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Abstract

Transition-metal dichalcogenides (TMDCs) are a family of layered semiconductors

with great potential to impact the upcoming field of two-dimensional (2D) electronics.

In particular, MoS2 is a TMDC with a desirable band gap for the construction of

transistors, solar cells, and biochemical sensors. Despite immense promise, use of

TMDCs in electronics applications is hindered by the difficulties in forming effective

metal contacts with low resistance, as required in any practical device. Although to

varying degrees, transition metals spanning the entire d-block of the periodic table

fail to form proper ohmic contact with MoS2.

In this work, we propose insertion of a two-dimensional electride [Ca2N]
+(e−),

an electron rich material, at a metal–TMDC interface to establish proper electrical

contact. As a proof-of-concept, we study a Au–Ca2N–MoS2 heterostructure and

compare it to a Au–MoS2 heterostructure within a density-functional theory framework

using the exchange-hole dipole moment dispersion model. We choose Au since it is

a common metal and its interface with MoS2 leads to a van der Waals gap that is

known to exhibit strong Fermi-level pinning, as well as forming high Schottky and

tunneling barriers.

Calculations predict nearly complete charge transfer from the electride surface

states, resulting in a cationic [Ca2N]
+ monolayer at the interface and metalization of

the negatively doped MoS2. Thus, formation of the Au–Ca2N–MoS2 heterostructure

eliminates both the tunneling and Schottky barriers, indicating that inserting a single

2D electride layer at metal–TMDC interfaces is a viable strategy to achieve proper

ohmic contacts in device manufacture.
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Chapter 1

Introduction

The advent of solid-state transistors has launched mankind into the digital age.

It is almost impossible to imagine modern life without the seemingly boundless

pervasiveness of modern technology. Since its inception almost seven decades ago,

the transistor has been continuously shrinking. This perpetual feat of innovation

has allowed manufactures to produce more densely packed microchips, allowing our

computing power to increase exponentially. Modern transistors are based on traditio-

nal silicon-based technology. Despite its tremendous success, this method of assembl-

ing transistors is reaching its limits as manufacturers cannot physically make them any

smaller. This heralds bad news for a world whose demand for computational power

is rampantly growing. Beginning with the discovery of graphene [1], the 21st century

has seen the arrival of two-dimensional (2D) materials. These novel materials exhibit

exotic electronic properties, such as superconductivity and the quantum hall effect.

Of these exciting new 2D materials, transition metal dichalcogenides (TMDCs) have

emerged as an extremely promising alternative to silicon for use in future transistor

technology [2]. However, TMDC-based technology is not without its own challenges.

Molybdenum disulfide (MoS2) is a layered TMDC, sometimes referred to as the

semiconducting cousin of graphene. In its bulk form, MoS2 is an indirect-gap semi-

conductor; however, it transforms into a direct-gap semiconductor when exfoliated to

form a single layer [3]. Its bandgap (1.8 eV) [3] makes MoS2 a strong candidate for use

in many electronic and optical applications and devices. It has shown promise in next-

generation chemical [4] and biological [5] sensing, transistors [2], and solar cells [6].

Along with other van der Waals (vdW) materials, MoS2 and graphene are ushering

in a new age of ‘designer heterostructures’ constructed by thoughtfully layering these

2D materials [7].

Unfortunately, the promise of MoS2 in electronics applications is hampered by

the high contact resistance at metal-MoS2 interfaces, reported to be three orders
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of magnitude greater than the predicted minimum contact resistance [8]. Unlike

the surface of Si and other bulk semiconductors, layered MoS2 does not have any

dangling bonds in the out-of-plane direction. This makes it challenging for MoS2

to form proper top contacts with common metals [8, 9, 10, 11, 12]. Instead, many

metal-MoS2 interfaces are held together by weak vdW interactions. This adds an

extra potential barrier through which charge carriers must tunnel to cross into the

MoS2 layer. The addition of this tunneling barrier to the already present Schottky

barrier at the interface serves to increase the contact resistance [9, 11].

Device performance greatly depends on the particular metal chosen to construct

the interface [13, 14]. Although some metals, such as Au, tend to form poor, vdW

contacts with MoS2, experimental and theoretical work has shown that other metals

interface more favourably [10, 11, 13]. Despite not having low work functions (as

required by the Schottky-Mott rule), Ti and Mo form the best contacts [11, 15, 16]

with MoS2 due to strong orbital overlap with the surface sulfur atoms [11]. Sc has

also been shown to interface well with MoS2 [13], but no known theoretical work has

been conducted to explain the underlying mechanism behind this favourable bonding.

However, the contacts formed at these metal-MoS2 interfaces are still not truly ohmic

due to the presence of a Schottky barrier and evidence of Fermi-level pinning [11, 13,

15]. The Fermi-level pinning results from a combination of modification of the metal

work function due to an interface-induced dipole and the rise of new gap states with

Mo d-orbital character owing to weakened intralayer Mo–S bonding [17].

To develop an improved contact, Farmanbar et al. suggested placing a single layer

of hexagonal boron nitride (h-BN), an insulator, between MoS2 and cobalt based on

density-functional theory (DFT) modelling [18]. The presence of the intermediate

h-BN layer destroys the Mo gap states, thus eliminating any Fermi-level pinning

and the Schottky barrier at the Co–MoS2 interface [18]. These DFT predictions

were later confirmed experimentally by Cui et al. [19] who successfully engineered a

low-resistance Co–h-BN–MoS2 interface. In this work, we alternatively propose the

insertion of a layered electride, Ca2N, at a metal-MoS2 interface. We anticipate that

the electron-rich nature of the electride will prove beneficial in establishing an ohmic

contact and easing charge transport.
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Electrides [20] are a class of ionic solids in which the anion is an excess electron, as

opposed to a negatively charged ion. The excess electrons, resulting from spontaneous

ionization of one or more metal atoms per formula unit, are confined by the surround-

ing cationic lattice to varying degrees (dimensions). Early syntheses produced organic

electrides based on complexes of alkali-metal atoms with electron-rich ligands, such

as crown ethers and cryptands, that are characterized by zero-dimensional or one-

dimensional electron confinement [21, 22, 23, 24, 25, 26]. However, the majority of

the organic electrides are not stable at room temperature [26]. Matsuishi et al. were

the first to successfully synthesize a highly stable zero-dimensional inorganic electride,

[Ca24Al28O64]
4+(4e−) [27]. Their success has since encouraged the search for other

inorganic electrides that lead to the discovery of one- and two-dimensional electrides

[28, 29, 30]. Ca2N was the first 2D layered electride to be identified [30]. It consists

of positively charged [Ca2N]
+ layers, with the excess electrons confined between them

in 2D interstitial regions.

Figure 1.1: Ca2N structure showing both conventional (solid) and primitive (dashed)
cells. Excess electron states (blue) are confined between [Ca2N]

+ layers [30]. Included
with permission from the publisher (Appendix A).
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Ca2N can be synthesized by a variety of methods [31]. The ionic nature of Ca2N,

with 2D electron localization between the cationic layers, was suggested as early as

1968 when its crystal structure was first determined [32] and early DFT calculations

also suggested this unusual electronic structure [33]. However, it was not until recently

that, through a combination of computational and experimental work, Lee et al.

confirmed its [Ca2N]
+(e−) electride stoichiometry [30]. They also demonstrated a high

in-plane electron mobility (520 cm2V−1s−1) and carrier concentration (1.4×1022cm−3),

long mean free path (0.12 µm), and low anisotropic work function (≈2.6 eV in the

(100) plane and ≈3.5 eV in the (001) plane).

Ca2N’s favourable transport properties are attributed to the delocalized nature

of the electrons confined to the 2D interstitial regions. Angle-resolved photoelectron

spectroscopy measurements reveal a cylindrical Fermi surface about the kz axis in the

Brillouin zone, supporting the nearly free nature of the anionic electrons in the xy

plane [34], in agreement with previous DFT calculations [30]. The novel properties

of Ca2N have inspired systematic searches for other 2D electrides [35, 36, 37, 38, 39].

Ca2N has potential applications for use in materials engineering [40, 41], catalysis

[42, 43], batteries [44], and electronics [30].

As with other layered materials, there is interest in exfoliating Ca2N and studying

the properties of its monolayer [33, 45, 46, 47]. In the bulk, the excess electrons occupy

delocalized interstitial states between the ionic slabs; however, a monolayer sample

possesses surface states of similar free-electron character [45, 46, 48]. The differing

stabilities of the interstitial versus surface states have the potential to alter the

properties of monolayer (or few-layer) Ca2N relative to the bulk. Zhao et al. performed

calculations demonstrating the mechanical and dynamical stability of monolayer Ca2N

and estimated an increased electron mobility due to reduced phonon scattering [45,

49]. Monolayer Ca2N was since successfully isolated via liquid exfoliation [47]. However,

Ca2N is highly reactive in ambient air, rapidly oxidizing in the presence of O2 and

reacting violently with water to produce ammonia [31]. Encapsulation schemes involv-

ing graphene or graphane have thus been proposed to shelter monolayer Ca2N from

its environment [45, 50].
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Previous theoretical [51] and experimental [40] studies have investigated the inter-

face between monolayer Ca2N and MoTe2, a layered TMDC with the same structure

as MoS2. Due to its low work function, Ca2N readily donates electrons to MoTe2,

heavily doping it enough to induce a phase transition from a semiconductor to a metal.

This is accompanied by a geometric distortion of the MoTe2 layer, from a hexagonal

to a monoclinic structure, with alternating chalcogen atoms displaced towards and

away from the Ca atoms of the electride [40, 51]. Of central importance to this work,

Dhakal et al. have taken Raman spectroscopy measurements that show significant

charge transfer between Ca2N and bulk MoS2 [52]. The charge transfer was also

accompanied by similar structural changes to the TMDC. These results suggest the

promise of introducing a 2D electride at metal-TMDC interfaces to reduce contact

resistance and facilitate charge injection into the TMDC.

Here, we use DFT to investigate the bonding of Ca2N to MoS2 and gauge the

efficacy of its potential use as an interfacial material between MoS2 and a metal

surface to establish an ohmic contact. Examination of the electrostatic potential and

charge transfer characteristics across the metal-Ca2N-TMDC heterostructure shows

favourable features for low contact resistance and high electron transport. Chapter

2 outlines the theoretical background behind the calculations used in this work.

Chapter 3 contains the preliminary parameter convergence tests. Chapter 4 discusses

the Ca2N-MoS2 interface and presents a proof-of-concept initial study of the Au-

Ca2N-MoS2 heterostructure. Finally, Chapter 5 concludes this thesis with an eye for

potential future work.



Chapter 2

Theory and Methods

In this chapter, we present a broad overview of the quantum mechanical theories

and approximations that underlie the computational methods used to obtain the

results of following chapters. This chapter also covers some of the relevant details

pertaining to the computational methods used in this work. All density-functional

theory calculations were performed with the Quantum ESPRESSO program [53].

2.1 Electronic States in Periodic Solids

The materials studied in this work are examples of crystalline solids. These structures

exhibit a discrete periodicity generated by repeating a unit cell over all space. Given

the position of the atoms in a unit cell and the lattice vectors {ai} containing it, every

other atomic position can be determined by a translation R = n1a1 + n2a2 + n3a3

where ni ∈ Z. A periodic solid is therefore completely specified by its unit cell and a

set of translations {R}. By enforcing periodic boundary conditions, the periodicity

of the system can be exploited to refine the problem of determining the properties of

infinitely-sized materials to determining such properties within only a single unit cell.

The many-body Hamiltonian governing the electrons in a unit cell is given by

H =
N∑
i

− ℏ2

2m
∇2

i +
1

2

N∑
i ̸=j

e2

4πϵ0 |ri − rj|
+ Vext(r), (2.1)

where the first and second terms describe the electron kinetic energy and the electron-

electron interaction, respectively. The last term is the external potential, which

describes the interaction between the electrons and the ions in the unit cell. Therefore,

Vext(r) = Vext(r+R) contains all the symmetries of the solid and uniquely specifies

the solution to Equation 2.1. For the rest of the sections, all quantities will be

expressed in atomic units, where ℏ = m = e = 4πϵ0 = 1.

In 1929, Bloch [54] showed that, in the presence of a periodic external potential,

Vext(r), the eigenfunction solutions to the time-independent Schrodinger equation

6
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must be of the form

ψα
k (r) = eik·ruαk (r), (2.2)

where k is a momentum wavevector eigenvalue and α refers to the band index. An

electron’s state is therefore the product of a planewave and a function uαk (r) that

retains the periodicity of the crystal structure. Due to the large number of electrons

in a solid, the states are infinitesimally separated in k-space. More specifically, the

separation between states in k-space is inversely proportional to the sample volume.

Therefore, in the limit of an infinite volume, the energy spectrum – also known as a

band structure – is continuous in k but consists of discrete bands.

This result indicates that it may be convenient to describe the unit cell in a

Hilbert space spanned by momentum eigenstates of a free electron, i.e. planewaves.

The change of basis from position to momentum is achieved by a Fourier transform, F ,

with the new space known as reciprocal space, or simply k-space. Since the external

potential has the periodicity of the lattice, it can be written as a Fourier series over

the reciprocal lattice vectors, G,

Vext(r) =
∑
G

Vext(G)eiG·r (2.3)

The reciprocal lattice vectors {G} are expressed in terms of the reciprocal basis

vectors {bi} that are related to the real space basis vectors {ai} by

b1 =
2πa2 × a3

a1 · (a2 × a3)
, b2 =

2πa3 × a1

a1 · (a2 × a3)
, b3 =

2πa1 × a2

a1 · (a2 × a3)
. (2.4)

The unit cell in reciprocal space is known as the Brillouin Zone (BZ), named after

french physicist Léon Brillouin [55]. The calculation of most physical quantities

involves the summation over states in the BZ:∑
k

→ Ω

(2π)3

∫
dk. (2.5)

In the bulk limit, the sum is converted to an integral, with Ω being the volume

of the solid in real space. This is due to the spacing between momentum states,

dk = (2π)3/Ω, becoming infinitesimally small as the volume goes to infinity.
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2.2 Density-Functional Theory

2.2.1 Kohn-Sham Theory

Unfortunately, the many-body Schrödinger equation presented in the previous section

is hopelessly impossible to solve in its current representation. Even though it need

only be solved within a single unit cell, there exists no practically tractable method

of solving the interacting-electron eigenvalue problem exactly.

In 1964, Hohenberg and Kohn shed some light on this issue. In their seminal

work [56], they introduced two theorems that laid the foundation for the field of

density-functional theory (DFT) and its application. The first stated that the external

potential, Vext(r), experienced by a system of electrons, is uniquely determined by

the ground state electron density, ρ0(r). Since the Hamiltonian is uniquely defined by

the external potential, this implies that all quantities of the system are also uniquely

determined by ρ0(r). This immense triumph greatly reduces the complexity of solving

an N-body Schrödinger equation from 3N-dimensions (where N is on the order of

Avogadro’s number) to only 3-dimensions. The second Hohenberg-Kohn theorem

states that the energy functional, E[ρ], of the system is minimized at the ground state

electron density, ρ0(r). This means that the ground state energy can be obtained via

a variational optimization over the electron density.

Although quite powerful, the Hohenberg-Kohn theorems are only existence proofs,

i.e. they guarantee the existence of a ground state energy, EGS[ρ0], but do not prescribe

a method of attaining it. Given the form of the energy functional,

E[ρ] = T [ρ] +
1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ +

∫
ρ(r)Vext(r)dr+ EXC[ρ], (2.6)

where the terms are the kinetic energy, classical electron-electron interaction, electron-

ion interaction, and exchange-correlation energy, respectively, the obstacle of determin-

ing the density and exact form of T [ρ] and EXC[ρ] remains.

Only a year after the publication of the Hohenberg-Kohn theorems, Kohn and

Sham presented a recipe for determining ρ(r) [57]. Their formulation, known as

Kohn-Sham (KS) theory, is the most common implementation of DFT. KS theory

assumes a system of non-interacting electrons with a density

ρ(r) =
N∑
i

ψ∗
i (r)ψi(r), (2.7)
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where the single-particle wavefunctions are orthogonal, ⟨ψi|ψj⟩ = δij. Within this

basis, the total kinetic energy of the particles is

TKS =
N∑
i

−1

2
⟨ψi| ∇2 |ψi⟩ . (2.8)

Note that TKS only approximates T [ρ]. The discrepancy between TKS and T [ρ] is

absorbed into EXC[ρ] such that

EXC[ρ] = T [ρ]− TKS[ρ] + EX[ρ] + EC[ρ]. (2.9)

Using the fact that the total energy, E[ρ], is stationary with respect to {ψi}, the
ground state energy may be found by solving the set of equations

δE[ρ]

δψi

− εiψi = 0, (2.10)

where the second term is a Lagrange multiplier that preserve the states’ orthonormality.

Taking the appropriate functional derivatives of Equation 2.6 leads to the Kohn-Sham

equations, (
−1

2
∇2 +

∫
ρ(r)

|r− r′|
dr+ Vext(r) +

δEXC[ρ]

δρ

)
ψi = εiψi. (2.11)

These are a set of N single-particle Hamiltonians describing the motion of an independent

electron in the presence of some effective potential,

Veff(r) =

∫
ρ(r)

|r− r′|
dr+ Vext(r) +

δEXC[ρ]

δρ
, (2.12)

with the last term containing all the many-body quantum-mechanical effects. The KS

equations can then be solved self-consistently by picking a starting point for the states

{ψi}, obtaining the corresponding electron density, solving the KS equations for an

updated set of states {ψ′
i}, and then computing a new density and comparing with

the previous one until convergence of the density and resulting energy is achieved.

If EXC[ρ] were known, then the KS equations would lead to an exact solution of the

Schrödinger equation. However, the exact form of exchange-correlation functional is

not known and must be approximated. The two most popular types of exchange-

correlation functionals in solid state physics are the local density approximation

(LDA) and the generalized gradient approximation (GGA). The LDA approximates
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the exchange-correlation energy of the system with that of a uniform electron gas,

ELDA
XC [ρ], taking into consideration the local electron density only [57]. Although not a

particularly physical representation of chemical systems, it tends to produce accurate

results in a range of solids with slowly varying electron densities (i.e. bulk metals).

However, this coarse approximation tends to over-bind systems, with its successes

often attributed to a cancellation of errors rather than properly incorporated physics.

GGAs improve upon this by taking into consideration variations in the electron

density with the addition of an electron gradient term, EGGA
XC [ρ,∇ρ][58]. All DFT

calculations in this work used the GGA exchange-correlation functional of Perdew,

Burke, and Ernzerhof (PBE) [59].

2.2.2 The Exchange-Hole Dipole Moment (XDM) Dispersion Model

Dispersion interactions are not currently incorporated in any of the popular base

functionals and must be accounted for separately. These interactions contain essential

physics required to accurately model layered materials. A dispersion correction is

often added to the energy at the end of a self-consistent calculation:

Etot = EDFT + Edisp. (2.13)

In this work, dispersion interactions are treated with the exchange-hole dipole moment

(XDM) model [60, 61, 62], which has been shown to be highly accurate for TMDCs and

other layered materials [63]. XDM’s formulation is based on the instantaneous dipole

moment induced between an electron and its exchange-hole counterpart as the source

of dispersion interactions. Although not based on a first-principles approach, its

derivation is supported by strong physical motivation, as evidenced by its remarkable

performance.

In a periodic, solid-state system, the dispersion energy correction is given by

Edisp = −1

2

∑
n=6,8,10

∑
L

∑
i ̸=j

Cn,ijfn (Rij,L)

Rn
ij,L

, (2.14)

where {Cn,ij} are the dispersion coefficients, fn is the Becke-Johnson damping function,

andRij is the interatomic distance between the ith and jth atom. The sum runs over all

atoms in the unit cell and includes interactions with neighbouring atoms in adjacent

cells within a discrete cut-off radius, and L is some multiple of lattice unit vectors.
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The dispersion coefficients are given by

C6,ij = αiαj
⟨M2

1 ⟩i⟨M2
1 ⟩j

αj⟨M2
1 ⟩i + αi⟨M2

1 ⟩j
, (2.15)

C8,ij =
3

2
αiαj

⟨M2
1 ⟩i⟨M2

2 ⟩j + ⟨M2
2 ⟩i⟨M2

1 ⟩j
αj⟨M2

1 ⟩i + αi⟨M2
1 ⟩j

, (2.16)

C10,ij = αiαj

2⟨M2
1 ⟩i⟨M2

3 ⟩j + 2⟨M2
3 ⟩i⟨M2

1 ⟩j + 21
5
⟨M2

2 ⟩i⟨M2
2 ⟩j

αj⟨M2
1 ⟩i + αi⟨M2

1 ⟩j
, (2.17)

where the multipole-moment integrals, ⟨M2
l ⟩, are calculated from the electron density

and the atomic polarizabilities, αi, are environment dependent. This is why XDM is

known as a minimally-empirical dispersion model. Almost all quantities are dependent

on the local electron density, i.e. they are non-generic and system dependent. This

flexibility lends itself well to a wide variety of systems.

The only fitted model parameters are (a1, a2) in the damping function,

fn (Rij) =
Rn

ij

Rn
ij + (a1Rc,ij + a2)

2 , (2.18)

where Rc,ij is the critical distance between two atoms i and j, and is defined to be

the distance at which the set of dispersion terms,
{
Cn,ij/R

n
ij

}
, become equal. The

fitting parameters (a1, a2) are dependent on the functional and must be defined at

the beginning of a DFT calculation.

2.3 Pseudopotentials and the Projector Augmented-Wave Method

As discussed previously, planewaves are a well-suited basis to describe electrons in

periodic solids. However, near the core, valence states tend to oscillate rapidly as a

consequence of requiring orthogonality with the core states. An accurate description

of these states would require a large set of planewaves. Fortunately, core electrons

do not directly contribute to the interactions between atoms in molecules or solids.

Their main effect is to screen the Coulombic potential of the nucleus, i.e. they can

be effectively removed from the Hamiltonian without altering the chemistry of the

system. This reduces the eigenvalue problem to only solving for valence states,

where the effect of the core electrons can be incorporated through the use of a
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pseudopotential (PP) [64] that replaces Vext. Modifying the Hamiltonian in such a way

results in a transformation of the original KS eigenvalue problem. The new valence

eigenstates, {ψPP
i }, are not the same as the original KS states, {ψKS

i }. However, the
pseudopotential is constructed such that the valence electron states are the same past

some cut-off distance, RC, away from the nucleus, conserving the chemical properties

of the atom.

One approach to PP calculations is the projector augmented-wave (PAW) method

[65], which segments the wavefunction into two pieces. The outer segment, r > RC, is

described by planewaves, while the inner augmented segment, r < RC, is constructed

from smooth partial waves. The central advantage of the PAW method is that it is

not strictly an approximation. Instead, it is a reformulation of the KS problem via

a linear transformation, T , that preserves the information in the original KS states

{ψKS
i }. The KS states are then related to the pseudo-wavefunction by

|ψKS⟩ = T |ψPP⟩ . (2.19)

Since ψPP must match ψKS outside the augmented region, the transformation operator

can be written as

T = I+
∑
j

T̂j, (2.20)

where I is the identity operator and T̂j is a an atom-centred operator that is only non-

zero within a spherical volume, Ωj, of radius RC,j surrounding the j
th nucleus. Within

the augmented region, the pseudo-wavefunctions are constructed from a complete set

of partial waves, such as Bessel functions, ψPP(r < RC) =
∑
ci |ϕPP

i ⟩. This basis of

partial waves is then related to the basis used to describe the core section (within Ωj)

of the KS states via the same transformation, |ϕKS⟩ = T |ϕPP⟩.
The states ϕKS are usually defined to be the solutions to the radial KS Hamiltonian

for the case of an isolated atom. Thus, within Ωj,

|ψKS⟩ = T |ψPP⟩ = T
∑
i

ci |ϕPP
i ⟩ =

∑
i

ci |ϕKS
i ⟩ , (2.21)

and so |ψKS⟩ may be written as

|ψKS⟩ = |ψPP⟩ −
∑
i

ci |ϕPP
i ⟩+

∑
i

ci |ϕKS
i ⟩ . (2.22)
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The coefficients, ci, are the same in both sums and are given by ⟨pi|ψPP⟩, where ⟨pi|
are known as projector functions. The projector functions are orthogonal to |ϕPP⟩,
⟨pi|ϕPP

j ⟩ = δij, and can, in general, be constructed from an arbitrary set of linearly

independent functions. The linear operator mapping between |ψKS⟩ and |ψPP⟩ can

thus be expressed as

T = I+
∑
i,j

(
|ϕKS

ij ⟩ − |ϕPP
ij ⟩

)
⟨pij| , (2.23)

where the sum runs over all orbitals of all atoms in the units cells.

The PAW method is computationally efficient and has the added advantage of

retaining the core wavefunctions, which is an important feature for computing propert-

ies that depend on the core electrons. The PAW method used in this work is based

on the Kresse-Joubert implementation [66].

The above formalism assumes that the augmentation spheres, Ωj, do not overlap.

However, this assumption must be enforced during calculations and failing to do so

leads inaccurate energies due to unwanted spurious interactions between the core

densities in the overlapped spheres [67]. All PPs used in this work were taken from

the Quantum ESPRESSO library [68]. Table 2.1 shows the cut-off radii of all the

PPs used. No bonds in any of the systems considered were shorter than the sum of

any cut-off radii of the corresponding atoms.

Table 2.1: Pseudopotentials and cut-off radii, RC in Å, for s, p and d orbitals.

Element Pseudopotential File ψs ψp ψd

Ca Ca.pbe-spn-kjpaw psl.1.0.0.UPF 0.64 0.74 n/a
N N.pbe-n-kjpaw psl.1.0.0.UPF 0.53 0.48 n/a
Mo Mo.pbe-spn-kjpaw psl.1.0.0.UPF 0.58 0.53 0.69
S S.pbe-n-kjpaw psl.1.0.0.UPF 0.79 0.79 n/a
Au Au.pbe-n-kjpaw psl.1.0.0.UPF 1.06 1.22 0.53
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2.4 K-point Sampling and Smearing

Since most physical quantities require integrating over all electron states in the BZ,

it is crucial to perform accurate and well-converged integrations over k-space. The

reliability of our numerical calculations is highly dependent on the coarseness of k-

space discretization. Given any conventional unit cell, its corresponding BZ inherently

possesses redundancies that can be eliminated through the exploitation of the cell’s

symmetries. Taking advantage of this reduces the volume in k-space over which one

must integrate, and thus reduces the computational time. The abridged section of

the BZ is known as the irreducible Brillouin zone (IBZ), over which all integrations

can be evaluated without loss of information. In this work we use the commonly

implemented Monkhorst-Pack discretization scheme [69], as it provides a sufficient

and efficient k-point sampling of the IBZ.

When dealing with metals, one must take care when performing integrations over

the occupied k-space as discontinuities arise from partially filled bands. Since DFT

calculations are performed at absolute zero, the Fermi level (FL) dictates a hard

cut-off for state occupations. This is not a problem for the case of semiconductors

and insulators, as all their bands are occupied below the FL. However, the sharp

discontinuities that originate from metal bands crossing the FL can cause problems

with numerical convergence. In order to resolve this, the discontinuities are often

replaced by functions that decay to zero smoothly. In this work, we use a Gaussian

smearing that replaces the discontinuity with a Gaussian function of a user-defined

width, given in units of energy.

2.5 State Projection

When bringing two materials together, strong interactions can drastically affect the

electronic band structure. States can disappear or undergo significant change, with

the possibility of being replaced by new states. Although states near the FL are

the most vulnerable, states further away in energy can also be modified due to

structural changes undergone by the host material during the formation of an inter-

face. Simply plotting the band structure of a heterostructure can give some insight to

these changes, but often excludes much of the finer detail. More specific features can
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be extracted by studying how states are shared between two materials. This requires

an appropriate state partitioning scheme. Unfortunately, the delocalized nature of

the planewave basis does not lend itself well to the problem. In order to circumvent

this issue, we project the individual states, |ψα(k)⟩, onto the set of localized atomic

orbital wavefunctions taken from the PP file using the projwfc.x code implemented in

Quantum ESPRESSO. This projection allows for the convenient separation of each

state, |ψα(k)⟩, with momentum k in band α, into individual atomic and orbital

components. The contributions can then be simply read out and calculated by

summing the coefficients of the wavefunction in the projected basis. The results of

such projections are sensitive to the choice of initial and final bases and must not be

used to infer quantitative conclusions. However, they still offer important qualitative

insight into the evolution of electronic states due to the formation of an interface.

In this work, the method of Sanchez-Portal [70] was used to evaluate the quality of

the projection. Given the planewave eigenstates of the KS Hamiltonian, the amount of

“spilled” information that is lost when projecting onto the space of localized orbitals

can be measured through the spilling parameter, S, which is a number between 0

and 1, with S = 0 indicating a perfect lossless projection. Table 2.2 shows the

spilling parameters for the state projections in all heterostructure systems. All spilling

parameters are close to 0 and indicate that the projections well represent the initial

planewave states. S is largest for systems containing Ca2N with a side adjacent to

a vacuum. This is to be expected since the un-interfaced portion of Ca2N contains

nearly free-electron states that are difficult to characterize in terms of a localized

basis set.

Table 2.2: Spilling parameter for state projections in heterostructures. See chapter 4
for calculation details.

Heterostructure S (×10−2)
Monlayer Ca2N–MoS2 1.4
Bilayer Ca2N–MoS2 1.3
Trilayer Ca2N–MoS2 1.4

Quadlayer Ca2N–MoS2 1.5
Au–MoS2 0.5

Au–Ca2N–MoS2 0.7
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2.6 Bader Charge Transfer

An essential part of the work presented here focuses on determining the transfer of

charge from one material to another. This requires a reliable method of assigning

charge to individual nuclei and computing any changes that arise after the formation

of an interface. Ascribing peripheral charges within a molecule or solid to a particular

atom is a non-trivial matter, as there is no fundamental rule to follow. However,

several methods have been proposed to tackle this issue [71, 72, 73].

Here we use the method developed by Bader in his quantum theory of atoms in

molecules [71]. Bader’s argument is topological and relies upon the gradient of the

charge density, ∇ρ(r), to define atomic structure. For any molecular or solid-state

system, the charge density exhibits local maxima at the positions of the nuclei. In

other words, the gradient field vanishes at these critical points, ∇ρ (Rj) = 0, and is

concave about these points, ∇2ρ(r) < 0. This convenient fact allows one to define

a unique path along ∇ρ(r) from any point ri that terminates at a single nuclear

position, Rj, allowing the association of the charge density, ρ(ri), with a particular

nucleus. This method leads to the partitioning of charges into non-intersecting basins,

centred at atomic nuclei, that are separated by a surface of zero flux,

∇ρ · n̂ = 0, (2.24)

where n̂ is the normal to the surface of the basin.

In practice, ρ(r) is discretized on a spatial grid over which all numerical integrations

are performed. For this, we use the algorithm developed by Yu and Trinkle [74]. Their

method has been shown to be extremely efficient and accurate when partitioning

Bader charges into basins. The main feature of this approach deals with the partitioning

that occurs at the zero-flux boundaries on the finite grid. The Yu-Trinkle algorithm

allows for the assignment of fractional weights to each descretized volume of charge

density. Near a nucleus, this approach is not unique as the weight is unity for that

basin; however, allowing fractional assignment at the boundary of different basins

turns out to be extremely beneficial. Other algorithms that use binary assignment

require finer spatial grids and are thus more expensive. The Yu-Trinkle algorithm

not only allows for coarser grids and less computational time, but also out-performs

these binary weight algorithms with the same number of grid points.
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Finally, the quantity of charge transfer may be defined at each atomic site as the

difference in Bader charge when the materials are interfaced together versus when

they are separated.



Chapter 3

Preliminary Testing & Calculations

This chapter describes basic preliminary tests conducted to determine the parameters

used in the proceeding calculations to guarantee well-converged numeric results.

Additionally, due to the choice of dispersion model, optimized lattice parameters

had to be determined by manually identifying the minima of potential energy curves.

Results are shown for Ca2N, MoS2, and Au.

3.1 Parameter Convergence Testing

3.1.1 Planewave Energy Cutoff for the Wavefunction

(a) (b)

(c)

Figure 3.1: Convergence tests for the ecutwfc parameter for a) bulk Ca2N (hexagonal
cell), b) layered Ca2N, and c) monolayer MoS2 structures, relative to the minimum-
energy point on each graph. The red boxes indicate the chosen values – 80 Ry for
bulk Ca2N and 120 Ry for the layered materials.

18
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The first parameter to be converged was the ecutwfc, which determines the size of

the planewave basis set for the wavefunction. Fig. 3.1 shows an ecutwfc convergence

test performed for bulk Ca2N, layered Ca2N, and monolayer MoS2. A convergence

threshold of a few meV per atom was sought. As shown, layered materials require a

larger ecutwfc due to the presence of a vacuum layer, which requires that the electronic

density quickly decay to zero away from the atomic layer. With the intention of

eventually joining the two materials in a single cell to form a heterostructure, the same

ecutwfc of 120 Ry was chosen for both Ca2N and MoS2. Although an ecutwfc of 120 Ry

is not as numerically converged in the case of layered Ca2N as in monolayer MoS2, our

tests indicate that this choice does not significantly impact the results. Fig. 3.2 shows

an overlay of two band structures for monolayer Ca2N calculated with an ecutwfc of

120 Ry or 250 Ry. The overlay clearly indicates virtually no difference between the

large and small ecutwfc values. An ecutwfc of 120 Ry was thus chosen to keep future

calculations involving larger heterostructure cells computationally tractable. Further

literature review revealed that our choice for ecutwfc exceeds twice the commonly used

values in similar calculations for both bulk and layered Ca2N [30, 33, 45, 46, 75, 76].

Figure 3.2: Comparison of monolayer Ca2N band structure with an ecutwfc of 120
Ry or 250 Ry.
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3.1.2 Planewave Energy Cutoff for the Electron Density

(a) (b)

(c)

Figure 3.3: Convergence tests for the ecutrho parameter a) bulk Ca2N (hexagonal
cell), b) layered Ca2N, and c) monolayer MoS2 structures, relative to the minimum-
energy point on each graph. The red boxes indicate the chosen value (800 Ry).

After determining the converged value for ecutwfc, the ecutrho parameter was

converged. It determines the coarseness of the real-space grid used in evaluation

of the electron density and density-dependent integrals. Fig. 3.3 shows the results

of ecutrho convergence tests for bulk Ca2N, layered Ca2N, and monolayer MoS2. A

value of 800 Ry for ecutrho was found to be well-converged for the cases of few-layered

Ca2N. This value was also found to be appropriate for monolayer MoS2 and was thus

adopted for both since future calculations would be performed on a heterostructure

of the two materials. This value was used in all calculations, including for bulk Ca2N.
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3.1.3 k-grid

(a) (b)

(c)

Figure 3.4: Convergence tests for the in-plane k-grid of a) bulk Ca2N (hexagonal cell),
b) layered Ca2N, and c) monolayer MoS2 structures, relative to the minimum-energy
points on each graph. The red boxes indicate the chosen values.

(a)

Figure 3.5: Convergence tests for the out-of-plane k-grid of bulk Ca2N (hexagonal
cell), relative to the minimum-energy points on the graph. The red box indicates the
chosen value.



22

Due to the difference in length of the in-plane and out-of-plane lattice vectors of

the bulk Ca2N cell, separate in-plane and out-of-plane values for the k-grid must be

determined. The out-of-plane k value is less than that of the in-plane. Calculations

involving layered materials do not require separate convergence of k in the out-of-

plane direction, since the large vacuum layer aims to break any cross-cell interactions

in along z-direction. The above tests were conducted using primitive unit cells for

the layered materials. When running calculations for larger cells, the k values were

reduced proportionally. For example, doubling the cell size would require half the

number of k points in order to maintain the same spacing, dk, in all cases.

3.1.4 Vacuum layer

(a) (b)

Figure 3.6: Convergence tests for the vacuum layer atop the a) layered Ca2N and b)
monolayer MoS2 structures, relative to energy at the largest interlayer distance. The
red boxes indicate the chosen value (≈ 20 Å).

Due to periodic boundary conditions, calculations involving layered materials

must be padded with a large vacuum layer to minimize any interactions between

neighbouring cells in the out-of-plane direction. Convergence tests indicate that a

vacuum layer of ≈ 20 Å is sufficient.
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3.2 Determining Lattice Parameters

The XDM implementation in Quantum ESPRESSO assumes that the dispersion

coefficients are static with respect to the charge density (i.e. their derivatives with

respect to the charge density is zero) when evaluating the atomic forces and stresses.

This means that the forces and stresses are inconsistent with the energy expression

at each step of a geometry optimization and performing a relaxation with a variable

cell size does not actually yield the optimal cell parameters for the system. While

the errors in optimum lattice parameters are negligible for molecular crystals, they

can be quite significant for inorganic materials [77]. One must therefore vary the

lattice parameters by hand and construct a potential energy curve to determine the

true minimum (see table 4.1 for results). Despite this practical difficulty, the cell

parameters determined with XDM remain accurate and reliable. However, accurate

evaluation of the XDM forces and stresses remains an outstanding challenge.

3.2.1 Bulk Ca2N

Figure 3.7: Energy of bulk Ca2N as a function of lattice parameters, relative to its
equilibrium geometry.
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Plotting the energy of bulk Ca2N as a function of its in-plane and out-of-plane

parameters reveals a minimum at a = 3.55 Å and c = 18.33 Å, which are in reasonable

agreement with experimental values, a = 3.63 Å and c = 18.97 Å [30], given that the

calculations do not take into account contributions from thermal expansion.

3.2.2 Layered Ca2N

(a) Monolayer Ca2N (b) Bilayer Ca2N

(c) Trilayer Ca2N

Figure 3.8: Energy as a function of lattice parameters for 1-3 layered Ca2N, relative
to the respective equilibrium geometries. Calculations for monolayer Ca2N were
performed for a range of ecutrho values.

Fig. 3.8a shows the energy of monolayer Ca2N as a function of its lattice parameter

for various values of ecutrho. A value of 800 Ry for ecutrho leads to a rough curve,

which prompted the recalculation of the energy using higher ecutrho values. To

guarantee smoothness, an ecutrho of 2400 Ry was used to construct the potential

energy curves for 2 and 3-layered Ca2N. Although, an ecutrho of 800 Ry leads to a

rough energy curve, the energy fluctuations are insignificant. Therefore, to save on

computational time, an ecutrho of 800 Ry was maintained for all other calculations

in this work that do not involve finding the optimal lattice parameter of a structure.
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The optimized lattice parameters were found to be amono = 3.57Å, abi = 3.57Å,

atri = 3.56Å, for the mono-, bi-, and trilayer respectively. All determined lattice

parameters are in excellent agreement with previous studies [45, 46, 76]. The bulk

lattice parameter, abulk = 3.55Å, was used for quadlayer Ca2N, in agreement with

previous studies [46]. The Ca2N lattice parameter tends to decrease with the addition

of more layers due to increased in-plane interactions.

3.2.3 Au

Figure 3.9: Energy of 4-layer Au as a function of the lattice parameter, relative to its
equilibrium geometry. Calculations were performed for a range of ecutrho parameters.

From Fig. 3.9, we determine a lattice constant of aAu = 2.90 Å for the (111)

face of the primitive 4-layer Au cell. This is in excellent agreement with the known

lattice parameter for bulk Au [78], indicating convergence to bulk behaviour. A

range of ecutrho values above 800 Ry was used to guarantee smoothness of the curve.

However, for the same reasons mentioned in the above section concering the lattice

parameters of layered Ca2N, further calculations used a value of 800 Ry.



Chapter 4

Improved Charge Transport across a Au-MoS2 Interface

through the Insertion of a Layered Ca2N Electride

This chapter is reproduced from F. Kaadou, J. Maassen and E. R. Johnson, “Improved

Charge Transfer and Barrier Lowering across a Au–MoS2 Interface through Insertion

of a Layered Ca2N Electride”. The Journal of Physical Chemistry C 2021 120 (21),

11656-11664. DOI: https://pubs.acs.org/doi/10.1021/acs.jpcc.1c02142/. Copyright

2021 American Chemical Society.

4.1 Motivation

Unlike contacts with bulk semiconductors, metals tend to form very poor interfaces

with MoS2 due to the absence of dangling bonds in layered materials. Although to

varying degrees, transition metals spanning the entire d-block of the periodic table

fail to form proper ohmic contacts with MoS2. This unfortunate obstacle has held

back layered semiconductors from breaking into the mainstream and shifting the

current technological landscape. However, the quality of a metal–MoS2 contact may

be improved by introducing a layer of Ca2N, a novel 2D electride, at the interface. As

a proof-of-concept, we start by studying the Au–Ca2N–MoS2 interface. Of the many

choices for a metal, we select Au given that it is the most common contact metal, its

interface with MoS2 is well characterized, and it leads to high tunnelling and Schottky

barriers [10, 11]. The electrical properties of the Au–Ca2N–MoS2 interface are studied

by calculating the electrostatic potential across the heterostructure and the charge

transfer resulting from its formation. These quantities help predict the quality of the

electrical contact. The results are then compared to the case of a Au–MoS2 interface.

26
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4.2 Computational Methods

Initial structures used for geometry optimizations of Ca2N and monolayer MoS2 were

obtained from Refs. [79] and [78], respectively. For bulk Ca2N using a hexagonal unit

cell, the optimized lattice parameters were a = 3.55 Å and c = 18.33 Å, which are in

reasonable agreement with experiment (a = 3.63 Å and c = 18.97 Å) [30], considering

that we are neglecting thermal expansion. Multi-layered Ca2N slabs were constructed

by isolating layers from the bulk Ca2N cell; their relaxed in-plane lattice constants

are shown in Table 4.1. Weaker in-plane interactions lead to slightly greater cell sizes

for monolayer and bilayer Ca2N.

Table 4.1: Optimized in-plane lattice constants, a in Å, for various layered materials
and heterojunctions using hexagonal unit cells. For the interfaces, the structures
were constructed to avoid strain of the MoS2 geometry, so the lattice constants are
multiples of those used for the MoS2 monolayer.

Material Form a Number of atoms per unit cell
Ca2N Monolayer 3.57 3
Ca2N Bilayer 3.57 6
Ca2N 3-layer 3.56 9
Ca2N 4-layer 3.55 12
MoS2 Monolayer 3.18 3
Au Slab 2.90 4

Ca2N–MoS2 Interface 6.36 21
Au–MoS2 Interface 5.50 25

Au–Ca2N–MoS2 Interface 11.00 159

All interfaced structures adopted the MoS2 cell size, allowing only the atomic

positions to vary. The Ca2N–MoS2 interfaces were constructed by joining a (2 × 2)

monolayer MoS2 supercell (Fig. 4.1a) with a (
√
3×

√
3) Ca2N supercell (Fig. 4.1b),

resulting in 2.9-3.4% lattice distortion for the Ca2N layers, depending on thickness.

The Au–MoS2 interface was constructed by joining a (
√
3 ×

√
3) monolayer MoS2

supercell (Fig. 4.1a) with a 4-layer (2 × 2) Au supercell (Fig. 4.1c), resulting in a

5.0% lattice distortion for Au. While this amount of lattice strain is fairly high, it

can be fairly easily accommodated by soft metals, such as Au, and the corresponding

energy penalty is only 88 meV/Å2 per Au layer. The final Au–Ca2N–MoS2 structure

was constructed by joining a 6-layer (4× 4) Au supercell to a (
√
3×

√
3) supercell of

the previously constructed monolayer Ca2N–MoS2 interface. In order to guarantee a



28

(a)
√
3×

√
3 (black) and

2×2 (red) MoS2 cells
(b)

√
3×

√
3 Ca2N cell (c) 2×2 Au cell

Figure 4.1: Geometries of the monolayers and surface slab model used to construct
each interface. Yellow: S; cyan: Mo; grey: Ca; blue: N; gold: Au.

bulk-like environment away from the interface, the positions of the bottom two layers

of Au atoms were held fixed in the z-direction. A vacuum spacing of ∼ 20 Å was

maintained across all systems to minimize unwanted cross-cell interactions.

All DFT calculations were performed with the Quantum ESPRESSO [53] program,

using the Perdew-Burke-Ernzerhof (PBE) [59] exchange-correlation functional, the

projector augmented wave (PAW) method [65], and periodic boundary conditions.

Dispersion interactions were treated with the exchange-hole dipole moment (XDM)

model [60, 61, 62], which has been shown to be highly accurate for TMDCs and other

layered materials [63].

Calculations for bulk Ca2N used planewave cut-off energies of 80 and 800 Ry for

the wavefunction and electron density, respectively, and a 9 × 9 × 3 k-point grid.

Ca2N–MoS2, Au–MoS2, all few-layer Ca2N structures, MoS2, and the Au slabs used

planewave cut-off energies of 120 and 800 Ry and a 7 × 7 × 1 k-point grid. Finally,

the Au–Ca2N–MoS2 heterostructure used planewave cut-off energies of 120 and 800

Ry. Due to its large unit-cell size, a 2 × 2 × 1 k-point grid was used for geometry

relaxation, while a subsequent calculation with a 3× 3× 1 grid was used to generate

the band structure, electrostatic potential, and charge data. All calculations used a

Gaussian smearing parameter of 1× 10−3 Ry. Relaxations of atomic positions used a

force convergence threshold of 1 × 10−4 Ry/Bohr. Bader [80] charge integration was

conducted using the Yu-Trinkle algorithm [74], as implemented in the critic2 code

[81].
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4.3 Results and Discussion

4.3.1 Bulk Versus Few-Layer Ca2N

Before considering heterostructures involving Ca2N, we first examine the dependence

of its electronic structure on the number of 2D layers. Fig. 4.2 shows the band

structures of bulk, bilayer, and monolayer Ca2N, as well as heat maps of the integrated

local density of states (ILDOS) near the FL. For bulk Ca2N, the ILDOS plot shows

the anionic electrons (purple) residing in the interstitial gap between the cationic

atomic layers. In the band structure, these interstitial states are easily identified as

the three bands crossing the FL. The quasi-parabolic shape of these bands and their

close resemblance in the K → Γ and Γ → M segments show the near free-electron

gas (NFEG) nature of the anionic electrons along the in-plane direction. Although

bulk Ca2N is a metal at standard temperature and pressure, as indicated by the

band structure, it is possible to induce a metal-to-semiconductor transition at higher

pressures [82] or via semi-hydrogenation [83].

Exfoliated layers of Ca2N retain the same stoichiometry as the bulk [47]. In

fact, the band structure of the bilayer is largely unchanged with respect to the bulk,

with the major exception that the interstitial states at the cleavage sites turn into

surface states (Fig. 4.2) [45, 48]. The band structure of bilayer Ca2N demonstrates

the clear separation between the interstitial states, which retain their bulk character,

and the higher-energy surface states. Calculations involving multiple layers of Ca2N

(Fig. 4.3) reveal an extra interstitial state for each additional interstitial gap. In

the case of a monolayer, there are only surface states. These states form distinct

bonding and anti-bonding combinations that are non-degenerate. However, with the

addition of more layers, the surface states experience less coupling due to an increased

spatial separation and tend towards degeneracy [46, 75]. The presence of these surface

states (green) is clear from the ILDOS plot in Fig. 4.2. The lower density (0.5 e per

Ca2N unit) seen for the surface states reflects their reduced stability relative to the

interstitial states (1 e per Ca2N unit). It is also notable that the density of the surface

states is higher for the monolayer than the bilayer, which reflects the greater depth

of the ‘bonding’ surface state below the FL for the monolayer.
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(a) Bulk Ca2N (hexagonal cell) (b) Bilayer Ca2N (c) Monolayer Ca2N

(d) Bulk Ca2N
(hexagonal cell)

(e) Bilayer Ca2N (f) Monolayer Ca2N (g) Color scale

Figure 4.2: Ca2N band structures (top) for the bulk hexagonal cell (left), bilayer
(middle), and monolayer (right), with the interstitial and surface states highlighted.
Also shown are heat maps (bottom) of the integrated local density of states (ILDOS)
in the xz-plane, for an energy range between -1.0 eV and the FL (Ef ). The color
scale runs from isodensity values of 0 (red) to 0.004 a.u. (purple).

Figure 4.3: Ca2N band structure for trilayer (left) and quadlayer (right), with
interstitial and surface states highlighted.
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Figure 4.4: Structure of Ca2N–MoS2 interface in the xz-plane, indicating both short
(red) and long (green) S–Ca bonds. The ILDOS in the yz-plane for an energy range
between -1.0 eV and the Fermi level is also shown. The isodensity values used for the
color scale match those in Figure 4.2.

4.3.2 The Ca2N–MoS2 Interface

The most energetically favourable configuration of the Ca2N–MoS2 interface is shown

in Figure 4.4. The optimal orientation was obtained by performing a scan of the total

energy as a function of displacement along the diagonals of the cell (Fig. 4.5). The

structure contains two distinct types of S–Ca bonds. Three of the four sulfur atoms

have tetrahedral coordination and form close contacts with a single calcium atom,

with a bond length of 2.68 Å.

(a) (b)

Figure 4.5: Potential energy surfaces for sliding along the a) long and b) short
diagonals of the Ca2N–MoS2 cell. The energy is expressed relative to the minimum.
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The fourth, hypervalent sulfur atom has octahedral coordination and forms contacts

to three calcium atoms, each with bond lengths of 2.95 Å. Both of these values are

well within the sum of vdW radii. Each of the calcium atoms at the interface forms

one short and one long bond to a sulfur.

Formation of the Ca2N–MoS2 heterostructures is quite favourable energetically,

with the exfoliation energy as a function of the number of Ca2N layers shown in

Table 4.2. Due to the higher reactivity of the Ca2N monolayer, resulting from the

lack of any interstitial states, the exfoliation energy for the N = 1 heterostructure

is slightly higher than for the N = 2, which already approximates the bulk limit.

Dispersion interactions only account for 35-37% of the exfoliation energy, indicating

that charge transfer is primarily responsible for the Ca2N–MoS2 bonding. In agreement

with previous results [40, 51, 52], formation of the interface causes significant distortion

to the MoS2 monolayer (Fig. 4.4), while the geometry of the electride layer is largely

unperturbed. This is quantified by the distortion energies given in Table 4.2.

Table 4.2: Computed exfoliation energies (Eexfol) for Ca2N–MoS2 heterostructures
with varying numbers of electride layers, N . The XDM dispersion contributions are
shown in parentheses. The distortion energies (Edist) for the MoS2 monolayer and
Ca2N are also given. All quantities are in meV/Å2.

N Eexfol Edist(MoS2) Edist(Ca2N)
1 88 (31) 28 3
2 82 (30) 22 2
3 83 (31) 22 2
4 83 (31) 22 2

In order to better understand how the formation of the interface influences the

electronic states of both MoS2 and Ca2N, we carry out a side-by-side comparison of

the band structures (Fig. 4.6) of the materials before (left) and after (right) coming

into contact. This is performed for the case of monolayer Ca2N (top) and bilayer

Ca2N (bottom) to examine how both surface and interstitial anion electron states

are affected. The effects of the MoS2 geometric distortion can be seen in the band

structures in Fig. 4.6. Relative to the isolated materials, formation of the hetero-

structures results in significant modification of the valence and conduction bands of

MoS2, accompanied by a reduction in the band gap. The most notable change to the

Ca2N band structure is the withdrawal of one of the surface states upwards in energy.
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Figure 4.6: Band structure modifications resulting from formation of interfaces
between MoS2 and monolayer (top) or bilayer (bottom) Ca2N. The plots on the left
show an overlay of the band structures for the relaxed isolated materials, with fixed
lattice constants matching that of the interface. The plots on the right show the band
structures for the resulting interfaces, colored based on orbital contributions from the
two materials at each k-point.

The absence of one surface state is expected from the ILDOS shown in Figure 4.4,

as formation of the heterostructure eliminates the Ca2N surface state nearest to

the interface. The remaining surface state in the band structure corresponds to

the anionic electrons on the surface opposite the interface, as seen in the ILDOS.

The electrons from the missing Ca2N surface state are donated to the MoS2 and,

consequently, we see little band mixing between the materials due to the ionic nature

of the interface. The same behaviour is observed when three and four layers of Ca2N

are interfaced with MoS2 (Fig. 4.7). All significant features remain, with the presence

of an additional interstitial electride state per each new Ca2N layer. This suggests

that the contribution from Ca2N layers away from the interface quickly drops after

the first layer. This leads us to conclude that nearly all properties of the interface

are due to the presence of a single Ca2N layer, while additional layers do not play a

major role in the interaction with MoS2.
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Figure 4.7: Band structure modifications resulting from formation of interfaces
between MoS2 and 3-layer (top) or 4-layer (bottom) Ca2N. The plots on the left
show an overlay of the band structures for the relaxed isolated materials, with fixed
lattice constants matching that of the interface. The plots on the right show the band
structures for the resulting interfaces, colored based on orbital contributions from the
two materials at each k-point.

The gradual disappearance of the Ca2N surface state can be observed by varying

the distance between Ca2N and MoS2 from equilibrium and calculating the conseq-

uent band structures. Fig. 4.8 shows the band structures of the Ca2N–MoS2 inter-

face, showing the component contributions from each material at several interlayer

distances. The atomic positions were held constant at their equilibrium positions

and only their relative out-of-plane distance was varied. That is why, even at large

interlayer distances with weak interactions, the shape of the MoS2 bands remains

distorted relative to its pristine state. As the two layers are pulled apart, the

interaction between them weakens and the missing surface state starts to reappear

from above the FL. This is accompanied by decreased doping of MoS2, as can be seen

by the shift in its CBE towards the FL. At the distance of d0 + 5 Å, the interaction

is very weak. We see the missing surface state is almost completely restored to its

pre-interfaced state and the MoS2 is almost undoped, with its CBE near the FL.
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Figure 4.8: Band structures of monolayer Ca2N–MoS2 heterostructures calculated at
varying distances relative to the equilibrium distance, d0, in order to highlight the
effects of the interaction between the two materials. The states are coloured based
on orbital contributions, with contributions from Ca2N in red and contributions from
MoS2 in blue.

From the Bader charge difference (Fig. 4.9), we estimate a transfer of 0.35 electrons

per MoS2 formula unit (or 0.47 electrons per Ca2N formula unit), comparable to that

seen for the Ca2N–MoTe2 heterostructure [40, 51]. Fig. 4.9 also indicates that the

addition of more Ca2N layers slightly decreases the amount of charge transfer to MoS2.

This is likely due to the presence of interstitial sites not present in the monolayer

case, which provide an alternative and relatively stable space for electrons to occupy.

Note that the amount of charge transfer quickly converges to bulk behaviour after

the addition of a second Ca2N layer. The transfer of roughly half an electron from

[Ca2N]
+(e−) is consistent with the loss of one of the two surface states. The high

charge transfer results in the metalization of the MoS2 bands in Fig. 4.6, with the

drop of the conduction band edge to 0.54 eV below the FL. This is much greater than

the drop reported by Dhakal et al. in their calculations for doped bilayer MoS2 (≈90

meV) [52]. The discrepancy possibly indicates more charge transfer in the monolayer
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Figure 4.9: Differences in Bader atomic charges for the various Ca2N–MoS2 interfaces,
relative to the separated materials. Positive (negative) values indicate accumulation
(depletion) of electron density.

TMDC case; however, it is more likely due to those authors’ omission of structural

changes to the MoS2. The metallic nature of the interface indicates the absence of a

Schottky Barrier.

Figure 4.10 shows the average out-of-plane electrostatic potential for heterostructu-

res with multiple layers of Ca2N. As expected from the exfoliation energy data,

convergence to the bulk limit is already seen for the bilayer case. The average

potential is slightly below the Fermi energy, indicating the absence of a tunnelling

barrier. However, the average value does not convey the full picture. The electrostatic

potential is very anisotropic and covers a wide range of values as indicated by the red

bar in the figure. Fig. 4.11 shows a heatmap of a slice of the electrostatic potential at

the maximum value of the average out-of-plane potential between Ca2N and MoS2.

Clearly, the majority of the energy potential landscape is below the FL and, thus,

presents no barrier to incoming electrons. The most negative values occur about the

single, octahedrally coordinated sulfur. Thus, the Ca2N–MoS2 interface is barrier-

free, further illustrating the ohmic nature of the contact.
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Figure 4.10: Out-of-plane average of the electrostatic potential (sum of the ionic and
Hartree potentials) for various Ca2N–MoS2 interfaces. The red bar indicates the range
of values at the maximum point within the interface region. The results are overlaid
with the difference in Bader atomic charges for the 4-layer Ca2N–MoS2 interface,
relative to the separated materials. Positive (negative) values indicate accumulation
(depletion) of electron density.

Figure 4.11: Electrostatic potential surface at the Ca2N–MoS2 interface in the xy-
plane. The chosen point in the z-direction corresponds to the maximum value of the
average out-of-plane electrostatic potential (black point in Fig. 4.10).
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4.3.3 The Au–Ca2N–MoS2 Interface

Finally, the benefits of inserting a single layer of Ca2N at a real device contact are

investigated. We choose the well-studied Au–MoS2 interface, which is known to

exhibit poor electrical conductance due to the presence of a vdW gap [10, 11, 12, 17].

Results for both the Au–MoS2 and Au–Ca2N–MoS2 heterostructures are presented to

assess the advantages of adding an interfacial layer of Ca2N.

(a) Au–Ca2N–MoS2 (b) Au–MoS2

Figure 4.12: Geometries of the relaxed Au–Ca2N–MoS2 and Au–MoS2 heterostructu-
res. The short and long S–Ca contacts are shown in red and green, respectively, while
the shortest S–Au contacts are shown in blue.

Fig. 4.12 shows the geometry of the relaxed Au–MoS2 heterostructure, with and

without an inserted layer of the Ca2N electride. The Ca2N–MoS2 bonding motifs,

discussed in the previous section, are not affected by the presence of the Au surface.

However, the lengths of the short S–Ca bonds are slightly increased, to 2.75−2.78 Å,

while the lengths of the long S–Ca bonds are increased to 3.06− 3.15 Å. This implies

that the presence of the Au surface may slightly weaken the ionic bonding between

Ca2N and MoS2. In order to determine the optimal orientation, we calculate the total

energy as a function of displacement along the diagonals (Fig. 4.13). The difference

in interaction strength between Au and Ca2N or MoS2 is highlighted by the stark
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difference between the sliding potentials. The Au–Ca2N interaction is ionic in nature

and is three orders of magnitude greater than the vdW bonding between Au and

MoS2.

The exfoliation energies for the two heterostructures are given in Table 4.3. For

Au–MoS2, the dispersion contribution is slightly greater than the total exfoliation

energy (due to non-bonded repulsion from the base density functional), confirming

the vdW nature of the interface. There is also no significant distortion of either

the MoS2 monolayer or Au surface. For Au–Ca2N–MoS2, the tabulated exfoliation

energy corresponds to the energy relative to the separate Au surface, Ca2N and

MoS2 monolayers. Inserting the Ca2N layer markedly increases the total exfoliation

energy, by roughly a factor of 8, and dispersion is now responsible for only 27% of

the exfoliation energy. This confirms that, as for Ca2N–MoS2, charge transfer is

the dominant stabilizing interaction for Au–Ca2N–MoS2. There is again significant

distortion of the MoS2 monolayer, albeit to a lesser extent than for Ca2N–MoS2

without the Au surface. Insertion of the electride also results in visible distortion of

the Au surface, as seen in Fig. 4.12. However, due to its soft metallic nature, the

energy penalty accompanying this distortion is minor.

Table 4.3: Computed exfoliation energies (Eexfol) for the Au–MoS2 and Au–Ca2N–
MoS2 interfaces. The XDM dispersion contributions are shown in parentheses. The
distortion energies (Edist) for the Au surfaces and the Ca2N and MoS2 monolayers
are also given. All quantities are in meV/Å2.

Quantity Au–MoS2 Au–Ca2N–MoS2

Eexfol 31 (36) 256 (70)
Edist(Au) 0 1
Edist(Ca2N) — 3
Edist(MoS2) 0 16
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(a) Au–Ca2N cell; long diagonal (b) Au–Ca2N cell; short diagonal

(c) Au–MoS2 cell; long diagonal (d) Au–MoS2 cell; short diagonal

Figure 4.13: Potential energy surfaces for sliding along the long and short diagonals of
the Au–Ca2N and Au–MoS2 cells. The energy is expressed relative to the minimum.

The band structure predicted for the Au–Ca2N–MoS2 is shown in Fig. 4.14, with

the band structure for the reference Au–MoS2 interface shown in Fig. 4.15. For

the Au–MoS2 interface, the band structure reveals strong Fermi-level pinning, with

the MoS2 conduction band edge pinned 0.6 eV above the FL. As expected, we also

see virtually no distortion to either the MoS2 or Au bands. Bader charge analysis

(Fig. 4.17) indicates virtually no charge transfer between the metal and TMDC, as

expected for a vdW contact. Conversely, for the Au–Ca2N–MoS2 heterostructure, the

MoS2 bands are significantly modified due to a combination of geometric distortion

and doping. The band structure in Fig. 4.14 does not show any Ca2N surface states

near the FL, as the anionic electrons occupying these states have been donated to the

MoS2 and Au at both sides of the interface. The ionic nature of the interface results

in the absence of band mixing. Bader charge analysis (Fig. 4.17) confirms charge

transfer of 0.79 electrons per Ca2N formula unit. Although the net negative charge
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Figure 4.14: Band structure of the Au–Ca2N–MoS2 heterostructure. The orbital
contributions, summed over atoms forming each material, were used to assign the
RGB color vector (red: Au, green: Ca2N, blue: MoS2) for each k-point.

Figure 4.15: Band structure modifications resulting from formation of the Au–MoS2

interface. The plot on the left shows an overlay of the band structures for the relaxed
isolated materials, with fixed lattice constants matching that of the interface. The
plot on the right shows the band structures for the resulting interface, colored based
on orbital contributions from the two materials at each k-point.
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Figure 4.16: Band structure modifications resulting from formation of the Au–Ca2N–
MoS2 interface. The plot on the left shows an overlay of the band structures for the
relaxed isolated materials, with fixed lattice constants matching that of the interface.
The plot on the right shows the band structures for the resulting interface. The
orbital contributions, summed over atoms forming each material, were used to assign
the RGB color vector (red: Au, green: Ca2N, blue: MoS2) for each k-point.

on MoS2 (0.26 electrons per formula unit) is reduced compared to the isolated Ca2N–

MoS2 heterostructure, the charge transfer is still significant enough to drop the

conduction band edge 0.23 eV below the FL. Insertion of the electride metallizes

the MoS2 bands and eliminates the Schottky barrier.

Similar to what was done in Figures 4.6, 4.7, and 4.15, we perform a side-by-side

comparison of bands structures of Au, Ca2N and MoS2 before and after the formation

of the heterostructure. The left panel of Fig. 4.16 shows the overlayed band structures

of the three pristine materials before coming into contact and the right panel shows

the band structure of the fully-formed interface. Note that the right panel of Fig. 4.16

shows the same band structure as in Fig. 4.14, but with a larger energy range along

the y-axis. The extended energy range was chosen to make the MoS2 valence bands

visible in the left panel of the figure. The low energy MoS2 bands are not quite visible

in the right frame due to the overwhelming presence of the Au bands. Fig. 4.16 clearly

illustrates the missing electride surface states, whose electrons have been donated to

the TMDC and metal. We also note the same significant distortion of the MoS2 bands

and band gap, as well as the drop of the CBE below the FL at M.
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Figure 4.17: Out-of-plane average of the electrostatic potential (sum of the ionic and
Hartree potentials) for the Au–MoS2 (top) and Au–Ca2N–MoS2 (bottom) interfaces.
The red bars indicate the range of values at the maximum point within the interface
regions. The results are overlaid with the differences in Bader atomic charges for
the heterostructures, relative to the separated materials. Positive (negative) values
indicate accumulation (depletion) of electron density.

The electrostatic potentials for the Au–MoS2 and Au–Ca2N–MoS2 heterostructu-

res are compared in Fig. 4.17. Typical of a vdW contact, the maximum of the

electrostatic potential at the Au–MoS2 interface is a few eVs above the FL, with

the majority of values at that point lying above the FL as well. This results in a

considerable tunnelling barrier for injected electrons, making it extremely difficult

to establish proper electrical contact. However, the presence of Ca2N between the

metal and TMDC reduces the average potential barrier at both sides of the interface.

Although the maximum values at the interfaces are still positive, local values of the

potential now extend well below the FL for both interfaces, making it significantly

easier for injected electrons from the metal contact to make their way through to the
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TMDC. Fig 4.18 shows heat maps of the electrostatic potential between the various

interfaced materials for both the Au–MoS2 and Au–Ca2N–MoS2 heterostructures.

Comparing with Fig 4.11, we see that the presence of a metal contact on the other

side of Ca2N only slightly affects the potential landscape at the Ca2N–MoS2 interface.

Of greater interest, in the absence of Ca2N, the potential landscape at the Au–MoS2

interface is almost completely above the FL, creating a significant barrier. However,

after inserting Ca2N, the potential at the interface with the metal contains significant

regions where the potential is below the FL, which makes it easy for charge carriers

to pass through.

(a) Potential surface across the Ca2N–
MoS2 interface in the Au–Ca2N–MoS2
heterostructure

(b) Potential surface across the Au–
Ca2N interface in the Au–Ca2N–MoS2
heterostructure

(c) Potential surface across the Au–
MoS2 interface in the Au–MoS2
heterostructure

Figure 4.18: Electrostatic potential surfaces in the xy-plane between different
materials in the Au–Ca2N–MoS2 and Au–MoS2. The chosen points in the z-direction
correspond to the maximum values of the average out-of-plane electrostatic potentials
(black points in Fig. 4.17).
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4.4 Summary

Using dispersion-corrected DFT, we identified the interstitial electronic states in

bulk Ca2N and their transformation to surface states after exfoliation. The surface

states play a critical role in determining the properties of heterostructures of Ca2N

with MoS2 or Au, as the excess electrons occupying these states are donated to the

interfaced material. In the case of the Au–Ca2N–MoS2 heterostructure, the resulting

doping of the MoS2 layer is enough to bring its conduction band edge below the FL,

creating a contact that is free of both tunnelling and Schottky barriers. We also find

considerable doping of the metal by the electride, which is likely magnified for Au

compared to other metals due to its high electronegativity. Our results suggest a

promising solution to the metal-TMDC contact problem.



Chapter 5

Conclusion

It is extremely likely that 2D layered materials will take on a significant role in

the future of the electronics industry due to the large global effort to study and

characterize them, with the goal of practical application. 2D materials have shifted

the way we understand and look at solid-state systems. When isolated into a single

layer, relatively mundane bulk materials can suddenly display exotic electronic propert-

ies. It is thought that monolayer TMDCs will play an important part in 2D devices

as they are stable in ambient conditions and display a wide variety of properties

from metallic to semiconducting and insulating. In chapter 1 we introduced MoS2,

a TMDC that has attracted the attention of the community due to its diverse field

of applications. In particular, MoS2 shows great promise in use for photodetectors,

solar cells, chemical sensors and low-power transistor devices, and may even one

day displace Si as the industry standard. However, despite the interest and potential,

MoS2-based technology has yet to penetrate into the mainstream. MoS2 lacks any out-

of-plane dangling bonds. This makes it difficult to establish proper electrical contact

with a metal, a requirement for any practical device. Most interfaces between MoS2

and d-block transition metals are plagued by high tunnelling and Schottky barriers

and exhibit strong Fermi-level pinning. In order to achieve the desired ohmic contact,

all of these issues must be resolved. Chapter 1 also introduced the notion of electrides,

a family of ionic materials with an excess of electrons. Of particular importance to

this work is Ca2N, one of the two known 2D layered electrides. In exfoliated Ca2N,

the excess electrons reside at the surface and are characterized by a nearly-free and

delocalized nature. These surface states are highly reactive and allow Ca2N to bind

strongly to other surfaces. This has been demonstrated here by inserting Ca2N at a

metal-MoS2 interface in order to overcome the challenge of forming a good electrical

contact.

Chapter 2 discusses the theory and methods behind the calculations used in this

46



47

work. Starting with the structure of electronic states in periodic solids, section 2.1 first

presents the many-body Hamiltonian and explains how its symmetry and periodicity

can be exploited to simplify the path to its solution. Section 2.2 follows by outlining

the basic principles of Kohn-Sham DFT and ends with a brief discussion of the XDM

dispersion model. The rest of the chapter is dedicated to sketching the under-the-

hood workings of the computational methods used to solve the KS equations (the

PAW method), as well as the methods used to obtain our results (state projection

and Bader charge transfer). All calculations in this work were conducted within a

DFT framework using Quantum ESPRESSO [53]. This includes the post-processing

calculations used to determine various charge densities, potentials, and projections

of states, with the exception of the Bader charge differences, which were determined

using the critic2 code [81].

Chapter 3 shows the preliminary convergence tests to determine optimum computat-

ional parameters, as well as potential energy curves used to identify the equilibrium

lattice constants for Ca2N, MoS2, and Au. Traditionally, the process of optimizing

lattice constants is automated within Quantum ESPRESSO. However, due to our

choice of the XDM dispersion model, this had to be done manually. This is due

to the assumption of static dispersion coefficients in evaluation of cell stresses in the

XDM implementation. This assumption has no effect on the overall accuracy of XDM,

but remains an outstanding problem with the current implementation.

Chapter 4 includes the numerical details of the Quantum ESPRESSO calculations,

as well as specifics on how the unit cells for each interface were constructed and a

list of their dimensions; cells containing more than one material adopted the cell

size of MoS2. The results were presented beginning with the evolution of the Ca2N

electride states for a gradual transition from bulk to monolayer. These interstitial and

surface states are the only ones within a large energy range around the FL and are

easily identifiable on plots of the band structure. Due to the strong shielding between

layers, the sequential addition of more layers is easily tracked with the appearance of

a new interstitial state per each new layer. This also results in a quick convergence

to bulk behaviour, as can be seen in the charge donation trends and average out-of-

plane potentials. The surface states are highly reactive. Interfacing Ca2N with MoS2

results in a complete depletion of the surface state electrons into the MoS2. This
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lowers MoS2’s conduction band edge below the FL, metalizing the semiconductor and

eliminating the Schottky barrier. Again, the work here greatly benefits from the ease

of interpretability of Ca2N’s band structure as we clearly see the disappearance of a

surface state upon contact with MoS2.

The comparative study of the Au–MoS2 heterostructure with and without insertion

of Ca2N clearly demonstrates the potential benefits of inserting an electride at a

metal–TMDC interface. Au was chosen due to its ubiquitous use in industry and

well-documented poor contact with MoS2. Our results confirmed that the Au–

MoS2 interface is a vdW contact afflicted with strong Fermi-level pinning, as well as

high tunnelling and Schottky barriers. Introducing Ca2N to the junction effectively

remedies all these issues. The electride surface states are readily donated to both

the metal and TMDC, flooding both with an excess of electrons that removes the

Schottky barrier and binds the materials together with strong ionic bonding. Bader

charge differences show the virtually complete depletion of the surface states; however,

this can also clearly be seen from the disappearance of the Ca2N surface states in the

band structure of the Au–Ca2N–MoS2 heterostructure. The average electrostatic

potential across the interface shows marked improvement with the introduction of

Ca2N. Most notably, the potential landscape now has energy valleys much lower than

the FL, creating an accessible path for injected electrons.

The work presented here serves as a proof-of-concept. The insertion of Ca2N at

the Au–MoS2 interface completely transforms the nature of the contact from vdW to

ohmic. This success may indicate the more general benefit of inserting a 2D electride

at a metal–TMDC interface. Future work should study different combinations of

metal–electride–TMDC heterostructures to gain a more holistic perspective on how

the three materials interact. A natural next step would be to replace Au with Ag or

Cu in order to understand how interactions with Ca2N would trend down the same

group of the periodic table. It is likely that the results would be qualitatively similar,

but with less charge transfer to Ag and Cu due to their decreased electronegativity

compared to Au. Not all metals form vdW contacts with MoS2 like the noble metals

do. Other transition metals, like Ti and Mo, are known to form stronger bonds with

MoS2 due to a greater orbital overlap [11, 15, 16]. Although these contacts are not

held together by vdW forces, they still exhibit Fermi-level pinning and form Schottky
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barriers. The presence of Ca2N may enhance such interfaces to an even greater degree

compared to contacts with noble metals and other non-noble metals. Heterostructures

with magnetic metals, such as Ni, are also a source of interest. A Ni–Ca2N interface

may lead to a spin-polarized current with potential applications in spintronic devices.

It is clear that new applications of 2D electrides may help solve old problems

and open doors to many potential opportunities. As of today, Ca2N and Y2C are

the only 2D electrides that have been successfully synthesized as single crystals, but

structures of many others have been proposed computationally [84]. These electron-

rich materials may have arrived at just the right time to advance the promising field

of 2D materials.
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