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Abstract

Aging in biological organisms is a complex process, involving changes at all levels of

functioning. No single pathway or mechanism is responsible for aging, leading to the

current understanding that aging is due to a number of interacting biological factors.

To understand this interconnected complex process, this thesis develops complex com-

putational models of aging. Using human data I develop network models of aging,

which model the aging process as a network of interacting components. These models

are used to understand the network structure of different aspects of health, as well as

make quantitative predictions of aging health outcomes and mortality. Using worm

data I develop an aging trajectory clustering model, which describes the dynamics of

worm aging with a low-dimensional latent space that exhibits simple dynamics and

clear clustering. This model is used to infer distinct worm aging phenotypes. Using

mice and human data, I develop a method to extract damage and repair processes

in aging. This approach is used to study the effects of age and interventions on the

processes of damage and repair.

This work is an attempt to build computational models of aging, and demonstrates

the potential of these types models in the study of aging in the future.

xii



List of Abbreviations and Symbols Used

Eq[f ] Expectation over the distribution p, Ep[f ] =∫
f(z)p(z)dz

N (µ, σ2) Normal distribution with mean µ and variance σ2

⊙ Element-wise multiplication of vectors, x ⊙ y =
[x1y1, ..., xNyN ]

C. elegans Caenorhabditis elegans, a small worm used as a
model organism

ACE inhibitor Angiotensin-converting enzyme inhibitor

ADL Activities of Daily Living

AUC Area Under ROC Curve

BA Biological Age

C-index Concordance index, the proportion of pairs of in-
dividuals where the model correctly predicts which
dies first.

CSHA Canadian Study of Health and Aging

DJIN model Dynamics Joint Interpretable Network model

ELBO Evidence Lower Bound

ELSA English Longitudinal Study of Aging

ER Erdos-Renyi Network

FI Frailty Index

FI-clin Clinical Frailty Index

FI-lab Laboratory Frailty Index

xiii



GEM Griffiths, Engen, and McCloskey stick breaking
process

GNM Generic Network Model

GRU Gated Recurrent Unit

IADL Instrumental Activities of Daily Living

IBS Integrated Brier Score

MCMC Markov-Chain Monte-Carlo

MFT Mean Field Theory

MICE Multiple Imputation by Chained Equations

NHANES National Health and Nutrition Examination Survey

RMSE Root Mean Square Error

RNN Recurrent neural network

ROC curve Receiver Operating Characteristic curve

SDE Stochastic Differential Equation

SSA

t-SNE t-distributed stochastic neighbour embedding, a di-
mensionality reduction technique

VAE Variational Auto-Encoder

WNM Weighted Network Model

WS Watts-Strogatz network

xiv



Chapter 1

Introduction

1.1 Motivation

Aging is the age-dependent functional decline of an organism, and is the leading risk

factor for almost all severe chronic diseases and disabilities [1]. Some of the most

common of these diseases are cardiovascular disease, cancer, and dementia. Even if it

was possible to fully treat or prevent some of these diseases, as individuals continue

to age it is overwhelmingly likely that they will eventually acquire another. This

suggests that instead of a “whack-a-mole” type of approach to treating these diseases

one-by-one, tackling the root cause through aging must be the ultimate long-term

strategy for achieving long and healthy lives [2,3]. To achieve this goal, we must first

understand aging.

Aging is a high-dimensional complex stochastic process, involving changes at all

physical scales of organism functioning. No single pathway or mechanism is respon-

sible for aging, leading to the current understanding that aging is due to a number

of interacting biological factors involving damage and repair mechanisms at the fun-

damental level [4, 5]. Computational models are essential to make predictions or

understand mechanisms within complex non-linear, stochastic, and interconnected

systems — such as aging [6–8]. This thesis focuses on the development of complex

computational models of aging.

Few complex models of aging have been developed to date, despite the understand-

ing of aging as a complex system. There have been descriptive models developed to

theoretically model and understand mortality [9–13], but these often do not include

health, and do not make quantitative predictions. Additionally, many current ap-

proaches to analyzing multi-dimensional aging data only summarize the health state

into one-dimension, such as the Frailty Index [14, 15], Frailty Phenotype [16], Bio-

logical Age [17,18], Physiological Dysregulation [19,20], and recent machine learning

1
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approaches [21]. These approaches are useful to develop health measures and quan-

tify the progression of aging, but they are not dynamical models that can simulate

or predict the future health trajectories of individuals, nor do they capture the full

multi-dimensionality of aging health outcomes.

This work represents an attempt to build complex computational models of aging

that can be used to confront, describe, and learn from aging data. This thesis involves

both descriptive models to describe and understand aging phenomena, and develops

predictive machine learning models to make quantitative predictions and understand

mechanisms of aging. One key challenge to developing machine learning models for

application in aging, and science more generally, is interpretability [22, 23]. Inter-

pretability is concerned with understanding why a model makes certain predictions,

which is key to a scientific understanding of aging.

In this thesis, the philosophy of “Scientific Machine Learning” or “Theory guided

data science” [24–26] is taken. In this approach, models use machine learning tech-

niques to learn unknown components of a complex model, while incorporating ideas

and concepts from the theory of aging to constrain the models. This incorporates

interpretable components into flexible machine learning models.

To paraphrase Box [27], all models are at least partially wrong but some can

nevertheless be useful. We cannot hope to build comprehensive models of aging, but

we can build models to aid in our understanding of aging. The goal of this thesis is to

develop models that can contribute towards answering three fundamental questions in

aging: how can we better understand the mechanisms or causes underlying observed

aging phenomena, how can we better predict outcomes at an individual or population

level, and, finally, how can we better intervene to decrease mortality and to improve

health during aging?

1.2 Dynamical Models of aging

In the review and perspective paper “The potential for complex computational models

of aging” [23], we introduced the concept of Dynamical models of aging, where the

dynamics of the health state is modelled as an individual ages until death. These are

the type of models developed in this thesis. Here I give an overview of the current

literature on dynamical models of aging.
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1.2.1 Network and redundancy models of mortality

One of the first computational models of aging developed was the “Reliability Theory

of Aging” developed by Gavrilov and Gavrilova [9]. The goal of this model was to

explain the exponential increase in mortality rate with age, known as Gompertz’ law

of mortality [28, 29].

This model attempts to explain Gompertz’ law in terms of the redundancy in

physiological systems. This model describes aging with a system of “cells” containing

many redundant components. Each component has a constant rate of failure, and a

cell fails when all of its components fail. When all cells in the system fail, mortality

occurs. Simulations of the model result in mortality rates vs age that are nearly

exponential [9], similar to Gompertz’ law.

The work of Vural et al. [30] builds off of this work, but instead considers a

network of redundant components that can fail (damage) or repair. Where the model

of Gavrilov and Gavrilova considered independent components that can fail, this

network model introduces interactions. In this model, components can randomly

damage, or damage when the majority of their connected neighbours damage. This

model is used to fit the mortality rate vs age curves of various model organisms,

including C. elegans (worms), Drosophilia (fruit flies), medflies, beetles, mice, and

tahr. This model has been used for the theoretical study of repair in aging [31] and

used to theoretically explain effect of aging interventions on C. elegans [32].

Figure 1.1a) shows the basic structure of redundancy and network models of ag-

ing. Components of the network fail or damage (red), leading to the accumulation

of damage, until death. Nodes can interact as indicated by the connections in the

network, propagating damage throughout the network. Although health can be mea-

sured with the number of damaged components in these models, these models instead

focused on mortality. We consider a similar style of network model in Chapters 3 and

4, but considering both health and mortality.

The Stochastic Process Model (SPM) of Yashin et al. [33–36] is a different type of

network model of aging. This model describes aging in terms of continuous stochas-

tic dynamics of the health state, coupled in a pairwise network. The current state of

health then is used to compute the mortality rate. In this model the state of health
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linear evolution of latent variables with age. Avchaciov et al. [21] describe aging

with stochastic one-dimensional latent variable dynamics. These models simplify the

dynamics of aging, reducing the dynamics to just the key components.

One of the difficulties with latent variable models is that in general, they will be

difficult to interpret since the latent variables will often be a complex combination

of the relevant information from all of the observed health variables. To solve this

problem, we can include structure in the latent variables, encouraging them to extract

desired features of the dynamics of aging. In Chapter 7, I develop a latent variable

clustering approach. This model clusters the latent dynamics of aging, inferring

distinct trajectories of aging.

1.2.3 Transition models

Transition models describe aging in terms of a set of discrete states representing dis-

tinct health states, and transitions between them, until a final transition to death.

These approaches simplify the dynamics of aging in terms of a finite set of states.

Figure 1.1c) shows an example of these models. Both forward and background transi-

tions between the states can occur. The redundancy and network models from Figure

1.1a) can also be thought of as transition models, since components transition from

healthy to damaged states.

Mitnitski et al. [38–41] model transitions between discrete health states and mor-

tality. This is done by modelling the transitions between different numbers of binary

health deficits (i.e. damageable health components). However this approach was

simplistic, and only parameterized the mean number of binary health deficits af-

ter a period of time, rather than explicit transition rates. Oswal et al. [42] model

transitions between movement states of C. elegans — where healthy worms exhibit

vigourous movement. This model is used to separately describe movement speed and

lifespan and the effects of interventions.

In Chapter 8 we directly infer the rates of damage and repair transitions from

longitudinal data. This approach is used to probe the processes of damage and repair

in aging.
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1.2.4 Biological models

Other approaches model specific aspects of aging biology. Karin et al. [43] model

the dynamics of the accumulation of senescent cells. Senescent cells cease dividing

and accumulate with age, and can cause chronic inflammation, increasing the risk

of aging-related diseases. They use this model to provide an explanation for the

exponential increase of the mortality rate in Gompertz’ law.

Podolskiy et al. [13] model the critical dynamics of gene regulatory networks.

Gene regulatory networks govern the expression of genes, determining cell function.

Their work studies the link between the instability of these regulatory networks and

mortality rate, and how this can give rise to Gompertz’ law.

This thesis does not involve such specific biological models that focus on a single

system, and instead focuses on more general models that incorporate multiple aspects

of aging health.

1.3 Outline and contributions

This thesis is in publication format with five related papers in separate chapters.

Two of these papers are published, one is under review, and two are in preparation

for submission. Each chapter is preceded by background information to thematically

link the chapters within the thesis.

Chapter 2 provides background to understand the contents of the thesis. It covers

concepts in aging research and an introduction to the modelling techniques used

throughout the rest of the thesis.

Chapters 3, 4, and 5 form a sequence of papers about the structure of physiologi-

cal interaction networks in aging. In Chapter 3 we use a previously developed [11,44]

descriptive network model of aging and indirectly probe the network structure, to

describe the hierarchical organization of damage propagation in aging. This work

is published as “Probing the network structure of health deficits in human aging”,

authored by Spencer Farrell (myself), Arnold Mitnitski, Olga Theou, Kenneth Rock-

wood, and Andrew Rutenberg in Physical Review E 98 032302 (2018) [45]. Two

review articles were also written involving previous work [11, 44] with this model,

where I was a co-author [46, 47].
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In Chapter 4 we build from the descriptive network model in Chapter 3 by making

it predictive of individual health and mortality. Using cross-sectional aging data, we

infer small networks of binary health variables. This work is published as “Gener-

ating individual aging trajectories with a network model using cross-sectional data”,

authored by Spencer Farrell, Arnold Mitnitski, Kenneth Rockwood, and Andrew

Rutenberg in Scientific Reports 10 19833 (2020) [48]. A review article was written

about the potential of computational models of aging, including the work of Chapter

4 and foreshadowing the work of Chapter 5, published as “The potential for complex

computational models of aging ”, authored by Spencer Farrell, Garrett Stubbings,

Kenneth Rockwood, Arnold Mitnitski, and Andrew Rutenberg in Mechanisms of

Ageing and Development 193 111403 (2021) [23].

In Chapter 5 we develop a new kind of network model, involving a larger network

of continuous health variables. This model is fit using a large longitudinal aging

dataset. This model is predictive of individual aging trajectories, and infers a network

describing the interactions between the health variables. This work is accepted for

publication as “Interpretable machine learning for high-dimensional trajectories of

aging health”, authored by Spencer Farrell, Arnold Mitnitski, Kenneth Rockwood

and Andrew Rutenberg in PLoS Compuational Biology.

Chapters 3, 4, and 5 form a large portion of the work in the thesis with the

central theme of modelling aging in terms of interaction networks of health variables.

A summary of this work is in Chapter 6.

Chapter 7 is a follow-up to Chapter 5, building off of this work. This work is not yet

ready for submission, but is an extension of the types of models discussed in Chapter

5. We explore an alternative to the models involving networks of interactions between

the health variables developed in the preceding chapters, using latent variables. This

model infers clusters of distinct aging trajectories.

In Chapter 8, we study the processes of damage and repair in aging. We use

mouse and human data and develop a new method to extract damage and repair

from longitudinal data. This work explores the effects of age and interventions on

these processes. This work is in preparation for submission, authored by Spencer

Farrell, Alice Kane, Elise Bisset, Susan Howlett, and Andrew Rutenberg.

Chapter 9 returns to the three fundamental questions discussed above: how can
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we better understand the mechanisms or causes underlying what we observe, how can

we better predict outcomes at an individual or population level, and, finally, how can

we better intervene to decrease mortality and to improve health during aging? This

chapter discusses the progress this thesis has made on these questions, and potential

future work.

Other publications I authored or co-authored during my PhD are not included in

this thesis: work on understanding deficit binarization in the Frailty Index, where I

was a co-author [49], and two first author publications on the statistical physics of

Single-file diffusion of particles in narrow channels and pores [50, 51].



Chapter 2

Background

This chapter provides useful background for the rest of the thesis. I do not attempt

to survey all aspects of aging research, data analysis, or machine learning, just some

key aspects and concepts.

2.1 Measures of aging

Aging involves the accumulation of damage that leads to eventual death [4,52]. This

process is stochastic and multi-dimensional, involving changes at all physical scales

of an organism [53, 54]. At the fundamental biological level, key hallmarks or pillars

of aging have been identified [4, 5]. However, how these interact and contribute to

observed functional decline is largely unknown [54–56].

The different aspects of aging are studied with biomarkers describing the relevant

features [54, 56, 57]. At the lowest biological level, these markers consists of ’omics

data such as genomics, epigenomics, proteomics, and others [58–60]. These mea-

sures are used to study aging at the biological level and have been used to identify

molecular pathways involved in aging, but large longitudinal studies containing these

measurements are rare. Many blood and urine biomarkers of aging have been iden-

tified including inflammatory markers, immune markers, markers of oxidative stress,

and other common blood test markers [57]. Clinical health deficits that measure

physical functioning and disability are also used as markers of aging [14, 16]. These

measures are the more readily apparent aspects of aging, such as difficulty walking,

difficulty performing daily activities, and organ dysfunction or disease.

2.2 Summary measures of aging

Since aging involves many changes in organism functioning, it is useful to have “overall

health” measures that can measure the progression of aging [61]. Since humans

9





11

health deficits are used, where there are multiple intermediate values of the deficit

representing partial damage, e.g. di ∈ {0, 0.5, 1} or di ∈ {0, 0.25, 0.5, 0.75, 1}. In all

cases, the FI has a lower bound of 0 and an upper bound 1, although the observed

maximum in observed data is typically around 0.6-0.8 [15, 64–68].

Different versions of the Frailty Index have been developed to measure different

aspects of health. This is achieved by choosing health deficits that capture the desired

features of health. Versions of the FI have been developed for physical or functional

health (called FI-clin) [14, 15, 69], for blood and urine test biomarkers (called FI-

lab) [49,70–72], and for mice [73]. For example, FI-clin typically contains deficits such

as “Difficulty walking”, “Require help bathing”, and “High blood pressure”, while

FI-lab typically contains blood markers variables such as “Glucose”, “Cholesterol”,

and “Hemoglobin” with cut-points to binarize based on healthy ranges [49]. Other

related measures of frailty exist such as the Fraily Phenotype [16] and Clinical Frailty

Scale [74], although this thesis uses the FI as a measure of frailty.

A common summary measure is “biological age” (BA). Estimates of BA are con-

structed by building a model to predict chronological age, with aging biomarkers as

covariates [17]. The predicted age is called biological age, and represents a mapping

between the observed biomarkers, and the expected value of age given the value of

these observed biomarkers. Positive differences between BA and chronological age

indicate accelerated aging, and negative differences between BA and chronological

age indicate slowed aging. BA can be estimated with any type of biomarker data,

but has had recent success with epigenetic data and other ’omics [18, 58–60, 75–77].

The advantage of biological age over other summary measures are its ease of inter-

pretation, as it has units of age, and it can be constructed from different types of

biological data to create distinct summary measures, summarizing different aspects

of health [78].

2.3 Model organisms in aging

Since humans live long lives and it is difficult to do controlled studies, aging is often

studied with model organisms [79]. The advantages of animal models of aging include

more closely controlled experiments, genetic manipulation, and easier to perform

interventions. The majority of this thesis uses human aging data, however Chapter
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7 uses data from C. elegans, and Chapter 8 uses data from mice.

C. elegans is a species of roundworm often used as a model organism due to its

short lifespan, ease of study, ease of manipulation, and well understood biology [80].

In aging research, techniques have been developed to perform large high-throughput

experiments to track time-series of health and lifespan of large numbers of worms by

automated imaging [32, 81–83]. This feature of C. elegans is exploited in Chapter 7,

where we make use of C. elegans time-series data.

While C. elegans enables high-throughput experiments, direct translation between

C. elegans and humans can be difficult [84]. It is more difficult to do large studies

with mice than C. elegans, however mice are used in aging research due to their

similarly to humans in comparison to other model organisms. This makes mice a

useful organism for the study of aging interventions [85, 86]. In Chapter 8, we use

mice data that includes interventions that have previously been shown to slow down

functional decline during aging [87,88].

Many other organisms are utilized in aging research, each with their own benefits

and downsides [89], however this thesis only uses data from humans, worms, and

mice.

2.4 Resilience and robustness in aging

In aging, the quantities of resilience and robustness can be distinguished. Broadly,

resilience corresponds to the ability to recover after deviation from a healthy physi-

ological state, and robustness corresponds to the ability to resist a deviation from a

healthy physiological state [90–94]. Resilience has been observed by measuring the

health state as a function of time following an acute stressor [95–97]. Measurement

of resilience can be of the length of time it takes to recover, or the deviation from the

original baseline physiological state after a less than full recovery. There has been less

work on the observation of robustness, although proxies such as the ability to resist

onset of disease have been used [20].

Figure 2.2 demonstrates these concepts. a) shows the perturbation of a physiolog-

ical state variable after a stressor, followed by recovery. Higher resilience results in a

faster recovery to baseline or a final recovered health state that is closer to the original

baseline. b) shows the perturbation of a physiological state variable after a stressor,
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deficits through damage 0 → 1 and repair 1 → 0 transitions. The evolution of

resilience and robustness is explored with age in Chapter 8 in both mice and humans,

and with interventions using longitudinal binary health deficits.

2.5 Complex networks

Since aging involves interconnected physiological systems, it is natural to model this

process with complex networks. A complex network is a set of nodes connected

together by edges or connections. In this work, nodes represent health variables

and connections between the nodes represent causal interactions between the health

variables.

The entire N node network can be described by an adjacency matrix, {aij}Ni,j=1.

The elements of this matrix indicate the presence of connections between the nodes.

Matrix elements aij take value 1 if there is connection from node j to node i, and is

0 otherwise. Undirected networks have a symmetric adjacency matrix with two-way

connections aij = aji, directed networks have an asymmetric adjacency matrix, with

connections potentially only going in one direction, e.g. j to i but not i to j.

The degree of a node is the number of edges connected to it, i.e. the number of

neighbours ki =
∑

j aij. Note that for a directed network, this is the in-degree, and

alternatively the out-degree can be defined by
∑

i aij. Another important quantity

is the average nearest neighbour degree, which is the average degree of the nodes

connected to a node ki,nn =
∑

j,l aijalj/ki (defined for a symmetric network).

Instead of specifying the full N × N adjacency matrix, a simple way to charac-

terize large complex networks is by their degree distribution p(k), representing the

probability that a randomly selected node has a degree k. Additionally, networks can

be characterized by their nearest neighbour degree distribution p(k′|k), which is the

probability that a randomly selected node that is connected to a node of degree k has

degree k′. The average degree of the network and average nearest neighbour degree

of a node of degree k follow from these distributions,

〈k〉 =
∑

k

kp(k), (2.1)

knn(k) =
∑

k′

k′p(k′|k). (2.2)
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A common complex network structure, and used in this thesis in Chapter 3, is

the Barabási-Albert preferential attachment network structure [98]. This network

structure has a power-law degree distribution p(k) ∼ k−α, with many low degree

nodes and few high degree nodes. An algorithm is available to generate these networks

with arbitrary exponent α and average degree 〈k〉 [99, 100]. This network is called a

“preferential attachment” network due to the iterative generation process; a node is

added at each iteration by connecting to existing nodes with probability proportional

to the degree of the existing node. This process leads to networks with a few high

degree nodes and many low degree nodes

An important characteristic of complex networks discussed in this thesis is the

assortativity of a network. Assortativity is the extent to which nodes in the net-

work are connected to nodes of a similar degree. An assortative network has many

nodes connected to other nodes of a similar degree. A disassortative network has

many low degree nodes connected to high degree nodes, leading to few big “hub”

nodes connected to many low degree nodes. The assortativity of a network can be

measured by observing the average degree of the neighbours of a node of degree k,

knn(k). For assortative networks, knn(k) increases with k, while it decreases with k

for disassortative networks. This is demonstrated in Figure 2.3.

The assortativity of networks generated by preferential attachment depends on

their exponent α, with α < 3 being disassortative, and α > 3 being assortative in

the large N limit [101]. However, we can arbitrarily modify the assortativity while

preserving the degree distribution by rewiring connections [102].

These network structures are explored in the context of a complex network model

of aging in Chapter 3.

2.6 Information entropy and mutual information

Shannon entropy or information entropy, represents the amount of uncertainty in

the possible outcomes in a random variable. Given a random variable Y and its

probability distribution p(y), the information entropy of this variable is computed in

the same way as the Gibbs entropy in statistical physics (kb = 1),

H[Y ] = −
∑

y

p(y) log p(y). (2.3)
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are strongly related, the mutual information between them is large. Note, the mutual

information is symmetric, I(X;Y ) = I(Y ;X).

Care needs to be taken when computing entropy from noisy data. For a continuous-

valued variable Y , estimating H[Y ] by binning to estimate p(y) then applying Equa-

tion 2.3 is known to be a poor estimate of the entropy [103]. Instead, an approach

based on ordered sample-spacings is used in this thesis [104–107].

Mutual information is used to characterize the amount of information in the Frailty

Index in Chapter 3.

2.7 Feed-forward neural networks

In many areas of data-based modelling, there are unknown functions that need to

be fit or learned. In some cases we have knowledge of the particular problem that

restricts functions to a specific form, for example in physics often the form of a

function is known up to the value of physical constants, which can be then fit from

data. However in many problems, no specific form of the function is known, and so the

unknown function to be fit needs to be flexible enough to capture the desired behavior.

Neural networks are one such method of building arbitrarily flexible functions, with

parameters that are fit or learned from the data. The field of “Deep Learning” builds

models with neural networks, and has become the standard approach to building

complex machine learning models [108].

Neural networks consist of a series of linear transformations, each followed by a

non-linear activation function. For an input vector x ∈ R
N , a feed-forward neural

network produces an output y ∈ R
M by transforming the input with a linear transfor-

mation and non-linear activation function between each intermediate layer hl ∈ N l.

Applying all layers, this produces an output in the following way,

h0 = x, (2.7)

hl = gl(Wlhl−1 + bl), Wl ∈ R
Nl×Nl−1 , bl ∈ R

Nl−1 , l = 1...L, (2.8)

y = hL. (2.9)

The functions gl are the non-linear activation functions, Wl are the weight matrices,

and bl are the bias vectors. These weight matrices and bias vectors are free parameters
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to be learned from data. Typically activation functions of the form g(z) = max (0, z)

or similar are used for the hidden layers (called ReLU, or Rectified Linear Units).

For the output layer, the activation function is used to map the output to a desired

specific domain, for example a sigmoid y = 1/(1 + e−z) can be used for y ∈ [0, 1]M ,

a soft-plus y = log (1 + ez) can be used for positive outputs y ∈ (0,∞)M , or a linear

activation y = z for real-valued outputs y ∈ (−∞,∞)M . A diagram of a feed-forward

neural network is shown in Figure 2.4.

Increasingly flexible functions can be represented in this way by increasing the

depth of the network L, or increasing the width of the layers {Nl}Ll=1. With this form,

arbitrary functions can be learned, given a large enough neural network [109]. In this

thesis, neural networks are used to parameterize unknown functions within larger

models of aging. For an example of this application in other parts of science, neural

networks have been used to represent unknown terms in partially-known differential

equations, and the neural network parameters are then fit from data [24]. This

approach allows scientific knowledge to be included within flexible models with neural

networks.

Neural networks are trained with variations of stochastic gradient descent, which

requires derivatives of the output with respect to the parameters of the layers. The

analytic derivatives of neural network layers are computed with the back-propagation

algorithm, which uses the chain rule to recursively compute derivatives of every layer

[110]. Modern computational frameworks compute these derivatives automatically,

and so sophisticated differentiable models that combine neural networks with other

model components can be easily implemented and trained.

For gradient-based optimization, this thesis uses the Adam optimizer [111], which

is a variant of stochastic gradient descent. This method computes an adaptive learning

rate from estimates of moments of the gradient, which allows it to improve gradient

estimates from noisy samples.

2.8 Recurrent Neural Networks

Section 2.7 discussed feed-forward neural networks, which pass a vector input x

through a series of linear transformation layers and non-linear activation functions

to arrive at the output. Recurrent neural networks (RNN) differ by possessing an
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2.9 Maximum likelihood fitting

The likelihood p(Y|X,θ) is the probability of observing data Y = {y(i)}Mi=1 and X =

{x(i)}Mi=1 from a model with parameters θ. Maximum likelihood fitting regards the

log-likelihood as a function of the parameters, L(θ) = log p(Y|X,θ), then maximizes

this function to find the optimal parameters. These optimal parameters result in

the highest likelihood for the data for the specific model. Typically, data-points are

assumed independent in the likelihood, p(Y|X,θ) = ∏
i p(y

(i)|x(i),θ).

The form of the likelihood is assumed as part of the model. For example, a

Gaussian likelihood can be assumed for a model with a mean computed with a neural

network and constant variance,

p(y(i)|x(i),θ) = N (y(i)|µ(x(i);θ),σ2). (2.11)

The maximum log-likelihood for this model reduces to the minimum squared deviation

between the observed value and the mean,

argmaxθ L(θ) = argminθ

∑

i

|y(i) − µ(x(i);θ)|2, (2.12)

leading to least-squares fitting. For neural network models, the negative log-likelihood

can be minimized by stochastic gradient descent.

2.10 Bayesian modelling

A Bayesian approach is used to formulate the probabilistic models discussed in Chap-

ters 5, 7, and 8. Given a dataset Y and X and a model with parameters θ, this

approach makes use of Bayes’ Theorem,

p(θ|Y,X) =
p(Y|X,θ)p(θ)

p(Y|X)
, (2.13)

which formulates the posterior distribution of the parameters p(θ|Y,X) in terms of

the likelihood p(Y|X,θ) (as in Section 2.9), prior distribution of parameters p(θ),

and normalization factor p(Y|X) =
∫
p(Y|X,θ)p(θ)dθ known as the model evidence.

The posterior distribution is the main quantity of interest, representing the most

probable values of the model parameters given the observed data. The Bayesian ap-

proach is appealing because the posterior distribution naturally includes uncertainty
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for the model parameters with a distribution of possible values, rather than just a

single estimate of parameters that maximize the likelihood. Additionally, uncertainty

for model predictions y′ at a new data point x′, given the observed data Y and X

can be also estimated by integrating the likelihood of this prediction p(y′|x′,θ) over
the posterior distribution of parameters p(θ|Y,X),

p(y′|x′,Y,X) =

∫
p(y′|x′,θ)p(θ|Y,X)dθ. (2.14)

Similar to the confidence interval in frequentist statistics, posterior distributions

are generally summarized by computing the median and the interval of the posterior

containing α% of the mass of the distribution, called credible intervals. The α%

credible interval of a parameter contains the true value of the unknown parameter

at probability α%. Note that this is distinct and more intuitive than a frequentist

confidence interval, where α% of the confidence intervals computed from repeated

samples would include the true value of the parameter.

The prior distribution p(θ) incorporates prior knowledge of the value of the model

parameters. If specific knowledge of the value of the parameter is known, priors can

be placed around that value. Otherwise, priors can be used to obtain well-behaved

models. Typically, this is done by placing narrow priors on parameters around zero,

e.g. we may not know where the exact value of a parameter will lie, but we know it

is extremely unlikely its value will be > 103. This can enforce sparsity in the model,

limit extreme values of parameters, and prevent overfitting by regularizing.

The Bayesian approach is also a natural approach for learning latent variable

models. These approaches are discussed below.

2.11 Markov-chain Monte-Carlo sampling

The calculation of the normalization factor in Bayes’ Theorem,

p(Y|X) =

∫
p(Y|X,θ)p(θ)dθ, (2.15)

can only be done analytically for the simplest of models, and can be seen as analogous

to computing the partition function in statistical physics. Markov-chain Monte-Carlo

(MCMC) is a method of sampling the posterior distribution without requiring the

computation of this normalization factor. This allows the computation of integrals of
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the posterior distribution by Monte-Carlo integration in cases where the normalization

factor is unknown,

∫
f(θ)p(θ|Y,X)dθ ≈ 1

N

N∑

i=1

f(θi), θi ∼ p(θ|Y,X), (2.16)

where {θi}Ni=1 are MCMC samples from the posterior p(θ|Y,X), and f(.) is an arbi-

trary function of which we want to integrate over the posterior, e.g. Equation 2.14

where f(θ) = p(y′|x′,θ).

MCMC methods are stochastic processes that generate samples in such a way that

the equilibrium distribution of the process is the desired posterior distribution. In

this thesis the No U-Turn Sampler (NUTS) from the Stan probabilistic programming

language [113] is used for MCMC sampling in Chapter 8. NUTS makes use of deriva-

tives of the likelihood to speed up sampling, unlike much slower random-walk based

Monte-Carlo methods such as the Metropolis-Hastings algorithm [114], and so is well

suited for continuous valued parameters.

2.12 Variational Bayesian Inference

In high-dimensional scenarios with models containing many parameters and/or large

datasets, even MCMC is computationally intractable. In particular when models

include neural networks, MCMC will not be a viable option. A computationally

faster approach is to use a parametric approximation to the posterior distribution

instead of sampling it with MCMC.

A parametric approximation to the posterior is made by assuming a particu-

lar form of the approximate posterior q(θ;φ) parameterized by the new variational

parameters φ. The goal is to optimize the variational parameters so that this ap-

proximation is close to the true posterior, q(θ;φ) ≈ p(θ|Y,X).

A common way to do this is to minimize the KL-divergence between the two
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distributions,

min
φ

KL(q(θ;φ)||p(θ|Y,X)) = min
φ

∫
q(θ;φ) log

q(θ;φ)

p(θ|Y,X)
dθ, (2.17)

= min
φ

Eq[log q(θ;φ)− log p(θ|Y,X)], (2.18)

= min
φ

{
Eq[log q(θ;φ)]− Eq[log p(θ,Y,X)] + log p(Y|X)

}
.

(2.19)

To simplify the notation, expectations over the distribution q(θ;φ) have been written

as Eq[.]. The last term log p(Y|X) is the difficult to calculate posterior normalization

factor or model evidence from Equation 2.15. This term does not involve φ, and so

can be dropped from the optimization. The ability to drop this difficult to calculate

term is key to the variational approach. Thus, the variational approximation is found

by maximizing the following function with respect to the variational parameters φ,

ELBO(φ) = Eq[log p(θ,Y,X)]− Eq[log q(θ;φ)]. (2.20)

This is known as the Evidence Lower Bound (ELBO), since it bounds the model

evidence, log p(Y|X) ≥ ELBO(φ). This approach is equivalent to variational free-

energy minimization in statistical physics, with ELBO(φ) representing the negative

variational free-energy and log p(Y|X) representing the exact negative free-energy.

To see this, note that the last term in 2.20 is the entropy of q(θ;φ), as defined

in Equation 2.3, and the first term is the expectation of the negative energy from a

Boltzmann distribution p(Y|X,θ) = e−E(Y,X;θ)/Z(θ) up to a constant in φ, logZ(θ)

(setting β = kb = 1). This approach can easily be applied to the Ising model by

assuming an independent distribution of spins q to compute the mean-field theory

solution [115].

Another way to interpret the ELBO is to write it in terms of an expectation of

the model likelihood and a KL-divergence between the posterior and prior for θ,

ELBO(φ) = Eq[log p(Y|X,θ)]−KL(q(θ;φ)||p(θ)). (2.21)

This way, the variational inference approach can be seen as maximizing the expec-

tation of the likelihood with samples from the posterior q(θ;φ), while including a

penalty term to enforce the posterior to be close to the prior p(θ) with the KL-

divergence.
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The simplest way to construct a variational approximation is with a mean-field

approximation – where all parameters are assumed to be independent in the posterior,

q(θ;φ) =
∏

i

q(θi;φ). (2.22)

For real-valued θ, a simple mean-field approach is to use one-dimensional Gaussian

distributions for each q(θi;φ), where φ is the set of means and standard deviations of

these Gaussians {µi, σi}i. The inference then proceeds by maximizing the ELBO for

these means and standard deviations. Mean-field approximations can be progressively

improved by incorporating structure into the factorization of q(θ), but how this is

done depends greatly on the structure of the model.

The variational approach is computationally much faster than MCMC because

the approximate posterior is found by just optimizing the variational parameters φ,

rather than adequately sampling a high-dimensional parameter space.

Variational Bayesian inference is used in Chapters 5 and 7.

2.13 Latent variable modelling and variational auto-encoders

One key application of variational Bayesian inference used in this thesis is the Vari-

ational auto-encoder (VAE) [116, 117]. The variational auto-encoder forms the basis

of the models developed in Chapters 5 and 7, and forms the basis of a useful generic

framework for Bayesian latent-variational modelling called deep latent variable mod-

elling.

Latent variable models aim simplify a problem by introducing a latent variable z.

For observed variables x, latent variables decompose the likelihood,

p(x|θ) =
∫
p(x|z,θ)p(z)dz. (2.23)

Rather than directly modelling p(x|θ), a latent variable model allows the development

of a simpler model for p(x|z,θ). For example, if x(t) exhibits complex dynamics in

time, it can be simpler to model dynamics of a latent variable z(t), and then transform

this latent variable to the observed variables z(t) → x(t).

To fit a latent variable model, we need to infer the latent variables from the data

p(z|x), which can be recognized as the posterior distribution of z. So we can use

Bayesian inference for these latent variable models.
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of the joint distribution in Equation 2.27.

In this model, we want to infer the unobserved latent variable z(m) for each ob-

served input x(m). To do this, we need to perform Bayesian inference by computing

the posterior p(z(m),θ|x(m)). We build a variational approximation that follows the

factorization shown in Figure 2.6(right). This has the form

q(z(m),θ|x(m);φ) = q(z(m)|x(m);φ)q(θ;φ). (2.29)

Assuming a real-valued z, the simplest approach is to assume independent Gaussian

distributions (mean-field approximation as above) for z. Since this distribution de-

pends on the input x, the means and standard deviations of this distribution need to

depend on x. These can be estimated with neural networks for µ and σ,

q(z|x) = N (µ(x;φ),σ(x;φ)2). (2.30)

The neural network weights and biases along with the parameters of q(θ;φ) are

the variational parameters φ to be optimized by maximizing the ELBO as above in

Equation 2.20,

ELBO(φ) =
∑

m

{
Eq[log p(x

(m)|z(m),θ)] + Eq[log p(z
(m))]− Eq[log q(z

(m)|x(m);φ)]
}

+Eq[log p(θ)]− Eq[q(θ|φ)]. (2.31)

The sum goes over all individuals (assuming independent individuals in the likeli-

hood). This model is known as a variational auto-encoder. Generically, this model

can be used as a framework for many different types of latent-variable models.

Note, often the variational posterior distribution of the global parameters q(θ;φ)

is implicitly set to be a delta function for some or all of the parameters, q(θ;φ) =

δ(θ−φ). Together with a uniform prior p(θ), this has the effect of including some of

the parameters θ directly as variational parameters φ to be optimized (rather than

parameterizing a distribution of θ), simplifying the posterior [118]. This step is often

done implicitly without indication.

2.14 Stochastic differential equations

A stochastic differential equation (SDE) describes the continuous-time evolution of

a random variable, which takes the form of a differential equation that includes a
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stochastic term. An SDE is written,

dx(t) = f(x, t)dt+ σ(x, t)dB(t), (2.32)

where f represents the drift term, and σ represents the strength of the diffusive

noise. The stochastic component B(t) is a standard Brownian motion with Gaussian

increments with variance dt, dB(t) = B(t + dt) − B(t) ∼ N (0, dt). Solutions of an

SDE are realizations of the stochastic process described by the SDE.

2.15 Survival Analysis

Survival analysis is the analysis of time-to-event data. This naturally applies to the

field of aging, where we have time-to-death or age-of-death data. The main quantity

in survival analysis is the Survival function or Survival probability. The survival

function S(t) is the probability that an individual is alive at time t (e.g. has yet to

have the event in question). The typical goal in survival analysis is to build models

to estimate the survival function, or estimate the relative difference in the survival of

distinct groups (e.g. the effect of treatment vs control for a drug).

Survival models are often best described by hazard rates. When the event in

question is death, hazard rates can be called mortality rates. The hazard rate h(t) is

the instantaneous rate of the event occurring, and is related to the survival function

in the following way,

S(t) = exp (−
∫ t

t0

h(t′)dt′). (2.33)

With time-to-event data, the goal is to fit the hazard rate of a survival model

h(t;θ) with parameters θ. However, it is common that many of the observations are

censored — the period of observation for a subject concludes before the event (i.e.

death) occurs, which is known as right censoring. Fitting a survival model requires

modifying the likelihood to take this into account.

Consider a set of observation times for M different individuals {ti}Mi=1 and cen-

soring indicators {ci}Mi=1, where the death either occurs (ci = 0) or the individual is

censored (ci = 1). This means that ti represents a time of death when ci = 0, and is

the time that the individual was last known to be alive if ci = 1. Assuming a survival
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model with parameters θ, the likelihood takes the form,

p({ti}Mi=1, {ci}Mi=1|θ) =
M∏

i=1

[p(ti|θ)](1−ci)[p(t > ti|θ)]ci , (2.34)

=
M∏

i=1

h(ti|θ)(1−ci)S(ti|θ). (2.35)

Additionally, interval censored data is possible. In this case, observations are

made at discrete time points, and it is known that the event occurs between two

observation times, t ∈ (tLi , t
U
i ). For interval censored data, the likelihood becomes,

p({tLi }Mi=1, {tUi }Mi=1|θ) =
M∏

i=1

p(tLi < t < tUi |θ), (2.36)

=
M∏

i=1

[S(tLi |θ)− S(tUi |θ)]. (2.37)

Interval censored data is encountered in Chapter 8.

One of the most common survival models seen in the medical literature is the Cox

Proportional hazards model. In this model, covariates x are linearly related to the

log hazard rate,

h(t,x;θ) = h0(t) exp (θ · x). (2.38)

h0(t) is the baseline hazard rate, and can be any arbitrary function. To fit the Cox

Proportional hazards model by maximum likelihood, the the baseline hazard is not

required to be specified [119]. After the parameters θ are fit, the baseline hazard can

be determined non-parametrically with the Breslow estimator [120]. For a Bayesian

proportional hazards model, the baseline hazard needs to be specified in terms of

parameters h0(t;θ). This is typically done with splines [121], and this approach is

taken in Chapter 8.

In the proportional hazards model, a unit increase in a covariate xi is multiplicative

with respect to the hazard rate. This allows for the independent effects of covariates

to be easily interpreted. For example, if there is a unit increase in covariate xi and all

others are held constant, the proportional increase of the hazard rate only depends

on the parameter θi,
exp (θ·x+θi)
exp (θ·x)

= exp (θi). This is known as the hazard ratio for

covariate xi.

The Cox model is used to compare with the models developed in this thesis in

Chapters 4 and 5.



Chapter 3

Probing the network structure of health deficits in human

aging

3.1 Background

Aging is widely considered to be the accumulation of damage with age [4, 122–124].

This suggests a model of propagating damage, where damage to a physiological system

spreads to other interacting systems within the organism. In previous work, we

developed a complex network model to describe this process of damage accumulation

[11,44]. Other network models of aging have also been developed by other researchers

[30–32]. While these other models focus on mortality, in our model we also focus on

health, as measured by the Frailty Index.

In our model, nodes in a complex network represent damageable components

of health. Nodes stochastically damage, which increases the damage rates of their

neighbouring nodes. This results in the propagation of damage through the network,

leading to eventual mortality when the two specific “mortality nodes” are damaged.

In previous work, we demonstrated that this model captures population mortality

rates and Frailty Index scores, and we used the model to quantify the information

gained about mortality when knowing the Frailty Index [125]. This model can be

used to generate a large simulated aging population, which allows the exploration of

the relationships between aging, physical frailty, and mortality, which was discussed

in two of our review papers [46, 47].

The nodes in this model are generic binary health attributes. These nodes are

generic in the sense that they do not correspond to any specific physiological health

variable, but are the abstract representation of a health component that is damaged

during aging. This leads to the name of this model used in this thesis, the “generic

network model” (GNM). These nodes are binary in the sense that they can either

be in an undamaged state, or a damaged state. Since the nodes in the network are

30
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generic, this is a descriptive model of aging, which does not make predictions for

individuals.

The model requires the specification of the network structure. Previous work with

this model used the Barabási-Albert preferential-attachment network structure [98],

which contains few “hub” nodes with high degree, and many low degree nodes, forming

a power-law degree distribution p(k) ∼ k−α. With this network structure, the model

is able to simulate populations with mortality and Frailty index scores that agree

with population-level data. The only tuning of the network structure done was the

adjustment of the degree distribution exponent α and the average degree 〈k〉. This

motivates the questions of how important the specific structure of the network is, what

are the important features of the network structure, and ultimately which network

structures best capture population aging phenomena.

Distinct Frailty Indexes can be constructed for clinical markers (FI-clin) and for

blood-test lab biomarkers (FI-lab). These show distinct behaviour vs age, with FI-

lab having higher scores at younger ages, which suggests blood biomarker deficits

precede clinical measures of frailty [71, 126, 127]. Assuming that different types of

health deficits correspond to different types of nodes in the network, these two distinct

Frailty Indexes allow us to probe the network. This motivates the questions of which

nodes in the network correspond to FI-clin and FI-lab, and how does the network

structure control the relation between these types of health deficits? This can offer

an explanation of the differences between FI-clin and FI-lab in terms of the network

structure.

In this chapter, we indirectly probe the network by examining the behaviour of the

simulated aging population from the model for a variety of different network struc-

tures. Additionally, we develop a mean-field theory of the dynamics to specifically

isolate the key structural features of the network.

This chapter presents the paper “Probing the network structure of health deficits

in human aging” published in 2018 [128]. Note that the notation, figure numbers,

and reference numbers have been modified from the published version for consistency

within this thesis.
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3.2 Introduction

Accumulation of damage is widely accepted as the mechanism behind organismal

aging [52]. Even in model organisms, with controlled environment and genotype, there

are large individual variations in lifespan and in the phenotypes of aging [53, 129].

While many mechanisms cause specific cellular damage [?], no single factor fully

controls the process of aging. This suggests that the aging process is stochastic and

results from a variety of damage mechanisms.

The variability of individual damage accumulation results in differing trajectories

of individual health and in differing individual life-spans, and is a fundamental aspect

of individual aging. A simple method of quantifying this individual damage is the

Frailty Index (FI) [14, 15]. The FI is the proportion of age-related health issues

(“deficits”) that a person has out of a collection of health attributes. The FI is used

as a quantitative tool in understanding the health of individuals as they age. There

have been hundreds of papers using an FI based on self-report or clinical data, both

for humans [130] and for animals [131]. Individuals typically accumulate deficits as

they age, and so the FI increases with age across a population. The FI captures the

heterogeneity in individual health and is predictive of both mortality and other health

outcomes [69,132–134].

In previous work we developed a stochastic network model of aging with damage

accumulation [11, 44]. Each individual is modeled as a network of interacting nodes

that represent health attributes. Both the nodes and their connections are idealized

and do not specify particular health aspects or mechanisms. Connections (links)

between neighboring nodes in the network can be interpreted as influence between

separate physiological systems. In our model, damage facilitates subsequent damage

of connected nodes. We do not specify the biological mechanisms that cause damage,

only that damage rates depend on the proportion of damaged neighbors. Damage

promotes more damage and lack of damage facilitates repair. Rather than model

the specific biological mechanisms of aging, we model how damage to components of

generic physiological systems can accumulate and propagate throughout an organism

— ending with death.

Even though our model includes no explicit age-dependence in damage rates or

mortality, it captures Gompertz’s law of mortality [28, 135], the average rate of FI
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accumulation [14, 66], and the broadening of FI distributions with age [64, 65]. By

including a false-negative attribution error (i.e. a finite sensitivity) [44], we can also

explain an empirical maximum of observed FI values – typically between 0.6 − 0.8

[15, 64–68]. This shows that age-dependent “programming” of either mortality or

damage rates are not necessary to explain these features [52].

We had chosen the Barabási-Albert (BA) preferential attachment algorithm [98]

to generate our scale-free network, both due to the simplicity of the BA algorithm

and due to the numerous examples of these scale-free networks in biological systems

[136]. While we had constrained the scale-free network parameters with the available

phenomenology, we did not examine whether other common network structures could

also recover the same phenomenology. More specifically, we did not identify which

observable behavior sensitively depends on the network structure.

Ideally, we could directly reconstruct the network from available data. However,

the direct assessment of node connectivity from observational data is a challenging

and generally unsolved problem. Nevertheless, we show here that we can reliably

reconstruct the relative connectivity (i.e. the rank-order) of high degree nodes in

both model and in large-cohort observational data by measuring mutual dependence

between pairs of nodes. This reconstruction allows us to qualitatively confirm the

relationship between the connectivity of nodes and how informative they are about

mortality [44]. Specifically, we demonstrate that a network with a wide range of node

connectivities (such as a scale-free network) is needed to describe the observational

data.

Recently, the FI approach has been extended to laboratory [70] and biomarker

data [71] and used in clinical [137, 138] and population settings [72]. Two different

FIs have been constructed to measure different types of damage, Fclin, with clinically

evaluated or self-reported data, and Flab, with lab or biomarker data. Clinical deficits

are typically based on disabilities, loss of function, or diagnosis of disease, and they

measure clinically observable damage that typically occurs late in life. Lab deficits

or biomarkers use the results of lab tests (e.g. blood tests or vital signs) that are

binarized using standard reference ranges [139]. Since frailty indices based on labora-

tory tests measure pre-clinical damage, they are distinct from those based on clinical

and/or self-report data [70,72].
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Even though they measure very different types of damage, both FIs are similarly

associated with mortality [70,140]. Earlier observational studies have found (average)

〈Flab〉 larger than 〈Fclin〉 [70,71,140]. However, a study of older long-term care patients

has found 〈Flab〉 less than 〈Fclin〉 [141]. While differences between studies could be

attributed to classification differences, a large single study including ages from 20-85

from the National Health and Nutrition Examination Survey (NHANES) [72] also

found that 〈Flab〉 was higher than 〈Fclin〉 at earlier ages, but below at later ages.

The observed age-dependent relationship (or “age-structure”) between Flab and

Fclin challenges us to examine whether network properties can determine similar age-

structure in model data. We aim to determine what qualitative network features are

necessary to explain age-structure. Our working hypothesis is that low-degree nodes

should correspond to Flab, just as high-degree nodes correspond to Fclin [11, 44].

Complex networks have structural features beyond the degree distribution. For

example, nearest-neighbor degree correlations describe how connections are made

between specific nodes of different degree [142]. Accordingly, we consider networks

with three types of degree correlations: assortative, disassortative, and neutral [142,

143]. Networks with assortative correlations tend to connect like-degree nodes, those

with disassortative correlations tend to connect unlike-degrees, and those with neutral

correlations are random. We probe and understand the internal structure of these

networks by examining Fhigh and Flow, i.e. damage to high degree nodes and damage

to low degree nodes.

Since networks have many properties other than degree distribution and nearest-

neighbor degree correlations, we have also constructed a mean-field theory that only

has these properties. With it we can better connect specific network properties with

qualitatively observed phenomenon, within the context of our network model.

We show how network properties of degree distribution and degree correlations

are essential for our model to recover results from observational data. Doing so, we

can explain how damage propagates through our network and what makes nodes

informative of mortality. This allows us to understand the differences between Flow

and Fhigh, or between pre-clinical and clinical damage in observational health data.
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3.3 Methods

3.3.1 Stochastic model

Our model was previously presented [44]. Individuals are represented as a network

consisting of N nodes, where each node i ∈ {1, 2, . . . , N} can take on binary values

di ∈ {0, 1} for healthy or damaged, respectively. Connections are undirected and all

nodes are undamaged at time t = 0.

A stochastic process transitions between healthy and damaged (di = 0 and di = 1)

states. Healthy nodes damage with rate Γ+ = Γ0 exp (fiγ+) and damaged nodes

repair with rate Γ− = (Γ0/R) exp (−fiγ−). These rates depend on the local frailty

fi =
∑

j∈N (i) dj/ki, which is the proportion of damaged neighbors of node i. This

local frailty fi quantifies local damage within the network. Transitions between the

damaged and healthy states of nodes are implemented exactly using a stochastic

simulation algorithm [144, 145]. For each step, the algorithm samples the time until

the next transition from an exponential waiting-time distribution with rate equal to

the sum of all transition rates. The particular transition (i.e. which node) performed

is sampled from the set of all possible transitions. The probability of choosing a

particular transition is determined by its transition rate. Individual mortality occurs

when the two highest degree nodes are both damaged.

We generate our default network “topology” using a linearly-shifted preferential

attachment algorithm [99, 100], which is a generalization of the original Barabási-

Albert algorithm [98]. This generates a scale-free network P (k) ∼ k−α, where the

exponent α and average degree 〈k〉 can be tuned. (The minimum degree varies as

kmin = 〈k〉/2.) This network is highly heterogeneous in both degree ki and nearest-

neighbor degree (nn-degree) ki,nn =
∑

j∈N (i) kj/ki =
∑

j,l aijalj/ki.

Since we are concerned with the properties of individual nodes and groups of

nodes, we use the same randomly generated network for all individuals. As a result,

connections between any two nodes are the same for every individual. To ensure that

our randomly generated network is generic, we then redo all of our analysis for 10

different randomly generated networks. All of these networks behave qualitatively the

same, and so we present results averaged over them. Previously [44], we generated a

distinct network realization for each individual.
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We have used observational data for mortality rate and FI vs age to fine-tune

the network parameters [11, 44]. A systematic exploration of parameters was done

in previous work [11, 44]. Most of our parameterization (N = 10000, α = 2.27,

〈k〉 = 4, γ− = 6.5) is the same as reported previously [44]. However, three parameters

(Γ0 = 0.00183/yr, γ+ = 7.5, R = 3) have been adjusted because we now disallow

multiple connections between pairs of nodes during our network generation. This

simplifies analysis and adjustment of the network topology, but would also affect

mortality rates (see e.g. Fig. 3.15 below) without the parameter adjustment. Other

network topologies, see Sect. 3.4.4, also use this “default” parameterization unless

otherwise noted.

Typically, binary deficits have a finite sensitivity [146], while our model gives us

exact knowledge of when a node damages. We have modeled this finite sensitivity

by applying non-zero false-negative attribution errors to our raw model FI [44]. This

has no effect on the dynamics or on mortality, but does affect the observed FI scores.

For any raw FI f0 =
∑

i di/n from n nodes, there are n0 = f0n damaged nodes.

With a false-negative rate of q, nq of these are overturned, where nq is individually-

sampled from a binomial distribution p(nq;n0, 1 − q) =
(
n0

nq

)
(1 − q)nqqn0−nq . We use

f = nq/n as the corrected individual FI. Since our model f0 tends to reach the

arithmetic maximum of 1 at old ages, this effectively gives a maximum observed FI

of 〈fmax〉 = 1− q [44]. We use q = 0.4 throughout.

3.3.2 Observational Data analysis

Observational data is typically “censored”, meaning that the study ended or an indi-

vidual dropped out before their death occurred, leaving no known death age. To avoid

this problem, we use a binary mortality outcome e.g. M = 0 if an individual is alive

within 5 years of follow-up, or M = 1 otherwise. We use 5 year outcomes through-

out for observational data unless otherwise specified. We adapt this approach in our

analysis of mutual information [147, 148]. Our entropy calculations will use binary

entropy, H(M |t) = −p(0|t) log p(0|t) − H(1|t) log p(1|t), which we use to calculate

information I(M ;Di|t) = H(M |t)−H(M |Di, t). See also Blokh and Stambler [149],

for other varieties of information analysis for observational data.

We compare our information theory results to a more standard survival analysis



37

with hazard ratios [150]. The hazard ratio is the ratio of instantaneous event rates for

two values of an explanatory variable — e.g. with/without a deficit. A larger hazard

ratio means a lower likelihood of surviving with the deficit than without. Hazard

ratios are “semi-parametric”, since they extract the effects of variables on mortality

rate from a phenomenological mortality model. We use the Cox proportional hazards

model [119]. We show below that these survival analysis techniques are consistent

with our non-parametric mutual information measures.

3.3.3 High-k network reconstruction

To reconstruct network connections from observed states of nodes, we use the state

of each deficit (node) at a given age t (or narrow range of ages in observational data)

for each individual in the sample, and calculate the mutual information between

individual deficits, I(Di;Dj|t) [151,152]. Connections in the model create correlations

between nodes, so a large I(Di;Dj|t) could indicate a connection. We use data where

individuals are the same age (or ± 5 years in observational data), so that time is

not a confounding variable. Nevertheless, determining whether a given connection

exists or not requires a threshold on I(Di;Dj|t). If we took this route, we would only

assign a connection between nodes if the mutual information is above this threshold.

However, we have no practical way of determining such a threshold, though attempts

have been made in the past [153].

In preliminary tests with our model we have found that matching the reconstructed

average degree with the exact average degree is a reliable way of determining a thresh-

old (data not shown), but we still have no way of determining the average degree from

observational data. Instead, we use a simple parameter-free method adapted from

work on gene co-expression networks [154]. We construct weighted networks, with

the mutual information between pairs of nodes as the strength or weight of the con-

nections. We then calculate a “reconstructed” degree by adding the information for

each possible connection to the node in the network, k̂i ≡
∑

j 6=i I(Di;Dj|t) [155].

For nodes that aren’t connected, I(Di;Dj|t) ≈ 0, while I(Di;Dj|t) is expected to be

large for connected nodes. While we cannot reconstruct the actual network, we can

reconstruct the rank-order degree of high-k nodes – since we find that k̂ is roughly

monotonic with the actual degree k for high-k nodes.
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3.3.4 Mean-field theory of network dynamics

Here, we present a mean-field theory of our network model to understand the mecha-

nisms underlying our model results. Our mean-field theory (MFT) is based on work

on epidemic processes in complex networks by Pastor-Satorras et al. [156] together

with ideas from Gleeson [157] that we use to incorporate mortality dynamics.

By MFT we mean a set of deterministic dynamical equations for damage proba-

bilities of network nodes, including mortality nodes. Here, we retain the full degree

distribution P (k) and degree correlations P (k′|k) of our stochastic network model,

but drop higher-order network correlations. This allows us to identify what model

behavior is controlled by the degree distribution and degree correlations. (A simpler

MFT, with all nodes having the same degree, has been published [44].) With a de-

gree distribution we then solve (see below) thousands of coupled ordinary differential

equations (ODEs) with standard numerical integrators.

Instead of treating each node individually, we assume nodes of the same degree

behave the same. To do this, we average the damaged probabilities p(di = 1, t) and

the undamaged probabilities p(di = 0, t), conditioned on the damage of the mortality

nodes, over all nodes of the same degree k:

pk,dm1 ,dm2
(t) ≡

∑

deg(i)=k

p(di = 1, dm1 , dm2 , t)/(NP (k)),

qk,dm1 ,dm2
(t) ≡

∑

deg(i)=k

p(di = 0, dm1 , dm2 , t)/(NP (k)),

where the mortality states are indicated by dm1 , dm2 ∈ {0, 1}, N is the number of

nodes, and P (k) is the degree distribution. The resulting joint probabilities are

pk,dm1 ,dm2
and qk,dm1 ,dm2

, for damaged and undamaged nodes respectively. These joint

probabilities satisfy

∑

dm1 ,dm2

(pk,dm1 ,dm2
+ qk,dm1 ,dm2

) = 1, (3.1)

pdm1 ,dm2
= pk,dm1 ,dm2

+ qk,dm1 ,dm2
, and (3.2)

pk|dm1 ,dm2
= pk,dm1 ,dm2

/pdm1 ,dm2
, (3.3)

where the first equation is a normalization condition, the second completeness, and

the third Bayes’ theorem for conditional probabilities. From our mortality rule of

dm1 , dm2 = 1, the probability of mortality is pdead = pk,1,1 + qk,1,1, for any k.
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The probability of a neighbor of a node of degree k being damaged (which is its

local frailty f) given a particular mortality state is

fk|dm1 ,dm2
(t) =

∑

k′

P (k′|k)pk′|dm1 ,dm2
, (3.4)

where P (k′|k) is the conditional degree distribution, or “nearest-neighbor” degree

distribution. P (k′|k) describes the structure of connections in the network, and can

be varied independently of the degree distribution P (k).

Writing exact master equations for N nodes is impractical since there would be

2N distinct states to track, with even more distinct transition rates. As an enor-

mous simplification, we use averaged damage and repair rates of nodes of a given

connectivity k. This is our key mean-field simplification. To do this we approximate

〈didj〉 = 〈di〉〈dj〉 for all nodes, and approximate the number of damaged neighbors by

a binomial distribution nd ∼ B(nd; fk|dm1 ,dm2
, k) =

(
k
nd

)
fnd

k|dm1 ,dm2
(1 − fk|dm1 ,dm2

)k−nd

where the average proportion of damaged neighbors will be fk|dm1 ,dm2
. Using Eq. 3.4,

we can then calculate our MFT damage and repair rates,

〈Γ±(fk|dm1 ,dm2
)〉 = Γ0,±

〈
exp

(
γ±nd/k

)〉

= Γ0,±

(
fk|dm1 ,dm2

e±γ±/k + 1− fk|dm1 ,dm2

)k

. (3.5)

The node degree is explicit in Eq. 3.5, while the degree correlation is included through

the average local damage in Eq. 3.4.

Using these averaged damage/repair rates as transition probabilities, we can write

a master equation for nodes with connectivity k = kmin, ..., km2−1 and given the global
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state of the mortality nodes:

ṗk,0,0(t) = qk,0,0〈Γ+(fk)〉 − pk,0,0

[
〈Γ+(fm1)〉+ 〈Γ+(fm2)〉

]
(3.6)

−pk,0,0〈Γ−(fk)〉+ pk,1,0〈Γ−(fm1)〉+ pk,0,1〈Γ−(fm2)〉
q̇k,0,0(t) = −qk,0,0〈Γ+(fk)〉 − qk,0,0

[
〈Γ+(fm1)〉+ 〈Γ+(fm2)〉

]
(3.7)

+pk,0,0〈Γ−(fk)〉+ qk,1,0〈Γ−(fm1)〉+ qk,0,1〈Γ−(fm2)〉
ṗk,1,0(t) = qk,1,0〈Γ+(fk)〉 − pk,1,0〈Γ+(fm2)〉+ pk,0,0〈Γ+(fm1)〉 (3.8)

−pk,1,0〈Γ−(fk)〉 − pk,1,0〈Γ−(fm1)〉
q̇k,1,0(t) = −qk,1,0〈Γ+(fk)〉 − qk,1,0〈Γ+(fm2)〉+ qk,0,0〈Γ+(fm1)〉 (3.9)

+qk,1,0〈Γ−(fk)〉 − qk,1,0〈Γ−(fm1)〉
ṗk,0,1(t) = qk,0,1〈Γ+(fk)〉 − pk,0,1〈Γ+(fm1)〉+ pk,0,0〈Γ+(fm2)〉 (3.10)

−pk,0,1〈Γ−(fk)〉 − pk,0,1〈Γ−(fm2)〉
q̇k,0,1(t) = −qk,0,1〈Γ+(fk)〉 − qk,0,1〈Γ+(fm1)〉+ qk,0,0〈Γ+(fm2)〉 (3.11)

+pk,0,1〈Γ−(fk)〉 − qk,0,1〈Γ−(fm2)〉
ṗk,1,1(t) = pk,1,0〈Γ+(fm2)〉+ pk,0,1〈Γ+(fm1)〉 (3.12)

q̇k,1,1(t) = qk,1,0〈Γ+(fm2)〉+ qk,0,1〈Γ+(fm1)〉. (3.13)

In these equations we have not shown the mortality state indices of fk for readability,

but they are the same as the associated p or q factors. We have also defined fm1

and fm2 as the local frailties of the first and second mortality node, respectively. We

have 8 equations for each distinct degree k. The last two equations determine the

mortality rate, ṗk,1,1 + q̇k,1,1.

The mean-field model couples the dynamics of the lowest degree (k = 2) with all

degrees up to the two highest (mortality nodes). Solving the equations requires us to

explicitly determine the two mortality node degrees. While approximate calculations

of the maximum degree of scale-free networks are available [158], we need the two

highest degrees. We use km1 = 885 and km2 = 768, based on the averages from

simulations of the network. Similarly, we use km1 = 14 and km2 = 13 for ER random

networks and km1 = 7 and km2 = 6 for WS small-world networks. Qualitatively, our

qualitative MFT results do not depend on these mortality node degrees, as long as

they are sufficiently large. The minimum degree kmin is determined by the network

topology.
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Our default model uses a linearly-shifted preferential-attachment model, which has

explicit functional forms for the degree distribution P (k) and the nearest-neighbor

degree distribution P (k′|k) as N → ∞ [100].

We numerically solve Eq. 3.13 for the probabilities pk,dm1 ,dm2
(t) and qk,dm1 ,dm2

(t).

These then allow us to calculate the average FI,

〈F (t)〉 =

khigh∑
k=klow

P (k)pk|alive

khigh∑
k=klow

P (k)

, (3.14)

pk|alive ≡ pk,0,0 + pk,0,1 + pk,1,0
pk,0,0 + pk,0,1 + pk,1,0 + qk,0,0 + qk,0,1 + qk,1,0

,

so that the average is over the surviving individuals. Our averaged damage-rates

overestimate the true values, so for the same parameterization mortality occurs on a

shorter timescale in the MFT. This is because rapidly damaging nodes drop out of the

full model once they are damaged, but continue to contribute to the average damage

rates in the mean-field model through Eq. 3.5. Because of this, when plotting MFT

results we scale time by tscale, the time at which every node is damaged (pk = 1).

3.4 Results

We will focus on measures that can be compared between model and observational

data, or that provide insight into the network structure of organismal aging. We

start with observational data, to expand the observed aging phenomenology. Then

we explore how our network model behaves, with a focus on how network properties

determine the qualitative behavior of the model.

3.4.1 Observational Data

Dauntingly, we have three challenges for assessing network properties from obser-

vational data: human studies are small (typically with . 104 individuals) so that

results will be noisy, different studies will have quantitative differences due to cohort

differences and choices of measured health attributes, and we have no robust way of

reconstructing networks from observed deficits so that the absolute connectivity of

health-attributes is unknown. We face these challenges by focusing on qualitatively
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robust behavior from larger observational studies; this will also help us to confront

our results with the behavior of our generic network model.

From the American National Health and Nutrition Examination Survey (NHANES,

see [159]), the 2003-2004 and 2005-2006 cohorts were combined, with up to 5 years

of mortality reporting. This cross-sectional data includes one observation of age and

health deficits, with either age of death or last age known to be still alive. Laboratory

data were available for 9052 individuals and clinical data on 10004, aged 20+ years.

Thresholds used to binarize lab deficits are found in [72]. From the Canadian Study

of Health and Aging (CSHA, see [160]), 5 year mortality reporting are obtained from

1996/1997. This data is also cross-sectional, with one observation of age and health

deficits, and age of death or last known age alive. Laboratory data were available

for 1013 individuals and clinical data for 8547, aged 65+ years. Thresholds used to

binarize lab deficits are found in [70]. By approaching both the NHANES and CSHA

studies with the same approaches, we can identify qualitatively robust features of

both.

Fig. 3.1 shows the average FI vs age for Flab in red and Fclin in blue for the

NHANES in the main plot and CSHA in the inset. In both studies lab deficits

accumulate earlier than clinical deficits. A crossover appears in the NHANES data

around age 55 after which clinical deficits are more damaged than lab deficits. A

similar crossover does not appear to happen in the CSHA data.

Figs. 3.2 and 3.3 show deficits rank-ordered in information I(M ;Di|t) for the

NHANES and CSHA studies, respectively. These are information “fingerprints”.

Red points correspond to lab deficits and blue to clinical deficits, as indicated. Both

types of deficits have similar magnitudes of information, although clinical deficits are

typically more informative. The comparable magnitudes of mutual information for the

majority of individual deficits between lab and clinical FIs is consistent with earlier

analysis that found similar association between lab and clinical FIs with mortality

using survival analysis [70, 72, 140].

Insets in Figs. 3.2 and 3.3 show the corresponding hazard ratio (HR) for the deficit

found from a Cox proportional hazards model regression, with the deficit value and

age used as covariates. This semi-parametric analysis is often done with medical data

[161]. The HR tends to increase as the rank-ordered information increases, indicating
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that our mutual-information approach is capturing similar effects. Nevertheless, we

prefer mutual-information because it is non-parametric (not model-dependent) and

so relies on fewer assumptions.

Our deficit-level analysis highlights the great variability of mutual information

(and HR ratios) between individual deficits. We have shown that lab and clinical

deficits have a range of mutual information. We further note that the top 5 - 7

most informative clinical deficits in both the NHANES and CSHA datasets measure

functional disabilities or dysfunction [162]. We find that these high level deficits are

the most informative of mortality, and more informative than any of the lab deficits.

From this, we hypothesize that highly informative clinical deficits will also be highly

connected.

We have been able to partially reconstruct the network structure of clinical mea-

sures, as detailed in Sec. 3.3.3. In Fig. 3.4, we have validated this approach with

the top 32 most-connected model nodes. We use 10000 individuals for our validation,

approximately the same number of people we have available in the observational stud-

ies. We know that our model information tends to increase with degree for the high

degree nodes (see [44], and also Fig. 3.10 below). Fig. 3.4 shows that information

also increases with the reconstructed degree k̂, as expected for a good reconstruction.

The inset showing k vs k̂ indeed shows that the reconstructed degree is approximately

monotonic with the exact degree — especially at higher k.

This means the reconstructed degree should provide a reasonable rank-order in

connectivity for observational data. Nevertheless, low-degree nodes are not reliably

rank-ordered. Accordingly we only attempt to reconstruct clinical k̂ with this ap-

proach.

In Fig. 3.5, we plot information with respect to mortality I(M ;Di|t ∈ [75, 85])

for each deficit, where deficits are rank-ordered in terms of reconstructed degree k̂.

Information increases with reconstructed degree for both the NHANES and CSHA

clinical data. This shows that high information deficits correspond to high connectiv-

ity in the observational data. Also, nearly all of the functional disabilities intuitively

hypothesized to have a high connectivity are also found to have a large reconstructed

degree.
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3.4.2 Model Age-structure

We saw, in Fig. 3.1, that pre-clinical (lab) damage accumulates before clinical dam-

age in observational data. This is a qualitatively robust observation, seen in both

NHANES and CSHA observational data. We also observed, in Fig. 3.5, that (in

terms of rank order) highly connected clinical deficits were more informative than

less connected deficits. We expect that health-attributes assessed by laboratory tests

are less connected than the high level functional attributes assessed clinically. We

hypothesize that Flab and Fclin should behave qualitatively like collections of low or

high degree nodes, respectively, within our network model of aging.

We construct two distinct FIs to capture the difference between well-connected

hub nodes and poorly connected peripheral nodes. We measure low-degree damage

by constructing Flow =
∑

i di/n from a random selection of n = 32 nodes all with

k = kmin = 2. Similarly, we measure high-degree damage with Fhigh from the top

32 most connected nodes (excluding the two most connected nodes, which are the

mortality nodes).

Fig. 3.6 shows the cumulative average degree of damaged nodes 〈kdam〉 =

〈∑N
i=0 kidi/

∑N
i=0 di〉 vs age t. Error bars represent the standard deviation between

10 different randomly generated networks. They are each comparable to or smaller

than the point size, indicating that the age-structure represents the network topology

rather than a single network realization.

For a uniform network or for damage rates independent of the degree of a node,

we would expect 〈kdam〉 = 〈k〉 for all ages t. However, we see the average degree of

damaged deficits start at 〈k〉, with an initial decrease until around age 25 and then

an increase back to 〈k〉 — implying damage does not uniformly propagate through

the network.

Initially damage is purely random, so 〈kdam(0)〉 = 〈k〉. Nodes with degree ki < 〈k〉
are being damaged when 〈kdam〉/〈k〉 decreases from 1, and nodes of degree ki > 〈k〉
are being damaged when 〈kdam〉/〈k〉 increases towards 1.

The inset of Fig. 3.6 shows the average FI vs age for Flow and Fhigh. We see 〈Flow〉
initially larger than 〈Fhigh〉. Eventually with age, 〈Fhigh〉 increases to match 〈Flow〉
and even slightly exceed at very old ages. Thus, low-k nodes behave similarly to lab

deficits, and high-k nodes behave similarly to clinical deficits in observational health
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3.4.3 Model Node Information

Fig. 3.9 shows the mutual information between death age and individual nodes

I(A;Di) for our model. Red points are a random selection of 100 low-connectivity

nodes all with k = kmin = 2, the blue points are the top 100 most connected nodes

(excluding the 2 mortality nodes). For each selection, we have rank-ordered the nodes

in terms of mutual-information. The mutual-information for both high and low con-

nectivity nodes are comparable. This is surprising since previous work showed a

monotonic increase of the average information with connectivity [44]. However that

work used a different network for each individual, so that network properties other

than the average degree were lost by pooling nodes of the same degree.

Without parameter tuning, we obtain striking qualitative agreement of the mag-

nitude of the mutual-information with mortality for both model and observational

data (see Figs. 3.2 and 3.3). We also obtain an overlap of magnitudes of the mutual-

information of low-degree and high-degree nodes that is similar to that seen between

pre-clinical and clinical deficits. Since we know the model network connectivity, we

can now examine what network properties cause this behavior for our model.

In Fig. 3.10, we show the “spectrum” of mutual information between death age

and individual nodes I(A;Di|t = 80). We use individuals at age t = 80 years,

where the mutual information is close to maximal [44]. We use the same network

for every individual, so that we do not lose the properties of the network between

individuals. For the most connected nodes, in blue, we plot mutual information vs.

the connectivity of the nodes. Here we see the monotonic trend of mutual information

vs connectivity, though there is significant variation for individual nodes. For the

least connected nodes, in red, all of the nodes have k = 2. Instead of connectivity, we

considered the nearest neighbor degree ki,nn =
∑

j∈N (i) kj/ki — i.e. the connectivity

of the neighbors of a node. With respect to knn, we see a similar monotonic increase

of the mutual information for k = 2 nodes.

Neighbor-connectivity knn is predictive of mortality for minimally connected

nodes. We hypothesize that this is because the neighbor-connectivity affects when

peripheral (k = 2) nodes are damaged, i.e. that peripheral nodes with low-knn are

damaged earlier than those with large knn.

In the inset of Fig. 3.11 we confirm that high-knn k = 2 nodes damage later. This
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allows high-knn nodes to be informative of mortality because they are diagnostic of a

more highly damaged network. From Fig. 3.11 we see that there is a large range of

times for which lower-k nodes damage. Nevertheless, on average the high-knn nodes

at k = 2 damage before high-k nodes even though (see Fig. 3.10) they can be similarly

informative.

3.4.4 Model Network Structure

We have seen that our network model of aging is able to capture detailed behavior

of lab and clinical FIs such as the the larger damage rates for low-k nodes at the

same time as the surprising informativeness of some low-k nodes. The network is an

important aspect of our model, and so far we have assumed that it is a preferential

attachment scale-free network [98–100]. In this section, we explore the qualitative

behavior of different network topologies.

Our network model has predominantly disassortative correlations (due to the

scale-free exponent α < 3 [101]) — meaning that low-k nodes tend to connect to

high-k nodes, and that the average nn-degree decreases with degree [143]. We see

this in Figure 3.12, where we plot the average nn-degree 〈knn(k)〉 as a function of de-

gree for our network. The purple points indicate our preferential attachment model

network, and we see that the average nn-degree is inversely related to the degree.

The green curve shows a rewired assortative network [143] made by preserving the

degrees of the original network but swapping links. To do this we use the method

of Brunet et al, using N2 rewiring iterations with a parameter p = 0.99 [102]. By

modifying the nn-degrees of low degree nodes, we can investigate whether knn causes

or is just correlated with informative low-k nodes. Note that we use only the largest

connected component of the rewired network, with 〈N〉 = 9989 nodes over 10 network

realizations.

The yellow triangles in Figure 3.12 show an Erdős-Rènyi random network (ER).

A random network is created by starting with N nodes, and randomly connecting

each pair of nodes with probability pattach = 〈k〉/(N − 1) [142]. This results in

a (peaked) binomial degree distribution, and completely uncorrelated connections

where knn = 〈k2〉/〈k〉 which is independent of individual node degree. As before, we

only use the largest connected component, with 〈N〉 = 9805 nodes over 10 network





56

realizations. The ER network also allows us to explore whether the heavy tail of the

scale-free degree distribution is required to recover our observational results.

The light blue triangles in Figure 3.12 show a Watts-Strogatz (WS) small-world

network [163]. This network starts with a uniform ring network with ki = 〈k〉 for all
nodes, and randomly rewires each link with probability prewire to another randomly

selected node. We use prewire = 0.05 to get the effects of both high clustering (i.e.

links between neighbors of nodes) and short average path-lengths between arbitrary

pairs of nodes [142]. This network has a narrowly peaked degree distribution, with

a rapidly decaying exponential tail. ER and WS networks are similar, as both have

short average path lengths between arbitrary nodes and non-heavy-tailed degree dis-

tributions, but the WS small-world network also has high clustering for small prewire.

To examine network effects on our network aging model, we have kept the same

model parameters for the (default) preferential attachment disassortative network,

the assortative network, the ER random network, and the WS small-world network.

(The scale-free exponent α is only used in the disassortative and assortative networks.)

We examine 10 random realizations of each network. We have also varied model

parameters independently for each of these networks (data not shown) and obtain

the same qualitative results.

In Fig. 3.13 we show rank ordered information fingerprints for individual deficits

I(A;Di|t), for the different network topologies as indicated. We observe striking

differences in the scale and range of the mutual information with respect to mortality,

and in the differences between the most and least connected nodes. The random and

small-world network both have a significantly smaller scale of mutual information,

together with a much smaller range of variation.

The scale-free disassortative (default) and assortative networks both have signifi-

cantly higher scale of information for the most connected nodes, as well as consider-

able variation (approximately 10-fold) among them. However, while the disassortative

network exhibits similar scales of information between the most and least connected

nodes the assortative network does not. Furthermore, the assortative network shows

only minimal variation of information among its least connected nodes.

Only the disassortative (default) network exhibits the fingerprint of mutual in-

formation of the NHANES and CSHA observational studies, in Figs. 3.2 and 3.3
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remove zero degree nodes from the ER random degree distribution, so that Pk 6=0(k) =

P (k)/
∑

l 6=0 P (l).) Using various P (k′|k) we can then put different degree correlations

into our MFT network. We include three types of degree correlations, uncorrelated

(neutral), assortative, and disassortative [142].

For a network with uncorrelated (neutral) connections, P (k′|k) = k′P (k′)/〈k〉.
We then have knn(k) =

∑
k′ k
′P (k′|k) = 〈k2〉/〈k〉, so that all nodes have the same

nn-degree. These correlations are used for ER random and WS small-world networks,

and recover the approximately constant knn that we observed in Fig. 3.12.

In a network with assortative correlations, nodes tend to be connected to other

nodes of similar degree. Assortative correlations that approximate those used in

our computational model in Sec. 3.4.4 are [166] P (k′|k) = αδk′k +(1−α)k′P (k′)/〈k〉.
These lead to, knn(k) =

∑
k′ k
′P (k′|k) = αk+(1−α)〈k2〉/〈k〉, which increases linearly

with k (see Fig. 3.12). Changing α modifies the amount of assortative correlation; we

use α = 0.8.

In a network with disassortative connections, nodes tend to be connected to other

nodes of differing degree. The (disassortative) correlations for our default shifted-

linear preferential attachment network are [100],

P (k′|k) = Γ(k + λ+ α)Γ(k′ + λ)

kΓ(m+ λ)Γ(k + k′ + 2λ+ α)

×
[

k∑

i=m+1

Γ(i+m+ 2λ+ α− 1)

Γ(i+ λ+ α− 1)

(
k + k′ −m− i

k′ −m

)
(3.16)

+
k′∑

i=m+1

Γ(i+m+ 2λ+ α− 1)

Γ(i+ λ+ α− 1)

(
k + k′ −m− i

k −m

)]
,

where m = 〈k〉/2 = kmin and λ = m(α− 3). This is exact in the limit N → ∞ [100],

and gives disassortative correlations where knn(k) decreases with k.

In Fig. 3.17 we show the average low-k FI vs the average high-k FI, 〈Flow(t)〉 vs
〈Fhigh(t)〉 from our MFT. In purple we use the (default) preferential attachment dis-

assortative correlations, in green we use assortative correlations, and in light blue we

use a WS small-world network. We see qualitative agreement with the age-structure

shown in Fig. 3.14 – confirming that nn-degree correlations (included in our MFT) are

important for the observed age-structure. [We have not shown MFT results for the

ER random network since 〈Flow〉 behaves poorly when it includes nodes with k ≤ 2,
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due to their great variability of local frailty fi.]

3.4.5 Mutual information of FI with mortality

We have seen that Flow damages earlier than Fhigh (Fig. 3.6) and that the mutual

information of poorly connected (k = 2) nodes with large nearest-neighbor degree

significantly overlaps with the informativeness of the most connected nodes (Fig. 3.10)

in our (disassortative) scale free network model. Because of these informative earlier

damaged nodes, we were interested in whether Flow could be more informative of

mortality than Fhigh, particularly at younger ages. In Fig. 3.18 we show the difference

in information for Flow and Fhigh for different mortality outcomes vs age. We find

that Flow is slightly more informative at ages less than ≈ 65 and is increasingly more

informative than Fhigh at these younger ages for longer mortality outcomes. This is the

result of Flow nodes damaging early but having a delayed effect on mortality, so that

they are an early predictor of later mortality, but not so much immediate mortality.

The relatively large standard deviations for different randomly generated networks

shows that this result is affected by the particular randomly generated network.

While the observational NHANES and CSHA sample-sizes are much smaller, a

similar calculation shows a slightly lower Flab information −0.002 ± 0.013 compared

to Fclin in the NHANES data for younger people (65− 75 years) and a slightly higher

mutual Flab information +0.033± 0.027 compared to Fclin in the CSHA data. While

we do not have sufficient data to vary our mortality outcome to determine if Flab is

more predictive of later mortality outcomes as we did in the model, we can see in the

CSHA data that Flab is more informative for younger people.

Since we found that the most informative low-connectivity nodes were those with

large knn, we also considered an FI constructed from n = 32 randomly chosen nodes

of lowest degree (k = 2) from those that have above-average knn. The information

advantage of F high-knn
low is indicated in Fig.3.18 with down and up triangles for 10 and

5 year mortality, as indicated. The advantage over Fhigh is large and significant for

ages below t = 80 years, with a stronger advantage at earlier ages for later mortality.

This will be an attractive avenue to pursue.
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3.5 Summary and Discussion

The observational Fclin or Flab respectively measure clinically observable damage that

tends to occur late in life or pre-clinical damage that is typically observable in lab tests

or biomarkers before clinical damage is seen. However, they are similarly informative

of human mortality [70, 72, 140]. Our analysis indicates that individual laboratory

and clinical deficits have broad and overlapping ranges of mutual information.

Our working hypothesis is that clinical deficits correspond to high connectivity

nodes of a complex network, while laboratory deficits correspond to lower connectivity

nodes. With our network model of individual aging and mortality, we have confirmed

that Fhigh and Flow, formed from high and low connectivity nodes respectively, behave

similarly to the observational Fclin and Flab.

Within the context of our aging model, we uncover the mechanisms of this ob-

served behavior. In our model low-k nodes tend to damage before high-k nodes. This

is because of the larger average damage rates of low-k nodes compared to high-k nodes

(as calculated with our network mean field theory, and illustrated in Fig. 3.7). At

the same time, our information spectrum shows that information I(A;Di|t) increases
with k. Roughly speaking, high-k nodes need a larger local frailty f to have compa-

rable damage rates as low-k nodes. Thus, damage of high-k nodes is informative of

high network damage, which also leads to mortality. This is why high-k nodes both

damage later and are informative of mortality (Fig. 3.10b).

However, some low-k nodes also damage later and are highly informative of mortal-

ity. Information I(A;Di|t) increases with knn for the low-k nodes, and low-k high-knn

nodes damage later. This can also be explained using the network structure. Low-k

nodes are protected from damage when they are connected to high-k nodes. Rapidly

damaging low-k nodes without this protection tend to damage early for most individ-

uals, giving these nodes a low information value of mortality. Conversely, protected

nodes tend to damage only when their high degree neighbors start to damage, which

only occurs when the network is heavily damaged and close to mortality. As a result,

only the low-k nodes with high-knn are highly informative (Fig. 3.10a). Interestingly

these nodes still tend to damage before high-k nodes, leading to an early predictor of

mortality.

Degree correlations control the average degree of neighboring nodes and hence
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control the amount of protection in low-k nodes. By modifying the degree correlations

in the network in our computational model we have shown that this protection can be

caused by disassortative correlations — where low-k nodes tend to attach to high-k

nodes. Conversely, eliminating low-k high-knn nodes by modifying the network to

introduce assortative correlations removes this protection, and we then find all low-k

nodes have low information (Fig. 3.13b).

Our mean-field model allows us to explicitly modify the degree distribution and

the degree correlations with the nearest-neighbor degree distribution P (k′|k), and to

include no other network features. In our mean-field model we see similar results to

our computational model where, e.g., adding assortative correlations increases the rate

at which Flow increases with respect to Fhigh. This confirms that degree distribution

and degree correlations largely determine the early damage of low-k nodes that we

observe in scale-free networks.

Degree distributions and correlations only weakly control the behavior of ER ran-

dom and WS-small world networks. The low variation in k and knn in those networks

results in a lack of contrast between the damage rates of nodes. This leads to node

information that is nearly constant throughout the network and to only small differ-

ences in the damage structure of low-k and high-k nodes (Fig. 3.13c and d). This also

leads to low magnitude of the mutual information per node, since nodes behave much

more uniformly and “randomly” than in a scale-free network. However, we can still

see some protection in low-k nodes. This is particularly apparent in the ER random

network when Fhigh surpasses Flow (Fig. 3.14d).

The behavior of observational deficits seems to best resemble the behavior of the

computational model with a scale-free network and disassortative correlations. Node

information seen in the (default) scale-free disassortative network is a much better

qualitative match of observational data, as compared with scale-free assortative, WS

small-world, or ER random networks.

Our analogy between observational deficits and model nodes allows us to make

predictions about the underlying network structure of observational health deficits,

even though we cannot directly measure this network. Assuming the mechanisms

studied here (k and knn based) are dominant, the observational network should have

a heavy-tail degree distribution, so that a large range of possible information values
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can be obtained. The network should also include disassortative correlations so that

there are connections between high-k and low-k nodes, allowing low-k nodes to be

informative of mortality.

We remain open to the possibility that other network topologies not considered

here, perhaps with different dynamical models, would provide a better phenomenolog-

ical description of the observational data. Nevertheless, we have demonstrated that

the phenomenology we have studied does discriminate among the network topolo-

gies we have considered. In particular, we have found that considering both the age

structure and the information fingerprint of both low and high-connectivity deficits

is useful in probing the network structure within human aging.

From observational data we find that clinical deficits that integrate many sys-

tems into their performance (e.g. functional disabilities, or social engagement) are

very informative (Figs. 3.2 and 3.3). In contrast, single diagnoses, even ones strongly

associated with age such as osteoporosis, on their own offer less value. The model

interpretation of this is that these high information disability deficits have a higher

connectivity than lower information clinical deficits. It intuitively makes sense for

deficits that integrate many systems to have a large connectivity. In support of this,

our partial network reconstruction (Fig. 3.5) shows that high information clinical

deficits in both the NHANES and CSHA correspond to nodes with a high recon-

structed degree.

We have shown that the age-structure of network damage is related to the network

structure. Highly informative low-degree nodes (pre-clinical deficits) damaged early

in life promote the damage of their high-degree neighbors, but the damage to their

high-degree neighbors takes time and is not seen in the high-degree (clinical) FI until

later ages. Indeed, we have shown that a Flow is slightly more informative at earlier

ages, and is increasingly informative for longer mortality outcomes (5 year vs 10 year)

(see Fig. 3.18). Choosing more high-knn nodes in Flab significantly enhances this effect.

Low-k nodes are informative of long-term mortality rather than short-term. Similar

results are seen in the observational CSHA data, which indicates that Flab could be

used as an early measure of risk of future poor health.

Our network model is generic, without a specific mapping between model nodes

and observed human deficits. This is because we have no reliable way of extracting
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a specific network from observational data, though we have shown that a partial

reconstruction of the rank-ordering of high-connectivity nodes can be done using a

method of reconstruction similar to that of WGCNA [154], see also [167]. Distinct

parameterization of every node of a network model would require enormous amounts

of observational data, if it could be done at all. For example, we have fewer than

70 observational nodes in NHANES data, but our network model uses N = 10000

nodes, so observational data under-samples a large network. We similarly expect

many more unobserved than observed deficits in any observational study. Instead,

we rely on signatures of the network structure that we can calculate from our partial

reconstruction. We can then use our generic model to identify robust qualitative

phenotypes — to uncover generic mechanisms, to predict behavior, and to improve

the utility of the Frailty Index in human aging and mortality.

In this paper we have kept our model parameterization unchanged from the default

parameters, though we have checked (data not shown) that our results are qualita-

tively robust to parameter variation. This has allowed us to explore the impact of

network topology on mortality statistics (a small effect) and on mutual information

between health deficits (a strong and distinctive effect). The Fhigh and Flow model

phenomenology are also affected by changes in network topology. This indicates that

both Fhigh and Flow are usefully distinct characteristics of health in our network model.

Our results provide insight into the mechanisms of the similarly useful and distinct

observational Fclin and Flab [70, 71, 140].



Chapter 4

Generating synthetic aging trajectories with a weighted

network model using cross-sectional data

4.1 Background

In Chapter 3 we indirectly probed the network by varying the structure and studying

“fingerprints” of dynamical behaviour. We observed the increase in Frailty Index and

mortality rate with age and the structure of information content within the deficits to

determine that networks within the generic network model require a structure with

few high degree “hub” nodes, and many low degree nodes. This is a dissasortative

scale-free structure, which also offered an explanation for the differences between FI-

clin and FI-lab. This was done by comparing pre-defined network structures to the

observed data, and did not involve inferring the network from data. Additionally, this

also did not involve fitting damage rates or other model parameters. In this chapter,

we build a model where the network and damage rates are parameterized and fit

from data by maximum likelihood. This allows the model to be able to represent a

network of specific health variables, and generate realistic simulated populations with

individual binary health variables and mortality that correspond to the observed data.

To do this, we build from the generic network model by representing a subset

of the nodes (N = 10 compared to N = 104) with specific health variables from

observational aging data. In the generic network model, each node had the same rate

parameters, and damage rates only differed due to the impact of neighbours. In this

new approach, the rate parameters for each node are separately fit. We parameterize

the rates in terms of a network of connection weights W, and other rate parameters.

We also simplify mortality by using a single mortality node.

Since only a small subset of the nodes are represented by specific health deficits

from observational data (10 deficits), we perform a mean-field approximation for the

unobserved nodes by representing the contribution to the local frailty of each node

68
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by a deterministic function. Starting from the GNM with N = 104 we can see this in

the following way,

fi(t) =
N∑

j=1

aijdj/ki (4.1)

=
N∑

j=N−10+1

aijdj/ki +
N−10∑

j=1

aijdj/ki (4.2)

≈
N∑

j=N−10+1

aijdj/ki + µi(t), (4.3)

where µi(t) is the average contribution of the nodes outside of the top 10 most con-

nected nodes to the local frailty. Performing this approximation significantly speeds

up the model, since only 10 nodes need to be simulated stochastically, and the average

contribution of the unobserved nodes are computed deterministically with µi(t). In

Figure 4.1 we measure this average contribution for each of the top 10 nodes in the

GNM. We see the a cubic fit for this contribution captures the behaviour, and so in

the weighted network model we fit functions µi(t) =
∑3

n=0 µint
n for each node i.

We further modify the GNM by generalizing the rates from exponentials with con-

stant rate parameters for each node, to quartic power series with separate parameters

for each node Γ+
i (t) = φ(

∑4
n=0 γ

+
infi(t)

n), and replace the binary adjacency matrix

aij with a continuous-valued weight matrix wij allowing more flexible connections of

varying strengths. The function φ(x) = max(0, x) allows rates to instantly “turn on”

at f > 0 when γ+i0 < 0. This is a key component of the model, since many of the

deficits only occur late in life.

We use cross-sectional aging data to infer the parameters, which includes the

network weight parameters. Cross-sectional data only involves one measurement of

the health state per individual as well as follow-up mortality information, and does

not include time-course health states. We use small networks of 10 binary health

variables as nodes, representing potential health deficits of a Frailty Index.

This chapter presents the paper “Generating synthetic aging trajectories with a

weighted network model using cross-sectional data” published in 2020 [48].
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4.2 Introduction

Human aging is a complex process of stochastic accumulation of damage [52] that

occurs at many organismal scales ranging from the cellular [4] to the functional.

Individual health trajectories are heterogeneous, but typically worsen with age as

damage accumulates. Heterogeneity of aging trajectories arises even in studies of

clonal organisms in controlled laboratory conditions [53,129], and is an intrinsic part

of aging. Heterogeneity in health as individuals age has been measured with a variety

of methods, although here we focus on binary “health deficits” determined from

routine clinical assessment and self-reported surveys [14–16, 69, 168]. Health deficits

are indicators of an aging phenotype, indicating disease, laboratory abnormalities,

cognitive impairment, disability, or difficulty performing everyday tasks.

While any single deficit may not be a good measure of overall health, or a very

informative predictor of mortality, averaging many binary deficits to evaluate over-

all health provides measures that are strongly associated with both adverse health

outcomes and mortality [14–16, 46, 69, 168]. Furthermore, such frailty indices (FIs)

are robust to missing or heterogeneous data [15]. Using “high-level” health-deficits

provides a measure of health that is both conveniently assessed and reflecting the

functional aspects of healthy living that are important to the individual [169]. Such

an FI also contains information about health that is not found in recent epigenetic

measures based on DNA-methylation [170].

While the FI has been shown to be broadly predictive of both mortality [171]

and of the accumulation of individual deficits [168, 172], it does not distinguish the

health trajectories of two individuals with the same FI even if they have distinct sets

of accumulated deficits. Capturing the heterogeneity in health trajectories requires

modelling the full high-dimensional set of health variables. We develop a model to

generate populations of synthetic health trajectories, which capture this heterogene-

ity.

However, the development of models of aging is complicated by the data currently

available. Large observational studies (104+ individuals) with linked mortality are

often cross-sectional (measuring most variables only when individuals enter a study),

have short censored survival outcomes, and have a lot of missing data. This has

made developing realistic models of human aging difficult. Nevertheless, such models
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would be useful to generate model individual health trajectories during aging from

birth, or from baseline data of actual individuals. Encouragingly, a model capable

of generating general health trajectories during aging using cross-sectional data has

recently been developed [173] – though it did not consider individual survival.

Here, we develop an intuitive model that can be fit with cross-sectional data with

censored survival information to generate individual aging trajectories that include

both health and survival. Our model is adapted from previous work modeling human

aging with stochastic dynamics on a complex network [11,44,45], which was shown to

capture population level aging phenomena, such as Gompertz’ law of mortality [135].

This model was based on the intuitive assumption that having one health deficit

increases the risk of acquiring another one, and so deficits can be thought of as

interacting in a network, in which connections establish pairwise associations [47].

Nodes in this older model represented generic/abstract deficits and corresponded to

no specific physiological systems in particular. Nevertheless, their collective behaviour

captured key aspects of aging. This “generic” network model (GNM) used many nodes

(N = 104) to abstractly represent the many interacting physiological systems in the

human body, had simple interactions between nodes, and needed no age-dependent

programming of damage.

Our new “weighted” network model (WNM) is parameterized so that each node

represents an actual health attribute (potential health deficit) corresponding to ob-

servational aging data. We recognize that we will never be able to incorporate all

possible health attributes as nodes in our network or to describe exact biological

mechanisms. For this reason, we use more complex weighted interactions between

observed nodes that can capture the effective behaviour of underlying and/or unob-

served biological mechanisms. This new WNM can be considered as a coarse-grained

adaptation of our previous GNM, with far fewer nodes.

We separately fit our WNM with cross-sectional observational data from the Cana-

dian Study of Health and Aging (CSHA) [160] and the National Health and Nutrition

Examination Survey (NHANES) [159]. These human aging studies consist of 8547

and 9504 individuals, age ranges of 65 − 99 and 20 − 85 years, in which mortality

data are available for at most 6 or 10 years past study entry, respectively. Deficits in

these datasets are binary indicators of health issues and integrate information across
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physiological systems, such as difficulty performing activities of daily living (ADLs)

or more complex instrumental activities of daily living (IADLs). We estimate pa-

rameters for each study by maximizing the log-likelihood for our model to recover

the observations, where the likelihood is estimated from simulations of the stochastic

model. By validating our model on a separate test set, we demonstrate that our

model represents real aspects of aging, and is not overfitting to the training data.

We find that our synthetic individuals generated with our model capture the

health outcomes and survival of observed data with a number of different measures.

Indeed, rather than focusing on achieving optimal predictive performance on any one

particular task, our goal was to obtain a robust model that can generate realistic

trajectories for multiple health attributes at once for many individuals from either

actual or synthetic baseline health status. Nevertheless, our model cannot overcome

the intrinsic limitations of cross-sectional data –– for example, the accuracy of health

trajectories will only be assessed by comparing simulated cohorts of individuals to

longitudinal data of the observed cohort.

4.3 Results

4.3.1 Health trajectories

Starting from an individual with a set of N potential binary deficits at a baseline age

t0, {di(t0)}Ni=1, our model (see Model section below, trained on the CSHA dataset)

generates deficit trajectories {di(t)} describing health for synthetic individuals for

each age t > t0 until mortality. (Here di = 1 indicates a deficit for the ith aspect

of individual health, while di = 0 indicates no deficit. We generally refer to a set of

potential health deficits {di} as health attributes). We want to test whether these

synthetic individuals age with the same properties as do real individuals in the ob-

served data. Without longitudinal data, we cannot test these individual trajectories

directly. However, we can use the population average of the observed cross-sectional

data and compare with the average population trajectory predicted from our model.

If the study population was randomly sampled with no biases, we expect these average

trajectories to agree.

Given baseline age and N = 10 selected deficits for individuals from the test data
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deficits. Using synthetic populations, we can also generate trajectories starting from

any age with partially observed sets of deficits with missing values.

Figure 4.4 shows FI trajectories starting from the known baseline data (red circle)

for 6 synthetic individuals with specific deficits. Horizontally, we vary baseline age

with 65, 75, and 85 along the columns. Vertically, we vary baseline deficits, with

bottom individuals having a higher initial FI by having two additional deficits. In-

dividual trajectories are conditioned on dying at their median survival probability

(dashed black lines), seen from the individual black survival curves. Shaded regions

show a distribution of FI trajectories. The trajectories behave reasonably. Individ-

uals with more baseline deficits accumulate additional deficits faster and die sooner.

Individuals starting at older ages also have a more rapid increase in number of deficits

and have a shorter time to death. Note that these trajectories exhibit FIs larger than

the typically observed maximum of 0.7 [68,168,174], which is due to the small num-

ber of potential deficits used here (only 10) compared to typical studies (with 30 - 40

potential deficits).

4.3.2 Individual deficit predictions

Since our training and test data sets have similar distribution of health states (e.g.

deficit prevalence), the good test performances in Figure 4.2 and Figure 4.3 do not

rule out overfitting to the training set, because the model was only assessed against

the distribution of health states for the training and test data. To assess overfitting,

we need to consider predictions of individual health states – i.e. observed deficits for

specific individuals. We first verify that there is only a ∼ 20% overlap between the

observed health states of individuals in the training and test data sets, see Appendix

Figure A.8. (We also confirm that using only one or two attributes leads to a & 90%

overlap. Note that this overlap is not due to the same individuals being present in

the training and test sets, but due to the discrete nature of the binary deficits.)

We test the model’s ability to capture the age-dependent joint distribution of

deficits p({di}|t) by evaluating its performance in predicting “left out” deficits from

individuals in the test set at the same age, i.e. performing missing data imputation

by estimating p({dj}missing|{di}observed, t). Given a known age t(m) and known health
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Since our model includes potentially complex time-dependent effects, where sur-

vival curves can potentially cross, we use a more general age-dependent C-index. [177]

We obtain this by comparing the rank ordering between survival probability and

known survival age while including censoring, so Ctd = Pr(Ŝ(a(m1)|t(m1), {di}(m1)) <

Ŝ(a(m1)|t(m2), {di}(m2))|a(m1) < a(m2), c(m1) = 0) [177].

Figure 4.6B shows this age-dependent C-index for both on the full test set (solid

blue line) and stratified by age (blue circles). The C-index shows that the model

discriminates well on the full test when the difference in ages between individuals can

be used in the discrimination. When we stratify by age to eliminate this effect, we

nevertheless see that the model still discriminates well based on just these 10 deficits

alone, indicating that the model captures an increased risk of mortality from specific

deficits. In particular, our model performs better than a standard Cox-proportional

hazards [119] model using the Frailty Index and age (green squares and line). We

note that stratified values are noisy due to the small number of individuals per age

bin, especially at higher ages.

In Appendix Figure A.9A we show similar results for the C-Index for both train-

ing and test sets, which also indicates a lack of overfitting. Similarly, Appendix

Figure A.9B shows an R2 measure constructed from Brier Scores [178]. a measure

of how well predicted and observed survival curves match, that behaves similarly for

training and test data. Furthermore, Appendix Figure A.9C shows the ROC AUC

for predicting binary dead/alive on the train/test sets within a specific window of

time, finding a similar AUC of approximately for 1-5 year mortality windows. For

all of these, we find similar behavior between the training and test sets, indicating

a lack of overfitting. This is also seen for survival predictions for the alternative set

of deficits used in Appendix Figure A.3, as shown in Appendix Figure A.10 and for

survival predictions for the NHANES dataset, as shown in Appendix Figure A.11.

4.3.4 Inferred network structure

In the Appendix A section on Parameter Robustness, we explore the “robustness” of

both our network parameters and predictions by sampling an ensemble of parameters

around the maximum likelihood estimate [179]. Appendix Figure A.1 shows that

significant deviations from the maximum likelihood parameters still leads to relatively
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accurate fits of the data – i.e. we obtain robust predictions. However, when we

optimized the model several times with different random seeds we show in Appendix

Figure A.2 that we find significantly different network parameterizations each time.

Appendix Figure A.12D shows that even the sign of individual connections is not

robust. We conclude that while the model behavior is robust, the network structures

themselves are not robustly predicted by the available data.

Nevertheless, we show in Figure 4.7 that how damage propagates from node to

node of the network does have some degree of robustness. We show average pair-

wise damage rates Γi←j(t) = 〈Γ+
i (t, di = 0, dj = 1, {dl})〉p({dl}|t,di=0,dj=1) of the ith

node conditional on prior damage of the jth node. This robustness shows that the

behavior of our weighted network model (WNM) is robust despite some sloppiness of

individual parameters.

4.4 Discussion

Our weighted network model (WNM) is trained with cross-sectional data, generates

cohorts of synthetic individuals that resemble the observational data, and can forecast

the future survival of real individuals from their baseline health and age. We have

validated the WNM model through a variety of measures. Synthetic individuals

age with trajectories that have approximately the same prevalence of deficits and

comorbidities as in the observed data. The average trajectories predicted by the

model agree very well for nearly 30 years. Given a set of known deficits, the model

can predict the probability of having a missing or unknown deficit at the same age,

demonstrating the models ability to capture the age-dependent joint distribution of

the deficits. Estimated survival curves also agree with observed population survival,

are predictive of mortality, and discriminate between individuals.

Our model has a large number (188) parameters while our health data has only

N = 10 binary attributes. One concern with having at most 2N = 1024 discrete

health states is that there could be significant overlap between the test and training

sets. Nevertheless, we showed in Appendix Figure A.8, that a significant fraction

of the health states from the test set are not in the training set. Using this (non-

overlapping) test set we have shown that our model does not substantially overfit and

can make predictions on unseen test individuals.
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We emphasize that our model is not just fitting the prevalence of the N = 10

deficits, but is fit to the full 10-dimensional age-dependent joint distribution p({di}|t)
which has 1024 distinct states. A full model of this distribution would require many

more than 1024 parameters. Our network model substantially reduces the number of

parameters required, by only directly fitting pairwise interactions and getting effective

higher order interactions through the local damage term in our model (fi). While a

minimal model using our network approach using linear or simple exponential forms

for the functions describing rates in our model would have 144 parameters, we have

increased this to 188 by using 3rd order power series. This has offered increased

flexibility to the model and also improves performance.

Our model generates accurate projections of the average health trajectories of

groups of individuals. Taking a group of individuals and simulating them to their

deaths, we find the average trajectory generally agrees with the average population

data, which shows that model averaged trajectories are quite accurate and are con-

sistent with the assumption that the study population is a random (representative)

sample. Note that this does not mean that we can overcome the intrinsic limitations of

cross-sectional data, and to validate the accuracy of individual predicted trajectories

we would need longitudinal data.

Our model works when separately trained and tested on CSHA and NHANES

cross-sectional datasets. This success indicates that our approach should work more

broadly with comparable cross-sectional data from other datasets. Nevertheless, we

find that performance is somewhat worse on the NHANES dataset. This may be due

to the presence of many missing values in the NHANES dataset, the increased age

range of the NHANES dataset (20− 85 years for NHANES vs 65− 99 for CSHA), or

perhaps differing biases in the cohorts studied.

When we predict health trajectories until very old ages (80 - 90 years old), our

model tends to estimate slightly higher prevalence than are observed in cross-sectional

data (see Figure 4.2, and Appendix Figures A.3 and A.4), particularly in the NHANES

data where baseline measurements are taken further away from the actual age of

death than in the CSHA data. One possible explanation for this is that there is

a compromise in the model between fitting these trajectories and fitting survival,

and the model is attempting to amend this compromise by fitting trajectories well for
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early ages, then rapidly damaging deficits to induce mortality in individuals to obtain

the correct survival predictions. Another possibility is that the damage rates need

to rapidly increase from ages 60 to 90, but then slowly taper off of this increase for

these older individuals. Fixing this would require more flexible damage rate functions

capable of tapering off for very old individuals.

Alternatively, our model could be describing a real acceleration of health decline

before death that is not captured in the observational cross-sectional data due the

lack of health measurements near death. In other words, these cross-sectional studies

could be biased by excluding subjects near death, and our model is correctly including

a large increase in the rate of damage near death. Indeed, in longitudinal studies a

rapidly rising FI has been shown to identify individuals with a high risk of death

within 1 year [180] – this is called “terminal decline” [181]. Using such longitudinal

data (see below) would allow us to better predict and to better test generated health

trajectories for specific individuals, including health near death.

Individual survival is assessed with the C-index [176]. The C-index evaluates the

model’s ability to predict the relative risk of death for pairs of individuals. A C-index

of 1 represents perfect predictions, but in practice intrinsic variability of individual

mortality will limit the C-index below that in an age and health-dependent way. The

availability of individual data will further limit the C-index below that – but generally

above 0.5, for an uninformed random guess. We observe C-index values of around 0.6

when stratifying by age, which means that just by using 10 binary deficits, we can

predict which of two individuals of the same age lives longer with 60% accuracy. Our

model achieves better results than a simple Cox-proportional hazards model [119]

using the Frailty Index, but a larger number of health deficits and more data would

further improve our model’s predictions.

Our previous generic network model (GNM) captured population level aging be-

haviour like Gompertz’ law of mortality and the average increase in the Frailty In-

dex (health decline) vs age [44, 45], however the nodes did not correspond to any

particular health attribute (i.e. they were generic). Adding more complexity to

damage/mortality rates with more flexible functional forms, node-dependent fitting

parameters, and a weighted interaction network, we have here been able to repre-

sent individual health attributes from observational aging data with specific nodes
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in our WNM. This has allowed us to model individual health trajectories, including

individual survival.

The choice of which deficits to use with our model is arbitrary, the only assump-

tions we require are that they are binary and not reversible. We do not need the

deficits to have strong correlations between them or be good predictors of mortality

to capture the sample trends in health trajectories (Figure 4.2 and Figure 4.3) or

overall survival function (Figure 4.6A), since these do not show individual predic-

tions but instead captures how well the model overall captures the trends seen in the

data. However, the quality of individual predictions for left-out deficits and survival

(Figure 4.5 and Figure 4.6B) do depend on the deficits chosen, because these are

predictions for specific individuals. For independent deficits that are absolutely un-

informative of mortality, we would expect AUCs of 0.5 for left-out deficit prediction

and a C-index of 0.5 for the mortality prediction.

The only health variables we have included are health deficits that accumulate

through damage. Other static or non damage-accumulation variables are often con-

sidered in aging studies as well, such as sex [182–184], and environmental variables

like socioeconomic status [185], or lifestyle. Variables that don’t change by damage

accumulation but still interact with health deficits can be easily added to the model

as network nodes with static values. In this way they could naturally interact with

the damage-accumulation health attributes. Similarly, individual non-damage vari-

ables that could be deliberately modified – such as physical activity levels [186, 187]

– could be added as nodes with explicit time-dependent values that depend on the

individual.

There has been significant work inferring biological networks, using a variety of

approaches [151, 152, 154, 188] and at different scales [189]. In the context of human

frailty, previous work has created a network representation of health attributes with

measures of association or correlation [45, 190, 191]. Different methods result in dif-

ferent networks, and thus it has not been clear what underlying association between

the deficits a given network represents. Equivalently, it has not been clear how to

test a given network representation. In this work we conclude that while the model

behavior is robust, the network structures themselves inferred by the model are not

robustly predicted by the available data.
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This lack of robustness of the network is not surprising. Due to the complex

interactions between many parameters in our model, we expect that many network

parameters are “sloppy” [192]. This results in robust collective behavior of the system

for many different combinations of parameters – i.e. many different networks that

are consistent with the observed data. Indeed, this robust behavior seems necessary

to perform well in predicting deficit prevalence and mortality.

Our network model imposes casual mechanisms within the simulation – it assumes

that there is a direction to the network weights, and attempts to infer those weights

within the assumptions of the model. Since we do not have adequate data to be

able to infer true casual relations, these directed links are simply chosen for accurate

prediction. A directed link in our model is just defined in terms of prediction: a par-

ticular directed connection between two variables is included if it improves prediction

accuracy. Similarly, our network connections are not simply correlations between the

variables (for those, see Appendix Figure A.12), but are chosen to improve prediction.

In recent models of disease progression or aging either the mortality is not con-

sidered [173], or the models require longitudinal data [193], or both [194–196]. Struc-

turally, our model differs from others by using an explicit network describing pairwise

interactions, and it uses this network to generate stochastic changes to their health

state as they age until death – rather than capturing the dynamics with unobserved

latent variables that are harder to interpret. Using discrete health states within our

model allows us to simply compare with observed health states using maximum like-

lihood methods, and allows our success while using only cross-sectional data. That

said, our approach could be extended to use longitudinal data for training – and we

would expect this to further improve model behavior.

The interpretability of our model structure makes it straightforward to adapt

our model to new applications. We can easily generate synthetic tracked health

trajectories, or forecast the future trajectories of individuals from specified health

states. This means that our model can generate many different stochastic realizations

for the same individual after baseline, and can show how differences in possible health

trajectories lead to differences in mortality. Another application of our computational

approach that would be facilitated by our model structure is to manipulate model

individuals to perform “health interventions” on specific observed nodes or sets of
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nodes. We could then observe the affect of general interventions on health trajectories

and mortality. These predictions could then be tested with longitudinal data. This

is left for future work.

4.5 Methods

4.5.1 Model structure

In previous work, we developed a generic network model (GNM) [44, 45] to study

how damage propagation in a network can lead to similar behaviour as observed in

aging, in terms of population health and mortality. In this work we expand upon and

generalize the GNM to be able to fit the model to individuals with specific observed

deficits with a maximum likelihood approach. This allows us to generate synthetic

individuals from the model, which age with similar properties as the cohort used to

fit the model.

We consider a network of N nodes representing binary health attributes. Each

node i = 1, ..., N can be in state di = 0 for undamaged (healthy) or di = 1 damaged

(deficit). Nodes in the network undergo stochastic damage transitions (0 → 1) as an

individual ages. These transitions occur with rates that depend on the local damage

of neighbouring nodes. We call this local damage the “local frailty”, fi.

In the GNM, we measured the local damage around a specific node as the

proportion of damaged neighbours, fi = 1
ki

∑N
j=1 aijdj, where aij is the binary-

valued adjacency matrix of an undirected network and ki =
∑

j aij is the node

degree. Damage transitions (0 → 1) between states occurred with rates that de-

pend exponentially on the proportion of damaged neighbours, described by a function

Γ+(fi) = Γ+
0 exp (γ+fi) with tunable parameters γ+ and Γ+

0 . Here we use superscript

“+” to denote that this is a damage rate, and correspondingly use “-” to denote repair

rates. The baseline rate Γ+
0 controls the damage rate when fi = 0, and γ+ controls

how strongly the rate increases with increasing fi. Similar repair transitions were

also included (with separate parameters γ− and Γ−0 ), but were found to be negligible.

The parameters γ+ and Γ+
0 were identical for each node and chosen to fit population

mortality rates (Gompertz’ law) and overall health decline (average Frailty Index).

For the GNM studies we used N = 104 nodes [44, 45].
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In this work, we generalize the GNM to allow the model to represent specific

health attributes measured in observed health data as nodes in the network. We

generalize the original binary and undirected network to a weighted and directed

network, described by a continuous-valued adjacency matrix of weights, wij. These

weights represent the strength of connections between pairs of nodes. We call this

a weighted network model (WNM). We use far fewer than 104 nodes in this WNM

network, but account for the contribution of these missing nodes by introducing a

time-dependent function µi(t) to the local damage of each node, fi. This function

µi(t) represents the average contribution to the local damage by the dynamics of the

unobserved nodes. This average local damage contribution µi(t) for each node i is

implemented as a power series in terms of t with coefficients {µi n}i=N,n=nf

i=1,n=0 , where nf

is a hyperparameter for the number of terms used in the power series. This means

our new measure of local damage for the ith node is a weighted sum over all of the

nodes of the network, with the additional contribution from the µi(t) term,

fi(t, {dj}) = φ
( N∑

j=1

wijdj + µi(t)
)
, (4.4)

where µi(t) =

nf∑

n=0

µi nt
n.

Powers in power series are indexed by n, individual deficits or rates are indexed by

i, and sums over nodes in the network are indexed by j. We use this convention of

indexing throughout the methods. The function φ(x) = max (x, 0) is a “rectifier” or

“hinge” function [197] that clips negative values to zero, resulting in a continuous non-

negative function. This can allow strong non-linear behaviour by allowing the function

to be able to effectively “turn on” at older ages. The network weights {wij}Ni,j=1 and

power series coefficients {µi n}i=N,n=nf

i=1,n=0 are included as fitting parameters of the model.

The coefficients {µi n} are constrained so that µi(t) increases monotonically with age,

details are in Appendix A.

The exponential damage rates of the GNM have been replaced by more general

power-series in terms of fi, with node-dependent coefficients to allow each node to

have a different damage rate. This way, specific nodes in the network are able to

represent the distinct behaviour for specific deficits in the observed data (in contrast
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to the generic network model). This more general damage rate for node i is given by,

Γ+
i (t, {dj}) = φ

( n+∑

n=0

γ+i nfi(t, {dj})n
)
. (4.5)

This function describes the damage transition rate from 0 to 1 for node i. The

power series coefficients {γ+i n}i=N,n=n+

i=1,n=0 are fitting parameters of the model and n+ is a

hyperparameter that determines the highest-order in the power series. The coefficients

{γ+i n} are constrained so that the rate increases monotonically with fi.

Mortality occurs as a separate process with a rate of death that follows the same

form with a power series,

ΓD(t, {dj}) = φ
( nD1∑

n=0

αnx(t, {dj})n
)
, (4.6)

x(t, {dj}) = φ
( N∑

j=1

βjdj +

nD2∑

n=0

ηnt
n
)
. (4.7)

This mortality rate is equivalent to having a single node that corresponds to mortality,

and death occurs when it damages (in contrast to the two nodes that were used in the

GNM [11, 44]). The measure of local damage x that controls mortality is analogous

to the local damage fi for damage rates, and depends on each deficit linearly in a

weighted sum. Additionally, it includes an age-dependent deficit-independent func-

tion represented as a power series (analogous to µi(t)). This mortality rate uses fitting

parameters {αn}nD1
n=0 , {βj}Nj=1 , and {ηn}nD2

n=0 as well as nD1 , nD2 as hyperparameters

determining the number of terms in the power series. The coefficients in both ΓD and

x are constrained so that they increase monotonically in x and t, respectively.

In total the model has Ntot = N(N + nf + n+ + 1) + nD1 + nD2 + 2 fitting

parameters. We restrict parameter values to ensure that fi, Γ
+
i , ΓD, and x are all

monotonically increasing functions of age. Details of the requisite parameter bounds

are in Appendix A. Despite the large number of parameters, we have many more

individual observations. We also carefully test predictions for a test population that

has small overlap of observed states with our training population (see Appendix

Figure A.8). We find no evidence of overfitting.

The model is stochastically simulated by assuming the transition rates describe

exponentially distributed waiting times between transitions, and then using an exact
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event-driven stochastic simulation algorithm (SSA/Kinetic Monte Carlo) [144]. De-

tails of the stochastic simulation are in the SI. For one run of the model until death,

i.e. for each synthetic individual, the model outputs death age tD and all node tra-

jectories, {di(t)}i=N
i=1 for all t between the initial age and mortality. Fully synthetic

individuals are started at t = 0 with all di(t = 0) = 0, while predicted trajectories for

observed individuals are initialized at some t0 with the completely observed health

state at t0. Due to the exact nature of the SSA, all transition times are precisely

resolved in our model data.

4.5.2 Likelihood

We calculate our likelihood using cross-sectional data. For the mth of M individuals,

we have measurements of health attributes {di}(m) at age t(m). Instead of death age,

we have an observed survival age a(m) due to right censoring. This is the oldest age

that an individual is known to be alive, which can be written a(m) ≡ min (t
(m)
D , t

(m)
c )

, where t
(m)
D is actual death age and t

(m)
c is the censoring age i.e., the age of the

individual when they are known to be still alive due to observed health state(s) but

after which their mortality is not recorded. We indicate censoring with a binary

variable c(m) = 1, and uncensored with c(m) = 0. In summary, we consider observed

cross-sectional data of the form
{
t(m), {di}(m), a(m), c(m)

}M

m=1
.

By simulating synthetic individuals from the model, we sample and estimate the

probability p({di}(m), t
(m)
D |t(m),θ) for each individual m in the data. We denote all

parameters by the vector θ. For simplicity we split this probability into two separate

parts, representing mortality and health respectively:

log p({di}(m), t
(m)
D |t(m),θ) = log p(t

(m)
D |{di}(m), t(m),θ) + log p({di}(m)|t(m),θ). (4.8)

For uncensored individuals, we can calculate their likelihood by using their known

death age using Equation 4.8. For censored individuals, we also need to integrate the

mortality term over all possible death ages above the censoring age,

S(a(m)|t(m), {di}(m),θ) =

∫ ∞

a(m)

p(a′|t(m), {di}(m),θ)da′, (4.9)

which is the probability of surviving to at least age a. Then we can calculate the full
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log-likelihood,

L(θ) = Luncensored
mortality + Lhealth + Lcensored

mortality (4.10)

=
∑

m|c(m)=0

log p(a(m)|{di}(m), t(m),θ)

+
∑

m

log p({di}(m)|t(m),θ)

+
∑

m|c(m)=1

log S(a(m)|t(m), {di}(m),θ),

where the last term is added for censored individuals.

For an individual with missing data that does not have the full N health attributes

measured, we marginalize over the missing values implicitly by sampling all possible

combinations of the missing (binary) values. This is done using a synthetic population

that has been initialized at t = 0 with no damage. Additional details of the likelihood

estimation from simulations are in the SI.

4.5.3 Observed data

We use data from the Canadian Study of Health and Aging (CSHA) [160] to develop

and test our model. The CSHA study used stratified sampling to be a representative

sample of the older Canadian population. We use the first wave of the sample with

8547 individuals that range from ages 65−99 and death ages that are available within

a 6 year censoring window. The mean age is 76 years with a standard deviation of 7

years, the individuals are 60% female, and 78% of individuals have a censored death

age. The 10 binary deficits used in the main plots are “Walking difficulty”, “Showering

difficulty”, “Phone difficulty”, “Going out difficulty”, “Shopping difficulty”, “Prepar-

ing meal difficulty”, “House work difficulty”, “Take medicine difficulty”, “Managing

money difficulty”, and “Issues prevent normal activity”. These were chosen by select-

ing deficits that had large hazard ratios in a Cox proportional hazards analysis [119],

although any alternate sets of deficits can work, and an alternative set are shown in

Appendix A.

We split the data into a training set of 1020 individuals and a test set of 7527

individuals. We do this such that dividing the training set into 5 year age bins has an

approximately uniform age distribution, and the remaining individuals are put into
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the test set. This balances the training set and ensures no age is “prioritized” in the

model training by having a much larger number of individuals.

We validate our conclusions on the National Health And Nutrition Examination

Survey (NHANES) [159]. The NHANES dataset used stratified sampling to be a

representative sample of the US population. We use a combined sample from the

2003-2004 and 2005-2006 cohorts. The sample has 9504 individuals that range from

ages 20 − 85 with death ages that are available within a 10 year censoring window.

The mean age is 51 years, with a standard deviation of 20 years, the individuals are

52% female, and 88% of individuals have a censored death age. In the same way

as the CSHA data, this data is split into 2352 training individuals and 7151 test

individuals.

4.5.4 Parameter optimization

For each data-set (and choice of health attributes), we maximize the log-likelihood

in Equation 4.10 using particle swarm optimization [198] in order to train the model

and estimate the parameters θ̂. Details of the parameter optimization procedure are

in Appendix A. We use parameter bounds shown in the SI to impose monotonic de-

pendence of damage rates on existing damage. We regularize the fitting as detailed

in Appendix A. We choose hyperparameters n+ = 4 and nf = nD1 = nD2 = 3. These

are the number of terms in our power-series expansions used in damage and mortality

functions. The hyperparameters are hand chosen for simplicity. These hyperparame-

ters result in a model with N(N+8)+8 parameters, where N is the number of binary

health attributed modelled for each individual. Due to computational demands, this

practically limits the size of N – here we take N = 10 and so have 188 parameters.



Chapter 5

Interpretable machine learning for high-dimensional

trajectories of aging health

5.1 Background

Our previous work on the Weighted Network Model in Chapter 4 used an interaction

network with 10 binary health variables. The model was fit with cross-sectional data

that only had one measurement for each individual, along with mortality information.

This approach was limited by computational power available, since the model involved

discrete transitions we had to use slower non-gradient based optimization methods

to fit the model. Additionally, the model required many simulations to approximate

the likelihood function (known as simulation based inference [199,200]).

In this chapter, I develop the Dynamic, Joint, Interpretable Network (DJIN) model

of aging. Instead of building from the Generic Network Model as was done with the

Weighted Network Model, we take a new approach. The main distinctions between

the WNM and the DJIN model is the use of continuous-valued health variables as

nodes in the network, and the use of a large longitudinal dataset to train the model.

In this model, the network consists of 29 continuous-valued health variables from

the English Longitudinal Study of Aging (ELSA) [201], a large longitudinal study of

aging with up to 8 follow-up measurements per individual. Additionally, the model

is much more efficient allowing us to fit this model with more variables and many

more individuals when compared to the WNM. The continuous dynamics used in

the DJIN model let us use the stochastic gradient optimization techniques used in

machine learning to greatly increase the speed of training the model, allowing us to

train with large networks for a large number of individuals.

This model is similar to the Stochastic Process Model of Aging previously de-

veloped by Yashin et al. [33–36]. In this model, the observed health state y(t) is

93
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described by a stochastic differential equation,

dy(t) = W(t)
(
y(t)− f(t)

)
dt+ σ(t) · dB(t), (5.1)

where f(t) describes the baseline evolution of the health state, W(t) is a matrix

describing the interactions between health variables, and σ(t) is the strength of the

diffusive noise in the evolution of the health state.

Additionally, the hazard rate of mortality is described by “quadratic hazards”,

h(t) = h0(t) + (y(t)− g(t))TQ(t)(y(t)− g(t)), (5.2)

where h0(t) is the baseline hazard, g(t) is the baseline evolution, and Q(t) is a matrix

describing the interactions for mortality.

This joint model of both health and mortality can theoretically be used to model

any number of health variables, however it has only used to model 1 or 2 variables.

Additionally, only simple forms of the functions W(t), f(t),σ(t),g(t),Q(t) were con-

sidered, being either set constant or as linear functions of time.

The DJIN model represents an extension and advancement of this approach to

modelling aging, using techniques from modern machine learning. This is done by

scaling the approach up to incorporating many interacting health variables and large

datasets, Bayesian inference to include uncertainty in parameters and predictions, and

using flexible neural networks to learn the unknown functions involved in the model,

except the interaction network W. Instead we use a constant interaction network W,

which allows us to interpret the interactions between the health variables in terms

of this network. Note, we do not attempt to interpret all aspects of the model, but

rather use “black-box” neural networks for all components of the model except the

interaction network.

This chapter presents the paper “Interpretable machine learning for high-

dimensional trajectories of aging health” submitted for publication in 2021.

5.2 Introduction

Aging is a high-dimensional process due to the enormous number of aspects of healthy

functioning that can change with age across a multitude of physical scales [4,52]. This

complexity is compounded by the heterogeneity and stochasticity of individual aging
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outcomes [53,129]. Strategies to simplify the complexity of aging include identifying

key biomarkers that quantitatively assess the aging process [57, 61] or integrating

many variables into simple and interpretable one-dimensional summary measures of

the progression of aging, as with “Biological Age” [18,153,202], clinical measures such

as frailty [14,16], or recent machine learning models of aging [173,203]. Nevertheless,

one-dimensional measures only summarize the progression of aging, and so can miss

significant aspects of high-dimensional aging trajectories and of heterogeneous aging

outcomes. We introduce a machine learning approach to model high-dimensional

trajectories directly, while still learning interpretable aspects of our model through

an explicit network of interactions between variables. We also compare this model

with lower-dimensional modelling approaches, exploring the dimensionality required

to model aging health outcomes.

The increasing availability of large longitudinal aging studies is beginning to pro-

vide the rich data-sets necessary for the development of flexible machine learning

models of aging [23]. Methods for predictive modelling of individual health trajecto-

ries of disease progression have already been developed [193–196, 204, 205], but they

generally are not joint models that include both mortality and the progression of

aging [193]. There has also been progress on learning interpretable summaries of ag-

ing progression [173, 203], generalizing biological-age approaches but still producing

low-dimensional summaries of aging.

Less progress has been made on the more general problem of modeling high-

dimensional aging trajectories. Stochastic-process joint models that simultaneously

model longitudinal and survival data have been proposed [33, 35, 36], but have only

been implemented for one or two health variables at a time. Farrell et al. [48] used

cross-sectional data to build a network model that generated trajectories of 10 health

variables and predicted survival, but it was limited to binary health measures.

In this work we use the English Longitudinal Study of Aging (ELSA, [201]),

which is a large observational population study including a wide variety of vari-

ables with follow-up measurements for up to 20 years including mortality. Like other

large observational studies, for most individuals it has many missing measurements,

few irregularly-timed follow-ups, and censored mortality. Any practical approach to

model such data must confront the challenges provided by missing and irregularly
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timed data and by mortality censoring.

While machine learning (ML) approaches can help us navigate these challenges

with available data, they face additional challenges of interpretability [23,206]. “Sci-

entific Machine Learning” [24] or “Theory guided data science” [25] suggests that

domain knowledge be used to constrain and add interpretability to ML models. For

example, we can require that aging is modelled as a network of interacting health

components [46, 47], and that stochastic differential equations (SDEs) model the dy-

namical evolution of high-dimensional health states [33]. On the other hand we can

use general ML approaches to model survival or to impute missing data for baseline

(initial) health states, where we may not be interested in interpretation.

The result (see Fig. 5.1) is a powerful and flexible, but interpretable, approach

to modelling aging and mortality from high-dimensional longitudinal data – one that

preserves but is not crippled by the complexity of aging. We evaluate the resulting

model with test data and compare with simpler linear modelling approaches. We use

a Bayesian approach to infer the posterior distribution of the both interaction network

and individual health trajectories to estimate confidence bounds. We demonstrate our

model’s ability to robustly predict health trajectories using an interpretable network

of interactions. Additionally, we demonstrate that low-dimensional latent variable

models of a similar structure cannot predict aging health outcomes as well as this

high-dimensional network model.

5.3 Results

5.3.1 ELSA dataset

We combine waves 0 to 8 in the English Longitudinal Study of Aging (ELSA, [201])

to build a dataset of M = 25290 individuals, with longitudinal follow-up of up to

20 years. In this study, self-reported health information is obtained approximately

every 2 years and nurse-evaluated health with physical assessment and blood tests

approximately every 4 years. Considering all waves together with 2 year increments,

27% of values are missing for self-reported variables, 78% of values are missing for

nurse-evaluated variables, and 96% of individual mortality is censored. Training and

test trajectories (see below) are sampled starting with baseline times starting at each
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Figure 5.1: DJIN model of aging. a) Baseline imputation is performed using the
baseline health measurement yt0 , missing mask ot0 , background health information
ut0 , and baseline age t0 as input to an encoder neural network (green) that parameter-
izes a latent distribution. Sampling from this latent distribution and using a decoder
neural network (orange) gives an imputed complete baseline health-state x0. b) Base-
line generation conditional on background health information ut0 , and baseline age t0
can be used instead of imputation. The population latent distribution is sampled and
used with the same decoder neural network (orange) to produce a synthetic baseline
health state x0. c) Network dynamics stochastically evolve the health state x(t) in
time starting from the baseline state x0. The stochastic dynamics are modeled with a
stochastic differential equation which includes the pairwise network interactions with
connection weight matrix W, general diagonal terms fi(xi(t),ut0 , t) parameterized as
neural networks, and a diagonal covariance matrix for the noise σx(x) also param-
eterized with a neural network. d) The survival function evolves in time based on
the state and history of the health state x using a recurrent neural network (RNN).
The initial state of the RNN, ht0 , is set using the background health information ut0 ,
baseline age t0, and x0. Details are provided in the Methods. The code for our model
is available at https://github.com/Spencerfar/djin-aging.

of the waves; though at least one followup wave is required for test trajectories.

For a given starting wave, an individual’s health state is observed at K + 1 times

{tk}Kk=0 with a set of health variables {ytk}Kk=0. The vectors ytk describe the N -

dimensional health state of an individual, where each of the N dimensions represents

a separate health measurement. We select N = 29 continuous-valued or discrete ordi-

nal variables that were measured for at least two of the waves. Individuals also have

background (demographic, diagnostic, or lifestyle) information observed at baseline,

which is described by a B-dimensional vector ut0 . We select B = 19 of these contin-

uous or discrete valued background variables. These are used as auxiliary variables

at baseline; they aide the subsequent prediction of the health variables yt vs time.

Variables used from the data-set were selected only by availability, not by

predictive quality. All chosen variables and the number of observed individuals

for each is shown in Appendix Figure B.1, the details of the variables are given in

Appendix Table B.1 and B.2.
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5.3.2 DJIN model of aging

We build a model to forecast an individual’s future health {ytk}k>0 and survival

probability {S(tk)}k>0 given their baseline age t0, baseline health yt0 and background

health variables ut0 . It is a dynamic, joint, interpretable network (DJIN) model of

aging. A schematic of our model is shown in Fig. 5.1, while mathematical details are

provided in the Methods.

Effective imputation is essential because none of the 25290 individuals in the data-

set have a fully observed baseline health state. Fig. 5.1a illustrates our method of im-

putation for the baseline health state. Variational auto-encoders have shown promis-

ing results for imputation [207, 208]. We impute with a normalizing-flow variational

auto-encoder [209], where a neural network (green trapezoid) encodes the known in-

formation about the individual into an individual-specific latent distribution, and a

second neural network (orange trapezoid) is used to decode states sampled from the

latent distribution into imputed values. This is a multiple imputation process that

outputs samples from a distribution of imputed values rather than a single estimate.

We have chosen this imputation approach because we can also use it to generate

totally synthetic baseline health states given background/demographic health infor-

mation and baseline age. Fig. 5.1b illustrates this method. We randomly sample the

prior population distribution of the same latent space used in imputation, and then

combine this with arbitrary background information and use the same decoder as in

imputation to transform the latent state into a synthetic baseline health state. With

repeated random samples of the latent space, we generate a distribution of synthetic

baseline health states.

Fig. 5.1c illustrates the temporal dynamics of the health state in the model. Dy-

namics start with the imputed or synthetic baseline state x0. The health state is then

evolved in time with a set of stochastic differential equations, similar to the Stochas-

tic Process Model of Yashin et al. [33–35, 210]. The stochastic dynamics capture the

inherent stochasticity of the aging process. We assume linear interactions between

the variables, with an interpretable interaction network W. This interaction network

describes the direction and strength of interactions between pairs of health variables.

Fig. 5.1d illustrates the mortality component of the model. The temporal dynam-

ics of the health state is input into a recurrent neural network (RNN) to estimate the



100

individual hazard rate for mortality, which is used to compute an individual survival

function. Recent work shows that this approach can work well in joint models [193].

The RNN architecture uses the history of previous health states in mortality, other-

wise mortality could only depend on the current health state and could not capture

the effects of a history of poor health. We have chosen this RNN approach to mortality

because it performs better than either feed-forward (no history) or Cox proportional

hazards models (as shown in Appendix Figure B.11).

We use a Bayesian approach to model uncertainty by estimating the posterior

distribution of parameters, of health trajectories and of survival curves – as illus-

trated by the shaded blue confidence intervals in Fig. 5.1C. To handle our large and

high-dimensional datasets, we use a variational approximation to the posterior [211]

instead of slower MCMC methods. The variational approximation reduces the sam-

pling problem to an optimization problem, which we can efficiently approach using

stochastic gradient descent. Mathematical details are provided in the Methods. The

code for our model is available at https://github.com/Spencerfar/djin-aging.

5.3.3 Validation of model survival trajectories

We evaluate our model with test individuals withheld from training. Given baseline

age t0, baseline health variables yt0 , and background information ut0 for each of

these test individuals, we impute missing baseline variables and predict future health

trajectories and mortality with the model. These predictions are compared with their

observed values.

The C-index measures the model’s ability to discriminate between individuals at

high or low risk of death. We use a time-dependent C-index [177], which is the

proportion of distinct pairs of individuals where the model correctly predicts that in-

dividuals who died earlier had a lower survival probability. Higher scores are better;

random predictions give 0.5. In Fig. 5.2a we see that our model (red circles) performs

substantially better than a standard Cox proportional hazards model (green squares)

with elastic net regularization and random forest MICE imputation [212, 213]. The

horizontal lines show the C-index scores for the entire test set, and the points show

predictions stratified by baseline age. Stratification allows us to remove age-effects
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Figure 5.2: Model predictions and validation. Errorbars for all plots represent
standard errors of the mean for 10 fits of the DJIN model (often smaller than point
size). a) Time-dependent C-index stratified vs age (points) and for all ages (line).
Results are shown for our model (red) and a Elastic net Cox model (green). (Higher
scores are better). b) Brier scores for the survival function vs death age. Integrated
Brier scores (IBS) over the full range of death ages are also indicated. The Breslow
estimator for the baseline hazard is used for the Cox model. (Lower scores are better).
c) D-calibration of survival predictions. Error bars show the standard deviation.
Estimated survival probabilities are expected to be uniformly distributed (dashed
black line). We use Pearson’s χ2 test to assess the distribution of survival probabilities
for our network model (χ2 = 0.0, p = 1.0) and an elastic net Cox model (χ2 = 2.1,
p = 1.0). (Higher p-values and smaller χ2 statistics are better). d) RMSE scores when
the baseline value is observed for each health variable for predictions between 1 and 6
years from baseline, scaled by the RMSE score from the age and sex dependent sample
mean (relative RMSE scores). We show the predictions from our model starting
the baseline value (red circles), predictions assuming a static baseline value (blue
squares), and 29 distinct elastic-net linear models trained separately for each of the
variables (green squares). The DJIN predictions here come from the same model
as for mortality and the elastic net Cox model is also a distinct model. (Lower
RMSE is better). e) Relative RMSE scores when the baseline value for each health
variable is imputed for predictions between 1 and 6 years from baseline. We show
the predictions from our model starting from the imputed baseline value (red circles),
predictions assuming a static imputed value (blue squares), and predictions assuming
an elastic-net linear model (green squares). (Lower RMSE is better). f) RMSE score
distributions over all health variables for increasing years of prediction from baseline.
The median RMSE score is shown as a black dotted line between the boxes showing
upper and lower quartiles. Whiskers show 1.5x the interquartile range from the box.
(Lower RMSE is better). Self-report and nurse-evaluated waves have distinct patterns
of missing variables; nurse-evaluated waves have higher missingness overall.

in the predictions; we determine how well the model uses health variables to discrim-

inate between pairs of individuals at the same age. Our model predictions do not

substantially degrade when controlling for age, indicating that it is learning directly

from health variables, rather than from age. Predictions degrade at older baseline

ages due to the limited sample size.

We evaluate the detailed accuracy of survival curve predictions with the Brier

score [178]. Individual Brier scores calculate squared error between the full predicted

survival distribution S(t) and the exact survival “distribution” for that individual,

which is a step-function equal to 1 when the individual is alive and 0 when they are

dead. Lower Brier scores are better, though the intrinsic variability of mortality will
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provide some non-zero lower bound to the Brier scores. In Fig. 5.2b we show the

average Brier score for different death ages for our model (blue) and a Cox model

with a Breslow baseline hazard (green), indicating our model has a substantially lower

error between the predicted and exact survival distributions for older ages (note the

log-scale). The Integrated Brier Score (IBS) is computed by integrating these curves

over the range of observed death ages, and highlights the improvement of predictive

accuracy of our model as compared to Cox.

We evaluate the calibration of survival predictions with the D-calibration score

[214]. For a well-calibrated survival curve prediction, half of the test individuals

should die before their predicted median death age and half should live longer. Cal-

ibrated survival probabilities can be interpreted as estimates of absolute risk rather

than just relative risk. The D-calibration score generalizes this to more quantiles of

the survival curve, where the proportion observed in each predicted quantile should

be uniformly distributed. In Fig. 5.2c, we show deciles of the survival probability for

our model (red bins), compared with the expected uniform black straight line. We

compute χ2 statistics and p-values for the predictions of our model vs the uniform

ideal, as well as for a Cox proportional hazards model (histogram in Appendix Figure

B.12). Our model is consistent with a uniform distribution under this test (p = 1.0,

χ2 = 0.0) as desired for calibrated probabilities. The Cox model is also calibrated

(p = 1.0, χ2 = 2.1), but with a slightly worse χ2 statistic.

These results demonstrate that our DJIN model accurately predicts the rela-

tive risk of mortality of individuals (assessed by the C-index), predicts accurate

survival probabilities (assessed by the Brier score), and properly calibrates these sur-

vival probabilities so that they can be directly interpreted as an absolute risk of death.

5.3.4 Validation of model health trajectories

Model predictions of individual health trajectories are also evaluated on the test

set. We compute the Root-Mean-Square Error (RMSE) for each health variable, and

create a relative RMSE score by dividing by the RMSE obtained when using the

age and sex matched training-set sample mean as the prediction. In Fig. 5.2d, we

show that the model (red circles) performs better than the age and sex dependent
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sample mean (black dashed line) when the baseline value of the particular variable is

observed. The RMSE here is computed for all predictions between 1 and 6 years from

baseline. In Fig. 5.2e we show that the model is predictive of future health values

even when the initial value of the particular variable is imputed.

As measured by the relative RMSE, our model is better than a null model (blue

squares) that carries forward the observed baseline (d) or imputed baseline value (e)

for all ages. For comparison purposes, we also trained linear models with elastic net

regularization and random-forest MICE imputation [212,213] that have been trained

separately to predict each health variable. We are therefore comparing our single

DJIN model that predicts all 29 variables, to 29 independently-trained linear models.

While the linear models perform better than the null model for observed baselines,

our model performs better than both. For imputed baselines, the linear models with

random-forest MICE imputation performs poorly even compared to the imputed null

model, while our model continues to outperform both.

In Fig. 5.2f, we show boxplots of RMSE scores over the health variables for 1-14

years past baseline, when the variable was initially observed at baseline. The model

is predictive for long term predictions, and remains better than linear elastic net

predictions for at least 14 years past baseline for the self-report waves (blue) and 12

years past baseline for the nurse-evaluated waves including blood biomarkers (pink).

In Appendix Figure B.3 we show example DJIN trajectories for 3 individuals

in the test set for the 6 best predicted health variables. We show both the mean

predicted model trajectory and a visualization of the uncertainty in the trajectory. For

comparison, the sample mean and elastic net linear model are shown. The predicted

trajectories visually agree well with the data, and is often substantially better than

either the elastic net linear predictions or the sample means for the corresponding

variables.

These results demonstrate that our DJIN model predicts the values of future

health variables from baseline better than standard linear models, and also better

than sample-mean or constant baseline models.
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latent variable models are overfitting survival, and can improve with hyperparameter

tuning.

These results suggests that work on low-dimensional summary measures of aging

such as biological age can capture the progression of aging, but can not predict the

specific heterogeneous health outcomes during aging [21,215,216]. In Appendix Figure

B.9, we show in greater detail the one-dimensional summary model and in Appendix

Figure B.10 the 30-dimensional latent variable model.

Our network model that only includes pair-wise linear interactions performs sim-

ilarly to high-dimensional latent variable models that use non-linear dynamics. This

suggests that our network approximation is sufficient for describing the dynamics

of these variables. One reason this linear pair-wise network approximation may

work well is because we are interested in long term predictions, rather than short-

time scale dynamics where the variables are likely more strongly non-linearly coupled.

5.3.6 Validation of generated synthetic populations

Given baseline age t0, and background information ut0 for test individuals, we gen-

erate synthetic baseline health states and simulate a corresponding synthetic aging

population. We evaluate these aging trajectories by comparing with the observed

test sample. We train a logistic regression classifier to evaluate if the synthetic and

observed populations can be distinguished [196,205,217,218]. We find that this clas-

sifier has below a 57% accuracy for the first 14 years past baseline in Figure 5.4 – only

slightly better than random. Additionally, we show that this approach is equivalent

or better than the non-linear latent variable models.

In Appendix Figures B.5 and B.6 we show the population and synthetic baseline

distributions and population summary statistics for the trajectories vs age for ages

65 to 90. We find that our model captures the mean of the population, but slightly

underestimates the standard deviation of the population (as expected due to our

variational approximation of the posterior [211]). In Appendix Figure B.4 we show the

population synthetic survival function agrees with the observed population survival

below age 90, where the majority of data lies.

The agreement of the synthetic and test populations demonstrates the DJIN
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in grip strength.

Hierarchical clustering on the connection weights is indicated in Fig. 5.5, and the

ordering of the variables in the heatmap represents this hierarchy. Many of these in-

ferred clusters of nodes plausibly fit with known physiology. For example, most blood

biomarker measurements (bottom half) are separated from the physical/functional

measurements (top half, purple cluster). Other inferred clusters include blood pres-

sure and pulse (orange) and lipids (green).

5.4 Discussion

We have developed a machine learning aging model, DJIN, to predict both multidi-

mensional health trajectories and survival given baseline information, and to generate

realistic synthetic aging populations – while also learning interpretable network inter-

actions that characterize the dynamics in terms of realistic physiological interactions.

The DJIN model uses continuous-valued health variables from the ELSA dataset,

including physical, functional, and molecular variables. We have shown that the

comprehensive DJIN model performs better than 30 independent regularized linear

models that were trained specifically for each separate health variable or survival

prediction task.

Using a latent-variable model approach, we analyzed the multi-dimensionality of

aging. While summary measures of aging such as the frailty index or biological age

are easily interpretable, they are only one-dimensional. We find that the changes

that occur due to aging are multidimensional. This is due to the heterogeneity in

individual aging trajectories – individuals with the same frailty index or biological

age can have distinct health states.

Previously, we had built a weighted network model (WNM) using cross-sectional

data with only binary health deficits [48]. That WNM did not incorporate contin-

uous health variables and could not be efficiently trained with longitudinal data.

As a result, the networks inferred by that model were not robust – and resulted in

many qualitatively distinct networks that were all consistent with the observed cross-

sectional binary data. In contrast, the DJIN model uses many continuous valued

health variables and can be efficiently trained with large longitudinal datasets. As a

result, the DJIN model produces a robust and interpretable interaction network of
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multidimensional aging (Appendix Figure B.13 shows robustness between separate

fits of the model).

Recently, other machine learning models of aging or aging-related disease progres-

sion have been emerging [173,193,196,205,218]. Since they each differ significantly in

terms of both the datasets, types of data used, and scientific goals, it is still too early

to see which approaches are best – and for which data and what goals. We use ELSA

data since it is longitudinal (to facilitate modelling trajectories), has many continuous

variables (to allow modelling of continuous trajectories and constructing an interac-

tion network that is at the core of our model), and includes mortality (to develop our

joint mortality model). The ELSA data is representative of many large-scale aging

data sets.

Our scientific goals were to obtain good predictive accuracy from baseline for both

health trajectories and mortality, while at the same time obtaining an interpretable

network of interactions between health variables [23]. To achieve these goals with the

ELSA data, we had to do significant imputation to complete the baseline states. We

include stochastic dynamics within a Bayesian model framework to obtain uncertain-

ties for both our predictions and the interaction network. The Bayesian approach is

computationally intensive and necessitated a variational approximation to the pos-

terior that tends to underestimate uncertainty [211]. From the analysis of synthetic

populations (see Appendix Figures B.4, B.5, and B.6), this underestimate appears to

be modest.

The DJIN model is not computationally demanding, needing only approximately

12 hours to run with 1 GPU forM = 25290 individuals, B = 19 background variables,

N = 29 health-variables, and up to K = 20 years of longitudinal data. We expect

better performance and generalizability with more individuals M . Because of the

interactions between health variables we also expect better performance with more

health variables N . We note that binary health variables, or mixtures of binary and

continuous variables, could be used with only small adjustments. Since computational

demands for a forward pass of the model scale approximately linearly with M and

K, and quadratically with B + N , our existing DJIN model is already practical for

significantly larger datasets.

In this work we only consider predictions from the baseline state at a single age.
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We anticipate that individual prediction could be significantly improved by utilizing

more than one input time to impute the baseline health state x0 or by conditioning

the predictions on multiple input ages. This conditioning can be done using a recur-

rent neural network [219,220]. Observed time-points after baseline can also be used to

update the dynamics [221] for predictions of continually observed individuals in per-

sonalized medicine applications. However, both of these developments would either

require data with more follow-up times than we had available, or limiting predictions

to very short time intervals. For these reasons, we chose to model trajectories using

only a single baseline health state.

We developed an imputation method that is trained along with the longitudinal

dynamics to impute missing baseline data. This imputation method can also be used

to generate synthetic individuals conditioned on baseline demographic information.

Large synthetic datasets can facilitate the development of future models and tech-

niques by providing high-quality training data [222], and are especially needed given

the lack of large longitudinal studies of aging [23]. In Figure 5.4 and Appendix Fig-

ures B.4, B.5, and B.6 we show that our synthetic population is comparable to the

available individuals in the ELSA dataset. We have also provided a synthetic popu-

lation of nearly 107 individuals with annually sampled trajectories from baseline for

20 years [223].

At the heart of our dynamical model is a directed and signed network that is

directly interpretable. The DJIN model does not just make “black-box” predictions,

but is learning a plausible physiological model for the dynamics of the health vari-

ables. The network is not a correlation/association network (see comparison in Ap-

pendix Figure B.7) [153, 154, 191], but instead determines how the current value of

the health variables influence future changes to connected health variables, leading

to coupled dynamics of the health variables. This establishes a predictive link be-

tween variables [224]. Similar directed linear networks are inferred in neuroscience

with Dynamic Causal Modelling [225,226]. While previous work on learning networks

for discrete stochastic dynamics has been done in the past [227–229], we have used

continuous dynamics here. When interpreting the magnitude of weights, links func-

tion as in standard regression models: weight magnitudes will be dependent on the

variables included in the model, and can decrease if stronger predictor variables are
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added. Given the efficiency of our computational approach, including more health or

background variables is recommended if they are available.

The directed nature of the network connections lend themselves to clinical inter-

pretation – for example that ADL impairment has an effect on instrumental ADL

(IADL) impairment and not vice versa, and that both have an effect on general func-

tion score and vice versa. The directed network of interactions suggests avenues to

explore for interventions. For a given intervention (for example drug, exercise, or

diet) we can ascertain which effects of the intervention are beneficial and which are

deleterious. In principle, we could also predict the outcome of multiple interventions

such as in polypharmacy [230]. A similar approach could be taken for chronic dis-

eases or disorders. While static interventions could simply be included as background

variables, our DJIN model could also easily be adapted to allow for time-dependent

interventions. These avenues will be increasingly feasible and desirable with longitu-

dinal ’omics data-sets, where the interactions are not already largely determined by

previous work.

We caution that our model does not currently take into account how interventions

may change relationships over time, or any higher order interactions than the pair-

wise interactions considered here. For example, the interaction between sodium levels,

mobility, and diuretics appears to be strong [231], but would not be captured in our

current model. Extending our approach to include such effects in the interactions

would be desirable.

The accuracy of our model can be slightly improved if a network interpretation

of the dynamics is not desired – for instance if the goal is only prediction. High-

dimensional non-linear latent variable models that using a neural network for the drift

function instead of pair-wise network interactions somewhat improve health variable

prediction accuracy. However, our goal was to demonstrate both good predictions

and interpretability. The network form of our dynamics is not the only type of

dynamics that can be used, and can be replaced with any alternative model of the

aging dynamics for bespoke interpretability.

The advantage of more interpretable models will be more clearly seen when mul-

tiple data-sets are compared – since interpretability facilitates comparisons between

cohorts, groups, or even between model organisms. Every aspect of our DIJN model
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can be made more structured, explicit and “interpretable”. For example, propor-

tional hazards [119] or quadratic hazards [33] could be used for mortality. While this

would reduce performance compared to our more general neural network, it would

add interpretability to the survival predictions.

Our work opens the door to many possible follow-up studies. Our DJIN model

can be applied to any organism or set of variables that has enough individual longitu-

dinal measurements. With genomic characterization of populations, the background

health information ut0 can be greatly expanded to examine how the intrinsic vari-

ability of aging [53,129] and mortality are affected by genetic variation. By including

genomic, lab-test, and functional data we could use the interpretable interactions

to determine how different organismal scales of health data interact in determining

human aging trajectories. By including drug and behavioral (exercise, diet) interven-

tions as background variables, we can better determine how they affect health during

aging. Finally, large longitudinal multi-omics datasets [59,60] could be used to build

integrative models of human health.

We have demonstrated a viable interpretable machine learning (ML) approach

to build a model of human aging with a large longitudinal study that can predict

health trajectories, generate synthetic individual trajectories, and learn a network of

interactions describing the dynamics. The future of these approaches is bright [23],

since we are only starting to embrace the complexity of aging with large longitudinal

datasets. While ML models can find immediate application in understanding patterns

of aging health in populations, we foresee that similar techniques will eventually reach

into clinical practice to guide personalized medicine of aging health.

5.5 Methods

5.5.1 ELSA dataset

We use waves 0-8 of the English Longitudinal study of Aging (ELSA) dataset [201],

with 25290 total individuals. We include both original and refreshment samples that

joined the study after the start at wave 0. In Appendix Table B.1 we list all variables

used. In Appendix Figure B.1, we show the number of individuals for which the

variable is available at different times from their entrance wave. Each available wave
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is used as a baseline state for each individual, see section 5.5.2 for details.

We extract 29 longitudinally observed continuous or discrete ordinal health vari-

ables (treated as continuous) and 19 background health variables (taken as constant

with age). We set the gait speed of individuals with values above 4 meters per second

to missing, due to a likely data error. Sporadic missing ages are imputed by assuming

the age difference between waves is 2 years – the time difference in the design of the

study.

Individuals above age 90 in the ELSA dataset have their age privatized. By as-

suming the time difference between waves is 2 years, we “deprivatize” these ages

within our analysis pipeline. For example, an individual may have recorded ages

87, 89, 〈privatized〉, 〈privatized〉, which we deprivatize as 87, 89, 91, 93. When indi-

viduals are known to die at an age above 90 at a specific wave, the same approach is

done to deprivatize the death age. We have examined the accuracy of reported ages

compared to this fixed two-year wave interval deprivatization method, and we find

that the majority of deviations range from 0-1 years (with 78% at 0 years, and an

average deviation of 0.23 years) – we expect similar variability for deprivatized ages

above 90.

Height is imputed with the last observation carried forward (if it is missing, the

first value is carried backwards from the first available measurement). Individuals

with no recorded death age are considered censored at their last observed age.

The data is randomly split into separate train (16689 individuals), validation (4173

individuals), and test sets (5216 individuals). The training set is used to train the

model, the validation set is used for control of the optimization procedure during

training (through a learning rate schedule, see Section 5.5.6 below), and the test set

is used to evaluate the model after training. Individuals with fewer than 6 variables

measured at the baseline age t0 are dropped from the training and validation data.

Individuals with fewer than 10 variables measured at the baseline age t0 are dropped

from the test data for predictions, while all individuals in the test data are used for

population comparisons.

All variables are standardized to mean 0 and standard deviation 1 (computed from

the training set); however variables with a skewed age-aggregated distribution p(y)

covering multiple orders of magnitude are first log-transformed. Log-scaled variables
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are indicated in Appendix Table B.1.

5.5.2 Data augmentation

Since some health variables are measured only at specific visits, using the entrance

wave as the only baseline of every individual forces some variables to be rarely ob-

served at baseline, hindering imputation of variables that are only observed at later

waves. To mitigate this and to augment the dataset, we replicate individuals to use

all possible starting points, t
(m)
k , k ∈ {0, ..., argmaxk(t

(m)
k )}. Since individuals have

different numbers of observed times we weight individuals in the likelihood who have

multiple times available by s(m) = 1/(argmaxk(t
(m)
k ) + 1). This helps to prevent the

over-weighting of individuals with many possible starting times. Nevertheless, we still

assume that replicated individuals are independent in the likelihood.

To further augment the available data, we artificially corrupt the input data for

training by masking each observed health variable at baseline with probability 0.9.

This allows more distinct “individuals” for imputation of the baseline state, and

allows us to use self-supervision for these artificially missing values by training to

reconstruct the artificially corrupted states.

5.5.3 DJIN model

We model the temporal dynamics of an individual’s health state with continuous-time

stochastic dynamics described with stochastic differential equations (SDEs). These

SDEs include linear pair-wise interactions between the variables to form a network

with a weight matrix W. We assume the observed health variables yt are noisy

observations of the underlying latent state variables x(t), which evolves according to

these network SDEs. This allows us to separate measurement noise from the noise

intrinsic to the stochastic dynamics of these variables.

These SDEs for x(t) start from each baseline state x0, which is imputed from

the available observed health state yt. This imputation process is done using a

normalizing-flow variational auto-encoder (VAE) [209]. In this approach, we en-

code the available baseline information into a latent distribution for each individ-

ual, and decode samples from this distribution to perform multiple imputation. The

normalizing-flow VAE allows us to flexibly model this latent distribution. The details
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are described in Section 5.5.4 below.

Our model is described by the following equations:

θ =
{
W, σy, σx,θλ,θp,θf

}
, (5.3)

z,θ ∼ p(z)p(θ), (5.4)

x0 = ot0 ⊙ yt0 + (1− ot0)⊙ x̃0, x̃0 ∼ N (x0|µx(z,ut0 , t0,θp),σ
2
y), (5.5)

dxi(t) =
( N∑

j=1

Wijxj(t) + fi(xi(t),ut0 , t;θfi)
)
dt+ σxi

(x(t))dB(t), x(t0) = x0, (5.6)

yt ∼ N (ψ−1(x(t)), diag(σy
2)), (5.7)

S(t) = exp
(
−

∫ t

t0

λ({x(τ)}τ≤t′ ,ut0 , t
′;θλ)dt

′
)
, (5.8)

a ∼ λ({x(τ)}τ≤a,ut0 , a;θλ)S(a), (5.9)

p(z, {x(t)}t,θ|{ytk}k,ut0 , {otk}k, t0, a, c) ∝ p(θ)p(z)p(x0|z,ut0)× (5.10)

p({x(t)}t|x0,ut0 , t0,θ)p(a, c|{x(t)}t,ut0 , t0,θ)
K∏

k=0

p(ytk |{x(tk)}k,otk ,θ),

Model parameters (θ) include the explicit network of interactions between health

variables (W ), measurement noise (σy) and dynamical SDE noise (σx), and network

weights for mortality RNN (θλ), imputation VAE decoder (θp), and dynamical SDE

(θf ). Equation (5.4) represents priors on the model parameters and latent state z.

We use Laplace(w|0, 0.05) priors for the network weights and Gamma(σy|1, 25000)
priors for the measurement noise scale parameters. We use a normal (Gaussian) prior

distribution for the latent space z. We assume uniform priors for all other parameters.

In Equation (5.5) we sample the baseline state. The distribution for x0 given z

is modeled as Gaussian with mean computed from the decoder neural network and

the same standard deviation as the measurement noise, N (µx(z,ut0 , t0;θp),σ
2
y). The

missing value imputation and the dynamics model are trained together simultaneously

(see details below). This allows us to utilize the additional longitudinal information

for training the imputation method, and helps to avoid an imputed baseline state

that leads to poor trajectory or survival predictions.

Equation (5.6) describes the SDE network dynamics, starting from the im-

puted baseline state. We capture single-variable trends with the non-linear
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fi(xi(t),ut0 , t;θfi), and couple the components of x(t) linearly by the directed in-

teraction matrix W, which represents the strength of interactions between the health

variables. In this way, fi can be thought of as a non-linear function for the diag-

onal components of this matrix, while W gives linear pair-wise interactions for the

off-diagonal components. The intrinsic diffusive noise in the health trajectories is

modeled with Brownian motion with Gaussian increments dB(t) and strength σx.

The functions fi and σx are parameterized with neural networks.

Equation (Health observation) describes the Gaussian observation model for the

observed health state. Measurement noise here is separate from diffusive noise dB(t)

in the SDE from Equation (5.6). The component-wise transformation ψ applies a

log-scaling to skewed variables (indicated in Appendix Table B.1) and z-scores all

variables.

Equation (5.8) describes the survival probability as computed with a recurrent

neural network (RNN) for the mortality hazard rate λ. The RNN allows us to use the

stochastic trajectory for the computation of the hazard rate (i.e. it has some memory

of health at previous ages), rather than imposing a memory-free process where the

hazard rate only depends on the health state at the current age. We use a 2-layer

Gated Recurrent Unit (GRU [112]) for the RNN, with hidden state ht. The initial

hidden state h0 is inferred from the initial health variables x(t0), background health

information ut0 , and baseline age t0, with a neural network h0 = H(x(t0),ut0 , t0).

Equation (5.9) describes the observation model for survival with age of death or last

age known alive a = max(td, tc), and censoring indicator c.

Instead of just a maximum likelihood point estimate of the network and other

parameters of the model, we use a Bayesian approach. This is a natural approach

for this model, since the stochastic dynamics of x(t) are separate from the noisy

observations yt. This also allows us to infer the posterior distribution of the health

trajectories and interaction network, and so lets us estimate the robustness of the

inferred network and the distribution of possible predicted trajectories, given the

observed data. In Equation (5.10) we show the form of the unnormalized posterior

distribution.
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5.5.4 Variational approximation for scalable Bayesian inference

While sampling based methods of inference for SDE models do exist [232,233], these

are generally not scalable to large datasets or to models with many parameters. In-

stead, we use an approximate variational inference approach [234, 235]. We assume

a parametric form of the posterior that is optimized to be close to the true poste-

rior. While variational approximations tend to underestimate the width of posterior

distributions and simplify correlations, they typically capture the mean [211].

Our factorized variational approximation to the posterior in Equation (5.10) is

q(z,x(t),θ|y0,ut0 ,ot0 , t0,φ) = q(z|y0,ut0 ,ot0 , t0,φz) (5.11)

× q(x(t)|x0,ut0 , t,φx)q(θ|φθ),

{x(t)}t ∼ q(x(t)|x0,ut0 , t,φx) =⇒ (5.12)

dx(t) =
(
W̄x+ f(x,ut0 , t;θf ) + g(x,ut0 , t;φ)

)
dt+ σx(x(t))dB(t),

with variational parameters φ = {φx, φz, φθ}. Instead of assuming an explicit para-

metric form for q(x(t)|φx), we instead assume the trajectories {x(t)}t are described

by samples from a posterior SDE with drift modified by including a small fully con-

nected neural network g [236]. This approach allows an efficient and flexible form of

the variational posterior in Equation 5.12. W̄ is the posterior mean of the network

weights. The functional form of the posterior drift is both more general and more

easily trainable than the network SDE in Equation 5.6, but ultimately is forced to be

close to the network dynamics in Equation (5.6) by the loss function. The loss func-

tion for this approach has been previously derived [234, 235]. The imputed baseline

states x0 are averaged over.

For the latent state z, the approximate posterior takes the form

µz, σz, γz = Encoder(ỹt0 ,ot0 ,ut0 , t0, φz), (5.13)

ỹt0 = ot0 ⊙ yt0 + (1− ot0)⊙ ǫys,t0 ,pop
, (5.14)

q(z|yt0 ,ut0 ,ot0 , t0,φz) ≡ q(z(L)|ỹt0 ,ut0 ,ot0 , t0,φz), (5.15)

= N (z(0)|µz,σ
2
z)

L∏

l=1

∣∣∣det∂a
(l)(z(l),γz, φz)

∂z(l)

∣∣∣
−1

, (5.16)

where the functions a(l) are RealNVP normalizing flows [237] used to transform the
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Gaussian base distribution for z(0) to the non-Gaussian posterior approximation, con-

ditioned on the specific individual with γz. These are invertible neural networks

that transform probability distributions while maintaining normalization. In Equa-

tion 5.14 we fill in missing values in the observed health state since o is a mask of

observed variables and ǫys,t0 ,pop
is sampled from a Gaussian distribution with the sex

and age-dependent sample mean and standard deviation. ⊙ is element-wise multipli-

cation. These filled in values are temporarily input to the encoder neural network,

and replaced after imputation.

The variational parameters φ of the approximate posterior are optimized to min-

imize the KL divergence between the approximation and the true posterior. This

minimized KL divergence provides a lower bound to the model evidence that can be

maximized,

log p({ytk}k|ut0 ,ot0 , t0) ≥ Eθ, z, x0|z, {x(t)}t|x0

[
(5.17)

log p(θ)p(z)p({x(t)}t|x0,ut0 ,θ)p(a, c|{x(t)}t,ut0 , t0)
∏

k

p(ytk |x(tk),otk ,θ)

− log q(z|y0,ut0 ,ot0 , t0)q(θ)q({x(t)}t|x0,ut0)

]
,

where in the expectation θ, z, and {x(t)}t are sampled from their respective posterior

distributions. The imputed baseline state is sampled as,

µx = Decoder(z,ut0 , t0) (5.18)

x̃0 ∼ N (µx,σ
2
y) (5.19)

x0 = ot0 ⊙ yt0 + (1− ot0)⊙ x̃0. (5.20)

Note that we keep the observed value yt0 when available.

The final objective function to be maximized is L, where the derivation is provided
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in Appendix 5. We obtain

L(φ) = E

[
K∑

k=0

otk ⊙ logN (ytk |x(tk),σy)

+ (1− c)
[
log λ(a|x(t),ut0 , t0) + log S(a|x(t),ut0 , t0)

]

+

∫ a

t0

c log S(t|x(t),ut0 , t0)dt+

∫ amax

a

(1− c) log (1− S(t|x(t),ut0 , t0))dt

− 1

2

∫ a

t0

∣∣∣
∣∣∣σ−1x ⊙

(
Wx− W̄x− g(x,ut0 , t)

)∣∣∣
∣∣∣
2

2
dt

]

− KL(q(θ)||p(θ))−KL(q(z(0)|y0,ut0 ,ot0 , t0)||p(z(0)))

+
L∑

l=1

log
∣∣∣det∂a

(l)(z(l),γz, φz)

∂z(l)

∣∣∣, (5.21)

as the loss function for each individual. This is for all individuals in the data mul-

tiplied by the sample weights s(m) for each individual m.We penalize the survival

probability by integrating the probability of being dead from the death age a to amax,

which better estimates survival probabilities [238]. We set amax = 5 years. Otherwise,

it is difficult for the model to learn S → 0 for large t. The last 3 lines are the KL-

divergence terms for variational inference. The very last line is for the normalizing

flow portion of the variational auto-encoder.

To simplify the evaluation of L and decrease the number of parameters, we as-

sume independent Gamma posteriors for each measurement error parameter σy with

separate shape αi and rate βi. We also assume independent Laplace posteriors for

each of the network weights Wij with separate means W̄ij and scales bij. For the

approximate distribution of all other parameters we use delta functions, and together

with uniform priors this leads to simplifying the approach to just optimizing these

parameters instead of optimizing variational parameters of the posterior.

5.5.5 Summarized training procedure

1. Pre-process data. Assign N dynamical health variables and B static health

variables. Reserve validation and test data from training data.

2. Sample batch and apply masking corruption and temporarily fill in missing
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values with samples from the population distribution,

ỹt0 = c⊙ ot0 ⊙ yt0 + (1− c⊙ ot0)⊙+ǫys,t0 ,pop
, (5.22)

c ∼ Bernoulli(0.9). (5.23)

3. Impute initial state x0 with the VAE and compute the initial memory state of

the mortality rate GRU,

z ∼ q(z|ỹt0 ,ut0 , c⊙ ot0 , t0), (5.24)

x̃0 ∼ N (x0|µx(z,ut0 , t0),σ
2
y) (5.25)

x0 = ot0 ⊙ yt0 + (1− ot0)⊙ x̃0, (5.26)

ht0 = H(x0,ut0 , t0). (5.27)

4. Sample trajectory from the SDE solver for the posterior SDE and compute

mortality rate from GRU,

{x(t)}t = SDESolver(x0,ut0 , t0), (5.28)

{S(t)}t = GRU({x(t)}t|ht0). (5.29)

5. Compute the gradient of the objective function (Equation B.1) and update

parameters, returning to step 2 until training is complete.

6. Evaluate model performance on test data.

5.5.6 Network architecture and Hyperparameters

The different neural networks used are summarized in Appendix Table B.4. We

use ELU activation functions for most hidden layer non-linearities, unless specified

otherwise. We have N = 29 dynamical health variables, and B = 19 static health

variables. Additionally, we append a mask to the static health variables indicating

which are missing, of size 17 (sex and ethnicity are never missing).

The functions fi in Equation (5.6) are feed-forward neural networks with input

size 2 + B + 17, hidden layer size 12, and output size 1. Each fi, i ∈ {1, ..., N} has

its own weights. The noise function σx has input size N , hidden layer size N , and

output size N . The posterior drift g is a fully-connected feed-forward neural network
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with input size N + B + 1 + 17, hidden layer size 8, and output size N . The VAE

encoder has input size 2N +B+1+17, hidden layer sizes 95 and 70, and output size

40, with batch normalization applied before the activation functions for each hidden

layer. The VAE decoder has input size 20 +B +17, hidden layer size 65, and output

size N with batch normalization applied before the activation for the hidden layer.

The size of the latent state z is 20. The mortality rate λ is a 2-layer GRU [112] with

a hidden layer sizes of 25 and 10.

We use 3 normalizing flow networks to transform the latent distribution from the

Gaussian z(0) to z. We use RealNVP normalizing flow networks [237] with layer sizes

30, 24, and 10 with batch normalization before a Tanh activation function for the

hidden layer. The size of γz is 10.

We use batchsize of 1000 and learning rate 10−2 with the ADAM optimizer [111].

We decay the learning rate by a factor of 0.5 at loss plateaus lasting for 40 or more

epochs. We use KL-annealing with β increasing linearly from 0 to 1 during the first

300 epochs for the KL loss terms for q(x(t)) and q(z(t)), and increase linearly from 0

to 1 from 300 to 500 epochs for the KL terms for the prior on W. SDEs are solved

with the strong order 1.0 stochastic Runge-Kutta method [239] with a constant time-

step of 0.5 years. Integrals in the likelihood are computed with the trapezoid method

using the same discretization as the dynamics.

5.5.7 Evaluation metrics

RMSE scores

Longitudinal health trajectory predictions are assessed with the Root-Mean-Square

Error (RMSE) of the predictions with respect to the observed values. The RMSE is

evaluated for each health variable and is weighted by the sample weights s(m). We

compute these RMSE values for predictions for a specific age tk,

RMSEi(tk) =

√√√√ 1

M

M∑

m=1

∑

k:tk≥t

s(m)(ψ−1i (x
(m)
i (tk))− y

(m)
i,tk

)2, (5.30)

where the inverse transform ψ−1i reverse any log-scaling and the z-scoring performed

on the variables. The index (m) indicates the individual, for M total individuals.
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Time-dependent C-index

The C-index measures the probability that the model correctly identifies which of a

pair of individuals live longer. Our model contains complex time-dependent effects

where survival curves can potentially intersect, so we use a time-dependent C-index

[177],

Ctd = Pr(Ŝ(m1)(a(m1)) < Ŝ(m2)(a(m1))|a(m1) < a(m2), c(m1) = 0) (5.31)

=

∑
m1,m2

s(m1)s(m2)δ[Ŝ(m1)(a(m1)) < Ŝ(m2)(a(m1))]δ[a(m1) < a(m2)]δ[c(m1) = 0]
∑

m1,m2
s(m1)s(m2)δ[a(m1) < a(m2)]δ[c(m1) = 0]

,

where s(m) are individual sample weights. We denote death ages by td and censoring

ages by tc, and define a(m) = min(t
(m)
c , t

(m)
d ) as the last observed age for censored

individuals (c(m) = 1) or the death age for uncensored individuals (c(m) = 0). The

indexes (m1) and (m2) indicate the pair of individuals that are being compared. Delta

functions δ[] have value 1 if the argument is true, otherwise have value 0.

Brier score

The Brier score compares predicted individual survival probabilities to the exact

survival curves, i.e. a step function where S = 1 while the individual is alive, and

S = 0 when the individual is dead. The censoring survival function G(t) is computed

from the Kaplan-Meier estimate of the censoring distribution (using censoring as

events rather than the death [178]), which is used to weight the individuals to account

for censoring. Then the Brier score is computed for all possible death ages,

BS(t) =
1

M

∑

m

s(m)

[
δ(a(m) ≤ t, c(m) = 0)

(
S(m)(t)

)2

G(a(m))
+
δ(a(m) > t)

(
1− S(m)(t)

)

G(t)

]
.

(5.32)

D-calibration

For well-calibrated survival probability predictions, we expect p% of individuals to

have survived past the pth quantile of the survival distribution. This can be eval-

uated using D-calibration, and we follow the previously developed procedure [214]

for computing the D-calibration statistic. The result is a discrete distribution that

should match a uniform distribution if the calibration is perfect.
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We use a χ2 test to compare to the uniform distribution. Using 10 bins, we use

a χ2 test with 9 degrees of freedom. Larger p-values (and smaller χ scores) indicate

that the survival probabilities are more uniformly distributed, as desired.

2-sample classification tests

To assess the quality of our synthetic population, we train a logistic regression classi-

fier and evaluate its ability to differentiate between the observed and synthetic popu-

lations [196,205,217,218]. Ideally, a synthetic population would be indistinguishable

from the observed population, giving a classification accuracy of 50%.

Our classifier takes the current age t, the synthetic or observed health variables yt,

and the background health information variables ut0 , and then outputs the probability

of being a synthetic individual or a real observed individual from the data-set. Miss-

ing values in the observed population are imputed with the sex and age-dependent

sample mean, and these same values are applied to the synthetic health trajectories

by masking the predicted values.

Hierarchical clustering

We perform hierarchical clustering on the network weights W. This is done by con-

structing a dissimilarity matrix,

ω = (WT +W)/2, (5.33)

D = max(ω)− ω, (5.34)

and then using this dissimilarity matrix D to perform agglomerative clustering with

the average linkage [240]. We use the Scikit-learn [241] package with the “Agglomer-

ativeClustering” routine.

5.5.8 Comparison with linear models

Imputation for comparison models

For the linear survival and longitudinal models, we use MICE for imputation [212]

with a random forest model [213]. We impute with the mean of the estimated values.

We use 40 trees and do a hyperparameter search over the maximum tree depth. We

use the Scikit-learn [241] package.
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Proportional hazards survival model

To compare with a suitable baseline model for survival predictions, we use a propor-

tional hazards model [119] with the Breslow baseline hazard estimator [120]:

λ(t|t0,yt0 ,ut0) = exp (β0t0 + βy · yt0 + βu · ut0), (5.35)

S(t|t0,yt0 ,ut0) = exp (−Λ̂Br
0 (t)λ(t|t0,yt0 ,ut0)). (5.36)

We include elastic net regularization [242] for the coefficients of the covariates.

Linear trajectory model

We use a simple linear model for health trajectories given baseline data,

ytk,i = yt0,i + β(yt0 ,ut0 , t0)(tk − t0), (5.37)

βi(yt0 ,ut0 , t0) = β0,it0 + β1,i · yt0 + β2,i · ut0 , (5.38)

trained independently for each variable i. The parameters β0,i, β1,i, and β2,i are

trained with elastic net regularization.

Linear models’ hyperparameters

We perform a random search over the L1 and L2 elastic net regularization param-

eters and the MICE random forest maximum depth using the validation set. The

regularization term in the elastic net models is αl1,ratio||β||1 + 1
2
α(1 − l1,ratio)||β||22,

the common form of elastic net regularization used in Scikit-learn [241], the package

we use to implement the elastic net linear model. We do the random search over

log10 α ∈ [−4, 0], log10 l1,ratio ∈ [−2, 0], and maximum tree depth in [5, 10] for 25

iterations.

We find the parameters α = 0.40423, l1,ratio = 0.55942, and a maximum tree

depth of 10 for the longitudinal model hyperparameters. We find the parameters

α = 0.00016, l1,ratio = 0.15613, and a maximum tree depth of 10 for the survival

model hyperparameters.

5.5.9 Latent variable models

We compare our pair-wise interactions network model with alternate latent-varaible

models, where we directly incorporate dynamics for the latent state z(t) and apply
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the decoder to estimate the health variables x(t) at specific ages. With this approach

we do not need to impute the baseline state of health variables, or to directly include

dynamics for the observed health state. Rather an encoder maps the baseline health

state yt0 to the baseline latent state z0, dynamics are run on this latent space for

z(t), and a decoder directly maps the latent states z(t) to the predicted output of the

health variables yt. In this model, we also can choose the size of the latent state z,

and so we use this approach to explore how many dimensions are required for good

predictions of health outcomes and survival.

These models have the form,

z0,θ ∼ p(z0)p(θ) (Prior)

dz(t) = f(z(t),ut0 , t;θf ) + σz(z(t))dB(t), z(t0) = z0, (Dynamics)

S(t) = exp
(
−

∫ t

t0

λ({z(τ)}τ≤t′ ,ut0 , t
′;θλ)dt

′
)
, (Survival)

yt ∼ N
(
ψ−1(µ(z(t),ut0 ,ot0 ,θp)), diag(σy

2)
)
, (Health observation)

a ∼ λ({z(τ)}τ≤a,ut0 , a;θλ)S(a), (Survival observation)

p({z(t)}t,θ|{ytk}k,ut0 , t0, a, c) ∝ p(θ)p(z0)p({z(t)}t|z0,ut0 , t,θ)× (Inference)

p(a, c|{z(t)}t,ut0 , t,θ)
∏

k

p(ytk |{z(tk)}k,θ),

θ =
{
W, σy, σx,θλ,θp,θf

}
, (Parameters)

where instead of the variable-wise neural networks in the pair-wise network model,

the function f is now a full feed-forward neural network including the interactions

between all variables. The function µ is a decoder neural network which outputs the

mean of a Gaussian distribution for the health variables yt, from the latent state at

that age. Other than the size of the latent state z, all other hyperparameters and the

training procedure remain the same.

5.5.10 Code and Data availability

The English Longitudinal Study of Aging waves 0-8, 1998-2017 with iden-

tifier UKDA-SN-5050-17 is available at https://www.elsa-project.ac.uk/

accessing-elsa-data. This requires registering with the UK Data Service.
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Our code is available at https://github.com/Spencerfar/djin-aging.



Chapter 6

Network inference discussion

6.1 Summary of results from chapters 3, 4, and 5

Three different models of aging were used or developed in Chapters 3, 4, and 5. The

main connecting theme of this work is the exploration or inference of the network

structure in these models. These networks represent pairwise interactions between the

health variables, and allow interpretation of the models. These models serve different

purposes, and do not necessarily represent a strict replacement of the previous model.

Table 6.1 summarizes the aspects of these models. Details of this table are elab-

orated on in the sub-sections below.

6.1.1 Generic network model

Chapter 3 used the Generic Network Model of aging (GNM) [125,243]. This model was

developed to describe the process of damage accumulation in aging, within a complex

system described by a network of interacting components. This model involves only

a few parameters that are manually tuned to agree with population-level mortality

and Frailty Index scores. Nodes in this model do not represent any particular health

variable, but are generic, representing abstract binary damageable components of

health. We probed the network by observing the population-level behaviour with

different pre-defined network structures, rather than directly inferring the network

structure or predicting individual health trajectories.

We identified that a scale-free and disassortative structure best captures the be-

haviour seen in the observational data. This was the only structure to capture both

the mortality and Frailty Index behaviour, as well as the hierarchical information

structure within the nodes. Additionally, we offered an explanation for the differ-

ence between FI-clin and FI-lab. Based on the observed data for FI-clin and FI-

lab [71, 126, 127], FI-clin deficits best correspond to high-degree nodes and FI-lab

128



129

Table 6.1: Summary of network models. This table highlights the features or uses
of the models discussed in the preceding chapters. * binary variables are possible in
the DJIN model, but they haven’t been used in this thesis.

Model
GNM WNM DJIN

Fitting with population average data ✓ ✗ ✗

Fitting with longitudinal data ✗ ✗ ✓

Fitting with cross-sectional data ✗ ✓ ✗

Binary variables ✓ ✓ *
Continuous variables ✗ ✗ ✓

Fast training ✗ ✗ ✓

Infers robust network ✗ ✗ ✓

High dimensional ✓ ✗ ✓

Network inferred from data ✗ ✓ ✓

Conceptual/theoretical ✓ ✗ ✗

Predictive ✗ ✓ ✓

Generates synthetic populations ✓ ✓ ✓

deficits best correspond to low-degree nodes in a disassortative scale-free network.

The temporal order of damage in the network results in the corresponding behaviour

of these types of nodes.

This model enables the simulation of millions of aging individuals, with mortality

rates and Frailty Index scores corresponding to observed population means. These

simulated individuals can be used to theoretically study aging, without required de-

tailed observational aging data. Members of the Rutenberg group have used this

model as a basis for several distinct research directions. A simple theoretical model

of disease has been developed by inducing increased damage rates in a particular re-

gion of the network, and then studying the resulting aging trajectories and mortality

(work by Rebecca Tobin, unpublished). Similarly a model of interventions have been

developed by enhancing repair of specific nodes for specific time-periods (work by

Esha Sawant, unpublished). Work has also been done on understanding the optimal

network structures for healthy aging and lifespan (work by Garrett Stubbings [244]).

While this model lets us explore the associations between different types of nodes

in the network and their relation to categories of health variables in observed data,

we do not have a direct mapping between a node in the network and a specific

health variable, or even to a specific physiological system. This prevents the model
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from being able to make predictions for individuals. To do this mapping and make

predictions, the Weighted Network Model (WNM) was developed in Chapter 4 [48].

6.1.2 Weighted network model

The WNM used a much smaller network of 10 nodes, and used cross-sectional ob-

servational aging data to fit the network weights and damage rate parameters. This

data allows us to map the model nodes to specific health variables, moving away from

the generic nature of the nodes in the GNM. The model is fit with binary health vari-

ables, allowing the model to describe the evolution of the deficits in a Frailty Index

with age. However, this model had to drop the simplicity of the GNM by introduc-

ing variable-weight connections, node-specific rate parameters, and replaced simple

exponential functions with power-series relationships between the amount of damage

to neighbouring nodes and damage rate.

The trained model is able to generate synthetic aging populations with realistic

deficit accumulation and mortality. Given the state of current health deficits, the

model was able to simulate the individuals health state until death. While this model

is able to generate realistic synthetic aging populations, no one network was consistent

with the data, resulting in a network structure that was not robust – fitting the model

with a different random seed resulted in different networks. However, average pair-

wise rates were robust, suggesting that while the model behaviour is robust the actual

network parameters were not. This is not uncommon in complex models, and is known

as parameter sloppiness [245].

This model has a similar use as the GNM, but can simulate populations with

specific health variables. However, this requires data with these health variables to

fit model parameters.

While this model is well-suited to model the binary deficits of a Frailty Index,

the model was very slow to train and slow to simulate populations. Attempting to

train it with longitudinal data or a larger number of health deficits would be severely

limited by computational power. Additionally, only being able to use binary health

deficits limits the type of data that can be modelled. In Chapter 5 we developed the

DJIN model of aging which addresses these concerns.
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6.1.3 Dynamic Joint Interpretable Network model

The DJIN model makes substantial changes from the WNM. The model uses a much

larger network of continuous-valued health variables, and is computationally much

faster so that it can be trained on large longitudinal datasets. This model also makes

use of demographic or background health information used as auxiliary variables to

further improve predictions.

The DJIN model is able to make detailed longitudinal predictions for individuals.

We show that the single comprehensive model achieves better performance than 30

regularized linear models separately trained for each health variable and survival.

Survival predictions are calibrated to predict both relative and absolute risk.

This model also included an imputation method to impute the baseline state,

so that predictions can be made even when the baseline health state is not fully

observed. This imputation method was trained together with the model, which gives

the model additional information about the quality of trajectory predictions to train

the imputation component. This is in contrast to other imputation approaches such

as MICE [212]. Additionally, this imputation method can be used to generate a fully

synthetic population conditional on the background health variables and baseline age.

In the DJIN model we found robust network connections, in contrast to the WNM.

Examining these network connections, we found that these connections show realistic

physiological interactions. Hierarchical clustering on these connections shows clusters

that make sense physiologically.

We compared the DJIN model similar latent-variable models. These latent-

variable models considered non-linear dynamics on a latent health state, rather than

the observed variables. We found that the DJIN model performs similarly to latent

variable models with the latent state as a similar size to the number of observed

health variables. This indicates that the linear pairwise network interactions are a

good assumption, and that good predictions of health outcomes in aging require a

high-dimensional model, although relative mortality risk predictions or the “progres-

sion of aging” can be reduced to a lower dimensional state.



Chapter 7

Discovering latent aging phenotypes in C. elegans with

machine learning

7.1 Background

The DJIN model developed in Chapter 5 involved dynamics on the specific health

variables from observed data, and inferred a network of interactions between these

variables. The network of interactions for the observed health variables allows us to

interpret the model by examining the causal interactions used by the model to make

predictions. However, more flexible models can be built by considering dynamics on

unobserved latent variables instead of the observed variables [219,220,246,247].

In the machine learning literature, this style of latent variable model is known

as an auto-encoder [110], and was discussed in the Background section of Chapter

2. In this model, an encoder embeds the observed state into a latent space, and a

decoder decodes this latent state back into the observed state. Flexible dynamics can

then be included on the latent space. To perform predictions, the observed early time

health state is embedded into the latent space, then the latent dynamics are used to

estimate the latent state at a later time, which is then be decoded into predictions of

the observed state for these later times. This process takes the form,

z0 ∼ q(z0|x0), (Encoder)

dz(t) = f(z(t)) + σ(z(t)) · dB(t), z(t0) = z0, (Dynamics)

xt|z(t) ∼ p(xt|z(t)). (Decoder)

We also explored such latent variable alternatives to the DJIN model in Chapter 5,

showing that similar performance can be achieved with a slightly lower number of

dimensions, particularly for predictions of relative risk of death (with the C-index) –

at the cost of the interaction network. Although high-dimensional latent variables are

still required for predictions of health outcomes. While the goal of the DJIN model

132



133

was to infer this interaction network, these latent variable alternatives are likely a

more attractive approach when the network is not desired.

While the latent variables can be difficult to interpret, these models can be made

more interpretable by incorporating structure in the latent variables [248–251]. In

previous latent variable approaches to modelling aging data, the structure of the

model enforced latent variables to be multi-dimensional constant rates of aging [173]

or one dimensional summary measures such as a dynamical frailty index [203] or a

biological age [75–77, 215, 252–254]. The dynamics of explicitly constructed latent

variables such as Physiological Dysregulation have also been considered [20, 255].

In this chapter, I demonstrate one way to interpret such a latent variable model of

aging. This approach includes structure by allowing the inference of distinct clusters

of latent variables and their aging trajectories. This lets the model identify distinct

aging phenotypes, without providing guidance on what these phenotypes may be (i.e.

the process is unsupervised). Additionally, we assume linear dynamics for the latent

variables leading to simpler dynamics on this latent space.

In this Chapter, the model uses data from the model organism C. elegans (open

source data from [256]). We use this data here instead of human data as in previous

chapters for multiple reasons. First, the ELSA human data in Chapter 5 contained

short time-series for individuals, and so we could not use many time-points in the

encoder of our model, which limits the ability of the model to infer clusters for unseen

test individuals. This C. elegans data with long time-series allows the development of

a model that uses many time-points as input to the encoder. Second, there has been

previous work on understanding distinct aging phenotypes in C. elegans [83,256,257].

Third, this demonstrates the ability of these computational aging models to apply to

other organisms with their own distinct characteristics of aging.

The work of this Chapter is not yet ready for publication, but is a follow-up to

Chapter 5.

7.2 Introduction

The hallmarks of aging [4] and the pillars of aging [5] identify key physiological pro-

cesses that underlie aging. While these identified processes represent a low dimen-

sional description of aging, the number of observed changes to healthy functioning
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during aging are enormous [54]. Latent variable models can be used to identify a

low-dimensional set of key underlying attributes in a complex system.

One example of a latent variable model in aging is biological age [17], where the un-

derlying progression of aging is inferred from biological variables, however it is limited

to one-dimension. Other approaches in aging explicitly construct the latent variables

describing the progression of aging e.g. the FI [14] or physiological dysregulation [19].

There has also been work on machine learning based one-dimensional latent variable

models [21]. Few approaches have looked into higher dimensional latent descriptions

of aging [173].

Previous work with C. elegans has used dimensional reduction techniques to iden-

tify latent trajectories of aging [83, 257]. In worms with different genotypes, this

technique has revealed divergent aging trajectories [257]. Additionally, there has

been the discussion of accelerated aging phenotypes in C. elegans [256], although in

this work distinct clusters were not identified.

In this work we build a machine learning model to identify distinct aging phe-

notypes by unsupervised learning. This model describes the dynamics of aging on a

simple latent space, where distinct phenotypes are more clearly identifiable.

7.3 Results

7.3.1 Bayesian latent-variable model for C. elegans

We use C. elegans data from Zhang et al., [256]. In this dataset worms are tracked un-

til death (∼ 350 hours), with physiological measurements from image data taken every

3 hours. The observed variables measure movement ability [258], auto-fluorescence

of material build-up in the intestine [259], tissue integrity [260], body size [256], and

reproductive capability [256]. All of these variables have been shown to be associated

with lifespan, and form a set of health variables that can be automatically measured

with high-throughput image analysis. Further details of the specific variables in this

dataset are in the Methods section. We denote the observed time-series measures as

{xt}at=t0
, where xt is a 11-dimensional vector of the health state at time t and a is the

death age.

We build a Bayesian latent-variable model, illustrated in Figure 7.1. In this model,





136

the dynamics of latent variables describe the underlying dynamics of aging, and are

transformed to observed health variables and hazard rates for prediction. These latent

variables are hierarchical, and dynamics are described by a continuous latent state z

that depends on a discrete cluster label c. A simplified version of this model is,

c(m)|π ∼ Categorical(π), (7.1)

z
(m)
0 ,g(m)|c(m) ∼ p(z

(m)
0 |c(m))p(g(m)|c(m)) (7.2)

dz(m)(t) = g(m)dt+ σz,cdB(t), z(m)(t0) = z
(m)
0 , (7.3)

S(z(m)(t), t)(m) = exp
(
−

∫ t

t
(m)
0

h(z(m)(τ), τ)dτ
)
, (7.4)

x
(m)
t |z(m)(t) ∼ N (µ(z(m)(t)),σ(z(m)(t))). (7.5)

for m = 1, ...,M individuals

The full detailed form of the model is shown in the Methods, which includes the full

set of priors on the parameters. We perform inference with this model by variational

Bayesian inference described in the Methods section. To summarize, for each indi-

vidual m, we infer the posterior distribution of the individual specific cluster label,

baseline latent state, and latent drift, q(c(m), z
(m)
0 ,g(m)|{x(m)

t }t) with a recurrent neu-

ral network (RNN) that takes the first 50 time steps as input (Figure 7.1a). Then,

latent trajectories z(t) are predicted using an SDE with baseline state z0 and constant

drift g (Figure 7.1b, Equation 7.18). These latent states are decoded into predicted

health states with a decoder neural network (Figure 7.1c, Equation 7.5) and pre-

dicted survival probabilities (Figure 7.1c, Equation 7.4). In Appendix C, we show

that this model can accurately cluster data from a simulated dataset where we know

the ground truth cluster labels.

This model requires choosing the dimension of the latent state z. In Figure 7.2,

model prediction accuracy on the test set is shown vs latent dimension for a) root-

mean squared error (RMSE) for health predictions, b) C-index for survival predic-

tions, and c) Integrated Brier Score for survival predictions. Since health predictions

plateau at a dimension of 7 and survival predictions are similar for all dimensions,

we have a latent state of size 7. Additionally in e), we show that the model infers 2

clusters on average regardless of the dimension, and that the distribution of clusters

is distinct from the prior.





138

7.3.2 Distinct aging trajectories

In Figure 7.3a), we show our 7-dimensional latent space model for C. elegans. Each

plot shows a different observed variable vs age, with red and blue colors indicating

the two inferred clusters. Primarily, the blue cluster represents larger worms that

lay more eggs, and the red cluster represents smaller worms that lay fewer eggs.

Additionally we can see differences in the auto-fluorescence, intensity texture, and

movement speed, where the smaller red cluster worms have lower intestinal auto-

fluorescence, move slower and appear brighter.

These clusters also exhibit distinct short-lived and long-lived aging phenotypes.

Figure 7.3b) shows the difference in lifespan for these worms. The red cluster worms

cluster worms live longer, and a log-rank test (a standard statistical test to compare

survival distributions) [261] is shown to highlight the difference in survival between

these clusters.

A t-SNE dimensional reduction [262] is shown in Figure 7.3c), clearly showing

these clusters on this lower dimensional space (note, this two-dimensional t-SNE

reduction is not the same latent space as the 7-dimensional states inferred by the

model). The average age-trajectory for these two groups through this space is shown

with the bold lines. The color of the points corresponds to relative age t/a (age

divided by death age), with lighter colors indicating early ages, and darker colors

later ages. These trajectories are distinct, occupying separate regions of the space for

the entire lifespan of the worms. This means that even in early life, these clusters

have distinct health states, and continue to have distinct health states throughout

their life.

These clusters are consistent with current the understanding of C. elegans aging

biology. The finding of small worms with poor reproductive output being long-lived

has been observed in other studies [256]. Similarly, there is a clear relationship be-

tween intestinal auto-fluorescence and lifespan [256, 259], with low auto-fluorescence

worms living longer as seen here, as low auto-fluorescence worms are quickly clear-

ing material from their intestines. The clustering is most clear in for these three

variables. The relationship between movement speed and lifespan is more complex,

and in the data we use very low speeds are associated with short lifespans, but the

survival curves for medium to fast speeds overlap [256]. We have found that worms in
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7.3.3 Aging dynamics are described by a simple low-dimensional

dynamics with identifiable clusters

The complex dynamics of the observed variables are described by simple low-

dimensional latent dynamics in this model. Given an individuals position and veloc-

ity in latent space, aging proceeds by simply moving in this direction. The observed

health state and mortality rate are just complex transformations of this underlying

latent state.

The dynamics of this 7-dimensional latent state are shown in Figure 7.4a). On

this latent space, clusters are clearly identifiable. The distributions of the baseline

state and linear drift are shown in Figures 7.4b) and c), showing that these clusters

follow distinct aging trajectories. Additionally, in Figure 7.4d) we show that mortality

in this model is determined by different points in latent space at death, because the

only contribution to mortality is the latent state, rather than cluster-specific mortality

rates. This puts all of the mortality information into the latent space.

7.4 Discussion

Flexible latent variable models can be hard to interpret. In this work, we developed an

approach to interpret these latent variables by allowing the baseline latent states and

dynamics to cluster. Doing so, the model can infer distinct divergent aging trajectory

phenotypes. These clusters are inferred in an unsupervised way, and incorporate both

the dynamics of the observed health state and survival.

Our approach is a probabilistic model based on a warped Gaussian mixture [263].

The advantage of this approach over simpler non-probabilistic clustering techniques

such as k-means, agglomerative clustering, spectral clustering, or other traditional

approaches [264] is that the criteria for clustering is setup by our generative model for

the data (Figure 7.1), rather than constructing a distance or similarity metric. The

data involves multivariate noisy irregularly-sampled time series of different lengths

for health variables as well as observations of lifespan, and so it is not clear how to

construct a good distance or similarity metric for which to cluster with. However, with

our approach we need only to specify a flexible generative model for the dynamics and

survival, and then clusters are naturally chosen by fitting the model. The use of SDEs
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naturally allow irregularly-sampled time series of different lengths, and mortality is

included by building a joint model of both health and survival. This approach also

includes a metric for the quality of the clustering and choice of hyperparameters such

as the size of the latent dimension – the quality of the model predictions on a test

set.

Our model for the dynamics of aging is related to that of Pierson et al. [37], where

multi-dimensional constant rates of aging are inferred. They model deterministic

latent dynamics z(t) = rt, where r is a set of constant rates of aging inferred for

each individual, while we model aging dynamics by constant drift SDEs for each

individual. Our approach is distinct in that it includes clustering of the individual

aging trajectories, stochasticity in the evolution of the aging trajectories, and includes

mortality. Additionally, this approach only used a single baseline time-point to infer

the rates of aging, similar to the DJIN model (Chapter 5), where here we include

time-series input with a recurrent neural network.

Other approaches to analyzing aging data have shown that a low-dimensional

latent state, such as biological age and similar approaches, can describe the progres-

sion of aging [18, 77, 203, 216, 265], although we have shown this is not sufficient to

predict individual heterogeneous aging outcomes (Chapter 5). Here, we chose the

dimensionality of the latent state by the quality of the model predictions.

It has been previously seen that genetic variants of C. elegans follow distinct

trajectories in a 2-dimensional space reduced by t-SNE [257]. However, to do this

they did not perform the dimensionality reduction on the full set of variables, but

extracted a subset of the variables that showed the most significant variation between

the two groups. Instead of this ad-hoc approach, our model directly clusters from the

observed data.

In future work, our approach can be applied to such genetic variants of organisms

or to groups having undergone interventions. This can be used to answer questions

such as: are genetic mutants or aging interventions merely changing the rate at which

aging occurs, or inducing a healthier divergent aging trajectory? Can we identify and

understand why individuals within an intervention group that are outliers do not

respond well to the intervention? We see a promising future for approaches such as

this to answer these questions.
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7.5 Methods

7.5.1 C. elegans data

We use C. elegans data from [256]. We use data from 672 isolated worms on bacterial

food pads that are monitored with automated image acquisition and processing. Data

for individuals are collected at ∼ 3 hour intervals (although the start time for each

individual can vary by ± 3 hours). The data taken consists of locomotary ability

(Bulk movement [pixel displacement over 3 hours], unstimulated movement rate [pix-

els/second], stimulated movement rate immediately after blue-light stimulus (a) [pix-

els/second], stimulated movement rate 1.5 seconds after blue-light stimulus (b) [pix-

els/second]), tissue integrity (average brightness of worm pixels), homeostatic ability

to clear material from the intestine (80th percentile of worm pixel auto-fluorescence),

body size and shape (total cross-sectional body size [pixels] and aspect ratio [area

of rectangle bounding worm]), and reproductive output (Average egg size [pixels],

cumulative eggs laid [count]). Worms are tracked until death. We drop the first

25 time-points for each worm, corresponding to the point in time when the average

number of eggs laid by the worms goes above zero, i.e. we only use data for adult

worms.

We split the data into a training set of 472 worms, a validation set of 100 worms

and a test set of 100 worms. Training data is used to train the model, validation data

is used to monitor training and decrease the learning rate during training, and test

data is used to test model predictions.

7.5.2 Latent cluster trajectory model

We build a Bayesian latent cluster trajectory model. In this model, the dynamics of

worm aging are described by an underlying latent health state evolving stochastically

according to stochastic differential equations. For health predictions, this latent state

is mapped to the observed variables with a decoder neural network, and for survival

predictions the latent state is mapped to the hazard rate with another neural network.
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This model is written,

π ∼ GEM(1), (Cluster probabilities)

c|π ∼ Categorical(π), (Individual cluster label)

{µc}c ∼ N (0, 25), (Cluster baseline latent state)

z0|c ∼ N (µc,Σµ,c), (Individual baseline latent state)

{fc}c ∼ N (0, 25), (Cluster latent drift)

g|c ∼ N (fc,Σf,c), (Individual latent drift)

dz(t) = gdt+ σz,cdB(t), z(t0) = z0, (Latent dynamics)

xt|z(t), t ∼ N (µ(z(t)),σ2
x(z(t)), (Health observations)

S(t, z(t)) = exp (−
∫
h(t′, z(t′))dt′), (Survival)

For the cluster probabilities π we use a GEM stick-breaking prior [266] truncated to

8 clusters, this is a method of constructing a Dirichlet process which is typically used

for clustering with an unknown number of clusters. We use broad normal priors for

the cluster means and drifts, {µc}c and {fc}c. Individual baseline latent states z0

and drifts g are assumed to follow a Gaussian mixture with the corresponding cluster

means for the latent state {µc}c and drift {fc}c. Latent dynamics are modelled with an

SDE with drift g and initial latent state z0. Since the drift, baseline latent state and

diffusive noise strength σz,c are all cluster dependent, these dynamics are clustered. A

graphical representation of this model is shown in Figure 7.5a). All other parameters

not discussed have uniform priors.

The latent state is mapped to the observed health state with a Gaussian observa-

tion model with mean µ(z(t) and standard deviation σ(z(t)), where these functions

are neural networks. We impose that the mean µ(z(t) be non-negative, preventing

the prediction of negative movement speeds. Additionally, we impose that the stan-

dard deviation σ(z(t)) of the movement speed variables goes to zero as the mean of

the movement speed variables go to zero,

σi(z(t)) = max
(
σ̃i(z(t))× µi(z(t)), 0

)
, (7.6)

where σ̃i(z(t)) is a neural network.

The stick-breaking process is an iterative process defining the cluster probabilities



145

π as,

v ∼ Beta(1, α = 1), (7.7)

π1 = v1, (7.8)

πi = vi

i−1∏

k=1

(1− vk), i = 1, ..., 7, (7.9)

π8 =
8∏

k=1

(1− vk). (7.10)

This is used to define the posterior in terms of v instead of π.

7.5.3 Inference

We perform variational Bayesian inference with a posterior approximation

q(z(t), z0,g, c,µc, fc,v|{xt}t) = q(z(t)|z0,g)q(z0|{xt}t)q(g|{xt}t) (7.11)

×q(c|{xt}t)q(µc)q(fc)q(v).

For simplicity, we leave out the parameters of these distributions φ from the notation.

The specific distributions are defined as,

q(z0|{xt}t) = N (µz({xt}t),Σz({xt}t)), (7.12)

q(g|{xt}t) = N (µg({xt}t),Σg({xt}t)), (7.13)

q(c|{xt}t) = Categorical(π({xt}t)), (7.14)

q(µc) = N (mµ,c, s
2
µ,c), (7.15)

q(fc) = N (mf,c, s
2
f,c), (7.16)

q(v) = Beta(α,β). (7.17)

Functions of {xt}t use a recurrent neural network for on the first 50 time points.

Values mµ,c,mf,c, sµ,c, sf,c,α,β are the variational parameters of the corresponding

distributions. Figure 7.5(left) shows the construction of the encoder network for

q(z0,g, c, |{xt}t). The structure of this encoder is called a Variational Ladder Auto-

Encoder (VLAE) [267]. This structure places more abstract features deeper in the

hierarchy, and prevents the model from ignoring these deeper levels of the hierarchy.
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To sample the latent trajectories from the posterior q(z(t)|z0,g), we follow previ-

ous work [234–236] and solve the auxillary SDE,

dz(t) = ḡdt+ g1(z(t), t)dt+ σz,cdB(t), z(t0) = z0, (7.18)

where the drift consists of the posterior mean of the individual drift ḡ = µg,c({xt}t)
plus an additional feed-forward neural network g1(z(t), t).

The loss (negative ELBO) for this model is,

L(φ) = −
∑

c

q(c|{xt}t)Ez0,g,µc,fc,z(t)∼q

[
log

∏

k

p(xtk |z(tk)) +

+

∫ a

t0

log S(t, z(t))dt+ log h(a, z(a)) + log S(a, z(a))

+

∫ a+amax

a

log (1− S(t, z(t)))dt

+ log
p(z0|c,µc)p(g|c, fc))p(µ|c)p(f |c)p(c|π)p(π)
q(z0|{xt}t)q(g|{xt}t)q(c|{xt}t)q(µc)q(fc)q(v)

−1

2

∫
||(ḡ + g1(z(t), t)− g)/σz,c||2dt

]
. (7.19)

Note that since c is a discrete variable, we cannot compute gradients with samples

of c ∼ q. Thus, we need to sum over all cluster labels, weighted by the probability

q(c|{xt}t). The derivation of this loss is similar to the derivation of the loss for the

DJIN model in Chapter 5, which is shown in Appendix B. The first 3 lines of this loss

are the likelihood for the data, including both health and survival. We penalize the

survival probability by integrating the probability of being dead from the death age a

to amax, which better estimates survival probabilities [238] (the integral on the third

line). We set amax = 45 hours. Otherwise, it is difficult for the model to learn S → 0

for large t. The last 2 lines are the KL-divergence terms for variational inference.

To compute the term involving the cluster labels and the stick-breaking prior

log p(c|π), we follow Blei et al., [268]

E[log p(c|π)] =
8∑

k=1

[
q(c > k|{xt}t)(Ψ(αk)−Ψ(αk + βk)) (7.20)

+q(c = k|{xt}t)(Ψ(βk)−Ψ(αk + βk))
]
,

where Ψ is the digamma function, and α and β are the variational parameters of the

posterior distribution of v in Equation 7.17.
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7.5.4 Summary of training procedure

1. Sample batch of data. Run RNN backwards through the first 50 time-points to

output cluster labels, individual baseline state states, and drifts

{xt}0t=−50 → RNN → c, z0, g ∼ q(c, z0,g|{xt}0t=−50). (7.21)

2. Set baseline state z(t0) = z0 and solve latent SDE dynamics with the SDE in

Equation 7.18,

dz(t) = ḡdt+ g1(z(t), t)dt+ σz,cdB(t). (7.22)

3. Compute mean µ(z(t)) and standard deviation σ(z(t)) of observed health state

from latent state.

4. Compute hazard rates h(t, z(t)). Compute survival functions from hazard rates,

S(t, z(t)) = exp (−
∫
h(t′, z(t′))dt′). (7.23)

5. Compute gradient of loss in Equation 7.19 and update variational parameters.

Return to step 1.

7.5.5 Hyperparameters and network architectures

We use a latent state of size 7. The encoder uses a GRU RNN [112], with an internal

hidden state size of 30 followed by a Batch-Norm (h1 in Figure 7.5). The hidden

state h2 has size 15 and follows from an ELU activition, linear layer, and Batch-

Norm applied to h1.

Linear transformations of h1 are used to compute the mean and covariance of z0

and the mean and covariance of g. A linear transformation of h2 and a soft-max

activation is used to compute probabilities of each cluster label c.

The hazard rate is estimated from the latent state z and age t with a feed-word

neural network that has input size 8 (latent state plus age), hidden layer size 7, an

ELU activation, and output layer size 1. The mean for the observed health variables

µ(z(t)) has an input layer of size 5, a hidden layer of size 8, an ELU activation, and

an output layer of size 11.
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Covariance matrices are parameterized with a low-rank approximation of rank 3

(compared to the full rank size of 7). This is done by fitting a matrix C ∈ R
3×7 and

a vector d ∈ R
7 and computing the covariance Σ = d2 +CTC.

We use the ADAM optimizer to update the parameters [111], with a learning rate

of 10−2. A learning rate schedule is used to halve the learning rate when loss plateaus

last for longer than 10 epochs. We use KL annealing and increase the weight of the

KL-divergence terms in the loss function from 0 to 1 linearly over the first 100 epochs.

All models are run to 300 epochs — all training set and validation set ELBOs are

plateaued at this point.

7.5.6 Non-constant drift models

To validate our simplification of the dynamics with a constant drift, we compare the

constant drift dynamics with linear and non-linear drift dynamics. The form of these

two approaches are,

dz(t) = gdt+Wlin,cz(t)dt+ σz,cdB(t), (linear drift)

dz(t) = gdt+ gnon−lin,c(z(t))dt+ σz,cdB(t), (non-linear drift)

where Wlin,c is a matrix linear coupling the latent variables, and gnon−lin,c is a feed-

forward neural network with one hidden layer of size 5.

Note that while the constant drift g is inferred for each individual (i.e. the

drift is individual-specific), Wlin,c and gnon−lin,c are only cluster-specific. Including

individual-specific versions of these would greatly increase the parameters of the

model.

While a full test of the the non-linear approach would require substantial hyper-

parameter tuning, we show that the constant drift dynamics work well in comparison

to these two models, representing an enormous simplification of the dynamics.

7.5.7 Evaluation metrics

RMSE scores

Health predictions are assessed with the Root-Mean-Square Error (RMSE) of the

predictions with respect to the observed values. We compute these RMSE values for
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predictions for a variable i and a specific age tk,

RMSEi(tk) =

√√√√ 1

M

M∑

m=1

(x̂
(m)
i (tk)− x

(m)
i,tk

)2. (7.24)

The observed variables are denoted x
(m)
i,tk

, and the predicted variables x̂
(m)
i (tk).

Time-dependent C-index

The C-index measures the probability that the model correctly identifies which of a

pair of individuals live longer. Our model contains complex time-dependent effects

where survival curves can potentially intersect, so we use a time-dependent C-index

[177],

Ctd = Pr(S(m1)(a(m1)) < S(m2)(a(m1))|a(m1) < a(m2)) (7.25)

=

∑
m1,m2

δ[S(m1)(a(m1)) < S(m2)(a(m1))]δ[a(m1) < a(m2)]
∑

m1,m2
δ[a(m1) < a(m2)]

,

We denote death ages by a. Note, there is no censoring for the worm data, in con-

trast to the data in other chapters. The indexes (m1) and (m2) indicate the pair of

individuals that are being compared. Delta functions δ[] have value 1 if the argument

is true, otherwise have value 0.

Brier score

The Brier score compares predicted individual survival probabilities to the exact

survival curves, i.e. a step function where S = 1 while the individual is alive, and

S = 0 when the individual is dead. Then the Brier score is computed for all possible

death ages,

BS(t) =
1

M

∑

m

[
δ[a(m) ≤ t]

(
S(m)(t)

)2
+ δ[a(m) > t]

(
1− S(m)(t)

)]
. (7.26)

Note there is no censoring, in contrast to the data in other chapters.



Chapter 8

Resilience and robustness decrease with age, are dynamic

over broad timescales, and can be attenuated with

interventions in aging mice and humans

8.1 Background

Chapter 3 (generic network model) and Chapter 4 (weighted network model) both

considered discrete transitions between health states consisting of binary deficits,

with damage and repair rates describing these transitions. In the weighted network

model, we fit rate parameters from cross-sectional data and in the generic network

model the rate parameters were tuned so that simulated populations agree with the

population mortality rate and average Frailty Index scores vs age. In both of these

cases the primary focus was not on the actual repair and damage processes, but on

the mortality and FI scores, and the parameters of the rates were inferred indirectly

from the observed data as part of the overall fitting of the model.

However, with longitudinal data for binary deficits we can directly extract damage

and repair rates from the data to study the processes of damage and repair in aging.

Additionally since the damage rate is the rate of acquiring new damage and the

repair rate is the rate of recovering damage, we can interpret these damage and

repair processes as (inverse) robustness and resilience. These are important concepts

in aging research, though there has been little attempt to directly observe these

processes, despite the popularity of theories of aging and review articles based on

these processes [8, 90, 93, 94].

Here repair and damage are extracted directly from the data, with no induced

stressor or intervention targeted at the specific damage, representing a measurement

of natural robustness and resilience from a stochastic damage and repair. We use 3

different mouse datasets and 1 human dataset. In two of these mouse datasets we

have interventions – mice treated with the Angiotensin-Converting Enzyme (ACE)
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inhibitor enalapril, and voluntary exercise. Both of these interventions have shown to

slow the increase of the Frailty Index in mice [87, 88]. In humans we stratify by net

household wealth, representing a measure of socioeconomic status, which is associated

with lower degrees of frailty [269]. The net household wealth serves as a proxy for

medical or behavioral interventions that are not observed in the data, and do not exist

in the mice data. These distinct datasets strengthen the conclusions by replicating

our findings.

This work is the first time this type of study has been done, opening up a new

method of approaching resilience and robustness. This chapter presents the paper

“Resilience and robustness decrease with age, are dynamic over broad timescales,

and can be attenuated with interventions in aging mice and humans”, in preparation

for submission.

8.2 Introduction

As organisms age, they can be described by a health state that evolves according

to dynamical processes of damage and repair. The health state is the net result of

accumulated damage and repair, and studies of aging have mostly focused on the

health state rather than the underlying dynamic processes, due to the difficulty of

their measurement. Two common approaches to measuring health-states, the Frailty

Index (FI) [14] and the Frailty Phenotype [16], are constructed from cross-sectional

data and so cannot assess damage and repair processes directly. Nevertheless, strong

associations between frailty measures and adverse health outcomes [3, 270] indicate

that frailty has a strong effect on these underlying dynamical processes. This is

supported by the increasing net accumulation of health deficits with worsening health

[162,271].

Reduced resilience, or the decreasing ability to recover from stressors, is increas-

ingly seen as a key manifestation of organismal aging [8,90,91,93,94,272]. Resilience

is often assessed by the ability to recover from an acute stressor, such as a heat/cold

shock, viral infection, or anesthesia, within a short experimentally-accessible time-

frame [93, 95, 96, 273]. Robustness, or an organism’s resistance to damage, has not

been as well studied – but there is also evidence for its decline with age [20,274]. Both

resilience and robustness sustain organismal health during aging, but their relative
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8.3 Results

8.3.1 Measuring resilience and robustness

A well-established approach to quantify health in both humans and in animal models

is to count binarized deficits in a Frailty Index (FI) [14, 73]. In longitudinal studies,

the health state of individuals can be assessed at each follow-up. Shown in the Figure

8.1 schematic, the change in of number of deficits from one follow-up to the next is

determined by the number of new deficits (e.g. damage, deficit value transitioning

from 0 to 1, pink arrow) minus the number of repaired deficits that were previously

damaged (deficit value transitioning from 1 to 0, green arrow). These counts of

damaged and repaired deficits between follow-ups represent summary measures of the

underlying damage and repair processes. We use a Poisson model with age-dependent

rates to model the age-dependent damage and repair rates using these longitudinal

counts. This is a joint model coupling the damage and repair rates together with

mortality.

In Figure 8.2, the quality of the model fits are shown with posterior predictive

distributions of the repair counts, damage counts, total deficit counts, and survival

probability, as well as summary statistics of an analysis of residuals. This shows that

the model fits the data well, and posterior credible intervals (CrI) accurately reflect

the uncertainty in the data, shown by the correct proportion of residuals containing

zero within 95% CrI. While we can compute binned-averages of repair and damage

rates from the raw data, this model is used to compute additional information, such as

the posterior distribution of correlation coefficients to determine the increase/decrease

of the rates with age, slopes of the rates vs age, and hazard rates of morality. Since

our model is Bayesian, we can compute posterior credible intervals of these quantities,

representing the probability that the true value falls within the interval.

In our approach, damage rates are the probability of acquiring a new deficit per

unit of time, and repair rates are the probability of repairing a deficit per unit time.

These are measures of susceptibility to damage (lack of robustness), and ability to

repair (resilience). Since the FI is a whole organism-level summary measure of health,

these measures are also whole organism-level measures of robustness and resilience.
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8.3.2 Natural resilience and robustness in control aging populations

We first establish the trends of repair and damage rates in aging. In Figure 8.3,

we plot the age-dependence of the repair and damage processes in mice and humans

along with the Frailty Index for mouse datasets from a) from Keller et al., 2019 [87],

b) Bisset et al., 2021 [88], and c) Schultz et al., 2020 [253], and humans from the

ELSA study [277]. Humans are separately plotted by decade of baseline age at entry

to the study, to separate out recruitment effects. Points are binned averages from the

data, and lines are posterior samples from the model of the rates. Both a decrease

in repair rates and an increase in damage rates result in an increasing Frailty Index

with age.

In both humans and mice, as individuals grow older, there is a strong decrease in

repair rates and increase in damage rates (except in mouse group 2 for damage rates).

These effects are replicated in three separate mouse groups, and an observational

human study for older individuals. Spearman rank correlations ρ for each plot are also

shown, highlighting the increase or decrease of the rates with age. The Bayesian model

of the rates is used to compute 95% posterior credible intervals of these correlations

(in brackets).

The observed damage occurs due to natural stochastic transitions, rather than an

experimentally induced or observed stressor [90, 95]. The observed resilience occurs

after no interventions, representing natural resilience to the stochastic damage. This

natural resilience can be thought of as resilience to the natural stressors of life, which

continually occur during aging. While errors in deficit assessment could contribute to

the damage or repair assessment, we would expect these errors to be constant with

age. In contrast, we observe decreasing repair rates and increasing damage rates with

age. Therefore these age-dependent rates signify decreasing resilience and robustness

with age, in both mice and humans.

One caveat with this approach is that we may miss fast damage and repair dynam-

ics that occur on time-scales shorter than the observed time-points. For example, we

cannot observe daily or weekly fluctuations in deficit states. Therefore, our measure-

ments of damage and repair are only looking at the net damage and net repair between

time-points. Ultimately, our approach results in summary measures of damage and

repair.
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In Appendix D Figure D.1, we highlight the sex differences in the mouse cohorts.

We observe higher Frailty Index in female mice [57] and humans [278], with corre-

sponding differences in repair and damage rates.

8.3.3 Interventions modify damage and repair rates in mice

Mouse datasets 1 (Keller et al., 2019) and 2 (Bisset et al., 2021) additionally have

corresponding intervention cohorts treated with either the ACE inhibitor enalapril,

or voluntary exercise. In Figure 8.4a and b, we show that these interventions target

both repair and damage processes, resulting in lower FI damage accumulation for the

treated groups. This shows that these interventions are not just reducing the suscep-

tibility to damage (increasing robustness) or increasing resilience, but are impacting

both processes in tandem.

The effect of these interventions is clearer seen when looking at how the rates

change with time, shown with the age-slopes of the rates in Figure 8.4c and d. These

slopes are computed with our Bayesian model for the rates, and the 95% posterior

credible interval for the slopes are shown. These slopes show the rate of increase

or decrease of the repair and damage rates as age increases. The interventions are

strongly acting on the rate of decrease of repair rates and rate of decrease of damage

rates with time, resulting in less cumulative damage over time.

We see similar effects between male and female mice treated with enalapril, the

rate of decrease of repair rates and the rate of increase of damage rates are both

attenuated, resulting in rates closer to zero. We see a sex-specific effect on mice

treated with voluntary exercise, such that repair and damage rates appear to be

effected differently by exercise in each sex. There is a complete stoppage or reversal

of the decrease in repair rate for female mice, and a reduction of the increase in

damage rate with age. For male mice, there is a reduction in the rate of decrease of

repair rates (but not a stoppage or reversal), and a complete stoppage of the increase

in damage rates. This suggests that, in mice, exercise acts more to increase repair in

females, and to decrease damage in males. Appendix Figure D.2 highlights these sex

differences.
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rather than age-slopes (as was done for mice), shown in Figure 8.5b). We see that re-

pair rates are positively correlated with net household wealth for younger ages, while

damage rates are negatively correlated for younger ages.

These results replicate the findings in mice, where interventions impact both dam-

age and repair rates. However, in humans we see that the effect of net household

wealth is strongly age-dependent, having the largest effects at younger ages.

8.3.5 Damage and repair have broad time-scales

In the results above, we considered the average repair and damage rates vs age.

Since individual deficits undergo stochastic transitions between damaged and repaired

states (e.g. Figure 8.6a) we can also measure the time-scale of these individual states.

However, observations are only taken at specific time-points and not all subjects were

followed to death. This represents a mixture of interval-censored and right-censored

time-to-event data, where the “event” is a damage or repair transition, rather than

death in typical survival analysis. We estimate survival curves using an interval

censored-analogue to the standard Kaplan-Meier estimator for right censored data

(details in methods). These survival curves represent the probability of a deficit

remaining undamaged after a repair event, which measures robustness, or remaining

damaged after a damage event, which measures resilience.

The corresponding survival curves for the repaired or damaged states or shown

in Figure 5, combining all deficits. Generally there is a large drop in probability

at early times, indicating the states are rapidly switching at or below the interval

between the measurements. However all of the curves also extend to very long times,

indicating that both robustness and resilience have a broad range of time-scales, up

to the remaining life of the organism.

Small effects due to enalapril and exercise are seen in mice on these time-scales,

despite the effects seen on the average damage and repair rates vs age. This only small

effect may be because we do not have sufficient data to stratify these curves by the

time of initial damage or repair. For humans the effects due to household wealth are

strong for females, and females with higher household wealth have a longer time-scale

of damage and a shorter time-scale of repair.
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the contributions of damage rate and repair rate to survival. With our model, we

can evaluate the hazard ratio for damage rates and repair rates. Log hazard ratios

represent the difference between the log hazard rate when damage or repair rates are

increased by 1 standard deviation from the mean. For zero log hazard ratios, there

is no effect of the variable on survival, and for positive or negative log hazard ratios

there is a decrease or an increase in survival respectively.

In Figure 8.8, we find that the damage rate has significant (with 95% credible

intervals around the median log hazard ratio above zero) and larger magnitude of

log hazard ratios than repair rate, adjusted for Frailty Index score held constant.

This shows that an increasing susceptibility to damage leads to larger decreases in

survival than decline in resilience. This means that individuals survive longer when

damage is avoided altogether, rather than repairing the damage after it occurs. This

is an intuitive result, and a preliminary suggestion that interventions that focus on

robustness should be favoured, rather than resilience.

In Figure 8.7 we had also shown that the decline in robustness has the strongest

effect on the acceleration of damage accumulation for older ages. Both of these results

demonstrate the importance of robustness for acceleration of damage at older ages,

resulting in death [181].

While enalapril and exercise have been shown to slow the increase in the FI (Figure

8.4, [87,88]), no effects on survival have been found, although this may be due to the

short period of time the mice were given these interventions [87,88]. Additionally, no

survival information is available for the ELSA humans used in this work.

8.4 Discussion

Both humans and mice exhibit increasing accumulation of health related deficits with

age [14,41,66,130,183]. Underlying this, we have demonstrated that both organisms

have increasing damage rates and decreasing repair rates with age. Furthermore,

the timescales of both repair and damage were broadly distributed from the earliest

measurement interval to lifetime scales, and both damage and repair rates were able

to be manipulated with interventions. We present a new approach for the assessment

of damage (robustness) and repair (resilience) rates in longitudinal aging studies,

and highlight fundamental similarities between mouse and human aging. Overall
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these results imply that health in aging can be improved by both decreasing the

accumulation of damage (or increasing robustness) and increasing the ability to repair

(or increasing resilience), and that these factors may be observed and manipulated

over longer time frames than previously expected.

Previous work has modeled the transitions between counts of deficits [38–41],

however this work only modelled the mean number of deficits – they did not separate

the damage and repair processes. These transition models have also been used for

changes in indexes of cognition, again without separating repair and damage [281].

Our approach has similarities with some recent approaches to measuring resilience

or robustness. In Pyrkov et al., 2021 [96], resilience is measured by the ability of the

organism to recover from stochastic fluctuations by computing the characteristic time-

scale of the auto-correlation of physiological state variables. Other studies have also

used auto-correlation as measures of resilience [273, 282]. In Arbeev et al., 2019 [20],

onset of disease is used to indicate a lack of robustness. In both of these approaches,

there are continuous fluctuations or discrete transitions away from the healthy state,

as in our approach. Other approaches such as Colon-Emeric et al., 2021 [95] measure

the difference between the recovered state after a specific acute stressor (hip fracture

or viral respiratory infection) and the baseline state before the stressor, which is unlike

our approach where we measure the tendency to recover after stochastic natural

damage. An additional advantage to our approach in comparison to these other

approaches is that we can observe both resilience and robustness together.

Summary measures of health such as the FI exhibit an accelerating accumulation

of health deficits with age [280]. This universal behavior must be reflected in either in-

creasing damage rates with age, or decreasing repair rates [96], or – as we find – both.

Both increasing damage and decreasing repair rates with age are qualitatively con-

sistent with common theories of aging [8,52,124]. However, the question of whether,

and by what mechanisms, damage and repair processes are coupled during aging re-

mains unanswered. Both damage and repair rates have been typically modelled as

functions of the health state in descriptive models of aging [11,44,45], but without a

mechanistic relationship between them apart from that imposed statistically by the

observed accumulated damage. Here, we confirm that both mice and humans exhibit

accelerating damage accumulation with age, but that damage and repair processes
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are separately dynamic and targeted by interventions. This opens significant room

for developing targeted or systematic interventions for both damage and repair.

Resilience characterizes organismal recovery from damage or disequilibrium, and

can be measured as the rate of repair. We have shown that time-scales of repair appear

broadly distributed - up to lifespan-scales. This was observed both in mice, where

medical/lifestyle interventions are minimal, and humans where there are medical,

dietary, exercise and other interventions over the lifespan that may be implicitly

captured in our data. This implies that we may be able to target the increase of

repair with interventions over a longer timeframe than just acutely when the damage

occurs. The time scales we have studied are not easily accessible in challenge-response

studies of resilience that typically occur over a much short timeframe [90]. As we have

shown (Appendix Figures D.3, D.5, and D.7), different health attributes can have

quite different recovery times, and future resilience studies across a range of health

attributes should focus on timescales between our results and studies of controlled

challenges. It is also possible that dichotomized deficits, which we have used, probe

qualitatively different timescales than continuous measures studied in other studies

of resilience. Nevertheless, we highlight that repair for many health attributes occurs

at long timescales for both mice and humans.

Damage rates are much less directly studied, despite early definitions of frailty as

susceptibility to damage. Robustness, or resistance to damage, is complementary to

damage rate. As assessed in mice, damage rates appear to have a stronger effect on

mortality than repair rates, indicating that reducing damage will have greater impact

on mortality than systemically increasing repair however whether this is generally so,

and the mechanisms behind this observation remain open questions. In humans, the

effect of wealth is also stronger on damage rates than repair rates, indicating that the

known strong effect of wealth on health and mortality, may be related to increased

robustness due to environmental factors of higher socioeconomic status, rather than

increased resilience. We have shown that, like repair processes, damage processes oc-

cur over a broad range of timescales from the shortest assessed to organismal lifespan

scales, indicating a broad range of time for possible intervention. Further studies of

damage rates are indicated in other model organisms over their life-course.

The effects of age on both damage and repair, in both mice and humans, are
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qualitatively similar in male and female populations. Since is somewhat surprising,

given the known sex effects in aging where, at the population level, females have

poorer health than males, but are at lower risk of mortality [183]. At first thought,

this paradox might imply that females have less robustness that males, but greater

resilience. Instead in humans we find that males have both increased repair rates and

decreased damage rates. Our findings imply, however, that this frailty-mortality sex

paradox is not related to sex specific differences in resilience and robustness and that

both sexes are equally vulnerable to increasing damage and decreasing repair in aging.

Nevertheless, we have found that systemic interventions can have qualitatively distinct

sex effects. The ACE inhibitor enalapril has a strong effect on reducing the timescales

of repair in female, but not male mice. Previous work demonstrating that enalapril

slows the increase of the FI in mice also found sex-specific effects on inflammation,

possibly contributing to this difference between male and female mice [87]. Similarly,

exercise prevents the decline of repair rates with age in female mice, but not in male

mice. This preliminary evidence suggests that perhaps targeting resilience in females,

and robustness in males will provide the most benefit in aging, although more studies

are needed to support this claim. We show that assessing both damage and repair

rates, and not just the health-state, in interventional aging studies can provide a

clearer assessment of sex differences and suggest future studies adopt this approach.

The increasing availability of longitudinal health data over the lifespan of model

aging organisms facilitates the analysis of damage and repair rates, and how they ex-

tend and change over the organismal lifespan. These damage and repair rates underlie

the accumulation of damage that describes aging. While they have been studied as

frailty or as acute resilience, they are seldom studied over the organismal lifespan.

Here we have shown the value of considering both resilience and robustness over the

lifespan. Further studies will be able to determine how widespread organismal and sex

differences in these effects are, or how universal they may yet prove to be. It remains

to be seen whether our results in mice and humans generalize to other portfolios of

health attributes and whether the same universality is exhibited in damage and repair

rates that has been observed with deficit accumulation. The mechanisms underlying

differing age effects in different organisms, and behind the differing timescales of re-

covery in different health attributes will be important to study in detail. Studies on
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the effects on damage and repair rates of both targeted and systemic interventions

will also be crucial. We have studied only three (enalapril and exercise in mice, and

wealth in humans), but there are many more.

8.5 Methods

8.5.1 Mouse data

For the mouse portion of this manuscript, published data on longitudinal health-

related deficits in C57BL/6 mice from three papers was used (Keller et al., 2019 [87];

Bisset et al., 2021 [88]; Schultz et al., 2020 [253]). A brief summary of the methods

of each paper is below:

Mouse group 1

Keller et al., 2019: Male and female C57BL/6 mice were assessed for deficits approx-

imately every 4 weeks from 16 to either 21 months of age (females) or 25 months of

age (males). Mice were fed either a diet containing enalapril (280 mg/kg) or control

diet for the duration of the experiment.

After pre-processing (below), this data contains 21 female control mice, 25 female

enalapril mice, 13 male control mice, and 25 male enalapril mice.

Mouse group 2

Bisset et al., 2021: Male and female C57BL/6 mice were assessed for deficits approx-

imately every 2 weeks from 21 to 25 months of age. Mice were all singly housed, and

half were provided a running wheel for voluntary exercise.

After pre-processing (below), this data contains 11 female control mice, 11 female

exercise mice, 6 male control mice, and 6 male exercise mice.

Mouse group 3

Schultz et al., 2020: Male C57BL/6Nia mice were assessed for deficits approximately

every 6 weeks from 21 months of age until their natural deaths.

After pre-processing (below), this data contains 44 male control mice.
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Mouse clinical frailty index assessment

Each of the papers above assessed health deficits using the mouse clinical frailty index

as described previously [283]. Briefly, this assessment involves scoring 31 non-invasive

health-related measures in mice. Most measures are scored as 1 for a severe deficit, 0.5

for a moderate deficit and a 0 for no deficit. Deficits in body weight and temperature

were scored based on deviation from reference values in young adult animals, such

that a difference of less than 1 SD was scored 0, a difference of ±1 SD was scored

0.25, a difference of ±2 SD was scored 0.5, a difference of ±3 SD was scored 0.75,

and a difference of more than 3 SD received the maximal deficit value of 1 [283]. The

deficits of malocclusions and body temperature were not assessed in mouse group

3 [253], leaving only 29 deficits for this group.

Mouse data pre-processing

For mouse dataset 1, we impute missing deficit values by propagating the last observed

value forward. If the first observed deficit is missing, it is imputed by propagating

the first observed value backward. Less than 1% of all total deficit values are missing

in this dataset. No values in the other datasets are missing.

Deficits are scored on a fractional scale, with deficit i having values di ∈
{0, 0.25, 0.5, 0.75, 1}. To treat these as binary, we represent each fractional deficit

di by 4 ordered binary deficits, [d
(1)
i , d

(2)
i , d

(3)
i , d

(4)
i ]. Fractional deficits are then repre-

sented by setting 4×di of these ordered binary deficits to 1. For example if di = 0.75,

this is represented as [1, 1, 1, 0].

A new Frailty Index is then created by taking all of these new binary deficits,

representing a 4 × 31 = 124 item Frailty Index (4 × 29 = 116 for mouse dataset

3). This process preserves the FI scores, and a single repair or damage event can be

interpreted as taking a step of size 0.25 on the fractional deficit scale.

Measurement times with abnormally short or long intervals are removed. In mouse

dataset 2, measurement times less than 0.1 months from the previous time are re-

moved. In mouse dataset 3, measurement times more than 2 months from the previous

time are removed.

In each dataset, mice with less than 2 observed time-points are removed.
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8.5.2 Human data and pre-processing

We use human data from the English Longitudinal Study of Aging [277]. We select

individuals that have full data for net household wealth and activities of daily living

(ADL) and instrumental activities of daily living (IADL). A Frailty Index is created

from the count of 10 possible ADLs and 13 possible IADLs, giving a fraction out of

23. We restrict individuals to those that were recruited to the study between the ages

of 50 and 89 years. We drop individuals with follow-up time intervals above 4 years

and individuals with fewer than 6 follow-ups.

We use net household wealth, as determined in the financial assessment in wave

5 of the ELSA data. We drop individuals that have parts of this assessment im-

puted. The raw value of net household wealth spans several orders of magni-

tude (and includes negatives for individuals in debt), and so is transformed by

w = log
(
wraw +mean(wraw)

)
.

After pre-processing, this data contains 1074 males and 1422 females with time-

intervals of approximately 2 years between observations. There are 1211 individuals

from baseline ages in [50, 60), 833 with baseline ages in [60, 70), 280 with baseline

ages in [70, 80), and 21 with baseline ages in [80, 90).

8.5.3 Extracting raw damage and repair counts from datasets

In each dataset, we observe the state of N binary health deficits {djk}Nk=1 for each

subject at a set of observation times {tj}Jj=1. Summing up the number of deficits at

each time, we get deficit counts for each observation time, {nj}Jj=1, which is used to

compute the Frailty Index fj = nj/N .

We compute the number of deficits damaged (0 → 1 transitions) and repaired

(1 → 0 transitions) between two time points tj and tj+1, denoted as nd(tj) or n
r(tj).

These counts satisfy n(tj+1) = n(tj)+n
d(tj)−nr(tj), linking these damage and repair

processes with the Frailty Index.

8.5.4 Modelling

We model deficit repair and damage as Poisson point processes with time-dependent

rates, λr(t) and λd(t). The count of deficits repaired or damaged in an interval [t1, t2]
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is assumed to follow a Poisson distribution, with mean equal to the instantaneous

rate λr(t) or λd(t) integrated over this interval times the number of possible deficits

available to be repaired Λr(t) =
∫
λ(t)rntdt, or damaged Λd(t) =

∫
λd(t)(N − nt)dt.

We assume these time intervals are small so that we use constant rates within each

time-interval to approximate these integrals, Λr(t) ≈ λr(t)nt∆t or Λ
d(t) ≈ λd(t)(N −

nt)∆t.

Joint longitudinal-survival model for mice datasets

We use a joint modelling framework to model repair and damage rates, while assessing

their effect on survival. We decompose the multivariate joint distribution of the

observed longitudinal damage and repair counts and survival outcome by coupling

survival with the repair and damage rates λri (t) and λ
d
i (t) [121, 284],

p(Ti, ci, {nr
i (t)}, {nd

i (t)}|λri (t), λdi (t)) =
p(Ti, ci|λri (t), λdi (t))p({nr

i (t)}, {nd
i (t)}|λri (t), λdi (t)). (8.2)

A graphical version of this model is shown in Figure 8.9.

Longitudinal component

We use a linear Poisson model for the longitudinal damage and repair rates. A

Softplus function, log (1 + ex), is used to enforce positive rates. This function is

chosen because it is approximately linear for larger values of x, in contrast to ex

which is often used for Poisson models. The form of this model is,

λri (t) = Softplus
(
βr · xi(t) + bri,0 + bri,1t

)
, (8.3)

λdi (t) = Softplus
(
βd · xi(t) + bdi,0 + bdi,1t

)
, (8.4)

nr
i (tj)|λri (tj), ni(tj) ∼ Poisson

(
ni(tj)λ

r
i (tj)(tj+1 − tj)

)
, (8.5)

nd
i (tj)|λdi (tj), ni(tj) ∼ Poisson

(
(N − ni(tj))λ

d
i (tj)(tj+1 − tj)

)
, (8.6)

ni(tj+1) = ni(tj) + nd
i (tj)− nr

i (tj). (8.7)

The first two equations describe the time-dependent repair and damage rates, λr(t)

and λd(t). These rates represent the probability of repair or damage, per deficit per

unit time. These rates are multiplied by the number of deficits that can repair n(tj)
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or the number that can damage N −n(tj) and the time-interval ttj+1
− tj to compute

the mean count of repaired or damaged deficits for Poisson distributions. The last

Equation 8.7 shows how we can compute the total count of deficits from this model;

allowing this model to be used for the Frailty Index as well.

The full-cohort parameters are denoted β and the subject-specific intercept and

time-slopes bi,0, bi,1. The variables xi(t) include the covariates and their interactions,

xi(t) = (1, t, sex, treatment, f, a0, sex× treatment, (8.8)

sex× t, treatment× t, sex× treatment× t).

The “treatment” variable is a 0/1 indicator for enalapril in mouse group 1 or exercise

in mouse group 2. The other variables are the time from baseline t, the frailty index

f , baseline age a0, and sex (M/F). These interactions allow sex and treatment group

specific age slopes.

The repair and damage processes are linked by including correlation between the

subject-specific parameters [bri , b
d
i ] ∼ N (0,Σ).

Survival component

We jointly model these repair and damage processes with survival, with proportional

hazards and a baseline hazard parameterized with M-splines [285] (which are always

non-negative). The damage and repair processes are linked with survival by including

damage rate and repair rate in the hazard rate,

hi(t) = h0(t, sex) exp
(
γ · ui(t) + γrSoftplus−1λri (t) + γdSoftplus−1λdi (t)

)
,(8.9)

h0(t) = (male) ·
L∑

l=1

al,maleMl,3(t|k) (8.10)

+ (female) ·
L∑

l=1

al,femaleMl,3(t|k),
L∑

l=1

al = 1, al ≥ 0,

Si(t) = exp
(
−

∫ t

t0

hi(s)ds
)
. (8.11)

The first equation describes the hazard rate hi(t) in terms of the covariates ui and the

repair and damage rates. The baseline hazard h0(t, sex) is modeled with sex-specific

splines in Equation 8.10, due to the large disparity in survival by sex. The covariates

are ui = (1, sex, treatment, f, a0).
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Priors and hyperparameters

We use weakly informative priors to regularize parameters,

βr
0 , β

d
0 , γ0 ∼ N (0, 3), (8.12)

βr, βd, γ, γr, γd ∼ N (0, 1), (8.13)

σ ∼ HalfCauchy(0, 1), (8.14)

Ω ∼ LKJ(2), (8.15)

Σ = σΩσ, (8.16)

[br
i , b

d
i ] ∼ N (0,Σ), (8.17)

a ∼ Dirichlet(1.0, L = 17), (8.18)

κ = {min({Ti}i), Q0.05({Ti}i), ..., (8.19)

Q0.95({Ti}i),max({Ti}i)}.

Broad N (0, 3) priors are used on intercept parameters and narrow N (0, 1) priors on

covariate coefficients. The covariance matrix Σ for the coupling of the subject-specific

parameters bi is decomposed in terms of a correlation matrix Ω with a LKJ prior

and standard deviations σ with half-Cauchy distributions. Spline coefficients a use

a Dirichlet distribution with concentration 1, representing a uniform prior on the

simplex
∑L

l=1 al = 1, al ≥ 0. We use L = 17 spline knots with knots at the minimum

last follow-up age, the maximum, and 15 uniformly spaced quantiles from 0.05 to 0.95

of the last follow-up age.

Integrals of the hazard rate are computed with 5-point Gaussian Quadrature be-

tween each observed time interval.

Non-linear modeling for human data

There is much more human data than mice and the data is more complex, where

linear effects are not sufficient to capture the combined influence of wealth, baseline

age, and time. We use a non-linear Poisson model with non-constant coefficients to

include addition degrees of freedom. We parameterize these non-constant coefficients

with B-splines. Additionally, the individuals selected from ELSA with wealth data

do not have mortality data available, simplifying the model from the joint model used

above for mice.
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Our model has the form,

λri (t) = Softplus
(
βr
0 · xi(t) + βr

1(w, a0) + βr
2(w, a0)× sex + βr

3(w, a0)× t (8.20)

+ βr
4(w, a0)× sex× t+ bri,0

)
,

λdi (t) = Softplus
(
βd
0 · xi(t) + βd

1(w, a0) + βd
2(w, a0)× sex + βd

3(w, a0)× t (8.21)

+ βd
4(w, a0)× sex× t+ bdi,0

)
,

nr
i (tj)|λri (tj), ni(tj) ∼ Poisson

(
ni(tj)λ

r
i (tj)(tj+1 − tj)

)
, (8.22)

nd
i (tj)|λdi (tj), ni(tj) ∼ Poisson

(
N − ni(tj)λ

d
i (tj)(tj+1 − tj)

)
, (8.23)

where

xi(t) = (1, t, sex, w, f, a0, sex× t, w × t, a0 × t, sex× f, w × f, a0 × f). (8.24)

The non-constant coefficients {βk(w, a0)}k are implemented as 2D B-splines for wealth

and baseline age with 5 wealth knots and 5 baseline age knots at the minimum,

maximum and terciles of these variables. We use smoothing 2D random-walk priors

on the spline coefficients,

s11, τw, τb0 ∼ N (0, 1), (8.25)

pw, pb0 ∼ Dirichlet(1.5), (8.26)

sij ∼ pwN (si−1,j, τw) + pb0N (si,j−1, τb0), (8.27)

βk(w, a0) =
5∑

i,j=1

sijBi,3(w;κw)Bj,3(a0;κa0). (8.28)

All other priors are the same as in the mouse modelling.

Note, in the human data we do not include subject-specific time-slopes bri,1 and

bdi,1 as we did in the mouse data, since we have much shorter time-series. When

these slopes are included, we see evidence of the model over-fitting to the data by

the proportion of residuals with zero within 95% credible intervals being much higher

than 0.95, and nearing 0.99 to 1.

Derivatives

We can compute the derivative of the Frailty Index according to the modelled repair

and damage rates,

d

dt
fi(t) = (1− fi)λ

d
i (t)− fiλ

r
i (t). (8.29)
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To understand the effect of interventions, we compute the derivative with respect

to time for the repair and damage rates,

d

dt
λri (t) =

∂λri (t)

∂t
+
∂λri (t)

∂f

dfi(t)

dt
,

=
(
βr · dxi(t)

dt
+ βr · dxi(t)

df
+ br

i ·
dzi(t)

dt

) eλ
r
i (t)

eλ
r
i (t) + 1

, (8.30)

d

dt
λdi (t) =

∂λri (t)

∂t
+
∂λri (t)

∂f

dfi(t)

dt
,

=
(
βd · dxi(t)

dt
+ βd · dxi(t)

df
+ bd

i ·
dzi(t)

dt

) eλ
d
i (t)

eλ
d
i (t) + 1

. (8.31)

This is the slope of these rates vs time, with the increase in the Frailty Index f(t)

included. While we only include explicit linear effects of time in the model, the

increase in Frailty Index with time can influence the derivative to change.

We can compute the curvature as the second derivative of the Frailty Index with

age, written in terms of first derivatives of the rates,

d2

dt2
fi(t) =

[
(1− fi(t))

dλdi (t)

dt
− dfi(t)

dt
λdi (t)

]
−
[
fi(t)

dλri (t)

dt
+
dfi(t)

dt
λri (t)

]
. (8.32)

The first group of terms are those involving damage rate (robustness) and the second

group of terms are those involving repair (resilience). These terms are plotted in

Figure 8.7.

Repair and damage timescale mice and human data

We observe the amount of time that has passed between damage and repair events,

and vice versa. This can be used to determine the time-scales of these damage and

repair processes. However, since a deficit might damage and the individual dies before

the deficit is ever repaired, there is right censoring. Additionally, observations are

only made at specific time-points and so we cannot determine the exact time at which

a deficit damaged or repaired, there is interval censoring. To estimate the distribution

of repair and damage times, we treat repair and damage events for each deficit as a

mixture of interval and right censored events.
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We use a Bayesian survival model with M-splines for the baseline hazard,

h(t) = eγ0
L∑

l=1

alMl,3(t|k),
L∑

l=1

al = 1, (8.33)

S(t) = exp
(
−

∫ t

t0

h(s)ds
)
. (8.34)

This is fit separately for sex and control/intervention groups.

We include both interval censoring and right-censoring in the likelihood,

p(TL
i , T

U
i , Ti, ci|{al)}l, γ0) = [S(Ti)]

ci [S(TL
i )− S(TU

i )]1−ci , (8.35)

where TL is the lower interval bound, TU is the upper interval bound, and T is a

time of right censoring. We use 32 knots set at 30 evenly spaced quantiles of the

event times from 0.1 to 0.9 together with the minimum and maximum event time.

Dirichlet(1.0, 32) prior is used for the spline coefficients and a N (0, 10) prior for γ0.

8.5.5 Sampling

We use the STAN no U-turn sampler (NUTS) [113]. We use 4000 warm-up iterations

and 6000 sampling iterations on 4 separate chains for the mice joint models. For

the human model we use 2 separate chains with 1000 warm-up iterations and 3000

sampling iterations. For the interval-censored Bayesian survival models we use 2000

warm-up iterations and 3000 sampling iterations for 4 separate chains.

Model diagnostics

In the Appendix Figures D.9, D.10, and D.11 we perform a posterior predictive checks

for the mice joint models by plotting the residuals of simulated data compared to the

observed data, and compute R2 statistics [286–288]. In Appendix Figures D.12, D.13,

and D.14 show residuals for the human model.



Chapter 9

Conclusions and future outlook

The work of this thesis is an attempt at building computational models of aging.

These models are not merely predictive models, but can be used to understand aging

phenomena. In the introduction to this thesis in Chapter 1, I introduced three fun-

damental questions that this thesis aims to answer: how can we better understand

the mechanisms or causes underlying observed aging phenomena, how can we better

predict outcomes at an individual or population level, and, finally, how can we better

intervene to decrease mortality and to improve health during aging? I have demon-

strated the use of complex computational models to answer questions such as these

in aging.

To facilitate the understanding of aging mechanisms, I used the Generic Network

Model (GNM) to understand the structure of the different levels of health included

in the Frailty Index with complex networks (Chapter 3). I developed the Weighted

Network Model to describe the accumulation of binary deficits in aging with a network

of average pairwise rates that is inferred from cross-sectional aging data (Chapter 4). I

developed the Dynamic Joint Interaction Network (DJIN) model to make quantitative

predictions of aging trajectories and infer physiological interaction networks governing

the dynamics, and explore the dimensionality of aging (Chapter 5). I developed a

latent variable clustering model to infer distinct aging phenotypes (Chapter 7). I

developed a novel analysis technique to better understand the processes of damage

and repair (robustness and resilience) in aging (Chapter 8).

The WNM model from Chapter 4, the DJIN model from 5, and the clustering

model from Chapter 7 are also predictive models, capable of predicting individual

health trajectories and mortality. While we were able to use long time-series of aging

data in the clustering model for C. elegans, this was not available for humans and

limited the DJIN model. With C. elegans, we are able to condition predictions on

long input time-series (50 time points). In contrast, in the DJIN model we only used
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a single baseline time-point for predictions. This limitation reflects the availability of

longitudinal data of aging.

Figure 9.1 shows examples of the ways in which the DJIN model can be extended

in future work. In the DJIN model, we needed to impute the baseline health state.

However, we only used data at the baseline age to do this imputation. Figure 9.1a)

shows an approach to imputation using multiple time-points, using a recurrent neural

network instead of a feed-forward neural network. This approach would require longer

time-series than are available in the ELSA data that was used in this thesis. By

using multiple input points for imputation, we can utilize the trends in variables for

imputation, not just the correlations between values at the same time-point. A similar

approach can be used to update the current health state, in prediction scenarios with

tracked health data [221].

The DJIN model assumes constant pair-wise interactions between all variables.

However, in reality these interactions are likely modulated by other variables. In-

stead of inferring a set of constant network weights {Wij}ij, we can fit a complex

function (e.g. a neural network) mapping auxiliary variables u to an inferred network

{Wij(u)}ij, allowing the network interactions to be modified by these input variables,

shown in Figure 9.1b).

The DJIN model infers interactions that are useful for predictions, this is not true

causality, but “predictive causality” [224–226]. While we do not know if there are

unobserved variables confounding the interactions, these connections suggest possible

avenues of intervention. The network suggests the effects of increasing or decreasing

a variable on a second variable, based on the the sign and direction of interactions.

For example in Figure 9.1c), if we intervene to decrease x4, the model predicts that x3

would decrease. This suggests possible interventions to modify x3, and is a method

of verifying inferred connections.

Additionally, while our approach interprets the model in terms of interactions

between the health variables, we do not attempt to interpret mortality predictions.

Such an interpretation would indicate which variables influence mortality rates most

strongly. The simplest way to do this would be to replace the complex RNN-based

mortality rate with simple proportional hazards [119] or quadratic hazards [289],

which describe the mortality rate in terms of simple functions. However, this would
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in this area. In the long term when we are able to gather large amounts of data

per individual (e.g. individual health tracking with wearable devices), “personalized

medicine” or “precision medicine” to individualize treatment will involve predictive

machine learning approaches.

Chapter 8 studied the effects of aging interventions on resilience and robustness

in aging. This work only looked at summary measures of repair and damage, and

highlighted the importance of studying both of these processes. A further under-

standing of the underlying microscopic mechanisms of repair and damage requires

detailed biological data.

One of the current limitations to modelling aging is the lack of large longitudinal

studies combining data from multiple levels of functioning, from low-level omics data

to high-level physical functioning data [48]. This thesis used data on high-level phys-

ical functioning such as walking speed, grip strength, or other physical disabilities,

phenotypic markers such as blood pressure and pulse, and blood biomarker measures

such as blood glucose and hemoglobin. However, this thesis did not use any genetics,

epigenetics or other omics data that have recently become important tools in aging

biology. This is due to the availability of this data, and longitudinal studies with this

data are just starting to emerge [60, 292–295].

This data could be used to develop models integrating multiple physiological sys-

tems to understand how observable aging phenotypes result from the underlying bio-

logical processes [54–56]. For example in Figure 9.2a), we can combine latent variable

summary models with the DJIN interacting network model (Chapter 5). In this ap-

proach high-dimensional data for distinct physiological subsystems could be used to

form summary measures for these systems, which then interact in a network as in the

DJIN model. This approach could have the advantages of latent variable summary

models, which compress high-dimensional information, and the advantages of network

models, which describe interactions.

Alternatively, this data can be used to develop hierarchical models of aging. Fig-

ure 9.2b) shows a method of building such a model. A set of hierarchical latent

variables describe the dynamics of aging at different levels, with high-level dynam-

ics describing the high-level observed features, and low-level dynamics describing the

low-level observed features. Unobserved aspects of aging can be incorporated by a
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[213] Daniel J. Stekhoven and Peter Bühlmann. MissForest—non-parametric missing
value imputation for mixed-type data. Bioinformatics, 28(1):112–118, 10 2011.

[214] Humza Haider, Bret Hoehn, Sarah Davis, and Russel Greiner. Effective ways
to build and evaluate individual survival distributions. Journal of Machine
Learning Research, 21:1–63, 2020.

[215] Steve Horvath. DNA methylation age of human tissues and cell types. Genome
Biology, 14:R115, 2013.

[216] Timothy V Pyrkov, Evgeny Getmantsev, Boris Zhurov, Konstantin Avchaciov,
Mikhail Pyatnitskiy, Leonid Menshikov, Kristina Khodova, Andrei V Gudkov,
and Peter O Fedichev. Quantitative characterization of biological age and frailty
based on locomotor activity records. Aging, 10(10):2973–2990, October 2018.

[217] David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[218] Daniele Bertolini, Anton D. Loukianov, Aaron M. Smith, David Li-Bland, Yan-
nick Pouliot, Jonathan R. Walsh, and Charles K. Fisher. Modeling disease
progression in mild cognitive impairment and Alzheimer’s disease with digital
twins. 2020.

[219] Yu-Zhong Chen and Ying-Cheng Lai. Sparse dynamical Boltzmann machine
for reconstructing complex networks with binary dynamics. Physical Review E,
97:032317, 2018.

[220] Yulia Rubanova, Tian Qi Chen, and David Duvenaud. Latent ordinary differ-
ential equations for irregularly-sampled time series. NeurIPS, 2019.

[221] Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. GRU-ODE-
Bayes: Continuous modeling of sporadically-observed time series. NeurIPS,
pages 7377–7388, 2019.

[222] James Jordon, Alan Wilson, and Mihaela van der Schaar. Synthetic data:
Opening the data floodgates to enable faster, more directed development of
machine learning methods. 2020.

[223] A synthetic population of nearly 107 individuals with 20 years
of annually sampled trajectories from baseline is available at
https://zenodo.org/record/4733386.

[224] C. W. J. Granger. Economic processes involving feedback. Information and
Control, 6:28–48, 1963.



203

[225] K. J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling. Neu-
roImage, 19(4):1273–1302, 2003.

[226] K. J. Friston, Katrin H. Preller, Chris Mathys, Hayriye Cagnan, Jakob Heinzle,
Adeel Razi, and Peter Zeidman. Dynamic causal modelling revisited. NeuroIm-
age, 199:730–744, 2019.

[227] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M. Chu.
Modeling the intensity function of point process via recurrent neural networkss.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
page 1597–1603, 2017.

[228] Shuai Xiao, Junchi Yan, Mehrdad Farajtabar, Le Song, Xiaokang Yang, and
Hongyuan Zha. Learning time series associated event sequences with recurrent
point process networks. IEEE Transactions on Neural Networks and Learning
Systems, 30(10):3124–3136, 2019.

[229] Z. Qian, A. Alaa, Alexis Bellot, J. Rashbass, and M. van der Schaar. Learning
dynamic and personalized comorbidity networks from event data using deep
diffusion processes. In AISTATS, 2020.

[230] Laurie E Davies, Gemma Spiers, Andrew Kingston, Adam Todd, Joy Adam-
son, and Barbara Hanratty. Adverse outcomes of polypharmacy in older people:
Systematic review of reviews. Journal of the American Medical Directors As-
sociation, 21(2):181–187, 2020.

[231] Amanda J Miller, Olga Theou, Miranda McMillan, Susan E Howlett, Karthik K
Tennankore, and Kenneth Rockwood. Dysnatremia in relation to frailty and
age in community-dwelling adults in the National Health and Nutrition Exam-
ination Survey. Journals of Gerontology A, 72(3):376–381, March 2017.

[232] A. Golightly and D.j. Wilkinson. Bayesian inference for nonlinear multivariate
diffusion models observed with error. Computational Statistics Data Analysis,
52(3):1674–1693, 2008.

[233] Gavin A. Whitaker, Andrew Golightly, Richard J. Boys, and Chris Sherlock.
Bayesian inference for diffusion-driven mixed-effects models. Bayesian Analysis,
12(2):435–463, 2017.

[234] Cédric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford, and John S.
Shawe-Taylor. Variational inference for diffusion processes. Advances in Neural
Information Processing Systems, 20:17–24, 2008.

[235] Manfred Opper. Variational inference for stochastic differential equations. An-
nalen der Physik, 531(3):1800233, 2019.

[236] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud.
Scalable gradients for stochastic differential equations. arXiv, 2001.01328, 2020.



204

[237] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using real NVP. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
2017.

[238] Kan Ren, Jiarui Qin, Lei Zheng, Zhengyu Yang, Weinan Zhang, Lin Qiu, and
Yong Yu. Deep recurrent survival analysis. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages 4798–4805, 2019.
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Appendix A

Chapter 4 supplemental information

A.1 Simulation details

A.1.1 Stochastic simulation

We exactly simulate the model for each individual using a standard stochastic sim-

ulation algorithm [144]. Two separate rate processes are simulated for damage and

mortality. The first process for damage uses the rate in Equation 4.5 in the main

text. The second process uses the mortality rate in Equation 4.6.

Since our rates are time-dependent we use an exact rejection sampling method,

called the “attempt time algorithm” [297]. We set the window for possible events as

T = 5 years, and re-update this maximum horizon as it is passed. Since we have

constrained all rates to be monotonic in time (see below for details), we can easily

determine an upper bound on the rates, necessary to implement the attempt time

algorithm: Γ+
max =

∑
i(1 − di)Γ

+
i (t + T, {dj}) bounds the total damage rate of all

undamaged nodes, while ΓD
max = ΓD(t+ T, {dj}) bounds the mortality rate.

At each step of the algorithm, the event is chosen from the process with the

smallest time-to-event, i.e., damage occurs until the time to death is smaller than

the time to next damage event. Within the damage process, we choose which event

using a computationally efficient tree-based approach [145]. When the mortality event

occurs, the algorithm terminates for that individual.

A.1.2 Estimating likelihood

To calculate the likelihood in Equation 4.8, we run S simulations with the same set

of parameters (with S > 106 individuals). We use a discrete kernel density estimate

of the health term of the likelihood,

p({di}(m)|t(m); ~θ) =
1

S(t(m))

S(t(m))∑

s=1

K({di}(s), {di}(m);λ(m)), (A.1)
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where S(t(m)) is the number of simulated individuals alive at age t(m). The superscript

(s) indicates a simulated individual and (m) an observed individual from the data.

We use the Racine and Li kernel [298],

K({di}(s), {di}(m);λ(m)) =





1
1+λ(m) ,

∑
i |d

(s)
i − d

(m)
i | = 0, t(s) = t(m)

λ(m)

1+λ(m) ,
∑

i |d
(s)
i − d

(m)
i | = 1, t(s) = t(m)

0, otherwise.

(A.2)

This allows individuals that differ in damage by 1 deficit to contribute to the likeli-

hood, as determined by an individual bandwidth λ(m).

The bandwidth λ(m) is selected by minimizing the mean-squared error [299],

λ(m) =

[
1 +

S(t(m))((p(m))2 + (1− p(m))2)

2p(m)(1− p(m))

]−1
, (A.3)

where p(m) is the empirical frequency estimate of the distribution (obtained using

bandwidth λ = 0). The bandwidth λ(m) is individual-dependent, so that the well

sampled individuals will have a small bandwidth, and poorly sampled individuals

have a larger bandwidth to reduce noise.

Both the censored and uncensored mortality terms of the likelihood are calculated

by binning the death ages of simulated individuals that match the observed data

(
∑

i |d
(s)
i − d

(m)
i | = 0, t(s) = t(m)) with 1 year bins.

A.1.3 Regularization

To have an increase in mortality rate with decreasing health, the deficit mortality

contributions βj in Equation 4.7 should all be positive. Without such a bound, we

have observed that the optimization sometimes converges to positive and negative βj

values scattered around zero, which leads to the deficit contribution to the mortality

rate being negligible, and gives uniform mortality for all individuals. However in con-

trast, setting a strict bound βj ≥ 0 causes the optimization to converge to parameters

which perform poorly with respect to the health trajectories. Instead, we have found

that a soft penalty behaves well when added to the log-likelihood to penalize negative

values,

+C
∑

j

min(0, βj). (A.4)
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Values of βj ∼ 1 give a significant mortality contribution, and log-likelihood values

are estimated with a stochastic noise of ±10, so we choose C = 100 by hand to achieve

a moderate regularizing effect – and we find that the optimization performs well with

this choice.

A.1.4 Parameter bounds

To ensure Equations 4.4, 4.5, 4.6, and 4.7 are monotonically increasing for all t ≥ 0, we

bound the parameters so that their time-derivatives have only negative real or complex

roots with respect to t or fi. For hyperparameters n+ = 4, and nf = nD1 = nD2 = 3,

the required bounds are shown in Table A.1.

Table A.1: Parameter bounds during optimization.

Equation Parameter bounds

Equation 4.4: fi(t, {di}) µi1 ≥ 0, µi3 ≥ 0, µi2 ≥ −√
3µi1µi3

Equation 4.5: Γ+
i (t, {di}) γi1 ≥ 0, γi3 ≥ 0, γi2 ≥ −√

3γi1γi3, γi4 ≥ 0

Equation 4.6: ΓD(t, {di}) α1 ≥ 0, α3 ≥ 0, α2 ≥ −√
3α1α3

Equation 4.7: x(t, {di}) η1 ≥ 0, η3 ≥ 0, η2 ≥ −√
3η1η3

A.1.5 Parameter optimization

Optimization is done with particle swarm optimization (PSO) [198]. PSO is

derivative-free and highly parallelizable. We use the standard version:

vi,t+1 = ωvi,t + cpup(~θ
p
i,t − ~θi,t) + cgug(~θ

g
t − ~θi,t) (A.5)

~θi,t+1 = ~θi,t + vi,t+1. (A.6)

The parameter values for the ith particle at an iteration t are represented as θi,t and

the velocity for this particle as vi,t. The current best set of parameters found by

particle i is θpi,t, and the current global best set of parameters is θgt . We randomly

sample up, ug uniformly from [0, 1]. We set ω = 0.7, cp = cg = 2 and use 100 −
200 particles, depending on compute resources available. The optimization typically

converges in 100-200 iterations.
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Parameter bounds from section A.1.4 are implemented by rescaling the velocity

components vi,k,t with a hyperbolic method so that parameters never exceed their

upper bounds Uk and lower bounds Lk [300],

vi,k,t+1 =
vi,k,t+1

1 +
vi,k,t+1

Uk−θi,k,t

, vi,k,t+1 > 0, (A.7)

vi,k,t+1 =
vi,k,t+1

1− vi,k,t+1

θi,k,t−Lk

, vi,k,t+1 < 0.

Our objective function is stochastic, so to avoid optimizing to the noise, every

10 PSO iterations we recalculate the global maximum likelihood for the global best

set of parameters θgt , and the individual particle maximum likelihood values for each

particle’s best set of parameters θpi,t.

A.2 Parameter robustness

To examine parameter robustness, we select new parameter sets by randomly selecting

25% of parameters to randomly perturb from their maximum likelihood values θ̂d

within the range θd ∈ [0.1θ̂d, 10θ̂d].

Broadly following the approach of [179], we weight these perturbed parameters by

calculating an approximate log-likelihood by using only the χ2 of first and second order

joint distributions of health and population survival. This amounts to a Gaussian

approximation to the log-likelihood,

L(θ) ≃ − 1

N(Tmax − Tmin)

N∑

i=1

∫ Tmax

Tmin

( p̂(di = 1|t; θ)− p(di = 1|t)
σp̂(t)

)2

dt (A.8)

− 2

N(N − 1)(Tmax − Tmin)

∑

i,j 6=i

∫ Tmax

Tmin

( p̂(di = 1, dj = 1|t; θ)− p(di = 1, dj = 1|t)
σp̂(t)

)2

dt

− 1

N(N − 1)(Tmax − Tmin)

∑

i,j

∫ Tmax

Tmin

( p̂(di = 1, dj = 0|t; θ)− p(di = 1, dj = 0|t)
σp̂(t)

)2

dt

− 1

Tmax − Tmin

∫ Tmax

Tmin

(〈Ŝ(a|{di}, t; θ)〉 − S(a|t)
σŜ(t)

)2

dt.

We use this estimate of L to efficiently estimate any f(θ):

〈f(θ)〉 =

∑
θi
eL(θ)f(θ)∑
θi
eL(θ)

, (A.9)

σ2
f = 〈f(θ)2〉 − 〈f(θ)〉2. (A.10)
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In Figure A.1 we show deficit prevalence and survival averaged over likelihood-

weighted parameterizations via Equations A.9 and A.10. These average predictions

are quite close to the maximum likelihood estimates, which indicate that prevalences

and mortality are robust predictions of our modelling approach.

In contrast, simple measures of the network structure do not appear to be robust.

In Figure A.2 we perform the optimization 13 times, and the compare network degrees

for the 10 nodes of our network. We find a broad ranges of degrees for each node,

with significant overlap of these ranges between nodes. This indicates that though

the behavior of the networks is similar (see e.g. Figure 4.7), the network structures

themselves are not robustly predicted by the available data.
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A.3 Supplemental figures

























Appendix B

Chapter 5 supplemental information

B.1 Deriving the variational loss

We denote health variables observed at age tk by ytk , the background information at

baseline by ut0 , the model health variable predictions by x(tk), the latent variables for

imputation/generation by z, the age of death or last censoring age by a, the censoring

indicator by c, parameters by θ, and variational parameters by φ.

To fit the model, we minimize the KL-divergence between the approximate pos-

terior and the true posterior. This is equivalent to maximizing a lower bound to the

model evidence. Starting with the model evidence,

log p({ytk}k|ut0 , {otk}k, a, c) (B.1)

= log

∫
dθdzdx0dt p(θ)p(z)p(x0|z,ut0 , t0)p(x(t)|x0,ut0 , t)p(a, c|x(t),ut0 , t)

×
K∏

k=0

p(ytk |x(tk),otk)

= log

∫
dθdz p(θ)p(z)

∫
dx0 p(x0|z,ut0 , t0)

∫
dt p(x(t)|x0,ut0 , t)p(a, c|x(t),ut0 , t)

×
K∏

k=0

p(ytk |x(tk),otk)

= log

∫
dθdz p(θ)p(z)

q(z|yt0 ,ut0 ,ot0 , t0)q(θ)

q(z|yt0 ,ut0 ,ot0 , t0)q(θ)

∫
dx0 p(x0|z,ut0 , t0)

∫
dt p(x(t)|x0,ut0 , t)

×q(x(t)|x0,ut0 , t)

q(x(t)|x0,ut0 , t)
p(a, c|x(t),ut0 , t)

K∏

k=0

p(ytk |x(tk),otk)

= logEz,θ∼q

[ p(z)

q(z|yt0 ,ut0 ,ot0 , t0)
Ex0|z∼p,x(t)|x0∼q

[ ∫ a

t0

p(x(t)|x0,ut0 , t)

q(x(t)|x0,ut0 , t)
p(a, c|x(t),ut0 , t)dt

×
K∏

k=0

p(ytk |x(tk),otk)
]]
,

where we have introduced the approximate posteriors q. Using Jensen’s Inequality

we move the logarithm into the expectations, and define this lower bound as the
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objective function,

L(φ) = Eθ,z∼q, x0|z∼p, x(t)|x0∼q

[
(B.2)

∫ a

t0

log
p(θ)p(z)p(x(t)|x0,ut0 , t)p(yt|x(t),otk)p(a, c|x(t),ut0 , t0)

q(z|yt0 ,ut0 ,ot0 , t0)q(θ)q(x(t)|x0,ut0 , t)
dt

]

= E

[
∑

k

log p(ytk |x(tk),otk)

+

∫ a

t0

{
log p(a, c|x(t),ut0 , t) + log p(x(t)|x0,ut0 , t)− log q(x(t)|x0,ut0 , t)

}
dt

]

−KL(q(θ)||p(θ))−KL(q(z|yt0 ,ut0 ,ot0 , t0)||p(z))

= E

[
∑

k

otk ⊙ logN (ytk |x(tk),σy)

+(1− c)
[
log λ(a|x(t),ut0 , t0) + log S(a|x(t),ut0 , t0)

]

+

∫ a

t0

c log S(t|x(t),ut0 , t0)dt

+

∫ amax

a

(1− c) log (1− S(t|x(t),ut0 , t0))dt−

1

2

∫ a

t0

∣∣∣
∣∣∣σ−1x ⊙

(
Wx+ f(x(t),ut0 , t)− g(x(t),ut0 , t)

)∣∣∣
∣∣∣
2

dt

]

− KL(q(θ)||p(θ))−KL(q(z|yt0 ,ut0 ,ot0 , t0)||p(z)).

Plugging in the normalizing flows for the posterior of z,

L(φ) = E

[
∑

k

otk ⊙ logN (ytk |x(tk),σy) (B.3)

+(1− c)
[
log λ(a|x(t),ut0 , t0) + log S(a|x(t),ut0 , t0)

]

+

∫ a

t0

c log S(t|x(t),ut0 , t0)dt+

∫ amax

a

(1− c) log (1− S(t|x(t),ut0 , t0))dt

− 1

2

∫ a

t0

∣∣∣
∣∣∣σ−1x ⊙

(
Wx+ f(x(t),ut0 , t)− g(x(t),ut0 , t)

)∣∣∣
∣∣∣
2

dt

]

− KL(q(θ)||p(θ))−KL(q(z(0)|yt0 ,ut0 ,ot0 , t0)||p(z(0)))

+
L∑

l=1

log
∣∣∣det∂a

(l)(z(l),γz, φz)

∂z(l)

∣∣∣.

Here we do not show the variational parameters φ in the notation for the approximate

posteriors q and the parameters θ from the conditional distributions for simplicity.
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Additionally, we have averaged over the imputed or generated x0. This is the objective

function used in the methods.

B.2 Alternate models

B.2.1 Full neural network drift function and one-dimensional summary

models

We compare our pair-wise interactions network model with two alternate models,

where we directly incorporate dynamics for the latent state z(t) and apply the decoder

to estimate the health variables x(t) at specific ages. With this approach we do not

need to impute the baseline state of health variables, or to directly include dynamics

for the baseline health. Rather a decoder directly maps the latent states z(t) to the

predicted output of the health variables yt. This approach has the form,

z0,θ ∼ p(z0)p(θ) (Prior)

dz(t) = f(z(t),ut0 , t;θf ) + σz(z(t))dB(t), z(t0) = z0, (Dynamics)

S(t) = exp
(
−

∫ t

t0

λ({z(τ)}τ≤t′ ,ut0 , t
′;θλ)dt

′
)
, (Survival)

yt ∼ N
(
ψ−1(µ(z(t),ut0 ,ot0 ,θp)), diag(σy

2)
)
, (Health observation)

a ∼ λ({z(τ)}τ≤a,ut0 , a;θλ)S(a), (Survival observation)

p({z(t)}t,θ|{ytk}k,ut0 , t0, a, c) ∝ p(θ)p(z0)p({z(t)}t|z0,ut0 , t,θ)× (Inference)

p(a, c|{z(t)}t,ut0 , t,θ)
∏

k

p(ytk |{z(tk)}k,θ),

θ =
{
W, σy, σx,θλ,θp,θf

}
, (Parameters)

where instead of the variable-wise neural networks in the pair-wise network model,

the function f is now a full neural network including the interactions of all variables.

The function µ is a decoder neural network which outputs the mean of a Gaussian

distribution for the health variables yt, from the latent state at that age.

For the full neural network model, we set the dimension of z to be N + 1. For a

second alternative model we use a dimension of 1 – which leads to one-dimensional

dynamics for a summary health-variable. For the one-dimensional model, we only use
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the sex, ethnicity, and country of birth components of ut0 for the drift functions f and

g and the mortality rate λ. This is because the other components contain additional

health information that should be included in the one-dimensional summary health

measure.

All hyperparameters remain the same from these alternate models and the pair-

wise network model. In particular, the form of the loss function remains the same,

except that the priors for W are removed, and the form of the drift function in the

SDE is adjusted. The neural network parameters for these alternative models are

trained with the loss function using the same approach as our primary DJIN model.

B.2.2 Non-recurrent neural network mortality rate

In our network model presented in the main results, we model the mortality rate

with a recurrent neural network (RNN). This allows the use of a history of health

to compute the mortality rate. We have also tested a model where we instead use

a feed-forward neural network taking x(t),ut0 , t as input – this allows no memory of

previous states to determine mortality. We use the same layer sizes as the recurrent

neural network model, and use ELU activations.

B.3 Generated synthetic population

We have made a synthetic population available at https://zenodo.org/record/

4733386. This population includes 3 million individuals for each baseline age of 65, 75,

and 85 years old, for a total of 9 million individuals. The background health state has

been generated by sampling based on the age and sex-dependent ELSA population.

For binary variables we sample a 0 or 1 based on the observed sex and age-dependent

prevalence, for continuous variables we sample from a Gaussian distribution with

mean and standard deviation from the observed sex and age-dependent population

mean and standard deviation. We set all individuals with no medications.

Using this input, we sample a baseline state for each synthetic individual and

simulate their health trajectories for 20 years.
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Table B.1: Health variables used from the ELSA dataset. Background variables are
only used at the first time-step, as ut0 . Longitudinal variables are predicted in yt.
All variables are z-scored; additional transformations before z-scoring are indicated.

Health variable Category Wave type Transformation

Gait speed Longitudinal Self-report
(average of 3 measurements,
speed over 8 feet, age 60+)
Dominant hand grip strength Longitudinal Nurse
(average of 3 measurements)
Non-dominant hand grip strength Longitudinal Nurse
(average of 3 measurements)
ADL score (count from 0-10, see Table B.3) Longitudinal Self-report
IADL score (count from 0-13, see Table B.3) Longitudinal Self-report
Time to rise from a chair 5x Longitudinal Nurse
Time held leg raise Longitudinal Nurse Log-scaled
(eyes open, maximum 30 secs)
Time held full tandem stance Longitudinal Nurse Log-scaled
(maximum 30 secs)
Self-rated health Longitudinal Self-report
(scored 0=excellent to 1=poor, 5 levels)
Eyesight (with aids) Longitudinal Self-report
(scored 0=excellent 1=legally blind, levels=6)
Hearing (with aids) Longitudinal Self-report
(scored 0=excellent to 1=poor, 5 levels)
Walking ability score Longitudinal Self-report
(unaided ability to walk 1/4 mile)
(scored 0=no difficulty to
1=unable to do this, 4 levels)
Diastolic blood pressure Longitudinal Nurse
(average of 3 measurements)
Systolic blood pressure Longitudinal Nurse
(average of 3 measurements)
Pulse (average of 3 measurements) Longitudinal Nurse
Triglycerides Longitudinal Nurse Log-scaled
C-reactive protein Longitudinal Nurse Log-scaled
HDL cholesterol Longitudinal Nurse
LDL cholesterol Longitudinal Nurse
Glucose (fasting) Longitudinal Nurse
Insulin-like growth factor 1 Longitudinal Nurse
Hemoglobin Longitudinal Nurse
Fibrinogen Longitudinal Nurse
Ferritin Longitudinal Nurse Log-scaled
Total cholesterol Longitudinal Nurse
White blood cell count Longitudinal Nurse Log-scaled
Mean corpuscular haemoglobin Longitudinal Nurse Log-scaled
Glycated hemoglobin (HgbA1c) (%) Longitudinal Nurse
Vitamin-D Longitudinal Nurse Log-scaled
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Table B.2: Background variables used from the ELSA dataset. Background variables
are only used at the first time-step, as ut0 . Longitudinal variables are predicted in yt.
All variables are z-scored; additional transformations before z-scoring are indicated.

Background variable Category Wave type

Long-standing illness (yes/no) Background Self-report

Long-standing illness limits activities (yes/no) Background Self-report

Everything is an effort lately (yes/no) Background Self-report

Ever smoked (yes/no) Background Self-report

Currently smoke (yes/no) Background Self-report

Height Background Nurse

Body mass index (weight/height2) Background Nurse

Mobility status Background Nurse
(1=walking without help/support,
0=walking requires help/support,
bed bound, wheelchair, uncertain impairment)

Country of birth (UK/outside UK) Background Self-report

Drink alcohol Background Self-report
(last 12 months, scored 1=almost every day
to 6=every couple of months)

Ever had a joint replacement (yes/no) Background Self-report

Ever had bone fractures (yes/no) Background Self-report

Sex Background Self-report

Ethnicity (white/non-white) Background Self-report

Hypertension medication (yes/no) Background Self-report

Anticoagulant medication (yes/no) Background Self-report

Cholesterol medication (yes/no) Background Self-report

Hip/knee treatment (medication or exercise, yes/no) Background Self-report

Lung/asthma medication (yes/no) Background Self-report
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Table B.3: Activities of daily living (ADL) and Instrumental activities of daily living
(IADL) from the ELSA dataset, for a total of 10 ADL and 13 IADL.

Activities of daily living (ADL)
Walking 100 yards
Sitting for about two hours
Getting up from a chair after sitting for long periods
Climbing several flights of stairs without resting
Climbing one flight of stairs without resting
Stooping, kneeling, or crouching
Reaching or extending arms above shoulder level
Pulling/pushing large objects like a living room chair
Lifting/carrying over 10 lbs, like a heavy bag of groceries
Picking up a 5p coin from a table

Instrumental activities of daily living (IADL)
Dressing, including putting on shoes and socks
Walking across a room
Bathing or showering
Eating, such as cutting up your food
Getting in or out of bed
Using the toilet, including getting up or down
Using a map to get around a strange place
Preparing a hot meal
Shopping for groceries
Making telephone calls
Taking medications
Doing work around the house or garden
Managing money, eg paying bills and keeping track of expenses
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B.4 Supplemental figures

In Figure B.1 we show the variables used in the ELSA data set, and the number of

individuals for which each variable is observed at each year from the time of entrance

to the study. The shaded fills indicate the proportion of observed variables (with

respect to the maximum of that variable), with the darkest fill indicating almost

100%. Most variables are unobserved at any given time – which reinforces the need

for effective baseline imputation. The full names of these variables are provided in

Table B.1.

In Fig. B.2, we show the relative RMSE of our model predictions and the elastic

net linear model predictions for each health variable between 1 and 6 years – plotted

against the proportion of observations for which the variable is missing in the full

dataset. Our model predictions are generally worse for the variables with a higher

proportion missing, with observable degradation for proportions of missing around

0.95 where accuracy goes above the population mean predictions, although our model

is always better than the elastic net linear model.

In Fig. B.3 we show 3 different example individuals from the test set and the model

predicted trajectories. We choose the 6 of the best predicted variables to show. These

predictions show the estimated uncertainty for these individual trajectories, and the

variety in behaviour in the data for different individuals. The relative RMSE for these

individuals averaged over each time point is shown, for comparison with Fig. 2 in the

main results.

In Fig. B.4 we show the generated synthetic population Kaplan-Meier survival

curve (red line and shading) and the observed population Kaplan-Meier survival curve

(blue line and shading) with 95% confidence intervals indicated by the shading. The

same censoring distribution seen in the observed population is applied to the synthetic

population by sampling censoring ages above the baseline age from the test data

with replacement. Agreement is good until ∼ 90 years, after which the number of

individuals observed in the dataset is very low.

In Fig. B.5 we show the one-dimensional marginal distributions for each health

variable for the generated synthetic population and observed population at baseline.

We see the synthetic population agrees with the observed population, but often has

a slightly lower variance. In Fig. B.6 we show the mean and standard deviation of



236

generated synthetic population trajectories (red lines and shading) and the observed

population trajectories (blue lines and shading). The synthetic trajectories have

somewhat lower variance but reasonable agreement with the means.

In Fig. B.7, we contrast our network model’s weight matrix with a pair-wise Pear-

son correlation network, where weights have been pruned with a p-value above 0.01

to match the 99% credible intervals used in our approach. We see many differences.

Our weight matrix is much more sparse, including only the links useful for prediction.

Our network is also directed and asymmetric, and one-way links between variables

are observed, as well as distinct strengths of links in the different directions. However,

the sign of the links in the weight matrix is typically the same as in the correlation

network.

In Fig. B.8 we show, for each network weight, the posterior mean of the weight

vs. the proportion of the approximate posterior distribution that is above zero for

posterior weights, or below zero for negative weights. We exclude weights when the

probability of the weight being in the opposite direction of the mean is above 1%.

This approach only accepts connections with a large probability of having a definite

sign. We see that large weights only have a small proportion of the posterior with the

opposite sign; showing that the strong connections inferred by the model are robust.

Several alternative models were explored. In Fig. B.9 we summarize predictions

for the one-dimensional summary model, in which dynamics are built on one latent

summary health variable. This model performs worse than our DJIN model for both

health and survival, and is often even worse than a static baseline prediction model

(blue squares) for health. In Fig. B.10 we show model results with a full neural

network drift function that includes all interactions, in contrast to the linear pair-

wise network in our main results with the DJIN model. This shows that the full NN

model only does slightly better than the pair-wise network model for health, and is

slightly worse for survival. This indicates that the pair-wise network assumptions

made by our DJIN model do not sacrifice much accuracy. In Fig. B.11 we show

the model results with a feed-forward neural network for the mortality rate instead

of a recurrent neural network (GRU). Our recurrent neural network (RNN) model

achieves slightly better C-index and Brier scores, particularly for older ages. The

models are nearly equivalent for longitudinal prediction.
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Table B.4: Neural network architectures used in the DJIN model. The health vari-
ables yt0 are size N = 29, the health variable observed mask ot0 is of size N = 29,
and the background health variables ut0 with appended missing mask are of size
B + 17 = 36.

Encoder (VAE)
Layer # Description
1 Input (yt0 ,ot0 ,ut0 , t0)
2 (2N+B+17+1)x95 Fully connected layer
3 Batchnorm
4 ELU
5 95x70 Fully connected layer
6 Batchnorm
7 ELU
8 70x50 Fully connected layer

Decoder (VAE)
Layer # Description
1 Input (z,ut0 , t0)
2 (20+B+17+1)x65 Fully connected layer
3 Batchnorm
4 ELU
5 65xN Fully connected layer

Diagonal dynamics fi
Layer # Layer description
1 Input (xi(t), t,ut0 )
2 (2+B+17)x12 Fully connected layer
3 ELU
4 12x1 Fully connected layer

Mortality rate λ
Layer # Layer description
1 Input (x(t), t)
2 (N+1)x25 GRU
3 25x10 GRU
4 ELU
5 10x1 Linear layer

Posterior drift function g
Layer # Layer description
1 Input (x(t),ut0 , t)
2 (N+B+17+1)x8 Fully connected layer
3 ELU
4 8xN Fully connected layer

Inferring ht0

Layer # Layer description
1 Input (x(t0),ut0 , t0)
2 (N+B+17+1)x75 Fully connected layer
3 ELU
4 75x40 Fully connected layer

Normalizing flow a
Layer # Layer description

1 Input (z(0),γ)
2 30x24 Fully connected layer
3 BatchNorm
4 Tanh
5 24x20 Fully connected layer

Dynamical noise strength σx

Layer # Layer description
1 Input (x(t))
2 NxN Fully connected layer
3 ELU
4 NxN Fully connected layer
5 Sigmoid

























Appendix C

Chapter 7 supplemental information

C.1 Clustering with simulated data

Data is simulated from a toy model where the exact clusters are known to verify that

the clustering model works.

In this model, a latent space of size 4 is considered, with 3 clusters. Data is

simulated according to the following generative model,

{µ}c ∼ N (0, 1), (C.1)

{Ac} ∼ N (0, 0.12), (C.2)

{Σc}c = {AT
c Ac}c, (C.3)

r ∼ Bernoulli(0.6), (C.4)

{Wc}c ∼ rN (Wc|0.1, 0.12) + (1− r)δ(Wc), (C.5)

c ∼ Categorical(1/3, 1/3, 1/3), (C.6)

z0|c ∼ N (µc,Σc), (C.7)

dz(t) = Wczdt+ 0.1dB(t), z(0) = z0, (C.8)

γ ∼ N (0, 1), (C.9)

h(z(t), t) = 0.03e0.4t exp (0.9γ · z(t)), (C.10)

S(z(t), t) = exp (−
∫ t

t0

h(z(t′), t′)dt′) (C.11)

w1 ∼ N (0, 0.12), (C.12)

w2 ∼ N (0, 0.12), (C.13)

b1 ∼ N (−0.25, 1), (C.14)

b2 ∼ N (0, 0.12), (C.15)

µx(z) = w2ReLU(w1z+ b1) + b2, (C.16)

xt|z(t) ∼ N (µx(z), 0.01
2). (C.17)
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D.1 Supplemental figures
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Figure D.9: Mouse group 1 residuals. This plot shows the quality of the model fit.
Each point shows the median of the difference between the count of deficits sampled
from the model (either repaired count, damaged count, or total count) and the count
from the observed data, for each individual mouse at each time-point. Random scatter
about zero suggests unbiased model fits. Error-bars show 95% credible intervals.
Credible intervals which do not overlap zero are coloured red, and the proportion
of these intervals that overlap zero is shown. The proportions are close to 0.95, as
expected for a model accurately representing the uncertainty in the data. R2 scores
are also shown, with values between 0.4 and 0.6.
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Figure D.10: Mouse group 2 residuals. This plot shows the quality of the model
fit. Each point shows the median of the difference between the count of deficits sam-
pled from the model (either repaired count, damaged count, or total count) and the
count from the observed data, for each individual mouse at each time-point. Ran-
dom scatter about zero suggests unbiased model fits. Error-bars show 95% credible
intervals. Credible intervals which do not overlap zero are coloured red, and the pro-
portion of these intervals that overlap zero is shown. The proportions are close to
0.95, as expected for a model accurately representing the uncertainty in the data. R2

scores are also shown, with values between 0.4 and 0.6.
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Figure D.11: Mouse group 3 residuals. This plot shows the quality of the model
fit. Each point shows the median of the difference between the count of deficits
sampled from the model (either repaired count, damaged count, or total count) and
the count from the observed data, for each individual at each time-point. A random
selection of 100 individuals from the ELSA data are shown. Random scatter about
zero suggests unbiased model fits. Error-bars show 95% credible intervals. Credible
intervals which do not overlap zero are coloured red, and the proportion of these
intervals that overlap zero is shown. The proportions are close to 0.95, as expected
for a model accurately representing the uncertainty in the data. R2 scores are also
shown, with values between 0.4 and 0.6.



266

R^2=0.508, (0.467,0.550)

% in interval=0.980

R^2=0.525, (0.472,0.574)

% in interval=0.980

R^2=0.504, (0.422,0.583)

% in interval=0.980

R^2=0.409, (0.071,0.747)

% in interval=0.980

R^2=0.514, (0.479,0.547)

% in interval=0.973

R^2=0.493, (0.460,0.531)

% in interval=0.973

R^2=0.493, (0.446,0.538)

% in interval=0.973

R^2=0.540, (0.381,0.697)

% in interval=0.973

R^2=0.530, (0.476,0.586)

% in interval=0.987

R^2=0.527, (0.474,0.573)

% in interval=0.987

R^2=0.532, (0.456,0.601)

% in interval=0.987

R^2=0.478, (0.094,0.786)

% in interval=0.987

R^2=0.506, (0.460,0.553)

% in interval=0.984

R^2=0.543, (0.504,0.583)

% in interval=0.984

R^2=0.537, (0.476,0.598)

% in interval=0.984

R^2=0.472, (0.256,0.667)

% in interval=0.984

R^2=0.524, (0.463,0.594)

% in interval=0.992

R^2=0.529, (0.477,0.586)

% in interval=0.992

R^2=0.538, (0.436,0.627)

% in interval=0.992

R^2=0.582, (0.309,0.804)

% in interval=0.992

R^2=0.512, (0.469,0.561)

% in interval=0.992

R^2=0.524, (0.465,0.581)

% in interval=0.992

R^2=0.524, (0.411,0.620)

% in interval=0.992

R^2=0.593, (0.357,0.809)

% in interval=0.992

Lower tercile

M

Lower tercile

F

Middle tercile

M

Middle tercile

F

Upper tercile

M

Upper tercile

F

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

−5

0

5

10

−5

0

5

10

−5

0

5

10

−5

0

5

10

time

R
e

p
a

ir
 r

a
te

 r
e

s
id

u
a

l

Figure D.12: Human repair residuals. This plot shows the quality of the model
fit. Each point shows the median of the difference between the count repaired deficits
sampled from the model and the count from the observed data, for each individual
at each time-point. A random selection of 100 individuals from the ELSA data are
shown. Random scatter about zero suggests unbiased model fits. Error-bars show
95% credible intervals. Credible intervals which do not overlap zero are coloured red,
and the proportion of these intervals that overlap zero is shown. The proportions are
close to 0.95, as expected for a model accurately representing the uncertainty in the
data. R2 scores are also shown, with values between 0.4 and 0.6.
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Figure D.13: Human damage residuals. This plot shows the quality of the model
fit. Each point shows the median of the difference between the count damaged deficits
sampled from the model and the count from the observed data, for each individual
mouse at each time-point. Random scatter about zero suggests unbiased model fits.
Error-bars show 95% credible intervals. Credible intervals which do not overlap zero
are coloured red, and the proportion of these intervals that overlap zero is shown.The
proportions are close to 0.95, as expected for a model accurately representing the
uncertainty in the data. R2 scores are also shown, with values between 0.4 and 0.6.
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Figure D.14: Human FI residuals. This plot shows the quality of the model fit.
Each point shows the median of the difference between the count of deficits sampled
from the model and the count from the observed data, for each individual mouse at
each time-point. Random scatter about zero suggests unbiased model fits. Error-bars
show 95% credible intervals. Credible intervals which do not overlap zero are coloured
red, and the proportion of these intervals that overlap zero is shown. The proportions
are close to 0.95, as expected for a model accurately representing the uncertainty in
the data. R2 scores are also shown, with values between 0.4 and 0.6.
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