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Abstract

In the context of general linear models, often techniques are used with

an independence assumption. Unfortunately, this assumption often does not

hold in real data. Real data tends to have correlations in the errors which can

take a variety of structures in the form of a covariance/correlation matrices.

In this research we are primarily focused on the blocked correlation structures,

phylogenetic tree structures. These correlation matrices arise in hierarchical

models and come from phylogenetic modelling of trait evolution. Our research

proposes an adjustment to cross-validation in the case of correlated data. We

will produce a variety of candidate models and test how well our techniques

do at selecting the true model from the set of candidate models. This research

is focused on cross-validation techniques for model selection. Cross-validation

techniques are focused on re-sampling data over K number of folds into training

and testing samples. Historically, methods such as cross-validation account for

the dependent data by transforming the data after the splitting of training and

testing data. Our research looks at transforming our data with a square-root

inverse covariance (V−1/2) matrix transformation that is applied prior to the

sampling. We calculate a measure known as Expected Predictive Log Density

(EPLD) and it is used to measure predictive accuracy across the folds. The

loss function is applied on a variety of models. In the research we show the

relationship between EPLD and square error loss, and argue that SSE can be

used as the selection criterion for blocked models.
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Chapter 1

Introduction

In statistics, as in any field of science, background assumptions are required.

Assumptions are often made to allow for simpler inferences. Although an

assumption may help to simplify things mathematically, a faulty or untrue

assumption may lead to heavily skewed and biased outcomes (1). The inde-

pendence assumptions states that each observation has no effect on any of

the other observations in the group. This can be interpreted as our obser-

vations are not correlated to each other. In statistical modelling, often an

assumption of independence is needed to fit the model. This is problematic

when it comes to selecting between the models of interest when data follows

a non-independent correlation structure (2). For model selection in general

linear models, many techniques are used, including coefficient of determina-

tion (R2), Akaikes information criterion (AIC), and cross-validation (CV) (3).

We are interested in the effect of the correlation structure in dependent data

on these techniques and what adjustments can be made to the data prior to

fitting the model. Our research is heavily focused on cross-validation, and

adjustments to the CV process in regards to model selection. Our research

examine the efficacy and use of predictive log density as a selection criterion.

We showed a equivalence for model selection between square error lost and

predictive log density for certain correlation structures. We proposed a cor-

rected CV method, which involved transforming the data using a square-root

inverse matrix of the correlation prior to splitting into a training and testing

set. We examine cases where we used a blocked correlation matrix, and a
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phylogentic tree based correlation matrix. The research found that in most

situations our corrected method out performs the classical naive methods, al-

though it is dependant on the structure of the correlation matrix. We show in

our research that when correlation is a single block our corrected, naive, and

AIC act equivalently for model selection. We show that when we have multiple

blocks in the correlation matrix our corrected method out performs the naive

method. We found that our corrected method mimics AIC in most instances

in regards to model selection. We showed that our corrected method when the

correlation is blocked describes a random effects model. We found that ex-

pected predictive log density does a good job as a selection criterion and that

in the case of blocked correlation its equivalent to using sum of square error.

The results begin to change significantly when we used the phylogenetic tree

correlation structure. In this scenario the generating model and the underlying

tree heavily effects the estimation of predictive log density, therefore heavily

effects our model selection. Details of each simulation scenario are described

in the research below.

Background

1.1 General Linear Models

The General Linear Model (GLM), is a statistical model that underlies

many of the standard statistical techniques and tools. It is used to describe

the relationship between response variables and a set of covariates. The rela-

tionship between the response and covariates is linear in the parameters, thus,

it is a linear model (4). A GLM is defined as:

Y = Xβ + e where e ∼ N(0,V) (1.1)

2



When the GLM is expanded for multiple linear equations, it takes the form

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βpXip + ei, (1.2)

where i is the ith observation (i = 1, . . . , n) and p is the number of covariates

(p = 1, . . . , q). One of the defining features of a GLM is that the residuals fol-

low a normal distribution mean 0 and variance σ2V or, e ∼ N(0, σ2V). Often,

independence of our residuals is assumed, e ∼ N(0, I). This assumption al-

lows us to implement certain statistical techniques with more ease, but this as-

sumption is often wrong. It is important to distinguish the difference between

a General Linear Model (GLM) and a Generalized Linear Model (GLiM). In

the latter, the response variables are allowed to be distributed according to

the exponential family of distributions. Thus, the key difference is that the

general linear model strictly assumes that the residuals will follow a condi-

tionally normal distribution (5). For our work, we are only focused on GLM’s

with normally distributed response variables.

Our research looks at adjustments to transform our data into a space

where the residuals are independent rather than just assuming the indepen-

dence. In our research we examine a V matrix with a blocked and phylogenetic

tree correlation structure. Below I define what a correlation structure is and

define a block correlation structure.

1.2 Correlation Structures

Correlation refers to the statistical relationship between two entities, and

in a data set it can be defined as the statistical relationship between all ob-

servations. That statistical relationship is mathematically represented by a

correlation and/or covariance matrix. We refer to that matrix summarizing

our correlation as our correlation structure. It is the standardized covariance

3



that exists between different units of observation in our data set. This is usu-

ally presented in the notation of a V matrix. It is a n by n matrix with 1 on

the diagonal and the correlations (ρij) on the off diagonal. The values of ρ are

bounded between −1 ≤ ρ ≤ 1. For our research we only examine non-negative

correlations, bounding our ρ between 0 ≤ ρ ≤ 1. The general structure of a

V matrix is symmetric:

V =


1 ρ12 . . . ρ1n

ρ21 1
. . .

...
...

. . . . . . ρ(n−1)n

ρn1 . . . ρn(n−1) 1

 where i and j = 1, . . . , n.

Here the correlation exists in blocks of differing sizes and magnitude of ρij.

Blocked correlation has the following general form:

Vi =


1 ρi . . . ρi

ρi 1
. . .

...
...

. . . . . . ρi

ρi . . . ρi 1

 where i = 1, . . . , k,

V =


V1 0 . . . 0

0 V2
. . .

...
...

. . . . . . 0

0 . . . 0 Vk

 .
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We will use our blocked V matrix to transform our data into a space where the

errors are independent, e ∼ N(0, I) in our GLM. Below I explain the process

of accounting for the correlation in our data.

1.3 Square Root Inverse of Correlation Matrix

The Square Root Inverse (SRI) correlation matrix is the primary precon-

ditioning technique used in our analysis to transform the data. In the case of

correlated data, equation (1.1) is adjusted to:

Y = Xβ + e where e ∼ N(0, σ2V). (1.3)

The correlation matrix V is a symmetric n×n matrix that contains the struc-

ture of the correlation between our errors. We assume that there exists a

matrix Z = V−1. The inverse V−1 would not exist if one variable can be writ-

ten as a linear combination of another. We assume that there exists a square

root of the matrix V−1/2. We precondition our data by multiplying the V−1/2

through our response and covariates.

V−1/2Y = V−1/2Xβ + V−1/2e,

where V−1/2e ∼ N(0, σ2V −1/2V V −1/2) ∼ N(0, σ2I). This allows us to shift

our data into a space where the errors are independent, after which many

of the classical methods of model selection can begin to be applied. Moving

forward in our research, we will refer to V−1/2 interchangeably as the square

root inverse matrix.
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1.4 Block Correlation and Random Effects Model

Recall that in (1.1) we fit a GLM with the form:

Y = Xβ + e,

where our e is the blocked correlation matrix with blocks that contain a value

of ρ. We will form the relationship between our blocked correlation GLM and

a random effects model (18). A random effects model has the form:

y = a+ x′b+ w.

where a is the random effect block mean, x′b is the individuals variation, and

w is the errors. A random effects model for the ith observation in the kth

block has the following form:

yik = ak + x′ikb+ wik, (1.4)

the wik are independent and identically distributed, iid ∼ N(0, v2k). We as-

sume that x′ik contains a first entry equat to one, to account for the intercept,

and that wij is independent of the ak which are independent and identically

distributed, ∼ N(0, u2k). If we set

v2k = (1− ρ2k)σ2,

u2k = ρ2kσ
2,

V ar(yik) = V ar(ak) + V ar(x′ikb) + V ar(wik),

V ar(yik) = u2k + 0 + v2k,

6



We can write this in the form of our model if we set eik = aj + wik.

yik = x′ikb+ eik.

Because the wik and ak are independent between blocks, the eik in different

blocks are independent (just as in the blocks model). But because the ak are

the same for observations within the same block, the eik are dependent within

blocks. What we get is

Cov(eik, ei′k)

= Cov(ak + wik, ak + wi′k)

= Cov(ak, ak) + Cov(wik, ak) + Cov(ak, wi′k) + Cov(wik, wi′k)

= V ar(ak) + 0 + 0 + 0 = u2k,

the model is the same as the blocks model with

Vii = v2k + u2k for i in block k,

σ2Vij = u2k for i and j in block k,

Therefore,

ρk = u2k/(v
2
k + u2k). (1.5)

1.5 Model Selection

When data is modelled, several statistical models, which we will refer to

as candidate models, are considered for a specific statistical problem. Model

selection is a general term for a series of techniques used to choose from a set

of candidate models (1). The model that yields the best predictive accuracy

7



for future data set is often desired. Many statistical methods such as likeli-

hood maximization, least squares require the choice of a model. Many basic

selection criterion exist but often ignore model complexity and over fitting. A

common technique for model selection is penalization. Penalization consists of

adding a penalty based on the complexity of the model (6). Model selection

criterion and techniques that do account for model complexity include Akaike

Information Criterion. These techniques often start with the assumption of

independence in our observations, which can often be untrue in a real world

context. In our research we assess the accuracy and efficiency of these tech-

niques and discuss potential adjustments to account for dependency in our

data.

1.6 Expected Predictive Log Density

Lets suppose we have a generating density for data p(y), and that we

are considering a model where the density is p(y, θ). We are able to use that

data to fit a model and approximate our θ parameter, giving an estimated

density p(y, θ̂y). To understand how well our approximation does, we take

data z that comes from the same generating process, z ∼ p(z). Predictive

log density is defined as log p(z, θ̂y). Because we don’t observe z we consider

expected predictive log density (EPLD). We can then say that the Expected

predictive log density is defined as Ez,y[log p(z, θ̂y)]. We try to choose models

where EPLD is large, because if the fit on new data is in a high density zone we

know our fitted model is appropriate. This approach is specifically important

in our phylogenetic case study. A special case of interest is when the fitted

model is a normal distribution. Then the model density is:

p(y, θ̂y) =
1

(2π)σ̂n
∣∣∣V̂∣∣∣n/2 e[−(y−µ̂)

T V̂−1(y−µ̂)/2σ̂2] ,

8



here θ = µ, σ,V. The PLD being:

log(p(z, θ̂y)) = −n
2

log(2π)− n log(σ̂)− n

2
log
∣∣∣V̂∣∣∣− (z − µ̂)T V̂(z − µ̂)/2σ̂2.

In the special case where V = I and where σ2 is known and equal to 1, the

PLD is:

log(p(z, θ̂y)) = −n log(2π)−
∑
i

(zi − µ̂i)2/2.

Therefore maximizing E[log(p(z, θ̂y))] is equivalent to minimizing an approxi-

mation to the EPLD E[
∑

(zi − µ̂i)2]. This tells us that for model selection in

this circumstance, the minimized square error loss is equivalent for selection as

is the maximized EPLD. Now lets suppose that y ∼ N(µ,V) with a fixed and

known V Therefore, we can directly transform ỹ = V−1/2y and ˜̂y = V−1/2ŷ.

Then we can define ỹ ∼ N(µ̃, I), if V is known, the result above still holds.

The maximized EPLD is equivalent to the minimized square error loss. If we

use the estimated correlation V̂, then our equivalency breaks down and square

error loss ceases to be a sufficient statistic for model selection. We cover both

cases in our research, for the blocked models we use the SSE as the V is fixed

in this case. For the research done on data from a phylogenetic process, V̂ is

the estimated correlation and we revert to using the EPLD directly for model

selection.

1.7 Cross Validation (CV)

When the main purpose of a statistical model is prediction, the model

should hold for future data. Cross-validation (CV) is a sampling technique

that splits data into a hold-out testing set and a fitting training set (8). The

training set is used to fit a model, and the testing set is used to predict, and this

process is repeated many times. This is in line with our process of calculating

9



EPLD from Section 1.6. We are repeatedly fitting a model from data y = y(−n)

and predicting on data z. The zi are independent and the PLD in this case is

defined as log p(z, θ̂y). As an approximation to the expectation of this you use∑
i log p(yi, θ̂y(−ii)

). Therefore, when this process is repeated we can generate

the EPLD. We’ve also shown above in Section 1.6 that when data comes from

a normal distribution, and the covariance matrix V is fixed, we are able to

use a minimized square error loss as it is equivalent to maximizing EPLD. We

used square error loss as our model selection criterion for the blocked modelling

simulations, this is a consequence of an equivalence between square error loss

and expected predictive log density (EPLD), as discussed in Section 1.6. This

equivalence broke down when we simulated from phylogenetic tree correlation

structures. Further details are provided in Section 3.2.1.

The CV process of sampling is repeated a set number of times and the

sum of our validation error is used as a selection criterion. The sum is known

as the cross-validation error and the model that minimizes our CV error is

selected as the most efficient model at prediction from our candidate models.

The most common form of CV is known as K-fold CV (9). This is where

our data is partitioned into K equal sized prediction samples. The sample

is withheld for validation while the model is fit on the remaining data. this

process is then repeatedK times with each sub sample used once for validation.

A form of K-fold CV known as leave-one-out CV is what we’ve focused our

research on. Leave-one-out (LOO) is a form of cross validation where a single

observation is withheld for prediction (10). This requires our model to be

fit with n − 1 observations, and this process is repeated K = n times. The

prediction is conducted on that single observation that was removed. It is then

compared to the true value and a square error is calculated (11). The square

error is summed up to generate my loss function. As stated previously, square

error loss is used to estimate EPLD when V is known, the blocked correlation

case. CV can be conducted in a variety of ways where K = 1...n samples

10



are withheld. with smaller K values leading to a less exhaustive process. For

our research purposes we will focus primarily on leave-one-out cross validation

where K = n.

1.8 Akaike information Criterion (AIC)

AIC is a method for model selection that will be examined alongside our

LOO-CV. Developed in 1973 by Hirotugu Akaike (7). AIC is widely used in

model selection tasks. It incorporates an estimated in-sample log likelihood

and the number of parameters included in the model. This allows for a trade-

off between goodness of fit and model complexity. We defined AIC as:

AIC = l(θ̂)− p,

which is a constant multiple of -1/2 from the original definition of AIC. Here

p is the number of parameters and l(θ̂) is the log likelihood. The results of

Akaike (7), imply that AIC as defined above estimates the expected predictive

log density for the model.

Our research examined two aspects of AIC. The first being how well AIC

performed compared to our corrected cross-validation and naive cross valida-

tion in regards to model selection. The second being how well AIC performed

at estimating the true EPLD.

1.9 Relationship Between AIC and Cross-Validation

It is proved in the paper by Stone (8), that there exists and asymptotic

equivalence between AIC and Cross-Validation methods. In the paper AIC is

defined as l(α, θ̂α)− pα where:

l()− log likelihood,
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α−model selected,

θ̂α −Maximum Likelihood Estimator for model α,

pα − number of parameters in model α.

Stone states that AIC stemmed from the recognition that unreserved max-

imization of likelihood provides an unsatisfactory method of choice between

models that are differing appreciably in their parametric dimension. Both

AIC and cross-validation provide techniques to account for this difference in

parameter dimension. As it will be shown below they are in fact asymptotically

equivalent. Stone defined A(α) as the density evaluated at the observations.

He examined the setting where S is previously observed data, and α are the

parameters for the model:

A(α) =
∑
i

log f(yi|xi, α, S).

This shows us that the log likelihood is dependent on the data S. Therefore

our parameters are estimated based on the data available. For this setting it is

more reasonable to use cross-validation methods where f (i)(y) = f(y|xi, α, S−i)
where S−i is data S with observation i removed. This gives us

A(α) =
∑
i

log f(yi|xi, α, S−i),

Asymptotic equivalence can be shown by starting with fixing α, thus setting

it to an arbitrary model. We then take the first and second order derivatives

12



of our log likelihoods, set our first derivative to zero and solve for our MLE.

l
′
= (

δl

δθ1
, . . . ,

δl

δθl
) = 0,

l
′′

= (
δ2l

δθi, δθj
).

n−1l′′(θ̂ + bi(θ̂−i − θ̂))
p→ E[l′′(y|x, θ0)] = l2

n−1
∑
i

l′(yi|xi, θ̂ + ai(θ̂−i − θ̂))l′(yi|xi, θ̂−i)T
p→ E[l′(y|x, θ0)l′(t|x, θ0)] = l1

Stone argues that if we suppose that S is a random sample from the joint

distribution of (x, y). Then, with additional conditions, A is asymptotically

= l(θ̂) − trace(l−12 l1) and if the model α is a version of the true model, then

it can be shown that trace(l−12 l1) = trace(I) = p. Therefore, A = l(θ̂) − p

which is identical to the AIC formulation above without α. We saw in Section

1.7 that PLD is defined as log p(z, θ̂y), reformulating in the context of CV we

can describe it as
∑

i=1,...,n log p(yi, θ̂y(−i)) = A(α). This means that A(α) and

AIC both approximate EPLD.
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Chapter 2

Block Correlation

2.1 Methodology

Three methods were tested to identify the highest predictive accuracy

given the correlation structure assigned. Our research has defined the three

methods as corrected, naive, and misspecified. The corrected and naive method

use preconditioning transformations of the data to account for our dependence

in the the linear model before fitting the model. The two methods implement

the transformations at different stages of the sampling for cross-validation. We

use simulations to compare the two methods in different situations to observe

the efficacy of our corrected method versus the naive method. We’ve included

a misspecified method where no preconditioning occurs and the dependency

is ignored. The three methods are explained below in further detail.

2.1.1 Misspecified (Independence) Method for Cross-Validation

The misspecified approach completely ignores our correlation structure

and assumes the data to be independent. LOO-CV is conducted without any

transformation of the data.

2.1.2 Naive Method for Cross-Validation

The naive approach begins with the LOO-CV where a test sample of size

n = 1 is removed from the original data. The remaining training set is then

transformed using our square root inverse transformation. Then two models
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are fit on the transformed train set.

y = XTβ + ε

V−i = V with ith row and column removed

y−i = y with ith row removed

ỹ−i = V
−1/2
−i y−i,

X−i = X−i with ith row removed

X̃−i = V
−1/2
−i X−i.

A prediction is generated using the training models an compared against our

test set and the mean square error is recorded. What we use to select between

the models is EPLD and in this simulation scenario our V is fixed and σ2

is known and equal to 1. Therefore, we use sum of square error as a proxy

for EPLD for ease of calculation for the reasons described in Section 1.6. We

repeat the splitting process n times and the sum of square error for both

models is used for comparison.

CV Error :
n∑
i=1

(yi − ŷ−i)2

ŷ−i = xTi β̂−i,

where β̂−i is the estimate of β from a model fit with ỹ−i and X̃i and observation

i removed.

2.1.3 Corrected Method for Cross-Validation

The corrected approach takes our original data and transforms it by mul-

tiplying with the square root inverse of our correlation matrix. This trans-

formation occurs prior to the LOO-CV. Then a test sample of size n = 1 is

removed from the transformed data and the models are fit on the remaining
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train set.

ỹ = V−1/2y

x̃ = V−1/2x

Fit : ỹj = x̃jβ + εj.

CVerror :
n∑
i=1

(ỹi − ˆ̃y−i)
2

ˆ̃y−i = [x̃i]
T β̂∗−i.

2.2 Simulation Procedure

We examine different blocked correlation structures with a variety of mod-

els to test which of our four methods selects the true generating model from

two or many candidate models. The block model structure described in Sec-

tion 1.2, with a σ2 = 1. The four methods we compared are our corrected

method in Section 2.1.3, naive method in Section 2.1.2, misspecified model in

Section 2.1.1, and AIC in Section 1.8.

This section outlines the procedure conducted in the simulation functions

developed for researching our model selection behavior. As stated previously

in equation (1.3):

Y = Xβ + e where e ∼ N(0, σ2V).

We begin our simulation by specifying the correlation structure to examine.

We need to simulate e and Xi in the general linear model with covariance

matrix V. This involves setting number of blocks, size of blocks, values of ρ

to examine, the generating model, the false model for testing, the correlation
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structure of the response variables (V), and the correlation between our co-

variates (Vx). The first step takes our correlation structure and generates a

data set based on that structure. We recognized that if Z ∼ N(0, I) then

W = V 1/2Z ∼ N(0,V ). In R we can generate Z with the rnorm() func-

tion and then apply the transformation V 1/2Z to get a N(0,V ) vector. To

generate the data, we take our V matrix and build a square root inverse of

the matrix (V−1/2). Proofs in Section 2.3.2 show that a square root and an

inverse of the square root of V exist if ρ < 1 . We multiply the V−1/2 with

errors generated from a ∼ N(0, σ2) distribution. This gives us our correlated

errors. We then take our fixed β coefficient multiply them by our randomly

generated covariates. This will give us a deterministic response variable, the

errors calculated above are added to our response variable to add stochastic-

ity. This data is then used to conduct cross validation with our four methods.

We also examine the scenario where the ρ variable in our blocks within the

V matrix are fixed and known vs. estimated. The estimation was done by

fitting a mixed effect model and then estimating ρ from the model. Proof of

the relationship between a mixed effect model and our ρ variable is in Section

1.9.

Four types of generated data sets were examined with varying parameters.

The types include data from a constant correlation V matrix, a 44 observations

in a 4 block V structure, and a 44 observations in a 2 block V structure, and

finally a 88 observations in a 4 block V structure. Our selection criteria involve

comparing the sum of the square error from all the procedures above for the

true model and the false model. We select the smaller sum of square error

between our true and false model. We repeat each procedure 2,000 times.

We take the proportion of times our true model was selected over our false

model given the simulation specifications. This proportion was selected as

the measure for comparing method performance. These simulations are then

repeated again across multiple values of ρ in the block structure, and different

17



values of β in our generating model. These repeated simulations are then

plotted to see how our selection mechanism works as ρ goes from 0 to 0.99

for all our methods. In the results section below, I present different block

structures and number of observations.

A variety of correlation structures were examined through the simulation

of data. Our main focus was data generated with blocked correlation, but

other correlation structures were also examined. Section 2.3 below overviews

the case where the correlation exists as a single uniform block of the form:

V =


1 ρ . . . ρ

ρ 1 . . . ρ
... ρ

. . .
...

ρ . . . ρ 1

 , (2.1)

Blocked correlation has the following general form:

V =


V1 0 . . . 0

0 V2
. . .

...
...

. . . . . . 0

0 . . . 0 Vk

 .

Vi =


1 ρi . . . ρi

ρi 1
. . .

...
...

. . . . . . ρi

ρi . . . ρi 1

 where i = 1, . . . , k,

The first model is the true model, the second model is a some false nested or

unnested model. Then a prediction using the training models is used against
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our test set and the sum square error is recorded. As previously stated SSE is

used as a proxy to EPLD. This is repeated n times and the sum of square error

for both models is used for comparison. Simulations are used to repeat the four

methods above on m-simulated data sets. Data is generated from the same

true model. At each iteration the CV sum of the square error is recorded,

and the fitted model with the smaller SSE is selected. The proportion of

times the true model, is recorded and compared across our four methods. The

simulations also iterate across different values of ρ in the correlation structure.

The trend of proportion of times the true model is selected, across different

values of ρ, is examined in our results below.

2.3 Single Block Structure Results

The first correlation structure we examine, is a single block with a con-

stant ρ variable on the off diagonals. For this simulation data is generated

from y = 1 + 0.5X1 + β∗2X2 + ε and we set y = 1 + 0.5X1 + β2X2 + ε as the

true fitted model, and y = 1 + 0.5X1 + ε, as the false model for comparison.

During the generation phase we alternate the value of β∗2 to note the effect of

a larger coefficient.

2.3.1 Simulation results in constant correlation scenario

In this scenario, where our correlation matrix has the structure below:

V =


1 ρ . . . ρ

ρ 1 . . . ρ
... ρ

. . .
...

ρ . . . ρ 1

 , (2.2)

Our simulations, given in Figure 2.1, showed that all methods selected the true

model equivalently across all potential values or ρ and alternating β∗s. This
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Figure 2.1: Simulation results showing proportion of times the true complex
model is selected two candidate models, simple and complex. The correlation
structure is a single block of size 44, the number of observations is 44, and
Vx = I. A single line for each β∗2 value, across a variety of ρ values.

result was a surprise, but after examination we recognized this as a mathemat-

ical property of this correlation structure. This is due to the fact that with

constant correlation your parameter estimates will remain the same but your

intercept will be shifted. This behaviour is not seen when different correlation

structures exist. With this single block correlation structure, we note that

for the task of model selection, although the intercept is misspecified, all our

methods perform equally well at selecting the true model across all values of

ρ and β∗. Its also evident that for low values of ρ and β∗ all our methods are

biased towards selecting the simpler model. This is explained by for very low

values of β∗2 not affecting our response variable during the generation phase,
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but this effect of biasing towards the simpler model disappears as our values

of ρ approach 1. The true model is always selected in the case where β∗2 is

large enough ∼0.9.

2.3.2 Comparison of Corrected, Naive, and Misspecified Methods.

In this section below, I prove that the results hold generally for a constant

correlation model no matter the parameters. I prove that when data contains

a single block structure, the β̂j parameter estimates are equivalent while the

intercept β̂0 varies between the corrected, naive, and misspecified methods.

Proof:

1. We show the V−1 is of form:

[V−1]ij =

{
a i = j

b i 6= j
, (2.3)

In the constant correlation scenario, the V matrix as:

[(1/σ2)V]ij =

{
1 i = j

ρ i 6= j
,

It suffices to show that for V −1 of the form (2.3), and V of the form (2.2)

V−1V = I.

[V−1V]ij =
∑
k

V −1ik Vkj =
[
V −1i1 . . . V −1in

]
V1j
...

Vnj

 ,
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This gives us that the result holds when i 6= j:

[V−1V]ij = aρ+ b+
∑
k/∈(i,j)

V−1ikVkj = aρ+ b+ bρ(n− 2) = 0,

and when i = j:

[V−1V]ii = a+
∑
k/∈(i,j)

V−1ikVkj = a+ bρ(n− 2) = 1,

Therefore the result holds if:

[V−1V]ij =

{
b+ ρ(a+ b(n− 2)) = 1 i = j

a+ bρ(n− 2) = 0 i 6= j
,

If we multiply the bottom equation by ρ then subtract the top and bottom

equations.

ρa+ bρ2(n− 2)− b− ρ(a+ b(n− 2)) = −1

Rearranging things gives us:

b = −1/[ρ2(n− 2)− 1− ρ(n− 2)]

a = ρ(n− 2)/[ρ2(n− 2)− 1− ρ(n− 2)]

This gives us that the V−1 matrix in the form:

[V−1]ij =

{
a = ρ(n− 2)/[ρ2(n− 2)− 1− ρ(n− 2)] i = j

b = −1/[ρ2(n− 2)− 1− ρ(n− 2)] i 6= j
,

2. We show the V−1/2 is of form:

[V−1/2]ij =

{
c i = j

d i 6= j
,
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If this is true then it must be the case that:

[V−1/2V−1/2] = V−1 =

{
a i = j

b i 6= j
=
[
V
−1/2
i1 . . . V

−1/2
in

]
V
−1/2
1j

...

V
−1/2
nj

 ,

=

{
V−1/2iiV

−1/2
ij + V−1/2ijV

−1/2
jj +

∑
k/∈(i,j) V−1/2ikV

−1/2
kj i 6= j

V−1/2iiV
−1/2

jj +
∑

k/∈(i,j) V−1/2ikV
−1/2

kj i = j
.

This gives that the result holds if and when i 6= j:

[V−1/2V−1/2]ij = cd+ cd+
∑
k/∈(i,j)

d2 = 2cd+ d2(n− 2) = b,

and when i = j:

[V−1/2V−1/2]ii = c2 +
∑
k/∈(i,j)

d2 = c2 + d2(n− 1) = a,

Therefore the result holds if:

[V−1/2V−1/2]ij =

{
c2 + d2(n− 1) = a i = j

2cd+ d2(n− 2) = b i 6= j
.

We subtract the top equation from the bottom, we get:

a− b = c2 + d2(n− 1)− 2cd− d2(n− 2) = c2 − 2cd+ d2 = (c− d)2.

If we rearrange the equation above we get that:

c =
√
a− b+ d.

Note that we only have a real solution only if a > b, this is a certainty when
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−1 < ρ < 1, because a is the diagonal entry and b is the off-diagonal entry of

the positive definite matrix V−1/2. For our research we constrict our ρ to being

positive, so we examine the case where 0 < ρ < 1. Plugging the equation for

c back into the top equation gives us:

(
√
a− b+ d)2 − d2(n− 1) = a,

If we use the quadratic form we can rearrange the equation to get:

d =
−2
√
a− b±

√
4(a− b) + 4b(n− 1)

2(n− 1)

We require that V−1/2 be positive definite, therefore c > d. This gives us

square-root inverse matrix V−1/2 of the form:

[V−1/2]ij =

c =
√
a− b+

−2
√
a−b±
√

4(a−b)+4b(n−1)
2(n−1) i = j

d =
−2
√
a−b±
√

4(a−b)+4b(n−1)
2(n−1) i 6= j

.

3. We show that the above implies ỹi = αyi − γȳ for some α, γ: To

transform our yi we multiply it by our V−1/2 matrix for i = 1, . . . , n:

ỹi = [V−1/2y]i = cyi + d
∑
k 6=i

yk = (c− d)yi + d[
∑
k 6=i

yk − yi],

(c− d)yi + dnȳ = αyi − γȳ,

We apply the same logic for our xij to get the result:

x̃ij = [V−1/2x]ij = (c− d)xij + dnx̄.j = αxij − γx̄.j.

4. Show that the estimated transformed correlation coefficients
˜̂
βj

and
˜̂
β0 are minimizers: The least squares estimates β̂j and β̂0 are minimizers
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and so they satisfy that:

∑
i

(yi −
∑
j

xijβ̂j − β̂0)2 ≤
∑
i

(yi −
∑
j

xijβ
∗
j − β∗0)2 , for arbitrary β∗j , β

∗
0 ,

We replace our original observations with the transformed variables using the

result from part 3.

ỹi = αyi + γȳ,

yi = 1/αỹi − γ/αȳ,

x̃ij = αxij + γx̄.j,

xij = 1/αx̃ij − γ/αx̄.j.

Given our corrected model is yi = β0 +
∑

j xijβj + εi where ε ∼ N(0, σ2V).

We fit the transformed model:

ỹi = X̃iβ̃ + ε̃ = x̃i0β
t
0 + x̃i1β̃1 + . . .+ x̃ipβ̃p + ε̃i = x̃i0β

t
0 +

∑
j

xij
tβtj + ε̃i

ε̃i ∼ N(0, σ2I),

x̃i0 =
∑
k

[V−1/2]ik1 = [V−1/2]ii +
∑
k 6=i

[V−1/2]ik = c+ (n− 1)d. (2.4)

This shows us that xi0 is independent of i and can be treated as a constant.

Replacing our y and x with there respective transformed variants yields in-

equality (2.5):

∑
i

((
1

α
ỹi −

γ

α
ȳ)−

∑
j

(
1

α
x̃ij −

γ

α
x̄.j)β̂j − β̂0)2 ≤

∑
i

(yi −
∑
j

xijβ
∗
j − β∗0)2,(2.5)
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Rearranging the left hand side of (2.5) yields:

∑
i

((
1

α
ỹi−

γ

α
ȳ)−

∑
j

(
1

α
x̃ij −

γ

α
x̄.j)β̂j − β̂0)2 =

1

α2

∑
i

(ỹi−
∑
j

x̃ij
˜̂
βj − x̃i0 ˜̂

β0)
2,

Where
˜̂
βj = β̂j and x̃i0

˜̂
β0 = −γȳ − β̂jγx̄.j + αβ̂0. Using the same logic above

on the right hand side of (2.5) yield:

1

α2

∑
i

(ỹi −
∑
j

x̃ijβ̃
∗
j − x̃i0β̃∗0)2,

Where β̃∗j = β∗j and x̃i0β̃
∗
0 = −γȳ−β∗j γx̄.j +αβ∗0 . After cancellation inequality

(2.5) becomes:

∑
i

(ỹi −
∑
j

x̃ij
˜̂
βj − x̃i0 ˜̂

β0)
2 ≤

∑
i

(ỹi −
∑
j

x̃ijβ̃
∗
j − x̃i0β̃∗0)2.

This holds for all β̃∗j and β̃∗0 , therefore
˜̂
βj and

˜̂
β0 are minimizers. We know that

for any arbitrary value of β∗j and β∗0 there exists a 1-1 transformation with β̃∗j

and β̃∗0 .

β̃∗j = g(β∗j ) = β∗j

x̃i0β̃
∗
0 = g(β∗0) = −γȳ − β∗j γx̄.j − αβ∗0 .

5. Leave-one-out comparison between our Corrected and Naive

methods: a) Corrected: Leave one out ỹi, x̃ij For our corrected method

we perform the transformation before the leave-one-out stage. This gives us

models of the form:

˜̂yi =
∑
j

x̃ij
˜̂
βji + x̃i0

˜̂
β0j,
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We showed in part 2. that

[V−1/2]ij =

{
c i = j

d i 6= j
,

and that

[V−1/2y]i = ỹi = (c− d)yi + dnȳ = α1yi + γ1ȳ,

and that

[V−1/2x]ij = x̃ij = (c− d)xij + dnx̄.j = α1xij + γ1x̄.j,

for some constants c, d, α1. Therefore, ˜̂y−i is the observation after transforma-

tion we leave out one before the fitting:

˜̂y−i =
∑
j

x̃−ij
˜̂
βj−i + x̃i0

˜̂
β0−i,

Where
˜̂
βji = β̂ji and x̃−i0

˜̂
β0−i = −γ1ȳ − β̂jiγ1x̄.ji + α1β̂0i. Now I can calculate

the predictive error from [ỹi− ˜̂y−i] by replacing the variables with their model

parameters and functions of the original observation.

[(α1yi − γ1ȳ)− (x̃−i0
˜̂
β0−i +

∑
j

x̃ijβ̂ji)],

= [(α1yi − γ1ȳ) + γ1ȳ + β̂jiγ1x̄.j + α1β̂0i −
∑
j

x̃ijβ̂ji)],

= [α1yi − α1β̂0i −
∑
j

α1xijβ̂ji],

= α1[yi − ŷi].

We’ve shown above that the predictive error between our corrected and inde-

pendent methods are equivalent up to a scaling factor [ỹi − ŷti ] = α1[yi − ŷi].
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b) Naive: Leave one out yi, xij In the naive method we conduct the

leave-one-out step first before the transformation. This gives us a model fit of:

˜̂y−i =
∑
j

x̃−ij
˜̂
βj−i + x̃i0

˜̂
β0−i.

For the naive method we split the data prior to transformation, thus after

the split we need to recompute V−1/2 based on all observations except i. If

we take two new constants cn−1 and dn−1, where they are the new constant

calculated from data with an observation removed. It remains the case that:

[V−1/2]−ij =

{
cn−1 i = j

dn−1 i 6= j
,

for some constant c, d that differ from those of V−1/2

[V−1/2y]−i = ỹi = (cn−1 − dn−1)yi + dn−1(n− 1)ȳ = α2yi + γ2ȳ,

[V−1/2]−ijxij = x̃ij = (cn−1 − dn−1)xij + dn−1(n− 1)x̄.j = α2xij + γ2x̄.j,

˜̂y−i =
∑
j

x̃−ij
˜̂
βj−i +

˜̂
β0−i,

Where
˜̂
βj = β̂j and

˜̂
β0 = −γ2ȳ − β̂jγ2x̄.j + α2β̂0, for some constant α2 and

γ2. Now we can calculate the predictive error from [ỹi − ˜̂y−i] by replacing the

variables with their model parameters and functions of the original observation.

[(α2yi − γ2ȳ)− (x̃−i0
˜̂
β0−i +

∑
j

x̃ijβ̂ji)],

= [(α2yi − γ2ȳ) + γ2ȳ + β̂jiγ2x̄.j + α2β̂0(i) −
∑
j

x̃ijβ̂ji)],

= [α2yi − α2β̂0(i) −
∑
j

α2xij(i)β̂ji],
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= α2[yi − ŷi].

We’ve shown above that the predictive error between our naive and indepen-

dent methods are equivalent up to a scaling factor [ỹi − ˜̂yi] = α2[yi − ŷi]. The

proofs above have shown us that our predictive error for all three methods

(corrected,naive,independent) are all equivalent up to a scaling factor. Thus,

our selection criterion in the constant correlation scenario will always be the

same regardless of method. This is confirmed by numeric results seen in the

simulations and results for the constant correlation scenario.

2.4 Multi Block Structure

2.4.1 Four Blocks and the Complex Model as the Generating Model

In this simulation set we examine a blocked correlation structure with 4

blocks with block sizes equal to 11 in the correlation matrix. The ρ value is

fixed in this simulation. This yields n = 44 as our number of observations. In

the first iteration we looke at y = 1+0.5X1 +β∗2X2 +e as the true generating

model, and select from two fitted models. y = β0 + β1X1 + β2X2 + e, the

complex model and y = β0 + β1X1 + e , the simple model. During the

generation phase we alternate the value of β∗2 to note the effect of a larger

coefficient. The first simulation was run with our correlation between the

covariates set to zero and we assigned Vx, the covariance matrix between our

covariates, as the identity matrix I. We assumed our ρ value as fixed and

known in this simulation. As we see in Figure 2.2., for large values of β∗2 all

our methods select the true generating model almost exclusively. The behavior

at lower values of β∗2 show a trend as ρ increases, all our methods increasingly

select the true model. The rate of selecting is higher for the corrected and

AIC methods, and they converge to 1 as ρ converges to 1. The bias towards

selecting the simpler model for low values of β∗2 is still evident but disappears

as ρ values are large. We note that increased performance in all methods
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Figure 2.2: Simulation results showing proportion of times the true complex
generating model is selected from two candidate models, simple and complex.
The correlation structure consists of 4 equal sized blocks of size 11, the number
of observations is 44, the true fixed ρ was used, and Vx = I. A single line for
each β∗2 value, across a variety of ρ values.
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as the correlation within blocks ρ increases. This is due to the relationship

between the block model and the random effects model described in Section

1.5. To describe this more visually, we selected two random data sets from our

simulations. One with a low value of ρ = 0.2 and the other ρ = 0.99. Plotting

the x and y values for those two scenarios a clear pattern appears. We used

the data from the simulations involving a single covariate to allow us to plot

the data in 2-dimensions. Figure 2.3 shows us the plot of x and y for the case

where β∗1 = 0.2 and ρ = 0.2 with 4 blocks of size 11 for a total number of

observations of n = 44. As can be seen in Figure 2.3 all the data points are

quite randomly scattered regardless of which block they belong to. This leads

to the lower performance in selecting the correct model when the ρ value is

low, as there is no clear distinction between data from different blocks. We

note the slopes of the least squares line are inconsistent and averaging across

them leads to a slope of zero. That estimated slope of zero is unrepresentative

of the true slope which leads to the bad model selection outcomes. Figure 2.4

shows us the plot of x and y for the case where β∗1 = 0.2 and ρ = 0.99 with

4 blocks of size 11 for a total number of observations of n = 44. As can be

seen in Figure 2.4 clusters of observations begin to appear for data from each

block. As we did above, we use a least squares fit line for visual assistance. We

use this least squares approach to approximate the random effects because the

fitting procedure is difficult without knowing the true aj from equation (1.4).

Once the lines are fit, see Figure 2.4, we note that for all blocks a similar

slope line appears with varying y-intercepts. This fits the the frame work of a

random effects model defined in Section 1.4. This shows us that as the ρ value

within blocks increases, clear slopes for each block appears. Averaging these

slopes gives a better approximation to the true slope compared to the slopes

from observations taken with a low value of ρ. This leads to the increase in

proportion of times the true model is selected.

We now examine scenarios where our correlation in the covariates is not
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Figure 2.3: Plot of X and Y from a simulation with 4 equal sized blocks of
size 11, the number of observations is 44, β∗1 value of 0.2, and ρ value of 0.2.
With least squares fit lines added for each block.

32



Figure 2.4: Plot of X and Y from a simulation with 4 equal sized blocks of
size 11, the number of observations is 44, β∗1 value of 0.2, and ρ value of 0.99.
With least squares fit lines added for each block.
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Figure 2.5: Simulation results showing proportion of times the true complex
generating model is selected from two candidate models, simple and complex.
The correlation structure consists of 4 equal sized blocks of size 11, the number
of observations is 44, the true fixed ρ was used, and Vx = V. A single line for
each β∗2 value, across a variety of ρ values.

zero. The first such simulation examined what occurs when our covariance

matrix for our covariates is equivalent to the covariance matrix of our response.

We are setting Vx as V and ρ as fixed and known. In this simulation we

looked at y = 1 + 0.5X1 + β∗2X2 + e as the true generating model. We

fitted y = β0 + β1X1 + β2X2 + e , complex model, as the true fitted and

y = β0 + β1X1 + e , as the false fitted model for comparison. The simulations

yielded very different results compared to Figure 2.2. For our corrected and

AIC methods we note a constant selection rate regardless of the value of ρ,

this is generally true when Vx = V . As our β∗2 increases it selects the true
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model more often. The misspecified method seems to perform best under these

conditions as the rate of selecting the true model increases with an increased

value of ρ. This is a very curious result and occurs when Vx = V. For the

naive method a strange behaviour occurs where for low values of β∗2 and high

values of ρ it selects the true model more often than our corrected method.

Alternatively, for high values of β2 and high values of ρ, it selects the true

model less often.

2.4.2 Four Blocks and the Simple Model as the Generating Model

In this simulation set we examine a blocked correlation structure with

4 blocks with block sizes equal to 11 in the correlation matrix. The ρ value

is fixed in this simulation. We switch our true generating model as y = 1 +

β∗1X1+e, simple model. The fitted models for comparison are y = β0+β1X1+

e, simple model, as the correct fitted model and y = β0 + β1X1 + β2X2 + e,

as the false fitted model for comparison. We note that the true generating

simple model is selected more frequently than the complex model. The trends

for our corrected, misspecified, and AIC methods are selecting the true model

with a probability of 0.8 over all values of ρ and β. The naive method has

a surprising behavior. The mean number of times the true model is selected

seems to decrease as ρ increases.

The tables below show the differences in performance when our generating

model is either the complex y = 1 + 0.5X1 + β∗2X2 + e as the true generating

model or y = 1 + β∗1X1 + e, simple model, as the true generating model.

Table 2.1 shows the differences between our methods when the generating

model is complex or simple, and when Vx = I. It is clear to see that across all

methods, the complex model as the generating model has better performance

as β∗ moves away from 0. A similar result is seen when Vx = V, Table 2.2

below shows the results. We recognize that in both cases, the proportion of

times the true model is selected is agnostic to the value of correlation within
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Table 2.1: The table outlines the proportion of times the true model is selected
when the correlation structure consists of 4 equal sized block of size 11, and
total number of observations is equal to 44. It examines both when the simple
or complex models are the generating model, Vx = I and β2 = 0.5.

the blocks. I would also note the bias towards selecting the complex model in

the independence method when the simple model is the generating model.

2.4.3 Estimated ρ̂

Next we examine a simulation where all our factors are the same as above,

but we set ρ as estimated rather than fixed and known. We estimate ρ̂ by using

the equivalence between the random effects model and CV as described in

Section 1.4. Figure 2.6 and 2.7 shows that the scenarios between the fixed and

estimated, ρ and ρ̂, behave identically, regardless of the correlation structure

of Vx. Further inspection of a variety of simulations showed that the selection
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Table 2.2: The table outlines the proportion of times the true model is selected
when the correlation structure consists of 4 equal sized block of size 11, and
total number of observations is equal to 44. It examines both when the simple
or complex models are the generating model, Vx = V and β∗2 = 0.5.

37



Figure 2.6: Simulation results showing proportion of times the true complex
generating model is selected from two candidate models, simple and complex.
The correlation structure consists of 4 equal sized blocks of size 11, the number
of observations is 44, an estimated ρ̂ was used, and Vx = I. A single line for
each β∗2 value, across a variety of ρ values.

criteria is only marginally affected by the estimation of ρ at low values of ρ.

Table 2.3 and 2.4 below summarizes all the results and methods, the values

presented in the table represent proportion of times the true model is selected

for each method with Vx = I and Vx = V accordingly.

2.4.4 Multiple Model Comparison

In this section we examine model selection using our techniques between

a set of candidate models. This means that we select from a set that includes

our generating model, a set of nested models, and unnested models. The
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Figure 2.7: Simulation results showing proportion of times the true complex
generating model is selected from two candidate models, simple and complex.
The correlation structure consists of 4 equal sized blocks of size 11, the number
of observations is 44, an estimated ρ̂ was used, and Vx = V. A single line for
each β∗2 value, across a variety of ρ values.

39



Table 2.3: The table outlines the proportion of times the true model is selected
when the correlation structure consists of 4 equal sized block of size 11, and
total number of observations is equal to 44. It examines both when the ρ value
is fixed or estimated, Vx = I and β∗2 = 0.5.
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Table 2.4: The table outlines the proportion of times the true model is selected
when the correlation structure consists of 4 equal sized block of size 11, and
total number of observations is equal to 44. It examines both when the ρ value
is fixed or estimated, Vx = I and β∗2 = 0.5.
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procedure is similar to above. I begin by comparing all my non generating

models and taking the one with the smallest loss and comparing that against

my generating model. The models examined are:

• Model 1: X1

• Model 2: X1, X2 - Generating Model

• Model 3: X1, X2, X3

• Model 4: X1, X3, X4

• Model 5: X4, X5

• Model 6: X2

• Model 7: X2, X3

For these multiple model comparisons I examine the case where Vx = I and

Vx = V, and the ρ is treated as fixed. Figure 2.8 and 2.9 show the results

from these simulations: The behavior between the simulations conducted

with Vx = I and Vx = V are distinctly different. Figure 2.8 shows the

result from Vx = I. We can see that the proportion of times the true model

is selected increases for our corrected and AIC methods as ρ increases. For

low values of β∗2 the performances increases significantly as ρ converges to

1. The misspecified independent, method only exhibit slight increases as ρ

converges to 1 but are generally performing far worse than our corrected and

AIC methods at high values of ρ. The naive method has the most peculiar

behaviour as for low values of β performance increases with ρ, but at higher

values of β it exhibits much lower performance. Figure 2.9 shows us the

results when Vx = V. As we can see the performance of selecting the true

generating model in our corrected and AIC methods remain constant regardless

of the value of ρ. The naive and misspecified both exhibit rapid decreases of
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Figure 2.8: Simulation results showing proportion of times the true complex
generating model is selected from many candidate models that are nested and
unnested. The correlation structure consists of 4 equal sized blocks of size 11,
the number of observations is 44, an estimated ρ̂ was used, and Vx = I. A
single line for each β∗2 value, across a variety of ρ values.
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Figure 2.9: Simulation results showing proportion of times the true complex
generating model is selected from many candidate models that are nested and
unnested. The correlation structure consists of 4 equal sized blocks of size 11,
the number of observations is 44, an estimated ρ̂ was used, and Vx = V. A
single line for each β∗2 value, across a variety of ρ values.
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performance with an increase in the value of ρ. Table 2.5 below outlines the

proportions for both cases:

2.4.5 Simulation with Reduced Number of Blocks

In this section, we repeat our simulations by fixing the number of obser-

vations but reduce the number of blocks. We assess the effect of number of

blocks has on model selection performance. As above we examine a variety

of correlation structures for our Vx and look at cases where ρ was fixed or

estimated. Our number of observations remains fixed at 44. In this iteration

we look at y = 1 + 0.5X1 + β∗2X2 + e as the true generating model, and select

from two fitted models. y = β0 + β1X1 + β2X2 + e, complex model as the

correct fitted model and y = β0 + β1X1 + e, simple model, as the false fitted

model for comparison. During the generation phase we alternate the value of

β∗2 to note the effect of a larger coefficient. The first simulation was run with

our correlation between the covariates set to zero and we assigned Vx = I. We

examine when the ρ value is fixed and estimated in Table 2.6. In this scenario

we note that all four methods exhibit increased performance as ρ increases.

Our corrected and AIC methods increase performance at a faster rate that the

naive and misspecified methods. Table 2.7 looks at the same simulations but

we set Vx = V. For the case where Vx = V as seen in Table 2.7 for both the

fixed and estimated ρ, the performance in selecting the true generating model

remains constant for our corrected and AIC methods regardless of the value of

ρ. The misspecified model appears to increase in performance as ρ converges

to 1, this is a surprising result. The naive method on the other hand exhibits

an increase in performance when ρ is in the low to medium range. As ρ gets

large, the performance begins to decrease.

The results above show similar results between the case when our corre-

lation matrix is 2 blocks of size 22 and 4 blocks of size 11. This leads me to

believe that the number of blocks has no significant effect on model selection
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Table 2.5: The table outlines the proportion of times the true model is se-
lected when selecting from many models, nested and unnested, the correlation
structure consists of 4 equal sized block of size 11, and total number of obser-
vations is equal to 44. It examines the scenarios where our covariates Vx = I
vs.Vx = V, for a fixed ρ and β∗2 = 0.5.
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Table 2.6: The table outlines the proportion of times the true model is selected
when the correlation structure consists of 2 equal sized block of size 22, and
total number of observations is equal to 44. It examines both when the ρ value
is fixed or estimated, Vx = I and β∗2 = 0.6.
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Table 2.7: The table outlines the proportion of times the true model is selected
when the correlation structure consists of 2 equal sized block of size 22, and
total number of observations is equal to 44. It examines both when the ρ value
is fixed or estimated, Vx = V and β∗2 = 0.5.
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for cross validation in our 4 techniques.

2.4.6 Simulation with an Increased Number of Observations

In this section, we repeat our simulations by fixing the number of blocks

but doubling our number of observations. We assess the effect increasing ob-

servations has on model selection performance. As above we examin a variety

of correlation structures for our Vx and look at cases where ρ was fixed or

estimated. Our number of blocks remains fixed with block sizes of 11.

In this iteration we look at y = 1+0.5X1+β∗2X2+e as the true generating

model, and select from two fitted models. y = β0 + β1X1 + β2X2 + e as the

correct fitted model and y = β0 + β1X1 + e as the false fitted model for

comparison. During the generation phase we alternate the value of β∗2 to

note the effect of a larger coefficient. The first simulation was run with our

correlation between the covariates set to zero and we assigned Vx = I. From

the simulation with a larger number of observations, it was evident that that

proportion of times the true model is selected is approximately 1 at lower

values of β∗2 . Table 2.8 below compares our methods at a lower threshold

of β∗2 = 0.3. In the case where Vx = V we observe the same results as in

previous sections, where for our corrected and AIC methods the proportion

of times the true model is selected remains constant regardless of the value

of ρ. The behaviour of the naive and misspecified are also the same but

the rates of convergence appear to be higher when we increase sample size.

Table 2.9 compares our methods for fixed and estimated ρ when β∗2 = 0.3.

We’ve shown that when Vx = I, performance is very good in model selection

as in Table 2.8, compared to performance drop in our naive and independent

techniques when Vx = V. The results from simulations with increased number

of observations show that our selection criteria follow similar trends but with

increased sensitivity towards the value of β∗2 . This means the convergence

behaviour occurs at faster rates for lower values of β∗2 .
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Table 2.8: The table outlines the proportion of times the true model is selected
when the correlation structure consists of 4 equal sized block of size 22, and
total number of observations is equal to 88. It examines both when the ρ value
is fixed or estimated, Vx = I and β∗2 = 0.3.
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Table 2.9: The table outlines the proportion of times the true model is selected
when the correlation structure consists of 4 equal sized block of size 22, and
total number of observations is equal to 88. It examines both when the ρ value
is fixed or estimated, Vx = V and β∗2 = 0.3.
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Chapter 3

Phylogenetic Correlation Structures

3.1 Phylogenetics Background

Phylogenetics is the field of science pertaining to the study of the evolution

in and among species (12). In the study of phylogenetics we are often focused

on a specific trait and its evolution through time and taxa. Our case study

will focus on phylogenetics trait evolution (17). The correlation in traits of

species is dependent on their evolutionary relationships. Those evolutionary

relationships are represented in a phylogenetic tree. The phylogenetic tree is

a graphical representation of the evolution of the aforementioned taxa (13).

Phylogenetic trees take a variety of forms. To obtain results for a range of tree

types, our research focused on Coalescent, Caterpillar, and Balanced Trees.

The trees we examine are rooted and binary, which specifies that all species

of interest to us share a single common ancestor, which is the root of the tree,

and each species split is binary. The leaves of the tree are the species with

observable traits. Each node is a unit of taxonomy (ie. a species). The splits

from a node are binary a representation of two species splitting from their

common ancestor. The edge lengths represented in a phylogenetic tree are an

estimate of time that was needed for the species to evolve. In the sections

below I outline the type of trees we examine in our analysis and describe the

differences between them.

The generating process underlying the evolution of these traits is of par-

ticular interest to us. Statistical models are used to approximate how trait
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evolution occurs through time. We examine two models specifically, Brownian-

motion and Ornstein–Uhlenbeck processes. Sections below describe the two

processes in more detail. Conditioned on a tree and a generating process we

can generate data for simulation purposes. We use the data to select between

two candidate models, one of which is the true generating process. We then

adapt and use the methods we developed from Section 2.1, to identify which

of them work best for selecting the true generating model.

3.1.1 Phylogenetic Trees

There are many forms of phylogenetic trees and a variety of parameters

control the behaviour of the tree. Trees can be rooted, the common ances-

tor is known, or unrooted where there is no common ancestor (12). A tree

can be binary (bifurcating) or multifurcating. Bifurcation states that when

a species evolves and splits, the split occurs into two distinct species. While

in a multifurcating tree, a ancestor can be split into many species at certain

point in time. In our analysis we focus on rooted binary trees. Another im-

portant aspect of a tree is its shape. Tree shape describes the properties of

a phylogeny. The shape of a tree consists of two parts, the topology and the

edge lengths (14). These are known as clocklike trees. There exists a form of

tree that is known as a non-clocklike tree, but we will not be examining them

in the research. Topology refers to the branching pattern of a tree, while edge

lengths represents the amount of time was required for the species to split.

Coalescent trees are one of the three tree structures we examine in our

analysis. Coalescent trees are gene trees that treat traits as independent ran-

dom variables generated from a coalescence process occurring along the lin-

eages of the species tree. Since the multispecies coalescent model allows gene

trees to vary across genes, coalescent methods have been popularly used to

account for heterogeneous gene trees in phylogenomic data analysis (22). All
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Figure 3.1: A Coalescent Tree with 16 nodes (species).

the trees we examine are a form of a rooted binary (bifurcating) tree, includ-

ing the coalescent tree(15).This implies that within the species examined we

can root back to a single common ancestor for all the species. While the bi-

furcation refers to the species splits. The edge lengths are re-scaled to the

number of generations (15). This indicates that species evolution occurs in

non standard time steps. Figure 3.1. gives an example of a coalescent tree.

A caterpillar tree is another form of a rooted binary tree, but the behaviour

of the tree is quite different than that of a coalescent tree. It is defined as a

binary phylogenetic tree for which the induced subtree on the interior vertices

forms a path graph (16).A path graph just states that the vertices along the

tree can be listed in order. This means the tree is unbalanced, and only a

single variant of a species from a split continuous to evolve and splits, while

the other is restricted to only evolving. (14). Figure 3.2 gives us an example

of a caterpillar tree with 16 nodes/species. The last tree we examine in our

analysis is the balanced tree. Much like the previous two tree structures, it is

a rooted binary tree (14). The key feature is the balanced nature of the tree.
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Figure 3.2: A Caterpillar Tree with 16 nodes (species).

This means that the edge lengths or time to species split is always equal. It

takes a constant amount of time for a species to split into two distinct species

(14). Similar to a coalescent tree, but the edge lengths are all constant. Figure

3.3. gives an example of a balanced tree.

3.1.2 Gaussian Models

Models for trait evolution assume conditionally independent evolution

along distinct lineages given the trait value of their common ancestor. We

start our description of the models used by describing models for the evolu-

tionary process along the path from the root of the tree to a tip. Therefore is

suffices to describe the evolutionary process through time for a single lineage.

Trait evolution through time is a stochastic process which accounts for the

trait at a specific time X(t), t ≥ 0. Such a stochastic process is called Gaus-

sian if X(t1), . . . , X(tn) has a multivariate normal distribution for all t1, . . . , tn

(19). We examine two Gaussian processes that can be used as models of trait

evolution, Brownian-motion and Ornstein-Uhlenbeck. Brownian-motion (BM)
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Figure 3.3: A Balanced Tree with 16 nodes (species).

is the simplest Gaussian process. BM is an extension of a random walk model

(19). It does not account for natural selection or any other mitigating forces

involved in trait evolution. The BM model states that traits will evolve along

a tree following a Brownian-motion dynamic under which, after time t of evo-

lution, the trait is normally distributed, centered at the ancestral value at time

0 and with variance proportional to t (20). BM deems the entire process as

random in both directions and distance in a specified interval of time (17).

Initially developed in physics to model the motion of particles in a fluid as

a Brownian motion, these Brownian-motion dynamics can be extended to a

variety of fields including finance, quantum mechanics, and in our case phylo-

genetic trait evolution. One appealing feature of BM models is that its easy

to define and describe its statistical properties. As such, it is a widely used

method of modelling phylogenetics. Brownian-motion modelling requires us

to define two parameters. First, a trait value X(t). At the root of our tree we

have X(0), the starting value of the trait at time zero with our root species.
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Figure 3.4: A Brownian-motion model for a simple tree in one time step.

Moving forward along any particular path from root to a tip, we consider a

Brownian-motion process conditional on an X(0). The second parameter is

σ2, the rate parameter at each step that determines how fast a trait shifts in

a unit of time. The underlying statistical distribution associated with the BM

model is a normal distribution with a mean of 0 and a variance of σ2t. If X(t)

is the value of a trait at time t, then we can derive three important properties

to BM:

1. E[X(t)] = X(0).

2. Independent Increments: X(s)−X(t) and X(v)−X(u) are independent

for u < v < t < s.

3. X(t) ∼ N(X(0), σ2t).

These properties show us that the the variation along a tree from its node will

increase if we increase our time interval t or if we increase our rate σ2. All the

traits will be centered around X(0), the expected value of E[X(t)] = X(0).

A simple diagram at a single time step is provided in Figure 3.4 showing

Brownian-motion. The key property to note about BM is the complexity of

many small forces acting at once is reduced when we sum all those forces up.

This sum follows the normal distribution. Alternatively, we can characterize

BM through its multivariate normal distribution given root trait x0, for any
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fixed set of times 0 < t− 1 < · · · tN .

[X(t1), · · · , X(tN)]T ,

is multivariate normal with mean vector µ and covariance matrix V , where

µj = x0 for all j and Vij = σ2min(ti, tj)
′. One of the main issues that arises

when modelling with Brownian-motion is that the trait evolution is unbounded

and does not account for natural selection pressures. This is unrealistic, and

the Ornstein-Uhlenbeck (OU) process comes in to account for that. The BM

process is actually a form of OU process that has the natural selection pressure

set to 0 (17). If we assume that a trait has an optimal mean, the trait will

converge toward that optimum at a specified rate. The parameters involved

in the OU process are X(t) the trait value at time t, σ2, α the strength of

the constraint towards the optimal value, and θ the optimal value of the trait

(17). This process can be defined in terms of a stochastic differential equation

as in (21):

dX(t) = −α(X(t)− µ)dt+ σdBt

Where Bt is the BM Process. Similarly as for Brownian motion, the OU

process can be characterized by its multivariate normal distribution, given

root trait x0, for any fixed set of times 0 < t1 < · · · < tn.

[X(t1), · · · , X(tN)]T ,

is multivariate normal with mean µ and covariance VOU , where µj = x0 for

all j and

Vij =
σ2

(2α)
e−α||tj−ti|| − e−α(tj+ti)

It’s important to note that an OU process with an alpha parameter α = 0,

acts the same as a BM model due to the optimum having no effect on the

model. We will use both OU and BM models in our analysis below and
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Figure 3.5: Path to shared ancestor between tip 1 and 3 along a balanced tree.

compare techniques for model selection with the two underlying models. We

now consider how the Gaussian models along paths described above give rise

to models for tip data, which is the only data we observe. The additional

assumption is that given the trait for the last common ancestor of the pair

of taxa i and j, evolution along the two separate paths from this common

ancestor to taxa is independent and according to the Gaussian model. Figure

3.5 shows the location along the tree where the common ancestor occurs for

tip 1 and 3. Let y1, · · · , yn denote the data at the tips. By the conditional

independence assumption and the fact that for Gaussian processes, traits at

any collection of times is multivariate normal, it follows that [Y1, · · · , Yn] are

multivariate normal. All analysis is conditional upon the root value which we

denote y0. The means and variances of the Yi require only knowing the model

for the process from root to tip which we have described. This gives that

E[Yj] = y0e
−αT +µ(1− e−αT ) for the OU process where T is the common time
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from root to tip. For the BM process, the E[Yj] = y0. The variances are each

Var(Yj) =
σ2

2α
{1− e−2αT}

To obtain the covariances we condition upon the character state Z at the last

common ancestor of i and j as can be see in Figure 3.5. Let dij denote the

distance between i and j. Then the time from the last common ancestor till i

and j is dij/2. Since Yj and Yi are conditionally independent given Z,

Cov(Yi, Yj) = E[Cov(Yi, Yj|Z)]+Cov(E[Yi|Z], E[Yj|Z]) = Cov(E[Yi|Z], E[Yj|Z])

(3.1)

For BM, E[Yi|Z] = Z so (3.1) gives that Cov(Yi, Yj) = Var(Z) = σ2Tij where

Tij is the time from the root to the last common ancestor of i and j. Let dij

denote the distance between i and j. Then the time from the last common

ancestor till i and j is dij/2. For the OU process, E[Yi|Z] = E[Yj|Z] =

Ze−αdij/2 + µ(1− e−αdij/2). Thus (3.1) gives that

Cov(Yi, Yj) = Var(Ze−αdij/2+µ(1−e−αdij/2)) = e−αdijVar(Z) =
σ2

2α
{1−e−2αTij}e−αdij

BM evolution of the trait variable along the tree results in normally distributed

errors and in a covariance matrix governed by the tree structure, branch

lengths and σ2 . The covariance between two tips i and j is simply σ2Tij ,

where Tij is the shared time from the root of the tree to the tips (20). In sum-

mary, the model for the tip data is Y = β01+e where β0 = e−αT +µ(1−e−αT )

and e ∼ N(0, σ2V) where

Vij = σ2Tij

for the BM model and

Vij =
σ2

2α
e−αdij(1− e−2αTij),
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for the OU model.

3.2 Simulation Procedure

This section outlines the simulation procedure conducted. We begin the

simulation by assigning parameters to a generating model. Among the param-

eters are the underlying tree structure, the generating model, and the number

of trait observations (tips). The trees are all normalized to the size of 1 for

direct comparison. We begin by assigning the underlying tree structure and

generating the covariance matrix associated with that tree. The following steps

are repeated 1000 times. Using the specified tree and covariance structure, we

generate data from either a BM or an OU model. There is no covariates in

the data generation, only a mean value and an underlying model.

Y ∼ 1, BM or OU generating model where e ∼ N(0, σ2V ),

With the generated data I fit two models, one using the true underlying model,

the other with the false model. For each of these two fitted models I obtain

the estimated covariance matrix V̂. The covariance for the fitted Brownian-

motion model V̂ is equivalent to the covariance matrix from the tree structure.

While the covariance for the fitted OU model V̂OU is equal to 1/2/α̂ ∗ (1 −
e−2∗α̂∗V̂ ) ∗ e−α̂∗D. We extract the AIC for both fitted models. For both the

V̂ matrices I estimated above, I take the square root inverse of it V̂−1/2. I

use the V̂−1/2 matrix to transform my observations either before splitting for

cross validation or after split. This is analogous to our corrected and naive

techniques described in Section 2.1.
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3.2.1 Methods

Predictive Log Density Estimation for Model Selection

The performance of our techniques in selecting the true model in our

phylogenetics example under performs when using the SSE as our selection

criterion. As we noted previously, in the case of phylogenetic model selection,

the equivalency between the Predictive Log Density and sum of square error

for model selection breaks down. The predictive likelihood is defined as:

p(z, θ̂y) =
1

(2π)σ̂n
∣∣∣V̂∣∣∣1/2 e(−(z−µ̂)

T V̂ −1(z−µ̂)/2σ̂2),

The log predictive likelihood being:

log(p(z, θ̂y)) = −n
2

log(2π)− n log(σ̂)− n

2
log
∣∣∣V̂∣∣∣− (z − µ̂)T V̂(z − µ̂)/2σ̂2.

When choosing between different generating models, BM or OU, the covariance

matrix V̂ changes. This affects our equation below and the transformations no

longer create an equivalency between SSE loss and EPLD. To adjust for this,

we directly use EPLD to avoid bias introduced by using SSE loss. To assess

the accuracy of the estimated log likelihood, we begin by defining a target

Predictive Log Density for both the BM and OU model fits. This is done by

generating 1000 training observations and 1000 testing observations from the

generating model with parameters equal to that of the simulation. The train-

ing sets generated at this stage are also used as our data in the model selection

simulation to allow for a one to one comparisons. For a given training set we

fit a BM and OU model based on our parameters. That model is then used

to calculate the Expected Predictive Log Density on each of the testing sets,

and the mean Estimated EPLD for all the 1000 testing sets is stored. This

process is repeated for each of the training sets, then averaged over test sets.
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For each training set the mean calculated above is set as our target Predictive

Log Density for that data set. The target predictive log density is a simulation

approximation to the conditional predictive log density, E[p(z, θ̂y)|y]. Cross-

validation is more directly an approximation to the conditional predictive log

density, which is on average the unconditional EPLD. The target is of interest

in model selection performance because it provides a sort of best-case scenario

for model selection using cross-validation. The contrast between its perfor-

mance and the performance of cross-validation gives some sense of the effect

of estimation of conditional EPLD and the goodness of conditional EPLD for

model selection.

Two targets are generated one for each model fit, BM and OU. We then

calculate the AIC for the fitted BM and OU models, as defined in 1.8. We

extract the Expected Predictive Log Density for our corrected method by

fitting models on the training set. The PLD is then calculated for the single

observation. This is repeated n times and the sum for all observations becomes

our Corrected method Predictive Log Density for both the BM and OU models.

Comparisons are made between the four Expected Predictive Log Density

estimates and the two target Expected Predictive Log Density’s. The selection

criterion was based on the magnitude of the EPLD. We select the model with

the maximized EPLD.

Corrected Method

In the corrected method, we transform our observations y by multiplying

with V̂−1/2. After transformation, the data is split into two sets, training and

testing. Training retains n − 1 observations while the testing set contains 1

observations. I fit a BM and OU model using my training set. I predict on

the testing observation and calculate a loss. This step is repeated n times

and the loss at each iteration is summed. The loss between the two models,

BM and OU, are compared and the model with the smaller loss is selected.
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As described below, in the phylogenetic context, using a sum of square error

loss is inappropriate. Rather than a loss we use Expected Predictive Log

Density (EPLD) to select between models. The model with the largest EPLD

is selected.

Naive Method

In the Naive method, the data is split into two sets, training and testing.

Training retains n−1 observations while the testing set contains 1 observations.

We then remove the tip from the tree associated with the observation from the

testing set. We transform the observations y from our training set with V̂−1/2

associated with each of the models, V̂−1/2 and V̂
−1/2
OU . The models are fit and

EPLD is calculated from the testing observation. This process is repeated n

times and the EPLD at each iteration is summed. The EPLD between the

two models, BM and OU, are compared and the model with the larger EPLD

is selected. As in the corrected method, we use EPLD rather than SSE as

the selection metric. The results of the two techniques are outlined below in

Section 3.3. We compare between AIC and our two methods and show the

proportion of times the true generating model being selected is given a specific

tree structure, n, and α.

3.3 Phylogenetics Results

3.3.1 Corrected Method Performance

For our simulations we examine a variety of combinations of parameters

and test our methods at selecting the true generating model. We set a constant

number of observations at n = 32. The parameters we examine include two

generating models, BM and OU, and three tree structures, balanced, coales-

cent, and caterpillar, and finally two α values associated with the OU process.

This yields a total of 9 unique combination, 3 with BM generating, 3 with OU

generating and α = 1, and 3 with OU generating and α = 10. For each of
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Table 3.1: Table outlines the proportion of times the true model is selected
for a variety of generating models and tree structures.

those combinations we assign them as the generating model parameters for the

data, and test the methods we developed at being able to select for the true

model from a set of candidate models. For each generating model, I assess

the performance of our techniques. Table 3.1 outlines the results of our cor-

rected, naive, and AIC methods when using the Predictive Log Density as our

selection criterion. We also test the efficacy of using the target Predictive Log

Density, our corrected and naive methods are estimates of our target. As can

be seen in Table 3.1, the performance of our model selection is heavily depen-

dent on the generating parameters. The sections below outline each generating

model results. For the Brownian Motion model as the generating model, our

corrected method heavily under performs for model selection, regardless of the

tree involved. As expected the Naive method has the worst performance from

all the methods examined. Using AIC performs well for a Balanced and Cater-

pillar generating tree but drops off heavily for the Coalescent tree. The target

EPLD performs the best across all the trees and was an expected result as
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all other methods are estimates of the target itself. The Ornstein–Uhlenbeck

as the generating model yields interesting results that vary across trees, and

α. Our corrected method does extremely well, especially in the situation of a

large α parameter. We note a drop in performance as α becomes small. In the

balanced tree scenario the drop in performance is minor but a huge drop in

performance is seen for the Caterpillar and Coalescent trees. We will examine

these situations of performance drop in further detail below. AIC performs

in a similar manner to our corrected method when α is large, but as α ap-

proaches 1 for the generating process, AIC selection proportion drops heavily.

The Naive method performs terribly in all scenarios and will be ignored for

any further analysis as it is obviously terrible for model selection in a phyloge-

netic context. An interesting result is the selection proportion for the target

EPLD as a selection criterion. With large α it performs decently well but falls

off heavily with smaller values of α. This is highly concerning as the target is

what the other methods are designed to be estimating. This behaviour requires

additional examination and may pose a significant risk for application of any

of our methods. Target behaviour is discussed more thoroughly in the section

below. We examine how well each of our methods did at directly estimating

the target EPLD for our simulations. Boxplots were generated to inform us of

the distribution of estimates by method of the target EPLD. Figure 3.6 shows

us the distributions when the BM model is the generating process. The plot

shows us that for this scenario the AIC and Corrected methods fitted on a BM

model do very well at estimating the target EPLD value for a fitted BM model.

The Corrected method outperforms the AIC method when fitted on an OU

model. AIC seems to underestimate target EPLD for a OU fitted model. The

Corrected method for an OU fitted model does worse when the tree structure

is coalescent. The behaviour of AIC and Corrected for a BM fitted model

remains the same when the generating process is OU, see Figure 3.7. In this

setting our Corrected method does far better at estimating the target EPLD
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for a fitted OU model compared to the AIC method. This slightly seems to

break down for the balanced tree.
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Figure 3.6: Boxplot outlining the distribution of EPLD by estimation method
when the generating model is BM. Red line represents the target EPLD for the
BM fitted model the methods are attempting to estimate. Blue line represents
the target EPLD for the OU fitted model the methods are attempting to
estimate.
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Figure 3.7: Boxplot outlining the distribution of EPLD by estimation method
when the generating model is OU with α = 1. Red line represents the target
EPLD for the BM fitted model the methods are attempting to estimate. Blue
line represents the target EPLD for the OU fitted model the methods are
attempting to estimate.
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3.3.2 Target Performance

As was shown in Table 3.1, we examine our target Predictive Log Density

and its performance for selection. The target is defined as the conditional

predictive log density, conditioned on an observed data set y.

E[p(z, θ̂y|y)].

The target is generated by simulating 1000 training sets and 1000 testing

sets from the same generating model. For each test set EPLD is calculated

conditioned on parameter fits from a training set. The mean EPLD is retained.

The process is repeated for all training sets and a mean of means is taken as our

target value. In theory our target should perform best from all our techniques

but the results show otherwise in certain circumstances. Its clearly a major

issue as our corrected and naive methods are estimates of the target. A precise

and unbiased estimate is useless if the target is inaccurate to begin with. Table

3.1 shows the target does a great job for selection when the true generating

model is BM. It outperforms all methods for all tree structures. The reliability

of the target drops off significantly for the generating model as OU and an α

parameter that’s small. Our analysis will focus on those cases.

As in the case of the corrected method, our initial assumption is that

estimation of α̂ affects our estimation V̂ matrix negatively. We examine α̂ for

the cases where the target did badly at selecting. The first case we examine is

for the simulations where OU was the generating process, with an α = 1 and

a balanced tree. Referring to Table 3.1 in the previous section, the proportion

of times our target EPLD selected the true model was 54.8%. This is in the

line with the proportions for the Naive and AIC methods, but highly under

performs the corrected method. This may seem an odd result, as the corrected

method is an estimate of the target EPLD, its just that our corrected method

overly prefers the OU model. Figure 3.8. shows the distribution of α̂ when
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the target EPLD selects correctly and incorrectly. You clearly see when target

does well at selecting the α̂ is small with a large portion of the density near

0 and the mean being approximately 1. This is not the case when it selects

incorrectly. We note the distribution of α̂ is more right skewed, with most of

the density larger than the true value α = 1. This can be seen with the mean

being approximately 4. Similar behaviour can be observed in Figure 3.9. for

the α̂ with the caterpillar tree structure underlying the simulated data. For

the cases where the wrong model is selected the α̂ estimates are even larger,

and much of the density of those estimates overestimates α̂. This pushes the

mean α̂ value to the right. This behaviour is even more prominent for the

Coalescent tree scenario in Figure 3.10. The majority of the density of α̂ is

larger than the true value of α = 1. The Coalescent simulation scenario with

OU generating and an α = 1, gives us the worst performance in selecting

based on target EPLD. Surprisingly the target EPLD under performs all of

our methods. This is very contrary to expectations and a deeper dive into that

simulation scenario is conducted below. Examining single datasets or subsets

of the data for the coalescent tree simulation with an OU generating model

and an α = 1 can give us a better understanding of why the target EPLD is

doing such a bad job at selecting the true model. As a first step, we extracted

data sets and target EPLD values for data that had a very small α̂ value. The

target EPLD for both the correct and incorrect model are essentially identical

with a slight preference towards the true OU model. These diverge completely

when α̂ is large and the simple BM, the incorrect model, is always selected and

preferred. This tells us that an over estimation of α̂ has a serious effect on our

variance-covariance matrix and thus effecting the efficacy of the target model.

We now examine what effect does the large α̂ have on our V matrix. The first

single data set we examine yielded α̂ = 12.21. This value was not unusual when

the generating model was OU with α=1, which is where the conditional EPLD

did not perform well. The true variance of the data at the tip is V = 0.43.
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Figure 3.8: Histogram of α̂ estimates across simulations for a Balanced tree,
α = 1, and the OU model as the generating process.
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Figure 3.9: Histogram of α̂ estimates across simulations for a Caterpillar tree,
α = 1, and the OU model as the generating process.
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Figure 3.10: Histogram of α̂ estimates across simulations for a Coalescent tree,
α = 1, and the OU model as the generating process.
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Figure 3.11: Density plot showing the differences in V, V̂, V̂OU for overesti-
mated α̂.

While the estimates are V̂ = 0.75 , V̂OU = 0.04 for the BM and OU fits

respectively. This shows us that with large α̂ estimates the estimated variance

for the true OU fit highly undervalues the true variance at the tip. To describe

this behaviour Figure 3.11. plots normal densities generated randomly with

the same mean µ = 0 , and 3 different variances, V, V̂, V̂OU . Lets note that

the effect of a bad estimate α̂ has a significant effect on V̂OU , it reduces to

near 0. Figure 3.11 plots lines at the value of σ from the mean. Thus, the

data using the V̂ from the misspecified BM model contains a larger range

but captures more data from the true range compared to the data generated

from V̂OU . This was examined for other data sets with large α̂ values and a

similar result occurs. I repeat this analysis for α̂ values that are reasonable

and within range of the true α value. The data set selected had an α̂ = 1.1 and

the estimates are V̂ = 0.61 , V̂OU = 0.33 for the BM and OU fits respectively.
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Figure 3.12: Density plot showing the differences in V, V̂, V̂OU for appropriate
α̂ estimate.

As we can see with an α̂ close to the true value, our OU fit does a much better

job estimated the true Variance of the data at the tip.This was repeated with

multiple datasets containing reasonable α̂ estimates and similar results were

observed. Figure 3.12 shows the density plots for V, V̂, V̂OU . These plots

show us that for an appropriate α̂ estimate, the estimated variance from the

OU fit generates similar data to the true variance. Knowing that the incorrect

estimation of α̂ leads to severely undervalued variance which in turn leads to

a decrease in model selection performance, we ran the simulations with α as

fixed. This allows us to gauge the magnitude of the effect of estimating the

parameters in model selection. The results from these simulations confirmed

our previous result and showed us that estimation of parameters can have

a large effect on our target EPLD. Table 3.2 shows the proportion of times

the correct model was selected across our methods for simulations with fixed

parameters. The effect of fixing the parameters for our corrected and naive
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Table 3.2: Table outlines the proportion of times the true model is selected
for a variety of generating models and tree structures, with fixed parameters.

methods were slightly affected by fixing the parameters. The major changes

occur when using the target EPLD for model selection. We note a significant

increase in proportion of times the correct model is selected when using the

target EPLD for selection with fixed parameters.
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Chapter 4

Conclusion

This research aimed at comparing between different model selection techniques

when data is correlated. We focus on correlated data with a block correlation

structure. We propose an adjustment to classical Cross-Validation when data

is correlated, naming it the corrected method. This method was compared

against traditional CV which we named Naive and CV with a false indepen-

dence assumption. We examine the efficacy of the technique for GLMs and

Phylogenetic models. In the context of GLMs we found that when data was

uncorrelated, all our methods produced equivalent model selection outcomes.

When blocked correlation was introduced our corrected and AIC methods

stood out as the most effective methods for model selection. In fact both

methods produced identical results, and we have shown in Section 1.9 the

relationships between our corrected CV and AIC. This was more evident as

the magnitude of the correlation increased. Our initial assumptions had us

convinced that this behavior would occur in an inverse manner but as we have

shown with our research as correlation increased the data behaved far more

like a random effects model. We saw this behavior regardless of varying the

sample size and the number of blocks in the correlation matrix. In the Phy-

logenetics sections we compared our selection efficacy with a variety of tree

structures and two generating model types, BM and OU. We identified when

predictive log density is no longer equivalent to square error loss. We showed

that estimating EPLD directly does a better job than using SSE. A procedure

was built out to identify the target EPLD. What we found generally is our
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corrected method did not perform well in many circumstances, but in some

instances did better than AIC. We also found that the target EPLD was by

far the best selection criterion to go by, but even the target failed at select

the true model in the case of an OU generating process and a coalescent tree

structure. These results are seen in Table 3.1. Our research examine why this

happens, and found that when an OU process is the generating process, we es-

timate the α̂ parameter. The estimate α̂ had a significant effect in calculating

the target EPLD, and the more it deviated from the true α value the worse

the method did at selecting. The results showing the effect of incorrectly esti-

mated α̂ are troubling and can have implications in the field of phylogenetics.

The implications are vast and further research is required to understand and

remedy the effect of inappropriately estimating α̂ on the variance.
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