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Abstract

Aging in biological organisms is a complex process, involving changes at all levels of
functioning. No single pathway or mechanism is responsible for aging, leading to the
current understanding that aging is due to a number of interacting biological factors.
To understand this interconnected complex process, this thesis develops complex com-
putational models of aging. Using human data I develop network models of aging,
which model the aging process as a network of interacting components. These models
are used to understand the network structure of different aspects of health, as well as
make quantitative predictions of aging health outcomes and mortality. Using worm
data I develop an aging trajectory clustering model, which describes the dynamics of
worm aging with a low-dimensional latent space that exhibits simple dynamics and
clear clustering. This model is used to infer distinct worm aging phenotypes. Using
mice and human data, I develop a method to extract damage and repair processes
in aging. This approach is used to study the effects of age and interventions on the
processes of damage and repair.

This work is an attempt to build computational models of aging, and demonstrates

the potential of these types models in the study of aging in the future.
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Chapter 1

Introduction

1.1 Motivation

Aging is the age-dependent functional decline of an organism, and is the leading risk
factor for almost all severe chronic diseases and disabilities [1]. Some of the most
common of these diseases are cardiovascular disease, cancer, and dementia. Even if it
was possible to fully treat or prevent some of these diseases, as individuals continue
to age it is overwhelmingly likely that they will eventually acquire another. This
suggests that instead of a “whack-a-mole” type of approach to treating these diseases
one-by-one, tackling the root cause through aging must be the ultimate long-term
strategy for achieving long and healthy lives [2,3]. To achieve this goal, we must first

understand aging.

Aging is a high-dimensional complex stochastic process, involving changes at all
physical scales of organism functioning. No single pathway or mechanism is respon-
sible for aging, leading to the current understanding that aging is due to a number
of interacting biological factors involving damage and repair mechanisms at the fun-
damental level [4,5]. Computational models are essential to make predictions or
understand mechanisms within complex non-linear, stochastic, and interconnected
systems — such as aging [6-8]. This thesis focuses on the development of complex

computational models of aging.

Few complex models of aging have been developed to date, despite the understand-
ing of aging as a complex system. There have been descriptive models developed to
theoretically model and understand mortality [9-13], but these often do not include
health, and do not make quantitative predictions. Additionally, many current ap-
proaches to analyzing multi-dimensional aging data only summarize the health state
into one-dimension, such as the Frailty Index [14,15], Frailty Phenotype [16], Bio-
logical Age [17,18], Physiological Dysregulation [19,20], and recent machine learning

1
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approaches [21]. These approaches are useful to develop health measures and quan-
tify the progression of aging, but they are not dynamical models that can simulate
or predict the future health trajectories of individuals, nor do they capture the full
multi-dimensionality of aging health outcomes.

This work represents an attempt to build complex computational models of aging
that can be used to confront, describe, and learn from aging data. This thesis involves
both descriptive models to describe and understand aging phenomena, and develops
predictive machine learning models to make quantitative predictions and understand
mechanisms of aging. One key challenge to developing machine learning models for
application in aging, and science more generally, is interpretability [22,23]. Inter-
pretability is concerned with understanding why a model makes certain predictions,
which is key to a scientific understanding of aging.

In this thesis, the philosophy of “Scientific Machine Learning” or “Theory guided
data science” [24-26] is taken. In this approach, models use machine learning tech-
niques to learn unknown components of a complex model, while incorporating ideas
and concepts from the theory of aging to constrain the models. This incorporates
interpretable components into flexible machine learning models.

To paraphrase Box [27], all models are at least partially wrong but some can
nevertheless be useful. We cannot hope to build comprehensive models of aging, but
we can build models to aid in our understanding of aging. The goal of this thesis is to
develop models that can contribute towards answering three fundamental questions in
aging: how can we better understand the mechanisms or causes underlying observed
aging phenomena, how can we better predict outcomes at an individual or population
level, and, finally, how can we better intervene to decrease mortality and to improve

health during aging?

1.2 Dynamical Models of aging

In the review and perspective paper “The potential for complex computational models
of aging” [23], we introduced the concept of Dynamical models of aging, where the
dynamics of the health state is modelled as an individual ages until death. These are
the type of models developed in this thesis. Here I give an overview of the current

literature on dynamical models of aging.



1.2.1 Network and redundancy models of mortality

One of the first computational models of aging developed was the “Reliability Theory
of Aging” developed by Gavrilov and Gavrilova [9]. The goal of this model was to
explain the exponential increase in mortality rate with age, known as Gompertz’ law

of mortality [28,29].

This model attempts to explain Gompertz’ law in terms of the redundancy in
physiological systems. This model describes aging with a system of “cells” containing
many redundant components. Fach component has a constant rate of failure, and a
cell fails when all of its components fail. When all cells in the system fail, mortality
occurs. Simulations of the model result in mortality rates vs age that are nearly

exponential [9], similar to Gompertz’ law.

The work of Vural et al. [30] builds off of this work, but instead considers a
network of redundant components that can fail (damage) or repair. Where the model
of Gavrilov and Gavrilova considered independent components that can fail, this
network model introduces interactions. In this model, components can randomly
damage, or damage when the majority of their connected neighbours damage. This
model is used to fit the mortality rate vs age curves of various model organisms,
including C. elegans (worms), Drosophilia (fruit flies), medflies, beetles, mice, and
tahr. This model has been used for the theoretical study of repair in aging [31] and

used to theoretically explain effect of aging interventions on C. elegans [32].

Figure 1.1a) shows the basic structure of redundancy and network models of ag-
ing. Components of the network fail or damage (red), leading to the accumulation
of damage, until death. Nodes can interact as indicated by the connections in the
network, propagating damage throughout the network. Although health can be mea-
sured with the number of damaged components in these models, these models instead
focused on mortality. We consider a similar style of network model in Chapters 3 and

4, but considering both health and mortality.
The Stochastic Process Model (SPM) of Yashin et al. [33-36] is a different type of

network model of aging. This model describes aging in terms of continuous stochas-
tic dynamics of the health state, coupled in a pairwise network. The current state of

health then is used to compute the mortality rate. In this model the state of health
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is not a set of components that can damage or fail, but a real-valued vector evolv-
ing with age according to stochastic differential equations. While the mathematical
form of these models include pair-wise network interactions, the model has not been
interpreted as such because only small datasets with one or two health variables have
been used with this model. We return to this model and greatly expand upon it in

Chapter 5.

a) Redundancy and network models b) Latent dynamics models

O

O Latent dynamics
Observed Predicted

health stateo* —> W —> —> health state

c) Transition models

Figure 1.1: Dynamical models of aging. a) Models of redundancy with damage-
able components. Undamaged components (white) can damage (red), with potential
interactions (arrows) propagating the damage. b) Latent variable dynamics models.
The observed health state is mapped to a latent state z with an encoder (blue trape-
zoid). Dynamics are run on these latent variables. Latent variables are then mapped
back to the predicted health state with a decoder (orange trapezoid). c¢) Transition
models describe transitions between discrete health states. Eventually transition to
death occurs.

O O

O O

1.2.2 Dynamical latent variable models of aging

Machine learning models of aging are flexible models that learn from data. Generally,
these approaches focus on learning latent variables to describe the dynamics of aging.
The latent state is typically of a lower dimension than the observed health state,
and so can compress and simplify the relevant information. Figure 1.1b) shows the
basic form of these models. The observed health state is transformed to a latent
health state, which evolves with age. This latent state is then transformed back into
predicted health states at a later age.

Pierson et al. [37] infer a set of rates of aging, which describe the deterministic
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linear evolution of latent variables with age. Avchaciov et al. [21] describe aging
with stochastic one-dimensional latent variable dynamics. These models simplify the

dynamics of aging, reducing the dynamics to just the key components.

One of the difficulties with latent variable models is that in general, they will be
difficult to interpret since the latent variables will often be a complex combination
of the relevant information from all of the observed health variables. To solve this
problem, we can include structure in the latent variables, encouraging them to extract
desired features of the dynamics of aging. In Chapter 7, I develop a latent variable
clustering approach. This model clusters the latent dynamics of aging, inferring

distinct trajectories of aging.

1.2.3 Transition models

Transition models describe aging in terms of a set of discrete states representing dis-
tinct health states, and transitions between them, until a final transition to death.
These approaches simplify the dynamics of aging in terms of a finite set of states.
Figure 1.1¢) shows an example of these models. Both forward and background transi-
tions between the states can occur. The redundancy and network models from Figure
1.1a) can also be thought of as transition models, since components transition from

healthy to damaged states.

Mitnitski et al. [38-41] model transitions between discrete health states and mor-
tality. This is done by modelling the transitions between different numbers of binary
health deficits (i.e. damageable health components). However this approach was
simplistic, and only parameterized the mean number of binary health deficits af-
ter a period of time, rather than explicit transition rates. Oswal et al. [42] model
transitions between movement states of C. elegans — where healthy worms exhibit
vigourous movement. This model is used to separately describe movement speed and

lifespan and the effects of interventions.

In Chapter 8 we directly infer the rates of damage and repair transitions from
longitudinal data. This approach is used to probe the processes of damage and repair

in aging.



1.2.4 Biological models

Other approaches model specific aspects of aging biology. Karin et al. [43] model
the dynamics of the accumulation of senescent cells. Senescent cells cease dividing
and accumulate with age, and can cause chronic inflammation, increasing the risk
of aging-related diseases. They use this model to provide an explanation for the
exponential increase of the mortality rate in Gompertz’ law.

Podolskiy et al. [13] model the critical dynamics of gene regulatory networks.
Gene regulatory networks govern the expression of genes, determining cell function.
Their work studies the link between the instability of these regulatory networks and
mortality rate, and how this can give rise to Gompertz’ law.

This thesis does not involve such specific biological models that focus on a single
system, and instead focuses on more general models that incorporate multiple aspects

of aging health.

1.3 Outline and contributions

This thesis is in publication format with five related papers in separate chapters.
Two of these papers are published, one is under review, and two are in preparation
for submission. Each chapter is preceded by background information to thematically
link the chapters within the thesis.

Chapter 2 provides background to understand the contents of the thesis. It covers
concepts in aging research and an introduction to the modelling techniques used
throughout the rest of the thesis.

Chapters 3, 4, and 5 form a sequence of papers about the structure of physiologi-
cal interaction networks in aging. In Chapter 3 we use a previously developed [11,44]
descriptive network model of aging and indirectly probe the network structure, to
describe the hierarchical organization of damage propagation in aging. This work
is published as “Probing the network structure of health deficits in human aging”,
authored by Spencer Farrell (myself), Arnold Mitnitski, Olga Theou, Kenneth Rock-
wood, and Andrew Rutenberg in Physical Review E 98 032302 (2018) [45]. Two
review articles were also written involving previous work [11,44] with this model,

where I was a co-author [46,47].



7

In Chapter 4 we build from the descriptive network model in Chapter 3 by making
it predictive of individual health and mortality. Using cross-sectional aging data, we
infer small networks of binary health variables. This work is published as “Gener-
ating individual aging trajectories with a network model using cross-sectional data”,
authored by Spencer Farrell, Arnold Mitnitski, Kenneth Rockwood, and Andrew
Rutenberg in Scientific Reports 10 19833 (2020) [48]. A review article was written
about the potential of computational models of aging, including the work of Chapter
4 and foreshadowing the work of Chapter 5, published as “The potential for complex
computational models of aging ”, authored by Spencer Farrell, Garrett Stubbings,
Kenneth Rockwood, Arnold Mitnitski, and Andrew Rutenberg in Mechanisms of
Ageing and Development 193 111403 (2021) [23].

In Chapter 5 we develop a new kind of network model, involving a larger network
of continuous health variables. This model is fit using a large longitudinal aging
dataset. This model is predictive of individual aging trajectories, and infers a network
describing the interactions between the health variables. This work is accepted for
publication as “Interpretable machine learning for high-dimensional trajectories of
aging health”, authored by Spencer Farrell, Arnold Mitnitski, Kenneth Rockwood
and Andrew Rutenberg in PLoS Compuational Biology.

Chapters 3, 4, and 5 form a large portion of the work in the thesis with the
central theme of modelling aging in terms of interaction networks of health variables.

A summary of this work is in Chapter 6.

Chapter 7 is a follow-up to Chapter 5, building off of this work. This work is not yet
ready for submission, but is an extension of the types of models discussed in Chapter
5. We explore an alternative to the models involving networks of interactions between
the health variables developed in the preceding chapters, using latent variables. This

model infers clusters of distinct aging trajectories.

In Chapter 8, we study the processes of damage and repair in aging. We use
mouse and human data and develop a new method to extract damage and repair
from longitudinal data. This work explores the effects of age and interventions on
these processes. This work is in preparation for submission, authored by Spencer

Farrell, Alice Kane, Elise Bisset, Susan Howlett, and Andrew Rutenberg.

Chapter 9 returns to the three fundamental questions discussed above: how can
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we better understand the mechanisms or causes underlying what we observe, how can
we better predict outcomes at an individual or population level, and, finally, how can
we better intervene to decrease mortality and to improve health during aging? This
chapter discusses the progress this thesis has made on these questions, and potential
future work.

Other publications I authored or co-authored during my PhD are not included in
this thesis: work on understanding deficit binarization in the Frailty Index, where I
was a co-author [49], and two first author publications on the statistical physics of

Single-file diffusion of particles in narrow channels and pores [50,51].



Chapter 2

Background

This chapter provides useful background for the rest of the thesis. I do not attempt
to survey all aspects of aging research, data analysis, or machine learning, just some

key aspects and concepts.

2.1 Measures of aging

Aging involves the accumulation of damage that leads to eventual death [4,52]. This
process is stochastic and multi-dimensional, involving changes at all physical scales
of an organism [53,54]. At the fundamental biological level, key hallmarks or pillars
of aging have been identified [4,5]. However, how these interact and contribute to
observed functional decline is largely unknown [54-56].

The different aspects of aging are studied with biomarkers describing the relevant
features [54,56,57]. At the lowest biological level, these markers consists of ’omics
data such as genomics, epigenomics, proteomics, and others [58-60]. These mea-
sures are used to study aging at the biological level and have been used to identify
molecular pathways involved in aging, but large longitudinal studies containing these
measurements are rare. Many blood and urine biomarkers of aging have been iden-
tified including inflammatory markers, immune markers, markers of oxidative stress,
and other common blood test markers [57]. Clinical health deficits that measure
physical functioning and disability are also used as markers of aging [14,16]. These
measures are the more readily apparent aspects of aging, such as difficulty walking,

difficulty performing daily activities, and organ dysfunction or disease.

2.2 Summary measures of aging

Since aging involves many changes in organism functioning, it is useful to have “overall

health” measures that can measure the progression of aging [61]. Since humans

9
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have long life-spans, this is especially important for evaluating the impact of aging
interventions without waiting the entire duration of an individuals life [61]. Many
methods to measure the progression of aging have been developed. These methods
differ by both the method of estimation, and the aspects of health measured. In
this thesis these methods are referred to as “summary measures” of aging, since
they summarize aging health into a single dimension. However, these have also been
called “composite biomarkers”, since they integrate many biomarkers together [57].

Summary measures can be interpreted as one-dimensional latent variables describing
aging.

a) b) c)

Aging biomarkers
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Figure 2.1: Summary measures of aging. a) The creation of a summary measure
of aging. Various biomarkers are combined into a single summary. For the Frailty
Index, the input x biomarkers are binary-valued health deficits. For biological age,
these are typically continuous-valued molecular biomarkers. b) Summary measuring
of aging aim to summarize the progression of aging. As the progression of aging
proceeds as measured by the summary measure, the mortality rate increases. c)
Biological age is a particular summary measure that has a clear interpretation when
compared with chronological age. When biological age is above chronological age, the
individual is said to have faster aging. When biological age is below chronological
age, the individual is said to have slower aging.

One method that is of particular interest in this thesis is the Frailty Index (FI),
developed by Arnold Mitnitski and Kenneth Rockwood at Dalhousie University [62].
The FI was developed to measure physical frailty, a state of increased vulnerability
to adverse health outcomes [63]. The FI is measured as the fraction of binary health
deficits d; € {0,1} an individual has out of a set of total potential N deficits, f =
SN, d;/N. These health deficits are usually binary-valued health variables that

increase in prevalence as individuals age [15]. However in some cases multi-valued
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health deficits are used, where there are multiple intermediate values of the deficit
representing partial damage, e.g. d; € {0,0.5,1} or d; € {0,0.25,0.5,0.75,1}. In all
cases, the FI has a lower bound of 0 and an upper bound 1, although the observed
maximum in observed data is typically around 0.6-0.8 [15,64-68].

Different versions of the Frailty Index have been developed to measure different
aspects of health. This is achieved by choosing health deficits that capture the desired
features of health. Versions of the FI have been developed for physical or functional
health (called Fl-clin) [14, 15,69], for blood and urine test biomarkers (called FI-
lab) [49,70-72], and for mice [73]. For example, FI-clin typically contains deficits such
as “Difficulty walking”, “Require help bathing”, and “High blood pressure”, while
FI-lab typically contains blood markers variables such as “Glucose”, “Cholesterol”,
and “Hemoglobin” with cut-points to binarize based on healthy ranges [49]. Other
related measures of frailty exist such as the Fraily Phenotype [16] and Clinical Frailty
Scale [74], although this thesis uses the FI as a measure of frailty.

A common summary measure is “biological age” (BA). Estimates of BA are con-
structed by building a model to predict chronological age, with aging biomarkers as
covariates [17]. The predicted age is called biological age, and represents a mapping
between the observed biomarkers, and the expected value of age given the value of
these observed biomarkers. Positive differences between BA and chronological age
indicate accelerated aging, and negative differences between BA and chronological
age indicate slowed aging. BA can be estimated with any type of biomarker data,
but has had recent success with epigenetic data and other ’omics [18, 5860, 75-77].
The advantage of biological age over other summary measures are its ease of inter-
pretation, as it has units of age, and it can be constructed from different types of

biological data to create distinct summary measures, summarizing different aspects
of health [78].

2.3 Model organisms in aging

Since humans live long lives and it is difficult to do controlled studies, aging is often
studied with model organisms [79]. The advantages of animal models of aging include
more closely controlled experiments, genetic manipulation, and easier to perform

interventions. The majority of this thesis uses human aging data, however Chapter
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7 uses data from C. elegans, and Chapter 8 uses data from mice.

C. elegans is a species of roundworm often used as a model organism due to its
short lifespan, ease of study, ease of manipulation, and well understood biology [80].
In aging research, techniques have been developed to perform large high-throughput
experiments to track time-series of health and lifespan of large numbers of worms by
automated imaging [32,81-83]. This feature of C. elegans is exploited in Chapter 7,
where we make use of C. elegans time-series data.

While C. elegans enables high-throughput experiments, direct translation between
C. elegans and humans can be difficult [84]. It is more difficult to do large studies
with mice than C. elegans, however mice are used in aging research due to their
similarly to humans in comparison to other model organisms. This makes mice a
useful organism for the study of aging interventions [85,86]. In Chapter 8, we use
mice data that includes interventions that have previously been shown to slow down
functional decline during aging [87,88].

Many other organisms are utilized in aging research, each with their own benefits
and downsides [89], however this thesis only uses data from humans, worms, and

mice.

2.4 Resilience and robustness in aging

In aging, the quantities of resilience and robustness can be distinguished. Broadly,
resilience corresponds to the ability to recover after deviation from a healthy physi-
ological state, and robustness corresponds to the ability to resist a deviation from a
healthy physiological state [90-94]. Resilience has been observed by measuring the
health state as a function of time following an acute stressor [95-97]. Measurement
of resilience can be of the length of time it takes to recover, or the deviation from the
original baseline physiological state after a less than full recovery. There has been less
work on the observation of robustness, although proxies such as the ability to resist
onset of disease have been used [20].

Figure 2.2 demonstrates these concepts. a) shows the perturbation of a physiolog-
ical state variable after a stressor, followed by recovery. Higher resilience results in a
faster recovery to baseline or a final recovered health state that is closer to the original

baseline. b) shows the perturbation of a physiological state variable after a stressor,
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Figure 2.2: Resilience and robustness. a) Example of resilience. A stressor causes
the physiological state to deviate from the health baseline, and resilience measures
the ability to return to the baseline. b) Example of robustness. A stressor causes the
physiological state to deviate from the health baseline, and robustness measures the
ability to resist this deviation. c¢) Binary resilience is measured by time to transition
back to an undamaged or healthy state. d) Binary robustness is measured by time
to transition to a damaged state.

with robustness reducing the magnitude of the stressors effect on the physiological

state. A higher robustness would result in a smaller deviation from baseline.

In this thesis, measures of resilience and robustness are developed for binary health
deficits. Figure 2.2c¢) shows how resilience for a binary health deficit is interpreted.
Higher resilience results in a faster repair transition from a damaged to an undamaged
state. Figure 2.2d) shows how robustness for a binary health deficit is interpreted.
Higher robustness results in a slower transition to a damaged state, or remaining

undamaged altogether.

With longitudinal data, robustness and resilience can be observed in binary health
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deficits through damage 0 — 1 and repair 1 — 0 transitions. The evolution of
resilience and robustness is explored with age in Chapter 8 in both mice and humans,

and with interventions using longitudinal binary health deficits.

2.5 Complex networks

Since aging involves interconnected physiological systems, it is natural to model this
process with complex networks. A complex network is a set of nodes connected
together by edges or connections. In this work, nodes represent health variables
and connections between the nodes represent causal interactions between the health

variables.

N
i,j=1*

The entire N node network can be described by an adjacency matriz, {a;;}
The elements of this matrix indicate the presence of connections between the nodes.
Matrix elements a;; take value 1 if there is connection from node j to node 4, and is
0 otherwise. Undirected networks have a symmetric adjacency matrix with two-way
connections a;; = aj;, directed networks have an asymmetric adjacency matrix, with
connections potentially only going in one direction, e.g. j to ¢« but not ¢ to j.

The degree of a node is the number of edges connected to it, i.e. the number of
neighbours k; = > ; ij- Note that for a directed network, this is the in-degree, and
alternatively the out-degree can be defined by ). a;;. Another important quantity
is the average nearest neighbour degree, which is the average degree of the nodes
connected to a node k., = il a;;a;/k; (defined for a symmetric network).

Instead of specifying the full N x N adjacency matrix, a simple way to charac-
terize large complex networks is by their degree distribution p(k), representing the
probability that a randomly selected node has a degree k. Additionally, networks can
be characterized by their nearest neighbour degree distribution p(k’|k), which is the
probability that a randomly selected node that is connected to a node of degree k has

degree k’. The average degree of the network and average nearest neighbour degree

of a node of degree k follow from these distributions,

(k) = Y kp(k), (2.1)
knn(k) = > K'p(k|k). (2.2)
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A common complex network structure, and used in this thesis in Chapter 3, is
the Barabdsi-Albert preferential attachment network structure [98]. This network
structure has a power-law degree distribution p(k) ~ k=%, with many low degree
nodes and few high degree nodes. An algorithm is available to generate these networks
with arbitrary exponent a and average degree (k) [99,100]. This network is called a
“preferential attachment” network due to the iterative generation process; a node is
added at each iteration by connecting to existing nodes with probability proportional
to the degree of the existing node. This process leads to networks with a few high
degree nodes and many low degree nodes

An important characteristic of complex networks discussed in this thesis is the
assortativity of a network. Assortativity is the extent to which nodes in the net-
work are connected to nodes of a similar degree. An assortative network has many
nodes connected to other nodes of a similar degree. A disassortative network has
many low degree nodes connected to high degree nodes, leading to few big “hub”
nodes connected to many low degree nodes. The assortativity of a network can be
measured by observing the average degree of the neighbours of a node of degree k,
kun(k). For assortative networks, k,,(k) increases with k, while it decreases with k
for disassortative networks. This is demonstrated in Figure 2.3.

The assortativity of networks generated by preferential attachment depends on
their exponent «, with a < 3 being disassortative, and o > 3 being assortative in
the large N limit [101]. However, we can arbitrarily modify the assortativity while
preserving the degree distribution by rewiring connections [102].

These network structures are explored in the context of a complex network model

of aging in Chapter 3.

2.6 Information entropy and mutual information

Shannon entropy or information entropy, represents the amount of uncertainty in
the possible outcomes in a random variable. Given a random variable Y and its
probability distribution p(y), the information entropy of this variable is computed in

the same way as the Gibbs entropy in statistical physics (k, = 1),

Zp ) log p(y (2.3)
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Figure 2.3: Scale free networks and network assortativity. Left, a Barabasi-
Albert scale-free network with average degree 2 and exponent 3. There are a few
“hub” nodes with many connections, and many low-degree nodes. Right, charac-
terizing the assortativity of complex networks. Networks with increasing average
nearest neighbour degree vs degree are assortative. Networks with decreasing nearest
neighbour degree vs degree are disassortative.

When Y is continuous, the sum becomes an integral over y.

The entropy can be interpreted as a measure of the width or “dispersion” of the
distribution p(y). For example, the entropy of a normally distributed variable is
monotonic with the variance, H ~ log o2.

With a second variable X, the conditional entropy of Y given X is,

HY|X] = =) p(x))_ plylz)logp(y|x), (24)

Y

= ) p@)H[Y|X = a]. (2.5)

The specific conditional entropy H[Y|X = z] is the entropy of Y conditioned on a
specific value  of X. The conditional entropy H[Y|X] is the average of this specific
conditional entropy over all possible values of X. Note that H[Y]| > H[Y|X], since
knowledge of X can only reduce our uncertainty in Y. If X provides no information
about Y, H[Y] = H[Y|X].

With the conditional entropy, we can define the mutual information between X
and Y,

I(X;Y)=H[Y] - H]Y|X]. (2.6)

The mutual information is the reduction in uncertainty in Y when knowing X. This

can be used as a measure of non-linear association between variables. If two variables
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are strongly related, the mutual information between them is large. Note, the mutual
information is symmetric, I(X;Y) = I(Y; X).

Care needs to be taken when computing entropy from noisy data. For a continuous-
valued variable Y, estimating H[Y] by binning to estimate p(y) then applying Equa-
tion 2.3 is known to be a poor estimate of the entropy [103]. Instead, an approach
based on ordered sample-spacings is used in this thesis [104-107].

Mutual information is used to characterize the amount of information in the Frailty

Index in Chapter 3.

2.7 Feed-forward neural networks

In many areas of data-based modelling, there are unknown functions that need to
be fit or learned. In some cases we have knowledge of the particular problem that
restricts functions to a specific form, for example in physics often the form of a
function is known up to the value of physical constants, which can be then fit from
data. However in many problems, no specific form of the function is known, and so the
unknown function to be fit needs to be flexible enough to capture the desired behavior.
Neural networks are one such method of building arbitrarily flexible functions, with
parameters that are fit or learned from the data. The field of “Deep Learning” builds
models with neural networks, and has become the standard approach to building
complex machine learning models [108].

Neural networks consist of a series of linear transformations, each followed by a
non-linear activation function. For an input vector x € RY, a feed-forward neural
network produces an output y € RM by transforming the input with a linear transfor-
mation and non-linear activation function between each intermediate layer h; € N'.

Applying all layers, this produces an output in the following way,

ho = X, (27)
hl = gl(Wlhl_l + bl), W, € RNlXNl_l, bl € RNI_I, [ = 1...L, (28)
y = h. (2.9)

The functions g; are the non-linear activation functions, W, are the weight matrices,

and b; are the bias vectors. These weight matrices and bias vectors are free parameters
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Hidden

Figure 2.4: Feed-forward neural network. Feed-forward neural network with
input x € R3. This neural network has a single hidden layer of size 4, h € R*. The
weight matrices for the layers are W; and Wy, and the bias vectors are b; and bs.
The output is y € R2.
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to be learned from data. Typically activation functions of the form ¢(z) = max (0, z)
or similar are used for the hidden layers (called ReLU, or Rectified Linear Units).
For the output layer, the activation function is used to map the output to a desired
specific domain, for example a sigmoid y = 1/(1 + e™%) can be used for y € [0, 1]¥,

a soft-plus y = log (1 + €#) can be used for positive outputs y € (0, 00)¥

, or a linear
activation y = z for real-valued outputs y € (—oo,00)™. A diagram of a feed-forward
neural network is shown in Figure 2.4.

Increasingly flexible functions can be represented in this way by increasing the
depth of the network L, or increasing the width of the layers { N;}_,. With this form,
arbitrary functions can be learned, given a large enough neural network [109]. In this
thesis, neural networks are used to parameterize unknown functions within larger
models of aging. For an example of this application in other parts of science, neural
networks have been used to represent unknown terms in partially-known differential
equations, and the neural network parameters are then fit from data [24]. This
approach allows scientific knowledge to be included within flexible models with neural
networks.

Neural networks are trained with variations of stochastic gradient descent, which
requires derivatives of the output with respect to the parameters of the layers. The
analytic derivatives of neural network layers are computed with the back-propagation
algorithm, which uses the chain rule to recursively compute derivatives of every layer
[110]. Modern computational frameworks compute these derivatives automatically,
and so sophisticated differentiable models that combine neural networks with other
model components can be easily implemented and trained.

For gradient-based optimization, this thesis uses the Adam optimizer [111], which
is a variant of stochastic gradient descent. This method computes an adaptive learning
rate from estimates of moments of the gradient, which allows it to improve gradient

estimates from noisy samples.

2.8 Recurrent Neural Networks

Section 2.7 discussed feed-forward neural networks, which pass a vector input x
through a series of linear transformation layers and non-linear activation functions

to arrive at the output. Recurrent neural networks (RNN) differ by possessing an
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Figure 2.5: Recurrent neural network. A time-series or sequence {x;}7_, is
recursively used as input in the RNN. A hidden “memory” state h, allows features
from past time-points to influence the output at current time-points.

internal state h, (i.e. memory) that is updated for each vector x; in a sequence {x;},.
This allows unknown functions to be parameterized that depend not only on a single

input, but a variable-length sequence, f({x;}).

Such RNNs consist of a unit cell that is applied recurrently over all elements of a

length sequence {x;}~ |,

ht = RNN(ht_l,Xt), t= ]_, ...,T, (210)

given an initial internal state hy. The internal state h, is taken as the output, and then
transformed as desired with additional neural network layers and activation functions.
A diagram of this process is shown in Figure 2.5. Since the same unit cell is applied

recursively, an RNN can be used for datasets with variable-length sequences.

The particular structure of the unit cell depends on the type of RNN. In this
thesis the Gated Recurrent Unit (GRU) is used [112], since it has a simpler structure
and fewer parameters than other common forms of RNNs. The GRU uses linear
transformations and non-linear activation functions to update the internal state with
two different processes: selectively retaining information from the previous internal

state h;_1, and including the relevant information from the current input x;.
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2.9 Maximum likelihood fitting

The likelihood p(Y|X, ) is the probability of observing data Y = {y®}¥, and X =
{x@}M  from a model with parameters . Maximum likelihood fitting regards the
log-likelihood as a function of the parameters, L(0) = log p(Y|X, @), then maximizes
this function to find the optimal parameters. These optimal parameters result in
the highest likelihood for the data for the specific model. Typically, data-points are
assumed independent in the likelihood, p(Y|X, 8) =[], p(yV|x?, ).

The form of the likelihood is assumed as part of the model. For example, a
Gaussian likelihood can be assumed for a model with a mean computed with a neural

network and constant variance,
p(y@x?,0) = N(y?|u(x";0),0%). (2.11)

The maximum log-likelihood for this model reduces to the minimum squared deviation

between the observed value and the mean,
argmax, L(0) = argmin, Z ly®@ — p(x: 0)? (2.12)

leading to least-squares fitting. For neural network models, the negative log-likelihood

can be minimized by stochastic gradient descent.

2.10 Bayesian modelling

A Bayesian approach is used to formulate the probabilistic models discussed in Chap-
ters 5, 7, and 8. Given a dataset Y and X and a model with parameters 6, this
approach makes use of Bayes’ Theorem,

p(Y[X, 6)p(6)

pOIY,X) = Pt

(2.13)

which formulates the posterior distribution of the parameters p(8]Y,X) in terms of
the likelihood p(Y|X, @) (as in Section 2.9), prior distribution of parameters p(8),
and normalization factor p(Y|X) = [ p(Y|X,0)p(0)d6 known as the model evidence.

The posterior distribution is the main quantity of interest, representing the most
probable values of the model parameters given the observed data. The Bayesian ap-

proach is appealing because the posterior distribution naturally includes uncertainty
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for the model parameters with a distribution of possible values, rather than just a
single estimate of parameters that maximize the likelihood. Additionally, uncertainty
for model predictions y’ at a new data point x’, given the observed data Y and X
can be also estimated by integrating the likelihood of this prediction p(y’|x’, @) over
the posterior distribution of parameters p(0]Y,X),

Py 1%, Y, X) = / p(y'x. 0)p(6]Y, X)d6. (2.14)

Similar to the confidence interval in frequentist statistics, posterior distributions
are generally summarized by computing the median and the interval of the posterior
containing a% of the mass of the distribution, called credible intervals. The a%
credible interval of a parameter contains the true value of the unknown parameter
at probability a%. Note that this is distinct and more intuitive than a frequentist
confidence interval, where a% of the confidence intervals computed from repeated
samples would include the true value of the parameter.

The prior distribution p(@) incorporates prior knowledge of the value of the model
parameters. If specific knowledge of the value of the parameter is known, priors can
be placed around that value. Otherwise, priors can be used to obtain well-behaved
models. Typically, this is done by placing narrow priors on parameters around zero,
e.g. we may not know where the exact value of a parameter will lie, but we know it
is extremely unlikely its value will be > 103. This can enforce sparsity in the model,
limit extreme values of parameters, and prevent overfitting by regularizing.

The Bayesian approach is also a natural approach for learning latent variable

models. These approaches are discussed below.

2.11 Markov-chain Monte-Carlo sampling

The calculation of the normalization factor in Bayes” Theorem,

pYIX) = [ p(YIX.0)p(6)de. (2.15)

can only be done analytically for the simplest of models, and can be seen as analogous
to computing the partition function in statistical physics. Markov-chain Monte-Carlo
(MCMC) is a method of sampling the posterior distribution without requiring the

computation of this normalization factor. This allows the computation of integrals of
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the posterior distribution by Monte-Carlo integration in cases where the normalization

factor is unknown,

[ HOWOIY. X)d0 ~ 13" (0. 6~ p(OY.X) (2.16)

where {6,}Y, are MCMC samples from the posterior p(6|Y,X), and f(.) is an arbi-

trary function of which we want to integrate over the posterior, e.g. Equation 2.14
where f(0) = p(y'[x’, 0).

MCMC methods are stochastic processes that generate samples in such a way that
the equilibrium distribution of the process is the desired posterior distribution. In
this thesis the No U-Turn Sampler (NUTS) from the Stan probabilistic programming
language [113] is used for MCMC sampling in Chapter 8. NUTS makes use of deriva-
tives of the likelihood to speed up sampling, unlike much slower random-walk based
Monte-Carlo methods such as the Metropolis-Hastings algorithm [114], and so is well

suited for continuous valued parameters.

2.12 Variational Bayesian Inference

In high-dimensional scenarios with models containing many parameters and/or large
datasets, even MCMC is computationally intractable. In particular when models
include neural networks, MCMC will not be a viable option. A computationally
faster approach is to use a parametric approximation to the posterior distribution

instead of sampling it with MCMC.

A parametric approximation to the posterior is made by assuming a particu-
lar form of the approximate posterior ¢(8; ¢) parameterized by the new variational
parameters ¢. The goal is to optimize the variational parameters so that this ap-

proximation is close to the true posterior, ¢(0; ¢) ~ p(0]Y, X).

A common way to do this is to minimize the KL-divergence between the two
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distributions,
0.
min KL((0: @) [p(6]Y.30)) = uin [ 4(6: ) 1og%de, 2.17)
= minE,log 4(6: 8) ~ logp(6]Y. X)]. (2.15)

= min {E,[log 4(6; $)] — Eq[log p(6, Y, X)] +log p(Y|X) }.
(2.19)

To simplify the notation, expectations over the distribution ¢(8; ¢) have been written
as E,[.]. The last term log p(Y|X) is the difficult to calculate posterior normalization
factor or model evidence from Equation 2.15. This term does not involve ¢, and so
can be dropped from the optimization. The ability to drop this difficult to calculate
term is key to the variational approach. Thus, the variational approximation is found

by maximizing the following function with respect to the variational parameters ¢,
ELBO(¢) = E,llog p(6, Y, X)] — E,[log q(6; ). (2.20)

This is known as the Evidence Lower Bound (ELBO), since it bounds the model
evidence, logp(Y|X) > ELBO(¢). This approach is equivalent to variational free-
energy minimization in statistical physics, with ELBO(¢) representing the negative
variational free-energy and log p(Y|X) representing the exact negative free-energy.

To see this, note that the last term in 2.20 is the entropy of ¢(@; ¢), as defined
in Equation 2.3, and the first term is the expectation of the negative energy from a
Boltzmann distribution p(Y|X, 8) = e #(Y:X:0) /7(6) up to a constant in ¢, log Z(8)
(setting 8 = k, = 1). This approach can easily be applied to the Ising model by
assuming an independent distribution of spins ¢ to compute the mean-field theory
solution [115].

Another way to interpret the ELBO is to write it in terms of an expectation of

the model likelihood and a KL-divergence between the posterior and prior for 6,
ELBO(¢) = Ey[log p(Y|X, 6)] — KL(q(6; ¢)||p(0)). (2.21)

This way, the variational inference approach can be seen as maximizing the expec-
tation of the likelihood with samples from the posterior ¢(0;¢), while including a
penalty term to enforce the posterior to be close to the prior p(@) with the KL-

divergence.



25

The simplest way to construct a variational approximation is with a mean-field

approximation — where all parameters are assumed to be independent in the posterior,
q(0;¢) = [ ] a(6:; ¢). (2.22)

For real-valued 6, a simple mean-field approach is to use one-dimensional Gaussian
distributions for each ¢(6;; ¢), where ¢ is the set of means and standard deviations of
these Gaussians {;, 0;};. The inference then proceeds by maximizing the ELBO for
these means and standard deviations. Mean-field approximations can be progressively
improved by incorporating structure into the factorization of ¢(@), but how this is
done depends greatly on the structure of the model.

The variational approach is computationally much faster than MCMC because
the approximate posterior is found by just optimizing the variational parameters ¢,
rather than adequately sampling a high-dimensional parameter space.

Variational Bayesian inference is used in Chapters 5 and 7.

2.13 Latent variable modelling and variational auto-encoders

One key application of variational Bayesian inference used in this thesis is the Vari-
ational auto-encoder (VAE) [116,117]. The variational auto-encoder forms the basis
of the models developed in Chapters 5 and 7, and forms the basis of a useful generic
framework for Bayesian latent-variational modelling called deep latent variable mod-
elling.

Latent variable models aim simplify a problem by introducing a latent variable z.

For observed variables x, latent variables decompose the likelihood,

p(x]6) = / p(xlz, 8)p(z)dz. (2.23)

Rather than directly modelling p(x|@), a latent variable model allows the development
of a simpler model for p(x|z, @). For example, if x(t) exhibits complex dynamics in
time, it can be simpler to model dynamics of a latent variable z(t), and then transform
this latent variable to the observed variables z(t) — x(t).

To fit a latent variable model, we need to infer the latent variables from the data
p(z]x), which can be recognized as the posterior distribution of z. So we can use

Bayesian inference for these latent variable models.
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Figure 2.6: Bayesian graphical notation for a latent variable model. In this
notation, grey nodes indicate observed variables and white nodes indicate unobserved
variables i.e. latent variables). The box indicates variables that are indexed by m = 1
tom = M (e.g. different individuals). Variables outside the box are global param-
eters. Arrows represent conditional dependencies in probability distributions. (Left)
Generative form of the model, which shows the factorization of the joint distribu-
tion p(x,z,0) = p(x|z,0)p(z)p(0). (Right) Factorization of the variational posterior
approximation ¢(z, 0|x; @) = q(z|x; $)q(0; ¢). The black point represents the pa-
rameters ¢ to be optimized (not a stochastic variable described by a probability
distribution).

Suppose we have a latent-variable model of the following form,
(), (2.24)
(z™), (2.25)
(x™)|z™ ), (2.26)
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p(x", 2™, 0) = p(x" 2", 0)p(z")p(0),
m=1,.. M.

This is called the generative form of the model, and describes how to generate out-

(m) and the parameters

puts of observed variables x(™) given the latent variables z
0. Indexes m indicate separate individuals from m = 1 to m = M, so that the
observed data and latent variables are individual specific, but the parameters are
global. Equations 2.25 and 2.24 are prior distributions for the latent variables and
parameters, and Equation 2.26 is the likelihood. Figure 2.6(left) shows a compact

form to represent the structure of this model, which demonstrates the factorization



27

of the joint distribution in Equation 2.27.

In this model, we want to infer the unobserved latent variable z(™) for each ob-
served input x(™). To do this, we need to perform Bayesian inference by computing
the posterior p(z™, @|x(™)). We build a variational approximation that follows the

factorization shown in Figure 2.6(right). This has the form

q(z™, 0|x™); @) = q(z™x"); $)q(8; ¢). (2.29)

Assuming a real-valued z, the simplest approach is to assume independent Gaussian
distributions (mean-field approximation as above) for z. Since this distribution de-
pends on the input x, the means and standard deviations of this distribution need to

depend on x. These can be estimated with neural networks for p and o,

q(z[x) = N(p(x; ), o (x; 9)*). (2.30)

The neural network weights and biases along with the parameters of ¢(0;¢) are
the variational parameters ¢ to be optimized by maximizing the ELBO as above in

Equation 2.20,

ELBO(¢) = Y {E,llogp(x"|z", )] +E,llog p(z""))] — E,[log (2" x""); ¢ |

m

+Ey[log p(0)] — Eqq(6]9)]- (2.31)

The sum goes over all individuals (assuming independent individuals in the likeli-
hood). This model is known as a wvariational auto-encoder. Generically, this model
can be used as a framework for many different types of latent-variable models.

Note, often the variational posterior distribution of the global parameters ¢(8; @)
is implicitly set to be a delta function for some or all of the parameters, ¢(0; ¢) =
§(0 — ¢@). Together with a uniform prior p(@), this has the effect of including some of
the parameters @ directly as variational parameters ¢ to be optimized (rather than
parameterizing a distribution of @), simplifying the posterior [118]. This step is often

done implicitly without indication.

2.14 Stochastic differential equations

A stochastic differential equation (SDE) describes the continuous-time evolution of

a random variable, which takes the form of a differential equation that includes a
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stochastic term. An SDE is written,
de(t) = f(x,t)dt + o(z,t)dB(t), (2.32)

where f represents the drift term, and o represents the strength of the diffusive
noise. The stochastic component B(t) is a standard Brownian motion with Gaussian
increments with variance dt, dB(t) = B(t + dt) — B(t) ~ N(0,dt). Solutions of an
SDE are realizations of the stochastic process described by the SDE.

2.15 Survival Analysis

Survival analysis is the analysis of time-to-event data. This naturally applies to the
field of aging, where we have time-to-death or age-of-death data. The main quantity
in survival analysis is the Survival function or Survival probability. The survival
function S(t) is the probability that an individual is alive at time ¢ (e.g. has yet to
have the event in question). The typical goal in survival analysis is to build models
to estimate the survival function, or estimate the relative difference in the survival of
distinct groups (e.g. the effect of treatment vs control for a drug).

Survival models are often best described by hazard rates. When the event in
question is death, hazard rates can be called mortality rates. The hazard rate h(t) is
the instantaneous rate of the event occurring, and is related to the survival function

in the following way,

S(t) = exp (— / h(t)dt'). (2.33)

to

With time-to-event data, the goal is to fit the hazard rate of a survival model
h(t; @) with parameters 6. However, it is common that many of the observations are
censored — the period of observation for a subject concludes before the event (i.e.
death) occurs, which is known as right censoring. Fitting a survival model requires
modifying the likelihood to take this into account.

Consider a set of observation times for M different individuals {¢;}, and cen-
soring indicators {¢;}4,, where the death either occurs (¢; = 0) or the individual is
censored (¢; = 1). This means that ¢; represents a time of death when ¢; = 0, and is

the time that the individual was last known to be alive if ¢; = 1. Assuming a survival
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model with parameters 0, the likelihood takes the form,

p({ti}ity, {c}ili10) = H[p(tz-lt‘))]“‘c”[p(t>tz-|9)]°’% (2.34)
= [ nl6)s(l0). (2.35)

Additionally, interval censored data is possible. In this case, observations are

made at discrete time points, and it is known that the event occurs between two

observation times, t € (& V). For interval censored data, the likelihood becomes,
M
p({H Y {7 YE0) = []pef <t <t]16), (2:36)
i=1
M

= [IistH1e) - sal1e)]. (2.37)

i=1
Interval censored data is encountered in Chapter 8.
One of the most common survival models seen in the medical literature is the Cox

Proportional hazards model. In this model, covariates x are linearly related to the

log hazard rate,
h(t,x;0) = ho(t) exp (6 - x). (2.38)

ho(t) is the baseline hazard rate, and can be any arbitrary function. To fit the Cox
Proportional hazards model by maximum likelihood, the the baseline hazard is not
required to be specified [119]. After the parameters 0 are fit, the baseline hazard can
be determined non-parametrically with the Breslow estimator [120]. For a Bayesian
proportional hazards model, the baseline hazard needs to be specified in terms of
parameters hg(t;0). This is typically done with splines [121], and this approach is
taken in Chapter 8.

In the proportional hazards model, a unit increase in a covariate x; is multiplicative
with respect to the hazard rate. This allows for the independent effects of covariates
to be easily interpreted. For example, if there is a unit increase in covariate x; and all

others are held constant, the proportional increase of the hazard rate only depends

exp (0-x+0;)

op (02— OXP (6;). This is known as the hazard ratio for

on the parameter 6;,
covariate x;.
The Cox model is used to compare with the models developed in this thesis in

Chapters 4 and 5.



Chapter 3

Probing the network structure of health deficits in human

aging

3.1 Background

Aging is widely considered to be the accumulation of damage with age [4,122-124].
This suggests a model of propagating damage, where damage to a physiological system
spreads to other interacting systems within the organism. In previous work, we
developed a complex network model to describe this process of damage accumulation
[11,44]. Other network models of aging have also been developed by other researchers
[30-32]. While these other models focus on mortality, in our model we also focus on

health, as measured by the Frailty Index.

In our model, nodes in a complex network represent damageable components
of health. Nodes stochastically damage, which increases the damage rates of their
neighbouring nodes. This results in the propagation of damage through the network,
leading to eventual mortality when the two specific “mortality nodes” are damaged.
In previous work, we demonstrated that this model captures population mortality
rates and Frailty Index scores, and we used the model to quantify the information
gained about mortality when knowing the Frailty Index [125]. This model can be
used to generate a large simulated aging population, which allows the exploration of
the relationships between aging, physical frailty, and mortality, which was discussed

in two of our review papers [46,47].

The nodes in this model are generic binary health attributes. These nodes are
generic in the sense that they do not correspond to any specific physiological health
variable, but are the abstract representation of a health component that is damaged
during aging. This leads to the name of this model used in this thesis, the “generic
network model” (GNM). These nodes are binary in the sense that they can either

be in an undamaged state, or a damaged state. Since the nodes in the network are

30
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generic, this is a descriptive model of aging, which does not make predictions for

individuals.

The model requires the specification of the network structure. Previous work with
this model used the Barabdsi-Albert preferential-attachment network structure [98],
which contains few “hub” nodes with high degree, and many low degree nodes, forming
a power-law degree distribution p(k) ~ k~%. With this network structure, the model
is able to simulate populations with mortality and Frailty index scores that agree
with population-level data. The only tuning of the network structure done was the
adjustment of the degree distribution exponent o and the average degree (k). This
motivates the questions of how important the specific structure of the network is, what
are the important features of the network structure, and ultimately which network

structures best capture population aging phenomena.

Distinct Frailty Indexes can be constructed for clinical markers (FI-clin) and for
blood-test lab biomarkers (FI-lab). These show distinct behaviour vs age, with FI-
lab having higher scores at younger ages, which suggests blood biomarker deficits
precede clinical measures of frailty [71,126,127]. Assuming that different types of
health deficits correspond to different types of nodes in the network, these two distinct
Frailty Indexes allow us to probe the network. This motivates the questions of which
nodes in the network correspond to Fl-clin and FI-lab, and how does the network
structure control the relation between these types of health deficits? This can offer
an explanation of the differences between Fl-clin and FI-lab in terms of the network

structure.

In this chapter, we indirectly probe the network by examining the behaviour of the
simulated aging population from the model for a variety of different network struc-
tures. Additionally, we develop a mean-field theory of the dynamics to specifically

isolate the key structural features of the network.

This chapter presents the paper “Probing the network structure of health deficits
in human aging” published in 2018 [128]. Note that the notation, figure numbers,
and reference numbers have been modified from the published version for consistency

within this thesis.
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3.2 Introduction

Accumulation of damage is widely accepted as the mechanism behind organismal
aging [52]. Even in model organisms, with controlled environment and genotype, there
are large individual variations in lifespan and in the phenotypes of aging [53, 129].
While many mechanisms cause specific cellular damage [?], no single factor fully
controls the process of aging. This suggests that the aging process is stochastic and
results from a variety of damage mechanisms.

The variability of individual damage accumulation results in differing trajectories
of individual health and in differing individual life-spans, and is a fundamental aspect
of individual aging. A simple method of quantifying this individual damage is the
Frailty Index (FI) [14,15]. The FI is the proportion of age-related health issues
(“deficits”) that a person has out of a collection of health attributes. The FI is used
as a quantitative tool in understanding the health of individuals as they age. There
have been hundreds of papers using an FI based on self-report or clinical data, both
for humans [130] and for animals [131]. Individuals typically accumulate deficits as
they age, and so the FI increases with age across a population. The FI captures the
heterogeneity in individual health and is predictive of both mortality and other health
outcomes [69, 132-134].

In previous work we developed a stochastic network model of aging with damage
accumulation [11,44]. Each individual is modeled as a network of interacting nodes
that represent health attributes. Both the nodes and their connections are idealized
and do not specify particular health aspects or mechanisms. Connections (links)
between neighboring nodes in the network can be interpreted as influence between
separate physiological systems. In our model, damage facilitates subsequent damage
of connected nodes. We do not specify the biological mechanisms that cause damage,
only that damage rates depend on the proportion of damaged neighbors. Damage
promotes more damage and lack of damage facilitates repair. Rather than model
the specific biological mechanisms of aging, we model how damage to components of
generic physiological systems can accumulate and propagate throughout an organism
— ending with death.

Even though our model includes no explicit age-dependence in damage rates or

mortality, it captures Gompertz’s law of mortality [28,135], the average rate of FI
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accumulation [14, 66], and the broadening of FI distributions with age [64,65]. By
including a false-negative attribution error (i.e. a finite sensitivity) [44], we can also
explain an empirical maximum of observed FI values — typically between 0.6 — 0.8
[15,64-68]. This shows that age-dependent “programming” of either mortality or

damage rates are not necessary to explain these features [52].

We had chosen the Barabési-Albert (BA) preferential attachment algorithm [98]
to generate our scale-free network, both due to the simplicity of the BA algorithm
and due to the numerous examples of these scale-free networks in biological systems
[136]. While we had constrained the scale-free network parameters with the available
phenomenology, we did not examine whether other common network structures could
also recover the same phenomenology. More specifically, we did not identify which

observable behavior sensitively depends on the network structure.

Ideally, we could directly reconstruct the network from available data. However,
the direct assessment of node connectivity from observational data is a challenging
and generally unsolved problem. Nevertheless, we show here that we can reliably
reconstruct the relative connectivity (i.e. the rank-order) of high degree nodes in
both model and in large-cohort observational data by measuring mutual dependence
between pairs of nodes. This reconstruction allows us to qualitatively confirm the
relationship between the connectivity of nodes and how informative they are about
mortality [44]. Specifically, we demonstrate that a network with a wide range of node
connectivities (such as a scale-free network) is needed to describe the observational

data.

Recently, the FI approach has been extended to laboratory [70] and biomarker
data [71] and used in clinical [137,138] and population settings [72]. Two different
FIs have been constructed to measure different types of damage, F,, with clinically
evaluated or self-reported data, and Fj,,, with lab or biomarker data. Clinical deficits
are typically based on disabilities, loss of function, or diagnosis of disease, and they
measure clinically observable damage that typically occurs late in life. Lab deficits
or biomarkers use the results of lab tests (e.g. blood tests or vital signs) that are
binarized using standard reference ranges [139]. Since frailty indices based on labora-
tory tests measure pre-clinical damage, they are distinct from those based on clinical

and/or self-report data [70, 72].
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Even though they measure very different types of damage, both FIs are similarly
associated with mortality [70,140]. Earlier observational studies have found (average)
(Flab) larger than (Fy,) [70,71,140]. However, a study of older long-term care patients
has found (Flap) less than (Fuu,) [141]. While differences between studies could be
attributed to classification differences, a large single study including ages from 20-85
from the National Health and Nutrition Examination Survey (NHANES) [72] also
found that (Fj,) was higher than (F;,) at earlier ages, but below at later ages.

The observed age-dependent relationship (or “age-structure”) between Fj,, and
Fi, challenges us to examine whether network properties can determine similar age-
structure in model data. We aim to determine what qualitative network features are
necessary to explain age-structure. Our working hypothesis is that low-degree nodes

should correspond to Fiup, just as high-degree nodes correspond to Fiy, [11,44].

Complex networks have structural features beyond the degree distribution. For
example, nearest-neighbor degree correlations describe how connections are made
between specific nodes of different degree [142]. Accordingly, we consider networks
with three types of degree correlations: assortative, disassortative, and neutral [142,
143]. Networks with assortative correlations tend to connect like-degree nodes, those
with disassortative correlations tend to connect unlike-degrees, and those with neutral
correlations are random. We probe and understand the internal structure of these
networks by examining Fpign and Fioy, i.e. damage to high degree nodes and damage

to low degree nodes.

Since networks have many properties other than degree distribution and nearest-
neighbor degree correlations, we have also constructed a mean-field theory that only
has these properties. With it we can better connect specific network properties with

qualitatively observed phenomenon, within the context of our network model.

We show how network properties of degree distribution and degree correlations
are essential for our model to recover results from observational data. Doing so, we
can explain how damage propagates through our network and what makes nodes
informative of mortality. This allows us to understand the differences between Fj,y

and Fjign, or between pre-clinical and clinical damage in observational health data.
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3.3 Methods

3.3.1 Stochastic model

Our model was previously presented [44]. Individuals are represented as a network
consisting of N nodes, where each node i € {1,2,..., N} can take on binary values
d; € {0,1} for healthy or damaged, respectively. Connections are undirected and all

nodes are undamaged at time ¢t = 0.

A stochastic process transitions between healthy and damaged (d; = 0 and d; = 1)
states. Healthy nodes damage with rate I'y = T'gexp (f;7+) and damaged nodes
repair with rate I'_ = (I'g/R) exp (— f;7—). These rates depend on the local frailty
fi=>, jen & /k;, which is the proportion of damaged neighbors of node i. This
local frailty f; quantifies local damage within the network. Transitions between the
damaged and healthy states of nodes are implemented exactly using a stochastic
simulation algorithm [144, 145]. For each step, the algorithm samples the time until
the next transition from an exponential waiting-time distribution with rate equal to
the sum of all transition rates. The particular transition (i.e. which node) performed
is sampled from the set of all possible transitions. The probability of choosing a
particular transition is determined by its transition rate. Individual mortality occurs

when the two highest degree nodes are both damaged.

We generate our default network “topology” using a linearly-shifted preferential
attachment algorithm [99, 100], which is a generalization of the original Barabdsi-
Albert algorithm [98]. This generates a scale-free network P(k) ~ k=%, where the
exponent « and average degree (k) can be tuned. (The minimum degree varies as
kmin = (k)/2.) This network is highly heterogeneous in both degree k; and nearest-
neighbor degree (nn-degree) k; n, = Zje./\/(i) kj/k; = Ej,l a;;a; [ k.

Since we are concerned with the properties of individual nodes and groups of
nodes, we use the same randomly generated network for all individuals. As a result,
connections between any two nodes are the same for every individual. To ensure that
our randomly generated network is generic, we then redo all of our analysis for 10
different randomly generated networks. All of these networks behave qualitatively the
same, and so we present results averaged over them. Previously [44], we generated a

distinct network realization for each individual.
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We have used observational data for mortality rate and FI vs age to fine-tune
the network parameters [11,44]. A systematic exploration of parameters was done
in previous work [11,44]. Most of our parameterization (N = 10000, o = 2.27,
(k) =4, v_ = 6.5) is the same as reported previously [44]. However, three parameters
(ICp = 0.00183/yr, v+ = 7.5, R = 3) have been adjusted because we now disallow
multiple connections between pairs of nodes during our network generation. This
simplifies analysis and adjustment of the network topology, but would also affect
mortality rates (see e.g. Fig. 3.15 below) without the parameter adjustment. Other
network topologies, see Sect. 3.4.4, also use this “default” parameterization unless
otherwise noted.

Typically, binary deficits have a finite sensitivity [146], while our model gives us
exact knowledge of when a node damages. We have modeled this finite sensitivity
by applying non-zero false-negative attribution errors to our raw model FI [44]. This
has no effect on the dynamics or on mortality, but does affect the observed FI scores.
For any raw FI f, = . d;/n from n nodes, there are ny = fon damaged nodes.
With a false-negative rate of ¢, n, of these are overturned, where n, is individually-
sampled from a binomial distribution p(ny;nge, 1 —¢) = (zz) (1 —q)"eg"0 ™. We use
f = ny/n as the corrected individual FI. Since our model fy tends to reach the
arithmetic maximum of 1 at old ages, this effectively gives a maximum observed FI

of (fmax) = 1 — ¢ [44]. We use ¢ = 0.4 throughout.

3.3.2 Observational Data analysis

Observational data is typically “censored”, meaning that the study ended or an indi-
vidual dropped out before their death occurred, leaving no known death age. To avoid
this problem, we use a binary mortality outcome e.g. M = 0 if an individual is alive
within 5 years of follow-up, or M = 1 otherwise. We use 5 year outcomes through-
out for observational data unless otherwise specified. We adapt this approach in our
analysis of mutual information [147,148]. Our entropy calculations will use binary
entropy, H(M|t) = —p(0[t)logp(0|t) — H(1|t)logp(1|t), which we use to calculate
information I(M; D;|t) = H(M|t) — H(M|D;,t). See also Blokh and Stambler [149],
for other varieties of information analysis for observational data.

We compare our information theory results to a more standard survival analysis
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with hazard ratios [150]. The hazard ratio is the ratio of instantaneous event rates for
two values of an explanatory variable — e.g. with/without a deficit. A larger hazard
ratio means a lower likelihood of surviving with the deficit than without. Hazard
ratios are “semi-parametric”, since they extract the effects of variables on mortality
rate from a phenomenological mortality model. We use the Cox proportional hazards
model [119]. We show below that these survival analysis techniques are consistent

with our non-parametric mutual information measures.

3.3.3 High-k network reconstruction

To reconstruct network connections from observed states of nodes, we use the state
of each deficit (node) at a given age t (or narrow range of ages in observational data)
for each individual in the sample, and calculate the mutual information between
individual deficits, I(D;; D;|t) [151,152]. Connections in the model create correlations
between nodes, so a large I(D;; D;|t) could indicate a connection. We use data where
individuals are the same age (or £ 5 years in observational data), so that time is
not a confounding variable. Nevertheless, determining whether a given connection
exists or not requires a threshold on I(D;; D;|t). If we took this route, we would only
assign a connection between nodes if the mutual information is above this threshold.
However, we have no practical way of determining such a threshold, though attempts
have been made in the past [153].

In preliminary tests with our model we have found that matching the reconstructed
average degree with the exact average degree is a reliable way of determining a thresh-
old (data not shown), but we still have no way of determining the average degree from
observational data. Instead, we use a simple parameter-free method adapted from
work on gene co-expression networks [154]. We construct weighted networks, with
the mutual information between pairs of nodes as the strength or weight of the con-
nections. We then calculate a “reconstructed” degree by adding the information for
each possible connection to the node in the network, k; = >z 1(Di; Dylt)  [155].
For nodes that aren’t connected, I(D;; D;|t) ~ 0, while I(D;; D;|t) is expected to be
large for connected nodes. While we cannot reconstruct the actual network, we can
reconstruct the rank-order degree of high-k nodes — since we find that k is roughly

monotonic with the actual degree k for high-k£ nodes.
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3.3.4 Mean-field theory of network dynamics

Here, we present a mean-field theory of our network model to understand the mecha-
nisms underlying our model results. Our mean-field theory (MFT) is based on work
on epidemic processes in complex networks by Pastor-Satorras et al. [156] together
with ideas from Gleeson [157] that we use to incorporate mortality dynamics.

By MFT we mean a set of deterministic dynamical equations for damage proba-
bilities of network nodes, including mortality nodes. Here, we retain the full degree
distribution P(k) and degree correlations P(k’|k) of our stochastic network model,
but drop higher-order network correlations. This allows us to identify what model
behavior is controlled by the degree distribution and degree correlations. (A simpler
MFT, with all nodes having the same degree, has been published [44].) With a de-
gree distribution we then solve (see below) thousands of coupled ordinary differential
equations (ODEs) with standard numerical integrators.

Instead of treating each node individually, we assume nodes of the same degree
behave the same. To do this, we average the damaged probabilities p(d; = 1,t¢) and
the undamaged probabilities p(d; = 0, t), conditioned on the damage of the mortality
nodes, over all nodes of the same degree k:

Pk,dm; dm, (t) = Z p(dl =1, dmn dmw t)/(NP(k))v
deg(i)=k

Z p(dz = Ovdmpdmzvt)/(NP(k))a

deg(i)=k

Qe sy (1)

where the mortality states are indicated by d,,,,dn, € {0,1}, N is the number of
nodes, and P(k) is the degree distribution. The resulting joint probabilities are
D,y sy and Qs iy » for damaged and undamaged nodes respectively. These joint

probabilities satisfy

> (Phydomy iy Wiy i) = 1, (3.1)

diny oy
Py sy = Phidiny sy T Thodony iy > 20 (3.2)
Dl dmy = Pl sdimy / Dy sy s (3.3)

where the first equation is a normalization condition, the second completeness, and
the third Bayes’ theorem for conditional probabilities. From our mortality rule of

dimy s dmy = 1, the probability of mortality is pdgead = Pr11 + qx,1.1, for any k.
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The probability of a neighbor of a node of degree k being damaged (which is its

local frailty f) given a particular mortality state is
Tty sy () = Z P (K [k)Dtidyn, iy (3.4)
k:/

where P(K'|k) is the conditional degree distribution, or “nearest-neighbor” degree
distribution. P(k’|k) describes the structure of connections in the network, and can

be varied independently of the degree distribution P(k).

Writing exact master equations for N nodes is impractical since there would be
2N distinct states to track, with even more distinct transition rates. As an enor-
mous simplification, we use averaged damage and repair rates of nodes of a given
connectivity k. This is our key mean-field simplification. To do this we approximate
(d;dj) = (d;){(d;) for all nodes, and approximate the number of damaged neighbors by
a binomial distribution 74 ~ B(ng; fijd, dmy> k) = (V) Fitn dmy (L= Frlduny )
where the average proportion of damaged neighbors will be fya,, 4,.,- Using Eq. 3.4,

we can then calculate our MF'T damage and repair rates,

(CL(frldm, domy)) = Fo,i< exp (Vind/k)>

k
Ty ( Pt € 1 — fk\dml,dm) . (3.5)

The node degree is explicit in Eq. 3.5, while the degree correlation is included through

the average local damage in Eq. 3.4.

Using these averaged damage /repair rates as transition probabilities, we can write

a master equation for nodes with connectivity & = kuin, ..., km, —1 and given the global
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state of the mortality nodes:

Proo() = @roo(T+(fi)) = Proo | (T (Fne)) + (T4 (fins))] (3.6)
—Pr0,0{T=(f&)) + Pr,1,0{C= (fn1)) + Proa (U= (fina))

Gr00(t) = —0r00(T+ () = Groo (T () + (T4 (fn))] (3.7)
k0,0 (1)) + @r,1,0(T=(fini)) + @0, (T~ (fimz))

Prio(t) = @ro(U+(fk) = PeofT+(fme)) + Proo (T4 (finr) (3.8)
—Pr, 1,00 (fr)) = Pr1,0(T=(finr))

ar10(t) = —@e1o(l+(fi)) = 1,00+ (frnz)) + qro.0(T+(finy)) (3.9)
+ar,1,0(T-(f)) = @r,1,0(0=(fimi))

Pro1(t) = @ro (T (fi)) = Proa(T+(fimr)) + Proo(U+(fims)) (3.10)
—Pro, (L= (fr)) — Proa (U= (fims))

k01 (1) = =0T+ (fi)) = o1 (T (frnr)) + @r0.0(T+(finz)) (3.11)
+Pr,0,1 (P=(fr)) = @01 (T~ (fmz))

Praa(t) = prao{T+(fine)) + Proa (T (fnn)) (3.12)

k11 () = @10l (frma)) + @00 (T4 (frny))- (3.13)

In these equations we have not shown the mortality state indices of f; for readability,
but they are the same as the associated p or ¢ factors. We have also defined f,,,
and f,,, as the local frailties of the first and second mortality node, respectively. We
have 8 equations for each distinct degree k. The last two equations determine the
mortality rate, pr11 + qr1,1-

The mean-field model couples the dynamics of the lowest degree (k = 2) with all
degrees up to the two highest (mortality nodes). Solving the equations requires us to
explicitly determine the two mortality node degrees. While approximate calculations
of the maximum degree of scale-free networks are available [158], we need the two
highest degrees. We use k,,, = 885 and k,,, = 768, based on the averages from
simulations of the network. Similarly, we use k,,, = 14 and k,,, = 13 for ER random
networks and k,,, = 7 and k,,, = 6 for WS small-world networks. Qualitatively, our
qualitative MF'T results do not depend on these mortality node degrees, as long as
they are sufficiently large. The minimum degree k,,;, is determined by the network

topology.
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Our default model uses a linearly-shifted preferential-attachment model, which has
explicit functional forms for the degree distribution P(k) and the nearest-neighbor
degree distribution P(k'|k) as N — oo [100].

We numerically solve Eq. 3.13 for the probabilities p 4, ., (t) and Qe oy (1).

These then allow us to calculate the average FI,

knigh

k; P(k)pldalive
(F()) = e , (3.14)
>, P(k)

k:klow

Pk,0,0 + Pko,1 + Dk,1,0
Pr0,0 + Pro1 + Pk1o + ko0 + @ro1 + Qrio’

Pkjalive

so that the average is over the surviving individuals. Our averaged damage-rates
overestimate the true values, so for the same parameterization mortality occurs on a
shorter timescale in the MFT. This is because rapidly damaging nodes drop out of the
full model once they are damaged, but continue to contribute to the average damage
rates in the mean-field model through Eq. 3.5. Because of this, when plotting MFT

results we scale time by tgcale, the time at which every node is damaged (py = 1).

3.4 Results

We will focus on measures that can be compared between model and observational
data, or that provide insight into the network structure of organismal aging. We
start with observational data, to expand the observed aging phenomenology. Then
we explore how our network model behaves, with a focus on how network properties

determine the qualitative behavior of the model.

3.4.1 Observational Data

Dauntingly, we have three challenges for assessing network properties from obser-
vational data: human studies are small (typically with < 10* individuals) so that
results will be noisy, different studies will have quantitative differences due to cohort
differences and choices of measured health attributes, and we have no robust way of
reconstructing networks from observed deficits so that the absolute connectivity of

health-attributes is unknown. We face these challenges by focusing on qualitatively
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robust behavior from larger observational studies; this will also help us to confront

our results with the behavior of our generic network model.

From the American National Health and Nutrition Examination Survey (NHANES,
see [159]), the 2003-2004 and 2005-2006 cohorts were combined, with up to 5 years
of mortality reporting. This cross-sectional data includes one observation of age and
health deficits, with either age of death or last age known to be still alive. Laboratory
data were available for 9052 individuals and clinical data on 10004, aged 20+ years.
Thresholds used to binarize lab deficits are found in [72]. From the Canadian Study
of Health and Aging (CSHA, see [160]), 5 year mortality reporting are obtained from
1996/1997. This data is also cross-sectional, with one observation of age and health
deficits, and age of death or last known age alive. Laboratory data were available
for 1013 individuals and clinical data for 8547, aged 65+ years. Thresholds used to
binarize lab deficits are found in [70]. By approaching both the NHANES and CSHA
studies with the same approaches, we can identify qualitatively robust features of
both.

Fig. 3.1 shows the average FI vs age for Fj,, in red and Fg;, in blue for the
NHANES in the main plot and CSHA in the inset. In both studies lab deficits
accumulate earlier than clinical deficits. A crossover appears in the NHANES data
around age 55 after which clinical deficits are more damaged than lab deficits. A

similar crossover does not appear to happen in the CSHA data.

Figs. 3.2 and 3.3 show deficits rank-ordered in information I(M; D;|t) for the
NHANES and CSHA studies, respectively. These are information “fingerprints”.
Red points correspond to lab deficits and blue to clinical deficits, as indicated. Both
types of deficits have similar magnitudes of information, although clinical deficits are
typically more informative. The comparable magnitudes of mutual information for the
majority of individual deficits between lab and clinical Fls is consistent with earlier
analysis that found similar association between lab and clinical FIs with mortality
using survival analysis [70,72,140].

Insets in Figs. 3.2 and 3.3 show the corresponding hazard ratio (HR) for the deficit
found from a Cox proportional hazards model regression, with the deficit value and
age used as covariates. This semi-parametric analysis is often done with medical data

[161]. The HR tends to increase as the rank-ordered information increases, indicating
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Figure 3.1: Average FI vs age t with (Fl,p,) (red squares) and (Fu,) (blue circles) from
the NHANES dataset (main figure). The inset shows the same plot for the CSHA
dataset. Error bars show the standard error of the mean. All individuals used in this
plot have both F;, and Fj,, measured.
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that our mutual-information approach is capturing similar effects. Nevertheless, we
prefer mutual-information because it is non-parametric (not model-dependent) and

so relies on fewer assumptions.

Our deficit-level analysis highlights the great variability of mutual information
(and HR ratios) between individual deficits. We have shown that lab and clinical
deficits have a range of mutual information. We further note that the top 5 - 7
most informative clinical deficits in both the NHANES and CSHA datasets measure
functional disabilities or dysfunction [162]. We find that these high level deficits are
the most informative of mortality, and more informative than any of the lab deficits.
From this, we hypothesize that highly informative clinical deficits will also be highly

connected.

We have been able to partially reconstruct the network structure of clinical mea-
sures, as detailed in Sec. 3.3.3. In Fig. 3.4, we have validated this approach with
the top 32 most-connected model nodes. We use 10000 individuals for our validation,
approximately the same number of people we have available in the observational stud-
ies. We know that our model information tends to increase with degree for the high
degree nodes (see [44], and also Fig. 3.10 below). Fig. 3.4 shows that information
also increases with the reconstructed degree l%, as expected for a good reconstruction.
The inset showing k vs k indeed shows that the reconstructed degree is approximately

monotonic with the exact degree — especially at higher k.

This means the reconstructed degree should provide a reasonable rank-order in
connectivity for observational data. Nevertheless, low-degree nodes are not reliably
rank-ordered. Accordingly we only attempt to reconstruct clinical k with this ap-

proach.

In Fig. 3.5, we plot information with respect to mortality I(M; D;|t € [75,85])
for each deficit, where deficits are rank-ordered in terms of reconstructed degree k.
Information increases with reconstructed degree for both the NHANES and CSHA
clinical data. This shows that high information deficits correspond to high connectiv-
ity in the observational data. Also, nearly all of the functional disabilities intuitively
hypothesized to have a high connectivity are also found to have a large reconstructed

degree.
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3.4.2 Model Age-structure

We saw, in Fig. 3.1, that pre-clinical (lab) damage accumulates before clinical dam-
age in observational data. This is a qualitatively robust observation, seen in both
NHANES and CSHA observational data. We also observed, in Fig. 3.5, that (in
terms of rank order) highly connected clinical deficits were more informative than
less connected deficits. We expect that health-attributes assessed by laboratory tests
are less connected than the high level functional attributes assessed clinically. We
hypothesize that Fl,, and F;, should behave qualitatively like collections of low or
high degree nodes, respectively, within our network model of aging.

We construct two distinct FIs to capture the difference between well-connected
hub nodes and poorly connected peripheral nodes. We measure low-degree damage
by constructing Flo,, = >, d;/n from a random selection of n = 32 nodes all with
k = kmin = 2. Similarly, we measure high-degree damage with Fyg from the top
32 most connected nodes (excluding the two most connected nodes, which are the
mortality nodes).

Fig. 3.6 shows the cumulative average degree of damaged nodes (kqam) =
(0N kidi) SN di) vs age t. Error bars represent the standard deviation between
10 different randomly generated networks. They are each comparable to or smaller
than the point size, indicating that the age-structure represents the network topology
rather than a single network realization.

For a uniform network or for damage rates independent of the degree of a node,
we would expect (kgam) = (k) for all ages t. However, we see the average degree of
damaged deficits start at (k), with an initial decrease until around age 25 and then
an increase back to (k) — implying damage does not uniformly propagate through
the network.

Initially damage is purely random, so (kgam(0)) = (k). Nodes with degree k; < (k)
are being damaged when (kqam)/(k) decreases from 1, and nodes of degree k; > (k)
are being damaged when (kqan)/(k) increases towards 1.

The inset of Fig. 3.6 shows the average FI vs age for Fio, and Fiigh. We see (Flow)
initially larger than (Fign). Eventually with age, (Fhign) increases to match (Fiow)
and even slightly exceed at very old ages. Thus, low-k£ nodes behave similarly to lab

deficits, and high-£ nodes behave similarly to clinical deficits in observational health
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Figure 3.6: Average degree of damaged model deficits (kgam(t)), scaled by the average
degree of the network (k), vs time ¢. Error bars, barely visible at low ¢, represent the
standard deviation between randomly generated networks. As indicated, at earlier
times low-connectivity nodes are preferentially damaged while at later times higher
connectivity nodes are preferentially damaged. The inset shows the average damage
of low-connectivity nodes (Floy) (red squares) and of high-connectivity nodes (Fhign)
(blue circles) vs age.
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Figure 3.7: Average mean-field damage rates (I'y.) /Ty for nodes of a given degree k (as
indicated) vs the local frailty of these nodes f, as given by Eq. 3.5. Low-connectivity
nodes exhibit significantly higher damage rates at intermediate values of f.

data. Low-k nodes and lab measures both damage early and high-k nodes and clinical
measures both damage late.

We have not tuned our model parameterization to obtain this age-structure of
damage in the network model. Indeed, for other parameter choices we see qualitatively
similar behavior (data not shown) for the scale-free networks that we have been using.
To better understand this age-structure we consider the effects of network connectivity
within our mean-field theory.

In our mean-field theory, we find our averaged damage rates explicitly depend
on k in Eq. 3.5. This is shown in Fig. 3.7, these mean-field damage rates increase
with smaller k£ at a given f. This results from Jensen’s inequality, since the damage
rate is convex in the local frailty f and the lower degree nodes will have a broader
distribution of local frailty for the same global frailty. This implies that low-k£ nodes
should damage more frequently until they are exhausted and F,, saturates.

We can confirm this with the full MFT results. We can determine the FI from
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Figure 3.8: From our mean-field calculation in Sec. 3.3.4, we show the average degree
of damaged deficits (kqam) scaled by the average network degree (k) vs time scaled
by the time when the network becomes fully damaged, t/tscae. The inset shows the
average damage of high connectivity nodes (Fign) in blue and low connectivity nodes
(Flow) Vs the scaled time.

Eq. 3.14 and calculate both Fyj., and Fiow by choosing which degrees to include.
The Koy and kpigh determine the nodes included in the FI. For Fii.n, we choose
nigh = kmy — 1 and ki so that N ZZ’;‘?QOW P(k) = n ~ 32 for the smallest possible
kiow (32 is the number of FI nodes typically used in our model and observational

studies). For Fioy, we choose ki = Kkmin and choose the smallest Kpig, so that n o~ 32.

We also calculate
khigh

Z kp(k)pk|alive
. k=kiow

(Faam (1)) = : (3.15)

Khigh

Z P(k)pldalive
k=kiow
which is the cumulative average degree of damaged nodes as was done for our com-
putational results.

In Fig. 3.8 the age-structure from the mean-field calculation shows the same early
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Figure 3.10: Model information spec-
tra I(A; D;|t = 80) vs degree k; for
the top 100 most connected nodes in
blue, or vs k;,, for a random selec-
tion of 100 peripheral nodes all with
k = kpin = 2. Points show a sam-
ple of a single network, line shows an
average over 10 randomly generated
networks and the random choice of
100 nodes with k = 2, the shaded er-
ror region shows the standard devia-
tion over the random networks.

ol

damage of low-k nodes shown in Fig. 3.6 and (in inset) the more-rapid growth of Fluy,

compared to Fien at earlier times. Our mean-field calculation also shows a more-rapid

growth of Fin compared to Fi,, at later times, as shown in the inset of Fig. 3.8.

This largely is explained by the saturation of Flu.

We conclude that the age-structure seen observationally and in our network model,

can be explained by the degree distribution and neighbor-degree correlations of our

MFT. This motivates us to investigate how node degree and neighbor-degree affect

mortality within the context of our network model.
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3.4.3 Model Node Information

Fig. 3.9 shows the mutual information between death age and individual nodes
I(A; D;) for our model. Red points are a random selection of 100 low-connectivity
nodes all with & = k,;, = 2, the blue points are the top 100 most connected nodes
(excluding the 2 mortality nodes). For each selection, we have rank-ordered the nodes
in terms of mutual-information. The mutual-information for both high and low con-
nectivity nodes are comparable. This is surprising since previous work showed a
monotonic increase of the average information with connectivity [44]. However that
work used a different network for each individual, so that network properties other
than the average degree were lost by pooling nodes of the same degree.

Without parameter tuning, we obtain striking qualitative agreement of the mag-
nitude of the mutual-information with mortality for both model and observational
data (see Figs. 3.2 and 3.3). We also obtain an overlap of magnitudes of the mutual-
information of low-degree and high-degree nodes that is similar to that seen between
pre-clinical and clinical deficits. Since we know the model network connectivity, we
can now examine what network properties cause this behavior for our model.

In Fig. 3.10, we show the “spectrum” of mutual information between death age
and individual nodes I(A; D;|t = 80). We use individuals at age ¢ = 80 years,
where the mutual information is close to maximal [44]. We use the same network
for every individual, so that we do not lose the properties of the network between
individuals. For the most connected nodes, in blue, we plot mutual information vs.
the connectivity of the nodes. Here we see the monotonic trend of mutual information
vs connectivity, though there is significant variation for individual nodes. For the
least connected nodes, in red, all of the nodes have k = 2. Instead of connectivity, we
considered the nearest neighbor degree k;p, = > JEN() kj/k; — i.e. the connectivity
of the neighbors of a node. With respect to k,,, we see a similar monotonic increase
of the mutual information for £ = 2 nodes.

Neighbor-connectivity k,, is predictive of mortality for minimally connected
nodes. We hypothesize that this is because the neighbor-connectivity affects when
peripheral (k = 2) nodes are damaged, i.e. that peripheral nodes with low-k,, are
damaged earlier than those with large k...

In the inset of Fig. 3.11 we confirm that high-k,, £ = 2 nodes damage later. This
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Figure 3.11: Average time of damage (tgam) vs degree k for all non-mortality nodes in
the network. Inset shows (tqam) for & = 2 nodes vs nn-degree ky,. Nodes are binned
based on k. The solid colored bars represent the entire range of average damage times
observed for individual nodes within a bin, while the horizontal black lines indicate
the average over the bin. All results are averaged for 10 randomly generated networks.
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allows high-k£,,, nodes to be informative of mortality because they are diagnostic of a
more highly damaged network. From Fig. 3.11 we see that there is a large range of
times for which lower-k nodes damage. Nevertheless, on average the high-£,, nodes
at k = 2 damage before high-k nodes even though (see Fig. 3.10) they can be similarly

informative.

3.4.4 Model Network Structure

We have seen that our network model of aging is able to capture detailed behavior
of lab and clinical FIs such as the the larger damage rates for low-k nodes at the
same time as the surprising informativeness of some low-k nodes. The network is an
important aspect of our model, and so far we have assumed that it is a preferential
attachment scale-free network [98-100]. In this section, we explore the qualitative
behavior of different network topologies.

Our network model has predominantly disassortative correlations (due to the
scale-free exponent a < 3 [101]) — meaning that low-k nodes tend to connect to
high-k nodes, and that the average nn-degree decreases with degree [143]. We see
this in Figure 3.12, where we plot the average nn-degree (k,,(k)) as a function of de-
gree for our network. The purple points indicate our preferential attachment model
network, and we see that the average nn-degree is inversely related to the degree.

The green curve shows a rewired assortative network [143] made by preserving the
degrees of the original network but swapping links. To do this we use the method
of Brunet et al, using N? rewiring iterations with a parameter p = 0.99 [102]. By
modifying the nn-degrees of low degree nodes, we can investigate whether k,, causes
or is just correlated with informative low-k£ nodes. Note that we use only the largest
connected component of the rewired network, with (V) = 9989 nodes over 10 network
realizations.

The yellow triangles in Figure 3.12 show an Erdés-Renyi random network (ER).
A random network is created by starting with N nodes, and randomly connecting
each pair of nodes with probability pattacn = (k)/(N — 1) [142]. This results in
a (peaked) binomial degree distribution, and completely uncorrelated connections
where k,, = (k?)/(k) which is independent of individual node degree. As before, we

only use the largest connected component, with (N) = 9805 nodes over 10 network
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Figure 3.12: Average nn-degree (ky,(k)) vs degree k for a disassortative network (de-
fault network, o = 2.27) (purple circles), an assortative network created by reshuffling
the links (green squares) [102], a Erdés-Renyi (ER) random network (yellow trian-
gles), and a Watts-Strogatz (WS) small-world network (blue triangles). Note that
(kun(k)) is grouped into bins of powers of 2 and averaged within the bins for the
scale-free networks. A bin for each degree is used for the ER random and WS small-
world networks.
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realizations. The ER network also allows us to explore whether the heavy tail of the

scale-free degree distribution is required to recover our observational results.

The light blue triangles in Figure 3.12 show a Watts-Strogatz (WS) small-world
network [163]. This network starts with a uniform ring network with k; = (k) for all
nodes, and randomly rewires each link with probability prewire t0 another randomly
selected node. We use prewire = 0.05 to get the effects of both high clustering (i.e.
links between neighbors of nodes) and short average path-lengths between arbitrary
pairs of nodes [142]. This network has a narrowly peaked degree distribution, with
a rapidly decaying exponential tail. ER and WS networks are similar, as both have
short average path lengths between arbitrary nodes and non-heavy-tailed degree dis-

tributions, but the WS small-world network also has high clustering for small prewire.

To examine network effects on our network aging model, we have kept the same
model parameters for the (default) preferential attachment disassortative network,
the assortative network, the ER random network, and the WS small-world network.
(The scale-free exponent « is only used in the disassortative and assortative networks.)
We examine 10 random realizations of each network. We have also varied model
parameters independently for each of these networks (data not shown) and obtain

the same qualitative results.

In Fig. 3.13 we show rank ordered information fingerprints for individual deficits
I(A; D;|t), for the different network topologies as indicated. We observe striking
differences in the scale and range of the mutual information with respect to mortality,
and in the differences between the most and least connected nodes. The random and
small-world network both have a significantly smaller scale of mutual information,

together with a much smaller range of variation.

The scale-free disassortative (default) and assortative networks both have signifi-
cantly higher scale of information for the most connected nodes, as well as consider-
able variation (approximately 10-fold) among them. However, while the disassortative
network exhibits similar scales of information between the most and least connected
nodes the assortative network does not. Furthermore, the assortative network shows

only minimal variation of information among its least connected nodes.

Only the disassortative (default) network exhibits the fingerprint of mutual in-

formation of the NHANES and CSHA observational studies, in Figs. 3.2 and 3.3
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Figure 3.13: Rank ordered information I(A; D;|t = 80) for the different networks,
as indicated. The top 100 most connected nodes in the network are in blue circles,
and 100 randomly selected nodes of the lowest degrees are in red squares. Results
for each different network topology are averaged over 10 randomly generated network
realizations.
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Figure 3.14: Average low-k (Fioy(t)) vs average high-k (Fin(t)) plotted for ¢ = 0 to
t = 110 for our default network parameters (purple), the shuffled assortative network
(green), the Erd6s-Renyi random network (yellow), and the Watts-Strogatz small
world network (light blue). The dashed black line shows the line (Floy (1)) = (FlLign(?))-
Results are averaged over 10 randomly generated networks and the standard devia-
tions are smaller than the line width.

respectively: with considerable variation of mutual information between deficits, over-
lapping ranges between lab (low) and clinical (high) connectivity deficits, and mutual

information on the order of 10~2 for individual deficits.

In Fig. 3.14, we investigate the age-structure of the FIs generated by the low
and high connectivity nodes. We plot (Flow(f)) vs (Flign(f)) for the different network
topologies. We see that the assortative network shows a rapid increase in F,,, fol-
lowed by growth of Fign. In contrast, for the disassortative, random, and small-world
networks there is comparable growth of both Fioy, and Fiign, though with higher Fiqy,

and a later cross-over for the disassortative network.

In Fig. 3.15 we plot the average mortality rates vs age for different network topolo-

gies, with colored circles showing the computational model results and colored lines
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Figure 3.16: (Fhign) vs age for each
of the networks, as indicated. a) Dis-
assortative scale-free network (purple
circles), b) assortative scale-free net-
work (green), ¢) WS small-world net-
work (light blue), and d) ER ran-
dom network (yellow). Computational
results (circles) are averaged over 10
randomly generated networks and er-
ror bars show the standard devia-
tions. Black squares are observed hu-
man clinical frailty [66].

for the corresponding mean-field model results. Black squares indicate observed mor-
tality rates [164]. Similarly, in Fig. 3.16 we plot (Fiien) vs age t for both observational

data (black squares) and model data for different networks (coloured points).

Even without parameter adjustment, most of the network topologies approxi-
mately capture the observational data after ¢ = 20 years. Some differences are seen,
particularly for the assortative scale-free network in the mortality rate. This agree-
ment indicates that mortality and frailty data alone do not strongly constrain the

network topology.

From Fig. 3.13, we observed early damage of Fj,, in the assortative network.
Our MFT allows us to narrow down what aspects of the network are leading to this
behavior, since the only aspects of the network structure included are the degree

distribution P (k) and nn-degree correlations P(k'|k).

Different network topologies are easily introduced provided P(k) and P(k'|k) are
known. The exact P(k) for our default shifted-linear preferential attachment networks

[100], ER random networks, and WS small-world networks [165] are known. (We
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remove zero degree nodes from the ER random degree distribution, so that Py.o(k) =
P(k)/ > 1.0 P(1).) Using various P(k'[k) we can then put different degree correlations
into our MFT network. We include three types of degree correlations, uncorrelated
(neutral), assortative, and disassortative [142].

For a network with uncorrelated (neutral) connections, P(k'|k) = k'P(K')/{k).
We then have ky,(k) = Y., K'P(K'|k) = (k*)/(k), so that all nodes have the same
nn-degree. These correlations are used for ER random and WS small-world networks,
and recover the approximately constant £y, that we observed in Fig. 3.12.

In a network with assortative correlations, nodes tend to be connected to other
nodes of similar degree. Assortative correlations that approximate those used in
our computational model in Sec. 3.4.4 are [166] P(k'|k) = adpp + (1 — @)K’ P(K") / (k).
These lead to, knn (k) = >, K'P(K'|k) = ak+(1—a)(k?)/(k), which increases linearly
with & (see Fig. 3.12). Changing o modifies the amount of assortative correlation; we
use o = 0.8.

In a network with disassortative connections, nodes tend to be connected to other
nodes of differing degree. The (disassortative) correlations for our default shifted-

linear preferential attachment network are [100],

, T(k + A+ a)D(K + )
P(K |k) =
(K1F) ED(m + NT(kE+ E + 2\ + «)

y i F(i—i—m—l—Z)\—l-oz—l)(k—i—k"—m—i)

q
F'i+A+a—-1) kK —m (3.16)

=m-+1

. z’“: F(i+m+2)\+oz—1)(k+k’—m—i>]’

Rt i+ A+a—-1) k—m

where m = (k)/2 = kmyin and A = m(a — 3). This is exact in the limit N — oo [100],
and gives disassortative correlations where k,, (k) decreases with k.

In Fig. 3.17 we show the average low-k FI vs the average high-k FI, (Flow(t)) vs
(Fhign(t)) from our MFT. In purple we use the (default) preferential attachment dis-
assortative correlations, in green we use assortative correlations, and in light blue we
use a WS small-world network. We see qualitative agreement with the age-structure
shown in Fig. 3.14 — confirming that nn-degree correlations (included in our MFT) are
important for the observed age-structure. [We have not shown MFT results for the

ER random network since (Floy) behaves poorly when it includes nodes with k& < 2,
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Figure 3.17: Average low-k (Fiow(t)) vs average high-k (Fpign(f)) from our mean-field
model in Sec. 3.3.4. The dashed black line shows the line (Flow(t)) = (Fhign(t)). A
scale-free network with preferential attachment disassortative correlations (default
network) in purple, scale-free network with assortative correlations in green, and a
WS small-world network with neutral correlations in light blue.
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due to their great variability of local frailty f;.]

3.4.5 Mutual information of FI with mortality

We have seen that Fl., damages earlier than Fi; (Fig. 3.6) and that the mutual
information of poorly connected (k = 2) nodes with large nearest-neighbor degree
significantly overlaps with the informativeness of the most connected nodes (Fig. 3.10)
in our (disassortative) scale free network model. Because of these informative earlier
damaged nodes, we were interested in whether Fj,, could be more informative of
mortality than Figp, particularly at younger ages. In Fig. 3.18 we show the difference
in information for F,, and Fpin for different mortality outcomes vs age. We find
that Floy is slightly more informative at ages less than ~ 65 and is increasingly more
informative than Fi;ep at these younger ages for longer mortality outcomes. This is the
result of Fl,, nodes damaging early but having a delayed effect on mortality, so that
they are an early predictor of later mortality, but not so much immediate mortality.
The relatively large standard deviations for different randomly generated networks

shows that this result is affected by the particular randomly generated network.

While the observational NHANES and CSHA sample-sizes are much smaller, a
similar calculation shows a slightly lower Fl,, information —0.002 + 0.013 compared
to Fui, in the NHANES data for younger people (65 — 75 years) and a slightly higher
mutual Fl,, information +0.033 & 0.027 compared to F;, in the CSHA data. While
we do not have sufficient data to vary our mortality outcome to determine if Fi,y, is
more predictive of later mortality outcomes as we did in the model, we can see in the

CSHA data that Fl,, is more informative for younger people.

Since we found that the most informative low-connectivity nodes were those with
large ky,, we also considered an FI constructed from n = 32 randomly chosen nodes
of lowest degree (k = 2) from those that have above-average ky,. The information
advantage of F’lgiv%h'k““ is indicated in Fig.3.18 with down and up triangles for 10 and
5 year mortality, as indicated. The advantage over Fi;gp is large and significant for
ages below t = 80 years, with a stronger advantage at earlier ages for later mortality.

This will be an attractive avenue to pursue.
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Figure 3.18: The difference in mutual information of Fioy and Fign ( I(M; Flow|t) —
I(M; Fyign|t) ) vs age t for different binary mortality outcomes. 5 year mortality
outcomes are shown as turquoise circles and 10 year as orange squares. The dashed
line shows when the information of both Fls are equal. Error bars represent the
standard deviation between randomly generated networks. The purple down and
green up triangles indicate the information difference for 10 and 5 year mortality,
respectively, of E};fh'k““ which is constructed with n = 32 nodes with £ = 2 that are
randomly chosen from those with above-average k..
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3.5 Summary and Discussion

The observational Fyy, or Fl,;, respectively measure clinically observable damage that
tends to occur late in life or pre-clinical damage that is typically observable in lab tests
or biomarkers before clinical damage is seen. However, they are similarly informative
of human mortality [70,72,140]. Our analysis indicates that individual laboratory
and clinical deficits have broad and overlapping ranges of mutual information.

Our working hypothesis is that clinical deficits correspond to high connectivity
nodes of a complex network, while laboratory deficits correspond to lower connectivity
nodes. With our network model of individual aging and mortality, we have confirmed
that Fyigh and Fioy, formed from high and low connectivity nodes respectively, behave
similarly to the observational Fiy, and Fi.p.

Within the context of our aging model, we uncover the mechanisms of this ob-
served behavior. In our model low-k nodes tend to damage before high-%k nodes. This
is because of the larger average damage rates of low-k nodes compared to high-k nodes
(as calculated with our network mean field theory, and illustrated in Fig. 3.7). At
the same time, our information spectrum shows that information I(A; D;|t) increases
with k. Roughly speaking, high-k nodes need a larger local frailty f to have compa-
rable damage rates as low-k nodes. Thus, damage of high-k nodes is informative of
high network damage, which also leads to mortality. This is why high-k nodes both
damage later and are informative of mortality (Fig. 3.10b).

However, some low-k nodes also damage later and are highly informative of mortal-
ity. Information I(A; D;|t) increases with &y, for the low-k nodes, and low-k high-k,,
nodes damage later. This can also be explained using the network structure. Low-k
nodes are protected from damage when they are connected to high-k£ nodes. Rapidly
damaging low-k nodes without this protection tend to damage early for most individ-
uals, giving these nodes a low information value of mortality. Conversely, protected
nodes tend to damage only when their high degree neighbors start to damage, which
only occurs when the network is heavily damaged and close to mortality. As a result,
only the low-k nodes with high-k,, are highly informative (Fig. 3.10a). Interestingly
these nodes still tend to damage before high-k nodes, leading to an early predictor of
mortality.

Degree correlations control the average degree of neighboring nodes and hence
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control the amount of protection in low-k nodes. By modifying the degree correlations
in the network in our computational model we have shown that this protection can be
caused by disassortative correlations — where low-k nodes tend to attach to high-k
nodes. Conversely, eliminating low-k high-k,, nodes by modifying the network to
introduce assortative correlations removes this protection, and we then find all low-k

nodes have low information (Fig. 3.13b).

Our mean-field model allows us to explicitly modify the degree distribution and
the degree correlations with the nearest-neighbor degree distribution P(k’|k), and to
include no other network features. In our mean-field model we see similar results to
our computational model where, e.g., adding assortative correlations increases the rate
at which Fioy increases with respect to Fpign. This confirms that degree distribution
and degree correlations largely determine the early damage of low-k nodes that we

observe in scale-free networks.

Degree distributions and correlations only weakly control the behavior of ER ran-
dom and WS-small world networks. The low variation in k and k,, in those networks
results in a lack of contrast between the damage rates of nodes. This leads to node
information that is nearly constant throughout the network and to only small differ-
ences in the damage structure of low-k and high-k nodes (Fig. 3.13c and d). This also
leads to low magnitude of the mutual information per node, since nodes behave much
more uniformly and “randomly” than in a scale-free network. However, we can still
see some protection in low-k nodes. This is particularly apparent in the ER random

network when Fi, surpasses Flo, (Fig. 3.14d).

The behavior of observational deficits seems to best resemble the behavior of the
computational model with a scale-free network and disassortative correlations. Node
information seen in the (default) scale-free disassortative network is a much better
qualitative match of observational data, as compared with scale-free assortative, WS

small-world, or ER random networks.

Our analogy between observational deficits and model nodes allows us to make
predictions about the underlying network structure of observational health deficits,
even though we cannot directly measure this network. Assuming the mechanisms
studied here (k and k,, based) are dominant, the observational network should have

a heavy-tail degree distribution, so that a large range of possible information values
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can be obtained. The network should also include disassortative correlations so that
there are connections between high-k and low-k nodes, allowing low-k£ nodes to be

informative of mortality.

We remain open to the possibility that other network topologies not considered
here, perhaps with different dynamical models, would provide a better phenomenolog-
ical description of the observational data. Nevertheless, we have demonstrated that
the phenomenology we have studied does discriminate among the network topolo-
gies we have considered. In particular, we have found that considering both the age
structure and the information fingerprint of both low and high-connectivity deficits

is useful in probing the network structure within human aging.

From observational data we find that clinical deficits that integrate many sys-
tems into their performance (e.g. functional disabilities, or social engagement) are
very informative (Figs. 3.2 and 3.3). In contrast, single diagnoses, even ones strongly
associated with age such as osteoporosis, on their own offer less value. The model
interpretation of this is that these high information disability deficits have a higher
connectivity than lower information clinical deficits. It intuitively makes sense for
deficits that integrate many systems to have a large connectivity. In support of this,
our partial network reconstruction (Fig. 3.5) shows that high information clinical
deficits in both the NHANES and CSHA correspond to nodes with a high recon-

structed degree.

We have shown that the age-structure of network damage is related to the network
structure. Highly informative low-degree nodes (pre-clinical deficits) damaged early
in life promote the damage of their high-degree neighbors, but the damage to their
high-degree neighbors takes time and is not seen in the high-degree (clinical) FI until
later ages. Indeed, we have shown that a Fj,, is slightly more informative at earlier
ages, and is increasingly informative for longer mortality outcomes (5 year vs 10 year)
(see Fig. 3.18). Choosing more high-k,, nodes in F},;, significantly enhances this effect.
Low-k nodes are informative of long-term mortality rather than short-term. Similar
results are seen in the observational CSHA data, which indicates that Fj,, could be

used as an early measure of risk of future poor health.

Our network model is generic, without a specific mapping between model nodes

and observed human deficits. This is because we have no reliable way of extracting
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a specific network from observational data, though we have shown that a partial
reconstruction of the rank-ordering of high-connectivity nodes can be done using a
method of reconstruction similar to that of WGCNA [154], see also [167]. Distinct
parameterization of every node of a network model would require enormous amounts
of observational data, if it could be done at all. For example, we have fewer than
70 observational nodes in NHANES data, but our network model uses N = 10000
nodes, so observational data under-samples a large network. We similarly expect
many more unobserved than observed deficits in any observational study. Instead,
we rely on signatures of the network structure that we can calculate from our partial
reconstruction. We can then use our generic model to identify robust qualitative
phenotypes — to uncover generic mechanisms, to predict behavior, and to improve
the utility of the Frailty Index in human aging and mortality.

In this paper we have kept our model parameterization unchanged from the default
parameters, though we have checked (data not shown) that our results are qualita-
tively robust to parameter variation. This has allowed us to explore the impact of
network topology on mortality statistics (a small effect) and on mutual information
between health deficits (a strong and distinctive effect). The Fign and Fioy, model
phenomenology are also affected by changes in network topology. This indicates that
both Fiign and Fi,y, are usefully distinct characteristics of health in our network model.
Our results provide insight into the mechanisms of the similarly useful and distinct

observational Fy, and Fy, [70,71,140].



Chapter 4

Generating synthetic aging trajectories with a weighted

network model using cross-sectional data

4.1 Background

In Chapter 3 we indirectly probed the network by varying the structure and studying
“fingerprints” of dynamical behaviour. We observed the increase in Frailty Index and
mortality rate with age and the structure of information content within the deficits to
determine that networks within the generic network model require a structure with
few high degree “hub” nodes, and many low degree nodes. This is a dissasortative
scale-free structure, which also offered an explanation for the differences between FI-
clin and FI-lab. This was done by comparing pre-defined network structures to the
observed data, and did not involve inferring the network from data. Additionally, this
also did not involve fitting damage rates or other model parameters. In this chapter,
we build a model where the network and damage rates are parameterized and fit
from data by maximum likelihood. This allows the model to be able to represent a
network of specific health variables, and generate realistic simulated populations with

individual binary health variables and mortality that correspond to the observed data.

To do this, we build from the generic network model by representing a subset
of the nodes (N = 10 compared to N = 10%) with specific health variables from
observational aging data. In the generic network model, each node had the same rate
parameters, and damage rates only differed due to the impact of neighbours. In this
new approach, the rate parameters for each node are separately fit. We parameterize
the rates in terms of a network of connection weights W, and other rate parameters.

We also simplify mortality by using a single mortality node.

Since only a small subset of the nodes are represented by specific health deficits
from observational data (10 deficits), we perform a mean-field approximation for the

unobserved nodes by representing the contribution to the local frailty of each node

68
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by a deterministic function. Starting from the GNM with N = 10* we can see this in

the following way,

fi(t) = Zaijdj/ki (4.1)

N N-10
= Z az-jdj/k’i + Z a,-jdj/k’i (42)
j=N-10+1 Jj=1
N
~ Z aijd; ki 4 pi(t), (4.3)
j=N-10+1

where p;(t) is the average contribution of the nodes outside of the top 10 most con-
nected nodes to the local frailty. Performing this approximation significantly speeds
up the model, since only 10 nodes need to be simulated stochastically, and the average
contribution of the unobserved nodes are computed deterministically with p;(¢). In
Figure 4.1 we measure this average contribution for each of the top 10 nodes in the
GNM. We see the a cubic fit for this contribution captures the behaviour, and so in
the weighted network model we fit functions y;(t) = 3.°_, ptint™ for each node i.

We further modify the GNM by generalizing the rates from exponentials with con-
stant rate parameters for each node, to quartic power series with separate parameters
for each node T} () = ¢(324_, it fi(t)™), and replace the binary adjacency matrix
a;; with a continuous-valued weight matrix w;; allowing more flexible connections of
varying strengths. The function ¢(x) = max(0, z) allows rates to instantly “turn on”
at f > 0 when v, < 0. This is a key component of the model, since many of the
deficits only occur late in life.

We use cross-sectional aging data to infer the parameters, which includes the
network weight parameters. Cross-sectional data only involves one measurement of
the health state per individual as well as follow-up mortality information, and does
not include time-course health states. We use small networks of 10 binary health
variables as nodes, representing potential health deficits of a Frailty Index.

This chapter presents the paper “Generating synthetic aging trajectories with a

weighted network model using cross-sectional data” published in 2020 [48].
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4.2 Introduction

Human aging is a complex process of stochastic accumulation of damage [52] that
occurs at many organismal scales ranging from the cellular [4] to the functional.
Individual health trajectories are heterogeneous, but typically worsen with age as
damage accumulates. Heterogeneity of aging trajectories arises even in studies of
clonal organisms in controlled laboratory conditions [53,129], and is an intrinsic part
of aging. Heterogeneity in health as individuals age has been measured with a variety
of methods, although here we focus on binary “health deficits” determined from
routine clinical assessment and self-reported surveys [14-16,69,168]. Health deficits
are indicators of an aging phenotype, indicating disease, laboratory abnormalities,
cognitive impairment, disability, or difficulty performing everyday tasks.

While any single deficit may not be a good measure of overall health, or a very
informative predictor of mortality, averaging many binary deficits to evaluate over-
all health provides measures that are strongly associated with both adverse health
outcomes and mortality [14-16,46,69,168]. Furthermore, such frailty indices (FIs)
are robust to missing or heterogeneous data [15]. Using “high-level” health-deficits
provides a measure of health that is both conveniently assessed and reflecting the
functional aspects of healthy living that are important to the individual [169]. Such
an FI also contains information about health that is not found in recent epigenetic
measures based on DNA-methylation [170].

While the FI has been shown to be broadly predictive of both mortality [171]
and of the accumulation of individual deficits [168,172], it does not distinguish the
health trajectories of two individuals with the same FI even if they have distinct sets
of accumulated deficits. Capturing the heterogeneity in health trajectories requires
modelling the full high-dimensional set of health variables. We develop a model to
generate populations of synthetic health trajectories, which capture this heterogene-
ity.

However, the development of models of aging is complicated by the data currently
available. Large observational studies (10*+ individuals) with linked mortality are
often cross-sectional (measuring most variables only when individuals enter a study),
have short censored survival outcomes, and have a lot of missing data. This has

made developing realistic models of human aging difficult. Nevertheless, such models
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would be useful to generate model individual health trajectories during aging from
birth, or from baseline data of actual individuals. Encouragingly, a model capable
of generating general health trajectories during aging using cross-sectional data has

recently been developed [173] — though it did not consider individual survival.

Here, we develop an intuitive model that can be fit with cross-sectional data with
censored survival information to generate individual aging trajectories that include
both health and survival. Our model is adapted from previous work modeling human
aging with stochastic dynamics on a complex network [11,44,45], which was shown to
capture population level aging phenomena, such as Gompertz’ law of mortality [135].
This model was based on the intuitive assumption that having one health deficit
increases the risk of acquiring another one, and so deficits can be thought of as
interacting in a network, in which connections establish pairwise associations [47].
Nodes in this older model represented generic/abstract deficits and corresponded to
no specific physiological systems in particular. Nevertheless, their collective behaviour
captured key aspects of aging. This “generic” network model (GNM) used many nodes
(N = 10%) to abstractly represent the many interacting physiological systems in the
human body, had simple interactions between nodes, and needed no age-dependent

programming of damage.

Our new “weighted” network model (WNM) is parameterized so that each node
represents an actual health attribute (potential health deficit) corresponding to ob-
servational aging data. We recognize that we will never be able to incorporate all
possible health attributes as nodes in our network or to describe exact biological
mechanisms. For this reason, we use more complex weighted interactions between
observed nodes that can capture the effective behaviour of underlying and/or unob-
served biological mechanisms. This new WNM can be considered as a coarse-grained

adaptation of our previous GNM, with far fewer nodes.

We separately fit our WNM with cross-sectional observational data from the Cana-
dian Study of Health and Aging (CSHA) [160] and the National Health and Nutrition
Examination Survey (NHANES) [159]. These human aging studies consist of 8547
and 9504 individuals, age ranges of 65 — 99 and 20 — 85 years, in which mortality
data are available for at most 6 or 10 years past study entry, respectively. Deficits in

these datasets are binary indicators of health issues and integrate information across
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physiological systems, such as difficulty performing activities of daily living (ADLs)
or more complex instrumental activities of daily living (IADLs). We estimate pa-
rameters for each study by maximizing the log-likelihood for our model to recover
the observations, where the likelihood is estimated from simulations of the stochastic
model. By validating our model on a separate test set, we demonstrate that our
model represents real aspects of aging, and is not overfitting to the training data.
We find that our synthetic individuals generated with our model capture the
health outcomes and survival of observed data with a number of different measures.
Indeed, rather than focusing on achieving optimal predictive performance on any one
particular task, our goal was to obtain a robust model that can generate realistic
trajectories for multiple health attributes at once for many individuals from either
actual or synthetic baseline health status. Nevertheless, our model cannot overcome
the intrinsic limitations of cross-sectional data — for example, the accuracy of health
trajectories will only be assessed by comparing simulated cohorts of individuals to

longitudinal data of the observed cohort.

4.3 Results

4.3.1 Health trajectories

Starting from an individual with a set of N potential binary deficits at a baseline age
to, {di(to)}Y,, our model (see Model section below, trained on the CSHA dataset)
generates deficit trajectories {d;(t)} describing health for synthetic individuals for
each age t > t; until mortality. (Here d; = 1 indicates a deficit for the ith aspect
of individual health, while d; = 0 indicates no deficit. We generally refer to a set of
potential health deficits {d;} as health attributes). We want to test whether these
synthetic individuals age with the same properties as do real individuals in the ob-
served data. Without longitudinal data, we cannot test these individual trajectories
directly. However, we can use the population average of the observed cross-sectional
data and compare with the average population trajectory predicted from our model.
If the study population was randomly sampled with no biases, we expect these average

trajectories to agree.

Given baseline age and N = 10 selected deficits for individuals from the test data



74

'5 1.070. Walking 711. Showering 1 2. Phone difficulty 3. Going out 1 4. Shopping

% difficulty difficulty difficulty difficulty

o = Model age 65

o 0.5« m?:dilaagz 75 1 (] 1 T

E W data u

o

2 0.0- T T 1 T T T - T T S T T |

G 1075, Preparing meal 6. House work 17. Take medicine 78. Managing 19.

> difficulty difficulty difficulty money difficulty -

E 0.5 . 1 1 1

S - Issues prevent
o 0.0 ] 1 normal activity
& " 70 80 90 100 70 80 90 100 70 80 90 100 70 80 90 100 70 80 90 100

Age, t

Figure 4.2: Average predicted trajectories of ten deficit prevalences (as indicated by
the subplot titles, numbered 0 to 9) vs. age for individuals from the test data aged
65— 70 surviving past 70 (solid blue lines) and aged 75— 80 surviving past 80 (dashed
green lines). Observed CSHA prevalence is shown in red squares; standard errors are
smaller than the point size.

aged 65 - 70 that survive past age 70, and individuals aged 75 - 80 that survive
past age 80, we use our model to forecast their health trajectories. These simulated
trajectories allow us to the compute the full joint distribution of health states vs age
for these simulated individuals, p({d;}|t). Since this distribution is 10-dimensional,
with 219 = 1024 distinct age-dependent probabilities, we plot only the prevalences
of each deficit (by marginalizing the distribution). We compare the average of these
individual trajectories until death to the deficit prevalence from the observed cross-
sectional CSHA data for ages 70+ and 80+. In Figure 4.2 we show health trajectories
using prevalence at age ¢ of the ith deficit, p(d; = 1|t), for the model (blue solid lines
for 65 - 70 and green dashed lines for 75 - 80) together with the observed CSHA
prevalence (red squares). We see excellent agreement for nearly 30 years for most
deficits. This shows that the model is able to project a population forward in time
while correctly identifying changes in deficit prevalence. We also show the average
predicted trajectories with an alternative set of 10 deficits in Appendix Figure A.3
and using the NHANES data in A .4.

A similar prediction is done for the prevalence of pair combinations of deficits,
i.e. comorbidities. ~We predict the probability of having two specific deficits

p(d; = 1,d; = 1|t) vs age in our model, and compare with the observed data. This is
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Figure 4.3: Average predicted trajectories of pairwise deficit prevalence vs. age for
individuals from the test data aged 65 — 70 surviving past 70 (blue solid lines) and
aged 75 — 80 surviving past 80 (dashed green lines). Subplot titles indicate the two
deficits included in the pairwise prevalence, with numbers corresponding to titles
in Figure 4.2. Only odd numbered pairs are shown here; other pairs are shown
in Appendix Figure A.5. CSHA data is shown by red squares; errorbars represent
standard errors of the pairwise prevalence.

shown in Figure 4.3 and in Appendix Figure A.5, and also shows excellent agreement
between the model and the CSHA data for over 30 years. This indicates that our
model is accurately capturing the association between pairs of deficits through net-
work interactions. Notably, pairwise combinations in the model often perform better
than corresponding prevalences — see for example (1, 7) in Figure 4.3 — confirming that
pairwise combinations (together with higher order combinations, not shown here) are

non-trivial predictions of the model.

We can represent overall individual health with the well-established “Frailty In-
dex” (FI), an index that uses the proportion of deficits, F' = Zf\il d;/N, as a predictor
of health and mortality [14,15]. In Appendix Figure A.6 we show that the heterogene-
ity in health as individuals age, as characterized by distributions of FI at different

ages, is similar to the observed CSHA data.

We are not limited to modelling known individuals. In Appendix Figure A.7
we show that the population prevalences of synthetic individuals starting from birth
with zero damage also agree with the observed CSHA prevalences. Indeed, we can

generate trajectories and survival curves for any baseline age and individual set of



76

deficits. Using synthetic populations, we can also generate trajectories starting from

any age with partially observed sets of deficits with missing values.

Figure 4.4 shows F1 trajectories starting from the known baseline data (red circle)
for 6 synthetic individuals with specific deficits. Horizontally, we vary baseline age
with 65, 75, and 85 along the columns. Vertically, we vary baseline deficits, with
bottom individuals having a higher initial FI by having two additional deficits. In-
dividual trajectories are conditioned on dying at their median survival probability
(dashed black lines), seen from the individual black survival curves. Shaded regions
show a distribution of FI trajectories. The trajectories behave reasonably. Individ-
uals with more baseline deficits accumulate additional deficits faster and die sooner.
Individuals starting at older ages also have a more rapid increase in number of deficits
and have a shorter time to death. Note that these trajectories exhibit FIs larger than
the typically observed maximum of 0.7 [68,168,174], which is due to the small num-
ber of potential deficits used here (only 10) compared to typical studies (with 30 - 40
potential deficits).

4.3.2 Individual deficit predictions

Since our training and test data sets have similar distribution of health states (e.g.
deficit prevalence), the good test performances in Figure 4.2 and Figure 4.3 do not
rule out overfitting to the training set, because the model was only assessed against
the distribution of health states for the training and test data. To assess overfitting,
we need to consider predictions of individual health states —i.e. observed deficits for
specific individuals. We first verify that there is only a ~ 20% overlap between the
observed health states of individuals in the training and test data sets, see Appendix
Figure A.8. (We also confirm that using only one or two attributes leads to a = 90%
overlap. Note that this overlap is not due to the same individuals being present in

the training and test sets, but due to the discrete nature of the binary deficits.)

We test the model’s ability to capture the age-dependent joint distribution of
deficits p({d;}|t) by evaluating its performance in predicting “left out” deficits from
individuals in the test set at the same age, i.e. performing missing data imputation

by estimating p({d; }missing|{di }observed, t). Given a known age t(™ and known health
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Figure 4.4: The purple shading indicates the distribution of Frailty Index trajectories
vs age for simulated individuals starting from the red circle at a specific age, with the
indicated starting set of deficits. The scale-bar at right indicates the probability that
a simulated trajectory falls within a particular colour. In the top row individuals only
start with one deficit. In the bottom row individuals start with three deficits. In the
three columns, individuals start at age 65, 75, or 85. Individual survival curves are
shown as black lines, and trajectories are conditioned on dying at the median death
age (indicated with dashed lines).
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predictions.

attributes {d;}™ for an individual m from the test set, we simulate from zero dam-
age at birth and sample from the simulated individuals at age ™™ that have the
health attributes {d;+;}~, to estimate the probability of having the left out deficit,
p(d; = 1|{dix;}™,t'™). We compare this probability with the actual value of the
left out health attributes dg-m) for this individual at the same age. This is a binary
classification, and can be quantified by the area under a ROC curve — the AUC.

Figure 4.5 shows the AUC for each left-out deficit. This is equal to the probability
that given two individuals with and without the deficit, the model correctly predicts a
higher probability of having the deficit for the individual with the deficit than without.
The full test set is shown as a solid blue line, while blue circles show the AUC stratified
by age. For all deficits, we see AUC values well above 0.5 for the test data, meaning
that our model is making informative predictions and not just overfitting the training
data. Orange squares and lines show similar values for the AUC of the training data,

which is further confirmation that any overfitting is minimal.

Obtaining essentially the same AUC when stratifying by age in Figure 4.5 demon-
strates that the model is predicting as well even when we eliminate age as a factor.
This indicates that the model is utilizing the network interactions between observed
deficits to make non-trivial individual predictions, and not just using e.g. increasing

prevalence with age.
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4.3.3 Survival

We can also model individual mortality. We take baseline data from the test
set for an individual m at age ¢'™ and health attributes {d;}(™, and simulate
from this age until mortality. This allows us to estimate their survival function
S(a|tt™ {d;}™), ie. the individual’s probability of surviving to an age a > t(™.
We average these to get a population average survival function over M individuals,
(S(altt™ {d;}m)),, = > S(alt™, {d;}™). We show the comparison of this to
a Kaplan-Meier estimate [175] of the population survival function from the observed
CSHA test data in Figure 4.6A, with our model shown in blue and the observational
test data in red. We observe good agreement, and also find that model predictions

correctly drop to zero survival by age 120.

Since the training and test distributions are similar, a population measure of mor-
tality does not tell us whether the model is overfitting — only whether the model is
able to capture the population trends in mortality. Accordingly, we validate indi-
vidual survival on the test set with a C-index [176] to measure how well the model
discriminates individuals in terms of risk of mortality. The C-index is the probabil-
ity that the model correctly predicts which of a pair of individuals lives longer, so a

C-index above 0.5 is making predictions better than random.
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Since our model includes potentially complex time-dependent effects, where sur-
vival curves can potentially cross, we use a more general age-dependent C-index. [177]
We obtain this by comparing the rank ordering between survival probability and
known survival age while including censoring, so Ot = Pr(S(a(m)|t(m) {d;}(m)) <
$(am[ms) {d,}ma))|glme) < qlm), clm) = ) [177].

Figure 4.6B shows this age-dependent C-index for both on the full test set (solid
blue line) and stratified by age (blue circles). The C-index shows that the model
discriminates well on the full test when the difference in ages between individuals can
be used in the discrimination. When we stratify by age to eliminate this effect, we
nevertheless see that the model still discriminates well based on just these 10 deficits
alone, indicating that the model captures an increased risk of mortality from specific
deficits. In particular, our model performs better than a standard Cox-proportional
hazards [119] model using the Frailty Index and age (green squares and line). We
note that stratified values are noisy due to the small number of individuals per age
bin, especially at higher ages.

In Appendix Figure A.9A we show similar results for the C-Index for both train-
ing and test sets, which also indicates a lack of overfitting. Similarly, Appendix
Figure A.9B shows an R? measure constructed from Brier Scores [178]. a measure
of how well predicted and observed survival curves match, that behaves similarly for
training and test data. Furthermore, Appendix Figure A.9C shows the ROC AUC
for predicting binary dead/alive on the train/test sets within a specific window of
time, finding a similar AUC of approximately for 1-5 year mortality windows. For
all of these, we find similar behavior between the training and test sets, indicating
a lack of overfitting. This is also seen for survival predictions for the alternative set
of deficits used in Appendix Figure A.3, as shown in Appendix Figure A.10 and for
survival predictions for the NHANES dataset, as shown in Appendix Figure A.11.

4.3.4 Inferred network structure

In the Appendix A section on Parameter Robustness, we explore the “robustness” of
both our network parameters and predictions by sampling an ensemble of parameters
around the maximum likelihood estimate [179]. Appendix Figure A.1 shows that

significant deviations from the maximum likelihood parameters still leads to relatively
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Figure 4.7: Damage rate robustness. Average pairwise damage rate I';;(t) =
(TF(t,d; = 0,d; = 1, {di}))p({di}|t.di=0.4;=1) Of node 7 given that node j is damaged, vs
age. Each curve is averaged over combinations of the other node states, weighted by
their probability of occurring in the simulation. Each intersecting row and column
represents the indicated node labelled on the diagonal, and the direction of the links
is indicated by labels on each subplot. Each subplot has 13 rate curves, each with
different estimated parameters for a different starting seed. The qualitative agreement
of these curves for particular pairs of nodes indicates that these detailed damage rates
are qualitatively robust (note the linear scale), even though the effective degrees of
the nodes are not (see Appendix Appendix Figure A.2).



82

accurate fits of the data — i.e. we obtain robust predictions. However, when we
optimized the model several times with different random seeds we show in Appendix
Figure A.2 that we find significantly different network parameterizations each time.
Appendix Figure A.12D shows that even the sign of individual connections is not
robust. We conclude that while the model behavior is robust, the network structures
themselves are not robustly predicted by the available data.

Nevertheless, we show in Figure 4.7 that how damage propagates from node to
node of the network does have some degree of robustness. We show average pair-
wise damage rates [';, ;(t) = (I'F (¢, d; = 0,d; = L A{di}))p(ta}it.di=0,4,=1) of the ith
node conditional on prior damage of the jth node. This robustness shows that the
behavior of our weighted network model (WNM) is robust despite some sloppiness of

individual parameters.

4.4 Discussion

Our weighted network model (WNM) is trained with cross-sectional data, generates
cohorts of synthetic individuals that resemble the observational data, and can forecast
the future survival of real individuals from their baseline health and age. We have
validated the WNM model through a variety of measures. Synthetic individuals
age with trajectories that have approximately the same prevalence of deficits and
comorbidities as in the observed data. The average trajectories predicted by the
model agree very well for nearly 30 years. Given a set of known deficits, the model
can predict the probability of having a missing or unknown deficit at the same age,
demonstrating the models ability to capture the age-dependent joint distribution of
the deficits. Estimated survival curves also agree with observed population survival,
are predictive of mortality, and discriminate between individuals.

Our model has a large number (188) parameters while our health data has only
N = 10 binary attributes. One concern with having at most 2 = 1024 discrete
health states is that there could be significant overlap between the test and training
sets. Nevertheless, we showed in Appendix Figure A.8, that a significant fraction
of the health states from the test set are not in the training set. Using this (non-
overlapping) test set we have shown that our model does not substantially overfit and

can make predictions on unseen test individuals.
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We emphasize that our model is not just fitting the prevalence of the N = 10
deficits, but is fit to the full 10-dimensional age-dependent joint distribution p({d;}|t)
which has 1024 distinct states. A full model of this distribution would require many
more than 1024 parameters. Our network model substantially reduces the number of
parameters required, by only directly fitting pairwise interactions and getting effective
higher order interactions through the local damage term in our model (f;). While a
minimal model using our network approach using linear or simple exponential forms
for the functions describing rates in our model would have 144 parameters, we have
increased this to 188 by using 3rd order power series. This has offered increased

flexibility to the model and also improves performance.

Our model generates accurate projections of the average health trajectories of
groups of individuals. Taking a group of individuals and simulating them to their
deaths, we find the average trajectory generally agrees with the average population
data, which shows that model averaged trajectories are quite accurate and are con-
sistent with the assumption that the study population is a random (representative)
sample. Note that this does not mean that we can overcome the intrinsic limitations of
cross-sectional data, and to validate the accuracy of individual predicted trajectories

we would need longitudinal data.

Our model works when separately trained and tested on CSHA and NHANES
cross-sectional datasets. This success indicates that our approach should work more
broadly with comparable cross-sectional data from other datasets. Nevertheless, we
find that performance is somewhat worse on the NHANES dataset. This may be due
to the presence of many missing values in the NHANES dataset, the increased age
range of the NHANES dataset (20 — 85 years for NHANES vs 65 — 99 for CSHA), or
perhaps differing biases in the cohorts studied.

When we predict health trajectories until very old ages (80 - 90 years old), our
model tends to estimate slightly higher prevalence than are observed in cross-sectional
data (see Figure 4.2, and Appendix Figures A.3 and A.4), particularly in the NHANES
data where baseline measurements are taken further away from the actual age of
death than in the CSHA data. One possible explanation for this is that there is
a compromise in the model between fitting these trajectories and fitting survival,

and the model is attempting to amend this compromise by fitting trajectories well for
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early ages, then rapidly damaging deficits to induce mortality in individuals to obtain
the correct survival predictions. Another possibility is that the damage rates need
to rapidly increase from ages 60 to 90, but then slowly taper off of this increase for
these older individuals. Fixing this would require more flexible damage rate functions

capable of tapering off for very old individuals.

Alternatively, our model could be describing a real acceleration of health decline
before death that is not captured in the observational cross-sectional data due the
lack of health measurements near death. In other words, these cross-sectional studies
could be biased by excluding subjects near death, and our model is correctly including
a large increase in the rate of damage near death. Indeed, in longitudinal studies a
rapidly rising FI has been shown to identify individuals with a high risk of death
within 1 year [180] — this is called “terminal decline” [181]. Using such longitudinal
data (see below) would allow us to better predict and to better test generated health

trajectories for specific individuals, including health near death.

Individual survival is assessed with the C-index [176]. The C-index evaluates the
model’s ability to predict the relative risk of death for pairs of individuals. A C-index
of 1 represents perfect predictions, but in practice intrinsic variability of individual
mortality will limit the C-index below that in an age and health-dependent way. The
availability of individual data will further limit the C-index below that — but generally
above 0.5, for an uninformed random guess. We observe C-index values of around 0.6
when stratifying by age, which means that just by using 10 binary deficits, we can
predict which of two individuals of the same age lives longer with 60% accuracy. Our
model achieves better results than a simple Cox-proportional hazards model [119]
using the Frailty Index, but a larger number of health deficits and more data would

further improve our model’s predictions.

Our previous generic network model (GNM) captured population level aging be-
haviour like Gompertz’ law of mortality and the average increase in the Frailty In-
dex (health decline) vs age [44,45], however the nodes did not correspond to any
particular health attribute (i.e. they were generic). Adding more complexity to
damage/mortality rates with more flexible functional forms, node-dependent fitting
parameters, and a weighted interaction network, we have here been able to repre-

sent individual health attributes from observational aging data with specific nodes
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in our WNM. This has allowed us to model individual health trajectories, including

individual survival.

The choice of which deficits to use with our model is arbitrary, the only assump-
tions we require are that they are binary and not reversible. We do not need the
deficits to have strong correlations between them or be good predictors of mortality
to capture the sample trends in health trajectories (Figure 4.2 and Figure 4.3) or
overall survival function (Figure 4.6A), since these do not show individual predic-
tions but instead captures how well the model overall captures the trends seen in the
data. However, the quality of individual predictions for left-out deficits and survival
(Figure 4.5 and Figure 4.6B) do depend on the deficits chosen, because these are
predictions for specific individuals. For independent deficits that are absolutely un-
informative of mortality, we would expect AUCs of 0.5 for left-out deficit prediction

and a C-index of 0.5 for the mortality prediction.

The only health variables we have included are health deficits that accumulate
through damage. Other static or non damage-accumulation variables are often con-
sidered in aging studies as well, such as sex [182-184], and environmental variables
like socioeconomic status [185], or lifestyle. Variables that don’t change by damage
accumulation but still interact with health deficits can be easily added to the model
as network nodes with static values. In this way they could naturally interact with
the damage-accumulation health attributes. Similarly, individual non-damage vari-
ables that could be deliberately modified — such as physical activity levels [186, 187]
— could be added as nodes with explicit time-dependent values that depend on the

individual.

There has been significant work inferring biological networks, using a variety of
approaches [151,152,154,188] and at different scales [189]. In the context of human
frailty, previous work has created a network representation of health attributes with
measures of association or correlation [45,190,191]. Different methods result in dif-
ferent networks, and thus it has not been clear what underlying association between
the deficits a given network represents. Equivalently, it has not been clear how to
test a given network representation. In this work we conclude that while the model
behavior is robust, the network structures themselves inferred by the model are not

robustly predicted by the available data.
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This lack of robustness of the network is not surprising. Due to the complex
interactions between many parameters in our model, we expect that many network
parameters are “sloppy” [192]. This results in robust collective behavior of the system
for many different combinations of parameters — i.e. many different networks that
are consistent with the observed data. Indeed, this robust behavior seems necessary

to perform well in predicting deficit prevalence and mortality.

Our network model imposes casual mechanisms within the simulation — it assumes
that there is a direction to the network weights, and attempts to infer those weights
within the assumptions of the model. Since we do not have adequate data to be
able to infer true casual relations, these directed links are simply chosen for accurate
prediction. A directed link in our model is just defined in terms of prediction: a par-
ticular directed connection between two variables is included if it improves prediction
accuracy. Similarly, our network connections are not simply correlations between the

variables (for those, see Appendix Figure A.12), but are chosen to improve prediction.

In recent models of disease progression or aging either the mortality is not con-
sidered [173], or the models require longitudinal data [193], or both [194-196]. Struc-
turally, our model differs from others by using an explicit network describing pairwise
interactions, and it uses this network to generate stochastic changes to their health
state as they age until death — rather than capturing the dynamics with unobserved
latent variables that are harder to interpret. Using discrete health states within our
model allows us to simply compare with observed health states using maximum like-
lihood methods, and allows our success while using only cross-sectional data. That
said, our approach could be extended to use longitudinal data for training — and we

would expect this to further improve model behavior.

The interpretability of our model structure makes it straightforward to adapt
our model to new applications. We can easily generate synthetic tracked health
trajectories, or forecast the future trajectories of individuals from specified health
states. This means that our model can generate many different stochastic realizations
for the same individual after baseline, and can show how differences in possible health
trajectories lead to differences in mortality. Another application of our computational
approach that would be facilitated by our model structure is to manipulate model

individuals to perform “health interventions” on specific observed nodes or sets of
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nodes. We could then observe the affect of general interventions on health trajectories
and mortality. These predictions could then be tested with longitudinal data. This

is left for future work.

4.5 Methods

4.5.1 Model structure

In previous work, we developed a generic network model (GNM) [44, 45] to study
how damage propagation in a network can lead to similar behaviour as observed in
aging, in terms of population health and mortality. In this work we expand upon and
generalize the GNM to be able to fit the model to individuals with specific observed
deficits with a maximum likelihood approach. This allows us to generate synthetic
individuals from the model, which age with similar properties as the cohort used to
fit the model.

We consider a network of N nodes representing binary health attributes. Each
node ¢ = 1,..., N can be in state d; = 0 for undamaged (healthy) or d; = 1 damaged
(deficit). Nodes in the network undergo stochastic damage transitions (0 — 1) as an
individual ages. These transitions occur with rates that depend on the local damage
of neighbouring nodes. We call this local damage the “local frailty”, f;.

In the GNM, we measured the local damage around a specific node as the
proportion of damaged neighbours, f; = %Zjvzl a;jd;, where a;; is the binary-
valued adjacency matrix of an undirected network and k; = > ; ij is the node
degree. Damage transitions (0 — 1) between states occurred with rates that de-
pend exponentially on the proportion of damaged neighbours, described by a function
[t(f;) = T§ exp (v f;) with tunable parameters v and I'j. Here we use superscript
“+” to denote that this is a damage rate, and correspondingly use “-” to denote repair
rates. The baseline rate T'g controls the damage rate when f; = 0, and v+ controls
how strongly the rate increases with increasing f;. Similar repair transitions were
also included (with separate parameters v~ and Iy ), but were found to be negligible.
The parameters v and I'§ were identical for each node and chosen to fit population
mortality rates (Gompertz’ law) and overall health decline (average Frailty Index).

For the GNM studies we used N = 10 nodes [44,45].
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In this work, we generalize the GNM to allow the model to represent specific
health attributes measured in observed health data as nodes in the network. We
generalize the original binary and undirected network to a weighted and directed
network, described by a continuous-valued adjacency matrix of weights, w;;. These
weights represent the strength of connections between pairs of nodes. We call this
a weighted network model (WNM). We use far fewer than 10* nodes in this WNM
network, but account for the contribution of these missing nodes by introducing a
time-dependent function p;(t) to the local damage of each node, f;. This function
1;(t) represents the average contribution to the local damage by the dynamics of the
unobserved nodes. This average local damage contribution p;(t) for each node i is
implemented as a power series in terms of ¢ with coefficients { um}iﬁfonf , where ny
is a hyperparameter for the number of terms used in the power series. This means

our new measure of local damage for the ¢th node is a weighted sum over all of the

nodes of the network, with the additional contribution from the p;(¢) term,

eAd)) = oD wad; + (), (4.4)
where  pu;(t) = Z,umt”.

Powers in power series are indexed by n, individual deficits or rates are indexed by
7, and sums over nodes in the network are indexed by 7. We use this convention of
indexing throughout the methods. The function ¢(x) = max (z,0) is a “rectifier” or
“hinge” function [197] that clips negative values to zero, resulting in a continuous non-
negative function. This can allow strong non-linear behaviour by allowing the function

to be able to effectively “turn on” at older ages. The network weights {wij}fyjzl and

i=N,n=ngy

i—1n—o areincluded as fitting parameters of the model.

power series coefficients {14, }
The coefficients {p;,,} are constrained so that p;(t) increases monotonically with age,

details are in Appendix A.

The exponential damage rates of the GNM have been replaced by more general
power-series in terms of f;, with node-dependent coefficients to allow each node to
have a different damage rate. This way, specific nodes in the network are able to

represent the distinct behaviour for specific deficits in the observed data (in contrast
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to the generic network model). This more general damage rate for node i is given by,

DreAd)) = o Doah At A", (45)

This function describes the damage transition rate from 0 to 1 for node i. The

i=N,n=n4

power series coefficients {v;" 17— """

are fitting parameters of the model and n, is a
hyperparameter that determines the highest-order in the power series. The coefficients
{~;" } are constrained so that the rate increases monotonically with f;.

Mortality occurs as a separate process with a rate of death that follows the same

form with a power series,
np,
ot {d}) = oD analtAa})"), (4.6)
n=0

TLD2

ot Ad)) = o( DA+ Y mat”). (4.7)

This mortality rate is equivalent to having a single node that corresponds to mortality,
and death occurs when it damages (in contrast to the two nodes that were used in the
GNM [11,44]). The measure of local damage z that controls mortality is analogous
to the local damage f; for damage rates, and depends on each deficit linearly in a
weighted sum. Additionally, it includes an age-dependent deficit-independent func-
tion represented as a power series (analogous to p;(t)). This mortality rate uses fitting
parameters {a, }.78 , {5 M., and {n,}"72 as well as np,, np, as hyperparameters
determining the number of terms in the power series. The coefficients in both I'p and
x are constrained so that they increase monotonically in x and ¢, respectively.

In total the model has Nyoy = N(N + ny + ny + 1) + np, + np, + 2 fitting
parameters. We restrict parameter values to ensure that f;, '), I'p, and z are all
monotonically increasing functions of age. Details of the requisite parameter bounds
are in Appendix A. Despite the large number of parameters, we have many more
individual observations. We also carefully test predictions for a test population that
has small overlap of observed states with our training population (see Appendix
Figure A.8). We find no evidence of overfitting.

The model is stochastically simulated by assuming the transition rates describe

exponentially distributed waiting times between transitions, and then using an exact
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event-driven stochastic simulation algorithm (SSA /Kinetic Monte Carlo) [144]. De-
tails of the stochastic simulation are in the SI. For one run of the model until death,
i.e. for each synthetic individual, the model outputs death age tp and all node tra-
jectories, {d;(t)}i=lV for all ¢ between the initial age and mortality. Fully synthetic
individuals are started at ¢ = 0 with all d;(t = 0) = 0, while predicted trajectories for
observed individuals are initialized at some ¢, with the completely observed health
state at 5. Due to the exact nature of the SSA, all transition times are precisely

resolved in our model data.

4.5.2 Likelihood

We calculate our likelihood using cross-sectional data. For the mth of M individuals,
we have measurements of health attributes {d;}™ at age t(™. Instead of death age,
we have an observed survival age a™ due to right censoring. This is the oldest age

that an individual is known to be alive, which can be written o™ = min (t%n), Em))

, where t%n) is actual death age and ¢lm)

is the censoring age i.e., the age of the
individual when they are known to be still alive due to observed health state(s) but
after which their mortality is not recorded. We indicate censoring with a binary
variable ¢™ = 1, and uncensored with ¢™ = 0. In summary, we consider observed
cross-sectional data of the form {t(m), {d;}™) qlm) c(m)}i\::l.

By simulating synthetic individuals from the model, we sample and estimate the
probability p({di}(m),tgn)ﬂ(m), 0) for each individual m in the data. We denote all
parameters by the vector 6. For simplicity we split this probability into two separate

parts, representing mortality and health respectively:
log p({di}™, 15"t 0) = log p(t;” [{di} ™, 1™, 0) + log p({d;} ™1™ 8). (4.8)

For uncensored individuals, we can calculate their likelihood by using their known
death age using Equation 4.8. For censored individuals, we also need to integrate the

mortality term over all possible death ages above the censoring age,
oo

S(a(m)|t(m),{di}(m)70):/ p(a'|t™ {d;}™ 0)dd/ (4.9)

alm

which is the probability of surviving to at least age a. Then we can calculate the full
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log-likelihood,

L(G) — Luncensored +Lhea1th +Lcensored (41())

mortality mortality

= > logp(a™[{d}™, 1™, 8)

m|c(m) =0

+ Y logp({di}™|t™), 6)

+ > logS(a™)it™ {d;}, 8),
m|c(m)=1
where the last term is added for censored individuals.

For an individual with missing data that does not have the full N health attributes
measured, we marginalize over the missing values implicitly by sampling all possible
combinations of the missing (binary) values. This is done using a synthetic population
that has been initialized at ¢ = 0 with no damage. Additional details of the likelihood

estimation from simulations are in the SI.

4.5.3 Observed data

We use data from the Canadian Study of Health and Aging (CSHA) [160] to develop
and test our model. The CSHA study used stratified sampling to be a representative
sample of the older Canadian population. We use the first wave of the sample with
8547 individuals that range from ages 65 —99 and death ages that are available within
a 6 year censoring window. The mean age is 76 years with a standard deviation of 7
years, the individuals are 60% female, and 78% of individuals have a censored death
age. The 10 binary deficits used in the main plots are “Walking difficulty”, “Showering
difficulty”, “Phone difficulty”, “Going out difficulty”, “Shopping difficulty”, “Prepar-
ing meal difficulty”, “House work difficulty”, “Take medicine difficulty”, “Managing
money difficulty”, and “Issues prevent normal activity”. These were chosen by select-
ing deficits that had large hazard ratios in a Cox proportional hazards analysis [119],
although any alternate sets of deficits can work, and an alternative set are shown in
Appendix A.

We split the data into a training set of 1020 individuals and a test set of 7527
individuals. We do this such that dividing the training set into 5 year age bins has an

approximately uniform age distribution, and the remaining individuals are put into
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the test set. This balances the training set and ensures no age is “prioritized” in the
model training by having a much larger number of individuals.

We validate our conclusions on the National Health And Nutrition Examination
Survey (NHANES) [159]. The NHANES dataset used stratified sampling to be a
representative sample of the US population. We use a combined sample from the
2003-2004 and 2005-2006 cohorts. The sample has 9504 individuals that range from
ages 20 — 85 with death ages that are available within a 10 year censoring window.
The mean age is 51 years, with a standard deviation of 20 years, the individuals are
52% female, and 88% of individuals have a censored death age. In the same way
as the CSHA data, this data is split into 2352 training individuals and 7151 test

individuals.

4.5.4 Parameter optimization

For each data-set (and choice of health attributes), we maximize the log-likelihood
in Equation 4.10 using particle swarm optimization [198] in order to train the model
and estimate the parameters f. Details of the parameter optimization procedure are
in Appendix A. We use parameter bounds shown in the SI to impose monotonic de-
pendence of damage rates on existing damage. We regularize the fitting as detailed
in Appendix A. We choose hyperparameters n, =4 and ny = np, = np, = 3. These
are the number of terms in our power-series expansions used in damage and mortality
functions. The hyperparameters are hand chosen for simplicity. These hyperparame-
ters result in a model with V(N +8)+ 8 parameters, where N is the number of binary
health attributed modelled for each individual. Due to computational demands, this

practically limits the size of N — here we take N = 10 and so have 188 parameters.



Chapter 5

Interpretable machine learning for high-dimensional

trajectories of aging health

5.1 Background

Our previous work on the Weighted Network Model in Chapter 4 used an interaction
network with 10 binary health variables. The model was fit with cross-sectional data
that only had one measurement for each individual, along with mortality information.
This approach was limited by computational power available, since the model involved
discrete transitions we had to use slower non-gradient based optimization methods
to fit the model. Additionally, the model required many simulations to approximate

the likelihood function (known as simulation based inference [199,200]).

In this chapter, I develop the Dynamic, Joint, Interpretable Network (DJIN) model
of aging. Instead of building from the Generic Network Model as was done with the
Weighted Network Model, we take a new approach. The main distinctions between
the WNM and the DJIN model is the use of continuous-valued health variables as

nodes in the network, and the use of a large longitudinal dataset to train the model.

In this model, the network consists of 29 continuous-valued health variables from
the English Longitudinal Study of Aging (ELSA) [201], a large longitudinal study of
aging with up to 8 follow-up measurements per individual. Additionally, the model
is much more efficient allowing us to fit this model with more variables and many
more individuals when compared to the WNM. The continuous dynamics used in
the DJIN model let us use the stochastic gradient optimization techniques used in
machine learning to greatly increase the speed of training the model, allowing us to

train with large networks for a large number of individuals.

This model is similar to the Stochastic Process Model of Aging previously de-
veloped by Yashin et al. [33-36]. In this model, the observed health state y(t) is

93
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described by a stochastic differential equation,
dy(t) = W(t)(y(t) — £(t))dt + o (t) - dB(2), (5.1)

where f(t) describes the baseline evolution of the health state, W(t) is a matrix
describing the interactions between health variables, and o (t) is the strength of the
diffusive noise in the evolution of the health state.

Additionally, the hazard rate of mortality is described by “quadratic hazards”,

h(t) = ho(t) + (y(t) — g(t))" Q) (¥ () — &(1)), (5.2)

where ho(t) is the baseline hazard, g(t) is the baseline evolution, and Q(%) is a matrix
describing the interactions for mortality.

This joint model of both health and mortality can theoretically be used to model
any number of health variables, however it has only used to model 1 or 2 variables.
Additionally, only simple forms of the functions W(t),f(t), o (t), g(t), Q(t) were con-
sidered, being either set constant or as linear functions of time.

The DJIN model represents an extension and advancement of this approach to
modelling aging, using techniques from modern machine learning. This is done by
scaling the approach up to incorporating many interacting health variables and large
datasets, Bayesian inference to include uncertainty in parameters and predictions, and
using flexible neural networks to learn the unknown functions involved in the model,
except the interaction network W. Instead we use a constant interaction network W,
which allows us to interpret the interactions between the health variables in terms
of this network. Note, we do not attempt to interpret all aspects of the model, but
rather use “black-box” neural networks for all components of the model except the
interaction network.

This chapter presents the paper “Interpretable machine learning for high-

dimensional trajectories of aging health” submitted for publication in 2021.

5.2 Introduction

Aging is a high-dimensional process due to the enormous number of aspects of healthy
functioning that can change with age across a multitude of physical scales [4,52]. This

complexity is compounded by the heterogeneity and stochasticity of individual aging
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outcomes [53,129]. Strategies to simplify the complexity of aging include identifying
key biomarkers that quantitatively assess the aging process [57,61] or integrating
many variables into simple and interpretable one-dimensional summary measures of
the progression of aging, as with “Biological Age” [18,153,202], clinical measures such
as frailty [14,16], or recent machine learning models of aging [173,203]. Nevertheless,
one-dimensional measures only summarize the progression of aging, and so can miss
significant aspects of high-dimensional aging trajectories and of heterogeneous aging
outcomes. We introduce a machine learning approach to model high-dimensional
trajectories directly, while still learning interpretable aspects of our model through
an explicit network of interactions between variables. We also compare this model
with lower-dimensional modelling approaches, exploring the dimensionality required

to model aging health outcomes.

The increasing availability of large longitudinal aging studies is beginning to pro-
vide the rich data-sets necessary for the development of flexible machine learning
models of aging [23]. Methods for predictive modelling of individual health trajecto-
ries of disease progression have already been developed [193-196,204,205], but they
generally are not joint models that include both mortality and the progression of
aging [193]. There has also been progress on learning interpretable summaries of ag-
ing progression [173,203], generalizing biological-age approaches but still producing

low-dimensional summaries of aging.

Less progress has been made on the more general problem of modeling high-
dimensional aging trajectories. Stochastic-process joint models that simultaneously
model longitudinal and survival data have been proposed [33,35,36], but have only
been implemented for one or two health variables at a time. Farrell et al. [48] used
cross-sectional data to build a network model that generated trajectories of 10 health

variables and predicted survival, but it was limited to binary health measures.

In this work we use the English Longitudinal Study of Aging (ELSA, [201]),
which is a large observational population study including a wide variety of vari-
ables with follow-up measurements for up to 20 years including mortality. Like other
large observational studies, for most individuals it has many missing measurements,
few irregularly-timed follow-ups, and censored mortality. Any practical approach to

model such data must confront the challenges provided by missing and irregularly
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timed data and by mortality censoring.

While machine learning (ML) approaches can help us navigate these challenges
with available data, they face additional challenges of interpretability [23,206]. “Sci-
entific Machine Learning” [24] or “Theory guided data science” [25] suggests that
domain knowledge be used to constrain and add interpretability to ML models. For
example, we can require that aging is modelled as a network of interacting health
components [46,47], and that stochastic differential equations (SDEs) model the dy-
namical evolution of high-dimensional health states [33]. On the other hand we can
use general ML approaches to model survival or to impute missing data for baseline
(initial) health states, where we may not be interested in interpretation.

The result (see Fig. 5.1) is a powerful and flexible, but interpretable, approach
to modelling aging and mortality from high-dimensional longitudinal data — one that
preserves but is not crippled by the complexity of aging. We evaluate the resulting
model with test data and compare with simpler linear modelling approaches. We use
a Bayesian approach to infer the posterior distribution of the both interaction network
and individual health trajectories to estimate confidence bounds. We demonstrate our
model’s ability to robustly predict health trajectories using an interpretable network
of interactions. Additionally, we demonstrate that low-dimensional latent variable
models of a similar structure cannot predict aging health outcomes as well as this

high-dimensional network model.

5.3 Results

5.3.1 ELSA dataset

We combine waves 0 to 8 in the English Longitudinal Study of Aging (ELSA, [201])
to build a dataset of M = 25290 individuals, with longitudinal follow-up of up to
20 years. In this study, self-reported health information is obtained approximately
every 2 years and nurse-evaluated health with physical assessment and blood tests
approximately every 4 years. Considering all waves together with 2 year increments,
27% of values are missing for self-reported variables, 78% of values are missing for
nurse-evaluated variables, and 96% of individual mortality is censored. Training and

test trajectories (see below) are sampled starting with baseline times starting at each
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Figure 5.1: DJIN model of aging. a) Baseline imputation is performed using the
baseline health measurement y;,, missing mask o;,, background health information
uy,, and baseline age t( as input to an encoder neural network (green) that parameter-
izes a latent distribution. Sampling from this latent distribution and using a decoder
neural network (orange) gives an imputed complete baseline health-state x,. b) Base-
line generation conditional on background health information u,,, and baseline age t,
can be used instead of imputation. The population latent distribution is sampled and
used with the same decoder neural network (orange) to produce a synthetic baseline
health state xq. ¢) Network dynamics stochastically evolve the health state x(t) in
time starting from the baseline state xy. The stochastic dynamics are modeled with a
stochastic differential equation which includes the pairwise network interactions with
connection weight matrix W, general diagonal terms f;(z;(t), uy,, t) parameterized as
neural networks, and a diagonal covariance matrix for the noise o,(x) also param-
eterized with a neural network. d) The survival function evolves in time based on
the state and history of the health state x using a recurrent neural network (RNN).
The initial state of the RNN, hy, is set using the background health information u,,
baseline age ty, and xq. Details are provided in the Methods. The code for our model
is available at https://github.com/Spencerfar/djin-aging.

of the waves; though at least one followup wave is required for test trajectories.

For a given starting wave, an individual’s health state is observed at K + 1 times
{ti }, with a set of health variables {y; } ,. The vectors y;, describe the N-
dimensional health state of an individual, where each of the N dimensions represents
a separate health measurement. We select N = 29 continuous-valued or discrete ordi-
nal variables that were measured for at least two of the waves. Individuals also have
background (demographic, diagnostic, or lifestyle) information observed at baseline,
which is described by a B-dimensional vector u,,. We select B = 19 of these contin-
uous or discrete valued background variables. These are used as auxiliary variables

at baseline; they aide the subsequent prediction of the health variables y; vs time.

Variables used from the data-set were selected only by availability, not by
predictive quality. All chosen variables and the number of observed individuals
for each is shown in Appendix Figure B.1, the details of the variables are given in

Appendix Table B.1 and B.2.
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5.3.2 DJIN model of aging

We build a model to forecast an individual’s future health {y;, }x~0 and survival
probability {S(tx)}x>0 given their baseline age ¢, baseline health y;, and background
health variables uy,. It is a dynamic, joint, interpretable network (DJIN) model of
aging. A schematic of our model is shown in Fig. 5.1, while mathematical details are
provided in the Methods.

Effective imputation is essential because none of the 25290 individuals in the data-
set have a fully observed baseline health state. Fig. 5.1a illustrates our method of im-
putation for the baseline health state. Variational auto-encoders have shown promis-
ing results for imputation [207,208]. We impute with a normalizing-flow variational
auto-encoder [209], where a neural network (green trapezoid) encodes the known in-
formation about the individual into an individual-specific latent distribution, and a
second neural network (orange trapezoid) is used to decode states sampled from the
latent distribution into imputed values. This is a multiple imputation process that
outputs samples from a distribution of imputed values rather than a single estimate.

We have chosen this imputation approach because we can also use it to generate
totally synthetic baseline health states given background/demographic health infor-
mation and baseline age. Fig. 5.1b illustrates this method. We randomly sample the
prior population distribution of the same latent space used in imputation, and then
combine this with arbitrary background information and use the same decoder as in
imputation to transform the latent state into a synthetic baseline health state. With
repeated random samples of the latent space, we generate a distribution of synthetic
baseline health states.

Fig. 5.1c illustrates the temporal dynamics of the health state in the model. Dy-
namics start with the imputed or synthetic baseline state xy. The health state is then
evolved in time with a set of stochastic differential equations, similar to the Stochas-
tic Process Model of Yashin et al. [33-35,210]. The stochastic dynamics capture the
inherent stochasticity of the aging process. We assume linear interactions between
the variables, with an interpretable interaction network W. This interaction network
describes the direction and strength of interactions between pairs of health variables.

Fig. 5.1d illustrates the mortality component of the model. The temporal dynam-

ics of the health state is input into a recurrent neural network (RNN) to estimate the
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individual hazard rate for mortality, which is used to compute an individual survival
function. Recent work shows that this approach can work well in joint models [193].
The RNN architecture uses the history of previous health states in mortality, other-
wise mortality could only depend on the current health state and could not capture
the effects of a history of poor health. We have chosen this RNN approach to mortality
because it performs better than either feed-forward (no history) or Cox proportional
hazards models (as shown in Appendix Figure B.11).

We use a Bayesian approach to model uncertainty by estimating the posterior
distribution of parameters, of health trajectories and of survival curves — as illus-
trated by the shaded blue confidence intervals in Fig. 5.1C. To handle our large and
high-dimensional datasets, we use a variational approximation to the posterior [211]
instead of slower MCMC methods. The variational approximation reduces the sam-
pling problem to an optimization problem, which we can efficiently approach using
stochastic gradient descent. Mathematical details are provided in the Methods. The

code for our model is available at https://github.com/Spencerfar/djin-aging.

5.3.3 Validation of model survival trajectories

We evaluate our model with test individuals withheld from training. Given baseline
age to, baseline health variables y;,, and background information u,, for each of
these test individuals, we impute missing baseline variables and predict future health
trajectories and mortality with the model. These predictions are compared with their
observed values.

The C-index measures the model’s ability to discriminate between individuals at
high or low risk of death. We use a time-dependent C-index [177], which is the
proportion of distinct pairs of individuals where the model correctly predicts that in-
dividuals who died earlier had a lower survival probability. Higher scores are better;
random predictions give 0.5. In Fig. 5.2a we see that our model (red circles) performs
substantially better than a standard Cox proportional hazards model (green squares)
with elastic net regularization and random forest MICE imputation [212,213]. The
horizontal lines show the C-index scores for the entire test set, and the points show

predictions stratified by baseline age. Stratification allows us to remove age-effects
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Figure 5.2: Model predictions and validation. Errorbars for all plots represent
standard errors of the mean for 10 fits of the DJIN model (often smaller than point
size). a) Time-dependent C-index stratified vs age (points) and for all ages (line).
Results are shown for our model (red) and a Elastic net Cox model (green). (Higher
scores are better). b) Brier scores for the survival function vs death age. Integrated
Brier scores (IBS) over the full range of death ages are also indicated. The Breslow
estimator for the baseline hazard is used for the Cox model. (Lower scores are better).
c) D-calibration of survival predictions. FError bars show the standard deviation.
Estimated survival probabilities are expected to be uniformly distributed (dashed
black line). We use Pearson’s x? test to assess the distribution of survival probabilities
for our network model (x* = 0.0, p = 1.0) and an elastic net Cox model (x? = 2.1,

= 1.0). (Higher p-values and smaller x? statistics are better). d) RMSE scores when
the baseline value is observed for each health variable for predictions between 1 and 6
years from baseline, scaled by the RMSE score from the age and sex dependent sample
mean (relative RMSE scores). We show the predictions from our model starting
the baseline value (red circles), predictions assuming a static baseline value (blue
squares), and 29 distinct elastic-net linear models trained separately for each of the
variables (green squares). The DJIN predictions here come from the same model
as for mortality and the elastic net Cox model is also a distinct model. (Lower
RMSE is better). e) Relative RMSE scores when the baseline value for each health
variable is imputed for predictions between 1 and 6 years from baseline. We show
the predictions from our model starting from the imputed baseline value (red circles),
predictions assuming a static imputed value (blue squares), and predictions assuming
an elastic-net linear model (green squares). (Lower RMSE is better). £f) RMSE score
distributions over all health variables for increasing years of prediction from baseline.
The median RMSE score is shown as a black dotted line between the boxes showing
upper and lower quartiles. Whiskers show 1.5x the interquartile range from the box.
(Lower RMSE is better). Self-report and nurse-evaluated waves have distinct patterns
of missing variables; nurse-evaluated waves have higher missingness overall.

in the predictions; we determine how well the model uses health variables to discrim-
inate between pairs of individuals at the same age. Our model predictions do not
substantially degrade when controlling for age, indicating that it is learning directly
from health variables, rather than from age. Predictions degrade at older baseline
ages due to the limited sample size.

We evaluate the detailed accuracy of survival curve predictions with the Brier
score [178]. Individual Brier scores calculate squared error between the full predicted
survival distribution S(¢) and the exact survival “distribution” for that individual,
which is a step-function equal to 1 when the individual is alive and 0 when they are

dead. Lower Brier scores are better, though the intrinsic variability of mortality will
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provide some non-zero lower bound to the Brier scores. In Fig. 5.2b we show the
average Brier score for different death ages for our model (blue) and a Cox model
with a Breslow baseline hazard (green), indicating our model has a substantially lower
error between the predicted and exact survival distributions for older ages (note the
log-scale). The Integrated Brier Score (IBS) is computed by integrating these curves
over the range of observed death ages, and highlights the improvement of predictive
accuracy of our model as compared to Cox.

We evaluate the calibration of survival predictions with the D-calibration score
[214]. For a well-calibrated survival curve prediction, half of the test individuals
should die before their predicted median death age and half should live longer. Cal-
ibrated survival probabilities can be interpreted as estimates of absolute risk rather
than just relative risk. The D-calibration score generalizes this to more quantiles of
the survival curve, where the proportion observed in each predicted quantile should
be uniformly distributed. In Fig. 5.2c, we show deciles of the survival probability for
our model (red bins), compared with the expected uniform black straight line. We
compute y? statistics and p-values for the predictions of our model vs the uniform
ideal, as well as for a Cox proportional hazards model (histogram in Appendix Figure
B.12). Our model is consistent with a uniform distribution under this test (p = 1.0,
x2 = 0.0) as desired for calibrated probabilities. The Cox model is also calibrated
(p = 1.0, x*> = 2.1), but with a slightly worse x? statistic.

These results demonstrate that our DJIN model accurately predicts the rela-
tive risk of mortality of individuals (assessed by the C-index), predicts accurate
survival probabilities (assessed by the Brier score), and properly calibrates these sur-

vival probabilities so that they can be directly interpreted as an absolute risk of death.

5.3.4 Validation of model health trajectories

Model predictions of individual health trajectories are also evaluated on the test
set. We compute the Root-Mean-Square Error (RMSE) for each health variable, and
create a relative RMSE score by dividing by the RMSE obtained when using the
age and sex matched training-set sample mean as the prediction. In Fig. 5.2d, we

show that the model (red circles) performs better than the age and sex dependent
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sample mean (black dashed line) when the baseline value of the particular variable is
observed. The RMSE here is computed for all predictions between 1 and 6 years from
baseline. In Fig. 5.2e we show that the model is predictive of future health values

even when the initial value of the particular variable is imputed.

As measured by the relative RMSE, our model is better than a null model (blue
squares) that carries forward the observed baseline (d) or imputed baseline value (e)
for all ages. For comparison purposes, we also trained linear models with elastic net
regularization and random-forest MICE imputation [212,213] that have been trained
separately to predict each health variable. We are therefore comparing our single
DJIN model that predicts all 29 variables, to 29 independently-trained linear models.
While the linear models perform better than the null model for observed baselines,
our model performs better than both. For imputed baselines, the linear models with
random-forest MICE imputation performs poorly even compared to the imputed null

model, while our model continues to outperform both.

In Fig. 5.2f, we show boxplots of RMSE scores over the health variables for 1-14
years past baseline, when the variable was initially observed at baseline. The model
is predictive for long term predictions, and remains better than linear elastic net
predictions for at least 14 years past baseline for the self-report waves (blue) and 12

years past baseline for the nurse-evaluated waves including blood biomarkers (pink).

In Appendix Figure B.3 we show example DJIN trajectories for 3 individuals
in the test set for the 6 best predicted health variables. We show both the mean
predicted model trajectory and a visualization of the uncertainty in the trajectory. For
comparison, the sample mean and elastic net linear model are shown. The predicted
trajectories visually agree well with the data, and is often substantially better than
either the elastic net linear predictions or the sample means for the corresponding

variables.

These results demonstrate that our DJIN model predicts the values of future
health variables from baseline better than standard linear models, and also better

than sample-mean or constant baseline models.
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Figure 5.3: Latent variable model performance vs dimension. Black points so
latent variable models of various dimension, red points show the DJIN model, green
lines show the elastic net linear models. The purple point shows the 1D summary
model described in Appendix B, the includes the information from the auxiliary
background variables u,, within the latent state. Black points include uy, in addition
to z. Points indicate the mean of 10 independent fits of the model, and error bars
represent standard error of mean (often smaller than point size). a) RMSE for health
predictions, relative to predictions with the sample mean (Set to value 1, black dashed
line). (Lower is better). b) Survival C-index. (Higher is better). c) Integrated brier
score for survival. (Lower is better).

5.3.5 Comparison with latent variable models

In Figure 5.3, we compare the DJIN model to latent variable alternatives. While
the DJIN model uses dynamics on the observed health variables, these alternatives
use dynamics on latent variables. In the model diagram in Figure 5.1, this latent
variable model uses dynamics on the latent state output by the encoder z. The
dynamics of the latent variable use a full feed-forward neural network for the drift of
the SDE for the dynamics. These predicted latent trajectories z(t) are decoded into
predicted observed health states x; with the decoder. Details of this model are in the
Methods section. These latent variables can be any dimension, and so can compress

the information to a lower-dimensional state, but lack the network interpretation of

the DJIN model.

Figure 5.3a shows that a large number of dimensions are required to predict health
outcomes. A much lower dimension can be used to predict survival, show in Figures
5.3b and 5.3¢). However, full predictions of the survival probability are poor for the
latent variable models, seen in 5.3c. Note that the Brier score of the latent variable

models was very noisy, varying strongly between fits. This may suggest that these
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latent variable models are overfitting survival, and can improve with hyperparameter
tuning.

These results suggests that work on low-dimensional summary measures of aging
such as biological age can capture the progression of aging, but can not predict the
specific heterogeneous health outcomes during aging [21,215,216]. In Appendix Figure
B.9, we show in greater detail the one-dimensional summary model and in Appendix
Figure B.10 the 30-dimensional latent variable model.

Our network model that only includes pair-wise linear interactions performs sim-
ilarly to high-dimensional latent variable models that use non-linear dynamics. This
suggests that our network approximation is sufficient for describing the dynamics
of these variables. Omne reason this linear pair-wise network approximation may
work well is because we are interested in long term predictions, rather than short-

time scale dynamics where the variables are likely more strongly non-linearly coupled.

5.3.6 Validation of generated synthetic populations

Given baseline age tg, and background information uy, for test individuals, we gen-
erate synthetic baseline health states and simulate a corresponding synthetic aging
population. We evaluate these aging trajectories by comparing with the observed
test sample. We train a logistic regression classifier to evaluate if the synthetic and
observed populations can be distinguished [196,205,217,218]. We find that this clas-
sifier has below a 57% accuracy for the first 14 years past baseline in Figure 5.4 — only
slightly better than random. Additionally, we show that this approach is equivalent
or better than the non-linear latent variable models.

In Appendix Figures B.5 and B.6 we show the population and synthetic baseline
distributions and population summary statistics for the trajectories vs age for ages
65 to 90. We find that our model captures the mean of the population, but slightly
underestimates the standard deviation of the population (as expected due to our
variational approximation of the posterior [211]). In Appendix Figure B.4 we show the
population synthetic survival function agrees with the observed population survival
below age 90, where the majority of data lies.

The agreement of the synthetic and test populations demonstrates the DJIN
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Figure 5.4: DJIN generates synthetic populations. We use a logistic regression
classifier to evaluate the quality of our generated synthetic population by the classi-
fier’s ability to differentiate the synthetic population from the observed population.
The boxplot shows the median with the horizontal lines, interquartile range with the
box, and 1.5x from the interquartile range with the whiskers. Completely indistin-
guishable natural and synthetic populations would have a classification accuracy of
0.5. We show the classification accuracy vs years from baseline, showing low classi-
fication accuracies that increase slowly with time from baseline in the DJIN model,
and the DJIN model is equivalent or better than non-linear latent variable models.

model’s ability to generate a synthetic population of aging individuals that resemble

the observed population, though with slightly less variation.

5.3.7 DJIN infers interpretable sparse interaction networks

Our Bayesian approach infers the approximate posterior distribution of the inter-
action network weights; Fig. 5.5 visualizes the network with the mean posterior
weights. Weights with a 99% posterior credible interval including zero have been
pruned (white) — all visible weights have posterior credible intervals either fully above
or fully below zero. This cutoff is demonstrated in Appendix Figure B.S.
Connections are read as starting at the variable on the horizontal axis (j), and

ending at the variable on the vertical axis (7), representing the connection weight
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Figure 5.5: Inferred interaction network. Heatmap of the posterior mean value
of the robust network weights. Weight directions are read from the horizontal axis ()
towards the vertical (i), W;—;. The sign and color of the weight signify the direction
of effect — a positive weight implies that an increase in a variable along the horizontal
axis influences the vertical axis variable to increase. A negative weight implies that
an increase in a variable along the horizontal axis influences the vertical axis variable
to decrease. Hierarchical clustering is applied to the absolute posterior mean of the
robust weights to create a dendrogram (at right).

matrix W ;. Positive connections indicate that an increasing variable j influences an
increase in variable i. Negative connections mean an increasing variable j influences
a decrease in variable i. The interaction network is sparse, with typically only a small
number of inferred interactions for each health variable.

This inferred causal network can be readily and directly interpreted. For example,
we see strong connections between Vitamin-D and self-rated health, between activities
of daily living (ADL) score and walking ability, and between glucose and glycated
hemoglobin. The sign of the connections indicates the direction of influence. For
example, a decrease in gait speed influences an increase in self-reported health score

(worse health), an increase in the time required to complete chair rises, and a decrease



109

in grip strength.

Hierarchical clustering on the connection weights is indicated in Fig. 5.5, and the
ordering of the variables in the heatmap represents this hierarchy. Many of these in-
ferred clusters of nodes plausibly fit with known physiology. For example, most blood
biomarker measurements (bottom half) are separated from the physical/functional
measurements (top half, purple cluster). Other inferred clusters include blood pres-

sure and pulse (orange) and lipids (green).

5.4 Discussion

We have developed a machine learning aging model, DJIN, to predict both multidi-
mensional health trajectories and survival given baseline information, and to generate
realistic synthetic aging populations — while also learning interpretable network inter-
actions that characterize the dynamics in terms of realistic physiological interactions.
The DJIN model uses continuous-valued health variables from the ELSA dataset,
including physical, functional, and molecular variables. We have shown that the
comprehensive DJIN model performs better than 30 independent regularized linear
models that were trained specifically for each separate health variable or survival
prediction task.

Using a latent-variable model approach, we analyzed the multi-dimensionality of
aging. While summary measures of aging such as the frailty index or biological age
are easily interpretable, they are only one-dimensional. We find that the changes
that occur due to aging are multidimensional. This is due to the heterogeneity in
individual aging trajectories — individuals with the same frailty index or biological
age can have distinct health states.

Previously, we had built a weighted network model (WNM) using cross-sectional
data with only binary health deficits [48]. That WNM did not incorporate contin-
uous health variables and could not be efficiently trained with longitudinal data.
As a result, the networks inferred by that model were not robust — and resulted in
many qualitatively distinct networks that were all consistent with the observed cross-
sectional binary data. In contrast, the DJIN model uses many continuous valued
health variables and can be efficiently trained with large longitudinal datasets. As a

result, the DJIN model produces a robust and interpretable interaction network of
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multidimensional aging (Appendix Figure B.13 shows robustness between separate

fits of the model).

Recently, other machine learning models of aging or aging-related disease progres-
sion have been emerging [173,193,196,205,218]. Since they each differ significantly in
terms of both the datasets, types of data used, and scientific goals, it is still too early
to see which approaches are best — and for which data and what goals. We use ELSA
data since it is longitudinal (to facilitate modelling trajectories), has many continuous
variables (to allow modelling of continuous trajectories and constructing an interac-
tion network that is at the core of our model), and includes mortality (to develop our
joint mortality model). The ELSA data is representative of many large-scale aging

data sets.

Our scientific goals were to obtain good predictive accuracy from baseline for both
health trajectories and mortality, while at the same time obtaining an interpretable
network of interactions between health variables [23]. To achieve these goals with the
ELSA data, we had to do significant imputation to complete the baseline states. We
include stochastic dynamics within a Bayesian model framework to obtain uncertain-
ties for both our predictions and the interaction network. The Bayesian approach is
computationally intensive and necessitated a variational approximation to the pos-
terior that tends to underestimate uncertainty [211]. From the analysis of synthetic
populations (see Appendix Figures B.4, B.5, and B.6), this underestimate appears to

be modest.

The DJIN model is not computationally demanding, needing only approximately
12 hours to run with 1 GPU for M = 25290 individuals, B = 19 background variables,
N = 29 health-variables, and up to K = 20 years of longitudinal data. We expect
better performance and generalizability with more individuals M. Because of the
interactions between health variables we also expect better performance with more
health variables N. We note that binary health variables, or mixtures of binary and
continuous variables, could be used with only small adjustments. Since computational
demands for a forward pass of the model scale approximately linearly with M and
K, and quadratically with B + N, our existing DJIN model is already practical for

significantly larger datasets.

In this work we only consider predictions from the baseline state at a single age.
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We anticipate that individual prediction could be significantly improved by utilizing
more than one input time to impute the baseline health state xy or by conditioning
the predictions on multiple input ages. This conditioning can be done using a recur-
rent neural network [219,220]. Observed time-points after baseline can also be used to
update the dynamics [221] for predictions of continually observed individuals in per-
sonalized medicine applications. However, both of these developments would either
require data with more follow-up times than we had available, or limiting predictions
to very short time intervals. For these reasons, we chose to model trajectories using

only a single baseline health state.

We developed an imputation method that is trained along with the longitudinal
dynamics to impute missing baseline data. This imputation method can also be used
to generate synthetic individuals conditioned on baseline demographic information.
Large synthetic datasets can facilitate the development of future models and tech-
niques by providing high-quality training data [222], and are especially needed given
the lack of large longitudinal studies of aging [23]. In Figure 5.4 and Appendix Fig-
ures B.4, B.5, and B.6 we show that our synthetic population is comparable to the
available individuals in the ELSA dataset. We have also provided a synthetic popu-
lation of nearly 107 individuals with annually sampled trajectories from baseline for

20 years [223].

At the heart of our dynamical model is a directed and signed network that is
directly interpretable. The DJIN model does not just make “black-box” predictions,
but is learning a plausible physiological model for the dynamics of the health vari-
ables. The network is not a correlation/association network (see comparison in Ap-
pendix Figure B.7) [153,154,191], but instead determines how the current value of
the health variables influence future changes to connected health variables, leading
to coupled dynamics of the health variables. This establishes a predictive link be-
tween variables [224]. Similar directed linear networks are inferred in neuroscience
with Dynamic Causal Modelling [225,226]. While previous work on learning networks
for discrete stochastic dynamics has been done in the past [227-229], we have used
continuous dynamics here. When interpreting the magnitude of weights, links func-
tion as in standard regression models: weight magnitudes will be dependent on the

variables included in the model, and can decrease if stronger predictor variables are



112

added. Given the efficiency of our computational approach, including more health or

background variables is recommended if they are available.

The directed nature of the network connections lend themselves to clinical inter-
pretation — for example that ADL impairment has an effect on instrumental ADL
(IADL) impairment and not vice versa, and that both have an effect on general func-
tion score and vice versa. The directed network of interactions suggests avenues to
explore for interventions. For a given intervention (for example drug, exercise, or
diet) we can ascertain which effects of the intervention are beneficial and which are
deleterious. In principle, we could also predict the outcome of multiple interventions
such as in polypharmacy [230]. A similar approach could be taken for chronic dis-
eases or disorders. While static interventions could simply be included as background
variables, our DJIN model could also easily be adapted to allow for time-dependent
interventions. These avenues will be increasingly feasible and desirable with longitu-
dinal ’omics data-sets, where the interactions are not already largely determined by

previous work.

We caution that our model does not currently take into account how interventions
may change relationships over time, or any higher order interactions than the pair-
wise interactions considered here. For example, the interaction between sodium levels,
mobility, and diuretics appears to be strong [231], but would not be captured in our
current model. Extending our approach to include such effects in the interactions

would be desirable.

The accuracy of our model can be slightly improved if a network interpretation
of the dynamics is not desired — for instance if the goal is only prediction. High-
dimensional non-linear latent variable models that using a neural network for the drift
function instead of pair-wise network interactions somewhat improve health variable
prediction accuracy. However, our goal was to demonstrate both good predictions
and interpretability. The network form of our dynamics is not the only type of
dynamics that can be used, and can be replaced with any alternative model of the

aging dynamics for bespoke interpretability.

The advantage of more interpretable models will be more clearly seen when mul-
tiple data-sets are compared — since interpretability facilitates comparisons between

cohorts, groups, or even between model organisms. Every aspect of our DIJN model
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can be made more structured, explicit and “interpretable”. For example, propor-
tional hazards [119] or quadratic hazards [33] could be used for mortality. While this
would reduce performance compared to our more general neural network, it would
add interpretability to the survival predictions.

Our work opens the door to many possible follow-up studies. Our DJIN model
can be applied to any organism or set of variables that has enough individual longitu-
dinal measurements. With genomic characterization of populations, the background
health information u;, can be greatly expanded to examine how the intrinsic vari-
ability of aging [53,129] and mortality are affected by genetic variation. By including
genomic, lab-test, and functional data we could use the interpretable interactions
to determine how different organismal scales of health data interact in determining
human aging trajectories. By including drug and behavioral (exercise, diet) interven-
tions as background variables, we can better determine how they affect health during
aging. Finally, large longitudinal multi-omics datasets [59,60] could be used to build
integrative models of human health.

We have demonstrated a viable interpretable machine learning (ML) approach
to build a model of human aging with a large longitudinal study that can predict
health trajectories, generate synthetic individual trajectories, and learn a network of
interactions describing the dynamics. The future of these approaches is bright [23],
since we are only starting to embrace the complexity of aging with large longitudinal
datasets. While ML models can find immediate application in understanding patterns
of aging health in populations, we foresee that similar techniques will eventually reach

into clinical practice to guide personalized medicine of aging health.

5.5 Methods

5.5.1 ELSA dataset

We use waves 0-8 of the English Longitudinal study of Aging (ELSA) dataset [201],
with 25290 total individuals. We include both original and refreshment samples that
joined the study after the start at wave 0. In Appendix Table B.1 we list all variables
used. In Appendix Figure B.1, we show the number of individuals for which the

variable is available at different times from their entrance wave. Each available wave
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is used as a baseline state for each individual, see section 5.5.2 for details.

We extract 29 longitudinally observed continuous or discrete ordinal health vari-
ables (treated as continuous) and 19 background health variables (taken as constant
with age). We set the gait speed of individuals with values above 4 meters per second
to missing, due to a likely data error. Sporadic missing ages are imputed by assuming
the age difference between waves is 2 years — the time difference in the design of the

study.
Individuals above age 90 in the ELSA dataset have their age privatized. By as-

suming the time difference between waves is 2 years, we “deprivatize” these ages
within our analysis pipeline. For example, an individual may have recorded ages
87,89, (privatized), (privatized), which we deprivatize as 87,89,91,93. When indi-
viduals are known to die at an age above 90 at a specific wave, the same approach is
done to deprivatize the death age. We have examined the accuracy of reported ages
compared to this fixed two-year wave interval deprivatization method, and we find
that the majority of deviations range from 0-1 years (with 78% at 0 years, and an
average deviation of 0.23 years) — we expect similar variability for deprivatized ages

above 90.

Height is imputed with the last observation carried forward (if it is missing, the
first value is carried backwards from the first available measurement). Individuals

with no recorded death age are considered censored at their last observed age.

The data is randomly split into separate train (16689 individuals), validation (4173
individuals), and test sets (5216 individuals). The training set is used to train the
model, the validation set is used for control of the optimization procedure during
training (through a learning rate schedule, see Section 5.5.6 below), and the test set
is used to evaluate the model after training. Individuals with fewer than 6 variables
measured at the baseline age ¢y are dropped from the training and validation data.
Individuals with fewer than 10 variables measured at the baseline age t; are dropped
from the test data for predictions, while all individuals in the test data are used for

population comparisons.

All variables are standardized to mean 0 and standard deviation 1 (computed from
the training set); however variables with a skewed age-aggregated distribution p(y)

covering multiple orders of magnitude are first log-transformed. Log-scaled variables
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are indicated in Appendix Table B.1.

5.5.2 Data augmentation

Since some health variables are measured only at specific visits, using the entrance
wave as the only baseline of every individual forces some variables to be rarely ob-
served at baseline, hindering imputation of variables that are only observed at later
waves. To mitigate this and to augment the dataset, we replicate individuals to use
all possible starting points, t,(cm), k € {0, ..., argmaxk(t,(cm))}. Since individuals have
different numbers of observed times we weight individuals in the likelihood who have
multiple times available by s(™ = 1/ (argmaxk(tém)) + 1). This helps to prevent the
over-weighting of individuals with many possible starting times. Nevertheless, we still
assume that replicated individuals are independent in the likelihood.

To further augment the available data, we artificially corrupt the input data for
training by masking each observed health variable at baseline with probability 0.9.
This allows more distinct “individuals” for imputation of the baseline state, and

allows us to use self-supervision for these artificially missing values by training to

reconstruct the artificially corrupted states.

5.5.3 DJIN model

We model the temporal dynamics of an individual’s health state with continuous-time
stochastic dynamics described with stochastic differential equations (SDEs). These
SDEs include linear pair-wise interactions between the variables to form a network
with a weight matrix W. We assume the observed health variables y; are noisy
observations of the underlying latent state variables x(t), which evolves according to
these network SDEs. This allows us to separate measurement noise from the noise
intrinsic to the stochastic dynamics of these variables.

These SDEs for x(t) start from each baseline state xy, which is imputed from
the available observed health state y;. This imputation process is done using a
normalizing-flow variational auto-encoder (VAE) [209]. In this approach, we en-
code the available baseline information into a latent distribution for each individ-
ual, and decode samples from this distribution to perform multiple imputation. The

normalizing-flow VAE allows us to flexibly model this latent distribution. The details
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are described in Section 5.5.4 below.

Our model is described by the following equations:

0 ={W,oy,0x,0,,6,,0;}, (5.3)
z,0 ~ p(z)p(0), (5.4)
Xo = 04y O Y¢, + (1 - Oto) © Xo, Xg ~ N(XO“‘LX(Z? Uy, to, 01’)7 0'3,), (55)

dai(t) (ZWM - fii(8), Wy, 1:07) )t + 0, (x(O)AB(2), X(to) = %o, (5.6)

ye ~ N (™1 (x(1)), diag(ay?)), (5.7)
= exp / A{X(7) }r<rrs wyy, 15 0))dt ) (5.8)
a~ A({X(T>}T§avutova; 0))5((1), (59)
p(z, {x(t) }+, O1{ys, }rs Wi, {08, Fr 0, @, €) o< p(8)p(2)p(X0|2, 1y, ) X (5.10)
p({x<t>}t|X0’ Uy, lo, O)p(a, CHX(t)}t? Wy, lo, 0) Hp(ytkHX(tk)}k? Oty 0)7
k=0

Model parameters () include the explicit network of interactions between health
variables (1), measurement noise (o,) and dynamical SDE noise (¢,), and network
weights for mortality RNN (6,), imputation VAE decoder (6,), and dynamical SDE
(6f). Equation (5.4) represents priors on the model parameters and latent state z.
We use Laplace(w|0,0.05) priors for the network weights and Gamma(oy|1,25000)
priors for the measurement noise scale parameters. We use a normal (Gaussian) prior
distribution for the latent space z. We assume uniform priors for all other parameters.

In Equation (5.5) we sample the baseline state. The distribution for x¢ given z
is modeled as Gaussian with mean computed from the decoder neural network and
the same standard deviation as the measurement noise, N (px(z, uy,, to; 6,), 0')2,). The
missing value imputation and the dynamics model are trained together simultaneously
(see details below). This allows us to utilize the additional longitudinal information
for training the imputation method, and helps to avoid an imputed baseline state
that leads to poor trajectory or survival predictions.

Equation (5.6) describes the SDE network dynamics, starting from the im-

puted baseline state.  We capture single-variable trends with the non-linear
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fi(xi(t),wy,,t;0y,), and couple the components of x(t) linearly by the directed in-
teraction matrix W, which represents the strength of interactions between the health
variables. In this way, f; can be thought of as a non-linear function for the diag-
onal components of this matrix, while W gives linear pair-wise interactions for the
off-diagonal components. The intrinsic diffusive noise in the health trajectories is
modeled with Brownian motion with Gaussian increments dB(t) and strength oy.

The functions f; and o, are parameterized with neural networks.

Equation (Health observation) describes the Gaussian observation model for the
observed health state. Measurement noise here is separate from diffusive noise dB(t)
in the SDE from Equation (5.6). The component-wise transformation % applies a
log-scaling to skewed variables (indicated in Appendix Table B.1) and z-scores all

variables.

Equation (5.8) describes the survival probability as computed with a recurrent
neural network (RNN) for the mortality hazard rate \. The RNN allows us to use the
stochastic trajectory for the computation of the hazard rate (i.e. it has some memory
of health at previous ages), rather than imposing a memory-free process where the
hazard rate only depends on the health state at the current age. We use a 2-layer
Gated Recurrent Unit (GRU [112]) for the RNN, with hidden state h;. The initial
hidden state hg is inferred from the initial health variables x(ty), background health
information w,, and baseline age ty, with a neural network hg = H(x(to), uy,, to)-
Equation (5.9) describes the observation model for survival with age of death or last

age known alive @ = max(t4,1.), and censoring indicator c.

Instead of just a maximum likelihood point estimate of the network and other
parameters of the model, we use a Bayesian approach. This is a natural approach
for this model, since the stochastic dynamics of x(¢) are separate from the noisy
observations y;. This also allows us to infer the posterior distribution of the health
trajectories and interaction network, and so lets us estimate the robustness of the
inferred network and the distribution of possible predicted trajectories, given the
observed data. In Equation (5.10) we show the form of the unnormalized posterior

distribution.
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5.5.4 Variational approximation for scalable Bayesian inference

While sampling based methods of inference for SDE models do exist [232,233], these
are generally not scalable to large datasets or to models with many parameters. In-
stead, we use an approximate variational inference approach [234,235]. We assume
a parametric form of the posterior that is optimized to be close to the true poste-
rior. While variational approximations tend to underestimate the width of posterior
distributions and simplify correlations, they typically capture the mean [211].

Our factorized variational approximation to the posterior in Equation (5.10) is

Q(Z7 X(t)7 0|y07 Uy, Oy t07 ¢) = Q(Z|YO7 Uy, Ot th ¢Z) (511)
X q(x(t)|x0, Uy, t ¢$)Q(0|¢0),
{x()}: ~ q(x(t)[x0, sy, t, ) = (5.12)

dx(t) = (Wx + £, Wy, £ 07) + g(X, Wy, b ¢)>dt + o (x(t))dB(2),

with variational parameters ¢ = {¢,, ¢., ®p}. Instead of assuming an explicit para-
metric form for ¢(x(t)|¢.), we instead assume the trajectories {x(t)}; are described
by samples from a posterior SDE with drift modified by including a small fully con-
nected neural network g [236]. This approach allows an efficient and flexible form of
the variational posterior in Equation 5.12. W is the posterior mean of the network
weights. The functional form of the posterior drift is both more general and more
easily trainable than the network SDE in Equation 5.6, but ultimately is forced to be
close to the network dynamics in Equation (5.6) by the loss function. The loss func-
tion for this approach has been previously derived [234,235]. The imputed baseline
states xq are averaged over.

For the latent state z, the approximate posterior takes the form

Kz, Oz Y = EnCOder(S’tm Otoa utoa t07 gbz)v (513)
S’to = 04 Oyt T+ (1 - Oto) © €ys,ty-POP? (514)
Q(Z’yto7ut070t07t07¢z) = Q(Z(L)|$’toaut070t07t07¢z)7 (515)
L
90D (20~ 6.) -1
_ (0) 2 y Yz Pz
= N2 o?) [T faet =2 - (5.16)

=1

where the functions al) are RealNVP normalizing flows [237] used to transform the



119

Gaussian base distribution for z(® to the non-Gaussian posterior approximation, con-
ditioned on the specific individual with «,. These are invertible neural networks
that transform probability distributions while maintaining normalization. In Equa-
tion 5.14 we fill in missing values in the observed health state since o is a mask of
observed variables and €y, , pop 18 sampled from a Gaussian distribution with the sex
and age-dependent sample mean and standard deviation. ® is element-wise multipli-
cation. These filled in values are temporarily input to the encoder neural network,

and replaced after imputation.

The variational parameters ¢ of the approximate posterior are optimized to min-
imize the KL divergence between the approximation and the true posterior. This
minimized KL divergence provides a lower bound to the model evidence that can be

maximized,

log p({ye, Je|Wsy, 040, t0) > Ko, 2, xolz, {x(6)}¢/x0 [ (5.17)

10g p(@)p(z)p({x(t)}t|x0, Uy, O)p(a, C|{X(t>}t7 Uy, tO) Hp(ytk |X(tk)= Oty 0)

— log q(zyo, Uty 01, t0)a(€)a({x(t) }+ %0, uto)] :

where in the expectation 0, z, and {x(¢)}; are sampled from their respective posterior

distributions. The imputed baseline state is sampled as,

px = Decoder(z,uy,, o) (5.18)
%0~ Npod) (5.19)
Xg = Oto ® ytO + (1 — Oto) ® )N((). (520)

Note that we keep the observed value y,;, when available.

The final objective function to be maximized is £, where the derivation is provided
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in Appendix 5. We obtain

K

Z oy, © log N (yy, [x(tk), oy)
k=0

+ (1—-2¢) [log Aa|x(t), uy,, to) + log S(a|x(t), uto,to)}

L(p) = E

Gmax

+ /aclog S(t|x(t), uy,, to)dt +/ (1 —c)log (1 — S(t|x(t), uy,, to))dt

to a
1 /¢ 2
-1 dt]
2 Ji 2

— KL(q(0)||p(8)) — KL(g(z®|y0, sy, 010, to)|Ip(z?))

L
5 940 (20 ~.. 6.
=1

o, © (Wx — Wx — g(x,u,1))

520 , (5.21)
as the loss function for each individual. This is for all individuals in the data mul-
tiplied by the sample weights s(™ for each individual m.We penalize the survival
probability by integrating the probability of being dead from the death age a to apyay,
which better estimates survival probabilities [238]. We set aya = 5 years. Otherwise,
it is difficult for the model to learn S — 0 for large ¢. The last 3 lines are the KL-
divergence terms for variational inference. The very last line is for the normalizing
flow portion of the variational auto-encoder.

To simplify the evaluation of £ and decrease the number of parameters, we as-
sume independent Gamma posteriors for each measurement error parameter o, with
separate shape «; and rate ;. We also assume independent Laplace posteriors for
each of the network weights W;; with separate means V_Vij and scales b;;. For the
approximate distribution of all other parameters we use delta functions, and together
with uniform priors this leads to simplifying the approach to just optimizing these

parameters instead of optimizing variational parameters of the posterior.

5.5.5 Summarized training procedure

1. Pre-process data. Assign N dynamical health variables and B static health

variables. Reserve validation and test data from training data.

2. Sample batch and apply masking corruption and temporarily fill in missing



121

values with samples from the population distribution,

S’to =COO0, Oy + (1 —CcO Oto) © +6ys,t07P0P> (5'22)
¢ ~ Bernoulli(0.9). (5.23)

3. Impute initial state xo with the VAE and compute the initial memory state of

the mortality rate GRU,

z ~ q(z|¥i,, W, €O 04y, to), (5.24)
Xo ~ N(xo|px(z,u,10),073) (5.25)
Xg = 04 Oyt + (1 —04) O X, (5.26)
h,, = H(xg,uy,to). (5.27)

4. Sample trajectory from the SDE solver for the posterior SDE and compute
mortality rate from GRU,

{x(t)}+ = SDESolver(xq,uy,,to), (5.28)
{5} = GRU({x(t)}:[hy,). (5.29)

5. Compute the gradient of the objective function (Equation B.1) and update

parameters, returning to step 2 until training is complete.

6. Evaluate model performance on test data.

5.5.6 Network architecture and Hyperparameters

The different neural networks used are summarized in Appendix Table B.4. We
use ELU activation functions for most hidden layer non-linearities, unless specified
otherwise. We have N = 29 dynamical health variables, and B = 19 static health
variables. Additionally, we append a mask to the static health variables indicating
which are missing, of size 17 (sex and ethnicity are never missing).

The functions f; in Equation (5.6) are feed-forward neural networks with input
size 2 + B + 17, hidden layer size 12, and output size 1. Each f;,;i € {1,..., N} has
its own weights. The noise function o has input size N, hidden layer size N, and

output size N. The posterior drift g is a fully-connected feed-forward neural network
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with input size N + B + 1 + 17, hidden layer size 8, and output size N. The VAE
encoder has input size 2N + B 4+ 1+ 17, hidden layer sizes 95 and 70, and output size
40, with batch normalization applied before the activation functions for each hidden
layer. The VAE decoder has input size 20 + B + 17, hidden layer size 65, and output
size N with batch normalization applied before the activation for the hidden layer.
The size of the latent state z is 20. The mortality rate A is a 2-layer GRU [112] with
a hidden layer sizes of 25 and 10.

We use 3 normalizing flow networks to transform the latent distribution from the
Gaussian z® to z. We use RealNVP normalizing flow networks [237] with layer sizes
30, 24, and 10 with batch normalization before a Tanh activation function for the
hidden layer. The size of =, is 10.

We use batchsize of 1000 and learning rate 1072 with the ADAM optimizer [111].
We decay the learning rate by a factor of 0.5 at loss plateaus lasting for 40 or more
epochs. We use KL-annealing with  increasing linearly from 0 to 1 during the first
300 epochs for the KL loss terms for ¢(x(t)) and ¢(z(t)), and increase linearly from 0
to 1 from 300 to 500 epochs for the KL terms for the prior on W. SDEs are solved
with the strong order 1.0 stochastic Runge-Kutta method [239] with a constant time-
step of 0.5 years. Integrals in the likelihood are computed with the trapezoid method

using the same discretization as the dynamics.

5.5.7 Evaluation metrics
RMSE scores

Longitudinal health trajectory predictions are assessed with the Root-Mean-Square
Error (RMSE) of the predictions with respect to the observed values. The RMSE is
evaluated for each health variable and is weighted by the sample weights s(™. We

compute these RMSE values for predictions for a specific age t,

M

RMSE(1) = || 77 3 3 s (o™ (0) — o702 (5.30)

where the inverse transform ;! reverse any log-scaling and the z-scoring performed

on the variables. The index (m) indicates the individual, for M total individuals.
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Time-dependent C-index

The C-index measures the probability that the model correctly identifies which of a
pair of individuals live longer. Our model contains complex time-dependent effects
where survival curves can potentially intersect, so we use a time-dependent C-index

177,

Ciqa = Pr(S(mﬂ(a(ml)) < S‘(mz)(a(ml))m(mﬁ < a(m),c(ml) _ 0) (5'31)
z:ml,m2 S(ml)g(m2)§[5'(m1)(a(m1)) < S’(m2)(a(m1))]5[a(m1) < a(mg)}é[c(ml) _ 0]
> sy S s [alm) < a(m2)]5c(m) = ] ,

where 5™ are individual sample weights. We denote death ages by t; and censoring
ages by t., and define a(™ = min(tgm),t&m)) as the last observed age for censored
individuals (c™ = 1) or the death age for uncensored individuals (¢™ = 0). The
indexes (m;) and (m2) indicate the pair of individuals that are being compared. Delta

functions §[] have value 1 if the argument is true, otherwise have value 0.

Brier score

The Brier score compares predicted individual survival probabilities to the exact
survival curves, i.e. a step function where S = 1 while the individual is alive, and
S = 0 when the individual is dead. The censoring survival function G(t) is computed
from the Kaplan-Meier estimate of the censoring distribution (using censoring as
events rather than the death [178]), which is used to weight the individuals to account

for censoring. Then the Brier score is computed for all possible death ages,

1 ot <t em = 0)(SM(6)* §(a™ > 1) (1 — S(1))
BS(t) = i ZS( ) Glam + 0

(5.32)

D-calibration

For well-calibrated survival probability predictions, we expect p% of individuals to
have survived past the pth quantile of the survival distribution. This can be eval-
uated using D-calibration, and we follow the previously developed procedure [214]
for computing the D-calibration statistic. The result is a discrete distribution that

should match a uniform distribution if the calibration is perfect.
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We use a x? test to compare to the uniform distribution. Using 10 bins, we use
a x? test with 9 degrees of freedom. Larger p-values (and smaller y scores) indicate

that the survival probabilities are more uniformly distributed, as desired.

2-sample classification tests

To assess the quality of our synthetic population, we train a logistic regression classi-
fier and evaluate its ability to differentiate between the observed and synthetic popu-
lations [196,205,217,218]. Ideally, a synthetic population would be indistinguishable
from the observed population, giving a classification accuracy of 50%.

Our classifier takes the current age ¢, the synthetic or observed health variables y;,
and the background health information variables u,,, and then outputs the probability
of being a synthetic individual or a real observed individual from the data-set. Miss-
ing values in the observed population are imputed with the sex and age-dependent
sample mean, and these same values are applied to the synthetic health trajectories

by masking the predicted values.

Hierarchical clustering

We perform hierarchical clustering on the network weights W. This is done by con-

structing a dissimilarity matrix,
w = (WI+W)/2, (5.33)
D = max(w)—w, (5.34)
and then using this dissimilarity matrix D to perform agglomerative clustering with

the average linkage [240]. We use the Scikit-learn [241] package with the “Agglomer-

ativeClustering” routine.
5.5.8 Comparison with linear models

Imputation for comparison models

For the linear survival and longitudinal models, we use MICE for imputation [212]
with a random forest model [213]. We impute with the mean of the estimated values.
We use 40 trees and do a hyperparameter search over the maximum tree depth. We

use the Scikit-learn [241] package.
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Proportional hazards survival model

To compare with a suitable baseline model for survival predictions, we use a propor-

tional hazards model [119] with the Breslow baseline hazard estimator [120]:

)‘(t|t07 Yios uto) = €Xp (/BOtO + ﬂy Yo + /Bu . ut0)7 (535)
S(t|t07 Yo uto) = €Xp (_/A\OBr(t)A(ﬂtO? Yto> uto))' (536)

We include elastic net regularization [242] for the coefficients of the covariates.

Linear trajectory model

We use a simple linear model for health trajectories given baseline data,

Yiri — Ytoi T+ B(Yto, Uy, tO)(tk - to)» (5-37)
Bi(¥te, Wey, to) = Boito+ B Yio + B2 - Uy, (5.38)

trained independently for each variable i. The parameters (y;, B1;, and B2, are

trained with elastic net regularization.

Linear models’ hyperparameters

We perform a random search over the L; and L, elastic net regularization param-
eters and the MICE random forest maximum depth using the validation set. The
regularization term in the elastic net models is aly a0l 5]]1 + %Oz(l — L ratio) |1 8113,
the common form of elastic net regularization used in Scikit-learn [241], the package
we use to implement the elastic net linear model. We do the random search over
logga € [—4,0], logygl1ratio € [—2,0], and maximum tree depth in [5,10] for 25
iterations.

We find the parameters o = 0.40423, [} yq1io = 0.55942, and a maximum tree
depth of 10 for the longitudinal model hyperparameters. We find the parameters
a = 0.00016, [y rqto = 0.15613, and a maximum tree depth of 10 for the survival

model hyperparameters.

5.5.9 Latent variable models

We compare our pair-wise interactions network model with alternate latent-varaible

models, where we directly incorporate dynamics for the latent state z(¢) and apply
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the decoder to estimate the health variables x(t) at specific ages. With this approach
we do not need to impute the baseline state of health variables, or to directly include
dynamics for the observed health state. Rather an encoder maps the baseline health
state y;, to the baseline latent state zy, dynamics are run on this latent space for
z(t), and a decoder directly maps the latent states z(t) to the predicted output of the
health variables y;. In this model, we also can choose the size of the latent state z,
and so we use this approach to explore how many dimensions are required for good
predictions of health outcomes and survival.

These models have the form,

29,60 ~ p(zo)p(0) (Prior)

dz(t) = f(z(t), Wy, t;05) + 0,(2(t))dB(t), z(ty) = 2o, (Dynamics)

S(t) =exp (— / M{z(7)}r<p, g, 5 0,)dt') (Survival)
to

Vi~ N('gb_l(p,(z(t), Uy, 04,0,)), diag(0y2)>, (Health observation)

a~ MN{z(T)}r<a, Uy, a;0,5)S(a), (Survival observation)

p({z(t) }+, Ol{y1, } ks Uy, to, a, ¢) < p(0)p(zo)p({z(t) }4]Z0, sy, T, @) X (Inference)

p(a, C|{Z(t)}t> Uy, 2 9) Hp<ytk|{z(tk)}k7 0)’
k
0= {W, Oy, 0x, 0y, 0,, Of}, (Parameters)

where instead of the variable-wise neural networks in the pair-wise network model,
the function f is now a full feed-forward neural network including the interactions
between all variables. The function p is a decoder neural network which outputs the
mean of a Gaussian distribution for the health variables y,, from the latent state at
that age. Other than the size of the latent state z, all other hyperparameters and the

training procedure remain the same.

5.5.10 Code and Data availability

The English Longitudinal Study of Aging waves 0-8, 1998-2017 with iden-
tifier UKDA-SN-5050-17 is available at https://www.elsa-project.ac.uk/

accessing-elsa-data. This requires registering with the UK Data Service.
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Our code is available at https://github.com/Spencerfar/djin-aging.



Chapter 6

Network inference discussion

6.1 Summary of results from chapters 3, 4, and 5

Three different models of aging were used or developed in Chapters 3, 4, and 5. The
main connecting theme of this work is the exploration or inference of the network
structure in these models. These networks represent pairwise interactions between the
health variables, and allow interpretation of the models. These models serve different
purposes, and do not necessarily represent a strict replacement of the previous model.

Table 6.1 summarizes the aspects of these models. Details of this table are elab-

orated on in the sub-sections below.

6.1.1 Generic network model

Chapter 3 used the Generic Network Model of aging (GNM) [125,243]. This model was
developed to describe the process of damage accumulation in aging, within a complex
system described by a network of interacting components. This model involves only
a few parameters that are manually tuned to agree with population-level mortality
and Frailty Index scores. Nodes in this model do not represent any particular health
variable, but are generic, representing abstract binary damageable components of
health. We probed the network by observing the population-level behaviour with
different pre-defined network structures, rather than directly inferring the network
structure or predicting individual health trajectories.

We identified that a scale-free and disassortative structure best captures the be-
haviour seen in the observational data. This was the only structure to capture both
the mortality and Frailty Index behaviour, as well as the hierarchical information
structure within the nodes. Additionally, we offered an explanation for the differ-
ence between Fl-clin and Fl-lab. Based on the observed data for Fl-clin and FI-
lab [71,126,127], Fl-clin deficits best correspond to high-degree nodes and FI-lab

128
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Table 6.1: Summary of network models. This table highlights the features or uses
of the models discussed in the preceding chapters. * binary variables are possible in
the DJIN model, but they haven’t been used in this thesis.

Model
GNM WNM DJIN
Fitting with population average data | v/ X X
Fitting with longitudinal data X X v
Fitting with cross-sectional data X v X
Binary variables v v *
Continuous variables X X v
Fast training X X v
Infers robust network X X v
High dimensional v X 4
Network inferred from data X 4 v
Conceptual /theoretical v X X
Predictive X v v
Generates synthetic populations v v v

deficits best correspond to low-degree nodes in a disassortative scale-free network.
The temporal order of damage in the network results in the corresponding behaviour

of these types of nodes.

This model enables the simulation of millions of aging individuals, with mortality
rates and Frailty Index scores corresponding to observed population means. These
simulated individuals can be used to theoretically study aging, without required de-
tailed observational aging data. Members of the Rutenberg group have used this
model as a basis for several distinct research directions. A simple theoretical model
of disease has been developed by inducing increased damage rates in a particular re-
gion of the network, and then studying the resulting aging trajectories and mortality
(work by Rebecca Tobin, unpublished). Similarly a model of interventions have been
developed by enhancing repair of specific nodes for specific time-periods (work by
Esha Sawant, unpublished). Work has also been done on understanding the optimal

network structures for healthy aging and lifespan (work by Garrett Stubbings [244]).

While this model lets us explore the associations between different types of nodes
in the network and their relation to categories of health variables in observed data,
we do not have a direct mapping between a node in the network and a specific

health variable, or even to a specific physiological system. This prevents the model
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from being able to make predictions for individuals. To do this mapping and make

predictions, the Weighted Network Model (WNM) was developed in Chapter 4 [48].

6.1.2 Weighted network model

The WNM used a much smaller network of 10 nodes, and used cross-sectional ob-
servational aging data to fit the network weights and damage rate parameters. This
data allows us to map the model nodes to specific health variables, moving away from
the generic nature of the nodes in the GNM. The model is fit with binary health vari-
ables, allowing the model to describe the evolution of the deficits in a Frailty Index
with age. However, this model had to drop the simplicity of the GNM by introduc-
ing variable-weight connections, node-specific rate parameters, and replaced simple
exponential functions with power-series relationships between the amount of damage

to neighbouring nodes and damage rate.

The trained model is able to generate synthetic aging populations with realistic
deficit accumulation and mortality. Given the state of current health deficits, the
model was able to simulate the individuals health state until death. While this model
is able to generate realistic synthetic aging populations, no one network was consistent
with the data, resulting in a network structure that was not robust — fitting the model
with a different random seed resulted in different networks. However, average pair-
wise rates were robust, suggesting that while the model behaviour is robust the actual
network parameters were not. This is not uncommon in complex models, and is known

as parameter sloppiness [245].

This model has a similar use as the GNM, but can simulate populations with
specific health variables. However, this requires data with these health variables to

fit model parameters.

While this model is well-suited to model the binary deficits of a Frailty Index,
the model was very slow to train and slow to simulate populations. Attempting to
train it with longitudinal data or a larger number of health deficits would be severely
limited by computational power. Additionally, only being able to use binary health
deficits limits the type of data that can be modelled. In Chapter 5 we developed the

DJIN model of aging which addresses these concerns.
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6.1.3 Dynamic Joint Interpretable Network model

The DJIN model makes substantial changes from the WNM. The model uses a much
larger network of continuous-valued health variables, and is computationally much
faster so that it can be trained on large longitudinal datasets. This model also makes
use of demographic or background health information used as auxiliary variables to
further improve predictions.

The DJIN model is able to make detailed longitudinal predictions for individuals.
We show that the single comprehensive model achieves better performance than 30
regularized linear models separately trained for each health variable and survival.
Survival predictions are calibrated to predict both relative and absolute risk.

This model also included an imputation method to impute the baseline state,
so that predictions can be made even when the baseline health state is not fully
observed. This imputation method was trained together with the model, which gives
the model additional information about the quality of trajectory predictions to train
the imputation component. This is in contrast to other imputation approaches such
as MICE [212]. Additionally, this imputation method can be used to generate a fully
synthetic population conditional on the background health variables and baseline age.

In the DJIN model we found robust network connections, in contrast to the WNM.
Examining these network connections, we found that these connections show realistic
physiological interactions. Hierarchical clustering on these connections shows clusters
that make sense physiologically.

We compared the DJIN model similar latent-variable models. These latent-
variable models considered non-linear dynamics on a latent health state, rather than
the observed variables. We found that the DJIN model performs similarly to latent
variable models with the latent state as a similar size to the number of observed
health variables. This indicates that the linear pairwise network interactions are a
good assumption, and that good predictions of health outcomes in aging require a
high-dimensional model, although relative mortality risk predictions or the “progres-

sion of aging” can be reduced to a lower dimensional state.



Chapter 7

Discovering latent aging phenotypes in C. elegans with

machine learning

7.1 Background

The DJIN model developed in Chapter 5 involved dynamics on the specific health
variables from observed data, and inferred a network of interactions between these
variables. The network of interactions for the observed health variables allows us to
interpret the model by examining the causal interactions used by the model to make
predictions. However, more flexible models can be built by considering dynamics on
unobserved latent variables instead of the observed variables [219, 220, 246,247].

In the machine learning literature, this style of latent variable model is known
as an auto-encoder [110], and was discussed in the Background section of Chapter
2. In this model, an encoder embeds the observed state into a latent space, and a
decoder decodes this latent state back into the observed state. Flexible dynamics can
then be included on the latent space. To perform predictions, the observed early time
health state is embedded into the latent space, then the latent dynamics are used to
estimate the latent state at a later time, which is then be decoded into predictions of

the observed state for these later times. This process takes the form,

zo ~ q(2o]x%0), (Encoder)
dz(t) =f(z(t)) + o(z(t)) - dB(t), z(to) = 20, (Dynamics)
x¢|z(t) ~ p(x¢|z(t)). (Decoder)

We also explored such latent variable alternatives to the DJIN model in Chapter 5,
showing that similar performance can be achieved with a slightly lower number of
dimensions, particularly for predictions of relative risk of death (with the C-index) —
at the cost of the interaction network. Although high-dimensional latent variables are

still required for predictions of health outcomes. While the goal of the DJIN model
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was to infer this interaction network, these latent variable alternatives are likely a

more attractive approach when the network is not desired.

While the latent variables can be difficult to interpret, these models can be made
more interpretable by incorporating structure in the latent variables [248-251]. In
previous latent variable approaches to modelling aging data, the structure of the
model enforced latent variables to be multi-dimensional constant rates of aging [173]
or one dimensional summary measures such as a dynamical frailty index [203] or a
biological age [75-77,215,252-254]. The dynamics of explicitly constructed latent
variables such as Physiological Dysregulation have also been considered [20, 255].

In this chapter, I demonstrate one way to interpret such a latent variable model of
aging. This approach includes structure by allowing the inference of distinct clusters
of latent variables and their aging trajectories. This lets the model identify distinct
aging phenotypes, without providing guidance on what these phenotypes may be (i.e.
the process is unsupervised). Additionally, we assume linear dynamics for the latent
variables leading to simpler dynamics on this latent space.

In this Chapter, the model uses data from the model organism C. elegans (open
source data from [256]). We use this data here instead of human data as in previous
chapters for multiple reasons. First, the ELSA human data in Chapter 5 contained
short time-series for individuals, and so we could not use many time-points in the
encoder of our model, which limits the ability of the model to infer clusters for unseen
test individuals. This C. elegans data with long time-series allows the development of
a model that uses many time-points as input to the encoder. Second, there has been
previous work on understanding distinct aging phenotypes in C. elegans [83,256,257].
Third, this demonstrates the ability of these computational aging models to apply to
other organisms with their own distinct characteristics of aging.

The work of this Chapter is not yet ready for publication, but is a follow-up to
Chapter 5.

7.2 Introduction

The hallmarks of aging [4] and the pillars of aging [5] identify key physiological pro-
cesses that underlie aging. While these identified processes represent a low dimen-

sional description of aging, the number of observed changes to healthy functioning
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during aging are enormous [54]. Latent variable models can be used to identify a
low-dimensional set of key underlying attributes in a complex system.

One example of a latent variable model in aging is biological age [17], where the un-
derlying progression of aging is inferred from biological variables, however it is limited
to one-dimension. Other approaches in aging explicitly construct the latent variables
describing the progression of aging e.g. the FI [14] or physiological dysregulation [19].
There has also been work on machine learning based one-dimensional latent variable
models [21]. Few approaches have looked into higher dimensional latent descriptions
of aging [173].

Previous work with C. elegans has used dimensional reduction techniques to iden-
tify latent trajectories of aging [83,257]. In worms with different genotypes, this
technique has revealed divergent aging trajectories [257]. Additionally, there has
been the discussion of accelerated aging phenotypes in C. elegans [256], although in
this work distinct clusters were not identified.

In this work we build a machine learning model to identify distinct aging phe-
notypes by unsupervised learning. This model describes the dynamics of aging on a

simple latent space, where distinct phenotypes are more clearly identifiable.

7.3 Results

7.3.1 Bayesian latent-variable model for C. elegans

We use C. elegans data from Zhang et al., [256]. In this dataset worms are tracked un-
til death (~ 350 hours), with physiological measurements from image data taken every
3 hours. The observed variables measure movement ability [258], auto-fluorescence
of material build-up in the intestine [259], tissue integrity [260], body size [256], and
reproductive capability [256]. All of these variables have been shown to be associated
with lifespan, and form a set of health variables that can be automatically measured
with high-throughput image analysis. Further details of the specific variables in this
dataset are in the Methods section. We denote the observed time-series measures as
{x:}¢_;,, where x, is a 11-dimensional vector of the health state at time ¢ and a is the
death age.

We build a Bayesian latent-variable model, illustrated in Figure 7.1. In this model,
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Figure 7.1: A latent variable model for trajectory clustering. a) The first
50 time-steps for each worm is input into an encoder recurrent neural network to
infer the cluster label ¢, the baseline latent state zy, and the latent drift g with
the approximate posterior ¢(c, zo, g|{x:}+). b) Stochastic latent dynamics described
by a stochastic differential equation with baseline state zo and drift g. c¢) Latent
states are input into a decoder feed-forward neural network to output the predicted
health state, p(Xt|Z( )) d) Survival probabilities are predicted from the latent states,
S(z(t),t) = exp( ft ),t')dt"). The hazard rate h(z(t),t) is computed with a
feed—forward neural network
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the dynamics of latent variables describe the underlying dynamics of aging, and are
transformed to observed health variables and hazard rates for prediction. These latent
variables are hierarchical, and dynamics are described by a continuous latent state z

that depends on a discrete cluster label c. A simplified version of this model is,

¢™|w ~ Categorical (), (7

76", g™~ p(zg™ |c™)p(g™ ™) (7.
dz™(t) = g"™dt + o, AdB(t), 27 (ty) = 2™, (7

(7

S(z™(t), )™ = exp(—/t( h(Z(m)(T),T)dT),

("2 (E) ~ N (1), 0 (2(1))). (7.5)

for m =1,..., M individuals

The full detailed form of the model is shown in the Methods, which includes the full
set of priors on the parameters. We perform inference with this model by variational
Bayesian inference described in the Methods section. To summarize, for each indi-
vidual m, we infer the posterior distribution of the individual specific cluster label,
baseline latent state, and latent drift, ¢(c™, z{™, g™ |{x{™},) with a recurrent neu-
ral network (RNN) that takes the first 50 time steps as input (Figure 7.1a). Then,
latent trajectories z(t) are predicted using an SDE with baseline state zo and constant
drift g (Figure 7.1b, Equation 7.18). These latent states are decoded into predicted
health states with a decoder neural network (Figure 7.1c, Equation 7.5) and pre-
dicted survival probabilities (Figure 7.1c, Equation 7.4). In Appendix C, we show
that this model can accurately cluster data from a simulated dataset where we know
the ground truth cluster labels.

This model requires choosing the dimension of the latent state z. In Figure 7.2,
model prediction accuracy on the test set is shown vs latent dimension for a) root-
mean squared error (RMSE) for health predictions, b) C-index for survival predic-
tions, and c) Integrated Brier Score for survival predictions. Since health predictions
plateau at a dimension of 7 and survival predictions are similar for all dimensions,
we have a latent state of size 7. Additionally in e), we show that the model infers 2
clusters on average regardless of the dimension, and that the distribution of clusters

is distinct from the prior.
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Figure 7.2: Choosing model latent dimension. In each plot, error bars are
standard errors of the mean over 5 fits of the model. Blue circles show the constant
drift model. Purple triangles show the linear drift model. Orange squares show the
non-linear drift model. a) Root mean squared error (RMSE) vs latent dimension size.
At a latent state of size 7, the constant drift model accuracy plateaus. b) Survival
C-index vs latent dimension size. The C-index is noisy, but generally increases with
latent dimension size. ¢) Survival Integrated Brier Score vs latent dimension size.
Brier scores are better with increasing dimension until size 4 or 5, then begin to
get worse for larger dimensions. d) Average proportion of worms in each cluster.
Since cluster labels change with each fit, cluster labels correspond to the ordered size
of the clusters. The model infers two clusters on average consistently, regardless of
dimension. The red plot shows a histogram of samples from the Dirichlet process
prior for the cluster probabilities 7.

We also show a comparison of the constant individual-specific drift model (blue)
with a linear drift model (purple) and a non-linear drift model (orange), which use an
individual-specific constant drift plus a cluster-specific weight matrix linearly coupling
the latent variables (linear drift) or a cluster-specific feed-forward neural network for
the drift as a function of the latent state (non-linear drift). While substantial hyper-
parameter tuning of the neural network drift would be required for a full evaluation,
we show here that the constant drift is a good simplification in comparison to these

two approaches.
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7.3.2 Distinct aging trajectories

In Figure 7.3a), we show our 7-dimensional latent space model for C. elegans. Each
plot shows a different observed variable vs age, with red and blue colors indicating
the two inferred clusters. Primarily, the blue cluster represents larger worms that
lay more eggs, and the red cluster represents smaller worms that lay fewer eggs.
Additionally we can see differences in the auto-fluorescence, intensity texture, and
movement speed, where the smaller red cluster worms have lower intestinal auto-
fluorescence, move slower and appear brighter.

These clusters also exhibit distinct short-lived and long-lived aging phenotypes.
Figure 7.3b) shows the difference in lifespan for these worms. The red cluster worms
cluster worms live longer, and a log-rank test (a standard statistical test to compare
survival distributions) [261] is shown to highlight the difference in survival between
these clusters.

A t-SNE dimensional reduction [262] is shown in Figure 7.3c), clearly showing
these clusters on this lower dimensional space (note, this two-dimensional t-SNE
reduction is not the same latent space as the 7-dimensional states inferred by the
model). The average age-trajectory for these two groups through this space is shown
with the bold lines. The color of the points corresponds to relative age t/a (age
divided by death age), with lighter colors indicating early ages, and darker colors
later ages. These trajectories are distinct, occupying separate regions of the space for
the entire lifespan of the worms. This means that even in early life, these clusters
have distinct health states, and continue to have distinct health states throughout
their life.

These clusters are consistent with current the understanding of C. elegans aging
biology. The finding of small worms with poor reproductive output being long-lived
has been observed in other studies [256]. Similarly, there is a clear relationship be-
tween intestinal auto-fluorescence and lifespan [256,259], with low auto-fluorescence
worms living longer as seen here, as low auto-fluorescence worms are quickly clear-
ing material from their intestines. The clustering is most clear in for these three
variables. The relationship between movement speed and lifespan is more complex,
and in the data we use very low speeds are associated with short lifespans, but the

survival curves for medium to fast speeds overlap [256]. We have found that worms in
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Figure 7.3: Identifying distinct aging phenotypes. a) Observed health variables
vs age. Points show raw worm data, lines show the mean of the predicted trajectories
from the model with the colored region showing 1 standard deviation from the mean.
Colors show the two inferred clusters. All variables are in unit-less z-scores. b)
Survival curves for the two clusters. Lines show the mean of the predicted survival
probabilities from the model, with the shaded regions showing the standard error
of the mean. A log-rank test is used to compare the lifespans for the two groups.
c) t-SNE dimensionality reduction. Red/blue colors show the two clusters, with
brightness accord to the relative age, which is age divided by death age t/a. Darker
colors indicate higher relative age. The bold lines show the average of these points
for binned ages.

the longer lived cluster are slightly slower. The cessation of vigorous worm movement
may be a better signal for lifespan than simply movement speed [42], but this requires

a cut-off to determine when this occurs.
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Figure 7.4: Simple latent dynamics describe C. elegans aging. a) Trajectories
cleanly cluster on the latent space. Each plot shows a component of the latent state
z vs age. For each worm in the test set, 5 sampled trajectories are shown. b)
Distributions of the latent baseline state for the two clusters, zq. ¢) Distributions of
the latent baseline drift for the two clusters, g. d) Distributions of the latent state at
death, z(tgeatn). Latent states for the two clusters reach different end-points at death.
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7.3.3 Aging dynamics are described by a simple low-dimensional

dynamics with identifiable clusters

The complex dynamics of the observed variables are described by simple low-
dimensional latent dynamics in this model. Given an individuals position and veloc-
ity in latent space, aging proceeds by simply moving in this direction. The observed
health state and mortality rate are just complex transformations of this underlying
latent state.

The dynamics of this 7-dimensional latent state are shown in Figure 7.4a). On
this latent space, clusters are clearly identifiable. The distributions of the baseline
state and linear drift are shown in Figures 7.4b) and c), showing that these clusters
follow distinct aging trajectories. Additionally, in Figure 7.4d) we show that mortality
in this model is determined by different points in latent space at death, because the
only contribution to mortality is the latent state, rather than cluster-specific mortality

rates. This puts all of the mortality information into the latent space.

7.4 Discussion

Flexible latent variable models can be hard to interpret. In this work, we developed an
approach to interpret these latent variables by allowing the baseline latent states and
dynamics to cluster. Doing so, the model can infer distinct divergent aging trajectory
phenotypes. These clusters are inferred in an unsupervised way, and incorporate both
the dynamics of the observed health state and survival.

Our approach is a probabilistic model based on a warped Gaussian mixture [263].
The advantage of this approach over simpler non-probabilistic clustering techniques
such as k-means, agglomerative clustering, spectral clustering, or other traditional
approaches [264] is that the criteria for clustering is setup by our generative model for
the data (Figure 7.1), rather than constructing a distance or similarity metric. The
data involves multivariate noisy irregularly-sampled time series of different lengths
for health variables as well as observations of lifespan, and so it is not clear how to
construct a good distance or similarity metric for which to cluster with. However, with
our approach we need only to specify a flexible generative model for the dynamics and

survival, and then clusters are naturally chosen by fitting the model. The use of SDEs
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naturally allow irregularly-sampled time series of different lengths, and mortality is
included by building a joint model of both health and survival. This approach also
includes a metric for the quality of the clustering and choice of hyperparameters such
as the size of the latent dimension — the quality of the model predictions on a test
set.

Our model for the dynamics of aging is related to that of Pierson et al. [37], where
multi-dimensional constant rates of aging are inferred. They model deterministic
latent dynamics z(t) = rt, where r is a set of constant rates of aging inferred for
each individual, while we model aging dynamics by constant drift SDEs for each
individual. Our approach is distinct in that it includes clustering of the individual
aging trajectories, stochasticity in the evolution of the aging trajectories, and includes
mortality. Additionally, this approach only used a single baseline time-point to infer
the rates of aging, similar to the DJIN model (Chapter 5), where here we include
time-series input with a recurrent neural network.

Other approaches to analyzing aging data have shown that a low-dimensional
latent state, such as biological age and similar approaches, can describe the progres-
sion of aging [18,77,203,216,265|, although we have shown this is not sufficient to
predict individual heterogeneous aging outcomes (Chapter 5). Here, we chose the
dimensionality of the latent state by the quality of the model predictions.

It has been previously seen that genetic variants of C. elegans follow distinct
trajectories in a 2-dimensional space reduced by t-SNE [257]. However, to do this
they did not perform the dimensionality reduction on the full set of variables, but
extracted a subset of the variables that showed the most significant variation between
the two groups. Instead of this ad-hoc approach, our model directly clusters from the
observed data.

In future work, our approach can be applied to such genetic variants of organisms
or to groups having undergone interventions. This can be used to answer questions
such as: are genetic mutants or aging interventions merely changing the rate at which
aging occurs, or inducing a healthier divergent aging trajectory? Can we identify and
understand why individuals within an intervention group that are outliers do not
respond well to the intervention? We see a promising future for approaches such as

this to answer these questions.
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7.5 Methods

7.5.1 C. elegans data

We use C. elegans data from [256]. We use data from 672 isolated worms on bacterial
food pads that are monitored with automated image acquisition and processing. Data
for individuals are collected at ~ 3 hour intervals (although the start time for each
individual can vary by £+ 3 hours). The data taken consists of locomotary ability
(Bulk movement [pixel displacement over 3 hours], unstimulated movement rate [pix-
els/second], stimulated movement rate immediately after blue-light stimulus (a) [pix-
els/second], stimulated movement rate 1.5 seconds after blue-light stimulus (b) [pix-
els/second]), tissue integrity (average brightness of worm pixels), homeostatic ability
to clear material from the intestine (80th percentile of worm pixel auto-fluorescence),
body size and shape (total cross-sectional body size [pixels] and aspect ratio [area
of rectangle bounding worm]), and reproductive output (Average egg size [pixels],
cumulative eggs laid [count]). Worms are tracked until death. We drop the first
25 time-points for each worm, corresponding to the point in time when the average
number of eggs laid by the worms goes above zero, i.e. we only use data for adult

WOrIisS.

We split the data into a training set of 472 worms, a validation set of 100 worms
and a test set of 100 worms. Training data is used to train the model, validation data
is used to monitor training and decrease the learning rate during training, and test

data is used to test model predictions.

7.5.2 Latent cluster trajectory model

We build a Bayesian latent cluster trajectory model. In this model, the dynamics of
worm aging are described by an underlying latent health state evolving stochastically
according to stochastic differential equations. For health predictions, this latent state
is mapped to the observed variables with a decoder neural network, and for survival

predictions the latent state is mapped to the hazard rate with another neural network.
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This model is written,

7 ~ GEM(1), (Cluster probabilities)

c|m ~ Categorical(7r), (Individual cluster label)
{pe}e ~ N(0,25), (Cluster baseline latent state)
zolc ~ N (e, 2c), (Individual baseline latent state)
{f.}. ~ N(0,25), (Cluster latent drift)

gle ~ N (£, 2s.), (Individual latent drift)

dz(t) = gdt + 0,.dB(t), z(ty) = 2o, (Latent dynamics)
X|z(t), t ~ N (u(z(t)), o2(z(t)), (Health observations)
S(t,z(t)) = exp(—/h(t',z(t'))dt'), (Survival)

For the cluster probabilities 7 we use a GEM stick-breaking prior [266] truncated to
8 clusters, this is a method of constructing a Dirichlet process which is typically used
for clustering with an unknown number of clusters. We use broad normal priors for
the cluster means and drifts, {u.}. and {f.}.. Individual baseline latent states z,
and drifts g are assumed to follow a Gaussian mixture with the corresponding cluster
means for the latent state { . }. and drift {f.}.. Latent dynamics are modelled with an
SDE with drift g and initial latent state z,. Since the drift, baseline latent state and
diffusive noise strength o, . are all cluster dependent, these dynamics are clustered. A
graphical representation of this model is shown in Figure 7.5a). All other parameters
not discussed have uniform priors.

The latent state is mapped to the observed health state with a Gaussian observa-
tion model with mean pu(z(t) and standard deviation o (z(t)), where these functions
are neural networks. We impose that the mean p(z(¢) be non-negative, preventing
the prediction of negative movement speeds. Additionally, we impose that the stan-
dard deviation o (z(t)) of the movement speed variables goes to zero as the mean of

the movement speed variables go to zero,

0;(z(t)) = max (6,~(z(t)) X ;(z(t)), 0), (7.6)

where &;(z(t)) is a neural network.

The stick-breaking process is an iterative process defining the cluster probabilities
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v ~ Beta(l,aa =1), (7.7)

m™ = U, (78)
i-1

T o= H(l —vg), 1=1,..,7, (7.9)
k=1

8
mso= [J1—w) (7.10)
k=1
This is used to define the posterior in terms of v instead of 7.

7.5.3 Inference

We perform variational Bayesian inference with a posterior approximation

q(z(t), 20,8, ¢, pe, fe, VI{x: }¢) = q(2(t)]20, 8)a(zo[{x¢ }e)a(g{x¢ ) (7.11)
xq(e[{x¢})q(pe)a(fe)q(v).

For simplicity, we leave out the parameters of these distributions ¢ from the notation.

The specific distributions are defined as,

q(zol{x:}) = N(p-({x: }1), Z.({x: }1)),
a(gl{xe}e) = N(pg({x:}e), By ({x:}0)),
q(c[{x¢}:) = Categorical(m({x:}:)),
q(pe) = N(my.,s; ),

q(f) = N(my,s7,),

q(v) = Beta(a, 3).

Functions of {x;}; use a recurrent neural network for on the first 50 time points.
Values my, ., my,s,., S, o, B are the variational parameters of the corresponding
distributions. Figure 7.5(left) shows the construction of the encoder network for
q(20, 8, ¢, |{x+}+). The structure of this encoder is called a Variational Ladder Auto-
Encoder (VLAE) [267]. This structure places more abstract features deeper in the

hierarchy, and prevents the model from ignoring these deeper levels of the hierarchy.
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Figure 7.5: Graphical representation of the clustering model. (left) Structure
of the generative model for clustering. This network depicts the factorization of
the joint distribution p({x}:,{z(¢) }+. 2o, &, ¢, {#c}e, {£.}e, ) for the model. Variables
inside the rectangle are all indexed by m, representing each individual from the data.
In this model there are global cluster probabilities 7, global cluster baseline latent
state means {u.}., and global cluster latent drift means {f.}.. An individual specific
cluster label ¢ is inferred, which leads to individual specific baseline z, and drift g.
Using these individual specific variables, latent dynamics are run with a stochastic
differential equation for z(¢). These latent states are then decoded into observed states
x;. (right) Structure of the encoder network for ¢(zg, g, ¢, |[{x:}+). This structure is
known as a Variational Ladder Auto-encoder [267]. All arrows represent feed-forward
neural network layers, except for the arrow specifically labeled as a recurrent neural
network (RNN). The grey circle for {x; }; represents the observed time series of health
measurements. The squares h; and hy are deterministic intermediate hidden states.
Zo, g, and ¢ are random variables from ¢(zo, g, ¢, |{x¢}:). The variational parameters
¢ are not shown, but connect to every white node. This network represents the

factorization ¢(zo, g, c|[{x:}+) = q(zo|{x:}+)q(gol{x: }+)q(c|{x:})-

Parameters not shown here have delta function posterior distributions, as discussed
in Chapter 2. Note that ¥ indicate covariance matrices, while s? indicate diagonal

covariance matrices only parameterized by the variance of each component.
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To sample the latent trajectories from the posterior ¢(z(t)|zo, g), we follow previ-

ous work [234-236] and solve the auxillary SDE,
dz(t) = gdt + g1(z(t), t)dt + o, .dB(t), z(ty) = 2o, (7.18)

where the drift consists of the posterior mean of the individual drift g = p, .({x:}+)
plus an additional feed-forward neural network g;(z(t),t).

The loss (negative ELBO) for this model is,

L(p) = — Z q(cl{xt}t)Eag g po o a(t)~a [log Hp<xtk |z (tk)) +

k

+ / “log S(t, 2(t))dt + log h(a, 2(a)) + log S(a, 2(a))

to
a+amax
+/ log (1 — S(t,z(t)))dt

p(zolc, pe)p(gle, £e))p(plc)p(Elc)p(clm)p(m)
q(2zol{x:}1)q (gI{Xt} Ja(c{xi}e)a(pe)a(fe)q(v)

- / (g + &1 (2(1).1) — g) /el Pat]. (7.19)

+log

Note that since c¢ is a discrete variable, we cannot compute gradients with samples
of ¢ ~ ¢. Thus, we need to sum over all cluster labels, weighted by the probability
q(c|{x¢}¢). The derivation of this loss is similar to the derivation of the loss for the
DJIN model in Chapter 5, which is shown in Appendix B. The first 3 lines of this loss
are the likelihood for the data, including both health and survival. We penalize the
survival probability by integrating the probability of being dead from the death age a
t0 amax, Which better estimates survival probabilities [238] (the integral on the third
line). We set apyax = 45 hours. Otherwise, it is difficult for the model to learn S — 0
for large t. The last 2 lines are the KL-divergence terms for variational inference.

To compute the term involving the cluster labels and the stick-breaking prior
log p(c|m), we follow Blei et al., [268]

8

Eflogp(clm)] = Y- [ale > kl{x}) (W) = Wl + &) (7.20)

k=1

(e = k{3 (W(8) — lan + B) .

where W is the digamma function, and a and 3 are the variational parameters of the

posterior distribution of v in Equation 7.17.
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7.5.4 Summary of training procedure

1. Sample batch of data. Run RNN backwards through the first 50 time-points to

output cluster labels, individual baseline state states, and drifts

{Xt}?:—SO — RNN — C, Zo, 8~ q(C, Z, g‘{Xt}?:_50). (721)

2. Set baseline state z(ty) = zo and solve latent SDE dynamics with the SDE in
Equation 7.18,

dz(t) = gdt + g1(z(t),t)dt + o, .dB(t). (7.22)

3. Compute mean p(z(t)) and standard deviation o (z(t)) of observed health state

from latent state.

4. Compute hazard rates h(t,z(t)). Compute survival functions from hazard rates,
St 2(1)) = exp (— / Wt 2())dt). (7.23)

5. Compute gradient of loss in Equation 7.19 and update variational parameters.

Return to step 1.

7.5.5 Hyperparameters and network architectures

We use a latent state of size 7. The encoder uses a GRU RNN [112], with an internal
hidden state size of 30 followed by a Batch-Norm (h; in Figure 7.5). The hidden
state hy has size 15 and follows from an ELU activition, linear layer, and Batch-
Norm applied to h;.

Linear transformations of h; are used to compute the mean and covariance of z
and the mean and covariance of g. A linear transformation of h, and a soft-max
activation is used to compute probabilities of each cluster label c.

The hazard rate is estimated from the latent state z and age t with a feed-word
neural network that has input size 8 (latent state plus age), hidden layer size 7, an
ELU activation, and output layer size 1. The mean for the observed health variables
w(z(t)) has an input layer of size 5, a hidden layer of size 8, an ELU activation, and

an output layer of size 11.
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Covariance matrices are parameterized with a low-rank approximation of rank 3
(compared to the full rank size of 7). This is done by fitting a matrix C € R3*7 and
a vector d € R” and computing the covariance ¥ = d? + CTC.

We use the ADAM optimizer to update the parameters [111], with a learning rate
of 1072, A learning rate schedule is used to halve the learning rate when loss plateaus
last for longer than 10 epochs. We use KL annealing and increase the weight of the
KL-divergence terms in the loss function from 0 to 1 linearly over the first 100 epochs.
All models are run to 300 epochs — all training set and validation set ELBOs are

plateaued at this point.

7.5.6 Non-constant drift models

To validate our simplification of the dynamics with a constant drift, we compare the
constant drift dynamics with linear and non-linear drift dynamics. The form of these

two approaches are,

dz(t) = gdt + Wy z(t)dt + 0,.dB(t), (linear drift)
dz(t) = gdt + Gnon—tinc(2(t))dt + 0,.dB(t), (non-linear drift)

where Wy, . is a matrix linear coupling the latent variables, and gnon—iin,c is a feed-
forward neural network with one hidden layer of size 5.

Note that while the constant drift g is inferred for each individual (i.e. the
drift is individual-specific), Wiy, and gnon—iin,. are only cluster-specific. Including
individual-specific versions of these would greatly increase the parameters of the
model.

While a full test of the the non-linear approach would require substantial hyper-
parameter tuning, we show that the constant drift dynamics work well in comparison

to these two models, representing an enormous simplification of the dynamics.

7.5.7 Evaluation metrics
RMSE scores

Health predictions are assessed with the Root-Mean-Square Error (RMSE) of the

predictions with respect to the observed values. We compute these RMSE values for
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predictions for a variable ¢ and a specific age ty,

M

1 (m m
RMSEi(te) = 4| 77 > @™ () — a2, (7.24)

m=1

The observed variables are denoted a:ETk) , and the predicted variables :@§m) (t).

Time-dependent C-index

The C-index measures the probability that the model correctly identifies which of a
pair of individuals live longer. Our model contains complex time-dependent effects
where survival curves can potentially intersect, so we use a time-dependent C-index

[177],

Ca = Pr($0)(a) < S (a™))|a™) < o)) (7.25)
3 o S[S™ (™)) < S072) (a1 alm1) < )]
thmz 5[a(ml) < a(mQ)] ’

We denote death ages by a. Note, there is no censoring for the worm data, in con-
trast to the data in other chapters. The indexes (m;) and (m2) indicate the pair of
individuals that are being compared. Delta functions 4[] have value 1 if the argument

is true, otherwise have value 0.

Brier score

The Brier score compares predicted individual survival probabilities to the exact
survival curves, i.e. a step function where S = 1 while the individual is alive, and
S = 0 when the individual is dead. Then the Brier score is computed for all possible
death ages,

BS(t) = - > {5[a<m> <4(S™(1))? + 6la"™ > ¢ (1 — 5™ (t))] . (7.26)

m

Note there is no censoring, in contrast to the data in other chapters.



Chapter 8

Resilience and robustness decrease with age, are dynamic
over broad timescales, and can be attenuated with

interventions in aging mice and humans

8.1 Background

Chapter 3 (generic network model) and Chapter 4 (weighted network model) both
considered discrete transitions between health states consisting of binary deficits,
with damage and repair rates describing these transitions. In the weighted network
model, we fit rate parameters from cross-sectional data and in the generic network
model the rate parameters were tuned so that simulated populations agree with the
population mortality rate and average Frailty Index scores vs age. In both of these
cases the primary focus was not on the actual repair and damage processes, but on
the mortality and FI scores, and the parameters of the rates were inferred indirectly

from the observed data as part of the overall fitting of the model.

However, with longitudinal data for binary deficits we can directly extract damage
and repair rates from the data to study the processes of damage and repair in aging.
Additionally since the damage rate is the rate of acquiring new damage and the
repair rate is the rate of recovering damage, we can interpret these damage and
repair processes as (inverse) robustness and resilience. These are important concepts
in aging research, though there has been little attempt to directly observe these
processes, despite the popularity of theories of aging and review articles based on

these processes [8,90,93,94].

Here repair and damage are extracted directly from the data, with no induced
stressor or intervention targeted at the specific damage, representing a measurement
of natural robustness and resilience from a stochastic damage and repair. We use 3
different mouse datasets and 1 human dataset. In two of these mouse datasets we

have interventions — mice treated with the Angiotensin-Converting Enzyme (ACE)
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inhibitor enalapril, and voluntary exercise. Both of these interventions have shown to
slow the increase of the Frailty Index in mice [87,88]. In humans we stratify by net
household wealth, representing a measure of socioeconomic status, which is associated
with lower degrees of frailty [269]. The net household wealth serves as a proxy for
medical or behavioral interventions that are not observed in the data, and do not exist
in the mice data. These distinct datasets strengthen the conclusions by replicating
our findings.

This work is the first time this type of study has been done, opening up a new
method of approaching resilience and robustness. This chapter presents the paper
“Resilience and robustness decrease with age, are dynamic over broad timescales,
and can be attenuated with interventions in aging mice and humans”, in preparation

for submission.

8.2 Introduction

As organisms age, they can be described by a health state that evolves according
to dynamical processes of damage and repair. The health state is the net result of
accumulated damage and repair, and studies of aging have mostly focused on the
health state rather than the underlying dynamic processes, due to the difficulty of
their measurement. Two common approaches to measuring health-states, the Frailty
Index (FI) [14] and the Frailty Phenotype [16], are constructed from cross-sectional
data and so cannot assess damage and repair processes directly. Nevertheless, strong
associations between frailty measures and adverse health outcomes [3,270] indicate
that frailty has a strong effect on these underlying dynamical processes. This is
supported by the increasing net accumulation of health deficits with worsening health
[162,271].

Reduced resilience, or the decreasing ability to recover from stressors, is increas-
ingly seen as a key manifestation of organismal aging [8,90,91,93,94,272]. Resilience
is often assessed by the ability to recover from an acute stressor, such as a heat/cold
shock, viral infection, or anesthesia, within a short experimentally-accessible time-
frame [93,95,96,273]. Robustness, or an organism’s resistance to damage, has not
been as well studied — but there is also evidence for its decline with age [20,274]. Both

resilience and robustness sustain organismal health during aging, but their relative
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Figure 8.1: Extracting damage and repair from the longitudinal observation
of binary health deficits. Instead of just considering the Frailty Index (FI) with
the proportion of deficits n,/N, we consider the number of deficits damaged n¢ (pink)
or repaired nj (green) between time intervals of observed changes in the FI. Time-
dependent damage and repair rates are extracted with Poisson models.

importance and their timescales of action remain unexplored.

To study resilience and robustness in aging, we have developed a novel method of
analysis that uses longitudinal binarized health-deficit data from mice and humans to
obtain summary measures of organismal damage and repair processes over time. This
approach can be adapted to use any other biomarkers, rather than being restricted to
biomarkers specifically associated with resilience [94]. We apply our method to study
how resilience and robustness evolve with age and how they differ between species,
between sexes, and under different health interventions.

Geroscience is aimed at identifying and developing interventions to extend both
lifespan and healthspan [5, 275, 276]. While some interventions that affect aging
health have been identified, how they differentially affect damage and repair, and
their timescales of action, is less understood. We consider interventions in mice that
have previously been shown to have a positive impact on frailty, the ACE inhibitor
enalapril [87] and voluntary exercise [88]. In humans, we stratify individuals by net
household wealth within the English Longitudinal Study of Aging [201]. Wealth is
a socioeconomic factor associated with aging health [269]. Understanding how vari-
ous interventions affect aging health by affecting resilience and robustness will better

enable us to improve and combine interventions to fulfil the geroscience agenda.



a) Mouse dataset 1 (Keller et al. 2019)
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Figure 8.2: Joint models fit quality. Quality of model fits for repair counts (green),
damage counts (pink), total deficit counts (grey), and survival probability (orange) for
a) Mouse group 1 (Keller et al., 2019) [87], b) Mouse group 2 (Bisset et al., 2021) [88],
c) Mouse group 3 (Schultz et al., 2020) [253], and d) ELSA humans [277]. These
distributions show the distributions of these counts and survival for all individuals,
all time-points, and all sex and treatment groups. The table shows R? statistics and
the proportion of posterior 95% credible intervals (Crl) for data-points where the
residual includes zero (expected to be 0.95). Full plots of these residuals are shown

in Appendix D.
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8.3 Results

8.3.1 Measuring resilience and robustness

A well-established approach to quantify health in both humans and in animal models
is to count binarized deficits in a Frailty Index (FI) [14,73]. In longitudinal studies,
the health state of individuals can be assessed at each follow-up. Shown in the Figure
8.1 schematic, the change in of number of deficits from one follow-up to the next is
determined by the number of new deficits (e.g. damage, deficit value transitioning
from 0 to 1, pink arrow) minus the number of repaired deficits that were previously
damaged (deficit value transitioning from 1 to 0, green arrow). These counts of
damaged and repaired deficits between follow-ups represent summary measures of the
underlying damage and repair processes. We use a Poisson model with age-dependent
rates to model the age-dependent damage and repair rates using these longitudinal
counts. This is a joint model coupling the damage and repair rates together with

mortality.

In Figure 8.2, the quality of the model fits are shown with posterior predictive
distributions of the repair counts, damage counts, total deficit counts, and survival
probability, as well as summary statistics of an analysis of residuals. This shows that
the model fits the data well, and posterior credible intervals (Crl) accurately reflect
the uncertainty in the data, shown by the correct proportion of residuals containing
zero within 95% Crl. While we can compute binned-averages of repair and damage
rates from the raw data, this model is used to compute additional information, such as
the posterior distribution of correlation coefficients to determine the increase/decrease
of the rates with age, slopes of the rates vs age, and hazard rates of morality. Since
our model is Bayesian, we can compute posterior credible intervals of these quantities,

representing the probability that the true value falls within the interval.

In our approach, damage rates are the probability of acquiring a new deficit per
unit of time, and repair rates are the probability of repairing a deficit per unit time.
These are measures of susceptibility to damage (lack of robustness), and ability to
repair (resilience). Since the FI is a whole organism-level summary measure of health,

these measures are also whole organism-level measures of robustness and resilience.
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8.3.2 Natural resilience and robustness in control aging populations

We first establish the trends of repair and damage rates in aging. In Figure 8.3,
we plot the age-dependence of the repair and damage processes in mice and humans
along with the Frailty Index for mouse datasets from a) from Keller et al., 2019 [87],
b) Bisset et al., 2021 [88], and c¢) Schultz et al., 2020 [253], and humans from the
ELSA study [277]. Humans are separately plotted by decade of baseline age at entry
to the study, to separate out recruitment effects. Points are binned averages from the
data, and lines are posterior samples from the model of the rates. Both a decrease
in repair rates and an increase in damage rates result in an increasing Frailty Index
with age.

In both humans and mice, as individuals grow older, there is a strong decrease in
repair rates and increase in damage rates (except in mouse group 2 for damage rates).
These effects are replicated in three separate mouse groups, and an observational
human study for older individuals. Spearman rank correlations p for each plot are also
shown, highlighting the increase or decrease of the rates with age. The Bayesian model
of the rates is used to compute 95% posterior credible intervals of these correlations
(in brackets).

The observed damage occurs due to natural stochastic transitions, rather than an
experimentally induced or observed stressor [90,95]. The observed resilience occurs
after no interventions, representing natural resilience to the stochastic damage. This
natural resilience can be thought of as resilience to the natural stressors of life, which
continually occur during aging. While errors in deficit assessment could contribute to
the damage or repair assessment, we would expect these errors to be constant with
age. In contrast, we observe decreasing repair rates and increasing damage rates with
age. Therefore these age-dependent rates signify decreasing resilience and robustness
with age, in both mice and humans.

One caveat with this approach is that we may miss fast damage and repair dynam-
ics that occur on time-scales shorter than the observed time-points. For example, we
cannot observe daily or weekly fluctuations in deficit states. Therefore, our measure-
ments of damage and repair are only looking at the net damage and net repair between
time-points. Ultimately, our approach results in summary measures of damage and

repair.
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Figure 8.3: Separating Repair and damage from the Frailty Index. Repair
rates vs age (top), damage rates vs age (middle), and Frailty Index vs age (bottom)
for a) Mouse dataset 1 (Keller et al., 2019) [87], b) Mouse dataset 2 (Bisset et al.,
2021) [88], ¢) Mouse dataset 3 (Schultz et al., 2020) [253] and d) ELSA humans [277].
For each plot the mean Spearman’s rank correlation p between the rate and age
is shown by the median of the posterior and a 95% posterior credible interval in
parenthesis. Humans are separately plotted by decades of baseline age. Points in all
plots represent binned averages of rates from the data with standard errors, and lines
represent posterior samples from a Bayesian model of the rates (see methods).
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In Appendix D Figure D.1, we highlight the sex differences in the mouse cohorts.
We observe higher Frailty Index in female mice [57] and humans [278], with corre-

sponding differences in repair and damage rates.

8.3.3 Interventions modify damage and repair rates in mice

Mouse datasets 1 (Keller et al., 2019) and 2 (Bisset et al., 2021) additionally have
corresponding intervention cohorts treated with either the ACE inhibitor enalapril,
or voluntary exercise. In Figure 8.4a and b, we show that these interventions target
both repair and damage processes, resulting in lower FI damage accumulation for the
treated groups. This shows that these interventions are not just reducing the suscep-
tibility to damage (increasing robustness) or increasing resilience, but are impacting

both processes in tandem.

The effect of these interventions is clearer seen when looking at how the rates
change with time, shown with the age-slopes of the rates in Figure 8.4c and d. These
slopes are computed with our Bayesian model for the rates, and the 95% posterior
credible interval for the slopes are shown. These slopes show the rate of increase
or decrease of the repair and damage rates as age increases. The interventions are
strongly acting on the rate of decrease of repair rates and rate of decrease of damage

rates with time, resulting in less cumulative damage over time.

We see similar effects between male and female mice treated with enalapril, the
rate of decrease of repair rates and the rate of increase of damage rates are both
attenuated, resulting in rates closer to zero. We see a sex-specific effect on mice
treated with voluntary exercise, such that repair and damage rates appear to be
effected differently by exercise in each sex. There is a complete stoppage or reversal
of the decrease in repair rate for female mice, and a reduction of the increase in
damage rate with age. For male mice, there is a reduction in the rate of decrease of
repair rates (but not a stoppage or reversal), and a complete stoppage of the increase
in damage rates. This suggests that, in mice, exercise acts more to increase repair in
females, and to decrease damage in males. Appendix Figure D.2 highlights these sex

differences.
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Figure 8.4: Interventions both increase resilience and decrease damage. Re-
pair rates , damage rates, Frailty Index vs age for a) control mice and mice treated
with enalapril from Keller et al., 2019 [87] and for b) control mice and mice with
voluntary exercise from Bisset et al., 2021 [88]. Points in all plots represent binned
averages of rates from the data with standard errors, and lines represent posterior
samples from a Bayesian model of the rates. Repair rate and damage rate slopes vs
age are shown for ¢) control mice and mice treated with enalapril from Keller et al.,
2019 [87] and for d) control mice and mice with voluntary exercise from Bisset et
al., 2021 [88]. 95% credible intervals of repair and damage rate time-derivatives are
shown as the color filled regions.

8.3.4 Household wealth modifies human damage and repair rates

For humans, we use net household wealth as a socioeconomic environmental factor
that serves as a proxy for medical and behavioral interventions that are not individ-

ually tracked. In Figure 8.5a), we show rates stratified by terciles of net household
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Figure 8.5: Household wealth differentiates repair and damage rates in hu-
mans. a) Repair rate, damage rate, and Frailty Index vs age for humans from the
ELSA dataset, stratified by terciles of net household wealth. b) Spearman rank cor-
relation p between repair rate and wealth and damage rate and wealth (wealth is
continuous-valued, not terciles), separated by baseline age. Lines show the median
of the posterior distribution of the correlation, colored regions show 95% credible
intervals of the correlation.

wealth, where the lowest tercile has lower repair rates and higher damage rates for
younger ages. Correspondingly, the Frailty Index is lower for individuals with a higher
net household wealth. Since there is no intervention at time = 0, we treat wealth

as a continuous variable and compute correlations between wealth and repair rate



161

rather than age-slopes (as was done for mice), shown in Figure 8.5b). We see that re-
pair rates are positively correlated with net household wealth for younger ages, while

damage rates are negatively correlated for younger ages.

These results replicate the findings in mice, where interventions impact both dam-
age and repair rates. However, in humans we see that the effect of net household

wealth is strongly age-dependent, having the largest effects at younger ages.

8.3.5 Damage and repair have broad time-scales

In the results above, we considered the average repair and damage rates vs age.
Since individual deficits undergo stochastic transitions between damaged and repaired
states (e.g. Figure 8.6a) we can also measure the time-scale of these individual states.
However, observations are only taken at specific time-points and not all subjects were
followed to death. This represents a mixture of interval-censored and right-censored
time-to-event data, where the “event” is a damage or repair transition, rather than
death in typical survival analysis. We estimate survival curves using an interval
censored-analogue to the standard Kaplan-Meier estimator for right censored data
(details in methods). These survival curves represent the probability of a deficit
remaining undamaged after a repair event, which measures robustness, or remaining

damaged after a damage event, which measures resilience.

The corresponding survival curves for the repaired or damaged states or shown
in Figure 5, combining all deficits. Generally there is a large drop in probability
at early times, indicating the states are rapidly switching at or below the interval
between the measurements. However all of the curves also extend to very long times,
indicating that both robustness and resilience have a broad range of time-scales, up

to the remaining life of the organism.

Small effects due to enalapril and exercise are seen in mice on these time-scales,
despite the effects seen on the average damage and repair rates vs age. This only small
effect may be because we do not have sufficient data to stratify these curves by the
time of initial damage or repair. For humans the effects due to household wealth are
strong for females, and females with higher household wealth have a longer time-scale

of damage and a shorter time-scale of repair.



a)

162

(Resilience)
14
E Duration (Robustness)
B damaged .
5 Duration
2 undamaged
0 L
T T T
17 19 21
Age (months)
b) Mouse dataset 1 c) Mouse dataset 2 d) Mouse dataset 3
(Keller et al. 2019) (Bisset et al. 2021) (Schuliz et al. 2020)
Female Male Female Male Male
1.0 4 1.0 1.0
=== Control Control
€ 075 0.75 0.75
=== Enalapril === Exercise
05 0.5 - .5 =
S 025 A 0.25 0.25
= p=0.803 p=0.54 p=0.916 p=0.001
5 00+ 0.0 0.0
2 T T T T T T T T T T T T T T T
DE_’ 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Months since damage occured Momhs since damage occured Months since damage occured
Female Male Female Male Male
1.0 4 1.0 4 1.0 -
=== Control Control
> 0.75 0.75 0.75 -
£ “==  Enalapril === Exercise
‘T 0.5 0.5 - 0.5 -
5
= 0.25 - 0.25 - 0.25 -
= p=0.005 p=0.689 p=0.531 p=0.304
F 00+ 0.0 - 0.0 -
3 T T T T T T T T T T T T T T T T T
'g 0 2 4 6 8 0 2 4 6 8 2 3 0 2 4 6 8
a

Months since repair occured
e) ELSA humans (Phelps et al. 2020)

Months since repair occured

Months since repair occured

Years since damage occured

hel
hel [}
[} j=]
=4 Female a\ﬁ hold th g Female Male
5 100 ousenoldwealll g 4 o
< 2
> === Bottom tercile 3
£ 075 o 0.75
c £
T Middle tercile .S
£ 050 @ 0.50
2 Y tercil g
Py ] er tercile =
5 025 PP = 025
> o
£ =0 =0.629 > -0 =0.415
3 0.00 P P = 0.00 P P
© T T T T T T T T .8 T T T T T T T T
3 0 5 10 15 0 5 10 5 8 0 5 10 5 10 15
[ 3
o

Years since repair occured

Figure 8.6: Resilience occurs over both short and long time-scales in both
mice and humans. a) We measure the timescale of resilience of robustness with
the lifetime of the damaged and undamaged deficit states. The corresponding state-
survival curves are shown, which are the probability of remaining damaged vs months
since damage occurred (resilience) and probability of remaining undamaged vs months
since repair occurred (robustness). The colored regions show 95% posterior credible
intervals for the survival curves. We show p-values in the left lower corner of each plot,
which evaluate the difference between intervention/wealth groups with a generalized
log-rank test for interval censored data [279]. These plots show b) Mouse dataset 1
(Keller et al., 2019), c¢) Mouse dataset 2 (Bissett et al., 2021), d) Mouse dataset 3
(Schultz et al., 2020), and e) ELSA humans (Phelps et al. 2020).

These curves are also shown for each deficit and each dataset separately in Ap-
pendix Figures D.3 to D.8. In mice, deficits have distinct time-scales of resilience,
with some deficits having very broad time-scales and other deficits very short. In
humans, all deficits have similar time-scales of resilience, owing to the fact that all

deficits are either ADLs or IADLs whereas the deficits in mice are quite distinct.
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Figure 8.7: Frailty Index curvature. a) Frailty Index curvature measures the
rate of accumulation of damage. Positive curvature indicates an acceleration of dam-
age accumulation, zero curvature indicates a constant accumulation of damage, and
negative curvature indicates a decelerating accumulation of damage. Curvature is
computed with the second time-derivative of the Frailty Index (Equation 8.1). Terms
of the curvature involving the repair rate (green) and the damage rate (pink) are
separately shown. b) Enalapril treatment effect on Frailty Index curvature in Mouse
dataset 1. Coloured regions show 95% credible intervals. c¢) Exercise treatment effect
on Frailty Index curvature for Mouse group 2. Coloured regions show 95% credible
intervals. d)-g) Frailty Index curvature terms (repair in green, damage in pink) for
all 3 Mouse datasets and ELSA humans. Lines represent posterior samples from our
Bayesian models.

8.3.6 Decreasing robustness determines Frailty Index curvature
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