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ABSTRACT 

 

EEG hyperscanning refers to recording electroencephalographic (EEG) data from 

multiple participants simultaneously. Many hyperscanning experimental designs seek to mimic 

naturalistic behavior, relying on unpredictable participant-generated stimuli. The majority of this 

research has focused on neural oscillatory activity that is quantified over hundreds of 

milliseconds or more. This contrasts with traditional event-related potential (ERP) research in 

which analysis focuses on transient responses, often only tens of milliseconds in duration. 

Deriving ERPs requires precise time-locking between stimuli and EEG recordings, and thus 

typically relies on pre-set stimuli that are presented to participants by a system that controls 

stimulus timing and synchronization with an EEG system. EEG hyperscanning methods typically 

use separate EEG amplifiers for each participant, increasing cost and complexity — including 

challenges in synchronizing data between systems. Here, we describe a method that allows for 

simultaneous acquisition of EEG data from a pair of participants engaged in conversation, using 

a single EEG system with simultaneous audio data collection that is synchronized with the EEG 

recording. This allows for the post-hoc insertion of trigger codes so that it is possible to analyze 

ERPs time-locked to specific events. We further demonstrate methods for deriving ERPs elicited 

by another person’s spontaneous speech, using this setup. 

 

 

 

 

 



Method details  

 

Overview 

 

EEG hyperscanning refers to recording electroencephalographic (EEG) data from 

multiple participants simultaneously, typically as they are jointly engaged in a particular task [1]. 

In EEG recording, electrodes placed on the head measure electrical potential at the scalp via a 

differential amplifier [2, 3]. Current methods in EEG hyperscanning [4,5] typically involve using 

separate amplifiers for each person in the study. This creates challenges in synchronizing data 

between amplifiers. It also presents barriers to entry into conducting hyperscanning research, as 

the cost of amplifiers means that only labs that are equipped with multiple EEG systems can 

conduct this research.  

Another, distinct challenge in conducting hyperscanning research is in measuring event-

related potentials (ERPs). ERPs are averages of EEG activity time-locked to the onset of events 

of interest, such as the presentation of experimental stimuli [2]. Measuring ERPs requires precise 

time-locking of the EEG to events of interest, because ERPs show distinct peaks – with 

associated functional interpretations — at precise times. Thus variance of even tens of 

milliseconds in the synchronization of EEG and stimuli can result in uninterpretable data. ERP 

studies typically employ pre-set stimuli that are presented by a system that sends a “trigger code” 

time-locked to each stimulus, to the EEG recording system. In a properly calibrated system, this 

trigger code acts as a time stamp in the EEG data to which ERPs can be reliably derived [2] [5]. 

In hyperscanning studies, experimental designs typically seek to mimic naturalistic behavior and 

thus rely on unpredictable, participant-generated stimuli. For this reason, the majority of EEG 

hyperscanning studies so far have not focused on ERPs but rather on neural oscillatory activity. 

This type of rhythmic activity is measured as power in specific frequency bands, averaged over 



periods of hundreds of milliseconds or even seconds. While oscillatory activity is one important 

way of understanding human brain activity, ERPs can provide important additional insights into 

neurocognitive activity. 

We have developed an EEG hyperscanning technique that could be used to investigate 

ERPs in response to words spoken in the context of conversation between two people, while also 

accommodating oscillatory analyses. As shown in Figure 1, we employ a 2 × 32-electrode EEG 

hyperscanning setup that both allows for the simultaneous acquisition of EEG data from a pair of 

participants using a single amplifier. The setup also allows for simultaneous collection of audio 

data into an additional channel in the EEG recording. This ensures that the audio and EEG data 

are perfectly synchronized. Leveraging this, we additionally developed a method for manually 

identifying the onsets of individual words in the audio recordings, and using these to insert 

trigger codes so that it is possible to derive and analyze ERPs time-locked to the onset of 

individual spoken words.  

This EEG hyperscanning setup involves commercially-available equipment. As described 

in detail below, we have used a Brain Products ActiCHamp EEG amplifier configured with 64 

EEG channels. This uses active electrodes (ActiCap, Brain Products) which are provided in 

bundles of 32 electrodes. This makes it easy to apply 32 electrodes to the head of each 

participant. Critical to the success of this method is the Brain Products ground distributor, which 

allows ground electrodes to be placed on each individual’s head, and connected to a common 

input on the amplifier. Another critical component of the setup is the Brain Products StimTrak 

device. This device allows us to record the audio data as an auxiliary EEG channel, which 

ensures that the audio recording of the conversational events is synchronized to the EEG data. 

Below we describe in detail the setup, procedures, and analysis pipeline we have developed, and 



demonstrate its validity using data obtained from two people engaged in a conversation. We 

hope that the description of a novel hyperscanning setup that uses a single EEG amplifier and 

allows for the study of both neural oscillatory and ERP analyses will allow for EEG 

hyperscanning research to become a more common practice. 

 

 

 
 

Fig. 1. An image of two participants using the EEG hyperscanning setup 

 

 

 

 

 

 

 



Materials 

• 64-electrode silver-silver chloride coated active ActiCap active electrodes (Brain 

Products, Gilching, Germany), provided as two bundles of 32 electrodes each 

• 4 silver-silver chloride disc electrodes (for electrooculogram — EOG — monitoring) 

• Electrolyte gel compatible with the EEG system (e.g., Brain Products’ SuperVisc) 

• Exfoliating skin prep gel (e.g., Nuprep; Weaver and Company, Aurora, USA) 

• Double-sided circular medical adhesives for electrodes 

• Plastic electrode washers  

• Brain Products ActiCHamp 64 channel EEG amplifier (Brain Products) 

• StimTrak device (Brain Products) 

• ActiCap ground distributor and two ground electrodes (Brain Products) 

• 2 BIP2AUX adapters (Brain Products)  

• PyCorder recording software (Brain Products) 

• Computer running Windows operating system, for recording EEG 

• Computer for data analysis, with the following software installed:  

o Praat version 6.1.42 [6] 

o Python version 3.6 or higher 

o MNE-Python package and associated dependencies (see https://mne.tools/) [7] 

 

 

https://mne.tools/


 

 

Fig 2. A diagram of the EEG hyperscanning setup. This uses a single, 64-channel EEG amplifier which takes as 

input two separate bundles of 32 electrodes each. For hyperscanning, one bundle of 32 electrodes is placed on 

each participant’s head. Ground electrodes placed on the scalp of each participant are connected to a ground 

distributor device (Brain Products) that connects to the ground input on the amplifier. EOG is captured using a 

bipolar pair of electrodes placed around each participant’s eyes, which connect to AUX ports on the amplifier 

via Brain Products BIP2AUX devices. Audio is recorded from both participants using the microphone built into 

the StimTrak device (Brain Products), which is connected to the EEG amplifier. As a result, EEG from two 

participants, as well as audio during the study, are recorded synchronously through a single amplifier and 

recording computer, to a single data file.  

 

 



EEG Equipment Configuration 

 Figure 2 shows the configuration of EEG recording equipment. Details of the setup and 

procedure are below. 

EEG Recording Settings 

Brain Vision’s PyCorder software is used to record the EEG and audio data. PyCorder 

requires the user to set up a recording configuration prior to data collection. It is important to set 

up the configuration so that each recording channel is clearly labelled according to the 

participant that the channel is recorded from. Thus, we manually labelled channels 1–32, as well 

as the first bipolar EOG channel, with the prefix “P1_” and channels 33–64 as well as the second 

bipolar channel with the prefix “P2_”.  

While EEG data for cognitive ERP or oscillatory analyses typically do not need to be 

sampled at more than 250 Hz, speech needs to be sampled at a much higher rate in order to be 

intelligible. We therefore set the sampling rate to the maximum possible on our system, 10 000 

Hz. We found that the quality of the recorded audio was sufficient to identify each word that was 

spoken, and to identify its onset with sufficient precision. 

 

EEG Electrode application 

First, we measured the participants’ heads and determined their EEG cap size. We 

prepared the faces of the participants by applying an exfoliating skin prep gel (Nuprep) on the 

areas where electrodes would be placed, including the periorbital region (lateral to left eyebrow 

and below the left eye), the left and right masseter regions, and on either side of the larynx. From 

here on, the electrodes on the masseters and larynx will be referred to as EMG electrodes as we 



used them to monitor facial muscle activation. We used double-sided circle shaped medical 

adhesives to attach to the bipolar electrodes and the EMG electrodes washer.  

When putting the EEG cap on each participant, the chin strap was tightened to ensure it 

remained stable and snug fitting. After putting on the EEG cap, we attached a ground electrode 

to each cap and connected these to the ground distributor. The ground distributor was plugged 

into the ground connector on the EEG system. Then, the EMG electrodes were applied to the 

participants. Electrodes 1 and 2 from each 32-electrode bundle went on the face of one 

participant, and electrodes 17 and 18 from each bundle were placed on either side of the larynx 

(see Figure 3 for illustration of placement). EMG data was recorded from each electrode 

referenced the same as scalp electrodes, and then to bipolar measurements during postprocessing 

(see below). The remaining 28 electrodes of each bundle were attached to the electrode cap 

according to the recording montage depicted in Figure 3. Participant 1 was equipped with 

electrode bundle 1–32 (see Figure 4) and Participant 2 was equipped with electrode bundle 33–

64 (see Figure 4).  

After the electrodes are placed on the participant, electrolyte gel was placed in the gap 

between the electrode and scalp using a blunt-tipped syringe, and then we gently rubbed the gel 

under the electrode with the syringe tip to ensure that there was a good connection between the 

scalp and the electrode. Following the setup of the electrode array, the electrodes were plugged 

into the amplifier, which was in turn connected to the computer responsible for recording the 

data using PyCorder. In PyCorder, we loaded the recording montage. We performed an 

impedance check using PyCorder to verify that all electrodes had a low impedance level (less 

than 25 kOhm, following manufacturer’s guidance given the input impedance of the amplifier). 

We found that the impedance of the ground electrodes on both participants should be lowered as 



much as possible first, before checking and lowering impedances at other electrodes. This is 

because impedance is measured relative to the ground input on the amplifier. Since the two 

ground electrodes connect to the single ground input on the amplifier, the impedance of the 

ground electrodes on both heads affects impedance measurements at other electrodes on either 

head. If any electrodes had a high impedance, we rubbed the area under the electrode gently, and 

added small additional amounts of electrolyte gel as needed, until the impedance was below 25 

kOhm. 

 

Figure 3: The 28-electrode EEG electrode recording montage for a single participant, with positions based on the 

International 10-10 System. The system used is a 32-electrode system, but 4 electrodes are used as EMG electrodes 

(see Figure 4).  

 

Figure 4: Illustration of placement of the EOG and EMG electrodes. The two electrodes shown in purple by the eye 

are the EOG electrodes, which are recorded as a bipolar pair. The electrodes shown in red and white were positioned 

to monitor EMG activity associated with speaking. The electrodes on either side on the mouth, shown in red, were 

placed over masseters, and the electrodes shown in white were placed on either side of the larynx. 



Data Acquisition 

First, the StimTrak device was configured and then turned on. The Trigger Level setting 

should be set at 1 V and the Gain dial should be set to “Mic”, otherwise the audio recordings are 

not intelligible. The Signal Out port on the StimTrak should be connected to the AUX 1 port on 

the ActiChamp amplifier. When the StimTrak was connected to other auxiliary ports, it was not 

detected in PyCorder. We found that while the StimTrak has a low battery light, it often failed to 

appear in PyCorder, so we used freshly charged batteries in the StimTrak for every participant 

pair to ensure that it did not fail during recording. To check for audio recording, we viewed the 

auxiliary audio channel in PyCorder and ensured that the sampling frequency on display was set 

at 10 000 Hz. Then we spoke and clapped to confirm that the audio waveforms of these 

occurrences were displayed in PyCorder.  

Finally, we started recording the EEG data using PyCorder. Participants performed the 

experimental task, a 20-minute conversation. When the task was complete, we stopped the EEG 

recording and removed the electrodes and gel from participants. 

 

Data Processing  

The supplementary materials (a link has been provided in the supplementary materials 

section at the end of the paper) include a sample dataset of a participant pair engaged in 

conversation, a spreadsheet file of word onset timings, and two sample Python scripts detailing 

the processing steps using the MNE-Python package [7]. The scripts are meant to function as 

both tutorial and validation of the methods. In the first script (labelled Step_1), we describe how 

to import a raw EEG data file from a dyadic recording as described above, extract the audio 

recording and export it to an audio (WAV format) file, concatenate the raw data, remove the 



accessory channels so that only the EEG channels of interest remain, and decimate the data to 

500 Hz for ease of future data analysis (improving computational speed and reducing data 

storage demands). The second script (labelled Step_2) was used to perform data preprocessing 

and ERP segmentation once word onset timings were derived from the audio file. Please note 

that the original audio of the conversation cannot be provided due to ethical constraints, as the 

participants’ data must remain un-identifiable, so the audio channel has been removed from the 

sample dataset. A csv file has been provided with a transcript of the words and their onset times 

that were used as events alongside the dataset and the sample Python scripts. 

For our study, we identified the onsets of nouns that participants spoke during their 

conversation, by loading the audio file of the conversation into the Praat software package [6]. 

By listening to the recordings while viewing the waveforms of the audio, trained coders 

identified the onset timing of each word of interest (in our example data, each noun) and entered 

these in a spreadsheet. The template spreadsheet contained a row for each word of interest, 

including columns for the identity of the word, which participant it was spoken by, the onset 

timing of the word (relative to the start of the audio file, which was also the start of the EEG 

recording), and a column that allowed coders to note if the word should not be used in analysis, 

for example if it was misspoken, a repetition of previous utterance, or otherwise unintelligible.  

The spreadsheet was then imported into the second MNE-Python data processing script 

(labelled Step_2), and used to generate event codes. Because the audio file was extracted from 

the original EEG data recording, the timings identified in Praat are directly usable as timings for 

event code markers for ERP extraction. In MNE-Python the event codes can be stored in 3-

column array with the first column containing the timings of the events, the second column being 

zeros (unused), and the third being a numeric code identifying the type of event. For present 



purposes, in this column we simply coded trials with a 1 if they were heard by Participant 1 (i.e., 

spoken by participant 2) and a 2 if they were heard by Participant 2. 

 In addition to the post-hoc trigger code insertion process, the second MNE-Python script 

demonstrates our entire EEG preprocessing pipeline through to deriving ERPs for each word. 

The second script also demonstrates how we performed preprocessing on each individual 

recording. In general, these follow established procedures [2][3][8], and no unique preprocessing 

steps were required other than separating the dyadic recording into two individual data sets as 

described below.  

Bandpass filtering was performed on the continuous EEG data prior to separation into two 

individuals’ data sets. Two filtered copies of the data were produced for each participant: both 

used a lowpass cutoff of 20 Hz, while one used a highpass cutoff of 1.0 Hz (for input to ICA; see 

below) and the other a highpass cutoff of 0.1 Hz (to which the ICA corrections were applied, and 

which was used for subsequent analysis).  

The filtered, continuous EEG data were then divided into separate data sets for each 

individual, by removing the channels associated with the other participant, and re-referencing to 

the average of only the electrodes placed on the scalp of that participant (which removed a 

significant amount of noise associated with the shared ground during recording). Subsequent 

processing steps were applied to each participant’s data separately. The continuous data were 

segmented into ERP epochs each running from 200 ms prior to the onset of each word to 1000 

ms after. Each epoch was baseline-corrected by subtracting the mean of the 200 ms preceding 

event onset from the entire epoch, and also removing the linear trend. We found this latter step 

improved data quality by reducing low-frequency drift that remained after filtering. Epochs were 

then visually inspected, and we manually identified and removed any excessively noisy trials. 



We then decomposed the data using independent components analysis (ICA; using the fastica 

algorithm[9]), and identified and removed components deemed to be dominated by ocular or 

EMG artifacts[10]. Subsequent to ICA artifact correction, data for each trial were baseline 

corrected by subtracting the mean amplitude calculated from the 200 ms period preceding the 

onset of each word, and data from any scalp channels removed earlier (due to bad electrodes) 

was interpolated. 

 

Proof of Concept Demonstration  

In the dataset we have provided for demonstration, the goal was to identify the N400 

component that is typically elicited by open-class “content” words, such as nouns, in spoken and 

written language [11]. The N400 is characterized as a negative-going potential typically between 

300–500 ms after word onset, largest over the vertex of the head relative to an averaged or 

averaged mastoid reference. To demonstrate that our procedure is able to elicit and identify 

ERPs, we examined the data from individual participants to determine whether an effect 

consistent with this established description of the N400 was present. In Figure 5, we display 

plots of the N400 ERP waveform averaged over all trials heard by that participant in the dyad, as 

well as topographic maps averaged over 300–500 ms. The observed data is consistent with the 

predicted N400 as there is a negative potential around the central parietal electrodes in the 

expected time range. We only show the data from participant 1 as there was considerable noise 

in participant 2’s data, however the data from both participants, including visualizations of the 

ERPs, are included in the supplementary material.  

 

 



 

Figure 5: ERP data from one participant in the demonstration data set, averaged across all nouns heard by that 

participant. The left panel shows a scalp topography map of activity averaged over 300–500 ms. The right panel 

shows an ERP waveform plot of the average across a group of central-parietal electrodes (shown in the top right 

inset), time-locked to word onset (time 0). Both display a negative potential over the midline central-parietal 

region around 400 ms, consistent with past published descriptions of the N400 ERP. 

 

The results we present in this paper are from an initial pilot experiment that led to the design 

an execution of two experiments, each involving 40 participants. In those experiments we used a 

scripted conversation, rather than free conversation, to provide more consistency in the number 

and identity of content words for which ERPs were derived. Preliminary results of these have 

been reported  [12][13], and a manuscript is currently in preparation, but in short these 

experiments yielded robust N400 effects consistent with our demonstration here, and past single-

participant research. Furthermore, Fjaellingsdal and colleagues recently [14] demonstrated that 

ERP responses (including the N400 ERP) occurred in participants equipped with a non-

hyperscanning EEG setup who engaged in a spontaneous word-by-word sentence construction 

task with a non-EEG equipped confederate. A similar study could easily be conducted using the 

methods outlined in this paper where both people involved undergo EEG and are participants to 

examine if these findings hold out in slightly less controlled circumstances. Another single 

participant study examined the differences between how adults and infants processed the same 



mother-infant interaction [15]. There were ERP differences in processing contingent and non-

contingent speech when listening to a 20-minute recording of a naturalistic free conversational 

interaction of a mother and her baby between the infants and adults. This indicates that there may 

be differences in cognitive processing across the life span when viewing the same interaction as 

infants displayed different ERP responses in comparison to the adult control group. Using the 

methodology outlined here, with only minor adaptations, would allow the examination and 

recording of infants and parent pairings while they themselves are engaged in conversational 

interactions, rather than being limited to examining only the outside observer role responses to 

these interactions.  

 
Conclusion 

We developed methods and procedures to record EEG and audio simultaneously from a 

pair of participants using a single 64-electrode system, that allows us to detect ERPs that 

occurred in response to words produced during a naturalistic conversation. This method could 

potentially be extended to recording from up to four people at once (using 16 electrodes each), 

and to a larger number of participants and/or number of electrodes per participant using an 

amplifier with more channels. The ability to perform hyperscanning using a single EEG 

amplifier provides a cost-effective approach that may make this technique available to a larger 

number of laboratories than previously possible. As well, our demonstration of how to record 

audio time-locked to the EEG data enables a range of ERP studies — such as conversation 

— that would otherwise be challenging to conduct in a hyperscanning study.  

 

 

 



Supplementary material information:  

The coding scripts and dataset mentioned in this paper are provided at the following link through 

the Dalhousie Libraries’ repository:  

We encourage people to follow along the data processing section using the scripts and data.  
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