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Abstract

In quantum computing, computational tasks are represented by quantum circuits.

These circuits are composed of gates whose physical realization comes at a cost.

Typically, gates from the so-called Clifford group are considered cheap, while non-

Clifford gates are considered expensive. Consequently, non-Clifford operations are

often seen as a resource whose use should be minimized.

In this thesis, following recent work by Beverland and others, we study lower

bounds for the number of non-Clifford gates in quantum circuits. We focus on lower

bounds that can be derived from monotones, which are real-valued functions of quan-

tum states that are non-increasing under Clifford operations.

We first provide a detailed presentation of two recently introduced monotones: the

stabilizer nullity and the dyadic monotone. We then discuss how these monotones

can be used to give lower bounds for the non-Clifford resources for two important

quantum operations: the multiply-controlled Pauli Z gate and the modular adder.
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Chapter 1

Introduction

In quantum computing, computational tasks are represented by quantum circuits.

Quantum circuits are composed of gates that represent operators and wires that

represent qubits. These gates transform the state of one or many qubits. Applying

these gates comes at a cost, so minimizing this cost is of particular interest. Certain

gates and operations are considered cheap, those typically being the gates in the

Clifford group, while non-Clifford gates are considered expensive. It is well-known

that the Clifford group is not universal for quantum computing, which means that

not all operations in quantum computing can be performed with just Clifford gates.

Adding a single non-Clifford gate, however, gives the desired universality, making such

expensive gates necessary. Common non-Clifford gates used in quantum computing

are the so-called T , CS, and CCZ gates. Naturally, the goal in designing quantum

circuits is to use the least number of these resources.

Much work has been done to try to reduce the number of non-Clifford gates in

quantum circuits, as seen in [14, 15, 2, 6, 8, 3, 7]. Sometimes these circuit optimiza-

tions are optimal, as in [14, 6, 7]. But in most cases, these optimizations are heuristic:

a method to reduce the number of non-Clifford gates is defined and then empirically

evaluated on benchmark circuits. This has prompted recent efforts in finding lower

bounds for non-Clifford resources [4, 17, 11]. Lower bounds can help us understand

how much more effort to put into optimizing circuits and are the focus of this thesis.

Upper bounds are often obtained from explicit circuit constructions. In contrast,

non-trivial lower bounds are notoriously hard to find. In this thesis, we focus on

lower bounds that are obtained from monotones, which are real-valued functions of

quantum states that are non-increasing under Clifford operations. This follows the

work of Beverland and others [4] which provides the main reference for this thesis.

The thesis focuses on two monotones, namely the stabilizer nullity and the dyadic

monotone. The resources considered are the previously mentioned T , CS, and CCZ
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gates. These monotones are leveraged to provide lower bounds for important quantum

operations: the multiply-controlled Pauli Z gate and the modular adder. Two sets of

lower bounds are provided, one derived from the stabilizer nullity and another derived

from the dyadic monotone. The dyadic monotone gives tighter lower bounds, but with

further restrictions. Some well-known upper bounds are provided for contrast as well.

In some cases, the upper bounds match the lower bounds, showing that the circuit

constructions are optimal.

The thesis is organized as follows: in Chapter 2 we begin with a brief overview of

the necessary background information needed. Then, in Chapter 3, we introduce the

stabilizer formalism, which is the backbone of our methods to realizing lower bounds

for resources. The central concept in this chapter is the stabilizer of a state. In

Chapter 4, monotones are introduced in detail, along with some of their important

properties, leveraging the stabilizer defined in the previous chapter. Chapter 4 is also

where the aforementioned restriction of the dyadic monotone first appears, as it is

needed to prove some of its properties. In Chapter 5, we use both monotones to derive

lower bounds, considering the T , CS, and the CCZ gates as resources. We calculate

lower bounds for two circuits, namely the CnZ circuit and the modular adder circuit.

Finally, the main takeaways of the thesis are briefly stated in Chapter 6, along with

open problems for further work.



Chapter 2

Foundational Quantum Computing

In this chapter, we provide the necessary prerequisites to this thesis. In particular, we

introduce quantum states, unitary evolutions, measurements, and quantum circuits.

2.1 Preliminaries

2.1.1 Vectors and Matrices

Let C be the set of complex numbers. We write Cn to represent the space of n-

dimensional column vectors, and we write Cn×m for the space of matrices with n rows

and m columns. Matrices can be multiplied in the usual way.

The complex conjugate of a scalar c ∈ C is denoted c̄, and the adjoint of a matrix

M = (cij) ∈ Cn×m is M † = (c̄ji) ∈ Cm×n. The trace of a matrix M , denoted Tr(M),

is the sum of its diagonal entries. Note that Tr(BA) = Tr(BA).

For a vector v ∈ Cn, the norm of v is ||v|| =
√
v†v. The vector v is called a

unit vector if ||v|| = 1. A matrix U ∈ Cn×n is unitary if U−1 = U † and hermitian if

U = U †.

2.1.2 Tensor Products

The tensor product is defined as usual and is denoted by ⊗. When a basis is fixed,

the tensor product can be computed as the Kronecker product : the tensor product

w = u ⊗ v ∈ Cnm of two vectors is defined by w(i,j) = uivj. Similarly, the tensor

product C = A⊗ B ∈ Cnm×nm of two matrices is defined by c(i,j)(i′,j′) = aii′bjj′ , with

pairs (i, j) ordered lexicographically. Note that Cn⊗Cm = Cnm and Cn×n⊗Cm×m =

3
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Cnm×nm. For example, the Kronecker product between two 2× 2 matrices looks like:

(︄
a11 a12

a21 a22

)︄
⊗

(︄
b11 b12

b21 b22

)︄
=

⎛⎜⎜⎜⎜⎜⎝
a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎞⎟⎟⎟⎟⎟⎠ .

A basis for a tensor product of vector spaces can be obtained as the tensor product

of the basis elements of the individual vector spaces. For example, if {a1, a2} and

{b1, b2} are two bases for C2, then {a1 ⊗ b1, a1 ⊗ b2, a2 ⊗ b1, a2 ⊗ b2} is a basis for C4.

Note that not all elements of C4 are of the form a⊗ b with a, b ∈ C2.

2.1.3 The Dirac Notation

In quantum computing, we make use of the Dirac notation to represent vectors and

operations. In Dirac notation, we write a column vector v as a ket, denoted by |v⟩.
The adjoint of a column vector u is written as a bra, denoted by ⟨u|. The inner

product between two vectors |v⟩ and |u⟩ is then written as a braket, denoted by ⟨u|v⟩.
For example, the inner product of ⟨0| and |1⟩ is ⟨0|1⟩. The outer product between

two vectors is written in the opposite manner, i.e. |v⟩ ⟨u|. Note this is simple matrix

multiplication, where the inner product results in a scalar, and the outer product

produces a matrix. In some sense the outer product scales a vector, since for a vector

|w⟩, we have |v⟩ ⟨u| |w⟩ = ⟨u|w⟩ |v⟩ where ⟨u|w⟩ is just a scalar.

Consider the standard basis vectors [1, 0]† and [0, 1]†. We denote them |0⟩ and |1⟩
respectively. In quantum computing, the basis of C2 formed by {|0⟩ , |1⟩} is known

as the computational basis. As mentioned before, one can get a basis for higher

dimensional vector spaces by taking tensor products of |0⟩ and |1⟩. For example,

a basis for C4 is {|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩}. For brevity, the symbol

⊗ is often omitted for elements of the higher dimensional computational bases. For

example, |0⟩ ⊗ |0⟩ is written as |00⟩ and |0⟩ ⊗ |1⟩ is written as |01⟩. In this way, the

j-th basis vector of C2n is denoted |b1b2 · · · bn⟩ where b1, b2, · · · , bn ∈ Z2 and b1b2 · · · bn
is the binary expansion of j. Alternatively, we sometimes also write j as an integer

instead. For example, |3⟩ = |11⟩ = |1⟩ ⊗ |1⟩. These notations are all equivalent and

interchangeable, thus we use whichever one is most convenient.
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2.1.4 Quantum Bits

The fundamental unit of information in classical computing is the bit. In quantum

computing the basic unit of information is called a quantum bit or qubit for short.

In classical computing the classical bit can be in the states 0 or 1, but in quantum

computing the state of a qubit is a unit vector in C2. Hence, the state of a qubit can be

any complex linear combination α |0⟩+β |1⟩, where α, β ∈ C and satisfy |α|+ |β| = 1.

The complex numbers α and β are called the amplitudes of the state. Note that |0⟩
and |1⟩ are valid states, corresponding to α = 1 and β = 0, and to α = 0 and β = 1

respectively. We sometimes call these states classical. A state whose amplitudes are

both nonzero is said to be a state in superposition. For example, a qubit in the state

|0⟩+ |1⟩√
2

is in (equal) superposition.

Similarly, the state of a collection of n qubits (sometimes called a register) is

described by a unit vector in C2 ⊗ · · · ⊗ C2 = C2n . For example, a 2-qubit system

could be in the state
|00⟩+ |01⟩+ |10⟩+ |11⟩

2
.

Interestingly, the state of a multi-qubit system cannot always be expressed as

the tensor product of the states of the qubits composing the system. Consider for

example the 2-qubit state
|00⟩+ |11⟩√

2
.

It can be verified using the definition of the tensor product given in Section 2.1.2 that

there are no single-qubit states |v⟩ and |w⟩ such that

|v⟩ ⊗ |w⟩ = |00⟩+ |11⟩√
2

.

If two qubits are such that their state can be expressed as a tensor product |v⟩ ⊗ |w⟩
then the qubits are said to be separable. Otherwise, the qubits are said to be entangled.

For example if a pair of qubits is in the state

|00⟩+ |11⟩√
2

then the qubits are entangled.
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In what follows, we will sometimes write S(n) for the set of all n-qubit states and S
for the collection of all states. That is S = ∪nS(n). In addition to the computational

basis states defined above, other important states include

|+⟩ = |0⟩+ |1⟩√
2

and

|−⟩ = |0⟩ − |1⟩√
2

.

Finally, if |ψ⟩ is a state we write |ψ⟩⊗n for the n-fold tensor product of |ψ⟩ with itself

|ψ⟩ ⊗ |ψ⟩ ⊗ · · · ⊗ |ψ⟩.

2.2 Quantum Operations

To compute with qubits, one can act on them using two types of operations: unitary

evolutions and measurements.

2.2.1 Unitary Evolution

In this case, the state of a quantum system is transformed by applying a unitary

transformation to it. For example, say a quantum system is described by the column

vector |ψ⟩ and U is some unitary matrix. Then the state, after having evolved under

U , is given by U |ψ⟩. Observe that unitary matrices are isometries since ||Uv|| = ||v||
holds for all v if U is unitary, and vice versa when U is a square matrix. A unitary

transformation on an n qubit system is also called an n-ary quantum gate. The

following are some notable single qubit gates that will be used extensively in this

thesis, and are as follows: the Pauli X, Y , and Z gates, the Hadamard gate H, the

phase gate S, and the T gate. The Pauli matrices are

X =

[︄
0 1

1 0

]︄
, Y =

[︄
0 −i
i 0

]︄
, and Z =

[︄
1 0

0 −1

]︄
,

and the others are

H =
1√
2

[︄
1 1

1 −1

]︄
, S =

[︄
1 0

0 i

]︄
, and T =

[︄
1 0

0 eiπ/4

]︄
.

Note that the X gate is synonymous with the Not gate, which can be though of as a

simple bit flip gate, i.e. X |0⟩ = |1⟩ and X |1⟩ = |0⟩.
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If U is an n-qubit unitary, we write CU for the (n+1)-qubit unitary whose action

on basis states is defined as CU |c⟩ |t⟩ = |c⟩U c |t⟩, for c ∈ Z2 and t ∈ Zn2 . The gate

CU is called a controlled-U gate. The intuition is that there is a single qubit that acts

as a control qubit so that the U gate is only applied to the other qubits depending

on the state of the control qubit. The qubits that U acts on are called the target

qubits. Gates can be multiply-controlled as well. We write CnU for the multiply-

controlled U gate with n controls. Its action on the computational basis is given by

CnU |c1⟩ . . . |cn⟩ |t⟩ = |c1⟩ . . . |cn⟩U c1···cn |t⟩, where c1, · · · cn is the product of the bits

c1, . . . , cn in Z2. Knowing this, there are important controlled gates that will be used

later in great detail. They are the CS gate, CNOT (or CX) gate, and the Toffoli

gate (or CCX), and they have matrices:

CS =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

⎤⎥⎥⎥⎥⎥⎦ , CNOT =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ .

and

CCX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.2.2 Measurement

Aside from unitary transformations, we can also act on a quantum state by measuring

it. Measurement is a probabilistic process, and we think of it as observing the state.

A quantum state collapses due to a measurement, and if you were to measure it again

this would yield the same result. Measurements can be performed with respect to

different bases of Cj. In this thesis, an important basis is the computational basis.

If a qubit is in the state |ψ⟩ = α |0⟩+ β |1⟩, and it is measured in the computational
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basis, then the post-measurement state will be |0⟩ with probability |α|2 or |1⟩ with

probability |β|2.

More formally, quantum measurements are described by a collection of measure-

ment operators {Mm} [13, p. 85]. These operators are Hermitian, idempotent, and

satisfy the completion rule:
∑︁
m

M †
mMm = I. The index m refers to the correspond-

ing measurement outcome. When measuring some state |ϕ⟩ the probability that the

outcome m occurs is p(m) = ⟨ϕ|M †
mMm|ϕ⟩ and in this case the post-measurement

state is Mm|ϕ⟩√
⟨ϕ|M†

mMm|ϕ⟩
. Naturally, these probabilities sum to 1, which can also be seen

from the completeness equation: 1 =
∑︁
m

p(m) =
∑︁
m

⟨ψ|M †
mMm|ψ⟩. Moreover, in the

computational basis for C2, we have M0 = |0⟩ ⟨0| and M1 = |1⟩ ⟨1|. Measuring the

state |ψ⟩ above with these formal terms will give the same result as before.

Measurement is of course not restricted to just a single qubit. This formal method

can describe measurement on multiple qubits. Consider an n-qubit system described

by the state |Ψ⟩. Then measuring in the computational basis, the probability of

observing the outcome j is still just ⟨Ψ|M †
jMj|Ψ⟩, where Mj = |j⟩ ⟨j| and j is taken

to be in binary form. For example, on 3 qubits one possible outcome is |001⟩ as this is
one of the computational basis states in C4. Then M001 = |001⟩ ⟨001| is used to find

the probability that the measurement outcome will be |001⟩. One can also measure

an m qubit state in an n qubit system for m ≤ n, i.e. one can measure only part of

a quantum system.

A type of measurement that we will be especially interested in is the Pauli mea-

surement. Recall that X, Y , and Z are the Pauli matrices defined above. An n-qubit

Pauli operator is obtained by taking a tensor product of n elements of {I,X, Y, Z}.
An n-qubit Pauli can be decomposed as a sum of measurement operators. Let P

be a n-qubit Pauli and |ψ⟩ an n-qubit state. Note that for any Pauli P , only two

eigenvalues occur, namely the −1 eigenvalue and the +1 eigenvalue. Recall that

by the spectral decomposition theorem, we have matrices P±1 which are projectors

for their corresponding eigenspaces. These matrices satisfy the following equations:

P = (+1)P+1 + (−1)P−1, and I = P+1 + P−1. Now for a Pauli measurement

on P the probability of a +1 outcome is ⟨ψ|P+1|ψ⟩, with post measurement state

|ϕ⟩ = P+1|ψ⟩√
⟨ψ|P+1|ψ⟩

. Finally, from the above equations we get that P−1 = P+1 − P

and P−1 = I − P+1, so by subtracting these equations we eliminate P−1 and get that
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P+1 =
I+P
2

. Hence, we now can write the post measurement state as |ϕ⟩ = (I+P )|ψ⟩
2
√

⟨ψ|P+1|ψ⟩
.

2.3 Quantum Circuits

A quantum circuit describes a sequence of operations acting on a register of qubits.

Quantum circuits are made of (horizontal) wires and boxes, where each wire represents

a qubit and each box represents a gate. Typically the boxes that represent gates have

a label indicating what gate it is. Explicitly, letting U be any single qubit gate, a

circuit with one qubit and U gate would look like

U .

Multi-qubit gates are also boxes but with multiple wires connecting to it. There

is a special representation for controlled gates. Controlled operations are represented

with a open or closed circle on the control qubit with a vertical wire connecting it to

a box on the target qubit. A controlled operation with a closed circle on its control

qubit, means apply the controlled gate to the target qubits only if the control qubit

is in the |1⟩ state. An open circle on the control qubit means apply the gate if the

control qubit is in the state |0⟩. The circuit for a controlled operation CU where U

is a single-qubit unitary is

•

U .

The circuit representation for a multiply controlled gate is written in this fashion also

but with multiple control qubits.

Quantum circuits are read from left to right, and can be applied by tracking what

the operations do to the input state. It is worth noting that if two circuits give the

same output on a general input state then they are equivalent circuits. In fact, the

following example is a circuit from [10] that acts exactly as a CCZ gate on qubits c1,

c2, and c3, and will be used later on in Chapter 5.

|c1⟩ •
CZ

|c2⟩ •

|0⟩ X • H •

|c3⟩

(2.1)
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The ⊕ symbol in the bottom wire denotes the X gate, making this controlled gate

a CNOT or CX gate. The gate with the meter symbol is a measurement gate and

performs a measurement with respect to the computational basis. The final CZ gate

is a classically controlled gate, represented by the double line attached to it from the

third qubit. Classically controlled gates work by only being applied to its qubits if

the measurement outcome of the other qubit it is attached to is |1⟩. Also, the third

qubit is called an ancilla. It is used as “scratch space” during the computation, and

a circuit with no ancillas is said to be ancilla free. Tracking from left to right starting

with the input state, we get the following steps:

|c1⟩ |c2⟩ |0⟩ |c3⟩

↦→ |c1⟩ |c2⟩ |(c1 · c2)⟩ |c3⟩

↦→ |c1⟩ |c2⟩ |(c1 · c2)⟩ |c3 ⊕ (c1 · c2)⟩.

Now, write out the general states |c1⟩ and |c2⟩ as αc1 |0⟩+ βc1 |1⟩ and αc2 |0⟩+ βc2 |1⟩
respectively. Since the fourth qubit which is in the state |c3 ⊕ (c1 · c2)⟩ remains un-

changed from here, we consider only the first three qubits next. We get:

|c1⟩ |c2⟩ |(c1 · c2)⟩

=
(︁
αc1αc2 |000⟩+ βc1αc2 |100⟩+ αc1βc2 |010⟩+ βc1βc2 |111⟩

)︁
↦→ 1√

2
(αc1αc2 |000⟩+ βc1αc2 |100⟩+ αc1βc2 |010⟩+ βc1βc2 |110⟩) + 1√

2
(αc1αc2 |001⟩+

βc1αc2 |101⟩+ αc1βc2 |011⟩ − βc1βc2 |111⟩)

↦→

⎧⎨⎩
(︁
αc1αc2 |00⟩+ βc1αc2 |10⟩+ αc1βc2 |01⟩+ βc1βc2 |11⟩

)︁
if measurement is |0⟩ ,(︁

αc1αc2 |00⟩+ βc1αc2 |10⟩+ αc1βc2 |01⟩ − βc1βc2 |11⟩
)︁

if measurement is |1⟩

↦→

⎧⎨⎩
(︁
αc1αc2 |00⟩+ βc1αc2 |10⟩+ αc1βc2 |01⟩+ βc1βc2 |11⟩

)︁
if measurement is |0⟩ ,(︁

αc1αc2 |00⟩+ βc1αc2 |10⟩+ αc1βc2 |01⟩+ βc1βc2 |11⟩
)︁

if measurement is |1⟩

= |c1⟩ |c2⟩.

Finally, bringing the fourth qubit back into consideration we arrive with

|c1⟩ |c2⟩ |c3 ⊕ (c1c2)⟩
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as the final state of the system, which is exactly the operation of a CCZ gate on the

first, second, and fourth qubits, as expected. The first few steps follow naturally by

applying the gates one-by-one, while the rest are less trivial. In particular, the sixth

step follows from the fact that H |0⟩ = |+⟩ and H |1⟩ = |−⟩, which can be verified

by direct computation. The seventh step comes after we measure the third qubit,

where we observe either the |0⟩ or the |1⟩ state, both with probability 1/2. The only

difference here between observing either of these states is that there is a negative sign

attached to the βc1βc2 |11⟩ component. The final step fixes this issue by applying the

CZ gate to the first two qubits, provided the |1⟩ state was observed. This results in

having the same output state regardless of the measurement outcome, hence the final

result.

Note that a circuit that does not contain any measurements can be straightfor-

wardly interpreted as a matrix by interpreting the horizontal composition of gates as

matrix multiplication and the vertical composition of gates as tensor products.



Chapter 3

The Clifford Group and Its Universal Extensions

In this chapter, we introduce Clifford circuits, discuss their computational power, and

present several universal extensions of the Clifford group.

3.1 The Pauli Operators

Recall the Pauli matrices X, Y, and Z from Chapter 2:

X =

[︄
0 1

1 0

]︄
, Y =

[︄
0 −i
i 0

]︄
, and Z =

[︄
1 0

0 −1

]︄
.

If S is a set of matrices then S⊗n is the set of matrices comprised of tensor products

of elements in S.

Definition 3.1.1. The Pauli group on n qubits P(n) is the matrix group with ele-

ments {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ}⊗n.

Note that the ±1 and ±i factors in the elements of P(n) ensures the closure of

the group.

Proposition 3.1.2. We have |P(n)| = 4n+1.

Proof. By induction, first let n = 1. Then from definition 3.1.1 we see that there are

16 = 42 elements in P(1), so the base case is true. Now assume that the statement is

true for m qubits, i.e. |P(m)| = 4m+1. Then P(m + 1) has elements that are tensor

products of elements in P(m) and I, X, Y , and Z. Thus there are 4 ·4m+1 = 4(m+1)+1

elements in P(m + 1). Note that we only count these tensor products since e.g.,

P ⊗−iX = P ′ ⊗X where P ′ = −iP , for P, P ′ ∈ P(m).

12
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3.2 The Clifford Operators

Recall the gates H, S, and CNOT defined in Chapter 2:

H =
1√
2

[︄
1 1

1 −1

]︄
, S =

[︄
1 0

0 i

]︄

and

CNOT =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ .
We use these gates to define the Clifford group.

Definition 3.2.1. The Clifford group on n qubits C(n) consists of the matrices

that can be represented by an ancilla-free circuit on n qubits over the gate set

{H,S,CNOT}.

Clifford operators are sometimes referred to as Stabilizer operators.

Proposition 3.2.2. H, S, and CNOT act on Paulis as follows:

HXH† = Z and HZH† = X, SXS† = Y and SZS† = Z.

For CNOT , we write its action on Paulis in circuit notation. For X we have the

following.

• X • X • •
=

X X
=

X

And for Z we have:

• Z • Z • • Z
=

Z
=

Z

Note that we need not specify the action on Y since Y = iXZ, so the action on

X and Z gives and fixes the action on Y .

Proposition 3.2.3. If P ∈ P(n) and C ∈ C(n) then CPC† ∈ P(n).
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Proof. It is sufficient to show that the generators of C(n) map the generators of Pauli

matrices to Pauli matrices. The Clifford generators are H,S in C(1) and CNOT in

C(2), while the generators of P(1) are iI,X and Z. Note that for Pauli matrices in

P(n), we can write them as a tensor product of Pauli matrices in P(1). Moreover,

we can also write a gate in C(n) as a tensor product of any combination of H,S and

CNOT .

We can use this and Proposition 3.2.2 to give us that, for a Pauli P ∈ P(n) and

some C ∈ C(n) CPC† ∈ P(n). This follows by writing P and C as tensor products

as explained above, and then using the distributive law of tensor products.

The previous proposition shows that Cliffords map Paulis to Paulis under conju-

gation. We now show that, in fact, any unitary operator that maps Paulis to Paulis

under conjugation is an element of the Clifford group (up to a scalar). Our proof

follows [13].

Lemma 3.2.4. Let P ∈ {±X,±Y,±Z}. Then there exists a C ∈ ⟨H,S⟩ such that

CXC† = P .

Proof. To prove this we simply list all possible C circuits required for each P :

� If P = X then C = I.

� If P = −X then C = S2.

� If P = Y then C = S.

� If P = −Y then C = HS.

� If P = Z then C = H.

� If P = −Z then C = HS2.

Lemma 3.2.5. Let Q ∈ {±Y,±Z}. Then there exists a D ∈ ⟨H,S⟩ such that

DQD† = Z and DXD† = X.

Proof. To prove this we simply list all possible D circuits required for each Q:
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� If Q = Y then D = S†HS†.

� If Q = −Y then D = (S†H)2(S†)2H.

� If Q = Z then D = I.

� If Q = −Z then D = HS2.

Theorem 3.2.6. Let U be a unitary operator that maps Paulis to Paulis under con-

jugation. Then, up to a global phase, U may be composed of H, S, and CNOT

gates.

Proof. We proceed by induction on n, the number of qubits, following the method

outlined in [13]. For the base case, let U be a single qubit unitary operator that maps

P(1) to itself under conjugation.

Now, let UXU † = Q and UZU † = R. Note that since U is an automorphism it

cannot mapX or Z to ±I, so neither R nor Q can be ±I. Then by Lemma 3.2.4, there

exists some V ∈ ⟨H,S⟩ such that V XV † = Q. Now let F = V †U . Thus FXF † = X

and FZF † = V †RV = R′ for some R′ ∈ P(1). Note that since F is an automorphism

it is bijective, so it cannot map Z to ±X, which implies that R′ ∈ {±Y,±Z}. Then,
by Lemma 3.2.5, there exists a G such that GR′G† = Z and GXG† = X. So:

GFXF †G† = GXG† = X and GFZF †G† = GR′G† = Z.

Since P(1) is generated by X, Z, and the scalar i, we have GFPF †G† = P for

all Pauli operators P . Now, following the arguments from [16], observe that every

complex 2× 2-matrix can be written in the form aI+ bX+ cY +dZ, for a, b, c, d ∈ C.
It follows that GFMF †G† =M for all operatorsM . This implies that GF is a scalar,

which means that U = V G† up to a global phase. From this, up to a global phase, U

is comprised of only H and S gates as desired.

Now, suppose U is an n + 1 qubit unitary that maps Paulis to Paulis under

conjugation and first suppose that U(Z⊗ I2n)U † = X⊗g and U(X⊗ I2n)U † = Z⊗g′

for some g, g′ ∈ Pn. Now, define a circuit C as:

• H •

/ g′ g
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where the “strike” on the bottom wire indicates that g and g′ possibly act on multiple

qubits. Now observe that C(Z ⊗ I2n)C
† = X ⊗ g as follows:

C(Z ⊗ I2n)C
† = • H • Z • H •

/ g g′ g′ g

= • H • • Z H •

/ g g′ g′ g

= • H Z H •

/ g g

= • X •

/ g g

= X •

/ g g

= X

/ g

Note that g and g′ commute, as can be seen below:

XZ ⊗ gg′ = (X ⊗ g)(Z ⊗ g′)

= U(Z ⊗ I2n)U
†U(X ⊗ I2n)U

†

= −U(X ⊗ I2n)(Z ⊗ I2n)U
†

= −U(X ⊗ I2n)U
†U(Z ⊗ I2n)U

†

= −(Z ⊗ g′)(X ⊗ g)

= −(ZX ⊗ g′g)

= XZ ⊗ g′g

Then we have that I ⊗ gg′ = I ⊗ g′g, which implies that gg′ = g′g. Now we make use

of this commutation to show that C(X ⊗ I2n)C
† = Z ⊗ g′:
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C(X ⊗ I2n)C
† = • H • X • H •

/ g g′ g′ g

= • H • X H •

/ g g′ g′ g

= • H X H •

/ g g′ g

= • Z •

/ g g′ g

= Z • •

/ g′ g g

= Z

/ g′

Note here that g and g′ are multiqubit gates, and the wire it is on is representing n

wires or n qubits. Now, consider U ′ := C†U . Then

U ′(X ⊗ I2n)U
′† = C†U(X ⊗ I2n)U

†C = C†(Z ⊗ g′)C = (X ⊗ I2n)

and

U ′(Z ⊗ I2n)U
′† = C†U(Z ⊗ I2n)U

†C = C†(X ⊗ g)C = (Z ⊗ I2n).

Now note that for any n-qubit Pauli operator P , we have U ′(I ⊗ P )U ′† = I ⊗ Q

for some Q ∈ P(n). This is because I⊗P commutes with both X⊗ I and Z⊗ I, and
therefore so must U ′(I⊗P )U ′†. It follows that there is some U ′′ such that for all R in

P(n+ 1), U ′RU ′† = (I2 ⊗U ′′)R(I2 ⊗U ′′)†. We can apply similar arguments as above

to get that U ′ = I2⊗U ′′ up to a global phase, say U ′ = ϕ(I2⊗U ′′). Now note that C is

a Clifford circuit since the controlled g and g′ gates are controlled Pauli gates, which

can be realized by conjugating the CNOT gate with some combinations of H and S

gates. By the induction hypothesis, there is a Clifford circuit D that is equal to U ′′ up

to some global phase, say U ′′ = ψD. Hence U = CU ′ = ϕC(I2 ⊗U ′′) = ϕψC(I2 ⊗D)

as desired.
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Now, suppose U is instead an arbitrary unitary matrix, that is not the identity,

without the condition that U(Z⊗I2n)U † = X⊗g and U(X⊗I2n)U † = Z⊗g′. We can

still acquire these restrictions by conjugating U with other Clifford circuits as follows.

Let P = U(Z ⊗ I2n)U
† and Q = U(X ⊗ I2n)U

†. Then P and Q must be self-inverse

Pauli operators, thus P = ±P1 ⊗ · · · ⊗ Pn+1 and Q = ±Q1⊗ · · · ⊗Qn+1. Moreover,

since Z⊗ I2n and X⊗ I2n anti-commute, so do P and Q. It follows that there is some

j such that Pj and Qj anti-commute. Assume without loss of generality that j = 1

(because otherwise we could apply a Clifford operator to swap the 1st and jth qubits).

Then by Lemma 3.2.4 there exists some Clifford circuit E such that X = E†P1E,

so that (E† ⊗ I2n)U(Z ⊗ I2n)U
†(E ⊗ I2n) = X ⊗ g, where g = P2 ⊗ · · · ⊗ Pn+1.

Now let K = (E† ⊗ I2n)U and note that it also maps Paulis to Paulis. Hence,

K(X⊗ I2n)K
† = r⊗ g′ for some r = E†Q1E ∈ {±Y,±Z} and g′ ∈ P(n). This allows

us to use Lemma 3.2.5 to obtain some Clifford circuit F such that FrF † = Z and

FXF † = X. Now let L = (F ⊗ I2n)K so that L(X ⊗ I2n)L
† = Z ⊗ g′. Thus, we can

use the same arguments above to get that L is made up of H, S, and CNOT gates,

and since K, E, and F are also, it follows that U is as well.

The above theorem, together with Corollary 3.2.3, shows that up to a scalar the

Clifford group is the normalizer of the Pauli group.

3.3 Universal Extensions of the Clifford Gates

We can do many interesting things with Clifford circuits. In particular, we can create

superpositions and entanglement of states. A superposition is a linear combination

of single ket vectors, so simply applying H to |0⟩ would give |+⟩ = (|0⟩ + |1⟩)/
√
2.

To achieve entanglement means to find some circuit that when applied to some un-

entangled qubits the output state is an entangled state. As an example, consider the

entangled state |00⟩+|11⟩√
1

, then the following circuit with input |00⟩ will output the

entangled state.

|0⟩ H •
}︄

|00⟩+|00⟩√
2|0⟩

Note that the Clifford group is finite. This comes from the fact that it maps

Paulis to Paulis under conjugation, effectively meaning that Clifford circuits act as
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permutations of the Pauli group. Hence, since there are 4n+1 Paulis, there are at

most 4(n+1)4
n+1

Cliffords. That is |C(n)| ≤ 4(n+1)4
n+1

. In fact, the exact cardinality of

the Clifford group is well known and is 8 ·
n∏︁
i=1

2(4i − 1)4i [16].

Moreover, the Gottesman-Knill theorem shows a relation in power between the

quantum computer and classical computer.

Theorem 3.3.1 (Gottesman-Knill Theorem [13]). Suppose a quantum computation is

performed which involves only the following elements: state preparations in the com-

putational basis, Hadamard gates, phase gates, controlled-NOT gates, Pauli gates, and

measurements of observables in the Pauli group, together with the possibility of clas-

sical control conditioned on the outcome of such measurements. Such a computation

may be efficiently simulated on a classical computer.

In short, the Gottesman-Knill theorem states that stabilizer operations can be

classically simulated efficiently (in polynomial time). There is an algorithm to do this

on a classical computer with O(n2m) operations, called the Tableau algorithm.

The Gottesman-Knill theorem (and the finiteness of the Clifford group) means that

stabilizer operations are not universal. That is, there are quantum computations that

cannot be simulated effectively with just the Clifford group and measurements. The

next theorem, which is proved in [12], provides a fix for this.

Theorem 3.3.2. If G is a non-Clifford gate then {H,S,CNOT,G} is universal for

quantum computing.

A typical gate used to extend the Clifford group to be universal is the T gate,

though the CS and CCZ gates are two other notable gates that will be used. Recall

the matrices for the T , CS, and CCZ gates:

T =

[︄
1 0

0 eiπ/4

]︄
CS =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

⎤⎥⎥⎥⎥⎥⎦
and
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CCZ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note the CCZ gate is used interchangeably with the CCX gate as they are equal upon

simple conjugation by a H gate on the target qubit. To see why these gates are not

in the Clifford group, simply observe the following example conjugation calculations

from [4]:

TXT † = X+Y√
2

CS(X ⊗ I)CS† = CNOT (S ⊗ S†)CNOT (X ⊗ I)

CCX(X ⊗ I ⊗ I)CCX† = (X ⊗ I)⊗ I+Z2+X3−Z2x3
2

where X3 means X applied to the 3rd qubit, i.e. X3 = I ⊗ I ⊗X, and similarly for

Z2.

This naturally gives the sense that non-Clifford gates are a resource that en-

ables full quantum computing, meaning that each non-Clifford gate is an expensive

commodity that ideally is used as little as possible. This is also corroborated by

the fact that in fault-tolerant quantum computing Clifford gates are typically cheap

whereas non-Clifford gates are typically expensive. Thus this is the motivation be-

hind attempting to limit the number of non-Clifford gates used. Finding lower bounds

and upper bounds also gives an idea as to whether or not more or less of a certain

non-Clifford gate can be used. If there is a circuit that uses the same number of

non-Clifford gates as the calculated lower bound, then we know we cannot do any

better.
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3.4 Computing With States

Instead of using non-Clifford gates to perform universal quantum computing, one can

use a special kind of state to inject the desired gate into a circuit. The useful states

for this purpose are defined below.

Definition 3.4.1. We define the following resource states:

|T ⟩ = T |+⟩ , |CS⟩ = CS |+⟩⊗2 , and |CCZ⟩ = CCZ |+⟩⊗3 .

The above states can be used to apply the corresponding gates using the injection

circuits from [4]. We provide them here for reference.

Figure 3.1: Injection circuits

•

• • •

• • •

⎧⎪⎪⎪⎨⎪⎪⎪⎩|CCZ⟩

• × X ×× X ×}︄
CZZ |α⟩• X

CZ
×

CZ
×

CZ
• X × ×

⎧⎪⎪⎨⎪⎪⎩|α⟩

(a) Injection circuit for the CCZ gate

|CS⟩

{︄
• •

• •

|α⟩

{︄
• X

FixCS
×

FixCS
×
}︄
CS |α⟩

• X × ×

(b) Injection circuit for the CS gate

|T ⟩ •

|α⟩ • S T |α⟩

(c) Injection circuit for the T gate
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The FixCS gate in the circuit for the |CS⟩ state is

• X •

S† S

and

×
×

represents a SWAP gate, which simply exchanges the two inputs for each other.

In contrast to resource states, we also define a stabilizer state.

Definition 3.4.2. A stabilizer state is a state of the form |ϕ⟩ = C |0⟩⊗n for some

Clifford unitary C.

Definition 3.4.3. Let |ψ⟩ be an n-qubit state and U be an operator. Then we say

that |ψ⟩ is stabilized by U if U |ψ⟩ = |ψ⟩. The stabilizer of |ψ⟩ is the subgroup P(n)

consisting of the Paulis that stabilize |ψ⟩. It is denoted by Stab|ψ⟩.

This means that Stab|ψ⟩ = {P ∈ P(n) | P |ψ⟩ = |ψ⟩}. States for which the

stabilizer contains only the identity matrix are said to have a trivial stabilizer.

The reason behind using this stabilizer formalism is that we can easily describe

many quantum states by working with operators that stabilize them, rather than by

explicitly working with the states themselves. Next are a few propositions regarding

the stabilizer.

Proposition 3.4.4. Let |ψ⟩ be an n-qubit state. Then we have the following facts

about Stab |ψ⟩:

1. Stab |ψ⟩ does not contain −I.

2. All Pauli group elements contained in Stab |ψ⟩ commute with each other and

are Hermitian matrices.

3. The cardinality of the stabilizer is equal to some power of two.

4. Given any Clifford Unitary C, the cardinality of Stab |ψ⟩ is always equal to the

cardinality of Stab(C |ψ⟩).
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5. Finally, the cardinality of the stabilizer is multiplicative for the tensor products

of states, that is |Stab(|ψ⟩ |ϕ⟩)| = |Stab |ψ⟩ | · |Stab |ϕ⟩ |.

Proof.

1. If −I ∈ Stab |ψ⟩, then − |ψ⟩ = −I |ψ⟩ = |ψ⟩, which of course is not true for

states (since unit vectors have at least one non-zero entry).

2. First note that for any two Paulis P,Q, they either commute or anti-commute.

Now suppose P,Q ∈ Stab |ψ⟩ anti-commute. Then |ψ⟩ = PQ |ψ⟩ = −QP |ψ⟩ =
− |ψ⟩. This implies that −I ∈ Stab |ψ⟩, which from above can’t be true, so P

and Q must commute.

3. By Proposition 3.1.2 the cardinality of the Pauli group is a power of two, and

since Stab |ψ⟩ is a subgroup of the Pauli group, |Stab |ψ⟩ | must divide a power

of two, thus it must also be a power of two.

4. Recall that Clifford unitaries normalize Pauli matrices. Now let P ∈ Stab |ψ⟩
and let C be some Clifford unitary. Then CPC†C |ψ⟩ = CP |ψ⟩ = C |ψ⟩, so
CPC† ∈ Stab(C |ψ⟩). Now consider the map θC : Stab |ψ⟩ → Stab(C |ψ⟩)
which acts as P ↦→ CPC†. This map has an inverse, θC† : Stab(C |ψ⟩) −→
Stab(C†C |ψ⟩), which acts as P ′ ↦→ C†P ′C (where we note that Stab(C†C |ψ⟩) =
Stab |ψ⟩). Thus θC is a bijection, and so we have that |Stab |ψ⟩ | = |Stab(C |ψ⟩)|.

5. Let |ψ⟩ and |ϕ⟩ be states on n and m qubits, respectively. First note that if P

is in Stab |ψ⟩ and Q is in Stab |ϕ⟩, then P ⊗ Q is in Stab |ψ⟩ |ϕ⟩. This defines

a map θ : Stab |ψ⟩ × Stab |ϕ⟩ −→ Stab |ψ⟩ |ϕ⟩, namely θ(P,Q) = P ⊗ Q. We

will show that θ is one-to-one and onto, thus establishing a bijection between

Stab |ψ⟩ |ϕ⟩ and a set of size |Stab |ψ⟩ | · |Stab |ϕ⟩ |.

To show that θ is one-to-one, consider P, P ′ in Stab |ψ⟩ and Q,Q′ in Stab |ϕ⟩
and assume that θ(P,Q) = θ(P ′, Q′), i.e. P ⊗Q = P ′⊗Q′. By properties of the

tensor product, this implies that there exists some scalar λ such that P = λP ′

and Q = λ−1Q′. But since both P and P ′ are stabilizers of |ψ⟩, we must have

λ = 1. Thus P = P ′ and Q = Q′, showing the θ is one-to-one.

To show that θ is onto, consider any R in Stab |ψ⟩ |ϕ⟩. Since R is an nm-qubit

Pauli operator, we can write R = R1 ⊗ R2 where R1 and an n-qubit Pauli and
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R2 is an m-qubit Pauli. We have R1 |ψ⟩ ⊗ R2 |ϕ⟩ = (R1 ⊗ R2)(|ψ⟩ ⊗ |ϕ⟩) =

|ψ⟩ ⊗ |ϕ⟩. By properties of the tensor product, there exists some scalar λ such

that R1 |ψ⟩ = λ |ψ⟩ and R2 |ϕ⟩ = λ−1 |ϕ⟩. Let P = λ−1R1 and Q = λR2.

Then P |ψ⟩ = |ψ⟩ and Q |ϕ⟩ = |ϕ⟩, and hence P ∈ Stab |ψ⟩ and Q ∈ Stab |ϕ⟩.
Moreover, θ(P,Q) = P ⊗ Q = λ−1R1 ⊗ λR2 = R1 ⊗ R2 = R. Therefore θ is

onto.

Theorem 3.4.5. Let |ψ⟩ be an n-qubit state. Then |ψ⟩ is a stabilizer state if and

only if |Stab |ψ⟩ | = 2n.

Proof. For the left-to-right direction, recall that |ψ⟩ = C |0⟩⊗n for some Clifford circuit

C. Then, by fact 4 from Proposition 3.4.4, |Stab |ψ⟩ | = |Stab |0⟩⊗n |. Since the |0⟩⊗n

vector is the basis vector [1 0 · · · 0]†, it can be seen that the only Pauli matrices that

are in Stab |0⟩⊗n are tensor products of the Pauli matrices Z and I. There are 2n

different Pauli matrices of this form, giving us that 2n = |Stab |0⟩⊗n | = |Stab |ψ⟩ |.
For the other direction assume |Stab |ψ⟩ | = 2n. In [1], Theorem 8 states that |ψ⟩

can be represented by a tableau, which can then be converted into a tableau that

represents the |00 . . . 0⟩ state using only Clifford operations. Applying these Clifford

operators is equivalent to applying Clifford operators to the appropriate qubits of |ψ⟩,
thus resulting in a Clifford circuit C such that C |ψ⟩ = |00 . . . 0⟩.

An example of a non-stabilizer state is |ψ⟩ = ( 2√
5
|00⟩ + i√

5
|11⟩), where through

computation one can find that it has the following stabilizers: I⊗ I and Z⊗Z. Since
there are only 2 stabilizers, and 2 ̸= 22, |ψ⟩ cannot be a stabilizer state.

Lemma 3.4.6. Let |ψ⟩ be an n-qubit state. Then |Stab |ψ⟩ | ≤ 2n.

Proof. It is known from [1] that any subgroup of the n-qubit Pauli group that is

commutative and does not contain −I can have at most 2n elements. Since |Stab |ψ⟩ |
is such a subgroup, the claim follows.

Theorem 3.4.7. If |ψ⟩ is an n-qubit stabilizer state, then Stab |ψ⟩ uniquely deter-

mines |ψ⟩ up to a phase.
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Proof. First consider the case |ψ⟩ = |0⟩. In this case, the stabilizer is generated by

Z ⊗ I · · · ⊗ I, I ⊗Z ⊗ I ⊗ · · · ⊗ I, . . . , I ⊗ · · · ⊗ I ⊗Z. Suppose |ϕ⟩ =
∑︁2n−1

j=0 αj |j⟩ is
another state with the same stabilizer, where |j⟩ denotes the basic state corresponding
to the binary expansion of j. If j ̸= 0, then the binary expansion of j has some non-

zero bit, say in position k. Then (I ⊗ · · · ⊗ I ⊗ Z ⊗ I ⊗ · · · ⊗ I) |j⟩ = − |j⟩, where
Z appears on the kth qubit. Therefore, αj = 0. This proves that |ϕ⟩ = α0 |0⟩, so |ϕ⟩
differs from |0⟩ only by a phase.

Next, suppose that |ψ⟩ and |ψ′⟩ are stabilizer states that have the same stabilizer.

Let C be some Clifford operator such that C |ψ⟩ = |0⟩. Note C |ψ⟩ and C |ψ′⟩ have
the same stabilizer, and therefore by the above, C |ψ′⟩ differs from |0⟩ by a phase.

Hence |ψ⟩ = |ψ′⟩ up to a phase.



Chapter 4

Monotones

In this chapter, we introduce monotones, which are real-valued functions of states.

In the next chapter, we will use these monotones to derive lower bounds for quantum

circuits.

4.1 Abstract Monotones

Recall that S is the collection of all states. We say that a collection of states I ⊆ S
is closed under tensor products if |ϕ⟩ , |ψ⟩ ∈ I implies |ϕ⟩ ⊗ |ψ⟩ ∈ I. Similarly, we

say that I is closed under the action of stabilizers if |ϕ⟩ ∈ I and C ∈ C(n) implies

C |ϕ⟩ ∈ I.

Definition 4.1.1. Let J ⊆ S and suppose that J is closed under tensor products

and the action of stabilizers. A monotone for J is a function M : J → R≥0 such

that:

� M(|ϕ⟩) = 0 if and only if |ϕ⟩ is a stabilizer state

� if C is a stabilizer operator then M(C |ϕ⟩) ≤M(|ϕ⟩) for all |ϕ⟩ ∈ J .

Proposition 4.1.2. We may consider the following properties for monotones:

� M(|ϕ⟩ ⊗ |ψ⟩) =M(|ϕ⟩) +M(|ψ⟩) (additive)

� M(|ϕ⟩ ⊗ |ψ⟩) =M(|ϕ⟩) ·M(|ψ⟩) (multiplicative)

� M(C |ϕ⟩) ≤ M(|ϕ⟩) where C is a Pauli measurement (non-increasing under

Pauli measurements)

� M(|ϕ⟩) =M(|ϕ⟩ |ψ⟩) for all stabilizer states |ψ⟩ (stable under stabilizer ancillas)

26
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4.2 The Stabilizer Nullity

Definition 4.2.1 (stabilizer nullity). Let |ψ⟩ be an n-qubit state. The stabilizer

nullity of |ψ⟩ is denoted by ν(|ψ⟩) and is defined as ν(|ψ⟩) = n− log2 |Stab |ψ⟩ |.

Proposition 4.2.2. The stabilizer nullity is a monotone.

Proof. First, by Proposition 3.4.4 and Lemma , 3.4.6, for any n-qubit state |ψ⟩ we

have |Stab |ψ⟩ | ≤ 2n and is a power of 2. Hence, ν(|ψ⟩) is always a positive inte-

ger and so ν is a (non-negative) real valued function. Again, by Proposition 3.4.4

recall that for a Clifford unitary C and a state |ψ⟩ we have that |Stab(C |ψ⟩)| =
|Stab |ψ⟩ |. Thus ν(C |ψ⟩) = n − log2 |Stab(C |ψ⟩)| = n − log2 |Stab |ψ⟩ | = ν(|ψ⟩).
Next, if |ψ⟩ is a stabilizer state, then |Stab |ψ⟩ | = 2n by Proposition 3.4.4, so

ν(|ψ⟩) = n − log2(|Stab |ψ⟩ |) = n − log2(2
n) = 0. Conversely, if ν(|ψ⟩) = 0, then

n = log2(|Stab |ψ⟩ |) which implies that |Stab |ψ⟩ | = 2n. By Proposition 3.4.4 it

follows that |ψ⟩ is a stabilizer state.

Proposition 4.2.3. The stabilizer nullity is additive.

Proof. Let |ψ⟩ and |ϕ⟩ be an n-qubit state and an m-qubit state respectively. By

Proposition 3.4.4 we have |Stab(|ψ⟩ |ϕ⟩)| = |Stab |ψ⟩ | · |Stab|ϕ⟩|. Hence:

ν(|ψ⟩ |ϕ⟩) = n+m− log2 |Stab(|ψ⟩ |ϕ⟩)|

= n+m− log2 |Stab |ψ⟩ | − log2 |Stab| |ϕ⟩ |

= ν(|ψ⟩) + ν(|ϕ⟩).

Now we want to show that ν is non-increasing under Pauli measurements, but

before we do this we need the following Proposition.

Proposition 4.2.4. If P and Q are Hermitian Pauli operators and PQ = −QP then

the operator

C =
I − PQ√

2

is a Clifford operator.
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Proof. Let U be a Pauli. Then

CUC† =
U − U(PQ)† − (PQ)U + (PQ)U(PQ)†

2
.

We have two cases now, the first being PQU = UPQ (i.e., PQ and U commute).

Then

CUC† =
2U − (U(PQ)† + UPQ)

2

=
2U − (UQP + UPQ)

2

=
2U − (−UPQ+ UPQ)

2

= U.

Naturally the second case is when PQU = −UPQ (i.e., PQ anti-commutes with U).

Then

CUC† =
U − U(PQ)† − UPQ− U

2

=
−UQP + UPQ

2

=
−UQP − UQP

2

=
−2UQP

2

= −UQP.

In either case, CUC† is a Pauli, so C is a Clifford by Proposition 3.2.3.

Lemma 4.2.5. Let |ψ⟩ be an n-qubit state and let P be an n-qubit Pauli matrix.

Assume that the probability of a +1 outcome when measuring P on |ψ⟩ is non-zero

and let |ϕ⟩ be the state after measurement. Then |Stab |ϕ⟩ | ≥ |Stab |ψ⟩ |.

Proof. Let P be an n-qubit Pauli and |ψ⟩ an n-qubit state. Recall that for a Pauli

measurement on P the probability of a +1 outcome is ⟨ψ|P+1|ψ⟩, with post measure-

ment state |ϕ⟩ = P+1|ψ⟩√
⟨ψ|P+1|ψ⟩

= (I+P )|ψ⟩
2
√

⟨ψ|P+1|ψ⟩
. With this, we have three different cases to

consider. First is the simple case when P is in Stab |ψ⟩. Here we have:

|ϕ⟩ = (I + P ) |ψ⟩
2 ⟨ψ|P+1|ψ⟩

=
|ψ⟩

⟨ψ|P+1|ψ⟩
.

Since |ψ⟩ and |ϕ⟩ differ by a phase, |Stab |ϕ⟩ | = |Stab |ψ⟩ |.
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Next consider when P is not in Stab|ψ⟩. Then we have two alternative possibilities.

The first alternative is when P commutes with all elements of Stab |ψ⟩. Let Q ∈
Stab|ψ⟩ so that PQ = QP . Then

Q |ϕ⟩ = Q(I + P ) |ψ⟩
2 ⟨ψ|P+1|ψ⟩

=
(I + P )Q |ψ⟩
2 ⟨ψ|P+1|ψ⟩

=
(I + P ) |ψ⟩
2 ⟨ψ|P+1|ψ⟩

= |ϕ⟩ .

Thus Q ∈ Stab |ϕ⟩ and so |Stab |ϕ⟩ | ⊇ |Stab |ψ⟩ | which implies that |Stab |ϕ⟩ | ≥
|Stab |ψ⟩ |.

Finally the second alternative is when there exists at least one Q ∈ Stab |ψ⟩ such
that Q and P anti-commute. Note this means that Q |ψ⟩ = |ψ⟩ and QPQ = −P ,
so the probability of the +1 outcome is ⟨ψ| (I + P ) |ψ⟩ /2 = ⟨ψ|Q(I + P )Q |ψ⟩ /2 =

⟨ψ| (I − P ) |ψ⟩ /2, which is the probability of the −1 outcome. Since these two

probabilities must add up to be 1, the probability of both the +1 and −1 outcome is

1/2. Then the post measurement state becomes:

|ϕ⟩ = (I + P ) |ψ⟩
2 ⟨ψ|P+1|ψ⟩

=
(I + P ) |ψ⟩
2
√︁

1/2
=

(I + P ) |ψ⟩√
2

,

where we fixed the normalization condition such that ⟨ϕ|ϕ⟩ = ⟨ψ|ψ⟩. Also, observe

that we can write |ϕ⟩ = (I + PQ)/
√
2 |ψ⟩ since Q stabilizes |ϕ⟩. Since (I + PQ)/

√
2

is a Clifford unitary by Proposition 4.2.4, we see that |ϕ⟩ and |ψ⟩ differ by a Clifford

and therefore |Stab |ψ⟩ | = |Stab |ϕ⟩ |.

Corollary 4.2.6. The stabilizer nullity is non-increasing under Pauli measurements.

Proof. Let |ψ⟩ be a nonzero n-qubit state, let P be an n-qubit Pauli operator, and

let |ϕ⟩ be the state after measuring P on |ψ⟩. By Lemma 4.2.5, we have |Stab |ϕ⟩ | =
|Stab |ψ⟩ | or |Stab |ϕ⟩ | ≥ |Stab |ψ⟩ |. Either way, |Stab |ϕ⟩ | ≥ |Stab |ψ⟩ | so that

log2 |Stab |ϕ⟩ | ≥ log2 |Stab |ψ⟩ |. Hence

ν(|ϕ⟩) = n− log2 |Stab |ϕ⟩ |

≤ n− log2 |Stab |ψ⟩ |

= ν(|ψ⟩).

We finish this section with a notion that will be helpful in computing the stabilizer

nullity of states. We write multisets using {| and |}. Moreover, we sometimes indicate
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the multiplicity of an element in brackets. For example the multiset {|a, a, b|} will

sometimes be written as {|a(2), b(1)|}.

Definition 4.2.7 (Pauli Spectrum). Let |ψ⟩ be an n-qubit state. The Pauli spectrum
of |ψ⟩ is denoted by Spec|ψ⟩ and is defined as:

Spec |ψ⟩ =
{︃⃓⃓⃓⃓

| ⟨ψ|P |ψ⟩ |
⟨ψ|ψ⟩

, P ∈ {I,X, Y, Z}⊗n
⃓⃓⃓⃓}︃
.

The Pauli spectrum is a multiset with 4n elements. These elements are real num-

bers between 0 and 1. Note that the number of 1’s in the Pauli spectrum of |ψ⟩
is |Stab |ψ⟩ |. Hence the Pauli spectrum can be useful in computing the stabilizer

nullity.

Example 4.2.8. Let θ ∈ R and consider the state |θ⟩ = (|0⟩ + eiθ |1⟩)/
√
2. To

calculate the Pauli spectrum, first note that |θ⟩ is normalized so ⟨θ| |θ⟩ = 1, then by

direct computation we have:

� ⟨θ| I |θ⟩ = ⟨θ|θ⟩ = 1

� ⟨θ|X |θ⟩ = (⟨1| e−iθ + ⟨0|)(|1⟩+ eiθ |0⟩)/2 = (e−iθ + eiθ)/2 = cos θ

� ⟨θ|Y |θ⟩ = (⟨1| e−iθ + ⟨0|)(i |1⟩ − ieiθ |0⟩)/2 = i(e−iθ − eiθ)/2 = i(−2i sin θ)/2 =

sin θ

� ⟨θ|Z |θ⟩ = (⟨1| e−iθ + ⟨0|)(|0⟩ − eiθ |1⟩)/2 = 1− 1 = 0

Thus, the Pauli spectrum of |θ⟩ is {1, cos θ, sin θ, 0}. Moreover, if θ = 2kπ/2 for some

integer k, then X ∈ Stab |θ⟩, and if θ = (2k+1)π/2, then Y ∈ Stab |θ⟩. Observe that

for all θ, I ∈ Stab |θ⟩ and Z ̸∈ Stab |θ⟩, thus |Stab |θ⟩ | = 2 if and only if either X

or Y ∈ Stab |θ⟩, or more generally if θ = mπ/2, for some integer m. The state |θ⟩ is
therefore a stabilizer state only for θ = mπ/2 for some integer m.

4.3 The Dyadic Monotone

Consider quantum states that have entries in Z[i, 1/2] =
{︁
a+ib
2k

: a, b, k,∈ Z
}︁
when

written in the computational basis. Indeed, |CnZ⟩ can be written as vectors with

entries in the above set. We have a few noteworthy facts to observe here:
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� The set Z[i, 1/2] is a ring since it is closed under addition, subtraction, multi-

plication and contains 0 and 1.

� If a state |ψ⟩ has entries in Z[i, 1/2], then for any Hermitian multi-qubit Pauli

operator P , the expectation ⟨ψ|P |ψ⟩ is in Z[i, 1/2]. This is because the entries

of any Pauli matrix, and |ψ⟩, are in Z[i, 1/2], so when applying P to |ψ⟩ you

get that P |ψ⟩ ∈ Z[i, 1/2]. Similarly, it follows that ⟨ψ|P |ψ⟩ ∈ Z[i, 1/2].

� ⟨ψ|P |ψ⟩ can be written in the form a/2k for integers a and k. This follows

from the fact that Pauli expectation values are self-adjoint and thus ⟨ψ|P |ψ⟩ ∈
Z[1/2].

� For stabilizer states Pauli expectations can only be ±1 and 0.

Before defining the next monotone, we must first introduce a few functions that

will be used in its definition. Let us define v̄2 : Q → Z ∪ {∞}. Let 0 ̸= q ∈ Q so

we can write q = n/d with n, d ∈ Z and gcd(n, d) = 1 (so it is in reduced form).

By the fundamental theorem of arithmetic we can write n = 2r2 · prp11 · · · prpmm and

d = 2l2 · plp11 · · · plpmm for ki, li ∈ Z for all i ∈ [m]. So q = 2k · pkp11 · · · pkpmm where

k = r2 − l2 and kj = rpj − lpj . This map is unique so we define v̄2(q) = k and

v̄2(0) = ∞.

Remark: Let q ∈ Q be in reduced form as above. Then we have three different

cases:

1. n, d ≡2 1 ⇒ v̄2(q) = 0

2. n ≡2 0, d ≡2 1 ⇒ v̄2(q) is the largest power, k, of 2 such that 2k|n.

3. n ≡2 1, d ≡2 0 ⇒ −v̄2(q) is the largest power, k, of 2 such that 2k|d.

Proposition 4.3.1.

� v̄2(±1) = 0

� v̄2(−q) = v̄2(q)

� v̄2(q1q2) = v̄2(q1) + v̄2(q2)
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Now, we wish to extend v̄2 to the real subsets of Rd = Z[ζ2d+1 , 1/2], where ζ2d+1

is the 2d+1 primitive root of unity. To do this, first recall that the Galois group of

a field extension is a set of automorphisms that fixes the base field, and forms a

group under the operation of function composition. We denote the Galois group of a

field extension F over its base field E by Gal(F/E), and elements in this group are

commonly denoted by σ. Note we are only concerned with field extensions over the

field Q, which are called algebraic number fields. Next we need the field norm for an

algebraic number field F . This is denoted as N : F −→ Q where

N(α) =
∏︂

σ∈Gal(F/Q)

σ(α).

In fact, for a field extension F and base field E, there is an alternative definition

of the Galois group that comes from a polynomial f ∈ E[x], which is typically called

the minimal polynomial. Here f factors as a product of linear polynomials in F [x],

and more importantly, all automorphisms σ ∈ Gal(F/E) are defined by mapping a

root to other roots. The roots in such a polynomial are called conjugates.

Recall a cyclotomic field extension of Q is the field Q adjoined with a primitive

root of unity, which we denote as ζq. Note in this thesis we are only concerned with

ζq when q = 2d+1. Now, for a cyclotomic field the minimal polynomial is

Φ2d+1 =
2d+1∏︂
k=1

gcd(k,2d+1)=1

(x− ζk2d+1). (4.1)

Each σ ∈ Gal(Q(ζ2d+1)/Q) sends ζ2d+1 to one of its conjugates, and by Equation (4.1)

above these are just the numbers ζk
2d+1 where gcd(k, 2d+1). This means that the σ’s

are defined in the following way: σk(ζ2d+1) = ζk
2d+1 . The next few propositions provide

some basic properties of σk.

Proposition 4.3.2. For all x ∈ Q[ζ2d+1 ], σj(σk(x)) = σk·j(x).

Proof. This follows immediately from the definition of σk, and how it simply raises

ζ2d+1 to the power of k.

Proposition 4.3.3. For all x ∈ Q[ζ2d+1 ] and all odd k, σk+2d+1(x) = σk mod 2d+1(x) =

σk(x).
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Proof. This follows from the periodicity of σk.

Proposition 4.3.4. x ∈ Q[ζ2d+1 ] is rational if and only if for all odd k σk(x) = x.

Proof. We prove the backwards direction as the forward direction follows immediately

from the definition of σk. Consider x =
2d−1∑︁
j=0

ajζ
j
2d+1 ∈ Q[ζ2d+1 ] and suppose that

σ2d+1(x) = x. Observe that for all odd j, σ2d+1(ζ2d+1) = −ζ2d+1 . Applying this to

each term in the summand of x we get that aj = −aj which implies aj = 0. Then

every non-zero term left in the summand of x has an even j, thus having a factor of 2

which implies that x ∈ Q[ζ2d ]. Thus repeatedly applying this argument gives us that

x ∈ Q.

From the Fundamental Theorem of Galois Theory one obtains the isomorphism

Gal(Q(ζ2d+1)/Q) ∼= (Z/nZ)×,

which means that elements in Gal(Q(ζ2d+1)/Q) are precisely the σk’s where

gcd(k, 2d+1) = 1.

Thus k takes only odd values, so that:

Nd(α) =
∏︂
k−odd

σk(α) =
2d−1∏︂
k=0

σ2k+1(α) (4.2)

Remark: If d ≤ d′ then Q(ei·π/2
d
) ⊆ Q(ei·π/2

d′
). Note the following propositions

about Nd.

Proposition 4.3.5. N0 is trivial, meaning N0(x) = x.

Proof. N0(x) = σ1(x), and since σ1(x) is trivial, so is N0(x).

Proposition 4.3.6. Let d be a positive integer. Then Nd is multiplicative.

Proof. This follows from σk being multiplicative.

Proposition 4.3.7. The value of Nd is always rational.
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Proof. Observe the following:

σj(Nd(x)) =
∏︂

k∈{1,3,...,2d−1}

σj(σk(x))

=
∏︂

k∈{1,3,...,2d−1}

σj·k mod 2d+1(x)

=
∏︂

k∈{1,3,...,2d−1}

σj·k(x)

= Nd(x).

The final equality comes from the fact that despite the different index variables we

are computing the product for the same odd valued indices. Thus by Proposition

4.3.4 Nd(x) is rational.

Proposition 4.3.8. Consider Nd+1 : Q(ei·π/2
d+1

) −→ Q. Then when restricting Nd+1

to Q(ei·π/2
d
) we have Nd+1 = N2

d .

Proof. For α ∈ Q(ei·π/2
d
), we have:

Nd+1(α) =
2d+1−1∏︂
k=0

σ2k+1(α)

=
2d−1∏︂
k=0

σ2k+1(α)
2d+1−1∏︂
k=2d

σ2k+1(α)

=
2d−1∏︂
k=0

σ2k+1(α)
2d−1∏︂
k=0

σ2k+1(α)

= N2
d (α).

This follows from the fact that σ2·(2d+i)+1 = σ1+2i for i ∈ {0, ..., 2d − 1}, since

ζ
2·(2d+i)+1

2d+1 = ζ1+2i
2d+1 .

Recall that Rd = Z[ζ2d+1 , 1/2].

Definition 4.3.9. The valuation function v2 :
⋃︁
d

Rd −→ Q is defined as

v2(x) =
v̄2(Nd(x))

2d
(4.3)

where d = min{y;x ∈ Q(ei·π/2
y
)}.
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Remark: In the above definition we could instead choose any d for which x ∈
Q(ei·π/2

d
) since if d ≤ d′ and x ∈ Q(ei·π/2

d
) then x ∈ Q(ei·π/2

d′
). Then we have that

v̄2(Nd(x))
2d

=
v̄2(Nd′ (x))

2d′
.

Proposition 4.3.10. If x ∈ Q then v2(x) = v̄2(x).

Proof. If x ∈ Q then d = 0 and Nd(x) = N0(x) = x,

v2(x) =
v̄2(Nd(x))

2d
=
v̄2(x)

20
= v̄2(x).

Proposition 4.3.11. If x, x′ ∈ Rd then v2(x · x′) = v2(x) + v2(x
′).

Proof. First we prove this for v̄2. If in their prime decomposition x and x′ have factors

2k and 2k
′
, respectively, then x · x′ has a factor 2k+k

′
. Thus v̄2(x · x′) = k + k′. Now,

since Nd is multiplicative, we have:

v2(x · x′) =
v̄2(Nd(x · x′))

2d

=
v̄2(Nd(x) ·Nd(x

′))

2d

=
v̄2(Nd(x)) + v̄2(Nd(x

′))

2d

= v2(x) + v(x
′).

The following propositions are required building blocks to be able to prove another

important property of v2 in Proposition 4.3.17.

Proposition 4.3.12. Nd(1− ζ2d+1) = 2

Proof. We proceed by induction on d. For d = 0 we have N0(x) = σ1(x) = x, so

it is trivial, and thus N0(1 − ζ20+1) = 1 − ζ2 = 1 − (−1) = 2. Now suppose the

statement is true for d, that is Nd(1 − ζ2d+1) = 2. Recall that σk(ζ2d+1) = ζk
2d+1 so

that σ2j+1(1 − ζ2d+1) = (1 − ζ2j+1
2d+1 ). Also observe that ζ2

d

2d+1 = −1 and ζ2
2d+1 = ζ2d .

Now by making the appropriate pairings we finish by showing that Nd+1(1− ζ2d+2) =
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Nd(1− ζ2d+1) in the following way:

Nd+1(1− ζ2d+2) =
2d+1−1∏︂
j=0

(1− ζ2j+1
2d+2 )

=
2d−1∏︂
j=0

(1− ζ2j+1
2d+2 )(1− ζ2j+1+2d

2d+2 )

=
2d−1∏︂
j=0

(1− ζ2j+1
2d+2 − ζ2j+1+2d+1

2d+2 + ζ4j+2+2d+1

2d+2 )

=
2d−1∏︂
j=0

(︁
1− ζ2j+1

2d+1 − (ζ2j+1
2d+2 − ζ2j+1

2d+2 )
)︁

=
2d−1∏︂
j=0

(1− ζ2j+1
2d+1 )

= Nd(1− ζ2d+1).

Proposition 4.3.13. Let x ∈ Z[ζ2d+1 ], then Nd(x) is an integer. If x′ is an element

of Rd then Nd(x
′) = a/2K for integers a and K.

Proof. The first statement of this proposition can be realized by applying the same

arguments as in Propositions 4.3.4 and 4.3.7 but for x ∈ Z[ζ2d+1 ] instead.

Now for x′ ∈ Rd, write it as x′ = x/2k for some x ∈ Z[ζ2d+1 ] and some integer

k. Since Nd(x) is multiplicative and Nd(1/2
k) = (1/2k)2

d
, we have that Nd(x

′) =

Nd(x)/2
K for K = 2d · k. Since Nd(x) is an integer, we can write Nd(x

′) = a/2K for

some integer a.

To complete the proof of the next proposition, recall the geometric sum formula:

1− xn

1− x
=

n−1∑︂
k=0

xk. (4.4)

Proposition 4.3.14. uj =
(︁
1− ζ2j−1

2d+1

)︁
/
(︁
1− ζ2d+1

)︁
is a unit in Z[ζ2d+1 ].

Proof. Recall that if uj is a unit then both uj and u−1
j are in Z[ζ2d+1 ]. Note that

1−x2j−1 is divisible by (1−x), so the geometric formula in Equation (4.4) then gives

us that:
1− x2j−1

1− x
=

2j−2∑︂
k=0

xk.
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Substituting x with ζ2d+1 gives us that uj =
2j−2∑︁
k=0

ζk
2d+1 , and thus uj ∈ Z[ζ2d+1 ]. To show

that u−1
j ∈ Z[ζ2d+1 ], observe that (2j − 1) and 2d+1 are coprime, so by the extended

Euclidean algorithm there exists a j′ such that j′(2j − 1) = 1 mod 2d+1. Using the

geometric formula again, but for j′ instead, we have:

1− xj
′

1− x
=

j′−1∑︂
k=0

xk.

This time by substituting x with ζ2j−1
2d+1 we get

(︁
1 − ζ

(2j−1)j′

2d+1

)︁
/
(︁
1 − ζ2j−1

2d+1

)︁
∈ Z[ζ2d+1 ].

Indeed, by direct calculation we have that uj ·
(︁
1− ζ

(2j−1)j′

2d+1

)︁
/
(︁
1− ζ2j−1

2d+1

)︁
= 1 so that

u−1
j =

(︁
1− ζ

(2j−1)j′

2d+1

)︁
/
(︁
1− ζ2j−1

2d+1

)︁
.

Proposition 4.3.15. αd = 1− ζ2d+1 is a prime element of Z[ζ2d+1 ].

Proof. Recall from number theory that elements of the ring of integers of a number

field with a prime norm is a prime element of that ring of integers. In this case the

number field is Q[ζ2d+1 ] with ring of integers Z[ζ2d+1 ]. Since Nd(αd) = 2 which is a

prime number, we get that αd is a prime element.

Proposition 4.3.16. Let x′ be an element of Z[ζ2d+1 ]. Then v2(x
′) ≥ 0 and for

k = 2dv2(x
′), x′ can be written as x′′(1−ζ2d+1)k for x′′ in Z[ζ2d+1 ] such that v2(x

′′) = 0.

Proof. Let αd = 1− ζ2d+1 and choose k to be the biggest power of αd that divides x
′.

Then we can write x′ = αkdx
′′ such that x′′ is from Z[ζ2d+1 ] and αd does not divide

x′′. Since Nd(x
′′) is an integer by Proposition 4.3.13, if 2 does not divide Nd(x

′′) then

this will imply that v2(x
′′) = 0.

Let us now suppose that 2 does indeed divide Nd(x
′′), in an effort to find a

contradiction. Then by Proposition 4.3.12, together with the definition of Nd, αd

divides 2 which implies that αd divides Nd(x
′′). Also, since αd is prime by Proposi-

tion 4.3.15, αd must also divide σ2k+1(x
′′) for some k. Note there exists j such that

(2j+1)(2k+1) ≡ 1 mod 2d+1 and σ2j+1(σ2k+1(x
′)) = x′. Then, applying σ2j+1 to αd

and σ2k+1(x
′′) we get that σ2j+1(αd) divides x′′. However, by Proposition 4.3.14 αd

divides σ2j+1(αd) = 1− ζ2j+1
2d+1 and therefore it divides x′′. This contradicts our initial

description of x′, so v2(x
′′) = 0.
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Finally, we have that

v2(x
′) = v2(α

k
d · x′′)

= v2(α
k
d) + v2(x

′′)

= k · v2(αd)

= k/2d.

Naturally we now have that k = 2dv2(x
′), as desired.

Proposition 4.3.17. For x and y ∈ Q[ζ2d+1 ] the following inequality holds:

v2(x+ y) ≥ min(v2(x), v2(y)).

Proof. Note that for x and y ∈ Q[ζ2d+1 ] there always exists an integer c such that

x′ = cx and y′ = cy are both in Z[exp(iπ/2d)]. Then

v2(x+ y) = v2((1/c)(x
′ + y′)) = v2(x

′ + y′) + v2(1/c).

Now by Proposition 4.3.16, we can write x′ as x′′(1− ζ2d+1)kx and y′ as y′′(1− ζ2d+1)ky

for kx = 2dv2(x
′) and ky = 2dv2(y

′). Note this also means that x′′ and y′′ are in

Z[ζ2d+1 ] and v2(x
′′) = v2(y

′′) = 0. Moreover, let k = min(kx, ky). This way we can

write:

x′ + y′ = x′′(1− ζ2d+1)kx + y′′(1− ζ2d+1)ky

= (1− ζ2d+1)k(x′′(1− ζ2d+1)kx−k + y′′(1− ζ2d+1)ky−k).

Now by Proposition 4.3.11,

v2(x
′ + y′) = v2

(︁
1− ζ2d+1)k) + v2(x

′′(1− ζ2d+1)kx−k + y′′(1− ζ2d+1)ky−k
)︁
.

Since x′′ and y′′ are in Z[ζ2d+1 ], x′′(1 − ζ2d+1)kx−k + y′′(1 − ζ2d+1)ky−k ∈ Z[ζ2d+1 ] and

thus it is also ≥ 0 by Proposition 4.3.16. Hence v2(x
′+y′) ≥ v2(1−ζ2d+1)k. Note that
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Nd(1− ζ2d+1) = 2 and recall that Nd is multiplicative. Then we get the following:

v2(1− ζ2d+1)k =
v̄2(Nd((1− ζ2d+1)k))

2d

=
v̄2((Nd(1− ζ2d+1))k)

2d

=
v̄2(2

k)

2d

=
k

2d

=
2d ·min(v2(x

′), v2(y
′))

2d

= min(v2(x
′), v2(y

′)).

Finally, putting it all together we arrive at

v2(x+ y) = v2(x
′ + y′) + v2(1/c)

≥ v2(1− ζ2d+1)k + v2(1/c)

= min(v2(x
′), v2(y

′)) + v2(1/c)

= min(v2(x
′/c), v2(y

′/c))

= min(v2(x), v2(y)).

The power of 2 in the denominator of the Pauli expectation gives us a sense of

how “non-stabilizer” the state is. The definition of the dyadic monotone below gives

us an intuition for this sort of measure.

Definition 4.3.18. Let |ψ⟩ be an n-qubit state with entries in Rd. Then the dyadic

monotone is

µ2 |ψ⟩ = max
{︁
− v2(⟨ψ|P |ψ⟩) : P ∈ {I,X, Y, Z}⊗n

}︁
.

The dyadic monotone basically is the maximum power of 2 in the denominator

over the Pauli spectrum. Now note that it is invariant under Clifford unitaries because

they map the set of all multi-qubit Pauli matrices to the set of all of all Pauli matrices

up to a sign and v2 is insensitive to the sign of its argument. The next proposition

shows a similarity between ν and µ2, namely the additive property under tensor

products.
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Proposition 4.3.19. Let |ϕ⟩ and |ψ⟩ be states with entries in Rd; then

µ2(|ϕ⟩ ⊗ |ψ⟩) = µ2 |ϕ⟩+ µ2 |ψ⟩

Proof. Note that for Pauli matrices P and Q the expectations ⟨ϕ|P |ϕ⟩ and ⟨ψ|Q|ψ⟩
are non-zero. Thus, using distributive properties of the tensor product and v2, we

get:

v2(⟨ϕ| ⊗ ⟨ψ| (P ⊗Q) |ϕ⟩ ⊗ |ψ⟩) = v2((⟨ϕ|P + ⟨ψ|Q)⊗ (|ϕ⟩ ⊗ |ψ⟩))

= v2(⟨ϕ|P |ϕ⟩ · ⟨ψ|Q|ψ⟩)

= v2(⟨ϕ|P |ϕ⟩) + v2(⟨ψ|Q|ψ⟩).

Next, we want to show that that the dyadic monotone is minimal for stabilizer

states. To do this we will need the following proposition.

Proposition 4.3.20. Let x be a real element of Rd such that for all odd k, |σk(x)| ≤
1. Then v2(x) ≤ 0 and the equality is achieved if and only if x = ±1.

Proof. The condition that |σk(x)| ≤ 1 for all odd k implies that Nd(x) ≤ 1, since

Nd(x) is just the product of all these σ’s. Because x ∈ Rd we can write it as z/2k

for z ∈ Z[ζ2d+1 ]. Then, since Nd is multiplicative by Proposition 4.3.6, Nd(x) =

Nd(z) · Nd(2
k) = n/22

dk, where Nd(z) = n is an integer by Proposition 4.3.13. This

together with |Nd(x)| ≤ 1 implies v̄2(n/2
k) is non-positive, which further implies that

v2(x) is also.

Now, since n is an integer and |Nd(x)| ≤ 1, v2(x) = 0 if and only if Nd(x) =

n/22
dk = ±1. Because |σk(x)| ≤ 1 for all k, Nd(x) = ±1 only when σk(x) = ±1 for

all k. Then by Proposition 4.3.4, x = ±1.

Proposition 4.3.21. Let |ψ⟩ be a state in Rd; then µ2 |ψ⟩ ≥ 0, with equality achieved

if and only if |ψ⟩ is a stabilizer state.

Proof. Consider a Pauli P expectation α = ⟨ψ|P |ψ⟩. Because P has eigenval-

ues ±1, by the spectral decomposition theorem it follows that P = P+1 − P−1,

where P+1 and P−1 are projectors that correspond to the eigenspaces +1 and −1

respectively. Since ⟨ψ|P+1|ψ⟩ and ⟨ψ|P−1|ψ⟩ are the probabilities of observing the
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+1 or −1 outcomes respectively, which by definition are at most 1, we have that

| ⟨ψ|P |ψ⟩ | = | ⟨ψ|P+1|ψ⟩ − ⟨ψ|P−1|ψ⟩ | ≤ 1. For odd k consider σk(α) and recall that

σk preserves addition, multiplication, and conjugation. Thus we can write αk as the

expectation ⟨ψk|Pk|ψk⟩ where |ψk⟩ and Pk are obtained by applying σk to |ψ⟩ and P
element-wise. It follows that αk = ⟨ψk|Pk|ψk⟩ = σk(⟨ψ|P |ψ⟩) = σk(α) and so |αk| ≤ 1

since σk takes rational numbers to rational numbers. Then by Proposition 4.3.20,

v2(α) ≤ 0 which implies that µ2 is always non-negative.

We now show that µ2 |ψ⟩ = 0 if and only if |ψ⟩ is a stabilizer state. If |ψ⟩ is a

stabilizer state, then |ψ⟩ = C |0⟩⊗n for some Clifford circuit C. But µ2 is invariant

under Clifford operations, so we actually have µ2(|ψ⟩) = µ2(|0⟩⊗n). Hence, since

µ2(|0⟩⊗n) = 0, we have µ2(|ψ⟩) = 0. We now show the converse implication: if

µ2(|ψ⟩) = 0, then |ψ⟩ is a stabilizer state.

Suppose that µ2(|ψ⟩) = 0. Then all non-zero Pauli expectations of |ψ⟩ are±1. The

set {I,X, Y, Z}⊗n, denoted by T (n), is an orthogonal basis of the space of matrices

with respect to the inner product ⟨A,B⟩ = TrAB†. This means that we can write

|ψ⟩ ⟨ψ| as a linear combination of the basis elements, that is, as
∑︁

Q∈T (n)
αQQ. It follows

that Tr(|ψ⟩ ⟨ψ|P ) =
∑︁

Q∈T (n)
αQTr(QP ) = αP · 2n since the trace of a Pauli operator is

zero aside from I, in which case it is 2n. Noting also that 1 = ⟨ψ|ψ⟩ = Tr(|ψ⟩ ⟨ψ|),
observe the following:

Tr(|ψ⟩ ⟨ψ|) = Tr(|ψ⟩ ⟨ψ| |ψ⟩ ⟨ψ|)

= Tr
(︂ ∑︂
P∈T (n)

αPP
(︁ ∑︂
Q∈T (n)

αQQ
)︁)︂

=
(︂ ∑︂
P∈T (n)

αP
(︁ ∑︂
Q∈T (n)

αQTr(PQ)
)︁)︂

=
∑︂

P∈T (n)

αP
(︁
αP · 2n

)︁
=
∑︂

P∈T (n)

(αP · 2n)2/2n

=
1

2n

∑︂
P∈T (n)

(︁
Tr(|ψ⟩ ⟨ψ|P )

)︁2

(4.5)

Since ⟨ψ|P |ψ⟩ is either 0 or ±1 we can write |Stab |ψ⟩ | =
∑︁

P∈T (n)
| ⟨ψ|P |ψ⟩ |2. Now,
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since the trace is cyclic, Tr(|ψ⟩ ⟨ψ|P ) = Tr(⟨ψ|P |ψ⟩) = ⟨ψ|P |ψ⟩ and therefore

1 = Tr(|ψ⟩ ⟨ψ|) = 1

2n

∑︂
P∈T (n)

(︁
Tr(|ψ⟩ ⟨ψ|P )

)︁2
=

1

2n

∑︂
P∈T (n)

| ⟨ψ|P |ψ⟩ |2 = 1

2n
|Stab |ψ⟩ |.

Hence, |Stab |ψ⟩ | = 2n and |ψ⟩ is a stabilizer state.

Proposition 4.3.22. Let |ψ⟩ be a state with entries in Rd, let P be a Pauli observable

such that measuring its +1 eigenvalue has probability 1/2 and let |ψ+⟩ be the normal-

ized result of that measurement. Then µ2 |ψ⟩ ≥ µ2 |ψ+⟩, so µ2 is non-increasing under

Pauli measurements.

Proof. We proceed by bounding the value of v2 for some Pauli operatorQ evaluated on

the expectation ⟨ψ+|Q|ψ+⟩. Since the normalized state is just the post measurement

state, and we know the probability of the +1 eigenvalue is 1/2, we have that

|ψ+⟩ =
(I + P ) |ψ⟩
2
√︁

⟨ψ|P+1|ψ⟩
=

(I + P ) |ψ⟩
2
√︁

1/2
=
I + P√

2
|ψ⟩ .

The expectation of Q is therefore equal to

⟨ψ+|Q|ψ+⟩ =
⟨ψ|(I + P )Q(I + P )|ψ⟩

2
.

If P and Q anti-commute then

⟨ψ+|Q|ψ+⟩ =
⟨ψ|(IQ+ PQ)(I + P )|ψ⟩

2

=
⟨ψ|(Q+−QP )(I + P )|ψ⟩

2

=
⟨ψ|Q(I +−P )(I + P )|ψ⟩

2

= 0.

Thus the expectation does not contribute to the calculation of µ2. Similarly, when P

and Q commute,

⟨ψ+|Q|ψ+⟩ =
⟨ψ|Q(I + P )(I + P )|ψ⟩

2

=
⟨ψ|Q(I + 2P + P 2|ψ⟩

2

=
⟨ψ|Q(2I + 2P )|ψ⟩

2

= ⟨ψ|Q|ψ⟩+ ⟨ψ|PQ|ψ⟩ .

Now we use the inequality from Proposition 4.3.17 to see that
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v2(⟨ψ|Q|ψ⟩+ ⟨ψ|PQ|ψ⟩) ≥ min(⟨ψ|Q|ψ⟩ , ⟨ψ|PQ|ψ⟩) ≥ −µ2 |ψ⟩.

Now recall that v2(⟨ψ|Q|ψ⟩+ ⟨ψ|PQ|ψ⟩) = v2(⟨ψ+|Q|ψ+⟩) which is equal to -µ2 |ψ+⟩
given our choice of Q. So finally by multiplying by −1, we have the result: µ2 |ψ⟩ ≥
µ2 |ψ+⟩



Chapter 5

Applications

5.1 The CnZ gate

The CnZ gate is a gate worth considering in detail since it is used in many important

algorithms, like Grover’s search algorithm. We start by computing the Pauli spectrum

of |CnZ⟩. Lower bounds on the resources required for this gate follow after this

proposition.

Proposition 5.1.1. For all n ≥ 3, the Pauli spectrum of the state |CnZ⟩ is: {|1 (1),

0 (−1 + 2n + 22n+1), 1− 21−n (2n+1 − 1), 21−n (1− 3 · 2n + 22n+1)|}.

Proof. We have

|CnZ⟩ = CnZ |+⟩⊗n = 1√
2m

∑︁
b∈{0,1}m

(−1)b1·b2···bm |b⟩,

where |CnZ⟩ is an m = n+1 qubit gate. We want to compute the Pauli expectation

⟨CnZ|XxZz|CnZ⟩ where x and z are bit strings. Note that we need not consider the

Pauli matrix Y since Y = iXZ, and the phase will vanish once we take the absolute

value as in the definition of the Pauli spectrum. For one-bit bit strings i and j,

observe that Zi |j⟩ = |j⟩ if i = j = 0 or i ̸= j, and Zi |j⟩ = − |j⟩ if i = j = 1. So

in general Zz |b⟩ = (−1)z·b |b⟩. Furthermore, X i |j⟩ = |i⊕ j⟩, where ⊕ is addition

modulo 2, so for arbitrary bit strings it follows that Xx |b⟩ = |b⊕ x⟩, where b ⊕ x is

extended component-wise. We can now directly calculate as follows:

2m ⟨CnZ|XxZz|CnZ⟩ =
∑︂

b,b′∈{0,1}m
(−1)b1·b2···bm(−1)b

′
1·b′2···b′m ⟨b′|XxZz|b⟩

=
∑︂

b,b′∈{0,1}m
(−1)b1·b2···bm(−1)b

′
1·b′2···b′m(−1)z·b ⟨b′|Xx|b⟩

=
∑︂

b,b′∈{0,1}m
(−1)b1·b2···bm(−1)b

′
1·b′2···b′m(−1)z·b ⟨b′|b⊕ x⟩

=
∑︂

b∈{0,1}m
(−1)b1·b2···bm(−1)(b1⊕x1)·(b2⊕x2)···(bm⊕xm)(−1)z·b.

44
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Note that we have the last line since ⟨b′|b⊕ x⟩ = 0 when b′ ̸= b ⊕ x, and so we can

substitute b′i = bi ⊕ xi.

When x is the zero vector 0, we get

2m ⟨CnZ|XxZz|CnZ⟩ =
∑︁

b∈{0,1}m
((−1)b1·b2···bm)2(−1)z·b =

∑︁
b∈{0,1}m

(−1)z·b.

This is 2m for z = 0. For any other z half of the terms in the summation will be −1

and the other half 1, giving 0.

Now consider the case when x ̸= 0. Denoting 1 as the all one vector, if b = 1 then

b1 · b2 · · · bm = 1 and (b1+x1) · (b2+x2) · · · (bm+xm) = 0. Similarly, if b = 1+x, then

b1 · b2 · · · bm = 0 and (b1 + x1) · (b2 + x2) · · · (bm + xm) = 1, and in either case we get:

(−1)b1·b2···bm(−1)(b1+x1)·(b2+x2)···(bm+xm)(−1)z·b = (−1)(−1)z·b.

For any other b we have b1 · b2 · · · bm = 0 and (b1 + x1) · (b2 + x2) · · · (bm + xm) = 0,

giving us

(−1)b1·b2···bm(−1)(b1+x1)·(b2+x2)···(bm+xm)(−1)z·b = (−1)z·b.

Thus the terms in the sum over b differ from
∑︁

b∈{0,1}m(−1)z·b only for b = 1 and

b = 1+ x. Therefore,

2m ⟨CnZ|XxZz|CnZ⟩ =
∑︂

b∈{0,1}m
(−1)b1·b2···bm(−1)(b1+x1)·(b2+x2)···(bm+xm)(−1)z·b

= −(−1)z·1 − (−1)z·(1+x) +
∑︂

b∈{0,1}m\{1,1+x}

(−1)z·b

= −2(−1)z·1 − 2(−1)z·(1+x) +
∑︂

b∈{0,1}m
(−1)z·b.

When z = 0, this is simply 2m − 4. When z ̸= 0, it is −2(−1)z·1 − 2(−1)z·(1+x), and

we have two more final cases. The first is when x · z is odd, where we get:

−2(−1)z·1 − 2(−1)z·(1+x) = −2(−1)z·1 − 2(−1)z·1(−1)z·x

= −2(−1)z·1 − 2(−1)z·1(−1)1

= −2(−1)z·1 + 2(−1)z·1

= 0

and if x · z is even, then we have −2(−1)z·1 − 2(−1)z·1 = −4(−1)z·1 instead, which

simply becomes 4 since the Pauli spectrum requires we take the absolute value. We
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can now summarize:

| ⟨CnZ|XxZz|CnZ⟩ | =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if z = 0 and x = 0,

1− 22−m if z = 0 and x ̸= 0,

0 if z ̸= 0 and either x = 0 or x ̸= 0

and x · z is odd

22−m if z ̸= 0 and x ̸= 0 and x · z is even

We can count the number of each subset of binary vectors x and z to find multiplicities.

When, x = 0 and z = 0, there is clearly only one possible choice for each x and z,

thus we have a multiplicity of 1. When z = 0 and x ̸= 0, we now have only 1

possibility for z and 2m − 1 possibilities for x, giving a multiplicity of 2m − 1 for this

case. Similarly, when x = 0 and z ̸= 0 we have 2m − 1 possibilities again. Also,

observe that x · z takes an odd value for (22m− 2m)/2 different possible combinations

of x and z pairings. Adding these and simplifying gives the multiplicity of the third

case: 22m−1 − 2m−1 − 1. Finally, there are overall 22m different combinations of x

and z pairings, so we can simply subtract all the multiplicities above from this to

get the multiplicity of the fourth case, which comes out to be 22m−1 − 3 · 2m−1 + 1.

Substituting n+ 1 for m then gives the stated result.

Corollary 5.1.2. We have the following stabilizer nullity values:

ν(|T ⟩) = 1, ν(|CS⟩) = 2, ν(|CCZ⟩) = 3, and ν(|CnZ⟩) = n+ 1.

Proof. The first three follow by direct calculation. For ν(|CnZ⟩) = n+ 1, recall that

if |ψ⟩ is an m-qubit state then ν(|ψ⟩) = m− log2 |Stab(|ψ⟩)|. By Proposition 5.1.1 we

have |Stab(|CnZ⟩)| = 1 since the size of the stabilizer of a state is the multiplicity of

1 in its Pauli spectrum. Hence ν(|CnZ⟩) = n+ 1− log2(1) = n+ 1− 0 = n+ 1.

Proposition 5.1.3. For n ≥ 2, the CnZ gate cannot be implemented with Clifford

gates and measurements using fewer than n + 1 T gates, or (n + 1)/2 CS gates, or

(n+ 1)/3 CCZ gates.

Proof. First note that proving that a bound holds for the state |CnZ⟩ implies that it

holds for the gate CnZ. Indeed, if we can perform a task with k CnZ gates then we
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can also perform it with k |CnZ⟩ states using the circuits from Section 3.4. Hence,

any lower bound on the number of required states is a lower bound on the number of

required gates. Now, ν(|T ⟩) = 1 and ν(|CnZ⟩) = n+ 1 by Corollary 5.1.2. Since ν is

a monotone, it is non-increasing under Clifford operations and measurements. This

implies that at least n+ 1 |T ⟩ states are required to implement the |CnZ⟩ state and

hence the CnZ gate. Similarly, since ν(|CS⟩) = 2 and ν(|CCZ⟩) = 3, we get that to

implement the CnZ gate, we need at least (n+ 1)/2 |CS⟩ states or (n+ 1)/3 |CCZ⟩
states.

The above lower bound can be improved when measurements are restricted.

Corollary 5.1.4. We have the following dyadic monotone values: µ2(|T ⟩) = 1/2,

µ2(|CS⟩) = 1, µ2(|CCZ⟩) = 1, and µ2(|Cn(z)⟩) = n− 1.

Proof. The first three follow from direct calculation. For the |CnZ⟩ state, Proposition
5.1.1 gives us all of its possible values for the Pauli spectrum. Thus to get the dyadic

monotone we simply input them into the valuation function to get a set of values,

which we then negate, to finally take the maximum to get n− 1 as desired.

Lemma 5.1.5. For n ≥ 2, the CnZ gate cannot be implemented with Clifford gates

and measurements with probability 1/2 using fewer than 2n− 2 T gates, or n− 1 CS

gates, or n− 1 CCZ gates.

Proof. We reason as in the proof of Proposition 5.1.3 but using the dyadic monotone

which is also non-increasing under Clifford operations, but with measurements of

probability 1/2, as seen in 4.3.22. This time the values in Corollary 5.1.4 are used.

We now move on to upper bounds for the CnZ gate. The next proposition provides

reasoning as to why we do not need more than n−1 CCZ gates by showing a specific

circuit construction.

Proposition 5.1.6. Let n ∈ Z≥2. The CnZ gate can be implemented using n − 1

CCZ gates along with Clifford gates and measurements with probability 1/2.

Proof. In the proof, we use the CCZ and the CCX gates interchangeably because

they are equivalent under a simple conjugation by a Hadamard gate. We reason by
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induction on n. Consider the base case of n = 2. Then CnZ is just the CCZ gate,

so the result holds in this case.

Now for n ≥ 3 assume we have a circuit D for Cn−1Z which can be performed

using n− 2 CCZ gates. Then consider the following circuit:

|c1⟩ •
CZ

|c2⟩ •

|0⟩

D

H

|c3⟩
......

|t⟩

Starting with the input state and tracking the state of this system step by step,

we get the following:

|c1⟩ |c2⟩ |0⟩ |c3⟩ · · · |cn−1⟩ |t⟩

↦→ |c1⟩ |c2⟩ |(c1 · c2)⟩ |c3⟩ · · · |cn−1⟩ |t⟩

↦→ |c1⟩ |c2⟩ |(c1 · c2)⟩ |c3⟩ · · · |cn−1⟩ |t⊕ ((c1 · c2) · c3 · · · cn−1)⟩

= |c1⟩ |c2⟩ |(c1 · c2)⟩ |c3⟩ · · · |cn−1⟩ |t⊕ (c1 · · · cn−1)⟩.

Now, before applying the Hadamard gate, write out the general states |c1⟩ and |c2⟩
as αc1 |0⟩ + βc1 |1⟩ and αc2 |0⟩ + βc2 |1⟩ respectively. Since we have already applied

the D circuit, the only qubits left to consider are the first three, so we now ignore

|c3⟩ · · · |cn−1⟩ |t⊕ (c1 · · · cn−1)⟩ since it will remain unchanged. Thus, we now have:

|c1⟩ |c2⟩ |(c1 · c2)⟩

= αc1αc2 |000⟩+ βc1αc2 |100⟩+ αc2 + αc1βc2 |010⟩+ βc1βc2 |111⟩

↦→ 1√
2
(αc1αc2 |000⟩+ βc1αc2 |100⟩+ αc1βc2 |010⟩+ βc1βc2 |110⟩) + 1√

2
(αc1αc2 |001⟩+

βc1αc2 |101⟩+ αc1βc2 |011⟩ − βc1βc2 |111⟩)

↦→

⎧⎨⎩
(︁
αc1αc2 |00⟩+ βc1αc2 |10⟩+ αc1βc2 |01⟩+ βc1βc2 |11⟩

)︁
if measurement is |0⟩ ,(︁

αc1αc2 |00⟩+ βc1αc2 |10⟩+ αc1βc2 |01⟩ − βc1βc2 |11⟩
)︁

if measurement is |1⟩
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↦→ |c1⟩ |c2⟩.

Considering the rest of the qubits again, this gives us the output state of the system:

|c1⟩ |c2⟩ |c3⟩ · · · |cn−1⟩ |t⊕ (c1 · · · cn−1)⟩ .

Hence, this circuit acts as the CnZ gate. Note that the uncomputation of the added

Toffoli gate follows from the circuit in Equation (2.1).

We can also give upper-bounds similar to the ones in Proposition 5.1.6 for the CS

and T gates.

Proposition 5.1.7. The CnZ gate can be implemented using exactly 2n−2 CS gates

along with Clifford gates and measurements with probability 1/2.

Proof. Simply put, we can implement the CCZ gate with a circuit using only two

CS gates and then use this circuit to replace all the CCZ gates used in the circuit in

proposition 5.1.6. The circuit for the CCZ gate using two CS gates is given below.

|c1⟩ S† •
CZ

|c2⟩ S • Z

|0⟩ H • • • H • S H

|c3⟩ Z

Thus, since we used n− 1 CCZ gates in proposition 5.1.6, we can implement the

Cn−1Z gate with 2 · (n− 1) CS gates.

Proposition 5.1.8. The CnZ gate can be implemented using exactly 4n− 4 T gates

along with Clifford gates and measurements with probability 1/2.

Proof. Simply put, we can write the CCZ gate with an equivalent circuit using four

T gates and then use this circuit to replace all the CCZ gates used in the circuit in

proposition 5.1.6. The circuit for the CCZ gate using four T gates is given below.
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|c1⟩ • T †

CZ
|c2⟩ • T †

|0⟩ H T • T • H S • H

|c3⟩ Z

Again, since we used n− 1 CCZ gates in proposition 5.1.6, we can implement the

CnZ gate with 4 · (n− 1) T gates.

5.2 The Modular Adder

In this final section, we provide lower bounds on circuits for the modular adder. The

modular adder is an important part of many quantum algorithms.

Definition 5.2.1. A circuit A on 2n qubits implements the modular adder if it acts

on basis states as

A |i⟩ |j⟩ = |i⟩ |i+ j⟩

where i+ j is evaluated modulo 2n.

Note that the adder defined in Definition 5.2.1 is an “in-place” adder: the result

of the addition of the integers contained in the two input registers is stored in the

second register. In order to establish bounds for the modular adder, we will rely

on the so-called Fourier states. First, recall the definition of the Quantum Fourier

Transform.

Definition 5.2.2. The quantum Fourier transform is an operator that maps the

state |a⟩ =
2n−1∑︁
x=0

ax |x⟩ to |a′⟩ =
2n−1∑︁
y=0

a′y |y⟩ where a′y = 1√
2n

2n−1∑︁
x=0

axω
xy
2n and ω2n =

exp(2πi/2n).

Note that in Definition 5.2.2, we used ω2n for ζ2n , as is common in the quantum

computing literature.
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Definition 5.2.3. The quantum Fourier state is the quantum Fourier transform

applied to a basis vector |a⟩. This means that there is only one non-zero ax, which

we call aℓ. Hence, aℓ = 1 necessarily, so that |a⟩ = |ℓ⟩. Thus we have the following:

|QFT ℓn⟩ =
1√
2n

2n−1∑︂
y=0

exp
[︂i2πℓy

2n

]︂
|y⟩ (5.1)

In fact, as explained in [13] we can rewrite this as:

|QFT ℓn⟩ = ⊗n
k=1

|0⟩+ ei2πℓ/2
k |1⟩√

2
,

which will be useful for the next Lemma.

Lemma 5.2.4. ν(|QFT−1
n ⟩) = n− 2.

Proof. We make use of the stabilizer nullity’s additive property. Utilizing the above

equality, we have that:

ν(|QFT−1
n ⟩) = ν

(︃
⊗n
k=1

|0⟩+ e−2πi/2k |1⟩
2n

)︃
=

n∑︂
k=1

ν

(︃
|0⟩+ e−2πi/2k |1⟩

2n

)︃
= ν

(︃
|0⟩+ e−πi |1⟩

2n

)︃
+ ν

(︃
|0⟩+ e−2πi/4 |1⟩

2n

)︃
+

n∑︂
k=3

ν

(︃
|0⟩+ e−2πi/2k |1⟩

2n

)︃
= ν

(︃
|0⟩+ |1⟩

2n

)︃
+ ν

(︃
|0⟩+ (−i) |1⟩

2n

)︃
+

n∑︂
k=3

ν

(︃
|0⟩+ e−2πi/2k |1⟩

2n

)︃

Observe that both I and X stabilize |0⟩+|1⟩
2n

and both I and −Y stabilize |0⟩−i|1⟩
2n

,

so the stabilizer nullity of both of these two terms is 0. Now consider k ≥ 3. In

this case, e−2πi/2k ̸∈ Q[i]. Because all entries of the Pauli matrices are in Q[i], it

follows that |0⟩+e−2πi/2k |1⟩
2n

has a trivial stabilizer, giving a stabilizer nullity value of 1.

Thus ν

(︃
|0⟩+e−2πi/2k |1⟩

2n

)︃
= 1. Putting this all together we have ν(|QFT−1

n ⟩) =
n∑︁
k=3

1 =

n− 2.

Proposition 5.2.5. The modular adder cannot be implemented with Clifford gates

and measurements using fewer than (n− 2) |T ⟩ gates, (n− 2)/2 |CS⟩ gates, or (n−
2)/3 |CCZ⟩ gates.
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Proof. As in the previous section, we reason with states rather than with gates. Note

that letting ℓ = 0 in Definition 5.1, we get that |QFT 0
n⟩ = |+⟩⊗n. Now consider

applying the Adder circuit A to |QFT ℓn⟩ |QFTmn ⟩:

A
(︁
|QFT ℓn⟩ |QFTmn ⟩

)︁
= A

(︂ 2n−1∑︂
y=0

exp
[︂2πi(ℓy)

2n

]︂
|y⟩

2n−1∑︂
z=0

exp
[︂2πi(mz)

2n

]︂
|z⟩
)︂

=
1

2n

2n−1∑︂
y=0

2n−1∑︂
z=0

exp
[︂2πi(ℓy +mz)

2n

]︂
|y⟩ |z + y⟩

=
1

2n

2n−1∑︂
y=0

2n−1∑︂
x=0

exp
[︂2πi(ℓy +m(x− y))

2n

]︂
|y⟩ |x⟩

=
1

2n

2n−1∑︂
y=0

2n−1∑︂
x=0

exp
[︂2πi((ℓ−m)y +mx)

2n

]︂
|y⟩ |x⟩

= |QFT ℓ−mn ⟩ |QFTmn ⟩

(5.2)

By letting ℓ = 0 we now have A(|+⟩⊗n |QFTmn ⟩) = |QFT−m
n ⟩ |QFTmn ⟩. Now, suppose

A is implemented with just Clifford gates, Pauli measurements, and some resource

state |ψ⟩. Then we can write ν(A(|+⟩⊗n |QFTmn ⟩)) = ν(|ψ⟩ |QFTmn ⟩), which implies

that ν(|ψ⟩ |QFTmn ⟩) ≥ ν(|QFT−m
n ⟩ |QFTmn ⟩), and since the stabilizer nullity is addi-

tive over tensor products, we have that ν(|ψ⟩) ≥ ν(|QFT−m
n ⟩). Now letting m = 1

we can use Lemma 5.2.4 and Corollary 5.1.2 to get the lower bounds, reasoning as in

Proposition 5.1.3.

Finally, we give lower bounds using the dyadic monotone. To do this, we will need

the dyadic monotone value of the Fourier state, given in the next Lemma.

Lemma 5.2.6. Let a be an odd integer. Then µ2 |QFT an ⟩ = n− 3 + (1/2)n−2.

Proof. Recall that from Example 4.2.8, the Pauli expectations of (|0⟩+ei2πa/2k |1⟩)/
√
2

are

{0, cos(2πa/2k), sin(2πa/2k), 1}.

Observe that −v2(0) = −∞ and −v2(1) = 0, so for k ≥ 2 we have:

µ2

(︁
(|0⟩+ ei2πa/2

k |1⟩ /
√
2
)︁
= −v2

(︁
sin(πa/2k−1)

)︁
or
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µ2

(︁
(|0⟩+ ei2πa/2

k |1⟩ /
√
2
)︁
= −v2

(︁
cos(πa/2k−1)

)︁
Now, using the additive property of v2, for odd a we can write

v2
(︁
sin(πa/2k−1)

)︁
= v2

(︁
2 sin(πa/2k−1)

)︁
+ v2(1/2)

= v2
(︁
exp(iπa/2k−1)− exp(−iπa/2k−1)

)︁
− 1

= v2
(︁
1− exp(iπa/2k−2)

)︁
− 1

=
v̄2
(︁
Nk−2(1− exp(iπa/2k−2))

)︁
2k−2

− 1

=
v̄2(2)

2k−2
− 1

= 1/2k−2 − 1.

Note we used the fact that Nk−2(1−exp(iπa/2k−2)) = 2 which comes from Propo-

sition 4.3.12. Furthermore, a similar calculation gives the same result for cosine, thus,

using the multiplicative property of µ2 we get:

µ2(|QFT an ⟩) =
n∑︂
k=2

(︁
1− 1/2k−2) = n− 3 + 1/2n−2.

Proposition 5.2.7. Let n ≥ 3. The modular adder cannot be implemented with

Clifford gates and measurements with probability 1/2 using fewer than (n− 2) |CCZ⟩
gates.

Proof. This proof follows similarly to the proof of Proposition 5.2.5, but with the

dyadic monotone instead of the stabilizer nullity. Recall that if the adder circuit

is implemented with Clifford gates, Pauli measurements, and some resource state

|ψ⟩, then we can write µ2(|ψ⟩ |QFTmn ⟩) ≥ µ2(|QFT−m
n ⟩ |QFTmn ⟩). Letting m = 1

and using the additive property of the dyadic monotone, we get that µ2(|ψ⟩) ≥
µ2(|QFT−1

n ⟩). Then by Lemma 5.2.6 µ2(|ψ⟩) ≥ n − 3 + (1/2)n−2 ≥ n − 2. Finally,

reasoning as in Proposition 5.1.3, the result follows by using the dyadic monotone

value in Corollary 5.1.4.



Chapter 6

Conclusion

In this thesis, following the work of [4], we studied lower bounds on the number of

non-Clifford gates in quantum circuits. The non-Clifford gates we focused on were

the T gate, the CS gate, and the CCZ gate. After giving the fundamental tools

required to define lower bounds, we explicitly demonstrated how to find lower bounds

for certain protocols of interest. Moreover, upper bounds were also given to compare

and contrast these lower bounds. The lower bounds discussed in this thesis required

the use of monotonic functions: the stabilizer nullity and the dyadic monotone. The

difference between these two approaches is apparent in the resulting lower bounds.

Indeed, the stabilizer nullity yields looser bounds than the dyadic monotone. However,

the stabilizer nullity is also subject to fewer restrictions in not needing measurement

probabilities to be 1/2 and is therefore more widely applicable.

There are many avenues for future work on this topic. Ideally for any circuit or

gate, we would want the same lower bounds and upper bounds for the resource of

interest, along with a circuit to represent such a bound. This would mean that we

have the best circuit in terms of using the least amount of the expensive resources

of interest. This is the case for the CnZ gate, where the resource was the CCZ

gate (and measurements are restricted to have probability 1/2). It would be of great

interest to have a construction matching the lower bound for other resources. It

was recently shown in [5] that a CCCZ gate can be implemented with less T gates

than presented here, though this new construction does not yet match the lower

bound. Another noteworthy question is deciding whether we can achieve the tighter

lower bounds afforded by the dyadic monotone without the requirement of only using

measurements with probability 1/2.

Instead of lowering the upper bounds by providing improved circuit construc-

tions, one could also try to improve the lower bounds. A possibility for doing this

is considering another monotone. Since not all circuits or gates considered here had

54
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the same lower and upper bounds, perhaps another monotone could result in tighter

lower bounds so that we would know what the optimal number of required resources

is. Of course, this is no trivial task, but one possible way to achieve this might be

to make a slight modification to the definition of one of the monotones presented

here. An example of this can be seen in [9], where the authors defined the stabilizer

nullity on unitaries rather than states, calling it the unitary stabilizer nullity. Other

monotones that are already known could also be explored, for example the stabilizer

extent, introduced in [4].
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