasets were

used to train the proposed framework, as well as test its performance and robustness

across different organizations and scenarios [28]. To the best of my knowledge, this

is the first work to evaluate the ability of WCGAN-GP to augment insider threat

detection datasets. Chattopadhyay et al. have recently evaluated multi-class aug-

mentation of the CERT R4.2 dataset using CGAN, but I believe this thesis to be the

first work to evaluate the robustness of CERT R4.2 trained GANs against the CERT

R5.2 and R6.2 datasets [14]. In doing so, this work evaluates the robustness of the

augmentation strategies against different organizational structures and novel insider

threats.

The remainder of this thesis will consist of the following structure. Chapter 2 ex-

plores some background, introduces the datasets and discusses related works. Chapter

3 describes the methodology used to perform the experiments and Chapter 4 presents

and discusses the results of those experiments. Finally, conclusions are drawn and

directions for future work are summarized in Chapter 5.



Chapter 2

Background and Related Work

This chapter reviews the background for this thesis, as well as related works. Section

2.1 provides an overview of the insider threat datasets used in this work. The broader

problem of class imbalance is discussed in Section 2.2. Section 2.3 goes over some

other successful approaches to insider threat detection, including unsupervised and

supervised methods. Section 2.4 gives a broad overview of how GANs have been ap-

plied to other problems within cyber security. Finally, Section 2.5 reviews applications

of GANs in data augmentation, including a comparison between the contributions of

this thesis and similar works.

2.1 CERT Insider Threat Dataset

One of the greatest challenges in insider threat detection is finding a rich dataset on

which to train and test models. This is partially because of the legal and privacy

concerns associated with collecting detailed user information in the real world. Fur-

thermore, organizations are unlikely to publish this collected data as it would make

it easier for attackers to evade their protections. Another challenge is just how rare

insider events are in contrast to regular user events. For these reasons, synthetic

datasets are often used to benchmark detection algorithms.

The CERT Insider threat dataset is a synthetic dataset consisting of HTTP traffic,

emails, PC logons, USB file transfers and psychometric profiles [28], [15]. It also

provides a corresponding LDAP dataset that captures the structure of an organization

with 1000 to 4000 employees over the course of 18 months. To make the dataset

more realistic, Glasser et al. introduced latent variables aimed to model real user

behaviour. For example, they created a realistic social network graph that drives

behaviour like who sends emails to whom. Red-team exercises and profiles of real-

world insider events were used to define the behaviour of the synthetic users. The

dataset was released in versions (R4.1-R6.2), as more information, features and insider

3
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scenarios were added to the models. CERT R4.2, R5.2 and R6.2 contain three, four

and five insider scenarios respectively. R4.2 and R5.2 contain a much higher ratio of

insider to normal events than would be found in a real world dataset. R6.2 attempts

to create a more realistic balance by drastically increasing the number of benign

events while reducing the instances of insider events. In this thesis, R4.2 is used for

training purposes while R5.2 and R6.2 are used to test the robustness of the proposed

approach.

2.2 Class Imbalance

Class imbalance occurs when a dataset has a highly skewed distribution of samples,

where one or more minority classes have considerably fewer samples than the major-

ity classes. This is a core problem of insider threat detection as normal user activity

is considerably more frequent than malicious insider activity. Some of the simplest

methods for overcoming this problem are oversampling and undersampling. Over-

sampling involves introducing multiple copies of the minority class samples into the

dataset in an attempt to balance the class counts prior to classification. Unfortu-

nately, this can lead to classifiers overfitting to samples from the minority class. In-

versely, undersampling involves only including a sub-set of samples from the majority

class to balance the class counts. The downside of this approach is that the sampling

of the majority class might not be representative of the real-world distribution, as key

data points could be discarded. Take the insider threat detection problem for exam-

ple; If normal user behaviour data is under-sampled to match the insider behaviour

class counts, all samples for IT administrators could be missed. This could lead to a

system that flags every every IT administrator as an insider threat for legitimately

accessing multiple PCs. This work combines basic under-sampling of the normal class

and over-sampling of the insider classes to create an augmented dataset to improve

insider detection. The algorithms used to over-sample are described in Sections 3.3.1

and 3.3.2.

This work uses a simple random under-sampling technique to decrease the preva-

lence of the majority normal class in an attempt to balance the classes. However,

many more sophisticated techniques such as tomek-link undersampling have been used

to further improve classification performance on imbalanced datasets [11]. Tomek
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link undersampling clarifies the border between the majority and minority classes

by pairing up each minority class sample with its nearest majority class neighbour.

The majority class sample is then deleted from the dataset for each pair, thus under-

sampling the majority class. Alternatively, a clustering approach like the one used

by Chattopadhyay et al. could be used to ensure the variance in normal behaviour

modalities are well represented in the under-sampled dataset [7].

2.3 Insider Threat Detection Approaches

Many approaches have been taken to this problem, ranging from supervised learning

models, unsupervised models, and semi-supervised models. Neural networks, Ran-

dom Forest, Logistic Regression and XGBoost classifiers have been evaluated against

different temporal pre-processing granularities of CERT R4.2, R5.2 and R6.2 [27].

Evolutionary computation methods have also been used as classifiers under streaming

conditions to adapt as user behaviour changes over time [23], [24]. Isolation Forests

(IF), Auto-encoders (AE), Lightweight On-line Detector of Anomalies (LODA) and

Local Outlier Factor (LOF) have been shown to be effective as unsupervised anomaly

detection methods for detecting insider threats [25], [26]. Their efficacy has proved

resilient, even under adversarial conditions where insiders are included in the train-

ing dataset as normal exemplars. The performance of these models can be further

improved by combining them into a vote-based unsupervised ensemble [26].

Unsupervised anomaly detection approaches have been extremely effective when

applied to the insider threat detection problem because they can be trained on nor-

mal non-malicious user behaviour. While insider samples are exceedingly rare in

real-world scenarios, normal samples are abundant and readily available to train de-

tection systems. Auto-encoders for example, have been one of the most successful

anomaly detection approaches for insider threat detection [25]. They are a type of

neural network that consist of three components: an encoder, a bottleneck layer and

a decoder. Training this network rewards the network’s ability to compress the rep-

resentation of the input data through the bottleneck layer and reconstruct it using

the decoder. This forces the network to generalize from the examples it is trained on.

This model can be turned into an anomaly detector by passing samples through the

network and comparing the reconstruction error to a threshold value. Any sample
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that produces a reconstruction error over this threshold will be flagged as an anomaly

for further inspection by a domain expert. This is a powerful approach because it

leverages the vast number of benign samples and only requires the insider samples

for validation and testing.

2.4 GANs in Cyber Security

Msika et al. used GANs to make machine-learning based Intrusion Detection Sys-

tems (IDS) more robust against new attack types [31]. This was accomplished by

retraining the machine learning models against adversarial examples generated by

GANs. Although GANs can be used to strengthen cyber security defense systems,

they can also be used to attack them. Chauhan et al. show the vulnerability of exist-

ing IDS systems to attacks generated by GANs [8]. GANs have also been proposed

to improve the cyber defenses of critical infrastructure. Adiban et al. propose a

STEP-GAN system that employs multiple generators in strengthening a discrimina-

tor to detect attacks aimed to disrupt smart power grids [1]. Singh et al. use GANs

to generate synthetic malware images to build datasets that can be publicly shared

and used to train malware classifiers [32]. Xie et al. show that GANs can also be

extended to ensure differential privacy of the data they are trained on while still pro-

ducing high quality samples [29]. This could be useful in the context of insider threat

detection because it could allow for the public sharing of insider datasets without fear

of sensitive data being derived from generated samples as a result of GAN training.

These are just few examples from a wide range of applications of GANs within cyber

security and privacy. Several literature surveys are available for a more exhaustive

exploration of their applications to date, [10] [12] [6].

2.5 GANs for Data Augmentation

Data augmentation is a common data science practice, often used to counteract prob-

lems like class-imbalance for classification tasks. It can also help regularize a dataset

and prevent models from overfitting. The ability of GANs to generate varied yet re-

alistic samples makes them prime candidates to produce augmentation data. Zheng

et al. propose using the WCGAN-GP architecture for handling imbalanced datasets
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[37]. A similar architecture is used by Walia et al. to augment tabular datasets [34].

A few other recent works have even leveraged GANs to augment the CERT R4.2

insider threat dataset. Yuan et al. use a basic GAN to augment the CERT R4.2

dataset [35]. Their work leverages Long-Short-Term Memory (LSTM) auto-encoders

to encode user action sequences. They use the encoder to translate the behaviour into

a fixed-length representation that can be used to train GANs for dataset augmenta-

tion. They also evaluated the classification performance as the number of generated

samples in the augmented dataset was increased, but they stopped at a maximum

of 5500 generated samples. This thesis evaluates much higher augmentation rates,

measuring the classifier performance on datasets augmented with up to 100000 in-

sider samples from each insider class. A limitation of the work by Yuan et al. is

that they used a binary context, with no label conditioning that allows for gener-

ating samples of each insider class individually. Further, they did not evaluate the

performance of individual insider classes, instead grouping them all together under a

binary classification context. This could result in prioritized detection of a majority

insider class at the expense of the minority insider classes with fewer training samples.

Gayathri et al. recently used CGAN to generate samples for multiple insider classes

to improve classification using preprocessing techniques proposed by Chattopadhyay

et al. [14],[7]. Similarly to this thesis, Chattopadhyay et al. computed statistical

and count based features with a sliding-window to give daily feature vectors for each

user. Chattopadhyay et al. employed several time-series analysis metrics such as

mean, variance, Katz fractal dimension and spectral power density to measure each

user’s daily behaviour in relation to previous days within the window. Gayathri et al.

use these preprocessing techniques for their CGAN experiments, but do not specify

the window size or which of the time-series metrics are used. This puts the feature

set size at 20 features, or 80 features if all four time-series metric permutations are

used. This is a small feature set compared to the 504 features used in this thesis.

In addition, this thesis included normal samples in the conditioned training of the

GANs, where as Gayathri et al. trained their CGAN exclusively on insider classes.

Notably, Gayathri et al. used a much lower max epoch of 300, and a much larger

batch size of 64.
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These works have demonstrated the efficacy of basic GANs and CGANs to aug-

ment the R4.2 dataset using different preprocessing techniques. A shared limitation

of these works is that they only report results for a single run, where as this thesis

reports the mean and variance across 10 runs. This additional validation is important

given the datasets being tested consist of very few insider samples, making them prone

to high variance between runs. This is also important given the well-documented in-

stability of GAN training. A GAN that fails to train consistently might be too risky

or unreliable to deploy into a production environment. This thesis further assesses

the training stability and performance of multi-class CGAN by applying preprocessing

techniques proposed by Le et al. [25]. In addition, this thesis introduces WCGAN-GP

as a stable CGAN replacement for multi-class insider threat detection augmentation.

The experiments are also extended to the R5.2 and R6.2 datasets to evaluate the

robustness of the approach against different organizations and new attacks. Table 2.1

summarizes some of the novel contributions of this thesis, as well as illustrating the

key differences between the works by Yuan et al. and Gayathri et al.
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Table 2.1: Contribution comparison between this thesis and work by Yuan et al and
Gayathri et al.

Component Contribution
Yuan
et al.

Gayathri
et al.

This
Thesis

User
Behaviour

Represention

Daily user features ✓ ✓ ✓
Action sequence based (using LSTM Auto-encoder) ✓
Statistical and count based features (using sliding window) ✓ ✓
Weekends included ✓ ✓
Used large feature set ✓
Leveraged psychometric data ✓

Data
Augmentation

Basic/Vanilla GAN ✓ ✓
CGAN ✓ ✓
WCGAN-GP ✓
Used SMOTE as a benchmark ✓ ✓ ✓
Used Random Over Sampling as benchmark ✓
t-SNE plots used to evaluate sample authenticity ✓ ✓
Samples generated for each of the insider classes ✓ ✓
GAN trained on normal samples simultaneously ✓

Classification

Broke down performance by insider class ✓ ✓
Compared performance as # of generated samples increased ✓ ✓
Compared performance for large # of generated samples ✓
Reported Kappa and MCC metrics ✓
Tested against CERT R4.2 ✓ ✓ ✓
Tested against CERT R5.2 ✓
Tested against CERT R6.2 ✓

Overall

Results validated by running experiments 10x ✓
Evaluated GAN training stability ✓
Compared different feature sets ✓
Evaluated ability to detect novel insider scenarios ✓
Compared different network sizes and params ✓



Chapter 3

Methodology

This thesis proposes a system for detecting insider threats in a supervised context.

The proposed system consists of three primary components, namely (1) User Be-

haviour Representation, (2) Data Augmentation and (3) Classification. Section 3.1

provides a high-level overview of the proposed system. The user behaviour repre-

sentation used for all experiments in this thesis are discussed in Section 3.2. The

primary focus of this thesis involves the exploration of different data augmentation

techniques, which are presented in Section 3.3. Finally, classification methodology

and performance metric selection are discussed in Sections 3.4 and 3.5 respectively.

3.1 Framework Overview

This research proposes an insider threat detection system consisting of the following

three components.

1. User Behaviour Representation: each user’s behaviour is extracted from

logs, daily statistics and counts are calculated and a trailing window is used to

compute the percentile of that user’s activity each day.

2. Data Augmentation: a combination of oversampling and undersampling

methods are used to re-balance the dataset for classification.

3. Classification: the augmented dataset is used to train classifiers to flag insider

threats.

This thesis holds the user behaviour representation constant and compares differ-

ent oversampling techniques to augment the insider threat detection datasets. Basic

undersampling and SMOTE were used as benchmarks to compare against GAN based

augmentation strategies. Initially, a basic GAN was implemented to generate insider

samples. In order to generate insider samples of a particular class (scenario), the

10
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GAN architecture was replaced with CGAN. After CGAN (like GAN), failed to reli-

ably produce realistic samples of the insider classes, WCGAN-GP was implemented

and used for the remaining experiments. These architectures are described further

in sections 3.3.2, 3.3.3 and 3.3.4, respectively. Following the generation of additional

insider samples, the resulting augmented datasets were used to train classifiers to

detect insiders. Figure 3.1 shows how the end-to-end system would be trained to

detect insider threats. Figure 3.2 shows how the classifiers trained on the augmented

datasets would be used in a production environment to detect insider threats, sending

alerts for further investigation.

Figure 3.1: Insider threat detection system training

Figure 3.2: Real world application of insider threat detection system
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3.2 User Behaviour Representation

Prior to training, the CERT dataset was pre-processed using a technique proposed

and implemented by Le et al. [27] [22]. The technique involves the following steps.

1. Grouping Log Events: events are parsed from log data and sorted into buck-

ets by user and time. This work used daily time buckets as they were the best

performing time-representation in prior works [25].

2. Feature Extraction: various permutations of statistical and count-based fea-

tures are calculated for each day for each user. For example, an employee who

visits many job websites from their work computer during the work-day may

be more likely to perform malicious insider actions. Table 3.2 shows the raw

log-based features and various permutations applied.

3. Temporal Representation: a sliding window is passed over the extracted

daily features for each user, computing the percentile of the current day with

respect to the trailing window for the same user. This work selected a window

size of 30 days and the percentile metric due to its superior performance in prior

works [25].

To improve the training stability and performance of the GANs, the features are

further scaled from the range (0, 100) to (-1, 1). A useful feature of the trailing window

percentile representation is that the data samples are automatically normalized with

respect to that user’s past behaviour. A limitation of this work is that the same

normalization was applied to the organizational and psychometric features despite

them being categorical in nature or belonging to a different range. This is not expected

to make a large difference, but future works could investigate removing these features

or scaling them more appropriately.

504 features were left after the preprocessing of CERT R4.2, including all orga-

nizational, psychometric, count-based and statistical features. To simplify the train-

ing and prototyping of the various GAN architectures, a reduced feature-set of 100

features was used. Random Forest Regression and SHAP (SHapley Additive exPla-

nations) were used to rank the importance of the features in predicting the output

class. In this case, the top 100 features ranked by Random Forest regression log-scaled
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Table 3.1: Psychological and Organizational Features

Psych. Profile Organization Time
Openness
Conscientiousness
Extraversion
Agreeableness
Neuroticism

ITAdmin
Role
Team
Department
Business Unit
Functional Unit

Weekend
Weekday

(a) Random Forest Regression log-
scaled feature importance (b) SHAP feature importance

Figure 3.3: Top 20 features by importance for predicting insider class membership

importance were used to construct the reduced feature set. SHAP was only used to

validate these top features using an alternate method. The top 20 important features

for each algorithm are shown in Figure 3.3. Although CERT R5.2 and R6.2 contain

a much larger feature set, only features present in all three datasets were used in this

thesis. This allows us to train the classifiers on CERT R4.2 and test them against

R5.2 and R6.2 for robustness.
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Table 3.2: Feature Permutations

Time PC Event Type Permutations Raw Features

After Hours
Working Hours

User’s PC
Shared PC

Supervisor’s PC
Other PC

HTTP

Job Site
Cloud Site
Social Site
Hacking Site
Other Site
Leak Site

# Sites Visited
Url Length
Url Depth

Content Length
# Words

Email
Internal
External

# Destinations
# BCC

# Attachments
Email Size
Text Length
# Words

File

Compressed
Photo

Document
Text

Executable

# Files Accessed

Device
USB Duration
# USB Conns

Logon # Logons

Table 3.3: Class counts after preprocessing into daily buckets for each user

Insiders

Dataset Name Normal Sc.1 Sc.2 Sc.3 Sc.4 Sc.5
CERT R4.2 307057 85 861 20 0 0
CERT R5.2 647441 85 863 20 339 0
CERT R6.2 1304406 3 20 2 1 1
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3.3 Data Augmentation

The core of this work involves experimenting with different data augmentation strate-

gies. As seen in Table 3.3, the insider scenarios are vastly outnumbered in the CERT

datasets. This results in poor classification performance for the minority classes. In-

sider scenario 3 has only 20 samples, while the dataset contains over 300000 normal

samples. To solve this issue, basic undersampling of the normal class is used for all

experiments (including baseline). In addition, SMOTE, GAN, CGAN and WCGAN-

GP oversampling are explored. This thesis uses the term ”n samples” to denote both

the number of random samples included from the normal class and the number of

samples for each insider class after the generated samples are added. For example,

an n samples value of 1000 and original dataset class counts of [307057, 85, 861, 20]

would result in an augmented dataset with class counts [1000, 1000, 1000, 1000]. The

first class would be undersampled down to 1000 samples, while enough samples would

be generated for the remaining three classes to pad their class counts up to 1000 each.

For the baseline augmentation strategy however, the first class would be undersam-

pled to 1000 but the remaining classes would be included as is. These oversampling

methods are described further in the following sections.

3.3.1 SMOTE

Synthetic Minority Oversampling Technique (SMOTE) is a popular technique for

solving class imbalance problems proposed by Chawla et al. [9]. The algorithm works

by finding the k-nearest neighbours of a randomly selected sample x and linearly

interpolating between x and its neighbour xk. Equation 3.1 shows how the linearity

is calculated and applied to the sample x to create the new sample x′ for each feature

i.

x′
i = xi + rand(0, 1) ∗ |xi − xk

i | (3.1)

For this work, the python scikit-learn implementation of the SMOTE algorithm

was used. The library takes an imbalanced dataset as input and outputs a dataset

with enough SMOTE generated samples to bring all class counts up to that of the

majority class. For example, given a dataset with counts [1000, 800, 20], SMOTE



16

would generate 200 and 980 new samples for class 2 and 3 respectively. This results

in a dataset with class counts [1000, 1000, 1000].

3.3.2 Generative Adversarial Networks

Generative adversarial networks (or GANs) are a class of neural networks initially

proposed by Goodfellow et al. in the field of computer vision [16]. They consist

of two sub-networks (a generator and a discriminator) that are trained against each

other in a min-max game. The goal of the generator is to generate realistic syn-

thetic samples, while the discriminator aims to differentiate these generated samples

from genuine samples. The loss function of the complete network is modeled as a

min-max optimization problem as seen in equation 3.2. Goodfellow et al. show that

this optimization problem effectively minimizes the Kullback-Leibler (KL) divergence

between the probability distribution of the real samples preal(x) and the probability

distribution of the generated samples pgen(z). This work implements this using binary

cross entropy as the loss function. The discriminator D is trained to maximize the

log probability of real data and the log inverse probability of synthetic data. The

generator G has no effect on the Ex∼preal(x)[logD(x)] term, so only needs to mini-

mize Ez∼pgen(z)[1 − logD(G(z))]. The generator is therefor trained to minimize the

log probability for synthetic data predicted by the discriminator. Trained together,

the generator becomes better at generating realistic samples, and the discriminator

becomes more adept at spotting fakes.

min
G

max
D

Ex∼preal(x)[logD(x)] + Ez∼pgen(z)[1− logD(G(z))] (3.2)

GANs are notoriously difficult to train because the gradients for updating the

weights of the discriminator and generator are dependant on each other. This leads

to problems like mode collapse, vanishing gradients and poor visibility on model per-

formance during training. Mode collapse can occur when the generator converges

towards producing the same sample for multiple inputs, instead of generating a di-

verse range of samples. This can occur if the generator happens across a particularly

convincing sample that the discriminator can’t differentiate. This can lead to the

discriminator getting stuck in a local minima. This is especially detrimental to the
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training of the GAN because the generator needs a useful gradient from the discrim-

inator network in order to escape the collapsed mode. Another common issue when

training GANs is vanishing gradients. If the discriminator outpaces the generator and

D(x) approaches 1, the overall loss will go to zero the generator will no longer have a

gradient to climb. An over-arching problem with GANs is the lack of evaluation met-

rics during training. Since the generator and discriminator are trained based on each

others outputs, there is no clear metric with which to measure performance. This

means it is hard to evaluate the performance of a GAN during training and makes it

hard to establish stopping conditions. When training GANs to generate images, the

generated outputs can be visually inspected to qualitatively assess the performance of

the GAN and help troubleshoot the above problems. This method is not as feasible

in the case of tabular datasets like CERT. Instead, t-SNE plots can be created to

visualize the results in lower-dimensions. This is discussed further in Section 3.3.6.

3.3.3 Conditional GANs

Conditional GAN (or CGAN) is a variant of the GAN architecture introduced by

Mirza and Osindero [30]. CGANs introduce auxiliary data inputs such as class labels

to the discriminator and generator. This has been demonstrated to stabilize the train-

ing process and also allows us to select a particular class when generating samples.

This is particularly useful when augmenting datasets because it lets us generate sam-

ples from minority classes to solve imbalanced data problems. The loss function for

CGAN is shown in Equation 3.3. It is identical to the original GAN’s loss function,

except that the probabilities for the data sample x and noise vector z are conditional

on the label y.

min
G

max
D

Ex∼preal(x)[logD(x|y)] + Ez∼pgen(z)[1− logD(G(z|y))] (3.3)

3.3.4 Wasserstein GANs

Wasserstein GAN (or WGAN) is another GAN variant proposed by Arjovsky, Chin-

tala and Bottou [4]. WGANs abandon the KL-divergence in favor of Wasserstein

distance, also known as the Earth-Movers (EM) distance. Intuitively, earth-movers

distance is named after the measure of how much energy it would take to transform a
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pile of dirt from the shape of one probability distribution to another. For this GAN,

the discriminator is renamed as a critic. This is because instead of ”discriminating”

the samples as real or fake, it outputs a score for the realness of the sample. This

is more stable and tractable as a training problem because even if the critic predicts

correctly for all samples, it still provides useful values and gradients for the generator

to climb. The min-max objective for WGAN is given in Equation 3.4.

min
G

max
D∈D

Ex∼preal(x)[D(x)] + Ez∼pgen(z)[1−D(G(z))] (3.4)

The objective is constructed from the Kantorovich-Rubinstein duality, which has

the limitation that D(x) ∈ D, where D is the set of 1-Lipschitz functions [18]. The ini-

tial WGAN architecture uses gradient-clipping as a method for meeting the 1-lipschitz

constraint. This involves clamping the gradients down to a fixed range before every

update of the critic’s weights. This is a crude technique that can result in vanishing

or exploding gradients. Gulrajani et al. proposed gradient-penalty as an alterna-

tive, demonstrating it’s ability to stabilize training with minimal hyper-parameter

tuning [18]. Instead of clipping the gradient, a gradient penalty is calculated as

the squared difference from norm 1 and applied to the gradient before updating the

weights. WGAN-GP can easily be extended to use the conditioning of CGAN, re-

sulting in a WCGAN-GP architecture as proposed by Zheng et al. [37]. For this

thesis, the WGAN and WGAN-GP architectures were skipped and WCGAN-GP was

implemented directly.

3.3.5 WCGAN-GP Architecture

The WCGAN-GP architecture for this thesis was implemented using Keras and Ten-

sorflow, with two variations on the network architecture. These networks were given

the short-hands DeepV1 and ShallowV1 for easy reference. The parameterizations of

these networks are shown in Table 3.4 and their architectures are presented in Fig-

ures 3.4 and 3.5. Leaky Rectified Linear Units (ReLUs) were used for the activation

function of each hidden layer with the exception of the output layer of the generator

(which used tanh). The CGAN implementation used a sigmoid as its discriminator

output activation function to bound its discriminations between zero and one. Since

WGAN replaces the discriminator with a critic, the sigmoid is replaced with ReLU
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so the critic can output scores. To avoid overfitting, dropout layers were added to the

generator’s hidden layers [34]. Unlike the earlier GAN architectures implemented for

this work, WCGAN-GP had stable training and performance across different param-

eterizations and network sizes. This is consistent with the results in the literature [4]

[18]. The observed stability of this architecture is discussed further in Section 4.1.

Figure 3.4: WCGAN-GP Shallow Architecture

Figure 3.5: WCGAN-GP Deep Architecture
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Table 3.4: Augmentation Strategy Parameterization

Strategy Parameters
SMOTE k neighbors=5

WCGAN-GP DeepV1 n hidden layers=3
latent noise vector size=32
hidden layer sizes=[256, 128, 64]

WCGAN-GP ShallowV1 n hidden layers=2
latent noise vector size=16,
hidden layer sizes=[64, 32]

3.3.6 Synthetic Sample Realness

t-distributed Stochastic Neighbour Embedding (t-SNE) was proposed by Van Der

Maaten and Hinton to help visualize high-dimensional data [33]. This involves calcu-

lating a joint probability distribution of each data points likeliness to be a neighbour

of each other point. Next, a random dataset of points with k dimensions (usually 2

or 3 for visualization) are generated and their neighbour likelihood joint-distributions

are calculated. Finally, the values of the generated low-dimensional data points are

modified using gradient descent to minimize the KL-divergence between the two joint-

distributions. The result is a low-dimensional clustering representation of the high-

dimensional dataset. In this thesis, t-SNE is used to visualize the similarity between

the original CERT samples and the generated samples.

3.4 Classification

After the R4.2 augmented training datasets were collected, four classifiers were used

to test the data augmentation strategies. Logistic Regression, Random Forest (RF),

Support Vector Machines (SVM) and Extreme Gradient Boosting (XGBoost) were

selected based on their popularity and diversity of approach. The xgboost python

package and sklearn python implementations of RF, SVM and Logistic Regression

were used for this thesis. Section 4.3 discusses the performance of each of the classifiers

in an initial testing phase. The results of those experiments were used to select a top

classifier to carry out more in-depth data-augmentation experiments.
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After the classifiers were trained on the augmented R4.2 training datasets, their

performance was evaluated by predicting the classes of the R4.2 test partition, as well

as the entire R5.2 and R6.2 datasets to measure robustness. R5.2 and R6.2 introduce

two new insider classes, which were used to evaluate the ability of the system to

generalize to never before seen insider attacks.

3.5 Metric Selection

In this thesis, the performance metrics of the classifiers were altered as a hybrid

between binary and multi-class classification metrics. The overall performance of an

insider threat detection classifier can be simplified as predicting each sample as either

an insider or a normal class. However, it is useful to evaluate a classifiers performance

on each of the insider classes independently. Instead of using the standard multi-class

classification metrics, any insider class sample predicted as a different insider class was

still considered a true positive classification. This was done to prevent penalization

of classifiers that can ultimately detect insiders, while still capturing class-specific

metrics.

Macro-averages for F1-score, recall and precision were used as primary measures of

classifier performance, where the scores for each class were averaged without consid-

eration for the support of each class. This is a useful metric in the context of insider

threat detection because it rewards detecting the smallest minority classes (such as

Insider Scenarios 1 and 3). Optimizing for the detection of minority classes can pro-

duce more false positives, but that can be acceptable in an alerting scenario where

the threat justifies an increased investigation budget. In this insider threat dataset,

IT sabotage only has a support of 20 samples, but could be significantly more costly

to the organization than an information leak. A weakness of the macro-metrics is

that each insider class is given the same weighting as the majority normal class. This

means that a classifier predicting every sample as an insider could be given a higher

score than a balanced classifier that finds most insiders without creating too many

false positives. This effect became larger as additional insider classes were added in

R5.2 and R6.2. Thus, it is important to contextualize the macro-averaged metrics

with raw counts and weight-averaged metrics.

To improve on these metrics, future works could compute ROC curves and AUC
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measures for each classifier to best understand classifier performance using augmented

data. In terms of static measures, the Cohen’s Kappa Coefficient and Mathew’s Cor-

relation Coefficient (MCC) metrics would more elegantly capture the classification

performance on imbalanced multi-class insider threat datasets [14]. These static met-

rics could be especially useful to reduce the complexity of the analysis while still

rewarding classifiers for the detection of minority classes.



Chapter 4

Results and Evaluation

Many augmentation strategies, classifiers, architectures and parameterizations were

explored during this thesis. In Section 4.1, the sampling strategy and the stability

of the various GAN architectures during training will be explained. From there, the

experimental results will be reviewed and discussed chronologically as they were per-

formed. The original GAN implementation performed very poorly, so will not be

discussed here (no empirical results were captured). Section 4.2 contrasts the perfor-

mance of the CGAN implementation against the WCGAN-GP implementation and

justifies the selection of WCGAN-GP for further experiments. Section 4.3 explores

preliminary WCGAN-GP augmentation performance for multiple classifiers before

choosing the Random Forest classifier to carry out more in depth experiments. Sec-

tion 4.4 does an in-depth review of the experiments performed on the 100 and 504

feature sets; the results of the different augmentation strategies are compared for

all three CERT datasets (R4.2, R5.2 and R6.2). Finally, Section 4.5 contrasts the

performance of the 100 and 504 feature datasets.

4.1 GAN Training

4.1.1 Sampling Strategy

After pre-processing, a random 25% of the R4.2 dataset (class-stratified) was set aside

for testing, and the other 75% was used for training. Next, the WCGAN-GP is trained

for 5000 epochs in weighted batches of 16 samples. The batches are constructed using

the class frequency weights shown in Table 4.1, where a weight of 3/16 means that

class is guaranteed three samples in each batch of 16. To avoid training on the same

sample twice in one epoch, the number of batches per epoch is limited by the class

with the fewest samples. Insider scenario 3 only has 15 samples in the training set

and a class frequency batch weight of 1/16. Each epoch therefore contains 15 batches,

23
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iterating over one sample per batch. The other classes are drawn randomly from the

full training partition in correspondence with their weights.

The sampling weights used in the training of the GANs were selected purely based

on the batch size and the ratios of class support in the training dataset. The small

batch size was selected (as recommended) for maintaining training stability in the

earlier GANs, but could potentially be increased to allow the more stable WCGAN-

GP to train on more normal class samples. In future works, the insider classes could

be over-sampled to allow larger batch sizes or more training iterations per epoch.

Table 4.1: GAN training label sampling weights

Label Class Weight
0 Normal 6/16
1 Insider (Sc.1) 4/16
2 Insider (Sc.2) 5/16
3 Insider (Sc.3) 1/16

Table 4.2: WCGAN-GP training parameterization

Parameter Value
Epochs 5000

Batch Size 16
Classes 4

Critic Steps 5
GP Weight 10.0

Gen. Dropout Rate 0.3
Leaky ReLU Alpha 0.2

Optimizer Adam
Learning Rate 0.0001

Beta 1 0.5
Beta 2 0.9

4.1.2 Training Stability

This research quickly encountered the GAN training issues described in the literature

when prototyping the initial GAN and CGAN implementations [16] [4]. Figure 4.1

shows sample training curves for CGAN and WCGAN-GP. These are not directly

comparable because they use different loss functions. However, they can be used

to compare the relative training stability of the two min-max approaches. Unlike
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other neural network architectures, a decrease in loss is not necessarily indicative of

improved overall performance but rather the performance has improved with respect

to its adversary.

(a) CGAN (b) WCGAN-GP

Figure 4.1: GAN variant training loss curves

Figure 4.1a shows the binary cross-entropy training loss for the generator and

discriminator of a CGAN trained for 10000 epochs. Although both losses fluctuated

for 5000 epochs, the discriminator loss approached zero before 6000 epochs as the

generator loss faced a sharp hike. For the remaining 4000 epochs, the discriminator

loss stays at zero while the generator loss climbs to over four times its peak while the

discriminator loss was non-zero. Some runs remained stable throughout the training

process, but those that reached a discriminator loss of zero did not recover. The

CGAN training was very sensitive to hyper-parameters such as number of features,

network layer size and overall network depth; Smaller networks tended to be more

stable.

Figure 4.1b shows the Wasserstein training loss for the generator and critic of a

WCGAN-GP trained for 10000 epochs. The critic loss dipped initially but quickly

stabilized around zero for the rest of the training run. Despite this, the generator loss

fluctuated freely and maintained stability throughout every experimental run. When

using the CGAN architectures, the training was more likely to become unstable the

longer it lasted. For WCGAN-GP, the training was consistently stable, even when

increasing training epochs to 20000. The Wasserstein loss metric rewards the critic

for predicting higher scores for fake samples and lower scores for real samples, but

does not constrain the network to produce scores centered around zero. For this
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reason, the critic loss may be above or below zero and is not necessarily indicative

of performance. This can be seen clearly in Figure 4.2, which shows sample training

curves from four different architecture and feature set combinations. In Figure 4.2c,

the critic loss converges around nine, while Figure 4.2b converges around -10. Despite

changing the architecture, number of features, learning rate, dropout layers, gradient

penalty weight and number of critic steps, the training remained consistently stable

and resulted in WCGAN-GPs capable of generating convincing samples.

(a) 100 Features - DeepV1 (b) 504 Features - DeepV1

(c) 100 Features - ShallowV1 (d) 504 Features - ShallowV1

Figure 4.2: Sample training curves for WCGAN-GP
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This thesis uses t-SNE to gauge the similarity between real data samples and

generated samples used to augment the CERT dataset. The parameterizations found

in Table 4.3 were used to compute and graph the t-SNE plots every 1000 epochs during

training. A perplexity of 40 and the number of iterations of 1000 were selected based

on recommendations from the original t-SNE paper [33]. Only a subset of samples

were used due to the size of the data set and computational cost of running multiple

t-SNE iterations.

Table 4.3: t-SNE parameterization

Parameter Value
Components 2
Perplexity 40
Iterations 1000

A limitation of this thesis is that the t-SNE data was sampled from each class

with replacement, resulting in oversampling of the real data. This is particularly

noticeable in the minority classes, where single data points are represented by small

tightly-clustered groups of points. This could easily be solved in future works by

changing the data sampling technique to operate without replacement.

Figure 4.3 shows the t-SNE plot of the CGAN from Figure 4.1a at epoch 5000.

The plot shows t-SNE points computed from a 100 feature subset of the training and

CGAN generated samples, marked as colour-coded circles and crosses, respectively.

Although the training curve was stable when this plot was created, the generated

samples do not appear to follow the distributions of the training data. The generated

classes are clearly separable from each other, but do not align with the corresponding

class samples the CGAN was trained on.
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Figure 4.3: CGAN at epoch 5000 - t-SNE plot of generated samples against training
samples

Figure 4.4: CGAN at epoch 10000 - t-SNE plot of generated samples against training
samples
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Figure 4.5: CGAN at epoch 5000 - t-SNE plot of generated samples against training
samples using only two classes (insider and normal)

Shortly after epoch 5000, the discriminator’s loss goes to zero and the generators

loss skyrockets. This is likely the result of vanishing gradients, where the discriminator

can easily predict all of the fake samples and the generator loses its training gradient.

Figure 4.4 shows the same CGAN t-SNE plot at epoch 10000. Since epoch 5000,

the generated samples for many of the classes had become clustered into long narrow

distributions. This means that the samples were not very diverse, as they were easily

mapped into a condensed latent space by the t-SNE algorithm. Figure 4.5 shows

the t-SNE plot of a more successful CGAN, which was trained using binary labels

(normal and insider) instead of normal and multiple insider classes. However, this

method still leaves large clusters of insider samples under-represented in the generated

samples. This can be observed at the top-middle of the figure, where a large cluster

of insider samples have no generated samples anywhere near them. These most likely

belong to one of the minority insider classes (Sc.1 or 3), but could be confirmed in

future works by using the multi-class labels to create the t-SNE plot. This means that

the oversampling could be missing the classes with the smallest support and could

lead to producing an augmented dataset that does insufficiently boosted classification
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performance for under-represented insider classes. Further, this method does not give

us the capability to generate samples of a particular class at will. As such, this thesis

focuses on multi-class dataset augmentation and leaves further comparisons between

multi-class and binary sample generation and dataset augmentation to future works.

Figures 4.6 and 4.7 show sample 100 feature t-SNE plots for the ShallowV1 and

DeepV1 WCGAN-GP architectures, respectively. Figures 4.8 and 4.9 show the same

plots for the 504 feature set. Compared to the CGAN plots, all of the WCGAN-GP

plots show a much closer alignment between the generated samples and their real-

world counterparts. Interestingly, generated sample distributions for the 504 feature

set seem more evenly placed and closely aligned with the real distributions. The

DeepV1 architecture also seems to achieve more realistic generated sample distribu-

tions than ShallowV1. While the CGAN t-SNE plots varied widely from run to run,

WCGAN-GP produced consistent results.

Figure 4.6: WCGAN-GP ShallowV1, 100 features: t-SNE plot of real and generated
samples after 5000 epochs of training
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Figure 4.7: WCGAN-GP DeepV1, 100 features: t-SNE plot of real and generated
samples after 5000 epochs of training

Figure 4.8: WCGAN-GP ShallowV1, 504 features: t-SNE plot of real and generated
samples after 5000 epochs of training
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Figure 4.9: WCGAN-GP DeepV1, 504 features: t-SNE plot of real and generated
samples after 5000 epochs of training

Figures 4.10, 4.11 and 4.12 show the training progress every 1000 epochs for

the 504 feature, DeepV1 GAN. At epoch zero, the network weights had just been

initialized, where the generated samples for each class are all randomly clustered

together in the same latent space. By the end of epoch 1000, the generated classes

were already closely aligned with their real-world pairings. Throughout the next

4000 epochs, the generated samples slowly filled the latent space to more closely

resemble the real distributions. Interestingly, Figures 4.11 and 4.12 seems to show no

significant changes in generated sample distributions from epoch 3000 to 5000. It is

left to future work to investigate an effective mechanism for stopping GAN training

early if no performance benefits can be gained. Future works should also evaluate the

likelihood and impact of overfitting.
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(a) Epoch 0

(b) Epoch 1000

Figure 4.10: WCGAN-GP DeepV1, 504 features, Epochs 0-1000: t-SNE plots of
generated samples throughout training
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(a) Epoch 2000

(b) Epoch 3000

Figure 4.11: WCGAN-GP DeepV1, 504 features, Epochs 2000-3000: t-SNE plots of
generated samples throughout training
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(a) Epoch 4000

(b) Epoch 5000

Figure 4.12: WCGAN-GP DeepV1, 504 features, Epochs 4000-5000: t-SNE plots of
generated samples throughout training
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Figure 4.13 shows the t-SNE plot of the SMOTE augmented training set against

the test set. The implementation of the SMOTE library had a limitation where the

original samples were not distinguishable from the generated samples in the SMOTE

output. As a result, this graph is not directly comparable to the t-SNE plots of the

GAN generated samples. It is instead meant to help visualize how SMOTE adds

linearities to the existing samples to create the augmented dataset.

Figure 4.13: t-SNE plot for SMOTE generated samples
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4.2 CGAN vs WCGAN-GP

A baseline training dataset was created by taking all insider samples and 1000 ran-

domly selected normal samples. The trained CGAN and WCGAN-GP were each used

to generate 333 samples of each insider class. An augmented dataset was created for

each of the GANs using the baseline dataset and their respectively generated samples.

A Random Forest classifier was then trained on each of the two augmented datasets,

as well as the baseline dataset. Sample confusion matrices of the classification results

can be seen in Figure 4.14. The matrices on the left show the multi-class matrices

with all four classes (Normal, Insider Sc.1-3), while the matrices on the right show

the binary classification (Normal vs Insider). Both multi-class and binary confusion

matrices refer to the same classifier outputs; the binary matrices were just created

to provide a simpler metric. These results were obtained during the earlier stages

of the research, so results were only captured for the 100 feature dataset. Notably,

these results were captured prior to adding dropout to WCGAN-GP and defining the

DeepV1 vs ShallowV1 architectures.

Figure 4.14 shows that the WCGAN-GP strategy resulted in 3 more insiders being

detected, but the false-positive rate was doubled from 600 to 1200. The CGAN strat-

egy still performed surprisingly well given it’s t-SNE plot, but that could be due to the

classifier learning additional modes for each class. Regardless, this resulted in double

the false positives and fewer insiders detected (compared to the baseline). Based on

these classification results, the training curves and the t-SNE plots, WCGAN-GP was

used for the remaining experiments.
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(a) Baseline - Multi-class (b) Baseline - Binary-class

(c) CGAN - Multi-class (d) CGAN - Binary-class

(e) WCGAN-GP - Multi-class (f) WCGAN-GP - Binary-class

Figure 4.14: Random Forest, 100 features: Confusion matrices comparing Baseline,
CGAN and WCGAN-GP
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4.3 Classifier Selection

In order to fully test the augmentation strategies, multiple classifiers were selected.

These included Support Vector Machines (SVM), Random Forests, Logistic Regres-

sion and Extreme Gradient Boosting (XGBoost). The parameterizations for these

classifiers are provided in Table 4.4. Due to time and computational constraints,

the four classifiers were only tested against the baseline, SMOTE and WCGAN-GP

DeepV1 augmentation strategies. Further, these classifiers were only tested against

the 100 feature dataset and with n samples values from 2000 to 10000 in intervals

of 2000. From the results of these experiments, a top-performing classifier was se-

lected to further explore the additional augmentation strategies, feature counts and

n samples.

Table 4.4: Classifier Parameterization

Classifier Parameters
SVM kernel = linear

Random Forest n estimators = 10
Logistic Regression C = 0.1

XGBoost max depth = 6

The computational cost of training GANs and classifiers is another item to con-

sider. Due to the low number of insider training samples, the GAN training was

considerably cheaper than other deep-learning based approaches. However, training

classifiers on hundreds of thousands of synthetic samples has a computational cost

that must be justified. The Random Forest classifier had a low computational cost,

even at high numbers of generated samples. However, some classifiers (such as SVM)

had considerably higher computational costs and took much longer to run. This was

another factor in selecting Random Forest as the top classifier to carry out the re-

maining experiments. It is likely that the same results could be achieved with a lower

number of samples if more sophisticated undersampling techniques were applied to

the majority normal class. It is left to future works to investigate this hypothesis and

to reduce the computational cost of the proposed framework.

Table 4.5 shows the macro-averaged metrics for every combination of strategy and

classifier across all classes for each dataset. The metrics were averaged across all 10
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Table 4.5: 100 features, n samples=10000: Macro-averaged data augmentation strat-
egy classification metrics for all classifiers

CERT R4.2 CERT R5.2 CERT R6.2
strategy classifier F1 P R F1 P R F1 P R

Baseline

Logistic Regression 0.672 0.767 0.624 0.512 0.632 0.452 0.447 0.484 0.470
Random Forest 0.803 0.807 0.857 0.515 0.671 0.634 0.546 0.578 0.647
SVM 0.678 0.775 0.703 0.527 0.718 0.545 0.561 0.603 0.576
XGBoost 0.333 0.498 0.807 0.416 0.585 0.805 0.482 0.585 0.865

SMOTE

Logistic Regression 0.252 0.263 0.798 0.221 0.404 0.618 0.473 0.483 0.742
Random Forest 0.624 0.537 0.846 0.413 0.517 0.587 0.418 0.419 0.582
SVM 0.332 0.302 0.750 0.259 0.419 0.553 0.362 0.367 0.590
XGBoost 0.425 0.425 0.750 0.540 0.540 0.800 0.617 0.617 0.833

WCGAN-GP - DeepV1

Logistic Regression 0.298 0.278 0.711 0.279 0.408 0.578 0.479 0.483 0.704
Random Forest 0.666 0.576 0.878 0.406 0.535 0.665 0.411 0.389 0.695
SVM 0.382 0.336 0.716 0.300 0.430 0.563 0.449 0.450 0.667
XGBoost 0.014 0.007 0.750 0.205 0.223 0.800 0.333 0.333 0.833

experimental runs and the macro-averages were calculated across all classes for each

dataset. For the R4.2 dataset, RF consistently outperformed the other classifiers on

F1-score, recall and precision for all augmentation strategies. Although the baseline

outperformed the GAN in F1-score and precision, GAN had a higher recall. The

class-wise classification metrics for datasets R4.2, R5.2 and R6.2 can be found in the

Appendix Tables A.1, A.2 and A.3 respectively.

4.4 Augmentation Strategy Comparison

By limiting the classification experiments to a single classifier, it became possible to

expand the n samples to 20000 sample intervals up to 100000 samples per insider

class.

4.4.1 100 Feature Set

Figures 4.15, 4.16 and 4.17 show the macro-averaged box and line plots for the 100

feature R4.2, R5.2 and R6.2 datasets, respectively. The line plots in the left col-

umn show macro-averaged precision, recall and F1-score as n samples is increased to

100000. The box plots in the right column show the mean and variance of the same

metrics when n samples reaches 100000 samples. They show that as n samples is

increased, the precision and F1-score generally trend up for all augmentation strate-

gies. However, recall drops sharply at first, then levels out as n samples approaches
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100000. Table 4.6 shows the macro-averaged metrics for each augmentation strategy

and dataset, with the highest performing score for each metric column highlighted

in bold. SMOTE had the poorest performance on all macro-averaged metrics for

all datasets. The baseline strategy was the top performer for F1-score and precision

for all datasets. The shallow GAN architecture had the highest recall for the R4.2

and R5.2 datasets, but the baseline claimed the highest recall for R6.2 by a narrow

margin. The two GAN architectures had similar performance, with the shallow GAN

scoring higher for R4.2 and R5.2, and the deep GAN scoring higher for R6.2.

Table 4.6: 100 features, n samples=100000, Random Forest: Macro-averaged data
augmentation strategy classification metrics

Dataset CERT R4.2 CERT R5.2 CERT R6.2
Measure F1 P R F1 P R F1 P R

Baseline 0.860 0.951 0.806 0.604 0.801 0.615 0.653 0.690 0.673
SMOTE 0.752 0.792 0.744 0.504 0.581 0.503 0.415 0.445 0.464

WCGAN-GP - DeepV1 0.817 0.860 0.789 0.542 0.645 0.604 0.522 0.493 0.662
WCGAN-GP - ShallowV1 0.848 0.892 0.816 0.562 0.700 0.629 0.487 0.468 0.667

As expected, the R4.2 test partition had the highest detection scores, with the

baseline strategy reporting an F1-score of 0.860. Figure 4.15 shows that the shallow

GAN strategy is competitive with the baseline as n samples increases. Figure 4.18

shows weight-averaged binary classification plots for the R4.2 dataset that are con-

sistent with the macro-averaged plots. Figures 4.20 and 4.19 show class-wise metrics

with individual plots for each insider class. This plot reveals that SMOTE has a

higher weight-averaged recall than the other strategies because it is more likely to

detect the majority insider class (Sc. 2). However, this comes with the trade-off of

SMOTE miss-classifying many normal samples as insiders, resulting in a much lower

precision and F1-score. This makes sense when looking back at the t-SNE plots for

normal vs scenario 2 classes, the two most overlapping distributions. The weight-

averaged detection metrics for each class are given in Table 4.7. Confusion matrices

from the first experimental run are presented in Figure 4.21. These sample matrices

show the same patterns observed in the earlier graphs and tables. SMOTE detects the

most insiders, but has double the false positives of the other strategies. The shallow

GAN detects three more insiders than the baseline, but has 10 more false positives.
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This appears to be a particularly bad run for detecting the minority insider class,

where only the shallow GAN is able to catch a few scenario 3 insiders. This is still

consistent with the other averaged results because scenario 3 has only 20 samples,

resulting in a high detection variance as seen in Figures 4.19 and 4.20.

Table 4.7: CERT R4.2 - 100 features - Insider Threat Detection Data Augmentation
Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3)
Measure F1 P R F1 P R F1 P R F1 P R

Baseline 1.000 1.000 1.000 0.864 0.983 0.776 0.894 0.921 0.870 0.682 0.900 0.580
SMOTE 0.999 1.000 0.999 0.781 0.831 0.752 0.842 0.788 0.904 0.387 0.550 0.320

WCGAN-GP - DeepV1 1.000 1.000 1.000 0.838 0.880 0.810 0.884 0.906 0.866 0.545 0.655 0.480
WCGAN-GP - ShallowV1 1.000 1.000 1.000 0.863 0.933 0.810 0.889 0.904 0.874 0.640 0.730 0.580

Table 4.8: CERT R5.2 - 100 features - Insider Threat Detection Data Augmentation
Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3) Insider (Sc.4)
Measure F1 P R F1 P R F1 P R F1 P R F1 P R

Baseline 0.998 0.999 0.998 0.837 0.953 0.747 0.481 0.359 0.772 0.691 0.994 0.555 0.011 0.700 0.006
SMOTE 0.999 0.999 0.999 0.822 0.936 0.733 0.555 0.468 0.684 0.143 0.304 0.100 0.001 0.200 0.001

WCGAN-GP - DeepV1 0.998 0.999 0.997 0.728 0.703 0.775 0.478 0.370 0.775 0.498 0.553 0.470 0.010 0.600 0.005
WCGAN-GP - ShallowV1 0.998 0.999 0.998 0.801 0.834 0.784 0.502 0.387 0.783 0.491 0.478 0.575 0.015 0.800 0.008

Table 4.9: CERT R6.2 - 100 features - Insider Threat Detection Data Augmentation
Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3) Insider (Sc.4) Insider (Sc.5)
Measure F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

Baseline 1.000 1.000 1.000 0.800 1.000 0.667 0.352 0.242 0.670 0.767 0.900 0.700 0.000 0.000 0.000 1.000 1.000 1.000
SMOTE 1.000 1.000 1.000 0.800 1.000 0.667 0.124 0.070 0.565 0.167 0.200 0.150 0.000 0.000 0.000 0.400 0.400 0.400

WCGAN-GP - DeepV1 1.000 1.000 1.000 0.587 0.540 0.667 0.261 0.161 0.755 0.285 0.256 0.550 0.000 0.000 0.000 1.000 1.000 1.000
WCGAN-GP - ShallowV1 1.000 1.000 1.000 0.587 0.605 0.667 0.180 0.105 0.735 0.156 0.098 0.600 0.000 0.000 0.000 1.000 1.000 1.000

Despite the classifiers and augmentation strategies only being trained on R4.2,

they demonstrated a modest ability to generalize detection of insiders in the R5.2

and R6.2 datasets. Baseline strategy macro-averaged F1-scores of 0.604 and 0.653

were reported for the R5.2 and R6.2 datasets, respectively (down from 0.860 in R4.2).

From the macro-averaged plots in Figure 4.16, it can be seen that the broad patterns

from R4.2 are maintained. The shallow GAN still has a marginal advantage over

the baseline in recall, but the baseline widened its lead on precision and therefore

F1-score. The individual R5.2 detection metrics for each class are presented in Table

4.8. R5.2 introduces a new class (Insider Sc. 4) to the classification problem, with a
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support of 339 real samples in the test dataset. All strategies resulted in poor scenario

4 detection, with the highest F1-score (0.015) being reported by the shallow GAN.

In R6.2, an additional insider class (Sc. 5) is introduced and the number of insider

samples is drastically reduced. As presented in Table 3.3 earlier in this thesis, R6.2

only contains [3, 20, 2, 1, 1] samples for scenarios 1-5. Table 4.9 shows that similarly

to the R5.2 results, no strategies were able to detect the single scenario 4 sample.

Inversely, all but the SMOTE strategy got perfect F1-scores for the new scenario 5

sample. This indicates that some of the insider scenarios have behaviour that can be

generalized using the proposed approach, but other scenarios cannot. Future works

could investigate why this is the case, starting with creating t-SNE plots of the newly

introduced insider classes. The remaining R5.2 and R6.2 figures can be found in the

appendix. The confusion matrix samples for R5.2 and R6.2 can be seen in Figures

A.2 and A.3. Figures A.6, A.7, and A.8 show the R5.2 binary class, multi-class line

and box plots, respectively. Their R6.2 counterparts can be found in tables A.9, A.10

and A.11.
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(a) Precision (Macro Avg.) (b) Precision (Macro Avg.)

(c) Recall (Macro Avg.) (d) Recall (Macro Avg.)

(e) F1-Score (Macro Avg.) (f) F1-Score (Macro Avg.)

Figure 4.15: CERT R4.2, 100 features: Macro-averaged measures from classification
results
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(a) Precision (Macro Avg.) (b) Precision (Macro Avg.)

(c) Recall (Macro Avg.) (d) Recall (Macro Avg.)

(e) F1-Score (Macro Avg.) (f) F1-Score (Macro Avg.)

Figure 4.16: CERT R5.2, 100 features: Macro-averaged measures from classification
results
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(a) Precision (Macro Avg.) (b) Precision (Macro Avg.)

(c) Recall (Macro Avg.) (d) Recall (Macro Avg.)

(e) F1-Score (Macro Avg.) (f) F1-Score (Macro Avg.)

Figure 4.17: CERT R6.2, 100 features: Macro-averaged measures from classification
results
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Figure 4.18: CERT R4.2, 100 features: Binary classification plots for all augmentation strategies
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Figure 4.19: CERT R4.2, 100 features: Classification metrics as n samples increases for all augmentation strategies
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Figure 4.20: CERT R4.2, 100 features: Classification metrics at 1000 and 100000 samples per class for all augmentation
strategies
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(a) Baseline - Multi-class (b) Baseline - Binary-class

(c) Smote - Multi-class (d) Smote - Binary-class

(e) WCGAN-GP ShallowV1 - Multi-class (f) WCGAN-GP ShallowV1 - Binary-class

(g) WCGAN-GP DeepV1 - Multi-class (h) WCGAN-GP DeepV1 - Binary-class

Figure 4.21: CERT R4.2, 100 features: Sample confusion matrices for Random Forest
classification
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4.4.2 504 Feature Set

The exact same experiments were repeated using the 504 feature set. Figures 4.22,

4.23 and 4.24 show the macro-averaged box and line plots for the 504 feature R4.2,

R5.2 and R6.2 datasets, respectively. They show the same broad trends as their 100

feature counterparts; F1-score and precision rise quickly at first, then gradually as

n samples approaches 100000, while recall drops inversely. However, the figures show

that both of the GAN architectures outperform SMOTE and baseline on almost

all macro-averaged measures. This is corroborated by the macro-averaged dataset

and augmentation strategy metrics in Table 4.10. Deep GAN reports the top macro-

averaged F1-score of 0.911 for the R4.2 dataset and 0.614 for the CERT R6.2 dataset.

The shallow GAN reports the top macro-averaged F1-score of 0.617 for R5.2. Baseline

was consistently competitive on precision, but the GANs consistently outperformed

on recall. Figure 4.25 shows the binary classification plots, which show the GANs

are a modest improvement from the baseline when using weight-averaged metrics.

Class-wise metrics can be found in Table 4.11 as well as Figures 4.26 and 4.27. These

plots show that the GANs can maintain the precision of the baseline while identi-

fying additional insiders from the minority classes. Figure 4.28 shows some sample

confusion matrices from the same experimental run.

Table 4.10: 504 features, n samples=100000, Random Forest: Macro-averaged data
augmentation strategy classification metrics

Dataset CERT R4.2 CERT R5.2 CERT R6.2
Measure F1 P R F1 P R F1 P R

Baseline 0.892 0.973 0.833 0.582 0.809 0.596 0.556 0.586 0.575
SMOTE 0.853 0.896 0.834 0.584 0.789 0.518 0.448 0.474 0.443

WCGAN-GP - DeepV1 0.911 0.972 0.865 0.605 0.800 0.673 0.614 0.596 0.738
WCGAN-GP - ShallowV1 0.910 0.975 0.863 0.617 0.809 0.656 0.606 0.604 0.696

Similar to the 100 feature set, the 504 feature set performance dropped consider-

ably between the R4.2 dataset it was trained on, to the R5.2 and R6.2 datasets. Table

4.12 and 4.13 show the augmentation strategy classification metrics broken down by

class for the R5.2 and R6.2 datasets, respectively. Insider Sc.4 still proved difficult to

detect, with the deep GAN strategy reporting the top F1-score of 0.061 for the R5.2

dataset, and 0.2 for R6.2. The other strategies failed to detect the single Sc.4 sample
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Table 4.11: CERT R4.2 - 504 features - Insider Threat Detection Data Augmentation
Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3)
Measure F1 P R F1 P R F1 P R F1 P R

Baseline 0.999 0.999 1.000 0.853 0.994 0.752 0.813 0.936 0.721 0.901 0.963 0.860
SMOTE 0.999 0.999 0.999 0.770 0.785 0.767 0.774 0.801 0.750 0.868 1.000 0.820

WCGAN-GP - DeepV1 1.000 0.999 1.000 0.851 0.966 0.767 0.835 0.941 0.752 0.958 0.983 0.940
WCGAN-GP - ShallowV1 1.000 0.999 1.000 0.852 0.984 0.757 0.834 0.934 0.754 0.955 0.983 0.940

Table 4.12: CERT R5.2 - 504 features - Insider Threat Detection Data Augmentation
Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3) Insider (Sc.4)
Measure F1 P R F1 P R F1 P R F1 P R F1 P R

Baseline 0.998 0.999 0.996 0.847 0.995 0.738 0.314 0.228 0.601 0.722 0.923 0.630 0.029 0.900 0.015
SMOTE 0.999 0.998 1.000 0.825 0.958 0.725 0.365 0.703 0.249 0.730 0.984 0.615 0.002 0.300 0.001

WCGAN-GP - DeepV1 0.996 0.999 0.993 0.810 0.910 0.736 0.213 0.130 0.669 0.947 0.961 0.935 0.061 1.000 0.032
WCGAN-GP - ShallowV1 0.997 0.999 0.995 0.835 0.947 0.748 0.322 0.227 0.674 0.905 0.974 0.850 0.027 0.900 0.014

Table 4.13: CERT R6.2 - 504 features - Insider Threat Detection Data Augmentation
Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3) Insider (Sc.4) Insider (Sc.5)
Measure F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

Baseline 1.000 1.000 1.000 0.773 0.933 0.667 0.260 0.186 0.535 0.800 0.900 0.750 0.000 0.000 0.000 0.500 0.500 0.500
SMOTE 1.000 1.000 1.000 0.800 1.000 0.667 0.019 0.014 0.040 0.667 0.633 0.750 0.000 0.000 0.000 0.200 0.200 0.200

WCGAN-GP - DeepV1 1.000 1.000 0.999 0.556 0.566 0.667 0.078 0.046 0.560 0.853 0.767 1.000 0.200 0.200 0.200 1.000 1.000 1.000
WCGAN-GP - ShallowV1 1.000 1.000 1.000 0.735 0.885 0.667 0.167 0.106 0.610 0.833 0.733 1.000 0.000 0.000 0.000 0.900 0.900 0.900

in any runs. The non-GAN strategies also had low F1-scores for the Sc.5 sample,

while the GAN strategies had near perfect scores.

For R5.2, SMOTE actually had the best weight-averaged F1-score due to its high

precision in the majority insider class (Sc. 2). This can be seen clearly in Figures

A.12 and A.14. For R6.2, it is instead the baseline strategy that benefits from high

Sc. 2 precision, with SMOTE reporting very low precision and recall for the same

class. This can been seen in Figures A.15 and A.17. It is unclear why the SMOTE

performance dropped so significantly between R5.2 and R6.2, but that analysis is left

to future works.

Sample confusion matrices for the R5.2 and R6.2 datasets can be found in Figures

A.4 and A.5. They show that although the deep GAN has a superior recall and

F1-score, the lack of precision can result in a significant raw count of false positives.

Compared to the shallow GAN in this example, the deep GAN incurred over 4000
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more false positives to detect an additional two insiders.
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(a) Precision (Macro Avg.) (b) Precision (Macro Avg.)

(c) Recall (Macro Avg.) (d) Recall (Macro Avg.)

(e) F1-Score (Macro Avg.) (f) F1-Score (Macro Avg.)

Figure 4.22: CERT R4.2, 504 features: Macro-averaged measures from classification
results



55

(a) Precision (Macro Avg.) (b) Precision (Macro Avg.)

(c) Recall (Macro Avg.) (d) Recall (Macro Avg.)

(e) F1-Score (Macro Avg.) (f) F1-Score (Macro Avg.)

Figure 4.23: CERT R5.2, 504 features: Macro-averaged measures from classification
results



56

(a) Precision (Macro Avg.) (b) Precision (Macro Avg.)

(c) Recall (Macro Avg.) (d) Recall (Macro Avg.)

(e) F1-Score (Macro Avg.) (f) F1-Score (Macro Avg.)

Figure 4.24: CERT R6.2, 504 features: Macro-averaged measures from classification
results
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Figure 4.25: CERT R4.2, 504 features: Binary weight-averaged classification plots for all augmentation strategies
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Figure 4.26: CERT R4.2, 504 features: Classification metrics as n samples increases for all augmentation strategies
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Figure 4.27: CERT R4.2, 504 features: Classification metrics at 1000 and 100000 samples per class for all augmentation
strategies
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4.5 Feature Set Comparison

This section will review a head-to-head comparison between the various augmentation

strategies for the 100 and 504 feature sets. Figure 4.30 shows the binary R4.2 clas-

sification results for the baseline and WCGAN-GP DeepV1 augmentation strategies.

When using the binary classification metrics, the 100 feature set outperforms 504.

However, the class-wise metrics for each insider class in Figures 4.31 and 4.32 show

that this is primarily because of superior performance on the majority insider class

(Sc. 2). The higher class count in Scenario 2 causes higher weight-averaged scores for

the 100 feature set. However, the macro-averaged scores are higher for the 504 feature

set because of improved performance on the minority insider classes (Sc. 1, 3, 4 and

5). Table 4.6 and 4.10 show that the 504 feature set outperforms the 100 feature set

on all macro-averaged metrics of every augmentation strategy for R4.2. Interestingly,

the baseline strategy had stronger macro-averaged scores when using 100 features on

R5.2 and R6.2, while the other strategies performed better when using 504 features.
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(a) Baseline - Multi-class (b) Baseline - Binary-class

(c) Smote - Multi-class (d) Smote - Binary-class

(e) WCGAN-GP ShallowV1 - Multi-class (f) WCGAN-GP ShallowV1 - Binary-class

(g) WCGAN-GP DeepV1 - Multi-class (h) WCGAN-GP DeepV1 - Binary-class

Figure 4.28: CERT R4.2, 504 features: Sample confusion matrices for Random Forest
classification
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(a) Baseline Line Plot (b) Baseline Box Plot

Figure 4.29: R4.2, 100 vs 504 feature set RF binary classification metrics as n samples is increased for the Baseline Augmen-
tation Strategy
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(a) WCGAN-GP DeepV1 Line Plot (b) WCGAN-GP DeepV1 Box Plot

Figure 4.30: R4.2, 100 vs 504 feature set RF binary classification metrics as n samples is increased for the WCGAN-GP
DeepV1 Augmentation Strategy
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Figure 4.31: R4.2, Baseline: 100 vs 504 feature set RF binary classification metric box plots
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Figure 4.32: R4.2, WCGAN-GP DeepV1: 100 vs 504 feature set RF binary classification metric box plots
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In summary, the CGAN architecture had highly unstable training that lead to

poor performance in generating realistic insider samples. The WCGAN-GP archi-

tecture had consistently stable training without hyper-parameter tuning and was

able to produce realistic synthetic insider samples. Both WCGAN-GP architectures

(DeepV1 and ShallowV1) were the top performing augmentation strategies for all

three CERT datasets when using the 504 feature set. The baseline strategy had sim-

ilar performance on classification based on raw counts of detections, but the GANs

were particularly strong in detecting minority insider classes with low support in the

training dataset. This was reflected in higher macro-averaged performance metrics.

The GAN’s did not perform as well on the 100 feature datasets, as they were out-

performed by the baseline strategy on all but minority class recall. However, the

GAN strategy’s performance on the 504 feature dataset was superior to the baseline

strategy on the 100 feature set.

Overall, the framework proved effective at detecting the majority of insider classes

with a relatively low false positive rate. It showed some ability to generalize to never

before seen insider attack types, such as Sc. 5 in the R6.2 dataset. However, it had

difficulty with some new attacks, namely Sc. 4 in R5.2 and R6.2. Finally, it should

be noted here that none of the previous works employing similar techniques reported

performance metrics broken down by insider class for all three datasets. To the best

of my knowledge this thesis is the first in this regard.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main objective of this thesis is to explore the ability of GANs to augment imbal-

anced insider threat detection datasets to enhance detection in a supervised context.

Further, this thesis draws from past work and proposes an insider threat detection

system that:

1. Transforms user behaviour into a tabular representation by computing daily

percentiles of user behaviour statistics and counts [25]

2. Augments the datasets with realistic insider samples to solve the class imbalance

problem

3. Detects insider threats using supervised classifiers trained on the augmented

datasets

CGAN had difficulty generating samples for multiple insider scenarios due to

unstable training and limited samples for some classes. However, WCGAN-GP was

able to consistently learn the class distributions and generate realistic samples for

all insider classes. One of the most commonly reported issues with GANs is the

lack of training consistency and stability. However, over multiple runs, WCGAN-

GP converged every time despite variation in hyper-parameters. Two WCGAN-GP

architectures were tested, using SMOTE and an under-sampled baseline as benchmark

augmentation strategies. All strategies were tested against two feature sets (100

and 504), extracted from all three CERT datasets. Both WCGAN-GP architectures

performed similarly. The ShallowV1 architecture slightly outperformed DeepV1 on f1-

Score for the 100 feature dataset, while DeepV1 outperformed ShallowV1 on the 504

feature set. The 504 feature set had better results for all augmentation strategies,

but the WCGAN-GP architectures performed particularly well. This resulted in

67
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WCGAN-GP achieving the top macro-averaged F1-scores of 0.911, 0.617 and 0.614

for R4.2, R5.2 and R6.2 respectively. This shows that WCGAN-GP augmentation

enhanced classifier performance against insider threats with particularly low support

within the original training dataset. Although the performance drops from R4.2

to R5.2 and R6.2, the results demonstrate the frameworks ability to generalize to

new organizations and insider threats. Insider scenarios 2 and 4 however, had a

particularly poor detection rate amongst all strategies applied to R5.2 and R6.2. It

is left to future work to investigate what insider behaviour or changes in the dataset

creation led to the poor performance on these classes in particular.

5.2 Future Work

5.2.1 Framework Improvements

Due to the many components of the framework proposed in this thesis, not all avenues

were explored. Many permutations of hyper-parameters and approaches were only

tested during the initial research phase when only basic GANs and CGANs had

been implemented. These could be revisited using the WCGAN-GP architecture,

the stability of which could provide better results using different techniques. For

example, multi-class trained GANs could be compared against GANs trained using

binary (normal and insider) samples. It was also predicted that training a single

GAN against normal and all insider classes would help the network learn a shared

latent representation that would enrich the generated insider samples. If this is not

the case, normal behaviour could be completely removed from the training process.

Future works could also employ more sophisticated under-sampling techniques such

as tomek-links or sampling from clusters [11],[7].

Temporal relations in user behaviour could also be further explored in future

works. This work relied solely on a percentile sliding-window based approach to

capture temporal elements in the feature vectors [27]. Once the feature vectors were

constructed, the samples were shuffled randomly before classification. Future works

could potentially improve classification performance by using temporal methods to

capture the behaviour drift of an organization over time.
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To increase observability throughout training, a training hook could be intro-

duced to run augmented dataset generation and subsequent classification experiments

throughout the training process. Although costly, this would provide insights as to

the relation between performance and training duration. t-SNE provides a qualitative

guide to identify mode collapse, but augmentation validation could provide us with a

programmatic stopping condition to prevent overfitting. In addition, ROC curves and

AUC measures could be used to better understand the performance of each classifier.

Further, simplified static metrics such as MCC and Kappa Coefficient could be used

to reduce the complexity of the analysis while capturing the important features of

multi-class classification on an imbalanced dataset.

5.2.2 Dataset Generation

GANs could be leveraged in the synthetic dataset generation itself. This could be by

training on real-world insider threat scenarios and releasing public datasets consisting

of GAN generated samples. A reasonable amount of privacy could be ensured for

the organizations and their users by using differentially private GANs. The GANs

could also be used to replicate real world user behaviour in particular domains. This

work avoided NLP techniques because the content of web pages and emails were

created using bag-of-word models. Although this could be sufficient for some key-word

based approaches, it would not reward any approaches that looked to contextualize

the content. Recent advancements in GAN research have made them one of the

best class of models for generating text [20]. GANs could be used to produce more

realistic content that could reward context-sensitive NLP approaches to insider threat

detection. GANs could also be used to generate more realistic relationship graphs to

drive behaviour between users and systems [15]. GANs have a demonstrated ability

to learn and generate graphs [19]. This could be used to learn graph structures from

a wide variety of organization types and sizes and generate a broader test-bed for

exploring insider threat detection algorithms.

5.2.3 Adversarial Attacks

Goodfellow et al. showed that neural networks have a weakness against small per-

turbations in the input data that can lead them to misclassify the input [17]. Fladby
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et al. showed that such a vulnerability could be exploited by an attacker to perturb

network flow data and evade IDS systems [13]. Although such an attack is less likely

against a system with a human in the loop, it is plausible that an insider could modify

their behaviour as to evade detection. Future works should investigate the robustness

of existing unsupervised and supervised insider threat detection systems against such

attacks. GANs have been proven effective at generating adversarial samples with high

attack-success rates [5]. While this could be used to assess the robustness of existing

detection methods, it could also be used by threat actors. Luckily, GANs can also be

used to bolster the defences and robustness of machine-learning based classification

systems [36]. GAN-based anomaly detectors have also been proposed, and could lend

themselves well to creating robust insider threat detection systems [2], [3].
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Table A.1: CERT R4.2, 100 features, n samples=10000 - Insider Threat Detection
Data Augmentation Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3)
Measure F1 P R F1 P R F1 P R F1 P R

strategy classifier

Baseline

Logistic Regression 0.998 0.998 0.997 0.846 1.000 0.738 0.256 0.235 0.282 0.589 0.833 0.480
Random Forest 0.999 1.000 0.999 0.728 0.662 0.886 0.803 0.698 0.946 0.682 0.867 0.600
SVM 0.999 0.998 1.000 0.859 1.000 0.757 0.636 0.965 0.475 0.217 0.138 0.580
XGBoost 0.334 1.000 0.231 0.001 0.001 1.000 0.994 0.991 0.998 0.003 0.002 1.000

SMOTE

Logistic Regression 0.906 0.999 0.829 0.036 0.018 0.862 0.025 0.013 0.701 0.041 0.021 0.800
Random Forest 0.999 1.000 0.997 0.490 0.349 0.900 0.709 0.561 0.965 0.300 0.240 0.520
SVM 0.968 0.999 0.939 0.089 0.047 0.757 0.059 0.031 0.643 0.212 0.130 0.660
XGBoost 0.000 0.000 0.000 0.702 0.701 1.000 1.000 1.000 1.000 0.000 0.000 1.000

WCGAN-GP - DeepV1

Logistic Regression 0.985 0.998 0.973 0.054 0.028 0.762 0.105 0.061 0.389 0.049 0.025 0.720
Random Forest 0.999 1.000 0.998 0.522 0.389 0.895 0.764 0.637 0.958 0.377 0.280 0.660
SVM 0.993 0.998 0.987 0.187 0.111 0.771 0.219 0.161 0.444 0.132 0.075 0.660
XGBoost 0.000 0.000 0.000 0.001 0.001 1.000 0.020 0.010 1.000 0.034 0.017 1.000

Table A.2: CERT R5.2 - 100 features - Insider Threat Detection Data Augmentation
Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3) Insider (Sc.4)
Measure F1 P R F1 P R F1 P R F1 P R F1 P R

strategy classifier

Baseline

Logistic Regression 0.999 0.998 0.999 0.805 1.000 0.674 0.247 0.264 0.233 0.508 0.899 0.355 0.000 0.000 0.000
Random Forest 0.995 0.999 0.991 0.653 0.596 0.776 0.278 0.179 0.854 0.619 0.781 0.535 0.029 0.800 0.015
SVM 0.999 0.999 1.000 0.824 0.940 0.738 0.657 0.962 0.499 0.149 0.092 0.485 0.004 0.600 0.002
XGBoost 0.162 1.000 0.101 0.000 0.000 0.996 0.958 0.924 0.999 0.001 0.000 1.000 0.962 1.000 0.930

SMOTE

Logistic Regression 0.842 0.999 0.728 0.012 0.006 0.836 0.006 0.003 0.591 0.020 0.010 0.810 0.222 1.000 0.126
Random Forest 0.997 0.999 0.995 0.543 0.425 0.816 0.332 0.209 0.826 0.175 0.153 0.290 0.017 0.800 0.009
SVM 0.932 0.999 0.874 0.026 0.013 0.699 0.013 0.007 0.568 0.131 0.079 0.515 0.195 1.000 0.110
XGBoost 0.000 0.000 0.000 0.700 0.700 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000

WCGAN-GP - DeepV1

Logistic Regression 0.981 0.999 0.963 0.028 0.014 0.811 0.038 0.020 0.321 0.018 0.009 0.595 0.332 1.000 0.202
Random Forest 0.995 0.999 0.991 0.510 0.393 0.809 0.233 0.135 0.899 0.225 0.146 0.590 0.066 1.000 0.035
SVM 0.992 0.999 0.985 0.069 0.038 0.751 0.139 0.089 0.430 0.044 0.024 0.485 0.258 1.000 0.163
XGBoost 0.000 0.100 0.000 0.001 0.000 1.000 0.011 0.005 1.000 0.014 0.007 1.000 1.000 1.000 1.000

Table A.3: CERT R6.2 - 100 features - Insider Threat Detection Data Augmentation
Strategy Classification Results

Class Normal Insider (Sc.1) Insider (Sc.2) Insider (Sc.3) Insider (Sc.4) Insider (Sc.5)
Measure F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

strategy classifier

Baseline

Logistic Regression 1.000 1.000 0.999 0.770 1.000 0.633 0.010 0.005 0.285 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.900 0.900
Random Forest 1.000 1.000 1.000 0.684 0.740 0.667 0.139 0.076 0.865 0.450 0.650 0.350 0.000 0.000 0.000 1.000 1.000 1.000
SVM 1.000 1.000 1.000 0.760 0.929 0.667 0.605 0.688 0.540 0.004 0.002 0.250 0.000 0.000 0.000 1.000 1.000 1.000
XGBoost 0.278 1.000 0.191 0.000 0.000 1.000 0.613 0.510 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SMOTE

Logistic Regression 0.937 1.000 0.882 0.000 0.000 0.733 0.000 0.000 0.535 0.000 0.000 0.400 0.900 0.900 0.900 1.000 1.000 1.000
Random Forest 0.999 1.000 0.998 0.661 0.690 0.667 0.017 0.008 0.775 0.029 0.017 0.250 0.000 0.000 0.000 0.800 0.800 0.800
SVM 0.969 1.000 0.939 0.000 0.000 0.633 0.000 0.000 0.520 0.003 0.002 0.250 0.200 0.200 0.200 1.000 1.000 1.000
XGBoost 0.000 0.000 0.000 0.700 0.700 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

WCGAN-GP - DeepV1

Logistic Regression 0.973 1.000 0.948 0.000 0.000 0.767 0.000 0.000 0.310 0.000 0.000 0.300 1.000 1.000 1.000 0.900 0.900 0.900
Random Forest 1.000 1.000 0.999 0.396 0.296 0.667 0.057 0.030 0.905 0.017 0.008 0.600 0.000 0.000 0.000 1.000 1.000 1.000
SVM 0.989 1.000 0.978 0.000 0.000 0.667 0.002 0.001 0.410 0.001 0.001 0.250 0.700 0.700 0.700 1.000 1.000 1.000
XGBoost 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.001 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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(a) SMOTE Line Plot (b) SMOTE Box Plot

(c) WCGAN-GP ShallowV1 Line Plot (d) WCGAN-GP ShallowV1 Box Plot

Figure A.1: R4.2, 100 vs 504 feature set RF binary classification metrics as n samples
is increased for SMOTE and WCGAN-GP ShallowV1
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(a) Baseline - Multi-class (b) Baseline - Binary-class

(c) Smote - Multi-class (d) Smote - Binary-class

(e) WCGAN-GP ShallowV1 - Multi-class (f) WCGAN-GP ShallowV1 - Binary-class

(g) WCGAN-GP DeepV1 - Multi-class (h) WCGAN-GP DeepV1 - Binary-class

Figure A.2: CERT R5.2, 100 features: Sample confusion matrices for random forest
classification
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(a) Baseline - Multi-class (b) Baseline - Binary-class

(c) Smote - Multi-class (d) Smote - Binary-class

(e) WCGAN-GP ShallowV1 - Multi-class (f) WCGAN-GP ShallowV1 - Binary-class

(g) WCGAN-GP DeepV1 - Multi-class (h) WCGAN-GP DeepV1 - Binary-class

Figure A.3: CERT R6.2, 100 features: Sample confusion matrices for random forest
classification



80

(a) Baseline - Multi-class (b) Baseline - Binary-class

(c) Smote - Multi-class (d) Smote - Binary-class

(e) WCGAN-GP ShallowV1 - Multi-class (f) WCGAN-GP ShallowV1 - Binary-class

(g) WCGAN-GP DeepV1 - Multi-class (h) WCGAN-GP DeepV1 - Binary-class

Figure A.4: CERT R5.2, 504 features: Sample confusion matrices for random forest
classification
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(a) Baseline - Multi-class (b) Baseline - Binary-class

(c) Smote - Multi-class (d) Smote - Binary-class

(e) WCGAN-GP ShallowV1 - Multi-class (f) WCGAN-GP ShallowV1 - Binary-class

(g) WCGAN-GP DeepV1 - Multi-class (h) WCGAN-GP DeepV1 - Binary-class

Figure A.5: CERT R6.2, 504 features: Sample confusion matrices for random forest
classification
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Figure A.6: CERT R5.2, 100 features: Binary weight-averaged classification plots for
all augmentation strategies

Figure A.7: CERT R5.2, 100 features: Weight-averaged classification metrics as
n samples increases for all augmentation strategies
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Figure A.8: CERT R5.2, 100 features: Weight-averaged classification metrics at 1000
and 100000 samples per class for all augmentation strategies

Figure A.9: CERT R6.2, 100 features: Binary weight-averaged classification plots for
all augmentation strategies
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Figure A.10: CERT R6.2, 100 features: Weight-averaged classification metrics as
n samples increases for all augmentation strategies

Figure A.11: CERT R6.2, 100 features: Weight-averaged classification metrics at
1000 and 100000 samples per class for all augmentation strategies
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Figure A.12: CERT R5.2, 504 features: Binary weight-averaged classification plots
for all augmentation strategies

Figure A.13: CERT R5.2, 504 features: Weight-averaged classification metrics as
n samples increases for all augmentation strategies
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Figure A.14: CERT R5.2, 504 features: Weight-averaged classification metrics at
1000 and 100000 samples per class for all augmentation strategies

Figure A.15: CERT R6.2, 504 features: Binary weight-averaged classification plots
for all augmentation strategies
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Figure A.16: CERT R6.2, 504 features: Weight-averaged classification metrics as
n samples increases for all augmentation strategies

Figure A.17: CERT R6.2, 504 features: Weight-averaged classification metrics at
1000 and 100000 samples per class for all augmentation strategies
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