
ON A CATEGORICALLY SOUND QUANTUM PROGRAMMING
LANGUAGE FOR CIRCUIT DESCRIPTION

by

Francisco Rios

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

August 2021

c⃝ Copyright by Francisco Rios, 2021

Table of Contents

List of Tables . vi

Abstract . vii

List of Abbreviations and Symbols Used viii

Acknowledgements . xi

Chapter 1 Introduction . 1

1.1 Formal Methods for Quantum Programming Languages 2

1.2 The Evolution of Quantum Programming Languages 3

1.3 Proto-Quipper-M: A Sound Language for Circuit Description 4

1.4 Outline of Thesis . 7

1.5 Contributions . 8

Chapter 2 Quantum Computation . 10

2.1 Linear Algebra . 10

2.1.1 Hilbert Spaces . 10

2.1.2 Operators and Matrix Representations 12

2.1.3 Tensor Products . 15

2.2 The Elements of Quantum Computing 16

2.2.1 Quantum Bits and Quantum Systems 17

2.2.2 Evolution of Quantum Systems 17

2.2.3 Measurements . 19

2.2.4 The Quantum Random Access Machine Model 19

2.2.5 Quantum Circuits . 20

Chapter 3 Category Theory . 24

3.1 Elementary Category Theory . 24

3.1.1 Categories . 24

ii

3.1.2 Functors and Natural Transformations 26

3.1.3 Representable Functors and the Yoneda Lemma 28

3.1.4 Limits and Colimits . 30

3.1.5 Adjunctions . 31

3.1.6 Monads and Comonads . 34

3.2 Monoidal Category Theory . 37

3.2.1 Monoidal Categories . 37

3.2.2 Monoidal Functors . 41

3.2.3 Monoidal Natural Transformations 42

3.2.4 Monoidal Adjunctions . 43

3.2.5 LNL Models and Monoidal Comonads 43

Chapter 4 Towards a Quantum Circuit Description Language . . 46

4.1 Modeling Parameters and States . 46

4.1.1 A Presheaf Model . 46

4.1.2 Parameter and State Objects 48

4.1.3 A Language for Parameters and States 49

4.2 Modeling Families of Circuits . 49

4.2.1 Generalized Circuits . 50

4.2.2 A Model of Proto-Quipper-M. 51

Chapter 5 The Proto-Quipper-M Language 53

5.1 Circuits, Wires, and Labels . 53

5.1.1 Circuits and Wire Types . 53

5.1.2 Labeled Circuits . 53

5.1.3 Visualizing Labeled Circuits 54

5.2 The Syntax of Proto-Quipper-M . 55

5.2.1 Types . 55

5.2.2 Terms and Values . 56

iii

5.2.3 The Type System of Proto-Quipper-M 60

5.3 Operational Semantics . 64

5.3.1 Evaluation Relation . 65

5.3.2 Run-Time Errors . 68

5.3.3 Big-Step Operational Semantics 70

Chapter 6 Type Safety . 74

6.1 Properties of the Type System . 74

6.2 Weakening Lemma . 78

6.3 Substitution Lemma . 80

6.4 Type Preservation . 86

6.5 Error-Freeness . 93

Chapter 7 The Semantics of Proto-Quipper-M 99

7.1 A General Categorical Model . 99

7.1.1 Copowers and Representables 99

7.1.2 An LNL Model . 102

7.1.3 The Boxing Comonad . 108

7.2 Interpreting Types . 109

7.2.1 Simple M-Types and Inductive Types 109

7.2.2 Types in L . 109

7.2.3 Morphisms box and apply 110

7.2.4 Parameter Types . 111

7.3 Interpreting Terms . 113

7.3.1 Labeling Structure . 113

7.3.2 Morphisms circ and lift . 113

7.3.3 Duplicating and Discarding 115

7.3.4 Typing Derivations . 117

iv

Chapter 8 Semantic Properties . 121

8.1 Semantic Parameter Value Lemma 121

8.2 Discarding Simultaneously vs Discarding in Stages 129

8.3 Special Semantic Weakening Lemma 131

8.4 Duplicating and Discarding Contexts 141

8.5 Semantic Weakening Lemma . 144

8.6 Semantic Substitution Lemma . 145

Chapter 9 Soundness . 152

9.1 Categorical Semantics of Configurations 152

9.2 The Soundness Theorem for Proto-Quipper-M 153

Chapter 10 Conclusion . 180

Bibliography . 182

v

List of Tables

2.1 Commonly Used Quantum Gates. 14

2.2 The QRAM Model. 20

5.1 Rules for Label Tuple Judgements. 61

5.2 The Typing Rules of Proto-Quipper-M. 62

5.3 The Evaluation Relation of Proto-Quipper-M. 66

5.4 Error-Generation Rules of Proto-Quipper-M. 70

5.5 Error-Propagation Rules of Proto-Quipper-M. 71

5.6 Error-Propagation Rules of Proto-Quipper-M (Continuation) . . 72

7.1 The Interpretation of Typing Derivations. 119

7.2 The Interpretation of Typing Derivations (Continuation). . . . 120

vi

Abstract

This thesis contains contributions to the mathematical foundations of quantum pro-

gramming languages.

The likely arrival of scalable quantum computers in the not so distant future has

resulted in a flurry of activity in the development of quantum programming languages.

As in classical computing, the transition from a description of a quantum algorithm

found in the literature to a hardware-specific set of instructions run on a quantum

device is a complex process, prone to errors. This issue is exacerbated in the quantum

setting not only by the complexity of quantum algorithms but also by the fragility of

quantum information, which renders ineffective some of the classical techniques used

to debug programs.

In this thesis, we contribute to the solution of some of these issues. We intro-

duce Proto-Quipper-M, a new quantum programming language designed to serve as

a testbed for the research and development of sound mathematical semantics and

reasoning techniques for quantum programs. We first present Proto-Quipper-M as a

formalization of a fragment of Quipper, a high-level functional programming language

for describing families of quantum circuits. In particular, we define Proto-Quipper-M

as a simply-typed lambda calculus with a special type for quantum circuits and a

strong type system designed to enforce linearity on quantum data, and thus prevent

violations of the no-cloning property of quantum information. We endow Proto-

Quipper-M with computational meaning via a big-step operational semantics and

prove that the language is type-safe by showing that it enjoys the type-preservation

and error-freeness properties. We also give Proto-Quipper-M a denotational seman-

tics in a suitable class of monoidal categories and show that these categories give rise

to linear-non-linear models in the sense of Benton, and thus models of intuitionis-

tic linear logic. Finally, we crystallize the connection between the syntax and the

semantics of the language by proving the soundness theorem for Proto-Quipper-M.

vii

List of Abbreviations and Symbols Used

N The set of natural numbers {0, 1, 2, . . .}, p.10.

R The set of real numbers, p.10.

C The set of complex numbers, p.10.

α† The complex conjugate of α, p.10.

⟨ · , · ⟩ The inner product operation on a vector space, p.10.

H A Hilbert space, p.11.

H ∗ The dual of the Hilbert space H , p.11.

∥ · ∥ The norm of a scalar, vector, or linear operator, p.12.

T † The adjoint of the linear operator T , p.12.

U−1 The inverse of the linear operator U , p.12.

⊗ The tensor product, p.15.

{|0⟩, |1⟩} The computational basis of C2, p.17.

C(A,B) The class of morphisms with domain A and codomain B, p.24.

Set The category of sets and functions, p.25.

Rel The category of sets and relations, p.25.

Mon The category of monoids and monoid homomorphisms, p.25.

FHilb The category of finite-dimensional Hilbert spaces and linear

transformations, p.25.

α : F ⇒ G A natural transformation from the functor F to the functor

G, p.27.

[C,D] The category of functors F : C → D and natural transforma-

tions, p.27.ˆ︁C The category of presheaves on C, p.28.

HA The contravariant representable hom-functor with represen-

ting object A, p.28.

Y The Yoneda embedding, p.29.

lim
←I

D The limit of a diagram D : I → C, p.30.

lim
→I

D The colimit of a diagram D : I → C, p.31.

viii

F ⊣ G The functor F : C → D is a left adjoint to the functor

G : D → C, p.32.

SMC Symmetric monoidal category, p.38.

SMCC Symmetric monoidal closed category, p.39.

B(− A specified right adjoint to the endofunctor −⊗B, p.39.

CCC Cartesian closed category, p.39.

(F,m0,m) A monoidal functor F with structure morphisms m0 and m,

p.41.

LNL Linear-non-linear model, p.44.

Set2
op

The presheaf category over 2, p.46.

[[−]]W The interpretation function for wire types in W , p.53.

ML The symmetric monoidal category of labeled circuits, p.54.

Circ(T, U) The type of circuits with inputs of type T and outputs of type

U , p.55.

FV (M) The set of free variables of the term M , p.57.

M [N/x] The capture-avoiding substitution of N for x in M , p.59.

D A derivation, p.61.

Γ;Q ⊢M : A A typing judgement with variable context Γ, label context Q,

and term M of type A, p.61.

(C,M) A configuration with labeled circuit C and term M , p.65.

⇓ The evaluation relation of Proto-Quipper-M, p.65.

Q ⊢ (C,M) : A;Q′ A configuration typing judgement with input labels Q, confi-

guration (C,M), type A, and output labels Q′, p.86.

L A category of denotations of Proto-Quipper-M, p.99.

−⊙ L The copower functor of L, p.100.

♭ The representable functor L(I,−), p.101.

! The “bang” modality of linear logic, the boxing comonad,

p.108.

[[−]]s The interpretation function for simple M-types, p.109.

·△Γ1∪Γ2 The generalized duplication morphism on the context Γ1∪Γ2,

p.116.

ix

�Φ The discarding morphism on the parameter context Φ, p.117.

Φ,D The weakening of derivation D by the parameter context Φ,

p.131.

[[(C,M)]] The semantics in L of a well-typed configuration (C,M),

p.152.

x

Acknowledgements

First of all, I would like to thank my advisor Peter Selinger not only for introducing

me to the fascinating world of categorical semantics for quantum programming lan-

guages, but more importantly, for his guidance, support, and encouragement during

the elaboration of this thesis. I would also like to extend my thanks to the members

of my supervisory committee, Robert Paré and Julien Ross, for reading an earlier

version of this document and providing valuable comments and corrections. Not to

mention for the affable conversations, mathematical and otherwise, during my time

at Dalhousie. Special thanks to Michael Mislove for graciously agreeing to serve as

my external examiner.

The administrative staff at Dalhousie University, ranging from the Department of

Mathematics and Statistics to the Faculty of Graduate Studies, has been remarkably

helpful and accommodating. They do make a difference.

Finally, I would like to express my deepest gratitude to my family and friends for

being a constant reminder of what is most important in life. Thank you!

This research was supported in part by the Natural Science and Engineering Rese-

arch Council of Canada (NSERC), by the U.S. Air Force Office of Scientific Research,

Air Force Material Command, USAF under Award No. FA9550-15-1-0331, and by

Rigetti Computing.

xi

Chapter 1

Introduction

Quantum computing studies the information processing capabilities of systems gover-

ned by the laws of quantum mechanics, especially the use of superposition, entangle-

ment, and unitary evolution to carry out computation. The field started in the early

1980s when Feynman first explored the possibility of simulating physical systems with

computers [40], and Benioff introduced the first quantum mechanical model of a com-

puter [16]. However, it was not until the mid-1990s, after the work of Shor on integer

factorization and of Grover on database search, that quantum computing took off.

Indeed, in 1994, Shor showed that integers could be factored efficiently on a quantum

computer [100] while in 1996, Grover devised a quantum algorithm for searching a

database with a quadratic speedup over known classical algorithms [48]. Since then,

quantum computing has been applied to various other fields such as differential equa-

tions, quantum simulation, circuit synthesis, and machine learning (e.g, [9], [107],

[24], [112]). It is precisely this type of computational advantage and its applications

that have given rise to a significant interest in quantum computing.

The quantum bit or qubit, a generalization of the classical bit, is the basic unit

of information in quantum computing. The state of a qubit is represented by a unit

vector in a 2-dimensional Hilbert space, which we assume to be C2. The state space

of a system of n qubits is represented by C2n , and a state of such a system by a

unit vector in it. Two fundamental operations can be performed on qubits: unitary

transformations and measurements. Unitary transformations describe the evolution

of closed quantum systems while measurements reflect such systems’ interactions

with their environment. The application of such operations on a qubit system yields

a quantum computation. Thus, we can think of a quantum algorithm as a sequence of

quantum operations designed to solve a particular problem. Quantum algorithms can

be given a graphical representation in the form of quantum circuits, similar to that of

digital circuits. This formalism can moreover serve as a language for the description

1

2

of quantum algorithms.

Quantum systems exhibit exotic behaviors such as superposition, where taking

an appropriate linear combination of quantum states yields another quantum state,

and entanglement, where the quantum state of a component of a system cannot be

described independently of the state of the rest of the system. Yet another distinctive

trait of quantum systems is the no-cloning property of quantum information: in

general, quantum data cannot duplicated [109].

1.1 Formal Methods for Quantum Programming Languages

Establishing the correctness of quantum programs can be a difficult task. This is due

in no small measure to the nature of quantum information. For example, debugging

a classical program by analyzing its state is a useful technique in classical computing.

However, such an approach is ineffective in the quantum setting since observing the

state of a quantum program collapses the state. Thus, more sophisticated techniques

are required. Our approach consists in developing Proto-Quipper-M, a new quan-

tum programming language with a strong type system and robust semantics in which

quantum program behavior and meaning can be explored. Ultimately, this approach

can facilitate not only the specification of quantum programs but also the verifica-

tion of their properties. This potentially opens the door to formalization in proof

assistants, the gold standard when proving program correctness.

To better understand the behavior of programs, it is a powerful technique to give a

formal notion of meaning to the language in which such programs are written. There

are several approaches to the semantics of programming languages. In this thesis, we

will be mostly concerned with operational and denotational semantics.

• An operational semantics gives meaning to a program by formally describing

the behavior that it induces when run on an abstract machine. This type of

semantics focuses on how a computation is carried out.

• A denotational semantics gives meaning to a program by associating it with a

particular object in a mathematical structure. This type of semantics focuses

on what a computation means, rather than on how it is performed.

3

A denotational semantics establishes a robust connection between the syntactic

nature of a programming language and the structural essence of the mathematical

space in which it is interpreted. This connection is an effective tool for understanding

the capabilities and limitations of a programming language since it allows us to get

a better grasp of the behavior of programs in terms of the mathematical properties

of their interpretations.

Of interest to us will be the semantic spaces given by categorical structures since

these models are especially well-suited for the study of quantum programming lan-

guages. This is because they abstract away from implementation details allowing for

a better understanding of quantum programs and high-level reasoning about them.

More on this will be discussed in Chapter 4 and subsequent chapters of this thesis.

1.2 The Evolution of Quantum Programming Languages

The promise of the arrival of scalable quantum programmable devices in the near fu-

ture has propelled the development of a number of quantum programming languages.

In the early 1980s, Benioff [16] and Deutsch [35] introduced the first quantum mecha-

nical models of computers. But it was not until 1996 when Knill put forward a set of

conventions for describing quantum algorithms using pseudo-code [63] that the deve-

lopment of quantum programming languages started. One of the first such languages

was QCL, an imperative-style language developed by Ömer in the late 1990s and

early 2000s ([78], [79]). Around the same time, Sanders and Zuliani [92] and Bettelli

et al. [22] introduced other imperative-style quantum programming languages.

Functional quantum programming languages did not make their appearance until

the early 2000s. In 2002, Selinger introduced Quantum Flow Charts, a first-order

quantum programming language with a strong type system and a denotational se-

mantics given in terms of complete partial orders of superoperators [95]. In 2004, Van

Tonder defined λq, a lambda calculus for pure quantum computation equipped with

an operational semantic [105]. From 2004 to 2009, Selinger and Valiron developed

the Quantum Lambda Calculus ([104], [98], [99]), a higher-order functional quantum

programming language with a strong linear type system and both an operational and

a denotational semantics. In 2005, QML was introduced by Altenkirch and Grat-

tage [7] as a first-order quantum programming language with the aim of permitting

4

some quantum control in addition to quantum data. In 2011, Selinger and colla-

borators introduced Quipper ([6], [46], [47]), a very expressive high-level functional

programming language capable of constructing and manipulating quantum circuits.

Quipper is embedded in the functional programming language Haskell [58]. More on

Quipper and its relation to Proto-Quipper-M will be discussed in the next section.

We note that in 2015, Ross [90] introduced what is now known as Proto-Quipper-S,

another stand-alone functional quantum programming language.

We do not intend to present a comprehensive history of quantum programming

languages here. However, we note that in the last few years, a number of such

languages coming from industry and academia have emerged. Those developed by

industry include Microsoft’s stand-alone quantum programming language Q# ([73],

[102]), IBM’s quantum assembly language OpenQASM [34], and Rigetti’s quantum

instruction language Quil [101]. Among the research-oriented languages coming from

academia, we have the C-like imperative quantum programming language Scaffold [2],

the higher-order quantum extension of the PCF language, qPCF [80], and the quan-

tum circuit language QWIRE [82]. More on the history of quantum programming

languages can be found in [94], [43], [91], and [74]. For more recent developments,

see [30], [51], and [75].

1.3 Proto-Quipper-M: A Sound Language for Circuit Description

As mentioned in the previous section, Quipper is a high-level functional programming

language for quantum computing. One of the main features of Quipper, which sets

it apart from other quantum programming languages, is that Quipper is a quantum

circuit description language. The language not only provides a syntax for the con-

struction of quantum circuits by applying one gate at a time but also allows for the

treatment of circuits as data. These can then be stored in variables and operated

upon as a whole. Meta-operations on circuits such as circuit transformations, inver-

sions, and iterations are supported. This ability to manipulate circuits at two-levels

of abstraction, namely, locally, at the gate level, and globally, on entire circuits, is

not only powerful but also quite useful for programmers as it faithfully reflects how

many quantum algorithms are described.

Moreover, Quipper has been used to implement a number of non-trivial quantum

5

algorithms covering a variety of applications (see [28], [8], [50], [107], [54], [87], and

[71]). However, the language has some limitations. Quipper is implemented as an

embedded language in the host language Haskell. This approach certainly permits

an efficient implementation as it takes advantage of all the infrastructure already

present in the host language. But it also causes a disparity between the type system

of Quipper and that of its host. As a consequence, Quipper is not type-safe: there

are well-typed programs that yield run-time errors. In particular, Haskell does not

enforce linearity, that is, the constraint that a quantum state cannot be duplicated.

Moreover, Quipper does not have a formal semantics since as an embedded language

this would require to give a formal semantics to Haskell, a full-blown programming

language, an impractical task.

On the other hand, Proto-Quipper-M is a quantum programming language that

formalizes a small but useful fragment of Quipper and aims to solve some of the

issues above. As a typed lambda calculus, Proto-Quipper-M is a stand-alone, i.e.,

non-embedded, programming language with a strong type system and sound denota-

tional and operational semantics. The language serves as a stepping stone towards

giving Quipper a complete formal definition and semantics as a stand-alone quan-

tum programming language. Proto-Quipper-M is designed to enforce linearity, and

so prevent violations of the no-cloning property. As shown later in this thesis, Proto-

Quipper-M is indeed an error-free language.

As a circuit description language, Quipper has two distinct run-times:

• a circuit generation time, when circuits are constructed, and

• a circuit execution time, when circuits are run.

This feature is not unique to Quipper, but also present in hardware description

languages such as Verilog and VHDL ([52], [103], [10]). As a consequence of the

existence of two run-times, a Quipper program handles two types of values, namely,

parameters and states:

• a parameter is a value known at circuit generation time, and

• a state is a value known at circuit execution time.

6

For example, given a list of qubits [q1, . . . , qn], the length n of the list is typically

known at circuit generation time and is, therefore, a parameter while the state of the

qubits in the list is known at circuit execution time and is, therefore, a state. As

expected, a parameter may not depend on a state as states are unknown at circuit

generation time, but a state may depend on a parameter. In the end, Quipper is a

language that can describe not only individual quantum circuits, but also parametri-

zed families of them; this is one of the key features that Proto-Quipper-M is designed

to model.

Another distinctive feature of Quipper is that it has only one kind of variable,

which can store both parameters and states, or any combination of these. More-

over, its type system is powerful enough to guarantee that states and parameters

are used correctly. This feature makes Quipper a rather flexible language as it al-

lows programmers to work with complex quantum data structures more easily. The

distinction between parameters and states is also present in Proto-Quipper-M.

Overall, we use a semantic approach in the design of Proto-Quipper-M. What that

means is that we first

• define a categorical model for parameters and states, then

• identify some relevant structures in the model, and finally

• define the language to fit the model.

Note that this is the opposite of the usual methodology, where one first defines the

language and then looks for a model for it. However, our approach has the advantage

that our language is almost correct-by-construction as we have the structure that

models it from the beginning. Moreover, as a consequence of this semantic approach,

Proto-Quipper-M is a slightly more general language than Quipper in the sense that

it can describe families of morphisms in an arbitrary monoidal category, of which

quantum circuits are just one example.

Finally, we endow Proto-Quipper-M with computational meaning via an operati-

onal semantics and establish the connection between the language and the model by

proving safety and soundness properties.

7

1.4 Outline of Thesis

The thesis is organized as follows:

• Chapters 2– 4 form the first part of the thesis and present background material.

Chapter 2 reviews the basics of quantum computing. We revisit the principles of

quantum mechanics and the most relevant notions of Hilbert spaces and linear

operators. The Quantum Random Access Machine model and the quantum

circuit model of quantum computing are also introduced. Chapter 3 recalls

some of the most fundamental concepts of category theory. Adjunctions and

monads and their monoidal counterparts are discussed. Representable functors

and the Yoneda Lemma are introduced, as well as a characterization of monoidal

adjunctions. These will be used to prove that our categorical model of Proto-

Quipper-M is a model of intuitionistic linear logic. Chapter 4 introduces a first

categorical model of Proto-Quipper-M to motivate the general model introduced

later in the thesis. Special emphasis is placed on motivating some of the choices

made in the design of Proto-Quipper-M. The character of this chapter is mostly

expository.

We note that the first part of the thesis only contains the most necessary ma-

terial for later chapters and no proofs are given. However, numerous references

are provided here and in the ensuing chapters.

• Chapters 5– 6 form the second part of the thesis and present the more syntactic

and computational results of our work. In Chapter 5, we introduce the syn-

tax, type system, and operational semantics of Proto-Quipper-M. In particular,

Proto-Quipper-M is defined as a simply-typed lambda calculus with a special

type Circ(T, U) for quantum circuits and a strong type system. We recall the no-

tion of generalized circuit and introduce that of labeled circuit. Also, a big-step

operational semantics for Proto-Quipper-M is given in terms of an evaluation

relation on pairs of the form (C,M), where C is a labeled circuit and M is a

term of the language. In Chapter 6, we prove that Proto-Quipper-M is a type-

safe language by showing that it enjoys the subject-reduction and error-freeness

properties. This is accomplished by proving various intricate syntactic lemmas

which are also required to establish the fundamental substitution lemma.

8

• Chapters 7–9 form the third part of the thesis and present a detailed account of

our semantic results. In Chapter 7, we give a generalization of the categorical

model of Proto-Quipper-M discussed in Chapter 4 in terms of copower and

representable functors. In particular, we show that these functors yield a linear-

non-linear model in the sense of Benton, and so a model of intuitionistic linear

logic. Also, the denotational semantics of all the syntactic structures of Proto-

Quipper-M is given. Chapter 8 is the semantic analogue of Chapter 6 in the

sense that Chapter 8 contains the semantic versions of several of the syntactic

results obtained in Chapter 6. These semantic results are used in the proof

of the semantic version of the substitution lemma. In Chapter 9, we use the

conclusions of previous chapters to prove one of the main results of the thesis,

namely, the soundness theorem for Proto-Quipper-M .

1.5 Contributions

This thesis advances the mathematical foundations of quantum programming lan-

guages. Its main contribution is the development of a new quantum programming

language, called Proto-Quipper-M, designed as a proving ground for the research of

sound formal semantics and reasoning techniques for quantum programs.

My original work appears in chapters 4–9. Proto-Quipper-M was first defined in

the article [89], co-authored with my supervisor Peter Selinger. Besides motivating

the design choices of Proto-Quipper-M, this paper introduces the first categorical

models of the language and its operational semantics, and describes some of their

main properties. Chapter 4 of this thesis provides a summary of some of the contents

of this article. Chapters 5–9 extend and refine some of the properties of Proto-

Quipper-M mentioned in Chapter 4 and present new results. These results are my

original contribution. They include numerous syntactic lemmas leading to the proof

of the weakening lemma, which allows our language to not require explicit “discard”

operators (not all linear term calculi enjoy this property); a proof of the admissibility

of the fundamental substitution operation in Proto-Quipper-M; a demonstration of

the type-safety of our language via detailed proofs of the subject reduction and error-

freeness theorems; a generalization of previously known linear-non-linear models of

9

Proto-Quipper-M; several intricate lemmas leading to the semantic versions of the

weakening and substitution lemmas; and finally, a detailed, extensive proof of the

soundness theorem for Proto-Quipper-M.

Chapter 2

Quantum Computation

In this chapter, we review the basics of quantum computing, starting with linear

algebra. More on linear algebra can be found in [42] and [69]. Standard references

for quantum computing include [76], [1], and [110]. Our presentation roughly follows

those of [60], [95], and [90].

2.1 Linear Algebra

Linear algebra studies vector spaces and their linear transformations. In this section,

we revisit the most relevant notions of complex vector spaces as they are used in

quantum computing.

2.1.1 Hilbert Spaces

As usual, we write N for the set of natural numbers, R for the set of real numbers,

and C for the set of complex numbers. Also, for every α ∈ C, α† denotes its complex

conjugate. We will be mostly concerned with finite dimensional vector spaces over C.

Given such a space V , with basis {|b1⟩, . . . , |bn⟩} such that n ∈ N is the dimension of

V , every |v⟩ ∈ V can be written uniquely as a linear combination

|v⟩ = α1|b1⟩ + . . .+ αn|bn⟩

where α1, . . . , αn ∈ C. In column vector notation,

|v⟩ =

⎡⎢⎢⎣
α1

...

αn

⎤⎥⎥⎦ .
Clearly, V ∼= Cn.

A complex inner product space is a vector space V over C equipped with an inner

product operation ⟨ · , · ⟩ : V × V → C that satisfies the following conditions for all

|v⟩, |w⟩, |wj⟩ ∈ V and λj ∈ C:

10

11

1. Linearity in the second argument,

⟨|v⟩,
∑︂
j

λj|wj⟩⟩ =
∑︂
j

λj⟨|v⟩,|wj⟩⟩

2. Conjugate symmetry,

⟨|v⟩,|w⟩⟩ = ⟨|w⟩,|v⟩⟩†

3. Positive definitiveness,

⟨|v⟩,|v⟩⟩ ≥ 0

with equality if and only if |v⟩ = 0.

To simplify notation, we will write ⟨v|w⟩ instead of ⟨|v⟩,|w⟩⟩.
A Hilbert space is a complex inner product space that is a complete metric space

with respect to the distance function induced by its inner product. In quantum

computing, we mostly deal with finite-dimensional complex inner product spaces.

These spaces are necessarily complete, and so they are finite-dimensional Hilbert

spaces. So from now on, and unless otherwise stated, by Hilbert space we mean

finite-dimensional Hilbert space. Moreover, we will be mainly interested in spaces

of dimensions 2n for n ∈ N. Note that the column vector representation of a basis

element of such a space requires 2n entries, while its Dirac notation only needs a

binary string of length n. For example, for the first vector |b1⟩ of the canonical basis

of the 2n-dimensional vector space C2n , we have

|00 . . . 00⟩⏞ ⏟⏟ ⏞
n entries

= |b1⟩ =

⎡⎢⎢⎢⎢⎢⎣
1

0
...

0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
2n entries.

Given a Hilbert space H , the dual vector space H ∗ associated with H has as its

elements all linear transformations f : H → C. By the well-known Riesz represen-

tation theorem, each such f is of the form f(|ψ⟩) = ⟨φ|ψ⟩ for some unique |φ⟩ ∈ H .

We write f = ⟨φ| and call ⟨φ| the dual of |φ⟩. It has a matrix representation given

by the conjugate transpose of the matrix representation of |φ⟩; in other words, |φ⟩ is

12

represented by a column vector and ⟨φ| by a row vector. The linear transformation

⟨φ| is also called the “bra” of φ and the vector |φ⟩ the “ket” of φ.

If the inner product of two vectors is zero, then they are said to be orthogonal.

The Euclidean norm of a vector |ψ⟩, written as ∥|ψ⟩∥, is given by ∥|ψ⟩∥ =
√︁

⟨ψ|ψ⟩.
A unit vector is a vector of norm 1, and an orthonormal set is a set of mutually

orthogonal unit vectors.

Proposition 2.1.1. If {|b1⟩, . . . , |bn⟩} is an orthonormal basis for a Hilbert space H ,

then {⟨b1|, . . . , ⟨bn|} is an orthonormal basis for H ∗. �

2.1.2 Operators and Matrix Representations

If S : V → W is a linear transformation, |ζ⟩ a nonzero vector in V , λ ∈ C, and

S(|ζ⟩) = λ|ζ⟩, then |ζ⟩ is an eigenvector of S with eigenvalue λ. A linear operator

on a vector space V is a linear transformation T : V → V . We sometimes write T |δ⟩
instead of T (|δ⟩) whenever |δ⟩ ∈ V . Given |φ⟩, |ψ⟩ in a Hilbert space H , we can

define a linear operator |ψ⟩⟨φ| : H → H that maps |γ⟩ ↦→ |ψ⟩⟨φ| (|γ⟩) := ⟨φ|γ⟩|ψ⟩,
called the outer product of |ψ⟩ with ⟨φ|.

Theorem 2.1.2. Let B = {|b1⟩, . . . , |bn⟩} be an orthonormal basis for a Hilbert space

H . Then every linear operator T on H can be decomposed as

T =
n∑︂

k,j=1

Tkj |bk⟩⟨bj|

where Tkj = ⟨bk|T |bj⟩. �

Note that Tkj is the matrix entry in the kth row and jth column of the matrix

representation of T . Also, by Theorem 2.1.2, the identity operator 1H : H → H

can be written as

1H =
n∑︂

j=1

|bj⟩⟨bj|.

Given an operator T on a Hilbert space H , the adjoint of T , denoted by T † , is

the unique linear operator on H that satisfies ⟨T †(|φ⟩), |ψ⟩⟩ = ⟨|φ⟩, T (|ψ⟩)⟩ for all

|φ⟩, |ψ⟩ ∈ H . The matrix representation of T † is the conjugate transpose of T . An

operator U is called unitary if U † = U−1 where U−1 is the inverse operator of U , i.e.,

13

the unique linear operator such that UU−1 = U−1U = I. An operator T is called

Hermitian if T † = T , that is, if T is self-adjoint. Unitary and Hermitian operators are

familiar to physicists because they describe the time-evolution and the observables

of quantum systems, respectively. A projector P on a vector space H is a linear

operator on H that satisfies P 2 = P , and it is called an orthogonal projector if it

also satisfies P † = P . The eigenvalues of a Hermitian operator are real numbers:

Theorem 2.1.3. If T is a Hermitian operator on a Hilbert space H and T |ψ⟩ = λ|ψ⟩
for some non-zero |ψ⟩ ∈ H , then λ ∈ R. �

Given an orthonormal basis B = {|b1⟩, . . . , |bn⟩} of a Hilbert space H , the trace

of an operator T on H is defined as

tr(T) =
n∑︂

j=1

⟨bj|T |bj⟩.

The trace of an operator is independent of the basis in which is expressed.

A linear operator T that satisfies T †T = TT † is said to be normal. Note that

unitary and Hermitian operators are normal. The following is a fundamental theorem

of normal operators.

Theorem 2.1.4 (Spectral Decomposition). If T is a normal operator on a finite-

dimensional Hilbert space H , then there is an orthonormal basis B = {|b1⟩, . . . , |bn⟩}
of H consisting of eigenvectors of T . �

We denote the eigenvalues of |bj⟩ by λj and call the set of eigenvalues of T the

spectrum of T . Note that the spectral decomposition of T is then given by

T =
n∑︂

j=1

λj |bj⟩⟨bj|.

In terms of matrices, the spectral decomposition theorem takes the following form:

Theorem 2.1.5. If T is a normal matrix, then there exists a unitary matrix U and a

diagonal matrix D such that T = UDU †, where the entries of D are the eigenvalues

of T and the columns of U are the eigenvectors of T . �

Table 2.1 gives examples of normal matrices representing gates commonly used in

the design of quantum circuits. The unitary and Hermitian matrices H, X, CNOT,

14

H = 1√
2

[︃
1 1
1 −1

]︃
X =

[︃
0 1
1 0

]︃
S =

[︃
1 0
0 i

]︃
T =

[︃
1 0
0 eiπ/4

]︃

CNOT =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ SWAP =

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ CS =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

⎤⎥⎥⎦
Table 2.1: Commonly Used Quantum Gates.

and SWAP are known as the Hadamard, not, controlled-not, and swap gates, re-

spectively. The unitary matrices S, T , and CS are known as the phase, π/8, and

controlled-phase gates, respectively.

The spectral decomposition theorem is very useful as it allows us to diagonalize

normal operators, and so simplify the expressions for functions of normal operators.

If f : C → C is a function with Taylor series expansion given by

f(z) =
∞∑︂

m=0

amz
m,

and T is a normal operator on a Hilbert space H with basis B = {|b1⟩, . . . , |bn⟩}
consisting of orthonormal eigenvectors of T whose eigenvalues belong to the interval

of convergence of the Taylor series for f , then we can define

f(T) =
∞∑︂

m=0

amT
m.

In this case,

f(T) =
n∑︂

j=1

f(λj) |bj⟩⟨bj|.

For example, the exponential of the unitary operator S is given by

eS =
1∑︂

j=0

eλj |j⟩⟨j| =

[︄
e 0

0 ei

]︄

since S has eigenvectors |0⟩ and |1⟩ with respective eigenvalues 1 and i.

15

2.1.3 Tensor Products

The tensor product is a construction of paramount importance in quantum compu-

ting as it can be used to build complex quantum systems from simple ones. Sup-

pose that H1 and H2 are finite-dimensional Hilbert spaces with orthonormal bases

B1 = {|b1⟩, . . . , |bn⟩} and B2 = {|c1⟩, . . . , |cm⟩}, respectively. Then, the tensor pro-

duct space H1 ⊗ H2 is the Hilbert space with basis {|bi⟩ ⊗ |cj⟩}i∈{1,...,n},j∈{1,...,m}
characterized by the following axioms:

1. For all α ∈ C, |ψ1⟩ ∈ H1, and |ψ2⟩ ∈ H2,

α(|ψ1⟩ ⊗ |ψ2⟩) = (α|ψ1⟩) ⊗ |ψ2⟩ = |ψ1⟩ ⊗ (α|ψ2⟩).

2. For all |ψ1⟩, |φ1⟩ ∈ H1 and |ψ2⟩ ∈ H2,

(|ψ1⟩ + |φ1⟩) ⊗ |ψ2⟩ = (|ψ1⟩ ⊗ |ψ2⟩) + (|φ1⟩ ⊗ |ψ2⟩).

3. For all |ψ1⟩ ∈ H1 and |ψ2⟩, |φ2⟩ ∈ H2,

|ψ1⟩ ⊗ (|ψ2⟩ + |φ2⟩) = (|ψ1⟩ ⊗ |ψ2⟩) + (|ψ1⟩ ⊗ |φ2⟩).

Given |ψ⟩ ∈ H1 and |φ⟩ ∈ H2, we sometimes write |ψφ⟩ or |ψ⟩|φ⟩ for |ψ⟩ ⊗ |φ⟩.
Suppose that T1 and T2 are linear operators on H1 and H2, respectively. Then

T1 ⊗ T2 is the linear operator on H1 ⊗ H2 given by

(T1 ⊗ T2)

(︄∑︂
i,j

αij|bi⟩ ⊗ |cj⟩

)︄
=
∑︂
i,j

αij T1|bi⟩ ⊗ T2|cj⟩

for all |ψ⟩ =
∑︁

i,j αij|bi⟩ ⊗ |cj⟩ ∈ H1 ⊗ H2. Moreover, if A and B are the matrix

representations of T1 and T2, respectively, then the matrix representation of T1 ⊗ T2

is given by the Kronecker product of A with B:

A⊗B =

⎡⎢⎢⎢⎢⎢⎣
A11B A12B . . . A1nB

A21B A22B . . . A2nB
...

...
...

...

An1B An2B . . . AnmB

⎤⎥⎥⎥⎥⎥⎦ ,
where Aij denotes the entry of A in row i, column j, and AijB denotes the scalar

multiplication of Aij with B. For example, the tensor product of the Hadamard gate

with the 2 × 2 identity gate is

16

H ⊗ I = 1√
2

[︄
1 1

1 −1

]︄
⊗ I

= 1√
2

[︄
1 · I 1 · I
1 · I −1 · I

]︄

= 1√
2

⎡⎢⎢⎢⎢⎢⎣
1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎤⎥⎥⎥⎥⎥⎦.

2.2 The Elements of Quantum Computing

Quantum computing is the study of the type of information processing that can be

performed by physical systems governed by the laws of quantum mechanics. The

discovery of quantum mechanics at the beginning of the 20th century was due to

the physics crisis of the time: the failure of classical mechanics to describe many

phenomena at the atomic level. And so quantum mechanics was born as a new

mathematical framework for the development of physical theories, yielding a rather

accurate description of the physical world at a small scale.

The laws of quantum mechanics are simple but counter-intuitive. One of the

goals of quantum computing is to develop tools that improve our understanding and

intuition of quantum mechanics. Moreover, quantum computers potentially offer

impressive computational speed-up over classical computers. For example, in 1994

Peter Shor showed that the factoring problem for integers could be solved efficiently

on a quantum computer [100], and in 1996 Lov Grover showed that the search problem

through an unstructured space could be sped up as well [48]. Since then many other

problems from fields as diverse as quantum circuit synthesis (see [53], [24], [62], and

[97]), differential equations ([68], [21], [9]), quantum simulation ([111], [41], [29]), and

machine learning ([70], [38], [112]), have been shown to have more efficient solutions

when solved using techniques from quantum computing.

17

2.2.1 Quantum Bits and Quantum Systems

The quantum bit or qubit is the fundamental unit of information in quantum compu-

ting; it is a generalization of the classical bit. While a classical bit can be in either

of two states, 0 or 1, the state of a qubit can be any linear combination α|0⟩ + β|1⟩,
where α, β ∈ C are amplitudes such that |α|2 + |β|2 = 1, and {|0⟩, |1⟩} is an ortho-

normal basis of a 2-dimensional Hilbert space, which we will assume to be C2. The

basis {|0⟩, |1⟩} is also known as the computational basis. Two states are considered

equivalent if one is a scalar multiple of the other.

By analogy with the states of a classical bit, the qubit states |0⟩ = 1|0⟩+ 0|1⟩ and

|1⟩ = 0|0⟩ + 1|1⟩ are sometimes called classical states, while states |ψ⟩ = α|0⟩ + β|1⟩
with non-zero amplitudes are called quantum superpositions of |0⟩ and |1⟩. In general,

the state space of a system of n qubits is C2n and a state of such a system is a unit

vector of the form

|ψ⟩ =
∑︂

b1,...,bn∈{0,1}

αb1...bn|b1 . . . bn⟩,

where αb1...bn ∈ C, and |b1 . . . bn⟩ is the j-th canonical basis vector of C2n , where j is

the natural number whose binary representation is b1 . . . bn.

For any qubit states |ψ⟩ = α0|0⟩+α1|1⟩ and |φ⟩ = β0|0⟩+β1|1⟩, the product state

of |ψ⟩ with |φ⟩ is given by |ψ⟩ ⊗ |φ⟩ = α0β0|00⟩ + α0β1|01⟩ + α1β0|10⟩ + α1β1|11⟩.
Note that, in general, the state of a pair of qubits is not of the form |ψ⟩ ⊗ |φ⟩. For

example, the Bell state |01⟩+|10⟩√
2

cannot be written as a tensor product |ψ⟩ ⊗ |φ⟩ for

any |ψ⟩, |φ⟩ ∈ C2. Such states are called entangled and they play a fundamental role

in quantum computing.

2.2.2 Evolution of Quantum Systems

One of the fundamental operations that can be performed on qubits is a unitary

transformation. Such a transformation describes the evolution of the state space of

a quantum system, and in the context of quantum computing, it is represented by

a unitary matrix. A unitary transformation on n qubits is called an n-ary quantum

gate.

Important examples of unary and binary quantum gates are given in Table 2.1

on page 14. Like any other linear operators, quantum gates are determined by their

18

actions on a basis. For example, the not gate X swaps the basis vectors, sending

|0⟩ to |1⟩, and |1⟩ to |0⟩. The Hadamard gate H can create quantum superpositions,

for example, H|0⟩ = |0⟩+|1⟩√
2

and H|1⟩ = |0⟩−|1⟩√
2

. The controlled-not gate CNOT is

a 2-qubit gate that does not change the first qubit and applies the not gate X to

the second qubit only when the first qubit is |1⟩. These gates can be used to create

entanglement between qubits, for example,

(CNOT ◦ (H ⊗ I) ◦ (X ⊗ I))(|0⟩ ⊗ |0⟩) = (CNOT ◦ (H ⊗ I))(X|0⟩ ⊗ I|0⟩)

= (CNOT ◦ (H ⊗ I))(|1⟩ ⊗ |0⟩)

= CNOT (H|1⟩ ⊗ I|0⟩)

= CNOT ((|0⟩−|1⟩√
2

) ⊗ |0⟩)

= CNOT (|00⟩−|10⟩√
2

)

= CNOT (|00⟩√
2

) − CNOT (|10⟩√
2

)

= |00⟩−|11⟩√
2

.

(2.1)

Moreover, any n-ary quantum gate can be approximated arbitrarily closely by a

composition of a finite number of gates from Table 2.1. A gate set with this property

is said to be universal for quantum computing. Many such gate sets have been found

and investigated (see [36], [13], [61], [32], and [4]). As expected, not all potentially

desirable behaviors of a quantum system can be achieved through unitary evolution.

Of particular interest to us is the impossibility to clone an arbitrary quantum state

using a unitary transformation. This is the content of the no-cloning theorem proved

by Wootters and Zurek [109], and independently by Dieks [37], in 1982. Similarly, it

is impossible to delete an unknown quantum state with a unitary operation, as shown

by Pati and Braunstein [81] in what is now known as the no-deleting theorem. These

two properties of quantum systems, i.e., no-cloning and no-deleting of quantum infor-

mation, play a pivotal role in the development of quantum programming languages,

which in principle should enforce these constrains when dealing with quantum data.

Proto-Quipper-M is designed to consistently enforce such restrictions. More on this

will be explored in later chapters of this thesis.

19

2.2.3 Measurements

In the previous section, we discussed the evolution of closed quantum systems via

unitary transformations. However, to better understand such systems, we must let

them interact with their environment and measure the results of such interactions. A

measurement is the other fundamental operation that can be performed on the state

of a quantum system. Unlike unitary transformations, measurement is a probabilistic

operation.

In quantum computing at its most basic level, a measurement takes place when

we observe a qubit to determine its state. For example, when we measure a qubit in

state α0|0⟩ + α1|1⟩, the result is either 0 with probability |α0|2 and final state |0⟩, or

1 with probability |α1|2 and final state |1⟩. To get a better idea of how measurements

work in general, let us look at the measurement of a quantum system of two qubits

in state

α00|00⟩ + α01|01⟩ + α10|10⟩ + α11|11⟩.

In this case, if we measure the left qubit, the result is either 0 with probability

|α00|2 + |α01|2 and final state

α00|00⟩ + α01|01⟩√︁
|α00|2 + |α01|2

,

or 1 with probability |α10|2 + |α11|2 and final state

α10|10⟩ + α11|11⟩√︁
|α10|2 + |α11|2

.

If after this measurement, we measure the right qubit, the result is either 00 with

overall probability |α00|2 and final state |00⟩, or 01 with overall probability |α01|2 and

final state |01⟩, or 10 with overall probability |α10|2 and final state |10⟩, or 11 with

overall probability |α11|2 and final state |11⟩. Now it is easy to see that if we had

measured the right qubit first and then the left qubit, the result would have been the

same. The measurement of quantum systems with more than two qubits is similar.

2.2.4 The Quantum Random Access Machine Model

So far, our treatment has mostly focused on the mathematical aspects of quantum

computing. To bridge the gap between this abstract framework and a more concrete

20

Classical

Compter

Quantum

Processor

Measurements

Instructions

Table 2.2: The QRAM Model.

set-up for the implementation of quantum programming languages, we recall a pair

of useful computational models in this section and the next.

Several quite different, but equivalent, models of quantum computing have been

developed (see [36], [39], [86], and [5]). Here we discuss a convenient architecture, cal-

led the Quantum Random Access Machine, or QRAM, introduced by Knill [63], that

is rather fitting for the design and interpretation of quantum programming languages.

In a QRAM model, two devices interact with each other: a classical computer and a

quantum processor, as in Table 2.2. The latter is assumed to have several addressa-

ble quantum bits on which it can operate. In particular, the quantum processor can

initialize, apply unitary transformations to, and measure any of its qubits.

With this architecture in mind, it is not too difficult to see how to run a quantum

program. Namely, the classical computer stores the program where it is compiled and

executed. During the run, the classical device may send a sequence of instructions to

the quantum processor requesting the performance of quantum operations on some of

its qubits. Once these are completed, the results of the measurements are sent back

to the classical computer for further processing. This feedback loop can be executed

as many times as necessary.

2.2.5 Quantum Circuits

In the previous section, we presented a rather schematic, but natural, architecture

for a quantum computer: the QRAM model. Here we introduce what is perhaps

21

the most well-known model of quantum computation, namely, the quantum circuit

model of Deutsch [36]. In this model, a quantum circuit is a sequence of unitary

operations with measurements at the end. We can think of these circuits as sequences

of instructions to be executed by the quantum processor of a QRAM. And so the

quantum circuit formalism can also serve as a language for the implementation of

quantum algorithms.

Quantum circuits have graphical representations that resemble those of digital

circuits. The identity gate on n qubits In is represented by n horizontal wires. For

example, I2 is depicted as

.

We also refer to these wires as quantum wires or wires of qubit type as they serve as

references to qubits in a computation.

A non-identity unitary transformation operating on n qubits is represented by a

labeled box with n input wires and n output wires. For example, the 1-qubit not gate

X is represented by

X ,

while an arbitrary 3-qubit gate U by

U

.

Some special gates have distinctive representations, i.e., without boxes surrounding

their labels. For example, the 2-qubit controlled-not gate CNOT is represented by

•
,

while the swap gate SWAP by

×

× .

The gate implementing the measurement of a qubit in the computational basis is

depicted as

22

.

Here we refer to wires drawn with double lines as classical wires or wires of bit type

as they serve as references to bits in a computation. So the measurement gate inputs

a qubit and outputs a bit.

The graphical representation of the tensor product of quantum gates is given by

the vertical concatenation of their corresponding representations. For example, the

tensor product I2 ⊗ S is depicted as

S ,

while the product SWAP⊗ I1 as

×

×

.

The composition of quantum gates on n qubits is represented by the horizontal

concatenation of their corresponding representations. More precisely, the concatena-

tion occurs by joining the output wires of the representation of the first gate being

applied with the input wires of the representation of the second one. For example,

the composition (SWAP ⊗ I1) ◦ (I2 ⊗ S) is depicted as

×

×

S .

By the functoriality of ⊗, we have that

(SWAP ◦ I2) ⊗ (I1 ◦ S) = (SWAP ⊗ I1) ◦ (I2 ⊗ S),

and by the discussion above, we see that the graphical representation of the tensor pro-

duct (SWAP◦I2)⊗(I1◦S) is the same as that of the composition (SWAP⊗I1)◦(I2⊗S).

23

Naturally, using the concatenation of diagrams, we can construct graphical repre-

sentations of more interesting quantum operations. For example, recall from Equa-

tion (2.1) that the gate CNOT ◦ (H ⊗ I) ◦ (X ⊗ I) creates entanglement between

pairs of qubits. This gate can be represented by

X H •

.

We finish this section by noting that we can obtain the matrix representation of

a quantum gate from its circuit representation by interpreting the vertical and hori-

zontal concatenation of the graphical representations of its components as the tensor

product and composition of the corresponding matrix representations, respectively.

For example, the matrix representation of the last quantum circuit depicted above is

CNOT ◦ (H ⊗ I) ◦ (X ⊗ I) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1√
2

0 1√
2

0

0 1√
2

0 1√
2

1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤⎥⎥⎥⎥⎥⎦

= 1√
2

⎡⎢⎢⎢⎢⎢⎣
1 0 1 0

0 1 0 1

0 −1 0 1

−1 0 1 0

⎤⎥⎥⎥⎥⎥⎦.

Chapter 3

Category Theory

3.1 Elementary Category Theory

In this chapter, we recall some of the most fundamental concepts of category theory,

including adjunctions, monads, and monoidal categories. More on the basics of ca-

tegory theory can be found in [56], [67], [11], and [88]. For connections of category

theory with computer science and logic, see [15], [33], [3], and [65]. A nice account

of quantum theory in terms of category theory and diagrammatic languages is given

in [57]. More advanced treatments of category theory include [66], [25], and [26].

3.1.1 Categories

We can think of a category as a system of related entities of the same kind satisfying

some natural conditions. In particular, a category is an abstraction of the collection

of sets and functions, and their composition and associativity and unit laws. In this

section, we introduce categories formally, provide some elementary examples, and fix

some notation.

Definition 3.1.1. A category C consists of the following:

• a class Ob(C) of objects ;

• for any two objects A,B ∈ Ob(C), a class C(A,B) of morphisms with domain

A and codomain B;

• for any object A ∈ Ob(C), a morphism idA ∈ C(A,A) called the identity

morphism on A;

• for any objects A,B,C ∈ Ob(C), an assignment called composition

◦ : C(B,C) ×C(A,B) C(A,C).

(g, f) g ◦ f

24

25

The morphism g ◦ f , also written as gf , is called the composition of g with f .

This data is required to satisfy the following two axioms:

1. Associativity : For any morphisms f ∈ C(A,B), g ∈ C(B,C), and h ∈ C(C,D),

h ◦ (g ◦ f) = (h ◦ g) ◦ f

2. Identity : For any morphism f ∈ C(A,B),

idB ◦ f = f = f ◦ idA

�

The class of objects of a category C may also be written as C0, and the class of

its morphisms as C1. We sometimes write A ∈ C instead of A ∈ C0, and 1A instead

of idA. If for any two objects A,B ∈ C0, the class C(A,B) is a set, then we say that

C is locally small. Morphisms can also be referred to as maps or arrows. We may

write A
f−→ B or f : A→ B whenever f ∈ C(A,B) and say that the source of f is A

and its target is B. A morphism f : A → B is called an isomorphism if there exists

a morphism f−1 : B → A such that f−1 ◦ f = idA and f ◦ f−1 = idB. We then say

that A and B are isomorphic.

Categorical structures abound in mathematics. The prototypical example is the

category Set, whose objects are sets and whose morphisms are functions. Other

examples include the category Rel, with sets as objects and binary relations as mor-

phisms; the category FHilb, whose objects are finite-dimensional Hilbert spaces and

whose morphisms are linear maps; and the category Mon, with monoids as objects

and monoid homomorphisms as morphisms.

We can construct new categories from others. Given a category C, the opposite

category Cop has the same objects as C, but with morphisms Cop(A,B) equal to

C(B,A). Given categories C and D, the product category C × D has as objects

ordered pairs (A,B), where A is an object in C and B is an object in D, and as

morphisms, the pairs (f, g) : (A,B) → (A′, B′), where f is a morphism in C(A,A′)

and g is a morphism in D(B,B′).

26

3.1.2 Functors and Natural Transformations

Just as objects in a category are related by morphisms, categories are related by

functors.

Definition 3.1.2. Let C and D be categories.

• A (covariant) functor F : C → D consists of

– an operation on objects

F0 : C0 → D0

that assigns an object F0(A) in D to each object A in C, and

– for each A,B ∈ C0, an operation on arrows

FA,B : C(A,B) → D(F0(A), F0(B))

that assigns an arrow F0(A) F0(B)
FA,B(f)

in D to each arrow A B
f

in C.

These operations satisfy the following axioms:

1. Compositionality : FA,C(g◦f) = FB,C(g)◦FA,B(f) for all arrows A B
f

and B C
g

in C.

2. Identity : FA,A(idA) = idF0(A) for every object A in C.

• A contravariant functor F : C → D consists of

– an operation on objects

F0 : C0 → D0

that assigns an object F0(A) in D to each object A in C, and

– for each A,B ∈ C0, an operation on arrows

FA,B : C(A,B) → D(F0(B), F0(A))

that assigns an arrow F0(B) F0(A)
FA,B(f)

in D to each arrow A B
f

in C.

These operations satisfy the following axioms:

27

1. Compositionality : FA,C(g◦f) = FA,B(f)◦FB,C(g) for all arrows A B
f

and B C
g

in C.

2. Identity : FA,A(idA) = idF0(A) for every object A in C. �

We may drop the subscripts of the operations defining a functor when no confusion

arises. Note that contravariant functors from C to D are in one-to-one correspondence

with covariant functors from Cop to D.

The notions of injective function and surjective function can be lifted to the level

of functors:

Definition 3.1.3. A functor F : C → D is

• faithful if each operation FA,B : C(A,B) → D(F (A), F (B)) is injective,

• full if each operation FA,B : C(A,B) → D(F (A), F (B)) is surjective, and

• an embedding if F is faithful and injective on objects. �

Just as functors relate categories, natural transformations relate functors that

have the same source and target.

Definition 3.1.4. Given functors F,G : C → D, a natural transformation α : F ⇒ G

from F to G is a family of morphisms αA : F (A) → G(A) in D indexed by objects A

in C such that for each morphism f : A→ B in C the following diagram commutes:

F (A) G(A)

F (B) G(B).

αA

F (f) G(f)

αB

The morphisms αA are called the components of α. �

Functors and natural transformations yield categories.

Definition 3.1.5. Given categories C and D, the functor category from C to D,

written as [C,D] or DC, has as objects the functors from C to D and as morphisms

the natural transformations between them. �

Functor category isomorphisms are rather relevant in category theory, and so have

their own name.

28

Definition 3.1.6. Given categories C and D, a natural isomorphism between func-

tors from C to D is an isomorphism in the functor category [C,D]. �

The following characterization of a natural isomorphism is useful.

Lemma 3.1.7. Let F,G : C → D be functors and α : F ⇒ G a natural trans-

formation. Then α is a natural isomorphism if and only if for all objects A ∈ C,

αA : F (A) → G(A) is an isomorphism in D. �

As expected, when there is a natural isomorphism from F to G, we say that F

and G are naturally isomorphic, and write F ∼= G, F (A) ∼= G(A) naturally in A ∈ C,

or even F (A) ∼=A G(A).

3.1.3 Representable Functors and the Yoneda Lemma

In this section, we recall a fundamental result of category theory, the Yoneda lemma.

This lemma characterizes the natural transformations from a representable hom-

functor to a presheaf, and it has as a consequence a representation that allows us

to embed any category into the category of its presheaves. We begin by defining

some of the structures just mentioned.

Definition 3.1.8. Let C be a category. A presheaf on C is a functor Cop → Set. �

Presheaves can be organized into categories.

Definition 3.1.9. Given a category C, we define the category of presheaves on C, so-

metimes written as ˆ︁C, as the functor category [Cop ,Set] whose objects are presheaves

on C and morphisms natural transformations between them. �

Certain types of presheaves on a given category serve as faithful representatives

of the objects in such category.

Definition 3.1.10. Given a locally small category C and an object A ∈ C, we

define the contravariant representable hom-functor with representing object A to be

the presheaf

HA : Cop → Set

such that

29

• for every object B ∈ C, HA(B) = C(B,A), and

• for every morphism f : B′ → B in C,

HA(f) : C(B,A) → C(B′, A)

is given by the assignment g ↦→ g ◦ f for all g : B → A in C(B,A). �

Note that HA(f) is sometimes written as C(f, A) or − ◦ f . Also, there is a

covariant version of representable hom-functors defined in the natural way.

Definition 3.1.11. Let C be a locally small category. A functor F : Cop → Set is

representable if F ∼= HA for some object A ∈ C. A representation of F is a choice of

an object A ∈ C and a natural isomorphism between F and HA. �

We now present the main result of this section.

Theorem 3.1.12 (The Yoneda Lemma). Let C be a locally small category. Then

there exists a bijective correspondence

[Cop ,Set](HA, F) ∼= F (A)

natural in A ∈ C and F ∈ [Cop ,Set]. �

The following functor yields a representation of C in ˆ︁C.

Definition 3.1.13. Given a locally small category C, we define the functor

Y : C → [Cop ,Set]

as follows:

• for every object A ∈ C, let Y(A) = HA, and

• for every morphism f : A→ A′ in C, let

Y(f) : HA ⇒ HA′

be the natural transformation whose component at an object B ∈ C is given

by the function Y(f)B : HA(B) = C(B,A) → HA′(B) = C(B,A′) that sends a

morphism g : B → A to the morphism f ◦ g : B → A′. �

Corollary 3.1.14. For any locally small category C, the functor

Y : C → [Cop ,Set]

is a full embedding, called the Yoneda embedding. �

30

3.1.4 Limits and Colimits

So far in this chapter, we have mostly focused on structures that relate categories,

namely, functors; in this section, we turn our attention to structures that can be

built inside categories, namely, limits and colimits. These structures are of utmost

importance as they capture many constructions in mathematics.

Typical examples of limits include the cartesian product of sets in the category

Set, the direct product of groups in the category Grp, and the meet of a set in a

poset (A,≤), when seen as a category.

Definition 3.1.15. Given categories I and C, a diagram in C of shape I is a functor

D : I → C. �

The general definition of limit is a follows.

Definition 3.1.16. Let I and C be categories, and D : I → C a diagram.

• A cone on D consists of an object A ∈ C, called the vertex of the cone, along

with a family

{fi : A→ D(i) : i ∈ I0}

of morphisms in C such that for all morphisms α : i→ j in I, the diagram

A

D(i) D(j)

fi fj

D(α)

commutes.

• A limit of D is a cone on D with a vertex L and a family

{pi : L→ D(i) : i ∈ I0}

of morphisms, called the projections of the limit, such that for every cone

(A, {fi : A → D(i) : i ∈ I0}) on D, there exists a unique morphism f : A → L

such that for every i ∈ I0, fi = pi ◦ f . The vertex L is called the limit object of

the limit cone (L, {pi : L→ D(i) : i ∈ I0}) and is denoted by limD or lim
←I

D. �

31

The dual notion of a limit is a colimit. The sum of sets is an example of a colimit

in Set, as is the free product of groups in Grp, and the join of a set in a poset (A,≤).

Here is the general definition.

Definition 3.1.17. Let I and C be categories, and D : I → C a diagram.

• A cocone on D consists of an object A ∈ C, called the vertex of the cocone,

along with a family

{fi : D(i) → A : i ∈ I0}

of morphisms in C such that for all morphisms α : i→ j in I, the diagram

A

D(i) D(j)

fi

D(α)

fj

commutes.

• A colimit of D is a cocone on D with a vertex C and a family

{ci : D(i) → C : i ∈ I0}

of morphisms, called the coprojections of the colimit, such that for every cocone

(A, {fi : D(i) → A : i ∈ I0}) on D, there exists a unique morphism f : C → A

such that for every i ∈ I0, fi = f ◦ ci. The vertex C is called the colimit object

of the colimit cone (C, {ci : D(i) → C : i ∈ I0}) and is denoted by colimD or

lim
→I

D. �

3.1.5 Adjunctions

In this section, we introduce one of the fundamental notions of category theory, na-

mely, adjunctions. Adjunctions are pervasive in mathematics as they reflect naturally

occurring patterns. These patterns appear in several different, but equivalent, ways.

Here we recall some of the main definitions and results about adjunctions as used in

this thesis.

32

Definition 3.1.18. Given categories and functors C D
F

G
, we say that F is a

left adjoint to G, and G is a right adjoint to F , and write F ⊣ G, if there is a family

ϕ of isomorphisms

ϕA,B : C(A,G(B)) ∼= D(F (A), B)

natural in A ∈ C and B ∈ D. �

An adjunction between F and G is a choice of such a natural isomorphism ϕ, and

we write ϕ : F ⊣ G, or F ⊣ G when ϕ is clear from the context. Given a morphism

f : A → GB of C, the morphism ϕA,B(f) : F (A) → B of D is called the transpose

of f and is denoted by f ∗. Similarly, given a morphism g : F (A) → B of D, the

morphism ϕ−1A,B(g) : A→ G(B) of C is called the transpose of g and is denoted by g∗.

Forgetful functors usually have adjoints. For example, consider the category Mon

of monoids and monoid homomorphisms. The forgetful functor U : Mon → Set has

a left adjoint functor F : Set → Mon that sends each set X to the free monoid

on X. Similarly, consider the category VectC of vector spaces over C and linear

transformations. The forgetful functor U : VectC → Set has a left adjoint functor

F : Set → VectC that sends each set X to the complex vector space with basis X.

We now introduce some additional structures used in alternative definitions of

adjunction. First, we have the unit and counit of an adjunction.

Definition 3.1.19. Given an adjunction C D

F

G

⊥ whose natural isomorphism

ϕ has components ϕA,B : C(A,G(B)) → D(F (A), B) for objects A ∈ C and B ∈ D,

we define

• the unit of the adjunction to be the natural transformation η : 1C ⇒ G◦F with

components ηA : A → G(F (A)) given by ηA = ϕ−1A,F (A)(1F (A)) for each object

A ∈ C, and

• the counit of the adjunction to be the natural transformation ϵ : F ◦ G ⇒ 1D

with components ϵB : F (G(B)) → B given by ϵB = ϕG(B),B(1G(B)) for each

object B ∈ D. �

For example, consider the adjunction above, Set VectC

F

U

⊥ . The compo-

nents of its unit η : 1Set ⇒ U ◦ F are given by the functions ηX : X → U(F (X))

33

that send each element x of a set X to itself while the components of its counit

ϵ : F ◦ U ⇒ 1VectC are given by the linear transformations ϵV : F (U(V)) → V that

send each (finite) formal C-linear sum
∑︁

v∈V αvv in F (U(V)) to its evaluation in the

complex vector space V .

The unit and counit satisfy some useful identities, which will be used in the second

formulation of adjunctions in Theorem 3.1.23 below.

Lemma 3.1.20. Given an adjunction C D
F

G

⊥ with unit η and counit ϵ, then

for all objects A ∈ C and B ∈ D, the following diagrams commute:

F (A) F (G(F (A))) G(B) G(F (G(B)))

F (A) G(B)

F (ηA)

1F (A)

ϵF (A)

ηG(B)

1G(B)

G(ϵB) (3.1)

�

The identities (3.1) are called the triangle identities. We now introduce the notion

of universal arrow. Universal arrows will be used in the third and last formulation of

adjunction.

Definition 3.1.21. Given a functor G : D → C and an object A ∈ C, a universal

arrow from A to G is a pair (F (A), ηA) consisting of an object F (A) ∈ D and a

morphism ηA : A → G(F (A)) of C such that for every pair (B, f) where B is an

object in D and f : A → G(B) a morphism of C, there is a unique morphism

f ∗ : F (A) → B of D such that the following diagram commutes in C:

A G(F (A))

G(B)

ηA

f
G(f∗)

�

Going back to the adjunction Set VectC

F

U

⊥ , it is the case that for any set X,

vector space V , and function f : X → U(V), there is a unique linear transformation

f ∗ : F (X) → V such that the diagram

34

X U(F (X))

U(V)

ηX

f
U(f∗)

commutes. This well-known fact precisely states that the component ηX of the unit

of the adjunction is a universal arrow from X to U . Actually, this situation holds in

general.

Lemma 3.1.22. Given an adjunction C D
F

G

⊥ and an object A ∈ C. Then the

unit component ηA : A→ G(F (A)) is a universal arrow from A to G. �

The following theorem shows that each of the two previous lemmas yields an

equivalent definition of adjunction.

Theorem 3.1.23. Given functors C D
F

G
, there is a one-to-one correspon-

dence between:

1. adjunctions ϕ : F ⊣ G,

2. natural transformations η : 1C ⇒ G ◦ F and ϵ : F ◦ G ⇒ 1D satisfying the

triangle identities, and

3. natural transformations η : 1C ⇒ G ◦ F such that ηA : A → G(F (A)) is a

universal arrow from A to G for every object A ∈ C. �

We finish this section by recalling a result that will be useful in later chapters

when dealing with the categorical semantics of Proto-Quipper-M. It tells us that left

adjoints are cocontinuous functors while right adjoints are continuous functors.

Theorem 3.1.24. Given an adjunction C D
F

G

⊥ , then F preserves colimits and

G preserve limits. �

3.1.6 Monads and Comonads

We finish Section 3.1 by introducing some relevant structures, namely, monads and

comonads, also known as triples and cotriples, respectively. We can think of these

35

structures as abstractions of universal algebras; however, they have found applications

in fields beyond pure mathematics such as theoretical computer science and logic.

Monads and comonads are based on endofunctors and, as we will see below, they

are closely related to adjoint functors.

Definition 3.1.25. Given a category C, a monad on C consists of a endofunctor

T : C → C equipped with a pair of natural transformations:

• µ : T 2 ⇒ T , called the multiplication, and

• η : 1C ⇒ T , called the unit,

such that the following coherence conditions are satisfied:

1. Associativity :

T 3 T 2

T 2 T

µT

Tµ

µ

µ

2. Unity :

T T 2 T

T

ηT Tη

µ
1T 1T

�

As an example of a monad we have the endofunctor T : Set → Set that sends a

set A to its Kleene closure A∗ (that is, T (A) is the set of strings over A) and a function

f : A → B to the function T (f) : T (A) → T (B) that sends a string (a1, a2, . . . , an)

to the string (f(a1), f(a2), . . . , f(an)). Also, for each set A, ηA : A → T (A) is the

function that sends an element a of A to the string (a), and µA : T 2(A) → T (A) is the

function that sends a string of strings ((a11, . . . , a1m), (a21, . . . , a2n), . . . , (al1, . . . , alp))

to the concatenated string (a11, a12, . . . , alp).

Examples of monads can be easily generated, as adjoint functors give rise to them:

Proposition 3.1.26. Given an adjunction C D
F

U

⊥ with unit η and counit ϵ,

the endofunctor T := U ◦ F along with the unit η and the natural transformation

µ := UϵF yield a monad on C. �

36

For example, the free monoid adjunction Set Mon
F

U

⊥ gives rise to the

Kleene closure monad described above. Moreover, every monad arises from an ad-

junction:

Proposition 3.1.27. Given a monad T on a category C with unit η and multiplica-

tion µ, there is a category D and an adjunction C D
F

U

⊥ with unit η and counit

ϵ that generates it. �

The dual notion of a monad is that of a comonad.

Definition 3.1.28. Given a category D, a comonad on D consists of an endofunctor

K : D → D equipped with a pair of natural transformations:

• δ : K ⇒ K2, called the comultiplication, and

• ϵ : K ⇒ 1D, called the counit,

such that the following coherence conditions are satisfied:

1. Coassociativity :

K3 K2

K2 K

δK

Kδ

δ

δ

2. Counity :

K K2 K

K

ϵK Kϵ

δ
1K 1K

�

As with monads, adjunctions yield comonads:

Proposition 3.1.29. Given an adjunction C D
F

U

⊥ with unit η and counit ϵ,

the endofunctor K := F ◦ U along with the counit ϵ and the natural transformation

δ := FηU yield a comonad on D. �

Also, every comonad arises from an adjunction:

37

Proposition 3.1.30. Given a comonad K on a category D with counit ϵ and comul-

tiplication δ, there is a category C and an adjunction C D
F

U

⊥ with unit η and

counit ϵ that generates it. �

Comonads play an important role in the categorical semantics of intuitionistic

linear logic as they are used to construct models of intuitionistic logic inside those of

intuitionistic linear logic. See [20], [23], [72], and Chapter 7 for more details.

3.2 Monoidal Category Theory

We may think of monoidal category theory as the extension of category theory with

the idea of parallelism. Informally, a monoidal category is a category in which ob-

jects and morphisms can be combined in parallel. Such categories are particularly

well suited to represent situations where objects can be interpreted as systems and

morphisms as processes transforming such systems.

3.2.1 Monoidal Categories

We begin this section by formally defining monoidal categories.

Definition 3.2.1. A monoidal category is a category M equipped with the following

data:

• a functor ⊗ : M×M → M, called the tensor product ;

• an object I ∈ M, called the unit object ;

• a natural isomorphism α whose components

αA,B,C : (A⊗B) ⊗ C → A⊗ (B ⊗ C) for all objects A,B,C ∈ M are called the

associators ;

• a natural isomorphism λ whose components λA : I ⊗ A → A for all objects

A ∈ M are called the left unitors ; and

• a natural isomorphism ρ whose components ρA : A ⊗ I → A for all objects

A ∈ M are called the right unitors.

This data must satisfy the triangle identity

38

(A⊗ I) ⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA⊗idB idA⊗λB

for all objects A,B ∈ M as well as the pentagon identity

(A⊗ (B ⊗ C)) ⊗D A⊗ ((B ⊗ C) ⊗D)

((A⊗B) ⊗ C) ⊗D A⊗ (B ⊗ (C ⊗D)).

(A⊗B) ⊗ (C ⊗D)

αA,B⊗C,D

idA⊗αB,C,DαA,B,C⊗idD

αA⊗B,C,D αA,B,C⊗D

for all objects A,B,C,D ∈ M. �

As customary, we may drop the subscripts of objects and morphisms when no

confusion arises. Some natural examples of monoidal categories are the category Set,

with a tensor product given by the cartesian product of sets, and a unit object given

by a singleton; and the category FHilb, with a tensor product given by the usual

tensor product of Hilbert spaces, as defined in Section 2.1.3, and a unit object given

by the set of complex numbers C when seen as a Hilbert space.

A strict monoidal category is a monoidal category in which all the associators

and unitors are identities. For example, a commutative monoid when regarded as a

discrete category yields a strict monoidal category in the natural way. Moreover, it

can be shown that λI = ρI holds in any monoidal category. A much deeper result is

given by the Coherence Theorem for Monoidal Categories :

Theorem 3.2.2. In a monoidal category M, every well-formed equation built from

◦,⊗, id, α, α−1, λ, λ−1, ρ, and ρ−1 holds. �

Definition 3.2.3. A symmetric monoidal category (SMC) is a monoidal category M

equipped with a natural isomorphism σ whose components σA,B : A ⊗ B → B ⊗ A,

called the symmetrors, for all objects A,B ∈ M satisfy the following coherence con-

ditions:

39

1. Compatibility with the associators : The diagram

A⊗ (B ⊗ C) (B ⊗ C) ⊗ A

(A⊗B) ⊗ C B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C B ⊗ (A⊗ C)

σA,B⊗C

αB,C,AαA,B,C

σA,B⊗id

αB,A,C

id⊗σA,C

commutes for all objects A,B,C ∈ M.

2. Compatibility with the unitors : The diagram

IM ⊗ A A⊗ IM

A

σIM,A

λA
ρA

commutes for all objects A ∈ M.

3. Compatibility with the symmetrors : The diagram

A⊗B B ⊗ A

A⊗B

σA,B

id σB,A

commutes for all objects A,B ∈ M. �

Definition 3.2.4. A symmetric monoidal closed category (SMCC) is a symmetric

monoidal category M such that for each object B ∈ M, the functor −⊗B : M → M

has a specified right adjoint B(− : M → M. �

Definition 3.2.5. A cartesian closed category (CCC) is a symmetric monoidal closed

category in which the tensor product is a categorical product. �

40

In a monoidal category, arrows with source the tensor unit I play the role of states

or points in their respective targets. We can also think of such arrows p : I → A as

preparing the initial fixed system I into a particular system p of type A.

Definition 3.2.6. Given a monoidal category M, a state or point of an object A in

M is a morphism of the form s : I → A. �

In FHilb, the points of a Hilbert space H are the linear functions ϕ : C → H ;

we can identify the point ϕ with the element h of H via h = ϕ(1). In Set, the points

of a set A are the functions f : {∗} → A; we can identify the point f with the element

a of A via a = f(∗). In Rel, the points of a set A are the relations R : {∗} → A; we

can identify the point R with the subset S of A of all elements related to ∗ according

to R.

Definition 3.2.7. Given a monoidal category M and objects A,B in M,

• a morphism j : I → A⊗B is called a joint state of A and B;

• a joint state is a product state, or separable, if it is of the form

I I ⊗ I A⊗B
λ−1
I a⊗b

for some states a : I → A and b : I → B; and

• a joint state is an entangled state if it is not a product state. �

In FHilb, joint states of Hilbert spaces H1 and H2 correspond to elements of

H1 ⊗ H2, product states correspond to elements of the form h1 ⊗ h2, and entangled

states correspond to elements of H1 ⊗ H2 which cannot be written in this form. In

Set, joint states of sets A and B correspond to elements of A × B, product states

correspond to elements (a, b) ∈ A × B coming from given a ∈ A and b ∈ B, and

there are no entangled states. In Rel, joint states of sets A and B correspond to

subsets of A × B, product states correspond to subsets P ⊆ A × B of the form

P = {(a, b) ∈ A × B : a ∈ Q and b ∈ R} for given states Q ⊆ A and R ⊆ B, and

entangled states correspond to subsets of A×B that are not of this form.

41

3.2.2 Monoidal Functors

Just as functors relate categories, monoidal functors relate monoidal categories.

Definition 3.2.8. Given monoidal categories M and N, a (lax) monoidal functor

(F,m0,m) from M to N is a functor F : M → N equipped with

• a morphism

m0 : IN → F (IM)

where IM and IN are the unit objects of M and N, respectively, and

• a natural transformation m with components

mA,B : F (A) ⊗ F (B) → F (A⊗B)

for all objects A,B ∈ M.

This data is required to satisfy the following coherence conditions:

1. Compatibility with the associators : The diagram

(F (A) ⊗ F (B)) ⊗ F (C) F (A) ⊗ (F (B) ⊗ F (C))

F (A⊗B) ⊗ F (C) F (A) ⊗ F (B ⊗ C)

F ((A⊗B) ⊗ C) F (A⊗ (B ⊗ C))

αF (A),F (B),F (C)

mA,B⊗id id⊗mB,C

mA⊗B,C mA,B⊗C

F (αA,B,C)

commutes for all objects A,B,C ∈ M.

2. Compatibility with the unitors : The diagrams

IN ⊗ F (A) F (A) F (A) ⊗ IN F (A)

F (IM) ⊗ F (A) F (A) ⊗ F (IM)

F (IM ⊗ A) F (A) F (A⊗ IM) F (A)

λF (A)

m0⊗id

id

ρF (A)

id⊗m0

id

mI,A mA,I

F (λA) F (ρA)

commute for all objects A ∈ M.

42

The morphism m0 and the natural transformation m and its components are called

the mediating or structure morphisms of F . If these morphisms are isomorphisms,

then F is said to be a strong monoidal functor. If they are identities, then F is said

to be a strict monoidal functor. To simplify notation, we usually write (F,m) instead

of (F,m0,m). �

The notion of monoidal functor can be naturally extended to contexts involving

symmetric monoidal categories.

Definition 3.2.9. Given symmetric monoidal categories M and N, a symmetric

monoidal functor (F,m) from M to N is a monoidal functor F : M → N whose

mediating morphisms are compatible with the symmetrors, that is, the diagram

F (A) ⊗ F (B) F (B) ⊗ F (A)

F (A⊗B) F (B ⊗ A)

σF (A),F (B)

mA,B mB,A

F (σB,A)

commutes for all objects A,B ∈ M. �

3.2.3 Monoidal Natural Transformations

Just as monoidal functors relate monoidal categories, monoidal natural transforma-

tions relate monoidal functors.

Definition 3.2.10. Given monoidal categories M and N and monoidal functors

(F,m) and (G, n) from M to N, a monoidal natural transformation η from (F,m) to

(G, n) is a natural transformation η : F ⇒ G whose components are compatible with

the structure morphisms of F and G, that is, the diagrams

F (A) ⊗ F (B) G(A) ⊗G(B)

F (A⊗B) G(A⊗B)

mA,B

ηA⊗ηB

nA,B

ηA⊗B

43

and
IN

F (IM) G(IM)

m0 n0

ηIM

commute for all objects A,B ∈ M. �

3.2.4 Monoidal Adjunctions

There is a natural extension of the notion of adjunction to the context of (symmetric)

monoidal categories.

Definition 3.2.11. Given (symmetric) monoidal categories M and N, a (symmetric)

monoidal adjunction between them is an ordinary adjunction in which both of the

functors are (symmetric) monoidal functors and both the unit and the counit of the

adjunction are monoidal natural transformations. �

There is a convenient characterization of symmetric monoidal adjunctions. We

will use this result later to show that our categorical model of Proto-Quipper-M is

actually an LNL model, defined in the next section, and so a model of intuitionistic

linear logic.

Theorem 3.2.12. Given symmetric monoidal categories C and D, a symmetric mo-

noidal functor (F,m) : C → D, and a functor G : D → C such that F ⊣ G. Then

the following two statements are equivalent:

1. The adjunction F ⊣ G lifts to a symmetric monoidal adjunction (F,m) ⊣ (G, n).

2. The symmetric monoidal functor (F,m) is strong. �

3.2.5 LNL Models and Monoidal Comonads

Relevant examples of monoidal adjunctions are given by the linear-non-linear models

of Benton [17].

44

Definition 3.2.13. A linear-non-linear model (LNL model) consists of

• a cartesian closed category C,

• a symmetric monoidal closed category L, and

• a pair of symmetric monoidal functors (F,m) : C → L and (G, n) : L → C that

form a symmetric monoidal adjunction with (F,m) ⊣ (G, n). �

Comonads can be extended to the context of (symmetric) monoidal categories.

These extensions have proved to be quite useful in the categorical interpretation of

the “bang” modality ! of linear logic.

Definition 3.2.14. Given a (symmetric) monoidal category L, a (symmetric) mo-

noidal comonad on L consists of a (symmetric) monoidal endofunctor (K, q) : L → L

equipped with a pair of monoidal natural transformations:

• δ : K ⇒ K2, called the comultiplication, and

• ϵ : K ⇒ 1L, called the counit,

such that the following coherence conditions are satisfied:

1. Coassociativity :

K3 K2

K2 K

δK

Kδ

δ

δ

2. Counity :

K K2 K

K

ϵK Kϵ

δ
1K 1K

�

As expected, LNL models yield symmetric monoidal comonads.

Lemma 3.2.15. Given a LNL model C D
F

G

⊥ with unit η and counit ϵ, the en-

dofunctor ! := F ◦G along with the counit ϵ and the natural transformation δ := FηG

yield a symmetric monoidal comonad. �

45

LNL models play a central role in the categorical semantics of the intuitionistic

fragment of Girard’s linear logic ([44], [45]) as they subsume several other well-known

categorical models such as Lafont categories [64], Seely categories [93], and linear

categories [20]. More on the categorical semantics of linear logic can be found in [72],

[23], and [20].

Chapter 4

Towards a Quantum Circuit Description Language

Besides motivating the definition of Proto-Quipper-M, the purpose of this chapter is

to introduce a first categorical model of the language. In Section 4.1, we present a

toy presheaf category that is not yet a model of Proto-Quipper-M but is particularly

well-suited to illustrate the distinction between parameters and states first discussed

in Section 1.3. In Section 4.2, we generalize this cartesian category to a monoidal

context to obtain a categorical structure in which Proto-Quipper-M can be soundly

modeled. This model is further generalized later in the thesis. Since this chapter

mainly serves as motivation for the structures introduced in the subsequent chapters,

we only sketch some of the main ideas here and provide details later. Most of the

material presented in this chapter first appeared in [89].

4.1 Modeling Parameters and States

In this section, we introduce a categorical model of the notions of parameter and state.

Being cartesian, this structure may serve as a model for a classical circuit description

language. However, as discussed in Section 4.2, this category is not suitable for

modeling quantum circuits. Nonetheless, this model has a rich enough structure to

illustrate several relevant constructions which will also be present in the more general

models introduced later in the thesis.

4.1.1 A Presheaf Model

Presheaf categories were introduced in Chapter 3. These categories have a very rich

structure which makes them ideal candidates for giving meaning to programming

languages. Our first categorical model of parameters and states is one such category,

namely, the category Set2
op

described below.

Consider the two-object category 2 with objects 0 and 1, and unique non-identity

morphism u : 0 → 1, then the presheaf category Set2
op

= [2op ,Set] has as objects

46

47

functors of the form A : 2op → Set and as arrows natural transformations f : A→ B

between them. More concretely, we can think of an object as a triple A = (A0, A1, a),

where a : A1 → A0 is a function, and of a morphism f : A → B as pair of functions

f0, f1 making the following diagram commute:

A1 B1

A0 B0

f1

a b

f0

(4.1)

For each x ∈ A0, we define the fiber of A over x as Ax = {s ∈ A1 | a(s) = x}. The

elements of A0 are called parameters and those of Ax states. An object A = (A0, A1, a)

naturally describes a family of sets (Ax)x∈A0 that uniquely determines it, up to isomor-

phism. As a consequence, there is a one-to-one correspondence between the elements

of A1 and the ordered pairs (x, s), called the generalized elements of A, where x is a

parameter in A0 and s is a state in the fiber of A over x.

We now have the following key observation:

The commutativity of square (4.1) precisely models the feature that a state may

depend on a parameter, but a parameter may not depend on a state.

To justify this, it suffices to examine the action of a morphism f : A → B on a

generalized element (x, s) of A, for which we write (y, t) = f(x, s). Let (x, s) be

such a generalized element. So, x ∈ A0 and s ∈ Ax. Let y = f0(x) ∈ B0 and

t = f1(s) ∈ B1, we then have

y = f0(x)

= f0(a(s))

= b(f1(s))

= b(t),

where the second equation holds since s ∈ Ax and the third since f : A → B is a

natural transformation. So, t ∈ By = Bf0(x) and the restriction of f1 to Ax yields a

function fx : Ax → Bf0(x) that sends the state s ∈ Ax to the state t = fx(s) ∈ Bf0(x).

Clearly, the state t depends on the parameter x (and the state s) and the parameter

48

y = f0(x) depends only on the parameter x. Hence, states may depend on parameters,

but parameters may not depend on states.

4.1.2 Parameter and State Objects

The following example further illustrates how the category Set2
op

models the dis-

tinction between parameters and states.

Example 4.1.1. Consider the objects bool and bit of Set2
op

defined below:

bool =
2

2

id bit =
2

1

v

where 2 = {0, 1}, id is the identity function on 2, 1 = {∗}, and v is the unique

function from the 2-element set 2 to the singleton 1.

Note that bool has (0, 0) and (1, 1) as generalized elements, which we may think

of as false and true, respectively, while the generalized elements of bit are (∗, 0)

and (∗, 1), which we may think of as simply 0 and 1, respectively. Intuitively, a

boolean is only a parameter. This is reflected in the generalized elements (0, 0) and

(1, 1) of bool by the fact that a state in a generalized element is the same as its

corresponding parameter, and so we may think of these elements as having no state

at all, just parameters. Similarly, intuitively, a bit is only a state. This is reflected by

all the generalized elements of bit having the same parameter, and so we may think of

these elements as having no parameter at all, just states. Not only do the generalized

elements of bool and bit formally look like parameters and states, respectively, but

most importantly, they do behave as such, as illustrated below.

Note that there is a morphism f : bool → bit that assigns 1 to true and 0 to

false as shown by the commutative diagram

2 2

2 1.

f1=id

id v

f0=v

However, no morphism g : bit → bool assigning true to 1 and false to 0 exists

49

since the diagram

2 2

1 2

g1=id

v id

g0

does not commute for any function g0 : 1 → 2. Thus, a bit can be initialized by a

boolean, but a boolean cannot be initialized by a bit, that is, a state may depend on

a parameter, but a parameter may not depend on a state. �

This example suggests the following definition.

Definition 4.1.2. Given an object A = (A0, A1, a) ∈ Set2
op

, we say that

• A is a parameter object if A1 = A0 and a = idA1 , and

• A is a state object or simple if A0
∼= 1. �

4.1.3 A Language for Parameters and States

The simply typed lambda calculus can be given semantics in a cartesian closed ca-

tegory. Since our presheaf model Set2
op

is cartesian closed as well as cocomplete,

we can then interpret the simply typed lambda calculus with, for example, base ty-

pes bool and bit, constants true, false : bool, operations and : bit × bit → bit,

not : bit → bit, and init : bool → bit, sum types, and inductive data types such

as list(A) and nat. Thus the simply typed lambda calculus can be extended with

these types to yield a categorically sound calculus. In this language, we can describe

parametrized circuits. For example, the term f = λb.λx. if b then notx else x, of

type f : bool → bit → bit, yields the NOT gate when applied to the boolean

true, but the identity gate when applied to false. Note, moreover, that the term

g = λx. if x then true else false, of type g : bit → bool, cannot be soundly inter-

preted in our presheaf model, as shown in Example 4.1.1, and so the type system

forbids such terms.

4.2 Modeling Families of Circuits

As we have seen, parameters and states can be modeled in Set2
op

. However, families of

quantum circuits cannot be adequately modeled in this category since it is cartesian.

In particular,

50

• for each object A ∈ Set2
op

, including state objects, there is a diagonal morphism

∆A : A→ A× A.

This is indeed problematic if we want to model quantum circuits since in this cate-

gory we can duplicate quantum states, violating the no-cloning property. Nonetheless,

this model serves as a bridge towards an appropriate generalization to the quantum

setting. Moreover, such a generalization is rather natural. From Section 4.1.1, an

object A = (A0, A1, a) ∈ Set2
op

can be seen as a pair (A0, (Ax)x∈A0) and a morphism

f : A → B as a pair (f0, (fx)x∈A0), where f0 is a function between parameter sets,

and for each parameter x in A0, fx is a function from a fiber of A to a fiber of B. We

can now generalize this to a monoidal setting by assuming each Ax to be an object

of a fixed monoidal category, and each fx : Ax → Bf0(x) to be a morphism of this

category.

4.2.1 Generalized Circuits

As an initial step in the design of a general circuit description language, we elaborate

on what we mean by a circuit. Instead of specifying circuits as graphical representa-

tions of sequences of gates, as is usually done, we adopt a more abstract point of view

and define a circuit as nothing more than a morphism in a given symmetric monoidal

category M. We call these morphisms generalized circuits. Thus, in this context, we

can think of Proto-Quipper-M as a language for describing families of morphisms in

M. Such morphisms can be considered as concrete data that our language will be

able to further manipulate.

We extend the category of generalized circuits M by fully embedding it into some

symmetric monoidal closed, product-complete category M. This can always be done,

for example, by the Yoneda embedding, but since our results do not depend on any

particular construction of such an extension, but only on the fact that it exists, we

won’t elaborate on it any further.

Since M is monoidal closed, it has higher-order objects such as ((A⊗B)(C)(D

which serve as support for the more concrete operations of M. Thus, we think of the

category M as an abstract category of states, in contrast to the category M which

we consider as a concrete category of circuits.

51

4.2.2 A Model of Proto-Quipper-M.

We now formally introduce parameters in our construction to get a model of Proto-

Quipper-M. We will denote this model by M.

Definition 4.2.1. Given a symmetric monoidal category M with a symmetric mo-

noidal closed, product-complete extension M, the category M consists of:

• objects given by pairs of the form A = (A0, (Ax)x∈A0), where A0 is a set and

(Ax)x∈A0 is an A0-indexed family of objects of M, and

• morphisms f : (A0, (Ax)x∈A0) → (B0, (By)y∈B0) given by pairs of the form

(f0, (fx)x∈A0), where f0 : A0 → B0 is a function and (fx)x∈A0 is an A0-indexed

family of morphisms fx : Ax → Bf0(x) of M. �

This construction is also known as the “families” construction. As before, the first

component of an object A = (A0, (Ax)x∈A0), namely A0, is called the parameter set

of A and its elements are called parameters. For each parameter x in A0, Ax is called

the fiber of A over x. The parameter and state objects of M are defined analogously

to those of Set2
op

:

Definition 4.2.2. Given a category M as above and an object A = (A0, (Ax)x∈A0)

of M, we say that

• A is a parameter object if each of its fibers is the tensor unit IM, that is, if

A = (A0, (Ix)x∈A0) where Ix = IM for each x ∈ A0,

• A is a state object or simple if A0
∼= 1, and

• A is an M-object if each of its fibers belongs to M. �

Not only does M have coproducts, but also a symmetric monoidal closed structure:

Proposition 4.2.3. The category M has coproducts. The initial object is given

by 0 = (∅, ∅), where the first component denotes the empty set and the second the

empty family. Binary coproducts are given by A+B = (A0 +B0, (Ci)i∈A0+B0), where

A0 + B0 = {(0, x) | x ∈ A0} ∪ {(1, y) | y ∈ B0} is the disjoint union of sets, and

C(0,x) = Ax and C(1,y) = By. Infinite coproducts are defined in a similar fashion. �

52

Proposition 4.2.4. The category M has a symmetric monoidal closed structure given

by:

I = (1, (I))

A⊗B = (A0 ×B0, (Ax ⊗By)(x,y)∈A0×B0)

A(B = (A0 → B0, (Cf)f∈A0→B0),

where Cf =
∏︁

x∈A0
(Ax (Bf(x)), A0 → B0 is the set of all functions from A0 to

B0, and Ax (By is an exponential object in the product-complete monoidal closed

category M. �

As we will see in Chapter 7, the category M has indeed the required structure to be

a model of Proto-Quipper-M. It is moreover a part of a linear-non-linear adjunction,

and so a model of intuitionistic linear logic.

Chapter 5

The Proto-Quipper-M Language

In this chapter, we introduce the syntax, type system, and operational semantics

of Proto-Quipper-M. Proto-Quipper-M is defined relative to a notion of circuit. We

elaborate on this notion before introducing the syntax of the language.

5.1 Circuits, Wires, and Labels

Categorical considerations influenced the design of Proto-Quipper-M, and thus it is

no surprise that even at the level of syntax, categorical entities appear. This will

become more evident as we proceed.

5.1.1 Circuits and Wire Types

Recall from Section 4.2.1 that a circuit is simply a morphism in a symmetric monoidal

category; we call such morphisms generalized circuits. From now on, we assume that

a locally small symmetric monoidal category M of generalized circuits has been given

along with a set W of wire types and an interpretation function [[−]]W : W → M0,

assigning an object of M to every wire type. We denote wire types by Greek letters

such as α, β, and γ. We will usually assume that the set of wire types contains types

relevant to quantum circuits such as the type of bits, bit, and the type of qubits,

qubit. However, the set W is arbitrary in general.

5.1.2 Labeled Circuits

To enable our programming language to manipulate morphisms of M, we equip M

with an additional labeling structure, which we now describe. Let L be a countably

infinite set of labels. We denote labels by letters such as k and ℓ.

Definition 5.1.1. A label context is a function from a finite set of labels to wire

types. We write label contexts as Q = ℓ1 : α1, . . . , ℓn : αn. Expressions of the form

53

54

ℓ : α in a label context are called label type declarations. �

To give meaning to the terms of Proto-Quipper-M, we begin by interpreting the

label contexts of the language.

Definition 5.1.2. To each label context Q = ℓ1 : α1, . . . , ℓn : αn, we associate an

object of M, namely, [[Q]]s = [[α1]]W ⊗ . . .⊗ [[αn]]W . It will be useful to think of such

an object as a particular bracketing of the tensor product of [[α1]]W , . . . , [[αn]]W . In

case Q = ∅, we set [[Q]]s = IM. �

The subscript s in the semantic brackets [[−]]s indicates that this function as-

signs meaning to entities involving simple M-types. Simple M-types are introduced

in Definition 5.2.1 below.

We can now define the category of labeled circuits.

Definition 5.1.3. Let M, W , L, and the function [[−]]W : W → M0 be given as

above. The symmetric monoidal category ML of labeled circuits is defined as follows:

• The objects of ML are label contexts.

• A morphism f : Q→ Q′ in ML is a morphism [[f]]s : [[Q]]s → [[Q′]]s in M.

Identities and composition are defined in the unique way to make the function [[−]]s

into a functor [[−]]s : ML → M. Note that this functor is full and faithful. Moreover,

we endow ML with the unique (up to natural isomorphism) symmetric monoidal

structure making this functor strong symmetric monoidal. �

5.1.3 Visualizing Labeled Circuits

Note that if label contexts Q and Q′ have disjoint domains, then Q ⊗ Q′ ∼= Q,Q′,

i.e., we can think of the tensor product of disjoint label contexts as given by their

union. We will make use of this observation throughout, as two label contexts can

always be made disjoint up to isomorphism by renaming their labels. We can depict

the morphisms of ML as generalized circuits with labeled and typed inputs and

outputs. For example, if m : Q → Q′ is one such morphism with Q = ℓ7 : α and

55

Q′ = ℓ2 : γ, ℓ5 : δ, then we can visualize m as follows:

mℓ7

ℓ5

ℓ2.

α

δ

γ

5.2 The Syntax of Proto-Quipper-M

In this section, we give the formal definition of Proto-Quipper-M and its type system.

Proto-Quipper-M is a simply-typed lambda calculus that supports not only usual

programming constructs such as disjoint unions, pairs, and higher-order functions, but

also linearity and circuit description. References for the lambda calculus include [96],

[14], and [45]. More on linearity can be found in [106], [44], [93], and [72]. For an

introduction to circuit description languages, see [52]. Accessible accounts of type

systems are given in [27] and [83]. We now present each of the main components of

our language.

5.2.1 Types

A type is a property of a program construct that reflects how the construct should be

interpreted. It is sometimes useful to think of a type as a set of related values that a

program may compute.

Definition 5.2.1. The types of Proto-Quipper-M are defined by

A,B ::= α | 0 | A+B | I | A⊗B | A(B | !A | nat | list A | Circ(T, U).

Here, α ranges over the set W of wire types, and T and U are simple M-types defined

by

T, U ::= α | I | T ⊗ U.

The subset of parameter types is defined by

P,R ::= 0 | P +R | I | P ⊗R | !A | nat | list P | Circ(T, U).

The type system of Proto-Quipper-M is based on propositional intuitionistic linear

logic (see [23], [19], [20], [18] or [12]), thus the similarity between the types of the

56

system and the connectives of the logic. As expected, A + B is the type of sums,

A ⊗ B the type of pairs, and A(B the type of functions from A to B. 0 is the

empty type and I the unit type. Also, list A and nat are the usual inductive types

of lists of elements of A and natural numbers, respectively.

The type !A represents the duplicable and discardable elements of type A while the

simple M-types represent the inputs and outputs of circuits. Circ(T, U) is the type of

circuits with inputs of type T and outputs of type U . The parameter types represent

values that are known at circuit generation time; we usually think of parameters as

classical data.

5.2.2 Terms and Values

We now introduce the language constructs.

Definition 5.2.2. The terms of Proto-Quipper-M are defined by

M,N ::= x | ℓ | c | let x = M in N |
�AM | leftA,BM | rightA,BM | case M of {leftx→ N | right y → P} |
∗ |M ;N | ⟨M,N⟩ | let ⟨x, y⟩ = M in N | λxA.M |MN |
lift M | force M | boxT M | apply(M,N) | (ℓ⃗, C, ℓ′⃗).

Here, x ranges over a countably infinite set of variables, ℓ ranges over the set L of

labels, and c ranges over a given set of constants. We assume that these sets are

mutually disjoint. The subset of label tuples is defined by

k⃗, ℓ⃗ ::= ∗ | k | ⟨k⃗, ℓ⃗⟩

and the subset of values by

V,W ::= x | ℓ | c | leftA,B V | rightA,B V | ∗ | ⟨V,W ⟩ | λxA.M | lift M | (ℓ⃗, C, ℓ′⃗).

Now we present the intended meaning of the terms. A label is a pointer to

an input or output of a labeled circuit, i.e., a wire identifier. Constants have a

fixed interpretation in suitable categories and some represent operations that can

be performed by a quantum device. It will be useful to assume that the category

of generalized circuits contains some distinguished objects and morphisms that may

serve in the interpretation of relevant gates; for example, H : qubit → qubit for the

57

Hadamard gate and CNOT : qubit ⊗ qubit → qubit ⊗ qubit for the controlled-

not gate. We can visualize the Hadamard gate as the following labeled circuit, for

example:

Hℓ ℓ′
qubit qubit

The interpretation of most other terms is as in the standard lambda calculus.

We illustrate with the following cases. See Table 5.2 for more details. For example,

the term let x = M in N defines the program that first evaluates M , then assigns

that value to x, and finally runs N . The term λxA.M stands for the function that

maps x to M while the term MN represents the application of the function M to N .

More unusual terms include (ℓ⃗, C, ℓ′⃗), which represents a boxed circuit, i.e., a quantum

circuit regarded as Proto-Quipper-M data of type Circ(T, U). In particular, C is a

labeled circuit and ℓ⃗ and ℓ′⃗ are label tuples that provide an interface between the

inputs and outputs of C and the types T and U , respectively. This will be made

more precise in the typing rules below. We further observe that terms of the form

(ℓ⃗, C, ℓ′⃗) are not intended to be written by the users of the programming language as

no concrete syntax for the circuits C has been provided. Instead, such terms represent

values internally computed during the evaluation of a Proto-Quipper-M program. On

the other hand, we do have a syntax for a term of the form boxT M which represents a

boxed circuit of type Circ(T, U) generated by a duplicable function of type !(T (U)

denoted by the term M .

The term lift M stands for a duplicable version of the program M provided that

M has no quantum data embedded. Thus, if M has type A, lift M has type !A.

Conversely, given a term M of type !A, the term force M has type A. This conveys

the idea that a program M that can be used an arbitrary number of times can also

be used exactly once. Finally, apply(M,N) is the program that evaluates the term

M to a boxed circuit and then appends such circuit to the current circuit at the wires

specified by the term N .

We now introduce the notions of free variable and capture-avoiding substitution.

Definition 5.2.3. The set of free variables of a term M , denoted by FV (M), is

defined by

58

• FV (x) = x,

• FV (ℓ) = ∅,

• FV (c) = ∅,

• FV (let x = M in N) = FV (M) ∪ (FV (N)\{x}),

• FV (�AM) = FV (M),

• FV (leftA,BM) = FV (M),

• FV (rightA,BM) = FV (M),

• FV (case M of {leftx→ N | right y → P}) = FV (M) ∪ (FV (N)\{x}) ∪ (FV (P)\{y}),

• FV (∗) = ∅,

• FV (M ;N) = FV (M) ∪ FV (N),

• FV (⟨M,N⟩) = FV (M) ∪ FV (N),

• FV (let ⟨x, y⟩ = M in N) = FV (M) ∪ (FV (N)\{x, y}),

• FV (λxA.M) = FV (M)\{x},

• FV (MN) = FV (M) ∪ FV (N),

• FV (lift M) = FV (M),

• FV (force M) = FV (M),

• FV (boxT M) = FV (M),

• FV (apply(M,N)) = FV (M) ∪ FV (N), and

• FV ((ℓ⃗, C, ℓ′⃗)) = ∅. �

Note that this definition reflects our intended interpretation of labels as pointers

or wire identifiers rather than as variables; this is accomplished by letting FV (ℓ) = ∅.

In particular, there are no binders for labels.

59

The notions of α-equivalence and bound variable are just as in the standard lambda

calculus, see [96] or [14]. So terms that differ only in the name of their bound variables

are identified; for example, λyA.⟨y, y⟩ and λzA.⟨z, z⟩ are considered equal. In the

sequel, we will assume Barendregt’s variable convention, i.e., we will always assume

without loss of generality that bound variables have been renamed to be distinct from

any other variables in a given context.

Definition 5.2.4. The capture-avoiding substitution of a term N for the free occur-

rences of a variable x in a term M , written as M [N/x], is defined as follows:

• x[N/x] = N ,

• y[N/x] = y if x ̸= y,

• ℓ[N/x] = ℓ,

• c[N/x] = c,

• (let y = R in S)[N/x] = (let y = R[N/x] in S[N/x]),

• (�AR)[N/x] = �AR[N/x],

• (leftA,B R)[N/x] = leftA,B R[N/x],

• (rightA,B R)[N/x] = rightA,B R[N/x],

• (case Q of {left y → R | right z → S})[N/x] =

case Q[N/x] of {left y → R[N/x] | right z → S[N/x]},

• ∗[N/x] = ∗,

• (R;S)[N/x] = R[N/x];S[N/x],

• (⟨R, S⟩)[N/x] = ⟨R[N/x], S[N/x]⟩,

• (let ⟨y, z⟩ = R in S)[N/x] = (let ⟨y, z⟩ = R[N/x] in S[N/x]),

• (λyA.R)[N/x] = λyA.R[N/x],

• (RS)[N/x] = R[N/x]S[N/x],

60

• (lift R)[N/x] = lift R[N/x],

• (force R)[N/x] = force R[N/x],

• (boxT R)[N/x] = boxT R[N/x],

• (apply(R, S))[N/x] = apply(R[N/x], S[N/x]), and

• (ℓ⃗, C, ℓ′⃗)[N/x] = (ℓ⃗, C, ℓ′⃗). �

5.2.3 The Type System of Proto-Quipper-M

Since terms are intended to represent computations that can be performed by a

computer, it is natural to expect that not every term will be meaningful in every

context. For example, the term M should denote a pair of terms for the term

let ⟨x, y⟩ = M in N to be meaningful; the term M should denote a function for the

term MN to be meaningful; and the term M should represent a circuit and N should

represent a corresponding label tuple for the term apply(M,N) to be meaningful.

Moreover, the meaning of a term depends on the environment in which it occurs.

Syntactic representations of such environments are captured by the notions of variable

and label contexts.

Definition 5.2.5. A variable context is a function from a finite set of variables to

types. We write a variable context as Γ = x1 : A1, . . . , xn : An. Expressions of the

form x : A in a variable context are called variable type declarations. A variable

context in which all types are parameter types is called a parameter context; we

usually denote parameter contexts by Φ. �

Given contexts Γ1 and Γ2, we write Γ1,Γ2 for their union provided their domains

are disjoint. We adopt the following convention and say that contexts Γ1 and Γ2 are

disjoint and write Γ1 ∩ Γ2 = ∅ whenever their domains are. For variable contexts Γ1

and Γ2 such that Γ1 = Γ′1,Φ and Γ2 = Γ′2,Φ, where Φ is a parameter context, Γ′1 and

Γ′2 are arbitrary variable contexts, and Γ′1, and Γ′2 and Φ are mutually disjoint, we

define Γ1 ∪ Γ2 = Γ′1,Γ
′
2,Φ. Otherwise, Γ1 ∪ Γ2 is undefined.

Proper circuit construction depends on adequate wiring of circuits. For this, we

introduce the notion of valid label tuple.

61

∅ ⊢L ∗ : I
(∗)L

ℓ : α ⊢L ℓ : α
(label)L

Q ⊢L ℓ⃗ : T Q′ ⊢L ℓ′⃗ : U
Q,Q′ ⊢L ⟨ℓ⃗, ℓ′⃗⟩ : T ⊗ U

(pair)L

Table 5.1: Rules for Label Tuple Judgements.

Definition 5.2.6. A label tuple judgement is an expression of the form

Q ⊢L ℓ⃗ : T

where Q is a label context, ℓ⃗ is a label tuple, and T is a simple M-type. A label tuple

judgement is valid if it can be derived from the rules in Table 5.1. We denote its

derivation by D : Q ⊢L ℓ⃗ : T , or even D when no confusion arises. A label tuple is

valid if it occurs in a valid label tuple judgement. Note that the (pair)L rule has the

side condition that Q and Q′ must have disjoint domains. �

It is not hard to see that in a valid label tuple judgement Q ⊢L ℓ⃗ : T , the context

Q is uniquely determined by ℓ⃗ and T , and conversely, T is uniquely determined by ℓ⃗

and Q.

To avoid meaningless terms such as ℓ⃗x and ⟨M,N⟩(λxA.R), we endow Proto-

Quipper-M with a strong type system. This system assigns a type to each well-formed

term and enjoys the error-freeness property : Executing a well-typed program never

yields a run-time error. This and other interesting properties of the type system of

Proto-Quipper-M will be explored in the following chapters.

Definition 5.2.7. A typing judgement is an expression of the form

Γ;Q ⊢M : A

where Γ is a variable context, Q is a label context, M is a term, and A is a type.

A typing judgement is valid if it can be derived from the rules in Table 5.2. A rule

containing a variable context of the form Γ1∪Γ2 in the conclusion assumes that Γ1∪Γ2

is defined, and similarly for contexts of the form Q1, Q2. A term M is well-typed of

type A in the context Γ;Q if the typing judgement Γ;Q ⊢M : A is valid. �

Many of the typing rules of Proto-Quipper-M are similar to those of a linear

lambda calculus ([19], [20], [23]); we now highlight some of the differences. In the

62

Φ, x : A; ∅ ⊢ x : A
(var)

Φ; ℓ : α ⊢ ℓ : α
(label)

Φ; ∅ ⊢ c : Ac
(const)

Γ1;Q1 ⊢M : A Γ2, x : A;Q2 ⊢ N : B

Γ1 ∪ Γ2;Q1, Q2 ⊢ let x = M in N : B
(let)

Γ;Q ⊢M : 0

Γ;Q ⊢ �AM : A
(initial)

Γ;Q ⊢M : A

Γ;Q ⊢ leftA,BM : A+B
(left)

Γ;Q ⊢M : B

Γ;Q ⊢ rightA,BM : A+B
(right)

Γ1;Q1 ⊢M : A+B Γ2, x : A;Q2 ⊢ N : C Γ2, y : B;Q2 ⊢ P : C

Γ1 ∪ Γ2;Q1, Q2 ⊢ case M of {leftx→ N | right y → P} : C
(case)

Φ; ∅ ⊢ ∗ : I
(∗)

Γ1;Q1 ⊢M : I Γ2;Q2 ⊢ N : A

Γ1 ∪ Γ2;Q1, Q2 ⊢M ;N : A
(seq)

Γ1;Q1 ⊢M : A Γ2;Q2 ⊢ N : B

Γ1 ∪ Γ2;Q1, Q2 ⊢ ⟨M,N⟩ : A⊗B
(pair)

Γ1;Q1 ⊢M : A⊗B Γ2, x : A, y : B;Q2 ⊢ N : C

Γ1 ∪ Γ2;Q1, Q2 ⊢ let ⟨x, y⟩ = M in N : C
(let-pair)

Γ, x : A;Q ⊢M : B

Γ;Q ⊢ λxA.M : A(B
(abs)

Γ1;Q1 ⊢M : A(B Γ2;Q2 ⊢ N : A

Γ1 ∪ Γ2;Q1, Q2 ⊢MN : B
(app)

Φ; ∅ ⊢M : A

Φ; ∅ ⊢ lift M : !A
(lift)

Γ;Q ⊢M : !A

Γ;Q ⊢ force M : A
(force)

Γ;Q ⊢M : !(T (U)

Γ;Q ⊢ boxT M : Circ(T, U)
(box)

Γ1;Q1 ⊢M : Circ(T, U) Γ2;Q2 ⊢ N : T

Γ1 ∪ Γ2;Q1, Q2 ⊢ apply(M,N) : U
(apply)

Q ⊢L ℓ⃗ : T Q′ ⊢L ℓ′⃗ : U C ∈ ML(Q,Q′)

Φ; ∅ ⊢ (ℓ⃗, C, ℓ′⃗) : Circ(T, U)
(circ)

Table 5.2: The Typing Rules of Proto-Quipper-M.

63

typing judgements of Proto-Quipper-M variables and labels are kept separate, which

allows the language to handle circuit wiring properly. Also, several of the typing

rules generate judgements with variable contexts of the form Γ1∪Γ2; as a result, only

variables of parameter type can be duplicated or discarded, as can be seen in the

following example.

Example 5.2.8. Consider the following type derivation where we have omitted an-

notating the applications of the (var) rule for readability

x : P ; ∅ ⊢ ∗ : I
(∗)

x : P ; ∅ ⊢ x : P y : A; ∅ ⊢ y : A

x : P, y : A, ∅ ⊢ ⟨x, y⟩ : P ⊗ A
(pair)

x : P ; ∅ ⊢ x : P

x : P, y : A; ∅ ⊢ ⟨⟨x, y⟩, x⟩ : (P ⊗ A) ⊗ P
(pair)

x : P, y : A; ∅ ⊢ ⟨∗, ⟨⟨x, y⟩, x⟩⟩ : I ⊗ ((P ⊗ A) ⊗ P)
(pair)

Note that the conclusion is valid provided that P is a parameter type for then each

variable context in the derivation is well defined. As a result, the variable x can

be duplicated, as in the middle application of the (pair) rule; discarded, as in the

application of the (∗) rule; and both duplicated and discarded, as in the bottom

application of the (pair) rule. �

We call a variable of parameter type a parametric variable and a variable whose

type is not known to be a parameter type a linear variable. The design of our type

system ensures that linear variables and labels are used exactly once, whereas pa-

rametric variables may be used any number of times or not at all, as shown above.

This is different from other approaches. For example, Benton’s LNL term assign-

ment [17] has judgements of the form Θ; Γ ⊢ M : A, where Θ is a classical context,

akin to our parameter contexts, and Γ is a linear context. However, these contexts are

syntactically distinct and contain two different sorts of variables: classical variables

such as x, y, and z, and linear variables such as a, b, and c. As a consequence, two

different sorts of lambda abstractions are present. In contrast, the parameter types

of Proto-Quipper-M form a subset of the set of all types and there is only one kind of

variable and lambda abstraction. This makes the Proto-Quipper-M approach more

flexible as it allows the programmer to mix parameters and states more freely. Also,

Proto-Quipper-M does not need explicit “copy” and “discard” term operators like the

linear lambda calculus of Benton et al. does [20].

64

Moreover, the strong type system of Proto-Quipper-M guarantees the absence of

run-time errors as discussed in Chapter 6. In particular, the type system enforces the

no-cloning property of quantum information as it forbids the derivation of terms of

the form λxqubit.⟨x, x⟩ : qubit(qubit⊗ qubit, for example.

The (const) rule assumes that each constant has a fixed type Ac. For example, we

could have a constant cn : nat for each number n ∈ N and a constant succ : nat(nat

for the successor function. The typing rule (lift) ensures that only terms with no

reference to non-duplicable entities such as linear variables and labels can generate

duplicable values of exponential type. We illustrate the meaning of the (circ) rule in

the example below.

Example 5.2.9. Consider the following rule instance:

Q ⊢L ⟨j, k⟩ : α⊗ β Q′ ⊢L ⟨⟨j′, k′⟩, ℓ⟩ : (γ ⊗ δ) ⊗ γ C ∈ ML(Q,Q′)

Φ; ∅ ⊢ (⟨j, k⟩, C, ⟨⟨j′, k′⟩, ℓ⟩) : Circ(α⊗ β, (γ ⊗ δ) ⊗ γ)
(circ)

Assuming C ∈ ML(Q,Q′), the conclusion is valid if and only if the label tuple jud-

gements Q ⊢L ⟨j, k⟩ : α⊗ β and Q′ ⊢L ⟨⟨j′, k′⟩, ℓ⟩ : (γ ⊗ δ) ⊗ γ are valid. This indeed

occurs if and only if

Q = j : α, k : β

Q′ = j′ : γ, k′ : δ, ℓ : γ.

Thus, the morphism C : Q→ Q′ of ML is a labeled circuit of the form

C
j

k

j′

k′

ℓ

α

β

γ

δ

γ

which yields a generalized circuit [[α]] ⊗ [[β]] → [[γ]] ⊗ [[δ]] ⊗ [[γ]] when interpreted in

the appropriate category. In the end, the goal of the valid label tuple judgements is

to properly identify particular inputs and outputs of C with particular occurrences of

wire types α, β and γ in the simple-M types α⊗ β and (γ ⊗ δ) ⊗ γ, respectively. �

5.3 Operational Semantics

So far, we have only informally described the intended behavior of Proto-Quipper-

M terms. We now give the language a more rigorous mathematical foundation and

65

computational meaning by endowing it with a big-step operational semantics, through

which the overall execution of a program is described directly rather than by trans-

lation as in categorical semantics. Big-step operational semantics, also known as

natural semantics and evaluation semantics, was introduced by Gilles Khan in the

1980s ([31], [59]). This approach was derived from the pioneering work of Gordon

Plotkin on structural operational semantics ([84], [85]), through which the individual

steps of the computations that take place during the execution of a program are

described. More on operational semantics can be found in [55], [77], and [83]. For

more comprehensive treatments of the semantics of programming languages, see [49]

or [108].

To construct the operational semantics of Proto-Quipper-M, we introduce two

useful relations: an evaluation relation, which describes the evolution of correct pro-

grams, and an error relation, which captures the ill-behaved ones.

5.3.1 Evaluation Relation

First, we present the main component of the operational semantics: the configuration.

Definition 5.3.1. A configuration is a pair (C,M) where C is a labeled circuit and M

is a term. If the term M = V is a value, then we call (C, V) a value configuration. �

We can think of C as the circuit under construction when the program M is

executed.

Definition 5.3.2. The evaluation relation of Proto-Quipper-M, denoted by ⇓, is the

relation on the set of configurations generated by the rules in Table 5.3. We usually

write (C,M) ⇓ (C ′, V) for ((C,M), (C ′, V)) ∈ ⇓. �

Intuitively, the meaning of (C,M) ⇓ (C ′, V) is as follows: when the term M is

executed in the context of the partially constructed circuit C, it generates a circuit

C ′, by possibly appending some gates to C, along with a value V . Several of the

rules involve terms of the form N [V/x], which, as we recall, denotes capture-avoiding

substitution as in Definition 5.2.4. For the most part, the evaluation rules involving

terms that have a type annotation, such as �AM , λxA.M , and leftA,BM , do not

take into account the types when they are applied. However, there is one exception:

66

(C, ℓ) ⇓ (C, ℓ)
(label)⇓

(C, c) ⇓ (C, c)
(const)⇓

(C,M) ⇓ (C ′, V) (C ′, N [V/x]) ⇓ (C ′′,W)

(C, let x = M in N) ⇓ (C ′′,W)
(let)⇓

(C,M) ⇓ (C ′, V)

(C, leftM) ⇓ (C ′, leftV)
(left)⇓

(C,M) ⇓ (C ′, V)

(C, rightM) ⇓ (C ′, rightV)
(right)⇓

(C,M) ⇓ (C ′, leftV) (C ′, N [V/x]) ⇓ (C ′′,W)

(C, case M of {leftx→ N | right y → P}) ⇓ (C ′′,W)
(case-left)⇓

(C,M) ⇓ (C ′, rightV) (C ′, P [V/y]) ⇓ (C ′′,W)

(C, case M of {leftx→ N | right y → P}) ⇓ (C ′′,W)
(case-right)⇓

(C, ∗) ⇓ (C, ∗)
(∗)⇓

(C,M) ⇓ (C ′, ∗) (C ′, N) ⇓ (C ′′,W)

(C,M ;N) ⇓ (C ′′,W)
(seq)⇓

(C,M) ⇓ (C ′, V) (C ′, N) ⇓ (C ′′, V ′)

(C, ⟨M,N⟩) ⇓ (C ′′, ⟨V, V ′⟩) (pair)⇓

(C,M) ⇓ (C ′, ⟨V, V ′⟩) (C ′, N [V/x, V ′/y]) ⇓ (C ′′,W)

(C, let ⟨x, y⟩ = M in N) ⇓ (C ′′,W)
(let-pair)⇓

(C, λx.M) ⇓ (C, λx.M)
(abs)⇓

(C,M) ⇓ (C ′, λx.M ′) (C ′, N) ⇓ (C ′′, V) (C ′′,M ′[V/x]) ⇓ (C ′′′,W)

(C,MN) ⇓ (C ′′′,W)
(app)⇓

(C, lift M) ⇓ (C, lift M)
(lift)⇓

(C,M) ⇓ (C ′, lift M ′) (C ′,M ′) ⇓ (C ′′, V)

(C, force M) ⇓ (C ′′, V)
(force)⇓

(C,M) ⇓ (C ′, lift N) freshlabels(T) = (Q, ℓ⃗) (idQ, Nℓ⃗) ⇓ (D, ℓ′⃗)

(C, boxT M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗))
(box)⇓

(C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) (C ′, N) ⇓ (C ′′, k⃗) append(C ′′, k⃗, ℓ⃗, D, ℓ′⃗) = (C ′′′, k′⃗)

(C, apply(M,N)) ⇓ (C ′′′, k′⃗)
(apply)⇓

(C, (ℓ⃗, D, ℓ′⃗)) ⇓ (C, (ℓ⃗, D, ℓ′⃗))
(circ)⇓

Table 5.3: The Evaluation Relation of Proto-Quipper-M.

67

the annotation T in the term boxT M does have a run-time effect. For example, if

T = qubit, then we get the identity circuit on one qubit when boxing the identity

function, as in boxT (λxT .x), but we get the identity circuit on two qubits when

T = qubit⊗ qubit.

The evaluation of Proto-Quipper-M terms follows a call-by-value reduction stra-

tegy. Roughly speaking, to apply a function, it is necessary that all its arguments

(subterms) be evaluated first. Most of the rules of the language are standard, except

for the (box)⇓ and (apply)⇓ rules. However, these two rules perform one of the most

distinctive tasks of Proto-Quipper-M, namely, circuit construction.

The (box)⇓ rule uses an ancillary map freshlabels that assigns to each simple M-

type T an ordered pair (Q, ℓ⃗), where Q is a label context and ℓ⃗ is a label tuple such

that Q ⊢L ℓ⃗ : T is valid, and such that the labels in ℓ⃗ are fresh, i.e., that they have

not occurred in any other term used so far. Under these circumstances, Q and ℓ⃗ are

unique up to renaming of fresh labels. Now the (box)⇓ rule is to be understood as

follows. To execute the program boxT M in the context of circuit C, start by running

the term M in the context of circuit C to generate a circuit C ′ and a value lift N ,

where N is a term of type T (U . Apply the freshlabels function to T to obtain a

label context Q and a label tuple ℓ⃗ such that Q ⊢L ℓ⃗ : T is valid. Now execute the

program Nℓ⃗ in the context of the identity circuit on Q to generate a circuit D along

with a label tuple ℓ′⃗. Form the value configuration (C ′, (ℓ⃗, D, ℓ′⃗)). This is the result

of the execution of the program boxT M in the context of the circuit C.

Before we proceed with the (apply)⇓ rule, we introduce a useful equivalence relation

on terms of the form (ℓ⃗, D, ℓ′⃗), where, as usual, ℓ⃗ and ℓ′⃗ are label tuples and D is a

labeled circuit. We say that terms (ℓ⃗, D, ℓ′⃗) and (k⃗, D′, k′⃗) are equivalent, and write

(ℓ⃗, D, ℓ′⃗) ∼= (k⃗, D′, k′⃗), if they are equal up to renaming of labels. Similarly to the

(box)⇓ rule, the (apply)⇓ rule uses an ancillary map append that we now describe. For

any labeled circuits C : Q0 → Q1 and D : Q2 → Q3, and label tuples k⃗, ℓ⃗, and ℓ′⃗, we

define the operation append(C, k⃗, ℓ⃗, D, ℓ′⃗) as follows. First, verify that the outputs

of C contain the labels in k⃗ and that the labels occurring in the inputs and outputs

of D are precisely those occurring in ℓ⃗ and ℓ′⃗, respectively. Then, choose a labeled

circuit D′ and a fresh label tuple k′⃗ such that (k⃗, D′, k′⃗) ∼= (ℓ⃗, D, ℓ′⃗). Finally, output

68

the configuration (C ′, k′⃗), where C ′ is the labeled circuit

C

D′

...
...

...
...

k⃗ k′⃗

,

provided that the composition is defined. Note that there are several situations

in which append(C, k⃗, ℓ⃗, D, ℓ′⃗) is not defined, each yielding a run-time error. For

example, when the shapes of k⃗ and ℓ⃗ are distinct, when k⃗, ℓ⃗, or ℓ′⃗ are not compatible

with the outputs of C or the inputs or outputs of D′, respectively, or when the wire

types of the outputs of C do not agree with those of the corresponding inputs of D′.

We now describe the (apply)⇓ rule. To execute the program apply(M,N) in the

context of the circuit C, start by running the term M in the context of the circuit

C to generate a circuit C ′ and a boxed circuit (ℓ⃗, D, ℓ′⃗). Now execute the program

N in the context of the circuit C ′ to generate a circuit C ′′ along with a label tuple

k⃗. Apply the append function to (C ′′, k⃗, ℓ⃗, D, ℓ′⃗) to wire the circuit C ′′ to the circuit

D through the interface provided by the label tuples k⃗ and ℓ⃗, as described above, to

obtain the configuration (C ′′′, k′⃗). This configuration is the result of the execution of

the program apply(M,N) in the context of the circuit C.

5.3.2 Run-Time Errors

Up to this point, we have mostly dealt with well-behaved configurations; now we

turn our attention to those with less desirable behaviors. As hinted in Section 5.2.3,

the main purpose of the type system of Proto-Quipper-M is to avoid the occurrence

of run-time errors during the execution of a program. There are several types of

run-time errors, for example:

• Run-time type errors. The most common kind of error that a type system aims

to avoid. These include evaluating a let statement such as let ⟨x, y⟩ = M in N ,

when M is not a pair, or executing an application MN , where M is not a

function.

69

• Label or unbound variable errors. These include trying to append a gate through

a wire ℓ that is not part of the output of the circuit under construction, or trying

to use a variable x that has not been declared.

• Deleting or cloning errors. These types of errors are rather characteristic of

quantum programming languages, as they usually represent violations of the

no-deleting or no-cloning properties of quantum mechanics. For example, trying

to discard or duplicate a linear variable.

When designing a programming language, specifying what constitutes a run-time

error may be subtle. Informally, an error is a configuration (C,M) that is not the

left-hand side of any evaluation rule—for then, the evaluation would get “stuck” as

there is nothing for (C,M) to evaluate to whenever such a configuration is reached.

However, defining this precisely is not entirely obvious. For example, consider the

configuration (C,M ;N). Even though this is the left-hand side of an evaluation

rule, namely (seq)⇓, the rule only applies if M evaluates to a value of the form ∗.

If M evaluates to a different kind of value, the rule does not apply, which must

be an error. Still, we cannot simply define (C,M) to be an error configuration if

there is no value configuration (C ′, V) such that (C,M) ⇓ (C ′, V), because non-

terminating configurations are not in the domain of ⇓ even though they may not be

errors. (Note that the version of Proto-Quipper-M defined in this thesis does not

have non-terminating programs; however, these could be included by extending the

language with recursive functions, for example.) And so, to deal with this issue, we

endow Proto-Quipper-M with a formal notion of error.

Definition 5.3.3. The error relation of Proto-Quipper-M, denoted also by ⇓, is

given by the set of ordered pairs of the form ((C,M),Error) derived from the error-

generation rules in Table 5.4 and the error-propagation rules in Table 5.5 and Ta-

ble 5.6. As usual, we write (C,M) ⇓ Error for ((C,M),Error) ∈ ⇓. �

The error-generation rules tell us precisely under what circumstances a Proto-

Quipper-M run-time error is produced, while the error-propagation rules tell us that

errors are global, i.e., if an error occurs at any point during the execution of a program,

then the error immediately propagates to the top level.

70

(C, x) ⇓ Error
(var-err-g)⇓

(C,M) ⇓ (C ′, V)

(C,�AM) ⇓ Error
(initial-err-g)⇓

(C,M) ⇓ (C ′,W) where W is not of the form leftV or rightV

(C, case M of {leftx→ N | right y → P}) ⇓ Error
(case-err-g)⇓

(C,M) ⇓ (C ′, V) where V ̸= ∗
(C,M ;N) ⇓ Error

(seq-err-g)⇓

(C,M) ⇓ (C ′,W) where W is not of the form ⟨V, V ′⟩
(C, let ⟨x, y⟩ = M in N) ⇓ Error

(let-pair-err-g)⇓

(C,M) ⇓ (C ′, V) where V is not of the form λxA.M ′

(C,MN) ⇓ Error
(app-err-g)⇓

(C,M) ⇓ (C ′, V) where V is not of the form lift M ′

(C, force M) ⇓ Error
(force-err-g)⇓

(C,M) ⇓ (C ′, V) where V is not of the form lift N

(C, boxT M) ⇓ Error
(box-err-g-1)⇓

(C,M) ⇓ (C ′, lift N) freshlabels(T) = (Q, ℓ⃗) (idQ, Nℓ⃗) ⇓ (D, V) where V ̸= ℓ′⃗

(C, boxT M) ⇓ Error
(box-err-g-2)⇓

(C,M) ⇓ (C ′, V) where V is not of the form (ℓ⃗, D, ℓ′⃗)

(C, apply(M,N)) ⇓ Error
(apply-err-g-1)⇓

(C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) (C ′, N) ⇓ (C ′′, V) where V ̸= k⃗

(C, apply(M,N)) ⇓ Error
(apply-err-g-2)⇓

(C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) (C ′, N) ⇓ (C ′′, k⃗) append(C ′′, k⃗, ℓ⃗, D, ℓ′⃗) undefined

(C, apply(M,N)) ⇓ Error
(apply-err-g-3)⇓

Table 5.4: Error-Generation Rules of Proto-Quipper-M.

5.3.3 Big-Step Operational Semantics

Given the evaluation and error relations of the previous section, we can now equip

Proto-Quipper-M with an operational semantics.

Definition 5.3.4. The big-step operational semantics of Proto-Quipper-M, also deno-

ted by ⇓, is given by the union of the evaluation and error relations defined above. �

We note that when restricted to value configurations (C, V) where the value V is

closed (i.e., FV (V) = ∅), the operational semantics is a reflexive relation:

71

(C,M) ⇓ Error

(C, let x = M in N) ⇓ Error
(let-err-p-1)⇓

(C,M) ⇓ (C ′, V) (C ′, N [V/x]) ⇓ Error

(C, let x = M in N) ⇓ Error
(let-err-p-2)⇓

(C,M) ⇓ Error

(C,�AM) ⇓ Error
(initial-err-p)⇓

(C,M) ⇓ Error

(C, leftA,BM) ⇓ Error
(left-err-p)⇓

(C,M) ⇓ Error

(C, rightA,BM) ⇓ Error
(right-err-p)⇓

(C,M) ⇓ Error

(C, case M of {leftx→ N | right y → P}) ⇓ Error
(case-err-p)⇓

(C,M) ⇓ (C ′, leftA,B V) (C ′, N [V/x]) ⇓ Error

(C, case M of {leftx→ N | right y → P}) ⇓ Error
(case-left-err-p)⇓

(C,M) ⇓ (C ′, rightA,B V) (C ′, N [V/x]) ⇓ Error

(C, case M of {leftx→ N | right y → P}) ⇓ Error
(case-right-err-p)⇓

(C,M) ⇓ Error

(C,M ;N) ⇓ Error
(seq-err-p-1)⇓

(C,M) ⇓ (C ′, ∗) (C ′, N) ⇓ Error

(C,M ;N) ⇓ Error
(seq-err-p-2)⇓

(C,M) ⇓ Error

(C, ⟨M,N⟩) ⇓ Error
(pair-err-p-1)⇓

(C,M) ⇓ (C ′, V) (C ′, N) ⇓ Error

(C, ⟨M,N⟩) ⇓ Error
(pair-err-p-2)⇓

(C,M) ⇓ Error

(C, let ⟨x, y⟩ = M in N) ⇓ Error
(let-pair-err-p-1)⇓

(C,M) ⇓ (C ′, ⟨V, V ′⟩) (C ′, N [V/x, V ′/y]) ⇓ Error

(C, let ⟨x, y⟩ = M in N) ⇓ Error
(let-pair-err-p-2)⇓

Table 5.5: Error-Propagation Rules of Proto-Quipper-M.

72

(C,M) ⇓ Error

(C,MN) ⇓ Error
(app-err-p-1)⇓

(C,M) ⇓ (C ′, λx.M ′) (C ′, N) ⇓ Error

(C,MN) ⇓ Error
(app-err-p-2)⇓

(C,M) ⇓ (C ′, λx.M ′) (C ′, N) ⇓ (C ′′, V) (C ′′,M ′[V/x]) ⇓ Error

(C,MN) ⇓ Error
(app-err-p-3)⇓

(C,M) ⇓ Error

(C, force M) ⇓ Error
(force-err-p-1)⇓

(C,M) ⇓ (C ′, lift M ′) (C ′,M ′) ⇓ Error

(C, force M) ⇓ Error
(force-err-p-2)⇓

(C,M) ⇓ Error

(C, boxT M) ⇓ Error
(box-err-p-1)⇓

(C,M) ⇓ (C ′, lift N) freshlabels(T) = (Q, ℓ⃗) (idQ, Nℓ⃗) ⇓ Error

(C, boxT M) ⇓ Error
(box-err-p-2)⇓

(C,M) ⇓ Error

(C, apply(M,N)) ⇓ Error
(apply-err-p-1)⇓

(C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) (C ′, N) ⇓ Error

(C, apply(M,N)) ⇓ Error
(apply-err-p-2)⇓

Table 5.6: Error-Propagation Rules of Proto-Quipper-M (Continuation).

73

Proposition 5.3.5. If (C, V) is a value configuration where V is closed, then we

have that (C, V) ⇓ (C, V).

Proof. By structural induction on the set of closed values. Assume that (C, V) is a

value configuration where V is closed.

The result follows immediately by the definition of the corresponding rule when-

ever V is a label, a constant, ∗, a lambda abstraction, a lift of a term, or a boxed

circuit.

If V = leftA,BW , where W is a closed value, then, by the induction hypothesis,

(C,W) ⇓ (C,W), and by the (left)⇓ rule, (C, leftA,BW) ⇓ (C, leftA,BW). The re-

maining cases, namely, when V = rightA,BW or V = ⟨W,W ′⟩, where W and W ′ are

closed values, are as in the previous case.

We finish this chapter by observing that now that we have a formal definition of

what constitutes an error, we will be able to show that our language is indeed error-

free. This and other interesting properties of the Proto-Quipper-M language will be

further explored in subsequent chapters.

Chapter 6

Type Safety

In this chapter, we show that Proto-Quipper-M is type-safe. This is accomplished by

proving that the language satisfies both the subject reduction and the error-freeness

properties. Even though these properties are easily stated, their proofs require quite

intricate inductive arguments that depend on several syntactic lemmas. What is less

obvious is the fact that much of the work lies in defining the type system and the

operational semantics in just the right way so that these properties may hold in the

first place.

6.1 Properties of the Type System

We begin our treatment of type safety by proving a number of lemmas necessary

to establish the fundamental Substitution Lemma. Throughout this section (and the

rest of the thesis), we will be making heavy use of different variants of the principle

of well-founded induction such as structural induction on terms, rule induction and

special rule induction on valid typing judgements, and induction on derivations.

Our first lemma tells us that the free variables of a well-typed term must belong

to its variable context.

Lemma 6.1.1. If Γ;Q ⊢ M : A is a valid typing judgement and x /∈ Γ, then

x /∈ FV (M).

Proof. By rule induction on the set of valid typing judgements. Let Γ;Q ⊢M : A be

a valid typing judgement. Consider the following cases:

Axiom Rules: The result follows immediately for the (circ) rule and the axiom cases

(var), (label), (const), and (∗) by the definition of such rules.

Purely Inductive Rules: These rules are the non-axiom rules with no distinguis-

hed variables. They are treated in a similar fashion and include (initial), (left),

74

75

(right), (seq), (pair), (app), (lift), (force), (box) and (apply). In these cases, the

result follows by direct applications of the induction hypothesis. We illustrate

with the (app) case:

If the typing rule is (app) with M = RS, then the rule is

Γ1;Q1 ⊢ R : A(B Γ2;Q2 ⊢ S : A

Γ1 ∪ Γ2;Q1, Q2 ⊢ RS : B
(app)

where Γ = Γ1 ∪ Γ2. Assume that x ∈ FV (M). We want to show that x ∈ Γ.

Since FV (M) = FV (RS) = FV (R) ∪ FV (S), we have that x ∈ FV (R) or

x ∈ FV (S). If x ∈ FV (R), then the induction hypothesis implies that x ∈ Γ1

since Γ1;Q1 ⊢ R : A(B is valid. Similarly, if x ∈ FV (S), then x ∈ Γ2. In any

case, x ∈ Γ.

Distinguished Variables Rules: These are the rules (let), (case), (let-pair), and

(abs). In these cases, the result follows by applications of the induction hypot-

hesis and case distinction. We present the (let-pair) case:

If the typing rule is (let-pair) with M = (let ⟨y, z⟩ = R in S), then the rule is

Γ1;Q1 ⊢ R : A⊗B Γ2, y : A, z : B;Q2 ⊢ S : C

Γ1 ∪ Γ2;Q1, Q2 ⊢ let ⟨y, z⟩ = R in S : C
(let-pair)

where Γ = Γ1 ∪ Γ2. Assume that x ∈ FV (M). We want to show that x ∈ Γ.

Since FV (M) = FV (let ⟨y, z⟩ = R in S) = FV (R) ∪ (FV (S)\{y, z}), we

have that x ∈ FV (R) or x ∈ FV (S)\{y, z}. If x ∈ FV (R), then the in-

duction hypothesis implies that x ∈ Γ1 since Γ1;Q1 ⊢ R : A ⊗ B is valid.

Similarly, if x ∈ FV (S)\{y, z}, then x ∈ FV (S), x ̸= y, and x ̸= z. Since

Γ2, y : A, z : B;Q2 ⊢ S : C is valid, the induction hypothesis implies that

x ∈ (Γ2, y : A, z : B). But x ̸= y and x ̸= z, and so, x ∈ Γ2. In any case, x ∈ Γ.

We now show that non-trivial substitutions can occur in a term only when it has

free variables.

Lemma 6.1.2. If x /∈ FV (M), then M [N/x] = M .

76

Proof. By structural induction on terms. Let x be a variable and let N be a term.

Suppose that x /∈ FV (M).

• If M is a variable, a label, a constant, ∗, or a boxed circuit term, then the result

is immediate from the definition of substitution in such terms.

• All the cases involving terms with bound variables are treated in a similar

fashion. Each invokes Barendregt’s convention and assumes that all the bound

variables are fresh to avoid unintended variable capture. We illustrate with the

let case:

Suppose M = (let y = R in S). Since FV (M) = FV (R) ∪ (FV (S)\{y}) and

x /∈ FV (M), we have that x /∈ FV (R) and x /∈ FV (S)\{y}. By Barendregt’s

convention, y is fresh, and so, x ̸= y. Thus, x /∈ FV (S). The induction

hypothesis then implies that R[N/x] = R and S[N/x] = S. And thus,

M [N/x] = (let y = R in S)[N/x]

= (let y = R[N/x] in S[N/x])

= (let y = R in S)

= M.

• The remaining cases follow immediately from the definition of capture-avoiding

substitution and the induction hypothesis. We present the pair case:

Suppose M = ⟨R, S⟩. Since FV (M) = FV (R) ∪ FV (S) and x /∈ FV (M), we

have that x /∈ FV (R) and x /∈ FV (S). The induction hypothesis then implies

that R[N/x] = R and S[N/x] = S. And thus,

M [N/x] = ⟨R, S⟩[N/x] = ⟨R[N/x], S[N/x]⟩ = ⟨R, S⟩ = M .

We can often derive the form of a value term from its type. Here we assume that

there are no constant symbols in the language; otherwise, the constants of course

have their assigned types.

Lemma 6.1.3 (Closed Value Lemma). If ∅;Q ⊢ V : A is a valid typing judgement

with V a value term, then the following hold:

77

• if A = I, then V = ∗;

• if A = B ⊗ C, then V = ⟨V1, V2⟩ for some value terms V1 of type A and V2 of

type B;

• if A = T where T is a simple M-type, then V = ℓ⃗, a label tuple;

• if A = B + C, then V = leftB,C W for some value term W of type B or

V = rightB,C W
′ for some value term W ′ of type C;

• if A = B(C, then V = λxB.M for some term M of type C;

• if A = !B, then V = lift M for some term M of type B, and

• if A = Circ(T, U), then V = (ℓ⃗, D, ℓ′⃗), a boxed circuit term, where Q ⊢L ℓ⃗ : T

and Q′ ⊢L ℓ′⃗ : U are valid label judgements and D ∈ ML(Q,Q′) for some label

contexts Q and Q′.

Proof. By induction on the typing derivation D of ∅;Q ⊢ V : A with V a value term.

The result follows directly by inspection of the last rule applied in D. The only

instance that uses the induction hypothesis is the one where A = T , a simple M-type.

In this case, the last rule of D is (∗), (label), or (pair). In the (∗) and (label) cases,

the result is immediate. In the (pair) case, V = ⟨V1, V2⟩ for some value terms V1 and

V2, and D is
...

∅;Q1 ⊢ V1 : T1

...
∅;Q2 ⊢ V2 : T2

∅;Q1, Q2 ⊢ ⟨V1, V2⟩ : T1 ⊗ T2
(pair).

where T = T1 ⊗ T1 with T1 and T2 simple M-types.

By applying the induction hypothesis to the subderivation of the typing judgement

∅;Q1 ⊢ V1 : T1, we have that V1 = k⃗, a label tuple. Similarly, the induction hypothesis

applied to the subderivation of ∅;Q2 ⊢ V2 : T2 implies that V2 = ℓ⃗, also a label tuple.

Thus, V = ⟨k⃗, ℓ⃗⟩ is a label tuple as well.

The context of a value of parameter type is a parameter context.

Lemma 6.1.4 (Parameter Value Lemma). If Γ;Q ⊢ V : P is a valid typing judgement

where V is a value term and P is a parameter type, then Q = ∅ and Γ is a parameter

context.

78

Proof. By induction on the typing derivation D of Γ;Q ⊢ V : P .

• If the last rule of D is any of (var), (const), (∗), (lift), or (circ), then Q = ∅ and

Γ is a parameter context by the definition of such rule.

• Note that since wire types and arrow types are not parameter types, the result

is vacuously true when V is a label or a lambda abstraction.

• For the remaining cases, namely, (left), (right), and (pair), the result follows

immediately from the induction hypothesis.

6.2 Weakening Lemma

The Weakening Lemma tells us that the validity of a term and its type do not change

when its variable context is extended with a parameter context. First, we prove a

special version of it.

Lemma 6.2.1 (Special Weakening Lemma). If Γ;Q ⊢ M : A is a valid typing jud-

gement, and Φ a parameter context such that Φ ∩ Γ = ∅, then Φ,Γ;Q ⊢ M : A is

valid.

Proof. By rule induction on the set of valid typing judgements.

• The (circ) case as well as the axiom cases, namely, (var), (label), (const), and

(∗) are treated in a similar fashion. We illustrate with the (var) case:

The typing rule is

Φ, x : A; ∅ ⊢ x : A
(var).

Let Φ′ be a parameter context such that Φ′ ∩ (Φ, x : A) = ∅. Then, Φ′,Φ is a

well-defined parameter context not containing x. By the (var) rule,

Φ′,Φ, x : A; ∅ ⊢ x : A

is a valid typing judgement.

79

• The result follows directly from the induction hypothesis in the cases in which

the rule has typing judgements with no distinguished variables in their contexts,

namely, (initial), (left), (right), (seq), (pair), (app), (lift), (force), (box), and

(apply). We present the (seq) case:

The typing rule is

Γ1;Q1 ⊢M : I Γ2;Q2 ⊢ N : A

Γ1 ∪ Γ2;Q1, Q2 ⊢M ;N : A
(seq)

where Γ1;Q1 ⊢M : I and Γ2;Q2 ⊢ N : A are valid typing judgements. Let Φ be

a parameter context such that Φ∩(Γ1∪Γ2) = ∅. Then, Φ∩Γ1 = ∅ and Φ∩Γ2 = ∅.

By the induction hypothesis, Φ,Γ1;Q1 ⊢ M : I and Φ,Γ2;Q2 ⊢ N : A are

valid. Since (Φ,Γ1) ∪ (Φ,Γ2) = Φ, (Γ1 ∪ Γ2), the (seq) rule then implies that

Φ, (Γ1 ∪ Γ2);Q ⊢M ;N : A is valid as well.

• The cases where the typing rule has a context with distinguished variables,

namely, (let), (case), (let-pair), and (abs), are treated in a similar fashion. All

of them invoke Barendregt’s convention to avoid unintended variable clashes.

We illustrate with the (abs) case:

The typing rule is
Γ, x : A;Q ⊢M : B

Γ;Q ⊢ λxA.M : A(B
(abs)

where Γ, x : A;Q ⊢ M : B is a valid typing judgement. Let Φ be a parameter

context such that Φ∩Γ = ∅. By Barendregt’s convention, we may assume that

x /∈ Φ. Then, Φ ∩ (Γ, x : A) = ∅, and since Γ, x : A;Q ⊢ M : B is valid, the

induction hypothesis implies that Φ,Γ, x : A;Q ⊢ M : B is valid. By the (abs)

rule, Φ,Γ;Q ⊢ λxA.M : A(B is valid as well.

The general Weakening Lemma easily follows now.

Lemma 6.2.2. If Γ;Q ⊢ M : A is a valid typing judgement, and Φ a parameter

context such that Φ ∪ Γ is defined, then Φ ∪ Γ;Q ⊢M : A is valid.

Proof. Since Φ ∪ Γ is defined, there exist parameter contexts Φ′,Φ′′, and a varia-

ble context ∆, all mutually disjoint, such that Φ = Φ′,Φ′′, and Φ ∩ Γ = Φ′′, with

80

Γ = Φ′′,∆, and so, Φ ∪ Γ = Φ′,Φ′′,∆. Since Φ′ is a parameter context such

that Φ′ ∩ Γ = Φ′ ∩ (Φ′′,∆) = ∅, the Special Weakening Lemma 6.2.1 implies that

Φ′,Φ′′,∆;Q ⊢M : A is valid, that is, Φ ∪ Γ;Q ⊢M : A is valid.

We finish this section by showing that in appropriate contexts, the validity and

type of a label tuple are the same in both typing systems ⊢L and ⊢.

Lemma 6.2.3. If T is a simple M-type, then Q ⊢L ℓ⃗ : T is a valid label tuple judge-

ment if and only if for every parameter context Φ, the typing judgement Φ;Q ⊢ ℓ⃗ : T

is valid.

Proof. To prove the left-to-right direction, we proceed by induction on the typing

derivation D of Q ⊢L ℓ⃗ : T . Let Φ be a parameter context. We want to show that

Φ;Q ⊢ ℓ⃗ : T is a valid typing judgement. Consider the following cases:

• If the last rule of D is (∗)L or (label)L, then the result is immediate.

• If the last rule of D is (pair)L with ℓ⃗ = ⟨ℓ′⃗, ℓ′′⃗ ⟩, then D is

...

Q′ ⊢L ℓ′⃗ : T ′
...

Q′′ ⊢L ℓ′′⃗ : T ′′

Q′, Q′′ ⊢L ⟨ℓ′⃗, ℓ′′⃗ ⟩ : T ′ ⊗ T ′′
(pair)L

where Q = Q′, Q′′, and T = T ′ ⊗ T ′′ for some simple M-types T ′ and T ′′. Since

Q′ ⊢L ℓ′⃗ : T ′ and Q′′ ⊢L ℓ′′⃗ : T ′′ are valid, the induction hypothesis implies

that Φ;Q′ ⊢ ℓ′⃗ : T ′ and Φ;Q′′ ⊢ ℓ′′⃗ : T ′′ are valid, and so, by the (pair) rule,

Φ;Q′, Q′′ ⊢ ⟨ℓ′⃗, ℓ′′⃗ ⟩ : T ′ ⊗ T ′′ is valid as well.

The proof of the converse is similar.

6.3 Substitution Lemma

We now prove one of the main results of this chapter: the admissibility of the substi-

tution operation in Proto-Quipper-M.

Lemma 6.3.1 (Substitution Lemma). If Γ, x : A;Q ⊢ N : B and Γ′;Q′ ⊢ V : A are

valid typing judgements such that Γ ∪ Γ′ is defined, Q ∩ Q′ = ∅, and V is a value

term, then Γ ∪ Γ′;Q,Q′ ⊢ N [V/x] : B is valid.

81

Proof. By induction on the typing derivation D of Γ, x : A;Q ⊢ N : B. Assume that

Γ′;Q′ ⊢ V : A is valid and such that Γ ∪ Γ′ is defined, Q ∩ Q′ = ∅, and V is a value

term. We want to show that Γ ∪ Γ′;Q,Q′ ⊢ N [V/x] : B is valid.

• If the last (and only) rule of D is (var) with N = x, then D is

Φ, x : A; ∅ ⊢ x : A
(var)

with Γ = Φ, a parameter context, Q = ∅, and B = A. Since N [V/x] = x[V/x] =

V , we want to show that Φ ∪ Γ′;Q′ ⊢ V : A is valid.

Since Γ∪ Γ′ = Φ∪ Γ′ is defined, Φ is a parameter context, and Γ′;Q′ ⊢ V : A is

valid, the Weakening Lemma 6.2.2 then implies that Φ ∪ Γ′;Q′ ⊢ V : A is valid

as well.

• If the last rule of D is (var) with N = y ̸= x, then D is

Φ, x : A, y : B; ∅ ⊢ y : B
(var)

with Γ = (Φ, y : B) and Q = ∅, where (Φ, x : A) is a parameter context. Since

N [V/x] = y[V/x] = y, we want to show that (Φ, y : B) ∪ Γ′;Q′ ⊢ y : B is valid.

Since Γ′;Q′ ⊢ V : A is a valid typing judgement and A is a parameter type, the

Parameter Value Lemma 6.1.4 implies that Q′ = ∅ and that Γ′ is a parameter

context. Since (Φ, y : B) ∪ Γ′ is a parameter context except possibly for y : B,

the (var) rule implies that (Φ, y : B) ∪ Γ′; ∅ ⊢ y : B is valid.

• The proofs for the cases where the last (and only) rule of D is any of (label),

(const), (∗), or (circ), are similar. We present the (label) case:

If the last rule of D is (label) with N = ℓ, then D is

Φ; ℓ : α ⊢ ℓ : α
(label)

with (Γ, x : A) = Φ, a parameter context, Q = ℓ : α, and B = α, a wire type.

Since N [V/x] = ℓ[V/x] = ℓ, we want to show that Γ ∪ Γ′; ℓ : α,Q′ ⊢ ℓ : α is

valid.

82

Since Γ′;Q′ ⊢ V : A is valid and A is a parameter type, the Parameter Value

Lemma 6.1.4 implies that Q′ = ∅ and Γ′ is a parameter context. Thus, Γ∪Γ′ is

a parameter context as well, and by the (label) rule, Γ∪Γ′; ℓ : α ⊢ ℓ : α is valid.

• If the last rule of D is any of (initial), (left), (right), (force), or (box), we obtain

the result by a direct application of the induction hypothesis. We illustrate

with the (left) case:

If the last rule of D is (left) with N = leftC,DM , then D is

...
Γ;Q ⊢M : C

Γ;Q ⊢ leftC,DM : C +D
(left)

with (Γ, x : A) = Γ and B = C + D. Since N [V/x] = (leftC,DM)[V/x] =

leftC,DM [V/x], we want to prove that Γ ∪ Γ′;Q,Q′ ⊢ leftC,DM [V/x] : C +D is

valid.

Since Γ, x : A;Q ⊢ M : C is valid, the induction hypothesis implies that

Γ ∪ Γ′;Q,Q′ ⊢ M [V/x] : C is also valid. By the (left) rule, we get the validity

of Γ ∪ Γ′;Q,Q′ ⊢ leftC,DM [V/x] : C +D.

• If the last rule of D is (lift) with N = lift M , then D is

...
Φ; ∅ ⊢M : C

Φ; ∅ ⊢ lift M : !C
(lift)

with (Γ, x : A) = Φ, a parameter context, Q = ∅, and B = !C. Since

N [V/x] = (lift M)[V/x] = lift M [V/x], we want to show the validity of the

judgement Γ ∪ Γ′;Q′ ⊢ lift M [V/x] : !C.

Since Γ′;Q′ ⊢ V : A is valid and A is a parameter type, the Parameter Value

Lemma 6.1.4 implies that Q′ = ∅ and Γ′ is a parameter context, and so, Γ ∪ Γ′

is a parameter context as well. Since Γ, x : A; ∅ ⊢M : C is valid, the induction

hypothesis implies that Γ ∪ Γ′; ∅ ⊢ M [V/x] : C is valid. By the (lift) rule,

Γ ∪ Γ′; ∅ ⊢ lift M [V/x] : !C is valid as well.

83

• If the last rule of D is any of (seq), (pair), (app), or (apply), we obtain the result

by applications of the induction hypothesis, the Parameter Value Lemma 6.1.4,

and Lemmas 6.1.1 and 6.1.2. We illustrate with the (pair) case:

If the last rule of D is (pair) with N = ⟨R, S⟩, then D is

...
Γ1;Q1 ⊢ R : C

...
Γ2;Q2 ⊢ S : D

Γ1 ∪ Γ2;Q1, Q2 ⊢ ⟨R, S⟩ : C ⊗D
(pair)

with (Γ, x : A) = Γ1 ∪ Γ2, label context Q = Q1, Q2, and B = C ⊗ D.

Since N [V/x] = (⟨R, S⟩)[V/x] = ⟨R[V/x], S[V/x]⟩, we want to show that

Γ ∪ Γ′;Q1, Q2, Q
′ ⊢ ⟨R[V/x], S[V/x]⟩ : C ⊗D is valid.

We consider the following cases:

– x ∈ Γ1\Γ2 : In this case, Γ1\{x : A}, x : A;Q1 ⊢ R : C is valid. By the

induction hypothesis, (Γ1\{x : A}) ∪ Γ′;Q1, Q
′ ⊢ R[V/x] : C is also valid.

Since x /∈ Γ2, by Lemma 6.1.1, x /∈ FV (S). Lemma 6.1.2 then implies that

S = S[V/x], and so, Γ2;Q2 ⊢ S[V/x] : D is valid as well. Since

((Γ1\{x : A}) ∪ Γ′) ∪ Γ2 = ((Γ1\{x : A}) ∪ Γ2) ∪ Γ′

= ((Γ1 ∪ Γ2)\{x : A}) ∪ Γ′

= Γ ∪ Γ′,

the validity of (Γ1\{x : A})∪Γ′;Q1, Q
′ ⊢ R[V/x] : C and Γ2;Q2 ⊢ S[V/x] : D

yields that, by the (pair) rule, Γ∪Γ′;Q1, Q2, Q
′ ⊢ ⟨R[V/x], S[V/x]⟩ : C⊗D

is valid valid as well.

– x ∈ Γ2\Γ1 : This case is analogous to the previous one.

– x ∈ Γ1 ∩ Γ2 : In this case, Γ1\{x : A}, x : A;Q1 ⊢ R : C is valid. By

the induction hypothesis, (Γ1\{x : A}) ∪ Γ′;Q1, Q
′ ⊢ R[V/x] : C is valid.

Similarly, (Γ2\{x : A})∪Γ′;Q2, Q
′ ⊢ S[V/x] : C is valid. Now, x ∈ Γ1∩Γ2

implies that A is a parameter type, and since Γ′;Q′ ⊢ V : A is valid, the

Parameter Value Lemma 6.1.4 implies that Q′ = ∅ and Γ′ is a parameter

84

context. Since

((Γ1\{x : A}) ∪ Γ′) ∪ ((Γ2\{x : A}) ∪ Γ′) = ((Γ1 ∪ Γ2)\{x : A}) ∪ Γ′

= ((Γ, x : A)\{x : A}) ∪ Γ′

= Γ ∪ Γ′,

the validity of the judgements (Γ1\{x : A}) ∪ Γ′;Q1, Q
′ ⊢ R[V/x] : C and

(Γ2\{x : A}) ∪ Γ′;Q2, Q
′ ⊢ S[V/x] : C yields that, by the (pair) rule,

Γ ∪ Γ′;Q1, Q2 ⊢ ⟨R[V/x], S[V/x]⟩ : C ⊗D is valid as well.

• If the last rule of D is (abs) with N = λyC .M , then D is

...
Γ, y : C;Q ⊢M : D

Γ;Q ⊢ λyC .M : C (D
(abs)

with (Γ, x : A) = Γ and B = C (D. By Barendregt’s convention, we may

assume that y /∈ Γ′. Since x ∈ Γ, y ̸= x, and so N [V/x] = (λyC .M)[V/x] =

λyC .M [V/x]. We want to prove that Γ ∪ Γ′;Q,Q′ ⊢ λyC .M [V/x] : C (D is a

valid typing judgment.

Since Γ, x : A, y : C;Q ⊢ M : D is valid, the induction hypothesis implies that

(Γ, y : C)∪Γ′;Q,Q′ ⊢M [V/x] : D is valid. But (Γ, y : C)∪Γ′ = ((Γ∪Γ′), y : C),

so the (abs) rule implies that Γ ∪ Γ′;Q,Q′ ⊢ λyC .M [V/x] : C (D is valid as

well.

• The proofs for the remaining cases, namely, (let), (case), and (let-pair), are

similar. We illustrate with the (let-pair) case:

If the last rule of D is (let-pair) with N = (let ⟨y, z⟩ = R in S), then D is

...
Γ1;Q1 ⊢ R : C ⊗D

...
Γ2, y : C, z : D;Q2 ⊢ S : B

Γ1 ∪ Γ2;Q1, Q2 ⊢ let ⟨y, z⟩ = R in S : B
(let-pair)

with (Γ, x : A) = Γ1 ∪ Γ2, and Q = Q1, Q2. By Barendregt’s convention, we

may assume that x ̸= y, x ̸= z, and y, z /∈ Γ′. By Lemma 6.1.1, y, z ̸∈ FV (V).

Since N [V/x] = (let ⟨y, z⟩ = R in S)[V/x] = (let ⟨y, z⟩ = R[V/x] in S[V/x]),

85

we want to show that Γ ∪ Γ′;Q1, Q2, Q
′ ⊢ let ⟨y, z⟩ = R[V/x] in S[V/x] : B is a

valid typing judgment.

We consider the following cases:

– x ∈ Γ1\Γ2: In this case, Γ1\{x : A}, x : A;Q1 ⊢ R : C ⊗ D is valid, and

by the induction hypothesis, (Γ1\{x : A}) ∪ Γ′;Q1, Q
′ ⊢ R[V/x] : C ⊗ D

is also valid. Since x /∈ Γ2, x ̸= y and x ̸= z, we have that x /∈ FV (S)

by Lemma 6.1.1. By Lemma 6.1.2, S = S[V/x], and so, we have that

Γ2, y : C, z : D;Q2 ⊢ S[V/x] : B is valid. Note that

((Γ1\{x : A}) ∪ Γ′) ∪ Γ2 = ((Γ1\{x : A}) ∪ Γ2) ∪ Γ′

= ((Γ1 ∪ Γ2)\{x : A}) ∪ Γ′

= ((Γ, x : A)\{x : A}) ∪ Γ′

= Γ ∪ Γ′,

and since the judgements (Γ\{x : A}) ∪ Γ′;Q1, Q
′ ⊢ R[V/x] : C ⊗ D and

Γ2, y : C, z : D;Q2 ⊢ S[V/x] : B are valid, then by the (let-pair) rule,

Γ ∪ Γ′;Q1, Q2, Q
′ ⊢ let ⟨y, z⟩ = R[V/x] in S[V/x] : B is valid as well.

– x ∈ Γ2\Γ1: This case is analogous to the previous one.

– x ∈ Γ1 ∩ Γ2: In this case, A is a parameter type, and since Γ′;Q′ ⊢ V : A

is valid, the Parameter Value Lemma 6.1.4 implies that Q′ = ∅ and Γ′

is a parameter context. Since Γ1\{x : A}, x : A;Q1 ⊢ R : C ⊗ D and

Γ2\{x : A}, x : A, y : C, z : D;Q2 ⊢ S : B are valid, the induction hypot-

hesis implies that the judgements (Γ1\{x : A}) ∪ Γ′;Q1 ⊢ R[V/x] : C ⊗D

and ((Γ2\{x : A}), y : C, z : D) ∪ Γ′;Q2 ⊢ S[V/x] : B are valid as well.

Note that

((Γ2\{x : A}), y : C, z : D) ∪ Γ′ = ((Γ2\{x : A}) ∪ Γ′), y : C, z : D

since y, z ̸∈ Γ′, and so we can rewrite the latter typing judgement as

((Γ2\{x : A}) ∪ Γ′), y : C, z : D;Q2 ⊢ S[V/x] : B.

Let ˆ︂Γ1 = (Γ1\{x : A}) ∪ Γ′ and let ˆ︂Γ2 = (Γ2\{x : A}) ∪ Γ′, then

86

ˆ︂Γ1 ∪ˆ︂Γ2 = ((Γ1\{x : A}) ∪ (Γ2\{x : A})) ∪ Γ′

= ((Γ1 ∪ Γ2)\{x : A}) ∪ Γ′

= ((Γ, x : A)\{x : A}) ∪ Γ′

= Γ ∪ Γ′,

and so

((Γ1\{x : A}) ∪ Γ′) ∪ ((Γ2\{x : A}) ∪ Γ′) = Γ ∪ Γ′.

Since the judgements (Γ1\{x : A}) ∪ Γ′;Q1 ⊢ R[V/x] : C ⊗ D and

((Γ2\{x : A}) ∪ Γ′), y : C, z : D;Q2 ⊢ S[V/x] : B are valid, then by

the (let-pair) rule,

Γ ∪ Γ′;Q1, Q2 ⊢ let ⟨y, z⟩ = R[V/x] in S[V/x] : B

is valid as well.

6.4 Type Preservation

We now make more explicit the relationship between the syntax and the operational

semantics of Proto-Quipper-M by showing that the evaluation relation satisfies the

subject reduction property. Subject reduction, also known as type preservation, says

that if a well-typed configuration evaluates to a value configuration, the latter is

well-typed of the same type. Since the evaluation relation of Proto-Quipper-M is

defined on configurations while the typing rules only apply to terms, we first extend

the notion of typing and validity to configurations.

Definition 6.4.1. Let Q,Q′ be label contexts, (C,M) a configuration, and A a type.

We say that (C,M) is well-typed or valid with input labels Q, output labels Q′, and

type A, in symbols

Q ⊢ (C,M) : A;Q′,

87

if there exists a label context Q′′ disjoint from Q′ such that C : Q → Q′′, Q′ and

∅;Q′′ ⊢M : A. �

Note that in a well-typed configuration, M may contain some free labels, but

never free variables, and so, M is always a closed term with labels bound to a subset

of the outputs of the labeled morphism C. Sometimes it may be helpful to picture

this situation as follows:

C

M
Q

Q′′

Q′

A

This will become more formal in Chapter 9 where we discuss soundness.

Theorem 6.4.2 (Subject Reduction Theorem). If Q ⊢ (C,M) : A;Q′ is a valid

configuration and (C,M) ⇓ (C ′, V), then Q ⊢ (C ′, V) : A;Q′ is also valid.

Proof. We proceed by rule induction on the evaluation relation ⇓. See Table 5.3.

Axiom Rules: The result is immediate for the axiom cases, namely: (label)⇓, (const)⇓,

(∗)⇓, (abs)⇓, (lift)⇓, and (circ)⇓, because in these cases, (C,M) = (C ′, V).

Purely Inductive Rules: These rules are all treated in a similar fashion and include

(left)⇓, (right)⇓, (seq)⇓, (pair)⇓, and (force)⇓. In these cases, the result follows

by direct applications of the induction hypothesis and the corresponding typing

rules. We treat each case in turn:

• (left)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V)

(C, leftA,BM) ⇓ (C ′, leftA,B V)
.

Assume that Q ⊢ (C, leftA,BM) : A+B;Q′ is valid. We want to show the

validity of Q ⊢ (C ′, leftA,B V) : A+B;Q′.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ leftA,BM : A + B is valid. By the (left) rule, ∅;Q′′ ⊢ M : A

is valid. It follows that Q ⊢ (C,M) : A;Q′ is valid as well. Applying the

induction hypothesis to (C,M) ⇓ (C ′, V) yields that Q ⊢ (C ′, V) : A;Q′ is

88

valid. Thus, there exists a label context Q′′′ such that C ′ : Q→ Q′′′, Q′ and

∅;Q′′′ ⊢ V : A. By the (left) rule, we have that ∅;Q′′′ ⊢ leftA,B V : A + B

is valid as well. Thus, Q ⊢ (C ′, leftA,B V) : A+B;Q′ is valid too.

• (right)⇓: This case is similar to the (left)⇓ case.

• (seq)⇓: The evaluation rule is

(C,M) ⇓ (C ′, ∗) (C ′, N) ⇓ (C ′′,W)

(C,M ;N) ⇓ (C ′′,W)
.

Assume that Q ⊢ (C,M ;N) : A;Q′ is valid. We want to show the validity

of Q ⊢ (C ′′,W) : A;Q′.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ M ;N : A is valid. By the typing rule (seq), there are label

contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢ M : I and

∅;Q′′2 ⊢ N : A are valid.

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : I is valid, it follows that

Q ⊢ (C,M) : I;Q′′2, Q
′ is valid as well. Applying the induction hypothesis

to (C,M) ⇓ (C ′, ∗) yields that Q ⊢ (C ′, ∗) : I;Q′′2, Q
′ is valid. Thus, there

exists a label context Q′′′ such that C ′ : Q→ Q′′′, Q′′2, Q
′ and ∅;Q′′′ ⊢ ∗ : I

is valid. By the typing rule (∗), Q′′′ = ∅, and so, C ′ : Q → Q′′2, Q
′. This

and the validity of ∅;Q′′2 ⊢ N : A imply that Q ⊢ (C ′, N) : A;Q′ is valid

too. By the induction hypothesis applied to (C ′, N) ⇓ (C ′′,W), we have

that Q ⊢ (C ′′,W) : A;Q′ is valid as well.

• (pair)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V) (C ′, N) ⇓ (C ′′, V ′)

(C, ⟨M,N⟩) ⇓ (C ′′, ⟨V, V ′⟩)
.

Assume that Q ⊢ (C, ⟨M,N⟩) : A ⊗ B;Q′ is valid. We want to show the

validity of Q ⊢ (C ′′, ⟨V, V ′⟩) : A⊗B;Q′.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ ⟨M,N⟩ : A ⊗ B is valid. By the typing rule (pair), there are

label contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢M : A

and ∅;Q′′2 ⊢ N : B are valid.

89

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : A is valid, it follows that

Q ⊢ (C,M) : A;Q′′2, Q
′ is valid as well. Applying the induction hypothesis

to (C,M) ⇓ (C ′, V) yields that Q ⊢ (C ′, V) : A;Q′′2, Q
′ is valid. Thus, there

exists a label context Q′′′1 such that C ′ : Q→ Q′′′1 , Q
′′
2, Q

′ and ∅;Q′′′1 ⊢ V : A

is valid. Since ∅;Q′′2 ⊢ N : B is valid, it follows that Q ⊢ (C ′, N) : B;Q′′′1 , Q
′

is valid as well. By the induction hypothesis applied to (C ′, N) ⇓ (C ′′, V ′),

we have that Q ⊢ (C ′′, V ′) : B;Q′′′1 , Q
′ is valid too. Thus, there exists a

label context Q′′′2 such that C ′′ : Q → Q′′′2 , Q
′′′
1 , Q

′ and ∅, Q′′′2 ⊢ V ′ : B is

valid. By the typing rule (pair), ∅, Q′′′1 , Q′′′2 ⊢ ⟨V, V ′⟩ : A⊗ B is valid, and

so, Q ⊢ (C ′′, ⟨V, V ′⟩) : A⊗B;Q′ is valid as well.

• (force)⇓: The evaluation rule is

(C,M) ⇓ (C ′, lift M ′) (C ′,M ′) ⇓ (C ′′, V)

(C, force M) ⇓ (C ′′, V)
.

Assume that Q ⊢ (C, force M) : A;Q′ is valid. We want to show the

validity of Q ⊢ (C ′′, V) : A;Q′.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ force M : A is valid. By the typing rule (force), we have

that ∅;Q′′ ⊢ M : !A is valid, and so, Q ⊢ (C,M) : !A;Q′ is valid as well.

Applying the induction hypothesis to (C,M) ⇓ (C ′, lift M ′) yields that

Q ⊢ (C ′, lift M ′) : !A,Q′ is valid. Thus, there exists a label context Q′′′

such that C ′ : Q → Q′′′, Q′ and ∅;Q′′′ ⊢ lift M ′ : !A is valid. By the

typing rule (lift), we have that Q′′′ = ∅ and ∅; ∅ ⊢ M ′ : A is valid, and so,

Q ⊢ (C ′,M ′) : A;Q′ is valid as well. By the induction hypothesis applied

to (C ′,M ′) ⇓ (C ′′, V), we have that Q ⊢ (C ′′, V) : B;Q′ is valid too.

Substitution Rules: These are rules with a configuration containing a term in

which a substitution has occurred, namely, (let)⇓, (case-left)⇓, (case-right)⇓,

(let-pair)⇓, and (app)⇓. In these cases, the result follows by the induction hypot-

hesis and the Substitution Lemma 6.3.1. We treat each case in turn:

• (let)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V) (C ′, N [V/x]) ⇓ (C ′′,W)

(C, let x = M in N) ⇓ (C ′′,W)
.

90

Assume that Q ⊢ (C, let x = M in N) : B;Q′ is valid. We want to show

the validity of Q ⊢ (C ′′,W) : B;Q′.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ let x = M in N : B is valid. By the typing rule (let), there are

label contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢M : A

and x : A;Q′′2 ⊢ N : B are valid.

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : A is valid, it follows that

Q ⊢ (C,M) : A;Q′′2, Q
′ is valid as well. Applying the induction hypothe-

sis to (C,M) ⇓ (C ′, V) yields that Q ⊢ (C ′, V) : A;Q′′2, Q
′ is also valid.

Thus, there exists a label context Q′′′ such that C ′ : Q → Q′′′, Q′′2, Q
′

and ∅;Q′′′ ⊢ V : A is valid. But x : A;Q′′2 ⊢ N : B is valid, and so

∅;Q′′′, Q′′2 ⊢ N [V/x] : B is also valid by the Substitution Lemma 6.3.1. This

together with C ′ : Q → Q′′′, Q′′2, Q
′ implies that Q ⊢ (C ′, N [V/x]) : B;Q′

is valid. By the induction hypothesis applied to (C ′, N [V/x]) ⇓ (C ′′,W),

we have that Q ⊢ (C ′′,W) : B;Q′ is valid as well.

• (let-pair)⇓: This case is similar to the (let)⇓ case.

• (case-left)⇓: The evaluation rule is

(C,M) ⇓ (C ′, leftA,B V) (C ′, N [V/x]) ⇓ (C ′′,W)

(C, case M of {leftx→ N | right y → P}) ⇓ (C ′′,W)
.

Assume that Q ⊢ (C, case M of {leftx → N | right y → P}) : D;Q′ is

valid. We want to show that Q ⊢ (C ′′,W) : D;Q′ is also valid.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ case M of {leftx → N | right y → P} : D is valid. By the ty-

ping rule (case), there are label contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2,

and ∅;Q′′1 ⊢M : A+B as well as x : A;Q′′2 ⊢ N : D and y : B;Q′′2 ⊢ P : D

are valid.

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : A + B is valid, it follows that

Q ⊢ (C,M) : A + B;Q′′2, Q
′ is valid as well. By the induction hypothesis,

(C,M) ⇓ (C ′, leftA,B V) implies that Q ⊢ (C ′, leftA,B V) : A + B;Q′′2, Q
′ is

valid. Thus, there exists a label context Q′′′ such that C ′ : Q→ Q′′′, Q′′2, Q
′

and ∅;Q′′′ ⊢ leftA,B V : A+ B is valid. By the (left) rule, ∅;Q′′′ ⊢ V : A is

91

valid as well. But x : A;Q′′2 ⊢ N : D is valid, and so, ∅;Q′′′, Q2 ⊢ N [V/x] : D

is also valid by the Substitution Lemma 6.3.1. Since C ′ : Q→ Q′′′, Q′′2, Q
′,

Q ⊢ (C ′, N [V/x]) : D;Q′ is valid too. By the induction hypothesis applied

to (C ′, N [V/x]) ⇓ (C ′′,W), we have that Q ⊢ (C ′′,W) : D;Q′ is valid as

well.

• (case-right)⇓: This case is similar to the (case-left)⇓ case.

• (app)⇓: The evaluation rule is

(C,M) ⇓ (C ′, λxA.M ′) (C ′, N) ⇓ (C ′′, V) (C ′′,M ′[V/x]) ⇓ (C ′′′,W)

(C,MN) ⇓ (C ′′′,W)
.

Assume that Q ⊢ (C,MN) : B;Q′ is valid. We want to show the validity

of Q ⊢ (C ′′′,W) : B;Q′.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ MN : B is valid. By the typing rule (app), there are label

contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢M : A(B

and ∅;Q′′2 ⊢ N : A are valid.

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : A(B is valid, it follows that

Q ⊢ (C,M) : A(B;Q′′2, Q
′ is valid as well. Applying the induction hypot-

hesis to (C,M) ⇓ (C ′, λxA.M ′) yields thatQ ⊢ (C ′, λxA.M ′) : A(B;Q′′2, Q
′

is valid. Thus, there exists a label contextQ′′′ such that C ′ : Q→ Q′′′, Q′′2, Q
′

and ∅;Q′′′ ⊢ λxA.M ′ : A(B is valid as well. By the typing rule (abs),

x : A;Q′′′ ⊢M ′ : B is also valid.

Since C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′2 ⊢ N : A is valid, we have that the

judgement Q ⊢ (C ′, N) : A;Q′′′, Q′ is also valid. Applying the induction

hypothesis to (C ′, N) ⇓ (C ′′, V) yields that Q ⊢ (C ′′, V) : A;Q′′′, Q′ is valid

too. Thus, there exists a label context Q such that C ′′ : Q → Q,Q′′′, Q′

and ∅;Q ⊢ V : A is valid. But x : A;Q′′′ ⊢ M ′ : B is valid as well, and

so, ∅;Q,Q′′′ ⊢ M ′[V/x] : B is also valid by the Substitution Lemma 6.3.1.

Since C ′′ : Q→ Q,Q′′′, Q′, it follows that Q ⊢ (C ′′,M ′[V/x]) : B;Q′ is valid

too. By the induction hypothesis applied to (C ′′,M ′[V/x]) ⇓ (C ′′′,W), we

have that Q ⊢ (C ′′′,W) : B;Q′ is valid as well.

92

Circuit Rules: These are the rules (box)⇓ and (apply)⇓ and they are the most in-

teresting rules of Proto-Quipper-M as they generate circuits. We treat each in

turn:

• (box)⇓ : The evaluation rule is

(C,M) ⇓ (C ′, lift N) freshlabels(T) = (Q, ℓ⃗) (idQ, Nℓ⃗) ⇓ (D, ℓ′⃗)

(C, boxT M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗))
.

Assume that Q ⊢ (C, boxT M) : A;Q′ is valid. We want to show the

validity of Q ⊢ (C ′, (ℓ⃗, D, ℓ′⃗)) : A;Q′.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ boxT M : A is valid. By the typing rule (box), A = Circ(T, U)

for some simple M-type U , and ∅;Q′′ ⊢ M : !(T (U) is valid. This

and C : Q → Q′′, Q′ imply that Q ⊢ (C,M) : !(T (U);Q′ is valid as

well. Applying the induction hypothesis to (C,M) ⇓ (C ′, lift N) yields

that Q ⊢ (C ′, lift N) : !(T (U);Q′ is also valid. Thus, there exists a label

context Q′′′ such that C ′ : Q → Q′′′, Q′ and ∅;Q′′′ ⊢ lift N : !(T (U) is

valid. By the typing rule (lift), Q′′′ = ∅ and ∅; ∅ ⊢ N : T (U is also valid.

This and C ′ : Q → ∅, Q′ imply the validity of Q ⊢ (C ′, N) : T (U ;Q′.

Since freshlabels(T) = (Q, ℓ⃗), we have that Q ⊢L ℓ⃗ : T is valid, and by

Lemma 6.2.3, ∅;Q ⊢ ℓ⃗ : T is valid as well. This and ∅; ∅ ⊢ N : T(U yield

that ∅;Q ⊢ Nℓ⃗ : U is valid by the (app) rule.

Since idQ : Q → Q, ∅ and ∅;Q ⊢ Nℓ⃗ : U is valid, Q ⊢ (idQ, Nℓ⃗) : U ; ∅
is also valid. Applying the induction hypothesis to (idQ, Nℓ⃗) ⇓ (D, ℓ′⃗)

yields that Q ⊢ (D, ℓ′⃗) : U ; ∅ is valid too. Thus, there exists a label

context Q such that D : Q → Q, ∅ and ∅;Q ⊢ ℓ′⃗ : U is valid. Then,

Lemma 6.2.3 implies that Q ⊢L ℓ′⃗ : U is valid as well. Since Q ⊢L ℓ⃗ : T

and Q ⊢L ℓ′⃗ : U are valid and D : Q → Q ∈ ML(Q,Q), the (circ) rule

implies that ∅; ∅ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U) is valid. This and C ′ : Q → ∅, Q′

then imply that Q ⊢ (C ′, (ℓ⃗, D, ℓ′⃗)) : Circ(T, U);Q′ is valid as well.

• (apply)⇓ : The evaluation rules is

(C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) (C ′, N) ⇓ (C ′′, k⃗) append(C ′′, k⃗, ℓ⃗, D, ℓ′⃗) = (C ′′′, k′⃗)

(C, apply(M,N)) ⇓ (C ′′′, k′⃗)
.

93

Assume that Q ⊢ (C, apply(M,N)) : U ;Q′ is valid. We want to show the

validity of Q ⊢ (C ′′′, k′⃗) : U ;Q′.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ apply(M,N) : U is valid. By the (apply) rule, there exist label

contextsQ′′1 andQ′′2 such thatQ′′ = Q′′1, Q
′′
2 and both ∅;Q′′1 ⊢M : Circ(T, U)

and ∅;Q′′2 ⊢ N : T are valid. The former and C : Q → Q′′1, Q
′′
2, Q

′

imply that Q ⊢ (C,M) : Circ(T, U);Q′′2, Q
′ is valid as well. Applying

the induction hypothesis to (C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) yields the validity of

Q ⊢ (C ′, (ℓ⃗, D, ℓ′⃗)) : Circ(T, U);Q′′2, Q
′. Thus, there is a label context Q′′′

such that C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′′ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U) is va-

lid. By the typing rule (circ), Q′′′ = ∅, there exist label contexts ˜︁Q and˜︁Q′ such that D ∈ ML(˜︁Q, ˜︁Q′), and both ˜︁Q ⊢L ℓ⃗ : T and ˜︁Q′ ⊢L ℓ′⃗ : U

are valid. Since C ′ : Q → Q′′2, Q
′ and ∅;Q′′2 ⊢ N : T is valid, we have

that Q ⊢ (C ′, N) : T ;Q′ is valid. Applying the induction hypothesis to

(C ′, N) ⇓ (C ′′, k⃗) yields that Q ⊢ (C ′′, k⃗) : T ;Q′ is valid as well. Thus,

there exists a label context Q such that C ′′ : Q → Q,Q′ and ∅;Q ⊢ k⃗ : T

is valid.

Since append(C ′′, k⃗, ℓ⃗, D, ℓ′⃗) = (C ′′′, k′⃗), we have that C ′′′ = (D′⊗idQ′)◦C ′′

where D′ : Q→ Q
′

is the labeled circuit derived from D : ˜︁Q→ ˜︁Q′ with Q

being the label context obtained by the relabeling of ℓ⃗ by k⃗, and Q
′

being

the label context obtained by the relabeling of ℓ′⃗ by fresh k′⃗ ; this yields

that Q
′ ⊢L k′⃗ : U is valid, and by Lemma 6.2.3, ∅;Q

′ ⊢ k′⃗ : U is valid as

well. This and C ′′′ : Q → Q
′
, Q′ then imply that Q ⊢ (C ′′′, k′⃗) : U ;Q′ is

also valid.

6.5 Error-Freeness

We finish this chapter by showing that Proto-Quipper-M satisfies the error-freeness

property: a well-typed configuration never yields a run-time error.

Theorem 6.5.1 (Error-Freeness Theorem). If Q ⊢ (C,M) : A;Q′ is a valid configu-

ration, then (C,M) ̸⇓ Error.

94

Proof. We will show by rule induction on the error relation that when (C,M) ⇓ Error,

the assumption that Q ⊢ (C,M) : A;Q′ is a valid configuration leads to a contra-

diction. Consider the following cases:

Error-Generation Rules: These are the rules in Table 5.4. Proving the result in

these cases requires mostly applications of the Subject Reduction Theorem 6.4.2,

the Parameter Value Lemma 6.1.4, and the Closed Value Lemma 6.1.3. Proofs

involving these rules are similar. We illustrate with the following cases:

• (initial-err-g)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V)

(C,�AM) ⇓ Error
.

Assume that Q ⊢ (C,�AM) : A;Q′ is valid. We want to reach a contra-

diction.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ �AM : A is valid. By the typing rule (initial), ∅;Q′′ ⊢ M : 0

is valid and therefore so is Q ⊢ (C,M) : 0;Q′. This and (C,M) ⇓ (C ′, V)

imply that Q ⊢ (C ′, V) : 0;Q′ is valid by the Subject Reduction Theo-

rem 6.4.2. Thus, there exists a label context Q′′′ such that C ′ : Q→ Q′′′, Q′

and ∅;Q′′′ ⊢ V : 0 is valid. By the Parameter Value Lemma 6.1.4, Q′′′ = ∅,

and so ∅; ∅ ⊢ V : 0 is valid. Since V is a value term of type 0, we have that

V is either a variable or a label (by convention there are no constants of

type 0 as 0 represents the empty set). Since the variable context is ∅, V

is not a variable. Similarly, since the label context is ∅, V is not a label, a

contradiction.

• (seq-err-g)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V) where V ̸= ∗
(C,M ;N) ⇓ Error

.

Assume that Q ⊢ (C,M ;N) : A;Q′ is valid. We want to reach a contra-

diction.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ M ;N : A is valid. By the typing rule (seq), there are label

95

contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢ M : I and

∅;Q′′2 ⊢ N : A are valid. Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : I

is valid, it follows that Q ⊢ (C,M) : I;Q′′2, Q
′ is valid as well. This and

(C,M) ⇓ (C ′, V) imply that Q ⊢ (C ′, V) : I;Q′′2, Q
′ is valid by the Subject

Reduction Theorem 6.4.2. Thus, there exists a label context Q′′′ such that

C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′′ ⊢ V : I is valid. By the Parameter Value

Lemma 6.1.4, Q′′′ = ∅, and so, ∅; ∅ ⊢ V : I. But by the Closed Value

Lemma 6.1.3, V = ∗, a contradiction.

• (apply-err-g-2)⇓: The evaluation rule is

(C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) (C ′, N) ⇓ (C ′′, V) where V ̸= k⃗

(C, apply(M,N)) ⇓ Error
.

Assume that Q ⊢ (C, apply(M,N)) : U ;Q′ is valid. We want to reach a

contradiction.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ apply(M,N) : U is valid. By the (apply) rule, there exist label

contextsQ′′1 andQ′′2 such thatQ′′ = Q′′1, Q
′′
2 and both ∅;Q′′1 ⊢M : Circ(T, U)

and ∅;Q′′2 ⊢ N : T are valid where T and U are simple M-types. The for-

mer and C : Q → Q′′1, Q
′′
2, Q

′ imply that Q ⊢ (C,M) : Circ(T, U);Q′′2, Q
′

is valid as well. This and (C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) imply that the judge-

ment Q ⊢ (C ′, (ℓ⃗, D, ℓ′⃗)) : Circ(T, U);Q′′2, Q
′ is also valid by the Subject

Reduction Theorem 6.4.2. Thus, there is a label context Q′′′ such that

C ′ : Q→ Q′′′, Q′′2, Q
′ and ∅;Q′′′ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U) is valid. By the ty-

ping rule (circ), Q′′′ = ∅. Since C ′ : Q→ Q′′2, Q
′ and ∅;Q′′2 ⊢ N : T is valid,

we have that Q ⊢ (C ′, N) : T ;Q′ is valid. This and (C ′, N) ⇓ (C ′′,W) im-

ply that Q ⊢ (C ′′,W) : T ;Q′ is valid as well by the Subject Reduction The-

orem 6.4.2. Thus, there exists a label context Q such that C ′′ : Q→ Q,Q′

and ∅;Q ⊢ W : T is valid. But T is a simple M-type, and thus, the Closed

Value Lemma 6.1.3 implies that W is a label tuple, a contradiction.

• (box-err-g-2)⇓: The evaluation rule is

(C,M) ⇓ (C ′, lift N) freshlabels(T) = (Q, ℓ⃗) (idQ, Nℓ⃗) ⇓ (D, V) where V ̸= ℓ′⃗

(C, boxT M) ⇓ Error
.

96

Assume that Q ⊢ (C, boxT M) : A;Q′ is valid. We want to reach a contra-

diction.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ boxT M : A is valid. By the typing rule (box), A = Circ(T, U)

for some simple M-type U , and ∅;Q′′ ⊢ M : !(T (U) is valid. This

and C : Q → Q′′, Q′ imply that Q ⊢ (C,M) : !(T (U);Q′ is va-

lid as well, which along with (C,M) ⇓ (C ′, lift N) yields the validity of

Q ⊢ (C ′, lift N) : !(T (U);Q′ by the Subject Reduction Theorem 6.4.2.

Thus, there exists a label context Q′′′ such that C ′ : Q → Q′′′, Q′ and

∅;Q′′′ ⊢ lift N : !(T (U) is valid. By the typing rule (lift), Q′′′ = ∅ and

∅; ∅ ⊢ N : T (U is also valid.

Since freshlabels(T) = (Q, ℓ⃗), we have that Q ⊢L ℓ⃗ : T is valid, and by

Lemma 6.2.3, ∅;Q ⊢ ℓ⃗ : T is valid as well. This and ∅; ∅ ⊢ N : T (U

yield that ∅;Q ⊢ Nℓ⃗ : U is valid by the (app) rule, which along with

idQ : Q → Q, ∅ imply that Q ⊢ (idQ, Nℓ⃗) : U ; ∅ is also valid. But then

(idQ, Nℓ⃗) ⇓ (D, V) imply that Q ⊢ (D, V) : U ; ∅ is valid by the Subject

Reduction Theorem 6.4.2. Thus, there exists a label context Q such that

D : Q → Q, ∅ and ∅;Q ⊢ V : U is valid. Now U is a simple M-type,

and thus, the Closed Value Lemma 6.1.3 implies that V is a label tuple, a

contradiction.

Error-Propagation Rules: These are the rules with an error-configuration in the

hypothesis. See tables 5.5 and 5.6. Proving the result for half of them requires

mostly an immediate application of the induction hypothesis. For the other

half, besides the induction hypothesis, the Subject Reduction Theorem 6.4.2

and the Substitution Lemma 6.3.1 are needed. We illustrate with the following

cases:

• (left-err-p)⇓: The evaluation rule is

(C,M) ⇓ Error

(C, leftA,BM) ⇓ Error
.

Assume that Q ⊢ (C, leftA,BM) : A + B;Q′ is valid. We want to reach a

contradiction.

97

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ leftA,BM : A + B is valid. By the (left) rule, ∅;Q′′ ⊢ M : A

is valid. So Q ⊢ (C,M) : A;Q′ is valid as well. But since (C,M) ⇓ Error,

the induction hypothesis implies a contradiction.

• (let-err-p-2)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V) (C ′, N [V/x]) ⇓ Error

(C, let x = M in N) ⇓ Error
.

Assume that Q ⊢ (C, let x = M in N) : B;Q′ is valid. We want to reach

a contradiction.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ let x = M in N : B is valid. By the (let) rule, there are label

contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢ M : A and

x : A;Q′′2 ⊢ N : B are valid. The former and C : Q → Q′′1, Q
′′
2, Q

′ imply

that Q ⊢ (C,M) : A;Q′′2, Q
′ is valid as well. This and (C,M) ⇓ (C ′, V) im-

ply the validity of Q ⊢ (C ′, V) : A;Q′′2, Q
′ by the Subject Reduction Theo-

rem 6.4.2. Thus, there is a label context Q′′′ such that C ′ : Q→ Q′′′, Q′′2, Q
′

and ∅;Q′′′ ⊢ V : A is valid. This and x : A;Q′′2 ⊢ N : B imply that

∅;Q′′′, Q′′2 ⊢ N [V/x] : B is valid by the Substitution Lemma 6.3.1. So

Q ⊢ (C ′, N [V/x]) : B;Q′ is valid as well. But since (C ′, N [V/x]) ⇓ Error,

the induction hypothesis implies a contradiction.

• (app-err-p-3)⇓: The evaluation rule is

(C,M) ⇓ (C ′, λxA.M ′) (C ′, N) ⇓ (C ′′, V) (C ′′,M ′[V/x]) ⇓ Error

(C,MN) ⇓ Error
.

Assume that Q ⊢ (C,MN) : B;Q′ is valid. We want to reach a contra-

diction.

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ MN : B is valid. By the (app) rule, there are label contexts

Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢ M : A (B and

∅;Q′′2 ⊢ N : A are valid. The former and C : Q → Q′′1, Q
′′
2, Q

′ imply that

Q ⊢ (C,M) : A (B;Q′′2, Q
′ is valid. This and (C,M) ⇓ (C ′, λxA.M ′)

imply that Q ⊢ (C ′, λxA.M ′) : A (B;Q′′2, Q
′ is valid by the Subject

98

Reduction Theorem 6.4.2. Thus, there is a label context Q′′′ such that

C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′′ ⊢ λxA.M ′ : A(B is valid. By the (abs)

rule, x : A;Q′′′ ⊢M ′ : B is also valid.

Since C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′2 ⊢ N : A is a valid typing judge-

ment, we have that Q ⊢ (C ′, N) : A;Q′′′, Q′ is valid as well. This and

(C ′, N) ⇓ (C ′′, V) imply that Q ⊢ (C ′′, V) : A;Q′′′, Q′ is also valid by

the Subject Reduction Theorem 6.4.2. Thus, there exists a label context

Q such that C ′′ : Q → Q,Q′′′, Q′ and ∅;Q ⊢ V : A is valid. This and

x : A;Q′′′ ⊢M ′ : B imply that ∅;Q,Q′′′ ⊢M ′[V/x] : B is valid by the Sub-

stitution Lemma 6.3.1. But since (C ′′,M ′[V/x]) ⇓ Error, the induction

hypothesis implies a contradiction.

Chapter 7

The Semantics of Proto-Quipper-M

In Chapter 4, we gave an informal introduction to Proto-Quipper-M and its catego-

rical semantics, mostly to motivate and put into context the contents of this thesis.

In this chapter, we provide a generalization of the categorical model discussed there

and show that it yields a linear-non-linear model, thus a model of intuitionistic linear

logic. We also introduce the complete categorical semantics of Proto-Quipper-M in

full detail. Further categorical properties of our language, such as soundness, will be

discussed in later chapters.

7.1 A General Categorical Model

In this section, we introduce an LNL model of Proto-Quipper-M. This model is gi-

ven in terms of well-known categorical structures such as copower and representable

functors. But first, we should be more specific about what we mean by a catego-

rical model of Proto-Quipper-M. As in Chapter 4, we fix a locally small symmetric

monoidal category M, called the category of generalized circuits.

Definition 7.1.1. A model of Proto-Quipper-M is given by

• a locally small symmetric monoidal closed category L with coproducts, called

the category of denotations of Proto-Quipper-M; and

• a full strong symmetric monoidal embedding Y : M → L with structure given

by isomorphisms rA,B : Y(A) ⊗ Y(B) → Y(A ⊗ B) and rIM : IL → Y(IM)

natural in A,B ∈ M.

7.1.1 Copowers and Representables

We begin by introducing the main components of our LNL model, namely, a pair of

functors between a category L of denotations and the cartesian category Set.

99

100

Definition 7.1.2. Suppose that L is a category with coproducts and L is an object

of L. We define a functor −⊙L : Set → L, called the copower functor of L. It assigns

to each set X, the object X⊙L given by
∐︁

x∈X Lx, where Lx = L for each x ∈ X, and

to each function f : X → Y , the unique induced morphism f ⊙ L : X ⊙ L → Y ⊙ L

given by [ιf(x)]x∈X :
∐︁

x∈X Lx →
∐︁

y∈Y Ly, where [ιf(x)]x∈X ◦ ιx = ιf(x) for each x ∈ X.

We call X ⊙ L the X-indexed copower of L. �

Note that by the universal mapping property of coproducts, − ⊙ L : Set → L is

indeed a functor for each object L of L. To simplify notation, we may write [ιf(x)]x

instead of [ιf(x)]x∈X . The following result will be useful.

Lemma 7.1.3. Suppose that L is a locally small category with coproducts and L is

an object of L. Then the copower functor − ⊙ L : Set → L is a left adjoint of the

representable functor L(L,−) : L → Set.

Proof. By Theorem 3.1.23, to show that − ⊙ L ⊣ L(L,−), it suffices to find a

natural transformation η : 1Set ⇒ L(L,−) ◦ (− ⊙ L) such that for every set X,

ηX : X → L(L,X ⊙ L) is a universal arrow from X to L(L,−).

Let X be a set and ηX : X → L(L,X ⊙ L) a function defined for each x ∈ X by

ηX(x) = ιx : L →
∐︁

x∈X Lx. To prove naturality of η, let Y be a set and f : X → Y

a function. We show that the following diagram commutes:

X L(L,X ⊙ L)

Y L(L, Y ⊙ L)

ηX

f L(L,f⊙L)

ηY

(7.1)

Let x ∈ X, then, by unraveling definitions, we have that

(L(L, f ⊙ L) ◦ ηX)(x) = L(L, f ⊙ L)(ηX(x))

= (f ⊙ L) ◦ ηX(x)

= [ιf(x)]x∈X ◦ ηX(x)

= [ιf(x)]x∈X ◦ ιx
= ιf(x)

= ηY (f(x))

= (ηY ◦ f)(x),

101

and so L(L, f ⊙ L) ◦ ηX = ηY ◦ f , that is, (7.1) commutes.

To prove universality of ηX : X → L(L,X ⊙ L), let M be an object of L and

f : X → L(L,M) a function. We show that there is a unique arrow f : X ⊙ L→M

in L such that the following diagram commutes:

X L(L,X ⊙ L)

X L(L,M)

ηX

id L(L,f)

f

(7.2)

Define f to be the coparing morphism [f(x)]x∈X : X ⊙L→M . Let x ∈ X, then,

by unraveling definitions,

(L(L, f) ◦ ηX)(x) = L(L, f)(ηX(x))

= f ◦ ηX(x)

= [f(x)]x∈X ◦ ηX(x)

= [f(x)]x∈X ◦ ιx
= f(x),

and so L(L, f) ◦ ηX = f , that is, (7.2) commutes.

To show uniqueness of f , suppose that g : X ⊙ L → M is a morphism in L such

that L(L, g) ◦ ηX = f as well. Thus, for each x ∈ X,

(L(L, g) ◦ ηX)(x) = L(L, g)(ηX(x))

= g ◦ ηX(x)

= g ◦ ιx,

but then g ◦ ιx = f(x) = [f(x)]x ◦ ιx, which implies that g = [f(x)]x = f . The result

now follows.

Convention 7.1.4. Let L be a locally small symmetric monoidal closed category

with coproducts and unit object I. We denote the copower functor −⊙ I : Set → L

by p and the representable functor L(I,−) : L → Set by ♭, which we pronounce

“flat.” �

102

7.1.2 An LNL Model

We now show that the adjunction of the previous section lifts to a symmetric mo-

noidal one, and thus yields an LNL model of Proto-Quipper-M. Though elementary,

this result is significant as LNL models subsume other well-known categorical models

of intuitionistic linear logic such as Lafont categories, Seely categories, and linear ca-

tegories. Moreover, assuming that M is a locally small symmetric monoidal category,

this result also implies that the families construction M of Chapter 4 indeed yields

an instance of an LNL model of Proto-Quipper-M, and thus an instance of a model

of intuitionistic linear logic.

Theorem 7.1.5. The cartesian closed category Set, the locally small symmetric mo-

noidal closed category L, and the functors p and ♭ yield a linear-non-linear model.

Proof. By Lemma 7.1.3, p ⊣ ♭, and so to show that this adjunction lifts to a symmetric

monoidal one, it suffices, by Proposition 3.2.12, the characterization of symmetric

monoidal adjunctions, to endow p with a structure that makes it a strong symmetric

monoidal functor.

Since L is a symmetric monoidal closed category, the endofunctor A⊗− is a left ad-

joint, and so preserves colimits; in particular, we have that A⊗(B+C) ∼= A⊗B+A⊗C
for all A,B,C ∈ L. More generally, let X, Y and Z be sets, we observe that

(
∐︁

x∈X Ax ⊗
∐︁

y∈Y By, {ιx ⊗ ιy : Ax ⊗By →
∐︁

x∈X Ax ⊗
∐︁

y∈Y By | (x, y) ∈ X × Y })

and

(
∐︁

(x,y)∈X×Y (Ax ⊗By), {ι(x,y) : Ax ⊗By →
∐︁

(x,y)∈X×Y (Ax ⊗By) | (x, y) ∈ X × Y })

are naturally isomorphic coproducts in L with mediating isomorphisms given by the

corresponding copairing maps

[ι(x,y)]
′
(x,y)∈X×Y :

∐︁
x∈X Ax ⊗

∐︁
y∈Y By −→

∐︁
(x,y)∈X×Y (Ax ⊗By)

and

[ιx ⊗ ιy](x,y)∈X×Y :
∐︁

(x,y)∈X×Y (Ax ⊗By) −→
∐︁

x∈X Ax ⊗
∐︁

y∈Y By.

Now consider the special case where Ax = I and By = I for all x ∈ X and y ∈ Y .

Since λI : I ⊗ I → I is a natural isomorphism in I, we have that the coproducts

103

(
∐︁

(x,y)∈X×Y (Ix ⊗ Iy), {ι(x,y) : Ix ⊗ Iy →
∐︁

(x,y)∈X×Y (Ix ⊗ Iy) | (x, y) ∈ X × Y })

and

(
∐︁

(x,y)∈X×Y I(x,y), {ι(x,y) : I(x,y) →
∐︁

(x,y)∈X×Y I(x,y) | (x, y) ∈ X × Y })

are naturally isomorphic with mediating isomorphisms

[ι(x,y) ◦ λI](x,y)∈X×Y :
∐︁

(x,y)∈X×Y (Ix ⊗ Iy) −→
∐︁

(x,y)∈X×Y I(x,y)

and

[ι(x,y) ◦ λ−1I](x,y)∈X×Y :
∐︁

(x,y)∈X×Y I(x,y) −→
∐︁

(x,y)∈X×Y (Ix ⊗ Iy).

For all sets X and Y , let mX,Y : p(X) ⊗ p(Y) → p(X × Y) be the composition

[ι(x,y) ◦ λI](x,y) ◦ [ι(x,y)]
′
(x,y), and let m1 : I → p(1) be the identity morphism on I. We

show that these morphisms endow p with the required structure by proving that the

following coherence conditions hold:

• associator: We will show that the diagram

((p(X) ⊗ p(Y)) ⊗ p(Z) p(X) ⊗ (p(Y) ⊗ p(Z))

p(X × Y) ⊗ p(Z) p(X) ⊗ p(Y × Z)

p((X × Y) × Z) p(X × (Y × Z))

αp(X),p(Y),p(Z)

mX,Y ⊗id id⊗mY,Z

mX×Y,Z mX,Y ×Z

p(αX,Y,Z)

(7.3)

commutes. Since (p(X) ⊗ p(Y)) ⊗ p(Z) = (
∐︁

x∈X Ix ⊗
∐︁

y∈Y Iy) ⊗
∐︁

z∈Z Iz is a

coproduct, it suffices to show that the top and bottom paths of (7.3) yield the

same morphism when precomposed with an injection

(ιx ⊗ ιy) ⊗ ιz : (Ix ⊗ Iy) ⊗ Iz −→ (
∐︁

x∈X Ix ⊗
∐︁

y∈Y Iy) ⊗
∐︁

z∈Z Iz.

104

Consider the diagram

I(x,y) ⊗ Iz (Ix ⊗ Iy) ⊗ Iz (
∐︁

x∈X Ix ⊗
∐︁

y∈Y Iy) ⊗
∐︁

z∈Z Iz

(Ix ⊗ Iz) ⊗
∐︁

z∈Z Iz

I(x,y) ⊗
∐︁

z∈Z Iz

I(x,y) ⊗ Iz
∐︁

(x,y)∈X×Y I(x,y) ⊗
∐︁

z∈Z Iz.

λ−1
I ⊗id

id

(ιx⊗ιy)⊗ιz

id⊗ιz

mX,Y ⊗idλI⊗id

(ιx⊗ιy)⊗id

ι(x,y)⊗idid⊗ιz

ι(x,y)⊗ιz

(7.4)

The region on the left as well as the top and bottom triangles commute by

functoriality of ⊗. The region on the right commutes by definition of mX,Y and

functoriality of ⊗.

The commutativity of

I(x,y) ⊗ Iz
∐︁

(x,y)∈X×Y I(x,y) ⊗
∐︁

z∈Z Iz

∐︁
((x,y),z)∈(X×Y)×Z I(x,y) ⊗ Iz

I((x,y),z)
∐︁

((x,y),z)∈(X×Y)×Z I((x,y),z)

ι(x,y)⊗ιz

ι((x,y),z)

λI mX×Y,Z

[ι((x,y),z)]((x,y),z)

[ι((x,y),z)◦λI]((x,y),z)

ι((x,y),z)

(7.5)

follows immediately: The top and right triangles commute by definition of

morphisms [ι((x,y),z)]((x,y),z) and mX×Y,Z , respectively, while the bottom diagram

does by definition of [ι((x,y),z) ◦ λI]((x,y),z).

105

Now consider

I(x,y) ⊗ Iz Ix ⊗ I(y,z)

(Ix ⊗ Iy) ⊗ Iz Ix ⊗ (Iy ⊗ Iz)

(
∐︁

x∈X Ix ⊗
∐︁

y∈Y Iy) ⊗
∐︁

z∈Z Iz
∐︁

x∈X Ix ⊗ (
∐︁

y∈Y Iy ⊗
∐︁

z∈Z Iz)

I(x,y) ⊗ Iz
∐︁

(x,y)∈X×Y I(x,y) ⊗
∐︁

z∈Z Iz
∐︁

x∈X Ix ⊗ (
∐︁

(y,z)∈Y×Z I(y,z)) Ix ⊗ I(y,z)

∐︁
((x,y),z)∈(X×Y)×Z I((x,y),z)

∐︁
(x,(y,z))∈X×(Y×Z) I(x,(y,z))

I((x,y),z) I(x,(y,z)).

id

λ−1
I ⊗id

id id

id⊗λ−1
I

αIx,Iy,Iz

(ιx⊗ιy)⊗ιz ιx⊗(ιy⊗ιz)

mX,Y ⊗id

αp(X),p(Y),p(Z)

id⊗mY,Z

ι(x,y)⊗ιz

λI

mX×Y,Z mX,Y ×Z

ιx⊗ι(y,z)

λI

p(αX,Y,Z)

ι((x,y),z)

id

ι(x,(y,z))

The top diagram commutes because L is a symmetric monoidal category, while

the one below it does by naturality of α. The top left diagram commutes by

(7.4), while the one below it does by (7.5). The corresponding diagrams on

the right commute by similar reasons. The region at the bottom commutes

by definition of p. The commutativity of the outer square is immediate. This

and the fact that all the outer regions commute, and the top left morphism

λ−1I ⊗ id is an isomorphism imply that the inner region composed of the two

inner squares commutes as well. An elementary diagram chase shows that the

morphisms

(mX,Y×Z ◦ (id ⊗mY,Z) ◦ αp(X),p(Y),p(Z)) ◦ ((ιx ⊗ ιy) ⊗ ιz)

and

(p(αX,Y,Z) ◦mX×Y,Z ◦ (mX,Y ⊗ id)) ◦ ((ιx ⊗ ιy) ⊗ ιz),

are equal, and so by the unique mapping property of coproducts, the region

above the bottom one commutes, that is, (7.3) commutes.

• left unitor: We will show that the diagram

I ⊗ p(X) p(X)

p(1) ⊗ p(X) p(1 ×X)

λp(X)

m1⊗id

m1,X

p(πX) (7.6)

106

commutes. Since I⊗p(X) = p(1)⊗p(X) =
∐︁
∗∈1 I∗⊗

∐︁
x∈X Ix is a coproduct, it

suffices to show that the top and bottom paths of (7.6) yield the same morphism

when precomposed with an injection ι∗ ⊗ ιx : I∗ ⊗ Ix →
∐︁
∗∈1 I∗ ⊗

∐︁
x∈X Ix.

Consider the following diagram:∐︁
∗∈1 I∗ ⊗

∐︁
x∈X Ix

∐︁
(∗,x)∈1×X I(∗,x)

∐︁
(∗,x)∈1×X(I∗ ⊗ Ix)

I∗ ⊗ Ix I(∗,x) = Ix
∐︁

(∗,x)∈1×X I(∗,x) =
∐︁

x∈X Ix

∐︁
∗∈1 I∗ ⊗

∐︁
x∈X Ix I∗ ⊗

∐︁
x∈X Ix

∐︁
x∈X Ix

m1,X

id

[ι(∗,x)◦λI](∗,x)

ι∗⊗ιx

ι(∗,x)

λI

id⊗ιxι∗⊗ιx

ι(∗,x)=ιx

p(πX)=id

(m1⊗id)−1=id

λ∐︁
x∈X Ix

λ∐︁
x∈X Ix

(7.7)

The top triangle commute by definition of m1,X , while the one below it does so

by definition of [ι(∗,x) ◦ λI](∗,x). The middle triangle commutes by naturality of

λ. The commutativity of the bottom two triangles is immediate. Hence, the

top and bottom paths of (7.7) are equal, that is,

(p(πX) ◦m1,X) ◦ (ι∗ ⊗ ιx) = (λ∐︁
x∈X Ix ◦ (m1 ⊗ id)−1) ◦ (ι∗ ⊗ ιx),

and so, by the unique mapping property of coproducts,

p(πX) ◦m1,X = λ∐︁
x∈X Ix ◦ (mI ⊗ id)−1.

This implies that (7.6) commutes.

• right unitor: To show that the diagram

p(X) ⊗ I p(X)

p(X) ⊗ p(1) p(X × 1)

ρp(X)

id⊗m1

mX,1

p(πX)

commutes, one proceeds as in the previous case.

107

• symmetry: We will show that the diagram

p(X) ⊗ p(Y) p(Y) ⊗ p(X)

p(X × Y) p(Y ×X)

mX,Y

σp(X),p(Y)

mY,X

p(σX,Y)

(7.8)

commutes. Since p(X) ⊗ p(Y) =
∐︁

x∈X Ix ⊗
∐︁

y∈Y Iy is a coproduct, it suffices

to show that the top and bottom paths of (7.8) yield the same morphism when

precomposed with an injection ιx⊗ ιy : Ix⊗ Iy →
∐︁

x∈X Ix⊗
∐︁

y∈Y Iy. Consider

the following diagram:

Ix ⊗ Iy Iy ⊗ Ix

∐︁
x∈X Ix ⊗

∐︁
y∈Y Iy

∐︁
y∈Y Iy ⊗

∐︁
x∈X Ix

∐︁
(x,y)∈X×Y I(x,y)

∐︁
(y,x)∈Y×X I(y,x)

I(x,y) I(y,x).

σIx,Iy

ιx⊗ιy

λI λI

ιy⊗ιx

σp(X),p(Y)

mX,Y mY,X

p(σX,Y)
ι(x,y)

id

ι(y,x)

(7.9)

The top diagram commutes by naturality of σ, while the left and right diagrams

do by definition of mX,Y and mY,X , respectively. The bottom diagram commutes

by definition of p and the outermost square commutes because L is a symmetric

monoidal category. A elementary diagram chase shows that

(mY,X ◦ σp(X),p(Y)) ◦ (ιx ⊗ ιy) = (p(σX,Y) ◦mX,Y) ◦ (ιx ⊗ ιy),

and so, by the unique mapping property of coproducts, the middle diagram

commutes, that is, (7.8) commutes.

Hence, p is a strong monoidal functor and the result follows.

Remark 7.1.6. The category M of Chapter 4 is a model of Proto-Quipper-M be-

cause it satisfies Definition 7.1.1. In this case, the functors p and ♭ are given by

108

p(X) = (X, (I)x∈X) and ♭((X, (Ax)x∈X)) = M((1, (I)), (X, (Ax)x∈X)), and they yield

an instance of an LNL model of Proto-Quipper-M.

7.1.3 The Boxing Comonad

Naturally, the LNL model of the previous section induces a comonad on L. We will

use this additional structure to give meaning to some terms of Proto-Quipper-M.

Moreover, we will see that this model also yields a model of intuitionistic linear logic.

Definition 7.1.7. Writing ! for the endofunctor p ◦ ♭ : L → L, we define the boxing

comonad to be the comonad on L given by (!, ε : ! ⇒ 1L, δ : ! ⇒ !!) where η and

ε are the unit and counit of the adjunction p ⊣ ♭, respectively, and δ is the natural

transformation with components δA : !A→ !!A given by δA = p(η ♭(A)) for every object

A in L. �

The counit will be used in the denotational semantics of terms involving “force.”

In particular, for every object A in L, we let forceA be εA : !A → A. As usual, we

may drop the subscripts when no confusion arises. The full meaning of terms of the

form “force M” will be given in Section 7.3.4.

Our LNL model has a rich structure; in particular, the boxing comonad is sym-

metric monoidal:

Lemma 7.1.8 (Benton [17]). In any LNL model, the comonad (!, ε, δ) is symmetric

monoidal. �

This result is rather relevant since a symmetric monoidal comonad is an appro-

priate categorical structure to model the ! modality of linear logic. More is true.

Theorem 7.1.9 (Benton [17]). Any LNL model yields a linear category. �

Theorem 7.1.10 (Benton, Bierman, de Paiva, Hyland [20]. Bierman [23]). A linear

category is a model of intuitionistic linear logic. �

And thus, a model of Proto-Quipper-M yields a model of intuitionistic linear logic

as well. In particular, the category M yields a concrete instance of such a model.

109

7.2 Interpreting Types

In general, a categorical semantics associates to each type A an object [[A]] of an

appropriate category. In this section, we introduce several interpretations of the

types and terms of Proto-Quipper-M along with the maps relating them.

As in Section 5.1.1, we assume that a locally small symmetric monoidal category

M of generalized circuits has been given along with a set W of wire types and an

interpretation function [[−]]W : W → M0, assigning an object of M to every wire

type. We denote wire types by Greek letters such as α, β, and γ.

7.2.1 Simple M-Types and Inductive Types

Before we present the semantics in L of all the types of Proto-Quipper-M, we give the

interpretation in M of the simple M-types and the interpretation in L of the inductive

types.

Definition 7.2.1. The semantics of the simple M-types of Proto-Quipper-M in the

category M is given by

[[α]]s = [[α]]W

[[I]]s = IM

[[T ⊗ U]]s = [[T]]s ⊗ [[U]]s.

�

Remark 7.2.2. For each object A in L, define list(A) = I+A+A⊗A+· · · . Note that

this is the initial algebra of the endofunctor F : L → L defined by F (X) = I+A⊗X.

This initial algebra exists because L is a symmetric monoidal closed category with

coproducts, hence distributive. We also define nat to be the initial algebra list(I).

These objects give the semantics of the inductive types listA and nat, respectively.

Note that the observations in this remark apply in particular when L = Set and

⊗ is the cartesian product of sets. We will use this in Definition 7.2.5 below.

7.2.2 Types in L

Let Y : M → L be a full strong symmetric monoidal embedding with monoidal

structure rA,B : Y(A) ⊗ Y(B) → Y(A ⊗ B) and rIM : IL → Y(IM). The types of

Proto-Quipper-M can now be interpreted as follows.

110

Definition 7.2.3. The semantics of the types of Proto-Quipper-M is given by

[[α]] = Y([[α]]s)

[[0]] = 0L

[[A+B]] = [[A]] + [[B]]

[[I]] = IL

[[A⊗B]] = [[A]] ⊗ [[B]]

[[A(B]] = [[A]] ([[B]]

[[!A]] = ![[A]]

[[nat]] = nat

[[list A]] = list([[A]])

[[Circ(T, U)]] = p(M([[T]]s, [[U]]s))

�

Note that all the objects in this definition are indeed objects of L. An object

of L is called a simple M-object if it is of form Y(A) for some object A of M. The

following definition tells us that the interpretation of a simple M-type is essentially a

simple M-object.

Definition 7.2.4. For every simple M-type T , the isomorphism YT : [[T]] → Y([[T]]s)

is given inductively by

Yα = [[α]]
id[[α]]−−→ Y([[α]]s)

YI = [[I]]
rI−→ Y([[I]]s)

YT⊗U = [[T ⊗ U]]
id−→ [[T]] ⊗ [[U]]

YT⊗YU−−−−→ Y([[T]]s) ⊗ Y([[U]]s)
rT,U−−→ Y([[T]]s ⊗ [[U]]s)

id−→ Y([[T ⊗ U]]s).

Here rI and rT,U are the appropriate components of the monoidal structure of Y .

Also, for every label context Q = ℓ1 : α1, . . . , ℓn : αn, note that [[Q]]s = [[α1⊗. . .⊗αn]]s,

where [[Q]]s was defined in Section 5.1.2 and α1⊗· · ·⊗αn is assumed to have the same

bracketing as [[Q]]s. The morphism YQ is defined to be the isomorphism Yα1⊗···⊗αn . �

7.2.3 Morphisms box and apply

Note that for any simple M-types T and U , we have the following chain of isomor-

phisms:

111

♭([[T]] ([[U]]) = L(I, [[T]] ([[U]]) by def. of ♭
i1∼= L(I ⊗ [[T]], [[U]]) since L is closed
i2∼= L([[T]], [[U]]) since λT is an iso
i3∼= L(Y([[T]]s),Y([[U]]s)) since YT is an iso
i4∼= M([[T]]s, [[U]]s) since Y is a full embedding.

We take iT,U : ♭([[T]] ([[U]]) → M([[T]]s, [[U]]s) to be the isomorphism

iT,U = i4 ◦ i3 ◦ i2 ◦ i1 (7.10)

and take box : !([[T]]([[U]]) → [[Circ(T, U)]] to be the isomorphism p(iT,U); we denote

its inverse by unbox.

Using unbox, force and the closed structure of L, we define the morphism

apply : [[Circ(T, U)]] ⊗ [[T]] → [[U]] as follows:

apply = [[Circ(T, U)]] ⊗ [[T]]
unbox⊗T−−−−−−→ !([[T]] ([[U]]) ⊗ [[T]]

force⊗T−−−−−→ ([[T]] ([[U]]) ⊗ [[T]]
εU−→ [[U]].

(7.11)

These morphisms will play a central role in the interpretation of the corresponding

terms of Proto-Quipper-M.

7.2.4 Parameter Types

Now we give semantics to the parameter types in the category of sets and functions.

In the following sections, we will see how the various type interpretations of Proto-

Quipper-M interact.

Definition 7.2.5. The semantics of the parameter types of Proto-Quipper-M in the

112

category Set is given by

[[0]]p = ∅
[[P +R]]p = [[P]]p + [[R]]p

[[I]]p = 1

[[P ⊗R]]p = [[P]]p × [[R]]p

[[!A]]p = ♭([[A]])

[[nat]]p = N
[[list P]]p = list([[P]]p)

[[Circ(T, U)]]p = M([[T]]s, [[U]]s).

�

An object of L is called a parameter object if it is of form p(X) for some set

X. The following definition tells us that the interpretation of a parameter type is

essentially a parameter object.

Definition 7.2.6. For every parameter type P , the isomorphism τP : [[P]] → p([[P]]p)

is defined inductively as follows:

τ0 = [[0]]
id[[0]]−−→ p([[0]]p)

τP+R = [[P +R]]
id−→ [[P]] + [[R]]

τP+τR−−−−→ p([[P]]p) + p([[R]]p)
∼=−→ p([[P]]p + [[R]]p)

id−→ p([[P +R]]p)

τI = [[I]]
mI−→ p([[I]]p)

τP⊗R = [[P ⊗R]]
id−→ [[P]] ⊗ [[R]]

τP⊗τR−−−−→ p([[P]]p) ⊗ p([[R]]p)
mP,R−−−→ p([[P]]p × [[R]]p)

id−→ p([[P ⊗R]]p)

τ!A = [[!A]]
id[[!A]]−−−→ p([[!A]]p)

τnat = [[nat]]
id[[nat]]−−−→ p([[nat]]p)

τlistP = [[listP]]
id−→ list([[P]])

id−→ [[I]] + [[P]] + [[P]] ⊗ [[P]] + · · ·∐︁
S∈{I}∪{⊗n

i=1
P :n∈N>0} τS−−−−−−−−−−−−−−−→ p([[I]]p) + p([[P]]p) + p([[P]]p × [[P]]p) + · · ·

∼=−→ p([[I]]p + [[P]]p + [[P]]p × [[P]]p + · · ·)
id−→ p(list([[P]]p))

id−→ p([[list P]]p)

τCirc(T,U) = [[Circ(T, U)]]
id−→ p(M([[T]]s, [[U]]s))

id−→ p([[Circ(T, U)]]p).

Here, ∼= denotes the appropriate isomorphisms witnessing the fact that p, being a

left adjoint to ♭, preserves coproducts. Moreover, mI and mP,R are the appropriate

components of the monoidal structure of the functor p. �

113

7.3 Interpreting Terms

As usual, our categorical semantics will associate an appropriate morphism to each

valid term of Proto-Quipper-M. In this section, we carefully introduce the interpre-

tations of the various components of our language and auxiliary structures. How all

these pieces interact with each other will be further explored in later chapters.

7.3.1 Labeling Structure

In Section 5.1.2, we equipped M with an additional labeling structure to enable our

programming language to manipulate morphisms of M. We now extend this structure

to include label tuple judgements and provide a semantics in each of the categories

M and L.

Definition 7.3.1. To every valid label tuple judgement Q ⊢L ℓ⃗ : T , we inductively

associate a canonical isomorphism [[Q ⊢L ℓ⃗ : T]]s : [[Q]]s → [[T]]s of M as follows:

[[∅ ⊢L ∗ : I]]s = [[∅]]s
id[[∅]]s−−−→ [[I]]s

[[ℓ : α ⊢L ℓ : α]]s = [[α]]s
id[[α]]s−−−→ [[α]]s

[[Q,Q′ ⊢L ⟨ℓ⃗, ℓ′⃗⟩ : T ⊗ U]]s = [[Q,Q′]]s
∼=−→ [[Q]]s ⊗ [[Q′]]s

[[Q⊢Lℓ⃗:T]]s⊗[[Q′⊢Lℓ′⃗:U]]s−−−−−−−−−−−−−→ [[T]]s ⊗ [[U]]s
id−→ [[T ⊗ U]]s.

Here, ∼= is the natural isomorphism obtained from the monoidal structure of M. We

often write [[ℓ⃗]]s : [[Q]]s → [[T]]s instead of [[Q ⊢L ℓ⃗ : T]]s : [[Q]]s → [[T]]s to simplify our

notation. Moreover, for every such isomorphism [[ℓ⃗]]s : [[Q]]s → [[T]]s, we define the

isomorphism [[ℓ⃗]] : [[Q]] → [[T]] of the category L as follows:

[[ℓ⃗]] = [[Q]]
YQ−→ Y([[Q]]s)

Y([[ℓ⃗]]s)−−−−→ Y([[T]]s)
Y−1
T−−→ [[T]]. (7.12)

This morphism is the interpretation in L of the valid label tuple judgement Q ⊢L ℓ⃗ : T

and is also denoted by [[Q ⊢L ℓ⃗ : T]]. �

7.3.2 Morphisms circ and lift

We now introduce a number of auxiliary morphisms that will be used in the definition

of the categorical semantics of some Proto-Quipper-M terms.

114

Since L is a symmetric monoidal closed category, − ⊗ T ⊣ T (− : L → L

for every object T of L. In the sequel, we will denote the transpose of a morphism

m : A⊗ T → B in L under this adjunction by m∗ : A→ (T (B), and the transpose

of a morphism n : A→ (T(B) by n∗ : A⊗T → B. Then, (m∗)∗ = m and (n∗)
∗ = n.

Similarly, we will denote the transpose of a morphism u : p(X) → A in L under the

adjunction p ⊣ ♭ by u◦ : X → ♭(A), and the transpose of a function v : X → ♭(A) by

v◦ : p(X) → A. Then, (u◦)◦ = u and (v◦)
◦ = v.

Recall from Definition 5.1.3 that a labeled circuit, that is, a morphism C : Q→ Q′

of ML, is a morphism [[C]]s : [[Q]]s → [[Q′]]s in M, and so given a labeled circuit

C : Q → Q′ and valid label tuples judgements Q ⊢L ℓ⃗ : T and Q′ ⊢L ℓ′⃗ : U , we can

construct the morphisms [[C]] and [ℓ⃗, C, ℓ′⃗] of L as follows:

[[C]] = [[Q]]
YQ−→ Y([[Q]]s)

Y([[C]]s)−−−−→ Y([[Q′]]s)
Y−1
Q′

−−→ [[Q′]],

(7.13)

and

[ℓ⃗, C, ℓ′⃗] = [[T]]
YT−→ Y([[T]]s)

Y([[ℓ⃗]]−1
s)−−−−−→ Y([[Q]]s)

Y([[C]]s)−−−−→ Y([[Q′]]s)
Y([[ℓ′⃗]]s)−−−−→ Y([[U]]s)

Y−1
U−−→ [[U]].

That is,

[ℓ⃗, C, ℓ′⃗] = [[T]]
YT−→ Y([[T]]s)

Y([[ℓ′⃗]]s◦[[C]]s◦[[ℓ⃗]]−1
s)−−−−−−−−−−−→ Y([[U]]s)

Y−1
U−−→ [[U]]. (7.14)

To simplify our notation, let

C = [[I]] ⊗ [[T]]
λT−→ [[T]]

[ℓ⃗,C,ℓ′⃗]−−−→ [[U]]. (7.15)

We now define the morphism circ (ℓ⃗, C, ℓ′⃗) : [[I]] → [[Circ(T, U)]] as follows:

circ (ℓ⃗, C, ℓ′⃗) = [[I]]
τI−→ p([[I]]p)

p((C∗◦τ−1
I)◦)

−−−−−−−→ p(♭([[T]] ([[U]]))
box−−→ [[Circ(T, U)]].

(7.16)

To endow the terms of Proto-Quipper-M with meaning, we also need to inter-

pret the contexts in which they occur. We already did that for label contexts in

Definition 5.1.2. We now do it for variable contexts in the following definition.

Definition 7.3.2. To each variable context Γ = x1 : A1, . . . , xn : An, we asso-

ciate an object [[Γ]] = [[A1]] ⊗ . . . ⊗ [[An]] of L, and to each parameter context

115

Φ = y1 : P1, . . . , yn : Pn, we associate an object [[Φ]]p = [[P1]]p × . . . × [[Pn]]p of Set.

The objects [[Γ]] and [[Φ]]p are called the semantics of contexts Γ and Φ, respectively.

When Γ = ∅, we set [[Γ]] = IL and when Φ = ∅, we set [[Φ]]p = 1. As in the case

of label contexts, it will be convenient to think of these objects as fixed bracketings

of the tensor products of their corresponding factors. Without loss of generality, we

will assume that [[Φ]] and [[Φ]]p have the same bracketing. In the sequel, we will let

τΦ : [[Φ]] → p([[Φ]]p) be the isomorphism

τΦ = τP1⊗···⊗Pn

where P1 ⊗ · · · ⊗ Pn is assumed to have the same bracketing as [[Φ]]. �

For every parameter context Φ, type A, and morphism f : [[Φ]] ⊗ [[I]] → [[A]] in L,

the composition p([[Φ]]p)
τ−1
Φ−−→ [[Φ]]

ρ−1
Φ−−→ [[Φ]] ⊗ [[I]]

f−→ [[A]] is a morphism in L whose

transpose (f ◦ ρ−1Φ ◦ τ−1Φ)◦ is a function from [[Φ]]p to ♭([[A]]), and so we can define the

morphism

lift f = p([[Φ]]p)
p((f◦ρ−1

Φ ◦τ
−1
Φ)◦)

−−−−−−−−−→ p(♭([[A]]))
id−→ p([[!A]]p). (7.17)

Morphisms of the form circ (ℓ⃗, C, ℓ′⃗) and lift f will play a central role in the

interpretation of the corresponding Proto-Quipper-M terms.

7.3.3 Duplicating and Discarding

Our categorical model has morphisms that duplicate parameter contexts. We begin

with the case in which all the contexts involved are of parameter type.

Definition 7.3.3. Let Φ1 and Φ2 be parameter contexts for which there exist mutu-

ally disjoint parameter contexts Φ′1, Φ′2, and Φ′ such that Φ1 = Φ′1,Φ
′ and Φ2 = Φ′2,Φ

′.

Recall that Φ1 ∪ Φ2 = Φ′1,Φ
′,Φ′2. Let ∆Φ′ = ⟨id[[Φ′]]p , id[[Φ′]]p⟩ : [[Φ′]]p → [[Φ′]]p × [[Φ′]]p,

the diagonal function on the set [[Φ′]]p. We define ·△p
Φ1∪Φ2

: [[Φ1∪Φ2]]p → [[Φ1]]p× [[Φ2]]p

to be the function that makes the following diagram commute:

[[Φ1 ∪ Φ2]]p = [[Φ′1,Φ
′,Φ′2]]p [[Φ1]]p × [[Φ2]]p

[[Φ′1]]p × [[Φ′]]p × [[Φ′2]]p [[Φ′1]]p × [[Φ′]]p × [[Φ′]]p × [[Φ′2]]p.

·△p
Φ1∪Φ2

∼=

id×∆Φ′×id

∼=

116

Similarly, we define the morphisms ·△Φ1∪Φ2 : [[Φ1 ∪ Φ2]] → [[Φ1]] ⊗ [[Φ2]] and

·△Φ1∪Φ2;∅ : [[Φ1 ∪ Φ2; ∅]] → [[Φ1; ∅]] ⊗ [[Φ2; ∅]] in L to be the ones making the follo-

wing diagrams commute, respectively:

[[Φ1 ∪ Φ2]] [[Φ1]] ⊗ [[Φ2]].

p([[Φ1]]p) ⊗ p([[Φ2]]p)

p([[Φ1 ∪ Φ2]]p) p([[Φ1]]p × [[Φ2]]p)

·△Φ1∪Φ2

τΦ1∪Φ2

τΦ1
⊗τΦ2

mΦ1,Φ2

p(·△p
Φ1∪Φ2

)

[[Φ1 ∪ Φ2; ∅]] [[Φ1; ∅]] ⊗ [[Φ2; ∅]]

[[Φ1 ∪ Φ2]] [[Φ1]] ⊗ [[Φ2]].

·△Φ1∪Φ2;∅

ρΦ1∪Φ2 ρΦ1
⊗ρΦ2

·△Φ1∪Φ2

When Φ = Φ1 = Φ2, the morphism ·△Φ1∪Φ2 = ·△Φ : [[Φ]] → [[Φ]] ⊗ [[Φ]] is called the

duplication morphism on [[Φ]] and is also denoted by △Φ. �

We note that the union Φ1 ∪Φ2 is associative and commutative and the expected

coherence conditions hold by the coherence theorem for symmetric monoidal catego-

ries. This observation extends to unions of arbitrary contexts Γ1 ∪ Γ2.

Definition 7.3.4. Let Γ1 and Γ2 be variable contexts for which there exist mutually

disjoint contexts Γ′1, Γ′2, and Φ such that Γ1 = Γ′1,Φ and Γ2 = Γ′2,Φ and Φ is a

parameter context. We define the morphism ·△Γ1∪Γ2 : [[Γ1 ∪ Γ2]] → [[Γ1]] ⊗ [[Γ2]] in L

to be the one that makes the following diagram commute:

[[Γ1 ∪ Γ2]] = [[Γ′1,Φ,Γ
′
2]] [[Γ1]] ⊗ [[Γ2]]

[[Γ′1]] ⊗ [[Φ]] ⊗ [[Γ′2]] [[Γ′1]] ⊗ [[Φ]] ⊗ [[Φ]] ⊗ [[Γ′2]].

·△Γ1∪Γ2

∼=

id⊗△Φ⊗id

∼=

Similarly, we define ·△Γ1∪Γ2;Q1,Q2 : [[Γ1 ∪ Γ2;Q1, Q2]] → [[Γ1;Q1]] ⊗ [[Γ2;Q2]] to be

117

the morphism in L that makes the following diagram commute:

[[Γ1 ∪ Γ2;Q1, Q2]] [[Γ1;Q1]] ⊗ [[Γ2;Q2]]

[[Γ1 ∪ Γ2]] ⊗ [[Q1]] ⊗ [[Q2]] [[Γ1]] ⊗ [[Γ2]] ⊗ [[Q1]] ⊗ [[Q2]]

·△Γ1∪Γ2;Q1,Q2

∼=

·△Γ1∪Γ2
⊗id

∼=

The morphisms ·△Γ1∪Γ2 and ·△Γ1∪Γ2;Q1,Q2 are called generalized duplication mor-

phisms. �

Our categorical model also has morphisms that discard parameter contexts.

Definition 7.3.5. Given a parameter context Φ, we define the discarding morphism

�Φ : [[Φ]] → [[I]] to be the one that makes the following diagram commute:

[[Φ]] [[I]]

p([[Φ]]p) p([[I]]p).

�Φ

τΦ τI

p(�
p
Φ)

Here �
p
Φ : [[Φ]]p → [[I]]p denotes the unique function from the set [[Φ]]p to the terminal

set [[I]]p = 1. �

7.3.4 Typing Derivations

In the sequel we use the following notation for the morphisms arising from the copro-

duct structure. For objects A, B, and C, �C : 0 → C denotes the unique morphism

from the initial object to C, leftA,B : A→ A+B and rightA,B : B → A+B denote the

left and right coprojections, respectively, and [f, g] : A + B → C the copairing mor-

phism of f : A → C and g : B → C. In what follows, we may omit the superscripts

and subscripts of objects and morphisms when no confusion arises.

Now that we have introduced all the necessary structures for the interpretation of

our language, we proceed to give the formal definition of its meaning. As expected, the

semantics of Proto-Quipper-M associates to each typing derivation D with conclusion

sequent Γ;Q ⊢ M : A a morphism [[D]] : [[Γ]] ⊗ [[Q]] → [[A]] of L. When no confusion

arises, we also denote [[D]] with [[Γ;Q ⊢ M : A]], or even [[M]]. More precisely, we

have:

118

Definition 7.3.6. The semantics of the typing derivations of Proto-Quipper-M is

defined inductively by the typing rules and is shown in Tables 7.1 and 7.2. �

119

[[Φ, x : A; ∅ ⊢ x : A]] = [[Φ, x : A]] ⊗ [[∅]]
ρΦ,x:A−−−→ [[Φ, x : A]]

∼=−→ [[Φ]] ⊗ [[A]]

�Φ⊗id−−−−→ [[I]] ⊗ [[A]]
λA−→ [[A]]

[[Φ; ℓ : α ⊢ ℓ : α]] = [[Φ]] ⊗ [[α]]
�Φ⊗id−−−−→ [[I]] ⊗ [[α]]

λα−→ [[α]]

[[Φ; ∅ ⊢ c : Ac]] = [[Φ]] ⊗ [[∅]]
ρΦ−→ [[Φ]]

�Φ−→ [[I]]
[[c]]−→ [[Ac]]

[[Γ1 ∪ Γ2;Q1, Q2 ⊢ let x = M in N : B]] = [[Γ1 ∪ Γ2]] ⊗ [[Q1, Q2]]
·△−→ ([[Γ1]] ⊗ [[Q1]]) ⊗ ([[Γ2]] ⊗ [[Q2]])

[[M]]⊗id−−−−→ [[A]] ⊗ ([[Γ2]] ⊗ [[Q2]])

∼=−→ [[Γ2, x : A;Q2]]
[[N]]−−→ [[B]]

[[Γ;Q ⊢ �CM : C]] = [[Γ]] ⊗ [[Q]]
[[M]]−−→ [[0]]

�C−−→ [[C]]

[[Γ;Q ⊢ leftA,BM : A+B]] = [[Γ]] ⊗ [[Q]]
[[M]]−−→ [[A]]

leftA,B−−−−→ [[A]] + [[B]]

[[Γ;Q ⊢ rightA,BM : A+B]] = [[Γ]] ⊗ [[Q]]
[[M]]−−→ [[B]]

rightA,B−−−−→ [[A]] + [[B]][︃[︃
Γ1 ∪ Γ2;Q1, Q2 ⊢ case M of
{leftx→ N | right y → P} : C

]︃]︃
= [[Γ1 ∪ Γ2]] ⊗ [[Q1, Q2]]

·△−→ ([[Γ1]] ⊗ [[Q1]]) ⊗ ([[Γ2]] ⊗ [[Q2]])

[[M]]⊗id−−−−→ ([[A]] + [[B]]) ⊗ ([[Γ2]] ⊗ [[Q2]])

∼=−→ ([[A]] ⊗ [[Γ2]] ⊗ [[Q2]]) + ([[B]] ⊗ [[Γ2]] ⊗ [[Q2]])

∼=−→ [[Γ2, x : A;Q2]] + [[Γ2, y : B;Q2]]

[[[N]],[[P]]]−−−−−→ [[C]]

[[Φ; ∅ ⊢ ∗ : I]] = [[Φ]] ⊗ [[∅]]
ρΦ−→ [[Φ]]

�Φ−→ [[I]]

[[Γ1 ∪ Γ2;Q1, Q2 ⊢M ;N : C]] = [[Γ1 ∪ Γ2]] ⊗ [[Q1, Q2]]
·△−→ ([[Γ1]] ⊗ [[Q1]]) ⊗ ([[Γ2]] ⊗ [[Q2]])

[[M]]⊗[[N]]−−−−−→ [[I]] ⊗ [[C]]
λC−→ [[C]]

Table 7.1: The Interpretation of Typing Derivations.

120

[[Γ1 ∪ Γ2;Q1, Q2 ⊢ ⟨M,N⟩ : A⊗B]] = [[Γ1 ∪ Γ2]] ⊗ [[Q1, Q2]]
·△−→ ([[Γ1]] ⊗ [[Q1]]) ⊗ ([[Γ2]] ⊗ [[Q2]])

[[M]]⊗[[N]]−−−−−→ [[A]] ⊗ [[B]]

[[Γ1 ∪ Γ2;Q1, Q2 ⊢ let ⟨x, y⟩ = M in N : C]] = [[Γ1 ∪ Γ2]] ⊗ [[Q1, Q2]]
·△−→ ([[Γ1]] ⊗ [[Q1]]) ⊗ ([[Γ2]] ⊗ [[Q2]])

[[M]]⊗id−−−−→ [[A⊗B]] ⊗ ([[Γ2]] ⊗ [[Q2]])

∼=−→ [[Γ2, x : A, y : B;Q2]]
[[N]]−−→ [[C]]

[[Γ;Q ⊢ λxA.M : A(B]] = [[Γ]] ⊗ [[Q]]
f∗
−→ [[A(B]], where

f = ([[Γ]] ⊗ [[Q]]) ⊗ [[A]]
∼=−→ [[Γ, x : A]] ⊗ [[Q]]

[[M]]−−→ [[B]]

[[Γ1 ∪ Γ2;Q1, Q2 ⊢MN : B]] = [[Γ1 ∪ Γ2]] ⊗ [[Q1, Q2]]
·△−→ ([[Γ1]] ⊗ [[Q1]]) ⊗ ([[Γ2]] ⊗ [[Q2]])

[[M]]⊗[[N]]−−−−−→ [[A(B]] ⊗ [[A]]
εB−→ [[B]]

[[Φ; ∅ ⊢ lift M : !A]] = [[Φ; ∅]]
ρΦ−→ [[Φ]]

τΦ−→ p([[Φ]]p)
lift [[M]]−−−−→ p([[!A]]p)

τ−1
!A−−→ [[!A]]

[[Γ;Q ⊢ force M : A]] = [[Γ]] ⊗ [[Q]]
[[M]]−−→![[A]]

force−−−→ [[A]]

[[Γ;Q ⊢ boxT M : Circ(T, U)]] = [[Γ]] ⊗ [[Q]]
[[M]]−−→ !([[T]] ([[U]])

box−−→ [[Circ(T, U)]]

[[Γ1 ∪ Γ2;Q1, Q2 ⊢ apply(M,N) : U]] = [[Γ1 ∪ Γ2]] ⊗ [[Q1, Q2]]
·△−→ ([[Γ1]] ⊗ [[Q1]]) ⊗ ([[Γ2]] ⊗ [[Q2]])

[[M]]⊗[[N]]−−−−−→ [[Circ(T, U)]] ⊗ [[T]]
apply−−−→ [[U]]

[[Φ; ∅ ⊢ (ℓ⃗, C, ℓ′⃗) : Circ(T, U)]] = [[Φ; ∅]]
ρΦ−→ [[Φ]]

�Φ−→ [[I]]
circ (ℓ⃗,C,ℓ′⃗)−−−−−−→ [[Circ(T, U)]]

Table 7.2: The Interpretation of Typing Derivations (Continuation).

Chapter 8

Semantic Properties

In this chapter, we present semantic versions of several of the syntactic results ob-

tained in Chapter 6. These semantic results will be used in the proof of the main

lemma of this chapter, namely, the Semantic Substitution Lemma.

8.1 Semantic Parameter Value Lemma

Before we introduce the semantic version of the Parameter Value Lemma 6.1.4, we

give meaning in the category of sets to the well-typed values of parameter type.

Definition 8.1.1. Let Φ; ∅ ⊢ V : P be a valid typing judgement with derivation D
where Φ is a parameter context, V a value, and P a parameter type. The set-theoretic

semantics of the parameter value V is given by the function [[V]]p : [[Φ]]p → [[P]]p

defined inductively as follows:

• If the last (and only) rule of D is (var) with V = x, then D is

Φ′, x : P ; ∅ ⊢ x : P
(var)

where Φ = Φ′, x : P . In this case, let

[[V]]p = [[Φ′, x : P]]p
∼=−→ [[Φ′]]p × [[P]]p

�
p

Φ′×id−−−−→ [[I]]p × [[P]]p
πP−→ [[P]]p.

• If the last (and only) rule of D is (const) with V = c, then D is

Φ; ∅ ⊢ c : Pc
(const)

where P = Pc. In this case, let

[[V]]p = [[Φ]]p
�
p
Φ−→ [[I]]p

[[c]]p−−→ [[Pc]]p.

121

122

• If the last rule of D is (left) with V = leftR,S W , then D is

...
Φ; ∅ ⊢ W : R

Φ; ∅ ⊢ leftR,S W : R + S
(left)

where W is a value term and P = R + S for some parameter types R and S.

In this case, let

[[V]]p = [[Φ]]p
[[W]]p−−−→ [[R]]p

leftR,S−−−→ [[R + S]]p.

• If the last rule of D is (right) with V = rightR,S W , then D is

...
Φ; ∅ ⊢ W : S

Φ; ∅ ⊢ rightR,S W : R + S
(right)

where W is a value term and P = R + S for some parameter types R and S.

In this case, let

[[V]]p = [[Φ]]p
[[W]]p−−−→ [[S]]p

rightR,S−−−−→ [[R + S]]p.

• If the last (and only) rule of D is (∗) with V = ∗, then D is

Φ; ∅ ⊢ ∗ : I
(∗)

where P = I. In this case, let

[[V]]p = [[Φ]]p
�
p
Φ−→ [[I]]p.

• If the last rule of D is (pair) with V = ⟨W1,W2⟩ for some value terms W1 and

W2, then D is
...

Φ1; ∅ ⊢ W1 : R

...
Φ2; ∅ ⊢ W2 : S

Φ1 ∪ Φ2; ∅ ⊢ ⟨W1,W2⟩ : R⊗ S
(pair)

where Φ = Φ1 ∪Φ2 for some parameter contexts Φ1 and Φ2, and P = R⊗S for

some parameter types R and S. In this case, let

[[V]]p = [[Φ1 ∪ Φ2]]p
·△p
Φ1∪Φ2−−−−→ [[Φ1]]p × [[Φ2]]p

[[W1]]p×[[W2]]p−−−−−−−−→ [[R]]p × [[S]]p.

123

• If the last rule of D is (lift) with V = lift M , then D is

...
Φ; ∅ ⊢M : A

Φ; ∅ ⊢ lift M : !A
(lift)

where P = !A. In this case, let

[[V]]p = [[Φ]]p
([[M]]◦ρ−1

Φ ◦τ
−1
Φ)◦

−−−−−−−−−→ [[!A]]p.

• If the last (and only) rule of D is (circ) with V = (ℓ⃗, C, ℓ′⃗), then D is

Q ⊢L ℓ⃗ : T Q′ ⊢L ℓ′⃗ : U C ∈ ML(Q,Q′)

Φ; ∅ ⊢ (ℓ⃗, C, ℓ′⃗) : Circ(T, U)
(circ)

where P = Circ(T, U) for some simple M-types T and U . In this case, let

[[V]]p = [[Φ]]p
�
p
Φ−→ [[I]]p

(C∗◦τ−1
I)◦

−−−−−−→ ♭([[T]] ([[U]])
iT,U−−→ [[Circ(T, U)]]p

where iT,U is as in (7.10) and C as in (7.15). �

We now show that the interpretation in L of a value of parameter type is essentially

the same as its interpretation in Set.

Lemma 8.1.2 (Semantic Parameter Value Lemma). If Φ; ∅ ⊢ V : P is a valid typing

judgement where Φ is a parameter context, V a value term, and P a parameter type,

then the following diagram commutes:

[[Φ; ∅]] [[P]]

[[Φ]]

p([[Φ]]p) p([[P]]p).

[[Φ;∅⊢V :P]]

ρΦ

τP

τΦ

p([[V]]p)

Proof. By special rule induction on the set of valid typing judgements of the form

Φ; ∅ ⊢ V : P where Φ is a parameter context, V a value term, and P a parameter

type. We treat each case in turn.

124

• If the typing rule is (var) with V = x, then the rule is

Φ′, x : P ; ∅ ⊢ x : P
(var)

where Φ = Φ′, x : P . Suppose Φ′ = x1 : P1, . . . , xn−1 : Pn−1 and xn : Pn = x : P .

Consider the following diagram:

[[Φ′, x : P]] [[Φ′]] ⊗ [[P]]

p([[Φ′]]p) ⊗ [[P]]

⨂︁n
i=1 p([[Pi]]p) p([[Φ′]]p) ⊗ p([[P]]p)

p([[Φ′, x : P]]p) p([[Φ′]]p × [[P]]p)

∼=

⨂︁n
i=1 τi

τΦ

τΦ′⊗id

τΦ′⊗τP

id⊗τP

∼=

mP1,...,Pn

mΦ′,P

p(∼=)

(8.1)

The left diagram commutes by definition of τΦ, while the top diagram does

by naturality of the monoidal structure. The top right diagram commutes by

functoriality of ⊗, while the bottom diagram does by monoidality of p.

We now turn our attention to the following diagram:

[[Φ′]] ⊗ [[P]] [[I]] ⊗ [[P]]

p([[Φ′]]p) ⊗ [[P]] p([[I]]p) ⊗ [[P]]

p([[Φ′]]p) ⊗ p([[P]]p) p([[I]]p) ⊗ p([[P]]p) [[I]] ⊗ p([[P]]p)

p([[Φ′]]p × [[P]]p) p([[I]]p × [[P]]p) p([[P]]p)

�Φ′⊗id

τΦ′⊗id

id⊗τP
p(�

p

Φ′)⊗id

id⊗τP

τ−1
I ⊗id

id⊗τP

p(�
p

Φ′)⊗id

mΦ′,P

τ−1
I ⊗id

mI,P λP

p(�
p

Φ′×id) p(πP)

(8.2)

125

Reading from top to bottom and left to right, the first diagram commutes by

definition of �Φ′ , while the second and third diagrams do by functoriality of ⊗.

The fourth and fifth diagrams commute by naturality of m and monoidality of

p, respectively.

Finally, we consider the following diagram:

[[Φ′, x : P ; ∅]] [[P]]

[[Φ′, x : P]] [[Φ′]] ⊗ [[P]] [[I]] ⊗ [[P]]

p([[Φ′]]p) ⊗ [[P]]

p([[Φ′]]p) ⊗ p([[P]]p) [[I]] ⊗ p([[P]]p)

p([[Φ′]]p × [[P]]p) p([[I]]p × [[P]]p)

p([[Φ′, x : P]]p) p([[P]]p)

[[Φ′,x:P ;∅⊢x:P]]

ρΦ

τP

∼=

τΦ

�Φ′⊗id

τΦ′⊗id

λP

id⊗τP

id⊗τP

mΦ′,P
λP

p(�
p

Φ′×id)

p(πP)

p(πP ◦(�
p

Φ′×id)◦∼=) = p([[V]]p)

p(∼=)

Note that top diagram commutes by definition of [[Φ′, x : P ; ∅ ⊢ x : P]], while the

leftmost diagram does by (8.1). The center diagram commutes by (8.2), while

the one to its right does by naturality of λ. Since p is a functor, the bottom dia-

gram commutes as well. By definition, [[V]]p = πP ◦(�
p
Φ′×id)◦∼= : [[Φ]]p → [[P]]p,

and so the result follows.

• If the typing rule is (const) with V = c, then the rule is

Φ; ∅ ⊢ c : Pc
(const)

126

where P = Pc. Consider the following diagram:

[[Φ; ∅]] [[Pc]]

[[Φ]] [[I]]

p([[I]]p)

p([[Φ]]p) p([[Pc]]p)

[[Φ;∅⊢c:Pc]]

ρΦ

τPc

�Φ

τΦ

[[c]]

τI

p([[c]]p)p(�
p
Φ)

p([[c]]p◦ �
p
Φ) = p([[V]]p)

Note that the top diagram commutes by definition of [[Φ; ∅ ⊢ c : Pc]]. The left

diagram commutes by definition of �Φ, while the right one does by definition of

[[c]]. Since p is a functor, the bottom triangle commutes as well. By definition,

[[V]]p = [[c]]p ◦ �
p
Φ : [[Φ]]p → [[Pc]]p, and so the result follows.

• If the typing rule is (left) with V = leftR,S W , then the rule is

Φ; ∅ ⊢ W : R

Φ; ∅ ⊢ leftR,S W : R + S
(left)

where W is a value term and P = R + S for some parameter types R and S.

Consider the following diagram:

[[Φ; ∅]] [[R + S]]

[[Φ]] [[R]]

p([[R]]p)

p([[Φ]]p) p([[R + S]]p)

[[Φ;∅⊢leftR,S W :R+S]]

[[W]]
ρΦ

τR+S

τΦ

leftR,S

τR

p(leftR,S)p([[W]]p)

p(leftR,S ◦[[W]]p) = p([[V]]p)

Note that the top triangle commutes by definition of [[Φ; ∅ ⊢ leftR,S W : R+S]],

while the diagram on the right commutes by definition of τR+S. The validity of

127

Φ; ∅ ⊢ W : R implies that the diagram on the left commutes by the induction

hypothesis. Since p is a functor, the bottom triangle commutes as well. By

definition, [[V]]p = leftR,S ◦[[W]]p : [[Φ]]p → [[R + S]]p, and so the result follows.

• If the typing rule is (right), then one proceeds as in the (left) case.

• If the tying rule is (∗) with V = ∗, then the rule is

Φ; ∅ ⊢ ∗ : I
(∗)

where P = I. Consider the following diagram:

[[Φ; ∅]] [[I]]

[[Φ]]

p([[Φ]]p) p([[I]]p)

[[Φ;∅⊢∗:I]]

ρΦ

τI

�Φ

τΦ

p(�
p
Φ) = p([[V]]p)

Note that the top diagram commutes by definition of [[Φ; ∅ ⊢ ∗ : I]], while the one

at the bottom does by definition of �Φ. By definition, [[V]]p = �
p
Φ : [[Φ]]p → [[I]]p,

and so the result follows.

• If the typing rule is (pair) with V = ⟨W1,W2⟩ for some value terms W1 and W2,

then the rule is

Φ1; ∅ ⊢ W1 : R Φ2; ∅ ⊢ W2 : S

Φ1 ∪ Φ2; ∅ ⊢ ⟨W1,W2⟩ : R⊗ S
(pair)

where Φ = Φ1 ∪Φ2 for some parameter contexts Φ1 and Φ2, and P = R⊗S for

128

some parameter types R and S. Consider the following diagram:

[[Φ1 ∪ Φ2; ∅]] [[R⊗ S]]

[[Φ]] [[Φ1; ∅]] ⊗ [[Φ2; ∅]] [[R]] ⊗ [[S]]

[[Φ1]] ⊗ [[Φ2]]

p([[Φ1]]p) ⊗ p([[Φ2]]p) p([[R]]p) ⊗ p([[S]]p)

p([[Φ1]]p × [[Φ2]]p) p([[R]]p × [[S]]p)

p([[Φ1 ∪ Φ2]]p) p([[R⊗ S]]p)

[[Φ1∪Φ2;∅⊢⟨W1,W2⟩:R⊗S]]

·△Φ1∪Φ2;∅ρΦ1∪Φ2

τR⊗S

τΦ1∪Φ2

·△Φ1∪Φ2

[[W1]]⊗[[W2]]

ρΦ1
⊗ρΦ2

id

τR⊗τS

τΦ1
⊗τΦ2

p([[W1]]p)⊗p([[W2]]p)

mΦ1,Φ2 mR,S

p([[W1]]p×[[W2]]p)

id
p(·△p

Φ1∪Φ2
)

p(([[W1]]p×[[W2]]p)◦ ·△p
Φ1∪Φ2

) = p([[V]]p)

The top diagram commutes by definition of [[Φ1∪Φ2; ∅ ⊢ ⟨W1,W2⟩ : R⊗S]], while

the diagram on the right commutes by definition of τR⊗S. The leftmost diagrams

commute by Definition 7.3.3, while the pentagon in the middle commutes by

the induction hypothesis applied to the valid judgements Φ1; ∅ ⊢ W1 : R and

Φ2; ∅ ⊢ W2 : S . The square below it commutes by naturality of m, and

since p is a functor, the bottom diagram commutes as well. By definition,

[[V]]p = ([[W1]]p × [[W2]]p) ◦ ·△p
Φ1∪Φ2

: [[Φ1 ∪ Φ2]]p → [[R ⊗ S]]p, and so the result

follows.

• If the typing rule is (lift) with V = lift M , then the rule is

Φ; ∅ ⊢M : A

Φ; ∅ ⊢ lift M : !A
(lift)

where P = !A. By definition of [[Φ; ∅ ⊢ lift M : !A]], the following diagram

commutes:

[[Φ; ∅]] [[!A]]

[[Φ]]

p([[Φ]]p) p([[!A]]p)

[[Φ;∅⊢lift M :!A]]

ρΦ

τ!A

τΦ

lift [[M]]

129

But lift [[M]] = p(([[Φ; ∅ ⊢ M : A]] ◦ ρ−1Φ ◦ τ−1Φ)◦) as seen in Section 7.3.2, and

since [[V]]p = ([[Φ; ∅ ⊢ M : A]] ◦ ρ−1Φ ◦ τ−1Φ)◦ : [[Φ]]p → [[!A]]p by definition, the

result follows.

• If the typing rule is (circ) with V = (ℓ⃗, C, ℓ′⃗), then the rule is

Q ⊢L ℓ⃗ : T Q′ ⊢L ℓ′⃗ : U C ∈ ML(Q,Q′)

Φ; ∅ ⊢ (ℓ⃗, C, ℓ′⃗) : Circ(T, U)
(circ)

where P = Circ(T, U) for some simple M-types T and U . Consider the following

diagram:

[[Φ; ∅]] [[Circ(T, U)]]

[[Φ]] [[I]]

p([[I]]p) p(♭([[T]] ([[U]]))

p([[Φ]]p) p([[Circ(T, U)]]p)

[[Φ;∅⊢(ℓ⃗,C,ℓ′⃗):Circ(T,U)]]

ρΦ

τCirc(T,U)

�Φ

τΦ

circ (ℓ⃗,C,ℓ′⃗)

τI

p((C∗◦τ−1
I)◦)

box

p(iT,U)p(�
p
Φ)

p(iT,U◦(C∗◦τ−1
I)◦◦ �

p
Φ) = p([[V]]p)

The top region commutes by definition of [[Φ; ∅ ⊢ (ℓ⃗, C, ℓ′⃗) : Circ(T, U)]] while

the one on the right does by definition of box and τCirc(T,U). The leftmost

diagram commutes by definition of �Φ, while the one in the middle does by

definition of circ (ℓ⃗, C, ℓ′⃗). Since p is a functor, the bottom region commutes as

well. By definition, [[V]]p = iT,U ◦ (C∗ ◦ τ−1I)◦ ◦ �
p
Φ : [[Φ]]p → [[Circ(T, U)]]p, and

so the result follows.

8.2 Discarding Simultaneously vs Discarding in Stages

We can discard parameter contexts simultaneously or in stages.

130

Lemma 8.2.1. If Φ and Φ′ are disjoint parameter contexts, then the following dia-

gram commutes:

[[Φ,Φ′]] [[I]]

[[Φ′]]

[[Φ]] ⊗ [[Φ′]] [[I]] ⊗ [[Φ′]].

�Φ,Φ′

∼=

�Φ′

�Φ⊗id

λΦ′

Proof. Let Φ and Φ′ be disjoint parameter contexts. Consider the following diagram:

[[Φ,Φ′]] [[I]]

p([[Φ,Φ′]]p) p([[I]]p)

p([[Φ]]p × [[Φ′]]p) p([[I]]p × [[Φ′]]p) p([[Φ′]]p) [[Φ′]]

p([[Φ]]p) ⊗ p([[Φ′]]p) p([[I]]p) ⊗ p([[Φ′]]p)

[[Φ]] ⊗ p([[Φ′]]p) [[I]] ⊗ p([[Φ′]]p)

[[Φ]] ⊗ [[Φ′]] [[I]] ⊗ [[Φ′]]

�Φ,Φ′

τΦ,Φ′

∼=

p(�
p

Φ,Φ′)

p(∼=)

τ−1
I

p(�
p
Φ×id)

m−1
Φ,Φ′

p(πΦ′)

p(�
p

Φ′)

τ−1
Φ′

�Φ′

p(�
p
Φ)⊗id

τ−1
Φ ⊗id

mI,Φ′

τ−1
I ⊗id

�Φ⊗id

id⊗τ−1
Φ′

λp(Φ′)

id⊗τ−1
Φ′

�Φ⊗id

λΦ′

The top region commutes by definition of �Φ,Φ′ , while the one below it does because

[[I]]p is terminal in Set and p is a functor. The square in the center commutes by

naturality of m, while the region to its right does by monoidality of p. The region

below it commutes by definition of �Φ and the functoriality of − ⊗ id, while the

bottom one does by functoriality of ⊗. The leftmost diagram commutes because the

isomorphism ∼=: [[Φ,Φ′]] → [[Φ]]⊗ [[Φ′]] can be decomposed precisely as the right-hand

side path of that diagram, see diagram (8.1). The top rightmost diagram commutes

by definition of �Φ′ , while the one below it does by naturality of λ. Hence, the outer

square commutes as required.

131

In what follows, we may omit the subscripts and superscripts of the discarding

morphisms � when no confusion arises.

8.3 Special Semantic Weakening Lemma

In this section, we prove the semantic version of the Special Weakening Lemma 6.2.1.

Definition 8.3.1 (Weakening of a Derivation). Let D be a derivation of Γ;Q ⊢ N : B

and Φ a parameter context. We say that Φ is disjoint from D, and denote it by

Φ ∩ D = ∅, if for every variable context Γ′ of D, Φ ∩ Γ′ = ∅. If Φ is disjoint from D,

we define Φ,D to be the derivation of Φ,Γ;Q ⊢ N : B obtained by extending every

variable context of D by Φ. We call Φ,D the weakening of D by Φ. If Φ′ = Φ\Γ is

disjoint from D, we define Φ ∪ D to be the weakening of D by Φ′. �

Note that the weakening of a derivation is indeed a valid derivation by the syntactic

Special Weakening Lemma 6.2.1.

Lemma 8.3.2 (Special Semantic Weakening Lemma). If Γ;Q ⊢ N : B is a valid

typing judgement with derivation D, and Φ a parameter context disjoint from D, then

the valid typing judgment Φ,Γ;Q ⊢ N : B with derivation Φ,D makes the following

diagram commute:

[[Φ,Γ;Q]] [[B]]

[[Γ;Q]]

[[Φ]] ⊗ [[Γ;Q]] [[I]] ⊗ [[Γ;Q]],

[[Φ,Γ;Q⊢N :B]]

∼=

[[Γ;Q⊢N :B]]

�Φ⊗id

λΓ;Q

where [[Γ;Q ⊢ N : B]] = [[D]] and [[Φ,Γ;Q ⊢ N : B]] = [[Φ,D]].

Proof. By induction on the typing derivation D of Γ;Q ⊢ N : B. Let Φ be a para-

meter context disjoint from D, and Φ,Γ;Q ⊢ N : B the valid typing judgment with

derivation Φ,D. We now proceed by case distinction:

132

• If the last (and only) rule of D is (var) with N = x, then D is

Φ′, x : B; ∅ ⊢ x : B
(var)

where Γ = (Φ′, x : B) with Φ′ a parameter context andQ = ∅. Since Φ is disjoint

from D, Φ ∩ (Φ′, x : B) = ∅, and so Φ,Φ′, x : B is a well-defined context. By

the (var) rule, Φ,Φ′, x : B; ∅ ⊢ x : B is valid, and so, [[Φ,Φ′, x : B; ∅ ⊢ x : B]] is

defined. Consider the following diagram:

[[Φ,Φ′, x : B; ∅]] [[B]]

[[x : B; ∅]]

[[Φ,Φ′]] ⊗ [[x : B; ∅]] [[I]] ⊗ [[x : B; ∅]]

[[Φ′]] ⊗ [[x : B; ∅]] [[Φ′, x : B; ∅]]

[[Φ]] ⊗ [[Φ′]] ⊗ [[x : B; ∅]] [[I]] ⊗ [[Φ′]] ⊗ [[x : B; ∅]]

[[Φ]] ⊗ [[Φ′;x : B; ∅]] [[I]] ⊗ [[Φ′, x : B; ∅]]

[[Φ,Φ′,x:B;∅⊢x:B]]

∼=

∼=

ρx:B

�Φ,Φ′⊗id

∼=⊗id

λx:B;∅

�Φ′⊗id

[[Φ′,x:B;∅⊢x:B]]

∼=

�Φ⊗id⊗id
λΦ′⊗id

∼=

�Φ⊗id

∼=

λΦ′,x:B;∅

Note that the top diagram commutes by definition of [[Φ,Φ′, x : B; ∅ ⊢ x : B]],

while the one to its right commutes by definition of [[Φ′, x : B; ∅ ⊢ x : B]].

The diagram below the latter commutes by coherence for symmetric monoidal

categories as does the leftmost diagram. The center diagram commutes by

Lemma 8.2.1 and the functoriality of −⊗ id, while the one at the bottom does

by naturality of the monoidal structure. The result now follows.

• If the last (and only) rule of D is (label) with N = ℓ, then D is

Φ′; ℓ : α ⊢ ℓ : α
(label)

where Γ = Φ′, a parameter context, Q = ℓ : α, and B = α, a wire type. Since Φ

is disjoint from D, Φ∩Φ′ = ∅, and so Φ,Φ′ is a well-defined parameter context.

By the (label) rule, Φ,Φ′; ℓ : α ⊢ ℓ : α is valid, and so [[Φ,Φ′; ℓ : α ⊢ ℓ : α]] is

133

defined. Consider the following diagram:

[[Φ,Φ′; ℓ : α]] [[α]]

[[Φ,Φ′]] ⊗ [[α]] [[I]] ⊗ [[α]]

[[Φ′]] ⊗ [[α]] [[Φ′; ℓ : α]]

[[Φ]] ⊗ [[Φ′]] ⊗ [[α]] [[I]] ⊗ [[Φ′]] ⊗ [[α]]

[[Φ]] ⊗ [[Φ′; ℓ : α]] [[I]] ⊗ [[Φ′; ℓ : α]]

[[Φ,Φ′;ℓ:α⊢ℓ:α]]

id

∼=

�Φ,Φ′⊗id

∼=⊗id

λα

�Φ′⊗id

[[Φ′;ℓ:α⊢ℓ:α]]

id

�Φ⊗id⊗id

∼=

λΦ′⊗id

�Φ⊗id

∼=

λΦ′;ℓ:α

Note that the top diagram commutes by definition of [[Φ,Φ′; ℓ : α ⊢ ℓ : α]],

while the one on the top right commutes by definition of [[Φ′; ℓ : α ⊢ ℓ : α]].

The diagram below the latter commutes by coherence for symmetric monoidal

categories as does the leftmost diagram. The center diagram commutes by

Lemma 8.2.1 and the functoriality of −⊗ id, while the one at the bottom does

by naturality of the monoidal structure. The result now follows.

• If the last (and only) rule of D is (∗), then we proceed as in the (label) case.

• If the last (and only) rule of D is (const) with N = c, then D is

Φ′; ∅ ⊢ c : Pc
(const)

where Γ = Φ′, a parameter context, Q = ∅, and B = Pc, a parameter type.

Since Φ is disjoint from D, Φ∩Φ′ = ∅, and so Φ,Φ′ is a well-defined parameter

context. By the (const) rule, Φ,Φ′; ∅ ⊢ c : Pc is valid, and so [[Φ,Φ′; ∅ ⊢ c : Pc]]

is defined. Observe that in the following diagram, the top triangle commutes

134

by definition of [[Φ′; ∅ ⊢ c : Pc]], while the other one does by naturality of ρ:

[[Φ′; ∅]] [[Pc]]

[[Φ′]]

[[I]] ⊗ [[I]] [[I]]

[[Φ′;∅⊢c:Pc]]

ρΦ′

�Φ′⊗id

�Φ′

ρI

[[c]]
(8.3)

Now, consider the following diagram:

[[Φ,Φ′; ∅]] [[Pc]]

[[Φ,Φ′]] [[I]]

[[Φ,Φ′]] ⊗ [[I]] [[I]] ⊗ [[I]]

[[Φ′]] ⊗ [[I]] [[Φ′; ∅]]

[[Φ]] ⊗ [[Φ′]] ⊗ [[I]] [[I]] ⊗ [[Φ′]] ⊗ [[I]]

[[Φ]] ⊗ [[Φ′; ∅]] [[I]] ⊗ [[Φ′; ∅]]

[[Φ,Φ′;∅⊢c:Pc]]

ρΦ,Φ′

∼=

�Φ,Φ′

ρ−1
Φ,Φ′

[[c]]

�Φ,Φ′⊗id

∼=⊗id

ρI

�Φ′⊗id

[[Φ′;∅⊢c:Pc]]

id

�Φ⊗id⊗id
λΦ′⊗id

�Φ⊗id

∼=

λΦ′;∅

∼=

Note that the top diagram commutes by definition of [[Φ,Φ′; ∅ ⊢ c : Pc]], while

the one on the right commutes by (8.3). The diagram below the latter commutes

by coherence for symmetric monoidal categories as does the leftmost diagram.

The top center diagram commutes by naturality of ρ, while the one below it

does by Lemma 8.2.1 and the functoriality of −⊗id. The diagram at the bottom

commutes by naturality of the monoidal structure. The result now follows.

• If the last (and only) rule of D is (circ), then we proceed as in the (const) case.

• If the last rule of D is (initial) with N = �BM , then D is

...
Γ;Q ⊢M : 0

Γ;Q ⊢ �BM : B
(initial),

135

where Γ;Q ⊢ M : 0 is a valid typing judgment with derivation D′. Since

Φ is disjoint from D, Φ is disjoint from D′, and so Φ,Γ;Q ⊢ M : 0 and

Φ,Γ;Q ⊢ �BM : B are valid. Hence, [[Φ,Γ;Q ⊢M : 0]] and [[Φ,Γ;Q ⊢ �BM : B]]

are defined as well. Consider the following diagram:

[[Φ,Γ;Q]] [[B]]

[[0]]

[[Γ;Q]]

[[Φ]] ⊗ [[Γ;Q]] [[I]] ⊗ [[Γ;Q]]

[[Φ,Γ;Q⊢�BM :B]]

[[Φ,Γ;Q⊢M :0]]

∼=

�B

[[Γ;Q⊢�BM :B]]

[[Γ;Q⊢M :0]]

�Φ⊗id

λΓ;Q

Note that the top triangle commutes by definition of [[Φ,Γ;Q ⊢ �BM : B]],

while the one on the right commutes by definition of [[Γ;Q ⊢ �BM : B]].

The bottom diagram commutes by applying the induction hypothesis to the

subderivation D′ of D. The result now follows.

• If the last rule of D is (left), (right), (force), or (box), then one proceeds as in

the (initial) case.

• If the last rule of D is (lift) with N = lift M , then D is

...
Φ′; ∅ ⊢M : A

Φ′; ∅ ⊢ lift M : !A
(lift)

where Γ = Φ′, a parameter context, Q = ∅, B = !A, and Φ′; ∅ ⊢M : A is a valid

typing judgement with derivation D′. Since Φ is disjoint from D, Φ is disjoint

from D′, and so Φ,Φ′; ∅ ⊢ M : A and Φ,Φ′; ∅ ⊢ lift M : !A are valid. Hence,

[[Φ,Φ′; ∅ ⊢ M : A]] and [[Φ,Φ′; ∅ ⊢ lift M : !A]] are defined as well. To simplify

notation, we may denote [[Φ′; ∅ ⊢ M : A]] by [[MΦ′]] and [[Φ,Φ′; ∅ ⊢ M : A]] by

136

[[MΦ,Φ′]]. We want to show that the following diagram commutes:

[[Φ,Φ′; ∅]] [[!A]]

[[Φ′; ∅]]

[[Φ]] ⊗ [[Φ′; ∅]] [[I]] ⊗ [[Φ′; ∅]].

[[Φ,Φ′;∅⊢lift M :!A]]

∼=

[[Φ′;∅⊢lift M :!A]]

�Φ⊗id

λΦ′;∅

(8.4)

This will be accomplished by proving several coherence conditions. First, we

show that the following diagram commutes:

[[Φ,Φ′; ∅]] [[Φ,Φ′]] p([[Φ,Φ′]]p)

[[Φ]] ⊗ [[Φ′; ∅]]

[[Φ]] ⊗ [[Φ′]] p([[Φ]]p) ⊗ p([[Φ′]]p) p([[Φ]]p × [[Φ′]]p)

[[I]] ⊗ [[Φ′]] p([[I]]p) ⊗ p([[Φ′]]p) p([[I]]p × [[Φ′]]p)

[[I]] ⊗ [[Φ′; ∅]] [[I]] ⊗ p([[Φ′]]p)

[[Φ′]] ⊗ [[I]] [[Φ′]] p([[Φ′]]p).

ρΦ,Φ′

∼=

τΦ,Φ′

id

id⊗ρΦ′

∼=

τΦ⊗τΦ′

�Φ⊗id

mΦ,Φ′

p(�
p
Φ)⊗p(id) p(�

p
Φ×id)

τI⊗τΦ′

id⊗τΦ′

λΦ′

id⊗ρ−1
Φ′

mI,Φ′

τ−1
I ⊗id=m−1

I ⊗id

p(πΦ′)

λΦ′;∅

λΦ′
p

ρΦ′ τΦ′

(8.5)

137

The top left triangle commutes by coherence for symmetric monoidal categories;

the region to its right does by definition of τ . The square on the left commutes

by definition of �Φ and functoriality of ⊗. The commutativity of the triangle

below it is immediate. The square on the right and the region below it commute

by monoidality of p. The bottom two triangles commute by naturality of the

left unitor λ. The commutativity of the outer square now follows.

Since the compositions on the left- and right-hand sides of the previous diagram

yield the morphisms

[[Φ,Φ′; ∅]]
∼=−→ [[Φ]] ⊗ [[Φ′; ∅]]

�Φ⊗id−−−−→ [[I]] ⊗ [[Φ′; ∅]]
λΦ′;∅−−−→ [[Φ′]] ⊗ [[I]]

and

p([[Φ,Φ′]]p)
p(πΦ′)−−−→ p([[Φ′]]p),

respectively, diagram (8.5) can be written as

[[Φ,Φ′; ∅]] [[Φ,Φ′]] p([[Φ,Φ′]]p)

[[Φ]] ⊗ [[Φ′; ∅]]

[[I]] ⊗ [[Φ′; ∅]]

[[Φ′]] ⊗ [[I]] [[Φ′]] p([[Φ′]]p).

ρΦ,Φ′

∼=

τΦ,Φ′

p(πΦ′)�Φ⊗id

λΦ′;∅

ρΦ′ τΦ′

(8.6)

Applying the functor ! = p ◦ ♭ to this square yields the following commutative

138

diagram:

!p([[Φ,Φ′]]p) ![[Φ,Φ′]] ![[Φ,Φ′; ∅]]

!([[Φ]] ⊗ [[Φ′; ∅]])

!([[I]] ⊗ [[Φ′; ∅]])

!p([[Φ′]]p) ![[Φ′]] !([[Φ′]] ⊗ [[I]]).

!p(πΦ′)

!τ−1
Φ,Φ′ !ρ−1

Φ,Φ′

!∼=

!(�Φ⊗id)

!λΦ′;∅

!τ−1
Φ′ !ρ−1

Φ′

(8.7)

Now the morphism p([[Φ,Φ′]]p)
τ−1
Φ,Φ′

−−−→ [[Φ,Φ′]]
ρ−1
Φ,Φ′

−−−→ [[Φ,Φ′; ∅]]
[[MΦ,Φ′]]
−−−−→ [[A]] has as

its transpose is the unique morphism (MΦ,Φ′ ◦ρ−1Φ,Φ′ ◦τ−1Φ,Φ′)◦ making the following

diagram commute:

[[Φ,Φ′]]p ♭([[A]])

♭p([[Φ,Φ′]]p) ♭([[Φ,Φ′]]) ♭([[Φ,Φ′; ∅]])

([[MΦ,Φ′]]◦ρ−1
Φ,Φ′◦τ

−1
Φ,Φ′)

◦

ηΦ,Φ′

♭(τ−1
Φ,Φ′) ♭(ρ−1

Φ,Φ′)

♭([[MΦ,Φ′]])

Applying p to this diagram yields:

p([[Φ,Φ′]]p) ![[A]]

!p([[Φ,Φ′]]p) ![[Φ,Φ′]] ![[Φ,Φ′; ∅]]

p(([[MΦ,Φ′]]◦ρ−1
Φ,Φ′◦τ

−1
Φ,Φ′)

◦)

p(ηΦ,Φ′)

!τ−1
Φ,Φ′ !ρ−1

Φ,Φ′

![[MΦ,Φ′]] (8.8)

By the induction hypothesis applied to the subderivation D′ of Φ′; ∅ ⊢ M : A,

139

we have that the following diagram commutes:

[[Φ,Φ′; ∅]] [[A]]

[[Φ′; ∅]]

[[Φ]] ⊗ [[Φ′; ∅]] [[I]] ⊗ [[Φ′; ∅]].

[[MΦ,Φ′]]

∼=

[[MΦ′]]

�Φ⊗id

λΦ′;∅

Thus, applying ! to this diagram implies that

![[Φ,Φ′; ∅]] ![[A]]

![[Φ′; ∅]]

![[MΦ,Φ′]]

!(λΦ′;∅◦(�Φ◦id)◦∼=)
![[MΦ′]]

(8.9)

commutes.

Similarly, the morphism p([[Φ′]]p)
τ−1
Φ′−−→ [[Φ′]]

ρ−1
Φ′−−→ [[Φ′; ∅]]

[[MΦ′]]−−−→ [[A]] has as its

transpose is the unique morphism (MΦ′ ◦ ρ−1Φ′ ◦ τ−1Φ′)◦ making the following dia-

gram commute:

[[Φ′]]p ♭([[A]])

♭p([[Φ′]]p) ♭([[Φ′]]) ♭([[Φ′; ∅]])

([[MΦ′]]◦ρ−1
Φ′ ◦τ

−1
Φ′)

◦

ηΦ′

♭(τ−1
Φ′) ♭(ρ−1

Φ′)

♭([[MΦ′]])

Applying p to this diagram yields:

p([[Φ′]]p) ![[A]]

!p([[Φ′]]p) ![[Φ′]] ![[Φ′; ∅]]

p(([[MΦ′]]◦ρ−1
Φ′ ◦τ

−1
Φ′)

◦)

p(ηΦ′)

!τ−1
Φ′ !ρ−1

Φ′

![[MΦ′]] (8.10)

140

Recall from Section 7.3.2 that lift [[MΦ,Φ′]] = p(([[MΦ,Φ′]] ◦ ρ−1Φ,Φ′ ◦ τ−1Φ,Φ′)◦) and

lift [[MΦ′]] = p(([[MΦ′]] ◦ ρ−1Φ′ ◦ τ−1Φ′)◦). Consider the following diagram:

p([[Φ,Φ′]]p) ![[A]]

!p([[Φ,Φ′]]p) ![[Φ,Φ′; ∅]]

!p([[Φ′]]p) !([[Φ′]] ⊗ [[I]])

p([[Φ′]]p) ![[A]].

lift [[MΦ,Φ′]]

p(ηΦ,Φ′)

p(πΦ′) id

!ρ−1
Φ,Φ′◦!τ

−1
Φ,Φ′

!p(πΦ′) !(λΦ′;∅◦(�Φ⊗id)◦∼=)

![[MΦ,Φ′]]

!ρ−1
Φ′ ◦!τ

−1
Φ′

![[MΦ]]p(ηΦ′)

lift [[MΦ′]]

(8.11)

The top diagram commutes by (8.8), while the leftmost diagram does by na-

turality of the unit η of the adjunction p ⊣ ♭ and the functoriality of p. The

center diagram commutes by (8.7), while the one to its right does by (8.9). The

bottom diagram commutes by (8.10). Thus, the outer square commutes as well.

Finally, consider the following diagram:

[[Φ,Φ′; ∅]] [[!A]]

p([[Φ,Φ′]]p)

p([[Φ′]]p) [[Φ′; ∅]]

[[Φ]] ⊗ [[Φ′; ∅]] [[I]] ⊗ [[Φ′; ∅]].

[[Φ,Φ′;∅⊢lift M :!A]]

τΦ,Φ′◦ρΦ,Φ′

∼=

lift [[MΦ,Φ′]]

p(πΦ′)

lift [[MΦ′]]

τΦ′◦ρΦ′

[[Φ′;∅⊢lift M :!A]]

�Φ⊗id

λΦ′;∅

141

The top triangle commutes by definition of [[Φ,Φ′; ∅ ⊢ lift M : !A]], while the

one to its right does by (8.11). Similarly, the rightmost triangle commutes by

definition of [[Φ′; ∅ ⊢ lift M : !A]], while the bottom region does by (8.6). The

commutativity of the outer square now follows.

• The remaining cases are similar.

8.4 Duplicating and Discarding Contexts

Lemma 8.4.1. If Φ is a parameter context and Γ is a variable context for which there

exist parameter contexts Φ′ and Φ′′ and variable context Γ′, all mutually disjoint, such

that Φ = (Φ′,Φ′′), while Γ = (Φ′′,Γ′) and Φ ∪ Γ = (Φ′,Φ′′,Γ′) = (Φ′,Γ), then the

following diagram commutes:

[[Φ ∪ Γ;Q]] [[Φ; ∅]] ⊗ [[Γ;Q]]

[[Φ]] ⊗ [[Γ;Q]]

[[Φ′]] ⊗ [[Γ;Q]] [[I]] ⊗ [[Γ;Q]].

·△Φ∪Γ;Q

∼=

ρΦ⊗id

�Φ⊗id

�Φ′⊗id

Proof. First, note that in Set the following diagram commutes:

[[Φ′′]]p × [[Φ′′]]p [[Φ′′]]p × [[Φ′′]]p [[Φ′′]]p × [[I ′]]p

[[Φ′′]]p [[Φ′′]]p [[Φ′′]]p [[Φ′′]]p

σΦ′′,Φ′′

π2

id× �Φ′′

π1 π1

·△p

Φ′′=⟨id,id⟩

id id id

(8.12)

142

Now consider the following diagram:

[[Φ′′]] ⊗ [[Φ′′]] [[I]] ⊗ [[Φ′′]]

p([[Φ′′]]p) ⊗ p([[Φ′′]]p) p([[I]]p) ⊗ p([[Φ′′]]p)

p([[I]]p × [[Φ′′]]p) p([[Φ′′]]p) ⊗ p([[I]]p)

p([[Φ′′]]p × [[Φ′′]]p) p([[Φ′′]]p × [[Φ′′]]p) p([[Φ′′]]p × [[I]]p)

p([[Φ′′]]p) p([[Φ′′]]p)

�Φ′′⊗id

τI⊗τΦ′′τ−1
Φ′′⊗τ

−1
Φ′′

p(�
p

Φ′′)⊗id

σI,Φ′′
mI,Φ′′

p(σI,Φ′′)
mΦ′′,I

m−1
Φ′′,Φ′′

p(�
p

Φ′′×id)

p(σΦ′′,Φ′′) p(id× �
p

Φ′′)

p(π1)p(·△p

Φ′′)

p(id)=id

(8.13)

Note that the top diagram commutes by definition of �Φ′′ and functoriality of −⊗ id,

while the one below it does by naturality of m. The rightmost diagram commutes

because p is a monoidal functor. By (8.12), the bottom diagram commutes, while the

one above it does by naturality of σ and functoriality of p.

The commutativity of the following diagram will be useful:

p([[I]]p) ⊗ p([[Φ′′]]p) [[I]] ⊗ [[Φ′′]]

p([[Φ′′]]p) ⊗ p([[I]]p) p([[Φ′′]]p) ⊗ [[I]] [[Φ′′]] ⊗ [[I]]

p([[Φ′′]]p × [[I]]p) p([[Φ′′]]p) [[Φ′′]]

τ−1
I ⊗τ

−1
Φ′′

σI,Φ′′

λΦ′′

σI,Φ′′
id⊗τ−1

I

mΦ′′,I

τ−1
Φ′′⊗id

ρΦ′′
ρΦ′′

p(π1) τ−1
Φ′′

(8.14)

The top region commutes by naturality of σ, while the one on the right does by

coherence for symmetric monoidal categories. The bottom left diagram commutes by

monoidality of p, while the one to its right does by naturality of ρ.

143

Now we can show that the following diagram commutes as well:

[[Φ′′]] [[Φ′′]] ⊗ [[Φ′′]] [[I]] ⊗ [[Φ′′]]

p([[Φ′′]]p) ⊗ p([[Φ′′]]p) p([[I]]p) ⊗ p([[Φ′′]]p)

p([[Φ′′]]p) ⊗ p([[I]]p)

p([[Φ′′]]p × [[Φ′′]]p) p([[Φ′′]]p × [[I]]p)

p([[Φ′′]]p) p([[Φ′′]]p) [[Φ′′]]

·△Φ′′

τΦ′′

�Φ′′⊗id

τI⊗τΦ′′

λΦ′′

τ−1
Φ′′⊗τ

−1
Φ′′

σI,Φ′′

mΦ′′,I

m−1
Φ′′,Φ′′

p(π1)
p(·△p

Φ′′)

id τ−1
Φ′′

(8.15)

The left diagram commutes by definition of ·△Φ′′ , while the middle one does by (8.13).

The right diagram commutes by (8.14).

Similarly, consider the following:

[[Φ ∪ Γ]] [[Φ]] ⊗ [[Γ]]

[[Φ′]] ⊗ [[Φ′′]] ⊗ [[Γ′]] [[Φ′]] ⊗ [[Φ′′]] ⊗ [[Φ′′]] ⊗ [[Γ′]]

[[Φ′]] ⊗ [[Φ′′]] ⊗ [[Γ′]] [[Φ′]] ⊗ [[I]] ⊗ [[Φ′′]] ⊗ [[Γ′]]

[[Φ′]] ⊗ [[Γ]] [[I]] ⊗ [[Γ]]

·△Φ∪Γ

∼=

∼= �Φ⊗id

∼=
id⊗ ·△Φ′′⊗id

id id⊗ �Φ′′⊗id⊗id

∼=

id⊗λΦ′′⊗id

�Φ′⊗id

(8.16)

The top diagram commutes by definition of ·△Φ∪Γ, while the one on the right does by

Lemma 8.2.1 and the functoriality of −⊗ id and id⊗−. The left diagram commutes

by coherence for symmetric monoidal categories, while the one in the center does

by (8.15) and the functoriality of −⊗ id and id ⊗−.

144

Our desired result can now be easily established:

[[Φ ∪ Γ;Q]] [[Φ; ∅]] ⊗ [[Γ;Q]]

[[Φ]] ⊗ [[Γ]] ⊗ [[Q]] [[Φ]] ⊗ [[Γ;Q]]

[[Φ′]] ⊗ [[Γ;Q]] [[I]] ⊗ [[Γ;Q]]

·△Φ∪Γ;Q

·△Φ∪Γ⊗id

∼=

ρΦ⊗idρ−1
Φ ⊗id

�Φ⊗id �Φ⊗id

�Φ′⊗id

(8.17)

Note that the top diagram commutes by definition of ·△Φ∪Γ;Q, while the one at the

bottom does by (8.16) and the functoriality of −⊗ id. The commutativity of the right

diagram is immediate. The result now follows.

8.5 Semantic Weakening Lemma

The meaning of a term remains essentially unchanged when its variable context is

extended with a parameter context:

Lemma 8.5.1 (Semantic Weakening Lemma). If Γ;Q ⊢ N : B is a valid typing

judgement with derivation D, and Φ is a parameter context such that Φ∪D is defined,

then the valid typing judgement Φ ∪ Γ;Q ⊢ N : B with derivation Φ ∪ D makes the

following diagram commute:

[[Φ ∪ Γ;Q]] [[B]]

[[Φ; ∅]] ⊗ [[Γ;Q]] [[Γ;Q]]

[[Φ]] ⊗ [[Γ;Q]] [[I]] ⊗ [[Γ;Q]],

[[Φ∪Γ;Q⊢N :B]]

·△Φ∪Γ;Q

ρΦ⊗id

[[Γ;Q⊢N :B]]

�Φ⊗id

λΓ;Q

where [[Γ;Q ⊢ N : B]] = [[D]] and [[Φ ∪ Γ;Q ⊢ N : B]] = [[Φ ∪ D]].

Proof. Let Γ;Q ⊢ N : B be a valid typing judgement with derivation D, and Φ a

parameter context such that Φ ∪ D is defined. This implies that Φ ∪ Γ;Q ⊢ N : B is

145

valid typing judgement with derivation Φ′,D where Φ′ = Φ\Γ. Consider the following

diagram:

[[Φ ∪ Γ;Q]] [[B]]

[[Φ; ∅]] ⊗ [[Γ;Q]] [[Φ′]] ⊗ [[Γ;Q]] [[Γ;Q]]

[[Φ]] ⊗ [[Γ;Q]] [[I]] ⊗ [[Γ;Q]]

[[Φ∪Γ;Q⊢N :B]]

∼=·△Φ∪Γ;Q

ρΦ⊗id
�Φ′⊗id

[[Γ;Q⊢N :B]]

�Φ⊗id

λΓ;Q

The top triangle commutes by the Special Semantic Weakening Lemma 8.3.2, while

the one at the bottom does by Lemma 8.4.1. Thus, the outer square commutes as

well.

8.6 Semantic Substitution Lemma

We now have all the ingredients to prove the semantic version of the syntactic Sub-

stitution Lemma 6.3.1

Lemma 8.6.1 (Semantic Substitution Lemma). If Γ, x : A;Q ⊢ N : B and Γ′;Q′ ⊢ V : A

are valid typing judgements with derivations D and D′, respectively, such that Γ′ ∪D
and Γ ∪ D′ are defined, Q ∩Q′ = ∅, and V is a value term, then

[[Γ ∪ Γ′;Q,Q′ ⊢ let x = V in N : B]] = [[Γ ∪ Γ′;Q,Q′ ⊢ N [V/x] : B]].

Proof. By induction on the typing derivation D of Γ, x : A;Q ⊢ N : B . Since

Γ′ ∪ D is defined, so is the union of contexts Γ′ ∪ Γ, and since Q ∩ Q′ = ∅, the

typing judgment Γ ∪ Γ′;Q,Q′ ⊢ let x = V in N : B is valid by the (let) rule. Thus,

[[Γ∪Γ′;Q,Q′ ⊢ let x = V in N : B]] is defined. Similarly, by the syntactic Substitution

Lemma 6.3.1, Γ ∪ Γ′;Q,Q′ ⊢ N [V/x] : B is valid, and so [[Γ ∪ Γ′;Q,Q′ ⊢ N [V/x] : B]]

is defined. We want to show that

[[Γ ∪ Γ′;Q,Q′ ⊢ let x = V in N : B]] = [[Γ ∪ Γ′;Q,Q′ ⊢ N [V/x] : B]].

We now proceed by case distinction:

146

• If the last (and only) rule of D is (var) with N = x, then D is

Φ, x : A; ∅ ⊢ x : A
(var)

with Γ = Φ, a parameter context, Q = ∅, andB = A. SinceN [V/x] = x[V/x] = V ,

we want to show that

[[Φ ∪ Γ′;Q′ ⊢ let x = V in x : A]] = [[Φ ∪ Γ′;Q′ ⊢ V : A]].

Consider the following diagram:

[[Φ ∪ Γ′;Q′]] [[A]]

[[Φ; ∅]] ⊗ [[Γ′;Q′]] [[Φ; ∅]] ⊗ [[A]] [[Φ, x : A; ∅]]

[[Φ]] ⊗ [[A]] [[I]] ⊗ [[A]] [[Γ′;Q′]]

[[Φ]] ⊗ [[Γ′;Q′]] [[I]] ⊗ [[Γ′;Q′]]

[[Φ∪Γ′;Q′⊢let x=V inx:A]]

·△Φ∪Γ′;Q′

id⊗[[V]]

ρΦ⊗id

∼=

ρΦ⊗id

[[Φ,x:A;∅⊢x:A]]

�Φ⊗id

λA
[[Γ′;Q′⊢V :A]]

�Φ⊗id

λΓ′;Q′
id⊗[[V]]

(8.18)

The top region commutes by definition of [[Φ ∪ Γ′;Q′ ⊢ let x = V in x : A]],

while the one to its right does by definition of [[Φ, x : A; ∅ ⊢ x : A]]. The bottom

diagram commutes by functoriality of ⊗, while the rightmost diagram does by

naturality of λ. Hence, the outer square commutes as well.

Since Φ ∪D′ is defined, the Semantic Weakening Lemma 8.5.1 implies that the

147

following diagram commutes:

[[Φ ∪ Γ′;Q′]] [[A]]

[[Φ; ∅]] ⊗ [[Γ′;Q′]] [[Γ′;Q′]]

[[Φ]] ⊗ [[Γ′;Q′]] [[I]] ⊗ [[Γ′;Q′]].

[[Φ∪Γ′;Q′⊢V :A]]

·△Φ∪Γ′;Q′

ρΦ′⊗id

[[Γ′;Q′⊢V :A]]

�Φ⊗id

λΓ′;Q′

(8.19)

Since the bottom paths of (8.18) and (8.19) are equal, it follows that the top

morphisms of those diagrams are equal as well. Hence,

[[Φ ∪ Γ′;Q′ ⊢ let x = V in x : A]] = [[Φ ∪ Γ′;Q′ ⊢ V : A]],

as required.

• If the last (and only) rule of D is (var) with N = y ̸= x, then D is

Φ, x : A, y : B; ∅ ⊢ y : B
(var)

with Γ = (Φ, y : B) and Q = ∅, where Φ, x : A is a parameter context. Thus, V

is a value of parameter type, and so the syntactic Parameter Value Lemma 6.1.4

implies that Γ′ is a parameter context and Q′ = ∅. Since N [V/x] = y[V/x] = y,

we want to show that

[[(Φ, y : B) ∪ Γ′; ∅ ⊢ let x = V in y : B]] = [[(Φ, y : B) ∪ Γ′; ∅ ⊢ y : B]].

148

Consider the following diagram:

[[(Φ, y : B) ∪ Γ′; ∅]] [[B]]

[[Φ, y : B; ∅]] ⊗ [[Γ′; ∅]] [[Φ, y : B; ∅]] ⊗ [[A]] [[Φ, x : A, y : B; ∅]] [[Φ, y : B; ∅]]

[[Φ, y : B; ∅]] ⊗ [[Γ′]] [[Φ, y : B; ∅]] ⊗ p([[A]]p) [[Φ, y : B; ∅]] ⊗ [[I]]

[[Φ, y : B; ∅]] ⊗ p([[Γ′]]p) [[Φ, y : B; ∅]] ⊗ p([[I]]p)

[[(Φ,y:B)∪Γ′;∅⊢let x=V iny:B]]

·△(Φ,y:B)∪Γ′;∅

id⊗ρΓ′

id⊗[[V]] ∼=

id⊗ �A
id⊗τA

[[Φ,x:A;y:B;∅⊢y:B]] [[Φ,y:B;∅⊢y:B]]

id⊗τΓ′
id⊗p(�

p
A)

ρΓ;∅

id⊗p([[V]]p)

id⊗p(�
p

Γ′)

id⊗τI

(8.20)

The top region commutes by definition of [[(Φ, y : B)∪Γ′; ∅ ⊢ let x = V in y : B]],

while the one to its right does by the Special Semantic Weakening Lemma 8.3.2.

The diagram below the latter commutes by definition �A and the functoriality

of id ⊗ −, while the leftmost diagram does by the Semantic Parameter Value

Lemma 8.1.2 and the functoriality of id ⊗− . The bottom diagram commutes

by definition of �
p
Γ′ and the functoriality of p and id ⊗ −. Hence, the outer

square commutes as well.

Now consider the diagram:

[[(Φ, y : B) ∪ Γ′; ∅]] [[B]]

[[Φ, y : B; ∅]] ⊗ [[Γ′; ∅]] [[Φ, y : B; ∅]]

[[Φ, y : B; ∅]] ⊗ [[Γ′]] [[Φ, y : B; ∅]] ⊗ [[I]],

[[Φ, y : B; ∅]] ⊗ p([[Γ′]]p) [[Φ, y : B; ∅]] ⊗ p([[I]]p),

[[(Φ,y:B)∪Γ′;∅⊢y:B]]

·△(Φ,y:B)∪Γ′;∅

id⊗ρΓ′

[[Φ,y:B;∅⊢y:B]]

id⊗ �Γ′

id⊗τΓ′

ρΦ,y:B;∅

id⊗p(�
p

Γ′)

id⊗τI

(8.21)

The top diagram commutes by the Semantic Weakening Lemma 8.5.1, while

the one at the bottom does by definition of �Γ′ and the functoriality of id⊗−.

149

Hence, the outer square commutes as well.

Since the bottom paths of (8.20) and (8.21) are equal, it follows that the top

morphisms of those diagrams are equal as well. Hence,

[[(Φ, y : B) ∪ Γ′; ∅ ⊢ let x = V in y : B]] = [[(Φ, y : B) ∪ Γ′; ∅ ⊢ y : B]],

as required.

• The cases where the last rule of D is any of (label), (const), (∗), or (circ) are

similar. We present the (label) case:

If the last (and only) rule of D is (label) with N = ℓ, then D is

Φ; ℓ : α ⊢ ℓ : α
(label)

where Γ, x : A = Φ, a parameter context, Q = ℓ : α, and B = α, a wire

type. Thus, V is a value of parameter type, and so the syntactic Parameter

Value Lemma 6.1.4 implies that Γ′ is a parameter context and Q′ = ∅. Since

N [V/x] = ℓ[V/x] = ℓ, we want to show that

[[Γ ∪ Γ′; ℓ : α ⊢ let x = V in ℓ : α]] = [[Γ ∪ Γ′; ℓ : α ⊢ ℓ : α]].

Consider the following diagram:

[[Γ ∪ Γ′; ℓ : α]] [[α]]

[[Γ; ℓ : α]] ⊗ [[Γ′; ∅]] [[Γ; ℓ : α]] ⊗ [[A]] [[Γ, x : A; ℓ : α]] [[Γ; ℓ : α]]

[[Γ; ℓ : α]] ⊗ [[Γ′]] [[Γ; ℓ : α]] ⊗ p([[A]]p) [[Γ; ℓ : α]] ⊗ [[I]]

[[Γ; ℓ : α]] ⊗ p([[Γ′]]p) [[Γ; ℓ : α]] ⊗ p([[I]]p)

[[Γ∪Γ′;ℓ:α⊢let x=V inℓ:α]]

·△Γ∪Γ′;ℓ:α

id⊗ρΓ′

id⊗[[V]] ∼=

id⊗ �A
id⊗τA

[[Γ,x:A;ℓ:α⊢ℓ:α]] [[Γ;ℓ:α⊢ℓ:α]]

id⊗τΓ′
id⊗p(�

p
A)

ρΓ;ℓ:α

id⊗p([[V]]p)

id⊗p(�
p

Γ′)

id⊗τI

(8.22)

The top region commutes by definition of [[Γ ∪ Γ′; ℓ : α ⊢ let x = V in ℓ : α]],

while the one to its right does by the Special Semantic Weakening Lemma 8.3.2.

150

The diagram below the latter commutes by definition �A and the functoriality

of id ⊗ −, while the leftmost diagram does by the Semantic Parameter Value

Lemma 8.1.2 and the functoriality of id ⊗− . The bottom diagram commutes

by definition of �
p
Γ′ and the functoriality of p and id ⊗ −. Hence, the outer

square commutes as well.

Now consider the diagram:

[[Γ ∪ Γ′; ℓ : α]] [[α]]

[[Γ; ℓ : α]] ⊗ [[Γ′; ∅]] [[Γ; ℓ : α]]

[[Γ; ℓ : α]] ⊗ [[Γ′]] [[Γ; ℓ : α]] ⊗ [[I]],

[[Γ; ℓ : α]] ⊗ p([[Γ′]]p) [[Γ; ℓ : α]] ⊗ p([[I]]p),

[[Γ∪Γ′;ℓ:α⊢ℓ:α]]

·△Γ∪Γ′;ℓ:α

id⊗ρΓ′

[[Γ;ℓ:α⊢ℓ:α]]

id⊗ �Γ′

id⊗τΓ′

ρΓ;ℓ:α

id⊗p(�
p

Γ′)

id⊗τI

(8.23)

The top diagram commutes by the Semantic Weakening Lemma 8.5.1, while

the one at the bottom does by definition of �Γ′ and the functoriality of id⊗−.

Hence, the outer square commutes as well.

Since the bottom paths of (8.22) and (8.23) are equal, it follows that the top

morphisms of those diagrams are equal as well. Hence,

[[Γ ∪ Γ′; ℓ : α ⊢ let x = V in ℓ : α]] = [[Γ ∪ Γ′; ℓ : α ⊢ ℓ : α]],

as required.

• The cases where the last rule of D is any of (initial), (left), (right), (force), or

(box) are similar. We present the (left) case:

If the last rule of D is (left) with N = leftC,DM , then D is

...
Γ, x : A;Q ⊢M : C

Γ, x : A;Q ⊢ leftC,DM : C +D
(left)

151

where B = C+D. Since N [V/x] = (leftC,DM)[V/x] = leftC,DM [V/x], we want

to show that the morphisms

[[Γ ∪ Γ′;Q,Q′ ⊢ leftC,DM [V/x] : C +D]]

and

[[Γ ∪ Γ′;Q,Q′ ⊢ let x = V in leftC,DM : C +D]]

are equal.

Consider the following diagram:

[[Γ ∪ Γ′;Q,Q′]] [[C +D]]

[[Γ ∪ Γ′;Q,Q′]] [[C]]

[[Γ;Q]] ⊗ [[Γ′;Q′]] [[Γ;Q]] ⊗ [[A]] [[Γ, x : A;Q]].

[[Γ∪Γ′;Q,Q′⊢leftC,D M [V/x]:C+D]]

[[M [V/x]]]

id

[[let x=V inM]]

·△Γ∪Γ′;Q,Q′

leftC,D

id⊗[[V]] ∼=

[[M]]

[[Γ,x:A;Q⊢leftC,D M]]

(8.24)

The top left diagram commutes by the induction hypothesis, while the top dia-

gram does by definition of [[Γ ∪ Γ′;Q,Q′ ⊢ leftC,DM [V/x] : C +D]]. The right-

most diagram commutes by definition of [[Γ, x : A;Q ⊢ leftC,DM : C+D]], while

the one at the bottom does by definition of [[Γ∪Γ′;Q,Q′ ⊢ let x = V in M : C]].

Hence, the outer square commutes as well. By definition, the bottom path of

(8.24) is equal to [[Γ ∪ Γ′;Q,Q′ ⊢ let x = V in leftC,DM : C +D]], and so

[[Γ ∪ Γ′;Q,Q′ ⊢ leftC,DM [V/x] : C +D]]

and

[[Γ ∪ Γ′;Q,Q′ ⊢ let x = V in leftC,DM : C +D]]

are equal, as required.

• The remaining cases are similar.

Chapter 9

Soundness

In this chapter, we prove the last main result of this thesis, namely, the Soundness

Theorem for Proto-Quipper-M. As we saw before, the safety properties of the language

relate its operational semantics to its typing system. Here, we will see how the

soundness theorem extends this relationship to include the categorical semantics.

Indeed, we can think of the soundness theorem as a correctness criterion for the

operational semantics with respect to the categorical semantics in the sense that, if a

well-typed configuration evaluates to a value configuration, then their meanings must

be the same.

9.1 Categorical Semantics of Configurations

Since the operational semantics of Proto-Quipper-M is defined on configurations,

while the categorical semantics is defined on well-typed terms, we first extend the

categorical semantics of Proto-Quipper-M from well-typed terms to well-typed confi-

gurations:

Definition 9.1.1. Let Q ⊢ (C,M) : A;Q′ be a well-typed configuration. We define

its semantics to be a morphism [[(C,M)]] : [[Q]] → [[A]] ⊗ [[Q′]] of the category L as

follows. Since (C,M) is well-typed, there exists a unique label context Q′′ such that

C : Q→ Q′′, Q′ is a morphism in ML and ∅;Q′′ ⊢M : A is a valid typing judgement,

and so we can define

[[(C,M)]] = [[Q]]
[[C]]−−→ [[Q′′, Q′]]

∼=−→ [[∅;Q′′]] ⊗ [[Q′]]
[[M]]⊗id−−−−→ [[A]] ⊗ [[Q′]],

where the morphism [[C]] : [[Q]] → [[Q′′, Q′]] is the semantics of C : Q → Q′′, Q′ in L

as defined in (7.13). Using string diagram notation,

C

M

[[(C,M)]] =
Q

Q′′

Q′

A

.

152

153

9.2 The Soundness Theorem for Proto-Quipper-M

As is usual in soundness proofs, we verify for each rule of the operational semantics

that an appropriate diagram commutes in the category of denotations. However, as

the proof progresses, we emphasize the use of string diagrams, as opposed to commuta-

tive diagrams, not only to illustrate the circuit description nature of Proto-Quipper-M

but also to make the arguments more transparent. The proof of the soundness the-

orem for Proto-Quipper-M is indeed lengthy due to the numerous rules involved.

However, these rules naturally cluster in four main groups according to their struc-

ture: axiom rules, purely inductive rules, substitution rules, and circuit rules. The

proofs for the cases within a group are similar. However, for the sake of completeness,

we treat each case in turn.

Theorem 9.2.1 (Soundness). If Q ⊢ (C,M) : A;Q′ is a well-typed configuration and

(C,M) ⇓ (C ′, V), then [[(C,M)]] = [[(C ′, V)]] : [[Q]] → [[A]] ⊗ [[Q′]].

Proof. We proceed by rule induction on the evaluation relation ⇓. See Table 5.3.

Axiom rules: The result is immediate for the axiom cases, namely: (label)⇓, (const)⇓,

(∗)⇓, (abs)⇓, (lift)⇓, and (circ)⇓, because in these cases, (C,M) = (C ′, V).

Purely inductive rules: These rules are all treated in a similar fashion and in-

clude (left)⇓, (right)⇓, (seq)⇓, (pair)⇓, and (force)⇓. In these cases, the result

follows by applications of the induction hypothesis and the Subject Reduction

Theorem 6.4.2. We treat each case in turn:

• (left)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V)

(C, leftA,BM) ⇓ (C ′, leftA,B V)
.

Assume that Q ⊢ (C, leftA,BM) : A+B;Q′ is valid. We want to show that

[[(C, leftA,BM)]] = [[(C ′, leftA,B V)]] : [[Q]] → [[A+B]] ⊗ [[Q′]].

By assumption, there is a label context Q′′ such that C : Q→ Q′′, Q′ and

∅;Q′′ ⊢ leftA,BM : A+B; is valid. By the typing rule (left), ∅;Q′′ ⊢M : A

is valid. It follows that Q ⊢ (C,M) : A;Q′ is valid as well.

154

By the Subject Reduction Theorem 6.4.2, (C,M) ⇓ (C ′, V) yields that

Q ⊢ (C ′, V) : A;Q′ is valid. Thus, there exists a label context Q′′′ such

that C ′ : Q→ Q′′′, Q′ and ∅;Q′′′ ⊢ V : A is valid. Since Q ⊢ (C,M) : A;Q′

is valid and (C,M) ⇓ (C ′, V), the induction hypothesis implies that the

equation [[(C,M)]] = [[(C ′, V)]] : [[Q]] → [[A]] ⊗ [[Q′]] holds, and so the

following diagram commutes:

[[Q′′, Q′]] [[∅;Q′′]] ⊗ [[Q′]]

[[Q]] [[A]] ⊗ [[Q′]]

[[Q′′′, Q′]] [[∅;Q′′′]] ⊗ [[Q′]]

∼=

[[M]]⊗idC

C′

∼=

[[V]]⊗id
(9.1)

Since ∅;Q′′ ⊢ M : A is valid, the definition of [[leftA,BM]] : [[∅;Q′′]] → [[A]]

implies that the following diagram commutes:

[[∅;Q′′]] ⊗ [[Q′]]

[[A]] ⊗ [[Q′]] [[A+B]] ⊗ [[Q′]]

[[M]]⊗id
[[leftA,B M]]⊗id

leftA,B ⊗id

(9.2)

Similarly, since ∅;Q′′′ ⊢ V : A is valid, the following diagram commutes by

the definition of [[leftA,B V]] : [[∅;Q′′′]] → [[A]]:

[[A]] ⊗ [[Q′]] [[A+B]] ⊗ [[Q′]]

[[∅;Q′′′]] ⊗ [[Q′]]

leftA,B ⊗id

[[V]]⊗id
[[leftA,B V]]⊗id (9.3)

155

Consider

[[Q′′, Q′]] [[∅;Q′′]] ⊗ [[Q′]]

[[Q]] [[A]] ⊗ [[Q′]] [[A+B]] ⊗ [[Q′]].

[[Q′′′, Q′]] [[∅;Q′′′]] ⊗ [[Q′]]

∼=

[[leftA,B M]]⊗id
[[M]]⊗idC

C′

leftA,B ⊗id

∼=

[[V]]⊗id
[[leftA,B V]]⊗id

The square commutes by (9.1), while the top and bottom triangles com-

mute by (9.2) and (9.3), respectively. Hence the top and bottom paths are

equal, and so

[[(C, leftA,BM)]] = [[(C ′, leftA,B V)]] : [[Q]] → [[A+B]] ⊗ [[Q′]],

as required.

• (right)⇓: This case is similar to the previous one.

• (seq)⇓: The evaluation rule is

(C,M) ⇓ (C ′, ∗) (C ′, N) ⇓ (C ′′,W)

(C,M ;N) ⇓ (C ′′,W)
.

Assume that Q ⊢ (C,M ;N) : A;Q′ is valid. We want to show that

[[(C,M ;N)]] = [[(C ′′,W)]] : [[Q]] → [[A]] ⊗ [[Q′]].

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ M ;N : A is valid. By the typing rule (seq), there are label

contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢ M : I and

∅;Q′′2 ⊢ N : A are valid.

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : I is valid, it follows that

Q ⊢ (C,M) : I;Q′′2, Q
′ is valid as well. By the Subject Reduction Theo-

rem 6.4.2, the evaluation (C,M) ⇓ (C ′, ∗) yields that Q ⊢ (C ′, ∗) : I;Q′′2, Q
′

is valid. Thus, there exists a label contextQ′′′ such that C ′ : Q→ Q′′′, Q′′2, Q
′

156

and ∅;Q′′′ ⊢ ∗ : I is valid. By the typing rule (∗), Q′′′ = ∅, and so,

C ′ : Q→ Q′′2, Q
′ and ∅; ∅ ⊢ ∗ : I.

Since Q ⊢ (C,M) : I;Q′′2, Q
′ is valid and (C,M) ⇓ (C ′, ∗), the induction

hypothesis implies that [[(C,M)]] = [[(C ′, ∗)]] : [[Q]] → [[I]] ⊗ [[Q′′2, Q
′]], and

so the following diagram commutes:

[[Q′′1, Q
′′
2, Q

′]] [[∅;Q′′1]] ⊗ [[Q′′2, Q
′]]

[[Q]] [[I]] ⊗ [[Q′′2, Q
′]]

[[Q′′2, Q
′]] [[∅; ∅]] ⊗ [[Q′′2, Q

′]]

∼=

[[M]]⊗idC

C′

∼=

[[∗]]⊗id
(9.4)

Since C ′ : Q→ Q′′2, Q
′ and ∅;Q′′2 ⊢ N : A, we have that Q ⊢ (C ′, N) : A;Q′

is valid. By the Subject Reduction Theorem 6.4.2, (C ′, N) ⇓ (C ′′,W)

implies that Q ⊢ (C ′′,W) : A;Q′ is valid as well. Thus, there exists a

label context Q such that C ′′ : Q → Q,Q′ and ∅;Q ⊢ W : A. Since

Q ⊢ (C ′, N) : A;Q′ is valid and (C ′, N) ⇓ (C ′′,W), the induction hypot-

hesis implies that [[(C ′, N)]] = [[(C ′′,W)]] : [[Q]] → [[A]] ⊗ [[Q′]], and so the

following diagram commutes:

[[Q′′2, Q
′]] [[∅;Q′′2]] ⊗ [[Q′]]

[[Q]] [[A]] ⊗ [[Q′]]

[[Q,Q′]] [[∅;Q]] ⊗ [[Q′]]

∼=

[[N]]⊗idC′

C′′

∼=

[[W]]⊗id
(9.5)

The definition of [[M ;N]] : [[∅;Q′′]] → [[A]] and the coherence of the mo-

noidal structure guarantee the commutativity of the following diagram as

157

well:

[[∅;Q′′]] ⊗ [[Q′]] [[∅, Q′′1]] ⊗ [[∅, Q′′2]] ⊗ [[Q′]] [[I]] ⊗ [[A]] ⊗ [[Q′]]

[[I]] ⊗ [[∅, Q′′2]] ⊗ [[Q′]] [[∅, Q′′2]] ⊗ [[Q′]] [[A]] ⊗ [[Q′]]

∼= [[M]]⊗[[N]]⊗id

[[M]]⊗id⊗id ∼=

∼= [[N]]⊗id

(9.6)

Now consider
[[Q′′, Q′]] [[∅;Q′′]] ⊗ [[Q′]]

[[∅;Q′′1]] ⊗ [[Q′′2, Q
′]] [[∅;Q′′1]] ⊗ [[∅;Q′′2]] ⊗ [[Q′]]

[[I]] ⊗ [[Q′′2, Q
′]] [[I]] ⊗ [[∅;Q′′2]] ⊗ [[Q′]]

[[Q]] [[Q′′2, Q
′]] [[∅; ∅]] ⊗ [[Q′′2, Q

′]] [[∅;Q′′2]] ⊗ [[Q′]] [[A]] ⊗ [[Q′]]

[[Q,Q′]] [[∅;Q]] ⊗ [[Q′]]

∼=

∼=

[[M ;N]]⊗id

∼=

∼=

[[M]]⊗id [[M]]⊗id⊗id
∼=

∼=

C

C′

C′′

∼=

[[∗]]⊗id
∼= [[N]]⊗id

∼=

[[W]]⊗id

The leftmost diagram commutes by (9.4), and the rightmost by (9.6). The

bottom diagram commutes by (9.5). The remaining regions commute by

coherence for symmetric monoidal categories. Hence, the outer square

commutes as well. This implies that

[[(C,M ;N)]] = [[(C ′′,W)]] : [[Q]] → [[A]] ⊗ [[Q′]],

as required.

• (pair)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V) (C ′, N) ⇓ (C ′′, V ′)

(C, ⟨M,N⟩) ⇓ (C ′′, ⟨V, V ′⟩)
.

Assume that Q ⊢ (C, ⟨M,N⟩) : A⊗B;Q′ is valid. We want to show that

[[(C, ⟨M,N⟩)]] = [[(C ′′, ⟨V, V ′⟩)]] : [[Q]] → [[A⊗B]] ⊗ [[Q′]].

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ ⟨M,N⟩ : A ⊗ B is valid. By the typing rule (pair), there are

label contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢M : A

and ∅;Q′′2 ⊢ N : B are valid.

158

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : A is valid, it follows that

Q ⊢ (C,M) : A;Q′′2, Q
′ is valid as well. By the Subject Reduction The-

orem 6.4.2, (C,M) ⇓ (C ′, V) yields that Q ⊢ (C ′, V) : A;Q′′2, Q
′ is valid.

Thus, there exists a label context Q′′′1 such that C ′ : Q → Q′′′1 , Q
′′
2, Q

′

and ∅;Q′′′1 ⊢ V : A is valid. Since Q ⊢ (C,M) : A;Q′′2, Q
′ is valid

and (C,M) ⇓ (C ′, V), the induction hypothesis implies that the equation

[[(C,M)]] = [[(C ′, V)]] : [[Q]] → [[A]] ⊗ [[Q′′2, Q
′]] holds. Diagrammatically,

C

M
Q

Q′′
1

Q′′
2 , Q

′

A

= C ′
V

Q

Q′′′
1

Q′′
2 , Q

′

A

(9.7)

Since ∅;Q′′2 ⊢ N : B is valid, it follows that Q ⊢ (C ′, N) : B;Q′′′1 , Q
′ is

valid as well. By the Subject Reduction Theorem 6.4.2, (C ′, N) ⇓ (C ′′, V ′)

implies that Q ⊢ (C ′′, V ′) : B;Q′′′1 , Q
′ is valid too. Thus, there exists a label

context Q′′′2 such that C ′′ : Q → Q′′′2 , Q
′′′
1 , Q

′ and ∅, Q′′′2 ⊢ V ′ : B is valid.

Since Q ⊢ (C ′, N) : B;Q′′′1 , Q
′ is valid and (C ′, N) ⇓ (C ′′, V ′), the induction

hypothesis implies that [[(C ′, N)]] = [[(C ′′, V ′)]] : [[Q]] → [[A]] ⊗ [[Q′′1, Q
′]]

holds. Diagrammatically,

C ′
N

Q

Q′′
2

Q′′′
1 , Q′

B

= C ′′
V ′

Q

Q′′′
2

Q′′
1 , Q

′

B

(9.8)

We can now prove that

[[(C, ⟨M,N⟩)]] = [[(C ′′, ⟨V, V ′⟩)]] : [[Q]] → [[A⊗B]] ⊗ [[Q′]],

159

as follows:

C

⟨M,N⟩
[[(C, ⟨M,N⟩)]] = by def.

Q

Q′′

Q′

A⊗B

C

M

N= by def.
Q

Q′′
1

Q′′
2

Q′

A

B

C ′
V

N= by (9.7)
Q

Q′′′
1

Q′′
2

Q′

A

B

C ′
V

N= by functor.
Q

Q′′′
1

Q′′
2

Q′
B

A

C ′′
V

V ′= by (9.8)
Q

Q′′′
1

Q′′′
2

Q′
B

A

C ′′

⟨V, V ′⟩
= by def.

Q

Q′′′

Q′

A⊗B

= [[(C, ⟨V, V ′⟩)]] by def.

• (force)⇓: The evaluation rule is

(C,M) ⇓ (C ′, lift M ′) (C ′,M ′) ⇓ (C ′′, V)

(C, force M) ⇓ (C ′′, V)
.

Assume that Q ⊢ (C, force M) : A;Q′ is valid. We want to show that

[[(C, force M)]] = [[(C ′′, V)]] : [[Q]] → [[A]] ⊗ [[Q′]].

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ force M : A is valid. By the typing rule (force), we have

that ∅;Q′′ ⊢ M : !A is valid, and so, Q ⊢ (C,M) : !A;Q′ is valid as well.

By the Subject Reduction Theorem 6.4.2, (C,M) ⇓ (C ′, lift M ′) yields

160

that Q ⊢ (C ′, lift M ′) : !A,Q′ is valid. Thus, there exists a label context

Q′′′ such that C ′ : Q → Q′′′, Q′ and ∅;Q′′′ ⊢ lift M ′ : !A is valid. Since

Q ⊢ (C,M) : !A;Q′ is valid and (C,M) ⇓ (C ′, lift M ′), the induction

hypothesis implies that [[(C,M)]] = [[(C ′, lift M ′)]] : [[Q]] → [[!A]] ⊗ [[Q′]].

Diagrammatically,

C

M
Q

Q′′

Q′

!A

= C ′
lift M ′

Q

Q′′′

Q′

!A

(9.9)

By the typing rule (lift), we have that Q′′′ = ∅ and ∅; ∅ ⊢ M ′ : A

is valid. Since ([[M ′]] ◦ ρ−1I ◦ τ−1I)◦ is the transpose of the morphism

[[M ′]] ◦ ρ−1I ◦ τ−1I : p([[I]]p) → [[A]] under the adjunction p ⊣ ♭, the fol-

lowing diagram commutes:

p([[I]]p)

[[I]]

[[I]] ⊗ [[I]]

![[A]] [[A]].

τ−1
I

p(([[M ′]]◦ρ−1
I τ−1

I)◦)
ρ−1

[[M ′]]

force

That is, force ◦p(([[M ′]] ◦ρ−1I ◦ τ−1I)◦) ◦ τI ◦ρI = [[M ′]], and so we have that

force ◦[[∅; ∅ ⊢ lift M ′ : A]] = [[∅; ∅ ⊢M ′ : A]]. Diagrammatically,

lift M ′ force
Q′′′ = ∅ !A A

= M ′
Q′′′ = ∅ A (9.10)

Since C ′ : Q → Q′′′, Q′ and ∅; ∅ ⊢ M ′ : A is valid, Q ⊢ (C ′,M ′) : A,Q′ is

valid as well. By the Subject Reduction Theorem 6.4.2, (C ′,M ′) ⇓ (C ′′, V)

yields that Q ⊢ (C ′′, V) : A,Q′ is valid. Thus, there exists a label con-

text Q such that C ′′ : Q → Q,Q′ and ∅;Q ⊢ V : A is valid. By

the induction hypothesis, (C ′,M ′) ⇓ (C ′′, V) implies that the equation

161

[[(C ′,M ′)]] = [[(C ′′, V)]] : [[Q]] → [[A]] ⊗ [[Q′]] holds. Diagrammatically,

C ′
M ′

Q

Q′′′

Q′

A

= C ′′
V

Q

Q

Q′

A

(9.11)

We can now prove that [[(C, force M)]] = [[(C ′′, V)]] : [[Q]] → [[A]] ⊗ [[Q′]] as

follows:

C

force M

[[(C, force M)]] = by def.
Q

Q′′

Q′

A

C

M force

= by def.
Q

Q′′

Q′

!A A

C ′

lift M ′ force

= by (9.9)
Q

Q′′′

Q′

!A A

C ′

M ′

= by (9.10)
Q

Q′′′

Q′

A

C ′′

V

= by (9.11)
Q

Q

Q′

A

= by def.[[(C ′′, V)]]

Substitution rules: These are rules with a configuration containing a term in which

a substitution has occurred, namely, (let)⇓, (let-pair)⇓, (case-left)⇓, (case-right)⇓,

and (app)⇓. In these cases, the result follows by applications of the induction

hypothesis, the Semantic Substitution Lemma 8.6.1, and the Subject Reduction

Theorem 6.4.2. We treat each case in turn:

• (let)⇓: The evaluation rule is

(C,M) ⇓ (C ′, V) (C ′, N [V/x]) ⇓ (C ′′,W)

(C, let x = M in N) ⇓ (C ′′,W)
.

162

Assume that Q ⊢ (C, let x = M in N) : B;Q′ is valid. We want to show

that

[[(C, let x = M in N)]] = [[(C ′′,W)]] : [[Q]] → [[B]] ⊗ [[Q′]].

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ let x = M in N : B is valid. By the typing rule (let), there are

label contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢M : A

and x : A;Q′′2 ⊢ N : B are valid.

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : A is valid, it follows that

Q ⊢ (C,M) : A;Q′′2, Q
′ is valid as well. By the Subject Reduction Theo-

rem 6.4.2, (C,M) ⇓ (C ′, V) yields that Q ⊢ (C ′, V) : A;Q′′2, Q
′ is also va-

lid. Thus, there exists a label context Q′′′ such that C ′ : Q → Q′′′, Q′′2, Q
′

and ∅;Q′′′ ⊢ V : A is valid. Since Q ⊢ (C,M) : A;Q′′2, Q
′ is valid and

(C,M) ⇓ (C ′, V), the induction hypothesis implies that the equation

[[(C,M)]] = [[(C ′, V)]] : [[Q]] → [[A]] ⊗ [[Q′′2, Q
′]] holds. Diagrammatically,

C

M
Q

Q′′
1

Q′′
2 , Q

′

A

= C ′
V

Q

Q′′′

Q′′
2 , Q

′

A

(9.12)

Now x : A;Q′′2 ⊢ N : B is valid, and so ∅;Q′′′, Q2 ⊢ N [V/x] : B is

also valid by the syntactic Substitution Lemma 6.3.1. This together with

C ′ : Q→ Q′′′, Q′′2, Q
′ implies that Q ⊢ (C ′, N [V/x]) : B;Q′ is valid. By the

Subject Reduction Theorem 6.4.2, (C ′, N [V/x]) ⇓ (C ′′,W) implies that

Q ⊢ (C ′′,W) : B;Q′ is valid as well. Thus, there exists a label con-

text Q such that C ′′ : Q → Q,Q′ and ∅;Q ⊢ W : B is valid. Since

Q ⊢ (C ′, N [V/x]) : B;Q′ is valid and (C ′, N [V/x]) ⇓ (C ′′,W), the in-

duction hypothesis implies that

[[((C ′, N [V/x])]] = [[(C ′′,W)]] : [[Q]] → [[B]] ⊗ [[Q′]].

Diagrammatically,

C ′

N [V/x]
Q

Q′′′, Q′′
2

Q′

B

= C ′′
W

Q

Q

Q′

B

(9.13)

163

Since both x : A;Q′′2 ⊢ N : B and ∅;Q′′′ ⊢ V : A are valid typing judge-

ments and C ′ : Q → Q′′′, Q′′2, Q
′, the Semantic Substitution Lemma 8.6.1

implies that [[((C ′, N [V/x])]] = [[(C ′, let x = V in N)]] : [[Q]] → [[B]]⊗ [[Q′]].

Diagrammatically,

C ′

N [V/x]
Q

Q′′′, Q′′
2

Q′

B

= C ′
V

NQ

Q′′′

Q′′
2

Q′

A B

(9.14)

We can now show that

[[(C, let x = M in N)]] = [[(C ′′,W)]] : [[Q]] → [[B]] ⊗ [[Q′]]

as follows:

C

let x = M in N

[[(C, let x = M in N)]] = by def.
Q

Q′′

Q′

B

C

M
N

= by def.
Q

Q′′
1

Q′′
2

Q′

A B

C ′
V

N
= by (9.12)

Q

Q′′′

Q′′
2

Q′

A B

C ′

N [V/x]

= by (9.14)
Q

Q′′′, Q′′
2

Q′

B

C ′′
W

= by (9.13)
Q

Q

Q′

B

= [[(C ′′,W)]] by def.

• (let-pair)⇓: This case is similar to the (let)⇓ case.

164

• (case-left)⇓: The evaluation rule is

(C,M) ⇓ (C ′, leftV) (C ′, N [V/x]) ⇓ (C ′′,W)

(C, case M of {leftx→ N | right y → P}) ⇓ (C ′′,W)
.

Assume that Q ⊢ (C, case M of {leftx → N | right y → P}) : D;Q′ is

valid. We want to show that

[[(C, case M of {leftx→ N | right y → P})]] = [[(C ′′,W)]] : [[Q]] → [[D]] ⊗ [[Q′]].

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ case M of {leftx → N | right y → P} : D is valid. By the ty-

ping rule (case), there are label contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2,

and ∅;Q′′1 ⊢M : A+B as well as x : A;Q′′2 ⊢ N : D and y : B;Q′′2 ⊢ P : D

are valid.

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : A + B is valid, it follows

that Q ⊢ (C,M) : A + B;Q′′2, Q
′ is valid as well. By the Subject Re-

duction Theorem 6.4.2, (C,M) ⇓ (C ′, leftA,B V) implies that the judge-

ment Q ⊢ (C ′, leftA,B V) : A+B;Q′′2, Q
′ is valid. Thus, there exists a label

context Q′′′ such that C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′′ ⊢ leftA,B V : A + B

is valid. By the induction hypothesis, (C,M) ⇓ (C ′, leftA,B V) implies that

[[(C,M)]] = [[(C ′, leftA,B V)]] : [[Q]] → [[A + B]] ⊗ [[Q′′2, Q
′]]. Diagrammati-

cally,

C

M
Q

Q′′
1

Q′′
2 , Q

′

A+B

= C ′

leftA,B V
Q

Q′′′

Q′′
2 , Q

′

A+B

(9.15)

By definition of [[∅;Q′′′ ⊢ leftA,B V : A + B]], the following diagram com-

mutes:

[[∅;Q′′′]] ⊗ [[Q′′2]] ([[A]] + [[B]]) ⊗ [[Q′′2]]

[[A]] ⊗ [[Q′′2]]

[[leftA,B V]]⊗id

[[V]]⊗id
left⊗id

165

Similarly, by definition of [[[N]], [[P]]], the following diagram commutes:

([[A]] ⊗ [[Q′′2]]) + ([[B]] ⊗ [[Q′′2]]) [[D]]

[[A]] ⊗ [[Q′′2]]

[[[N]], [[P]]]

left
[[N]]

Moreover, since L is a distributive category, the following diagram com-

mutes as well:

([[A]] + [[B]]) ⊗ [[Q′′2]] ([[A]] ⊗ [[Q′′2]]) + ([[B]] ⊗ [[Q′′2]])

[[A]] ⊗ [[Q′′2]] [[A]] ⊗ [[Q′′2]]

∼=

left⊗id

id

left

The previous three diagrams imply that

[[∅;Q′′′]] ⊗ [[Q′′2]] ([[A]] + [[B]]) ⊗ [[Q′′2]] ([[A]] ⊗ [[Q′′2]]) + ([[B]] ⊗ [[Q′′2]]) [[D]]

[[A]] ⊗ [[Q′′2]] [[A]] ⊗ [[Q′′2]]

[[leftA,B V]]⊗id

[[V]]⊗id

∼= [[[N]], [[P]]]

left⊗id

id

left
[[N]]

commutes, and so the resulting morphisms from the top and the bottom

paths are equal. Diagrammatically,

leftA,B V
∼=

[[[N]], [[P]]]Q′′′

Q′′
2

A+B (x : A,Q′′
2) + (y : B,Q′′

2) D
= V

N

Q′′′

Q′′
2

A D

(9.16)

Since ∅;Q′′′ ⊢ leftA,B V : A + B is valid, the (left) rule implies that

∅;Q′′′ ⊢ V : A is also valid. Since x : A;Q′′2 ⊢ N : D is valid, we have that

∅;Q′′′, Q2 ⊢ N [V/x] : D is valid by the syntactic Substitution Lemma 6.3.1.

By the Subject Reduction Theorem 6.4.2, (C ′, N [V/x]) ⇓ (C ′′,W) implies

that Q ⊢ (C ′′,W) : D;Q′ is valid. Thus, there exists a label context Q

such that C ′′ : Q → Q,Q′ and ∅;Q ⊢ W : D is valid. By the induction

hypothesis, (C ′, N [V/x]) ⇓ (C ′′,W) implies that

[[((C ′, N [V/x])]] = [[(C ′′,W)]] : [[Q]] → [[D]] ⊗ [[Q′]].

166

Diagrammatically,

C ′

N [V/x]
Q

Q′′′, Q′′
2

Q′

D

= C ′′
W

Q

Q

Q′

D

(9.17)

Similarly, since ∅;Q′′′ ⊢ V : A and x : A;Q′′2 ⊢ N : D are valid and

C ′ : Q→ Q′′′, Q′′2, Q
′, the Semantic Substitution Lemma 8.6.1 implies that

[[((C ′, N [V/x])]] = [[(C ′, let x = V in N)]] : [[Q]] → [[D]] ⊗ [[Q′]].

Diagrammatically,

C ′

N [V/x]
Q

Q′′′, Q′′
2

Q′

D

= C ′
V

NQ

Q′′′

Q′′
2

Q′

A D

(9.18)

We now have all the ingredients to prove that

[[(C, case M of {leftx→ N | right y → P})]] = [[(C ′′,W)]] : [[Q]] → [[D]] ⊗ [[Q′]],

as shown below:

[[(C, case M of {leftx→ N | right y → P})]] =

167

C

case M of {leftx → N | right y → P}
= by def.

Q

Q′′

Q′

D

C

M [[[N]], [[P]]]
∼=

= by def.
Q

Q′′
1

Q′′
2

Q′

A+B (x : A,Q′′
2) + (y : B,Q′′

2) D

C ′

leftA,B V [[[N]], [[P]]]
∼=

= by (9.15)
Q

Q′′′

Q′′
2

Q′

A+B (x : A,Q′′
2) + (y : B,Q′′

2) D

C ′
V

N
= by (9.16)

Q

Q′′′

Q′′
2

Q′

A D

C ′

N [V/x]

= by (9.18)
Q

Q′′′, Q′′
2

Q′

D

C ′′
W

= by (9.17)
Q

Q

Q′

D

= by def.[[(C ′′,W)]]

• (case-right)⇓: This case is similar to the (case-left)⇓ case.

• (app)⇓: The evaluation rule is

(C,M) ⇓ (C ′, λxA.M ′) (C ′, N) ⇓ (C ′′, V) (C ′′,M ′[V/x]) ⇓ (C ′′′,W)

(C,MN) ⇓ (C ′′′,W)
.

Assume that Q ⊢ (C,MN) : B;Q′ is valid. We want to show that

[[(C,MN)]] = [[(C ′′′,W)]] : [[Q]] → [[B]] ⊗ [[Q′]].

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ MN : B is valid. By the typing rule (app), there are label

contexts Q′′1 and Q′′2 such that Q′′ = Q′′1, Q
′′
2, and both ∅;Q′′1 ⊢M : A(B

and ∅;Q′′2 ⊢ N : A are valid.

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : A (B is valid, it follows

that Q ⊢ (C,M) : A (B;Q′′2, Q
′ is valid as well. By the Subject Re-

duction Theorem 6.4.2, (C,M) ⇓ (C ′, λxA.M ′) implies that the judgement

168

Q ⊢ (C ′, λxA.M ′) : A(B;Q′′2, Q
′ is also valid. Thus, there exists a label

context Q′′′ such that C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′′ ⊢ λxA.M ′ : A(B

is valid. By the induction hypothesis, (C,M) ⇓ (C ′, λxA.M ′) implies that

[[(C,M)]] = [[(C ′, λxA.M ′)]] : [[Q]] → [[A(B]]⊗[[Q′′2, Q
′]]. Diagrammatically,

C

M
Q

Q′′
1

Q′′
2 , Q

′

A(B

= C ′
λxA.M ′

Q

Q′′′

Q′′
2 , Q

′

A(B

(9.19)

Since C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′2 ⊢ N : A is valid, we have that

Q ⊢ (C ′, N) : A;Q′′′, Q′ is also valid. By the Subject Reduction Theo-

rem 6.4.2, (C ′, N) ⇓ (C ′′, V) implies that Q ⊢ (C ′′, V) : A;Q′′′, Q′ is valid

too. Thus, there exists a label context Q such that C ′′ : Q → Q,Q′′′, Q′

and ∅;Q ⊢ V : A is valid. By the induction hypothesis, (C ′, N) ⇓ (C ′′, V)

implies that [[(C ′, N)]] = [[(C ′′, V)]] : [[Q]] → [[A]]⊗ [[Q′′′, Q′]]. Diagrammati-

cally,

C ′
N

Q

Q′′
2

Q′′′, Q′

A

= C ′′
V

Q

Q

Q′′′, Q′

A

(9.20)

Now, since ∅;Q′′′ ⊢ λxA.M ′ : A(B is valid, the typing rule (abs) im-

plies that judgement x : A;Q′′′ ⊢ M ′ : B is also valid. By definition,

[[∅;Q′′′ ⊢ λxA.M ′ : A(B]] is the transpose of

[[x : A;Q′′′ ⊢M ′ : B]]◦ ∼=: [[∅;Q′′′]] ⊗ [[A]] → [[x : A;Q′′′]] → [[B]]

under the adjunction −⊗A ⊣ A(−, and so makes the following diagram

commute:

[[∅;Q′′′]] ⊗ [[A]]

[[x : A;Q′′′]]

[[A(B]] ⊗ [[A]] [[B]].

∼=
[[λA.M ′]]⊗A

[[M ′]]

εB

169

Diagrammatically,

λxA.M ′ εB

Q′′′

A

A(B B
=

M ′
Q′′′

A

B

(9.21)

Also, since both typing judgements x : A;Q′′′ ⊢ M ′ : B and ∅;Q ⊢ V : A

are valid and C ′′ : Q→ Q,Q′′′, Q′, the Semantic Substitution Lemma 8.6.1

implies that

[[(C ′′,M ′[V/x])]] = [[(C ′′, let x = V in M)]] : [[Q]] → [[B]] ⊗ [[Q′′′, Q′]].

Diagrammatically,

C ′′

M ′[V/x]
Q

Q,Q′′′

Q′

B

= C ′′
V

M ′Q

Q

Q′′′

Q′

A B

(9.22)

Similarly, ∅;Q,Q′′′ ⊢M ′[V/x] : B is valid by the Substitution Lemma 6.3.1,

and since C ′′ : Q → Q,Q′′′, Q′, we have that Q ⊢ (C ′′,M ′[V/x]) : B;Q′ is

valid as well. By the Subject Reduction Theorem 6.4.2, we have that

(C ′′,M ′[V/x]) ⇓ (C ′′′,W) implies that Q ⊢ (C ′′′,W) : A;Q′ is valid

too. Thus, there exists a label context Q such that C ′′ : Q → Q,Q′

and ∅;Q ⊢ W : B is valid. Moreover, by the induction hypothesis,

(C ′′,M ′[V/x]) ⇓ (C ′′′,W) implies that

[[(C ′′,M ′[V/x])]] = [[(C ′′′,W)]] : [[Q]] → [[B]] ⊗ [[Q′]].

Diagrammatically,

C ′′

M ′[V/x]
Q

Q,Q′′′

Q′

B

= C ′′′
W

Q

Q

Q′

B

(9.23)

We can now prove that

[[(C,MN)]] = [[(C ′′′,W)]] : [[Q]] → [[B]] ⊗ [[Q′]]

170

as follows:

C

MN

[[(C,MN)]] = by def.
Q

Q′′

Q′

B

C

M

N
εB

= by def.
Q

Q′′
1

Q′′
2

Q′

A(B B

A

C ′
λxA.M ′

N
εB

= by (9.19)
Q

Q′′′

Q′′
2

Q′

A(B B

A

C ′
λxA.M ′

N
εB

= by funct.
Q

Q′′′

Q′′
2

Q′

A(B B

A

C ′′
λxA.M ′

V
εB

= by (9.20)
Q

Q′′′

Q

Q′

A(B B

A

C ′′ V
M ′

= by (9.21)
Q Q

Q′′′

Q′
A

B

C ′′

M ′[V/x]

= by (9.22)
Q

Q,Q′′′

Q′

B

C ′′′
W

= by (9.23)
Q

Q

Q′

B

= [[(C ′′′,W)]] by def.

Circuit rules: These are the rules (box)⇓ and (apply)⇓, and they are the most inte-

resting rules of Proto-Quipper-M as these are the ones that generate circuits.

In these cases, the result follows by applications of the induction hypothesis,

the Subject Reduction Theorem 6.4.2, and the adjunctions −⊗T ⊣ T(− and

171

p ⊣ ♭. We treat each in turn:

• (box)⇓ : The evaluation rule is

(C,M) ⇓ (C ′, lift N) freshlabels(T) = (Q, ℓ⃗) (idQ, Nℓ⃗) ⇓ (D, ℓ′⃗)

(C, boxT M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗))
.

Assume that Q ⊢ (C, boxT M) : A;Q′ is valid. We want to show that

[[(C, boxT M)]] = [[(C ′, (ℓ⃗, D, ℓ′⃗))]] : [[Q]] → [[A]] ⊗ [[Q′]].

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ boxT M : A is valid. By the typing rule (box), A = Circ(T, U)

for some simple M-type U , and ∅;Q′′ ⊢M : !(T (U) is valid.

Since C : Q → Q′′, Q′, we have that Q ⊢ (C,M) : !(T (U);Q′ is valid as

well. By the Subject Reduction Theorem 6.4.2, (C,M) ⇓ (C ′, lift N) im-

plies that Q ⊢ (C ′, lift N) : !(T (U);Q′ is also valid. Thus, there exists a

label context Q′′′ such that C ′ : Q→ Q′′′, Q′ and ∅;Q′′′ ⊢ lift N : !(T(U)

is valid. Since the judgement Q ⊢ (C,M) : !(T (U);Q′ is valid and

(C,M) ⇓ (C ′, lift N), the induction hypothesis implies that the equation

[[(C,M)]] = [[(C ′, lift N)]] : [[Q]] → [[!(T (U)]] ⊗ [[Q′]] holds. Diagramma-

tically,

C

M
Q

Q′′

Q′

!(T (U)

= C ′
lift N

Q

Q′′′

Q′

!(T (U)

(9.24)

By the typing rule (lift), Q′′′ = ∅ and ∅; ∅ ⊢ N : T (U is valid. But

C ′ : Q → ∅, Q′, and so Q ⊢ (C ′, N) : T (U ;Q′ is valid too. Since

freshlabels(T) = (Q, ℓ⃗), we have thatQ ⊢L ℓ⃗ : T is valid, and by Lemma 6.2.3,

∅;Q ⊢ ℓ⃗ : T is valid as well. Since ∅; ∅ ⊢ N : T (U , the (app) rule implies

that ∅;Q ⊢ Nℓ⃗ : U is valid too.

Since idQ : Q → Q, ∅, the judgement Q ⊢ (idQ, Nℓ⃗) : U ; ∅ is also valid.

By the Subject Reduction Theorem 6.4.2, (idQ, Nℓ⃗) ⇓ (D, ℓ′⃗) implies that

Q ⊢ (D, ℓ′⃗) : U ; ∅ is valid too. Thus, there exists a label context Q
′

such

172

that D : Q → Q
′
, ∅ and ∅;Q

′ ⊢ ℓ′⃗ : U is valid. Since Q ⊢ (idQ, Nℓ⃗) : U ; ∅
is valid and (idQ, Nℓ⃗) ⇓ (D, ℓ′⃗), the induction hypothesis implies that the

equation [[(idQ, Nℓ⃗)]] = [[(D, ℓ′⃗)]] : [[Q]] → [[U]] ⊗ [[∅]] holds. Diagrammati-

cally,

idQ Nℓ⃗
Q Q U

= D ℓ′⃗
Q Q

′
U

.

But this along with definitions (7.12), (7.13), and (7.14) imply that

λT ℓ⃗
−1

Nℓ⃗
I ⊗ T T Q U

= λT [ℓ⃗, D, ℓ′⃗]
I ⊗ T T U

.

To simply notation, let N = [[∅; ∅ ⊢ N : T (U]] ◦ λ−1I , D = [ℓ⃗, D, ℓ′⃗] ◦ λT ,

and Nℓ⃗ = [[∅;Q ⊢ Nℓ⃗ : U]] ◦ [[∅;Q ⊢ ℓ⃗ : T]]−1 ◦ λT . Thus,

Nℓ⃗ = D. (9.25)

Since − ⊗ T ⊣ T (−, the transpose N∗ of N : [[I]] → [[T]] ([[U]] makes

the following diagram commute:

[[I]] ⊗ [[T]]

([[T]] ([[U]]) ⊗ [[T]] [[U]].

N∗
N⊗T

εU

(9.26)

By definition of [[∅;Q ⊢ Nℓ⃗ : U]], the following diagram commutes as well:

[[∅;Q]] [[U]]

[[∅; ∅]] ⊗ [[∅;Q]] [[∅; ∅]] ⊗ [[T]] [[T (U]] ⊗ [[T]]

[[∅;Q⊢Nℓ⃗:U]]

·△

id⊗[[ℓ⃗]] [[N]]⊗id

εU
(9.27)

and since the variable contexts of ∅; ∅ ⊢ N : T (U and ∅;Q ⊢ ℓ⃗ : T are

173

empty,

[[∅;Q]] [[∅; ∅]] ⊗ [[∅;Q]]

[[∅; ∅]] ⊗ [[Q]]

λ−1
I ⊗id

·△

id⊗λ−1

Q (9.28)

commutes too.

By coherence for symmetric monoidal categories, the following diagram

commutes:

[[∅;Q]] [[∅; ∅]] ⊗ [[Q]] [[∅; ∅]] ⊗ [[∅;Q]]

[[T]] [[∅]] ⊗ [[T]] [[∅; ∅]] ⊗ [[T]].

λ−1
I ⊗id id⊗λ−1

Q

id⊗[[ℓ⃗]][[ℓ⃗]]−1

λ−1
T λ−1

I ⊗id

(9.29)

Consider

[[∅;Q]] [[∅; ∅]] ⊗ [[∅;Q]]

[[∅;Q]] [[∅; ∅]] ⊗ [[Q]] [[∅; ∅]] ⊗ [[∅;Q]]

[[T]] [[I]] ⊗ [[T]] [[∅; ∅]] ⊗ [[T]]

([[T]] ([[U]]) ⊗ [[T]]

[[I]] ⊗ [[T]] [[U]]

·△

idid

λ−1
I ⊗id id⊗λ−1

Q

id⊗[[ℓ⃗]][[ℓ⃗]]−1

λ−1
T λ−1

I ⊗id

N⊗T
[[N]]⊗id

εU

λT
id

N∗

The top square commutes by (9.28), and the one below by (9.29). The

174

commutativity of the left triangle is immediate. The right triangle com-

mutes by definition of N and the functoriality of −⊗T ; the bottom region

does by (9.26). Hence, the outer square commutes as well. By (9.27), the

top path yields the morphism [[Nℓ⃗]]◦ [[ℓ⃗]]−1 ◦λT = Nℓ⃗, and the bottom N∗.

Hence, Nℓ⃗ = N∗, and so by (9.25), the transposeD∗ ofD : [[I]]⊗[[T]] → [[U]]

under the adjunction −⊗ T ⊣ T (− satisfies

D∗ = (Nℓ⃗)∗ = (N∗)
∗ = N = [[N]] ◦ λ−1I : [[I]] → ([[T]] ([[U]]).

Similarly, the transpose (D∗ ◦ τ−1I)◦ of

D∗ ◦ τ−1I : p([[I]]p) → [[I]] → ([[T]] ([[U]])

under the adjunction p ⊣ ♭ satisfies

(D∗ ◦ τ−1I)◦ = ([[N]] ◦ λ−1I ◦ τ−1I)◦ : [[I]]p → ♭([[T]] ([[U]]).

This in turn implies that the following diagram commutes:

p([[I]]p) p(♭(T (U))

[[∅; ∅]] [[∅]] [[∅]] = [[I]] [[Circ(T, U)]]

p([[I]]p) p(♭(T (U)).

p((D∗◦τ−1
I)◦)

box

ρ∅ �∅=id

τ∅

τI

τI

p(([[N]]◦λ−1
I ◦τ

−1
I)◦)

box

By (7.16), the top path is the morphism

circ (ℓ⃗, D, ℓ′⃗) ◦ �∅ ◦ ρ∅ = [[∅; ∅ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U)]],

while the bottom path is

box ◦ lift [[N]] ◦ τ∅ ◦ ρ∅ = box ◦[[∅; ∅ ⊢ lift N : !(T (U)]]

by (7.17). Thus,

[[∅; ∅ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U)]] = box ◦[[∅; ∅ ⊢ lift N : !(T (U)]].

175

Diagrammatically,

(ℓ⃗, D, ℓ′⃗)
∅ Circ(T,U)

= lift N box∅ !(T (U) Circ(T,U)

(9.30)

We can now show that

[[(C, boxT M)]] = [[(C ′, (ℓ⃗, D, ℓ′⃗))]] : [[Q]] → [[Circ(T, U)]] ⊗ [[Q′]]

as follows:

C

boxT M

[[(C, boxT M)]] = by def.
Q

Q′′

Q′

Circ(T,U)

C

M box

= by def.
Q

Q′′ Circ(T,U)

Q′

!(T (U)

C ′
lift N box

= by (9.24)
Q

Q′′′ = ∅

Q′

!(T (U) Circ(T,U)

C ′

(ℓ⃗, D, ℓ′⃗)

= by (9.30)
Q

Q′′′ = ∅

Q′

Circ(T,U)

= [[(C ′, (ℓ⃗, D, ℓ′⃗))]] by def.

• (apply)⇓ : The evaluation rule is

(C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) (C ′, N) ⇓ (C ′′, k⃗) append(C ′′, k⃗, ℓ⃗, D, ℓ′⃗) = (C ′′′, k′⃗)

(C, apply(M,N)) ⇓ (C ′′′, k′⃗)

Assume that Q ⊢ (C, apply(M,N)) : U ;Q′ is valid. We want to show

[[(C, apply(M,N))]] = [[(C ′′′, k′⃗)]] : [[Q]] → [[U]] ⊗ [[Q′]].

By assumption, there exists a label context Q′′ such that C : Q → Q′′, Q′

and ∅;Q′′ ⊢ apply(M,N) : U is valid. By the (apply) rule, there exist label

contextsQ′′1 andQ′′2 such thatQ′′ = Q′′1, Q
′′
2 and both ∅;Q′′1 ⊢M : Circ(T, U)

and ∅;Q′′2 ⊢ N : T are valid.

176

Since C : Q → Q′′1, Q
′′
2, Q

′ and ∅;Q′′1 ⊢ M : Circ(T, U), it follows that

Q ⊢ (C,M) : Circ(T, U);Q′′2, Q
′ is valid as well. By the Subject Reduction

Theorem 6.4.2, (C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) yields the validity of the judge-

ment Q ⊢ (C ′, (ℓ⃗, D, ℓ′⃗)) : Circ(T, U);Q′′2, Q
′. Thus, there is a label context

Q′′′ such that C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′′ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U) is

valid. By the induction hypothesis, (C,M) ⇓ (C ′, (ℓ⃗, D, ℓ′⃗)) implies that

[[(C,M)]] = [[(C ′, (ℓ⃗, D, ℓ′⃗))]] : [[Q]] → [[Circ(T, U)]] ⊗ [[Q′′2, Q
′]]. Diagramma-

tically,

C

M
Q

Q′′
1

Q′′
2 , Q

′

Circ(T,U)

= C ′

(ℓ⃗, D, ℓ′⃗)
Q

Q′′′

Q′′
2 , Q

′

Circ(T,U)

(9.31)

Since C ′ : Q → Q′′′, Q′′2, Q
′ and ∅;Q′′2 ⊢ N : T is valid, we have that

Q ⊢ (C ′, N) : T ;Q′′′, Q′ is valid as well. By the Subject Reduction Theo-

rem 6.4.2, (C ′, N) ⇓ (C ′′, k⃗) yields that Q ⊢ (C ′′, k⃗) : T ;Q′′′, Q′ is valid too.

Thus, there exists a label context Q such that C ′′ : Q → Q,Q′′′, Q′ and

∅;Q ⊢ k⃗ : T is valid. By the induction hypothesis, (C ′, N) ⇓ (C ′′, k⃗) implies

that [[(C ′, N)]] = [[(C ′′, k⃗)]] : [[Q]] → [[T]] ⊗ [[Q′′′, Q′]]. Diagrammatically,

C ′
N

Q

Q′′
2

Q′′′, Q′

T

= C ′′
k⃗

Q

Q

Q′′′, Q′

T

(9.32)

Since ∅;Q′′′ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U) is valid, the (circ) rule implies that

Q′′′ = ∅, that there exist label contexts ˜︁Q and ˜︁Q′ such that D ∈ ML(˜︁Q, ˜︁Q′),
and that both ˜︁Q ⊢L ℓ⃗ : T and ˜︁Q′ ⊢L ℓ′⃗ : U are valid. Also, since

append(C ′′, k⃗, ℓ⃗, D, ℓ′⃗) = (C ′′′, k′⃗), there is a boxed circuit (k⃗, D′, k′⃗) equi-

valent to (ℓ⃗, D, ℓ′⃗), where D′ : Q → Q
′

is the labeled circuit derived from

D : ˜︁Q → ˜︁Q′ with Q being the label context obtained by the relabeling of

ℓ⃗ by k⃗, and Q
′

being the label context obtained by the relabeling of ℓ′⃗ by

fresh k′⃗ . Diagrammatically,

k⃗
−1 D′ k′⃗

T Q Q
′

U
= ℓ⃗

−1 D ℓ′⃗
T ˜︁Q ˜︁Q′

U

(9.33)

177

Also, by definition of append,

C ′′
k⃗ k⃗

−1 D′

C ′′′ =
Q

Q

Q′

T Q Q
′

That is,

C ′′
D′

C ′′′ =
Q

Q

Q′

Q
′

(9.34)

Let D = [ℓ⃗, D, ℓ′⃗] ◦ λT . Since − ⊗ T ⊣ T (−, the transpose D∗ of the

morphism D : [[I]] ⊗ [[T]] → [[U]] makes the following diagram commute:

[[I]] ⊗ [[T]]

([[T]] ([[U]]) ⊗ [[T]] [[U]]

D
D∗⊗T

εU

(9.35)

Similarly, the transpose (D∗ ◦ τ−1I)◦ of D∗ ◦ τ−1I under the adjunction p ⊣ ♭
makes the following diagram commute:

p([[I]]p)

[[I]]

!([[T]] ([[U]]) [[T]] ([[U]]

τ−1
I

p((D∗◦τ
−1
I)◦)

D∗

force

(9.36)

178

Consider

[[Circ(T, U)]] ⊗ [[T]] !([[T]] ([[U]]) ⊗ [[T]]

p([[I]]p) ⊗ [[T]] !([[T]] ([[U]]) ⊗ [[T]] ([[T]] ([[U]]) ⊗ [[T]]

[[I]] ⊗ [[T]] [[I]] ⊗ [[T]]

[[∅]] ⊗ [[T]]

[[∅; ∅]] ⊗ [[T]] [[T]] [[U]]

unbox⊗T

force⊗T

p((D∗◦τ
−1
I)◦)⊗T

box⊗T
id

εU

τI⊗T=id

τ−1
I ⊗T=id

D∗⊗T

D
λT

�∅⊗T=id

ρ∅⊗T

λT ◦(ρ∅⊗T) [ℓ⃗, D, ℓ′⃗]

(9.37)

The top triangle commutes since box and unbox are inverses of each other.

The middle region commutes by (9.36) and the functoriality of −⊗T . The

rightmost triangle commutes by (9.35), and the one below by definition of

D. The commutativity of the bottom square is immediate. Thus, the outer

region commutes as well, and so the top and bottom paths are equal.

Recall that by (7.11), apply = εU ◦ (force⊗T) ◦ (unbox⊗T); by (7.16),

circ (ℓ⃗, D, ℓ′⃗) = box ◦p((D∗ ◦ τ−1I)◦) ◦ τI ; and by definition,

[[∅; ∅ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U)]] = circ (ℓ⃗, D, ℓ′⃗) ◦ �∅ ◦ ρ∅.

Hence, the top path of (9.37) is apply ◦([[∅; ∅ ⊢ (ℓ⃗, D, ℓ′⃗) : Circ(T, U)]]⊗T),

which is equal to the bottom path, [ℓ⃗, D, ℓ′⃗] ◦ λT ◦ (ρ∅⊗ T). Diagrammati-

cally,

(ℓ⃗, D, ℓ′⃗)
apply

∅

T

Circ(T,U)

U = [ℓ⃗, D, ℓ′⃗]T U (9.38)

179

We can now prove that

[[(C, apply(M,N))]] = [[(C ′′′, k′⃗)]] : [[Q]] → [[U]] ⊗ [[Q′]] :

C

apply(M,N)

[[(C, apply(M,N))]] = by def.
Q

Q′′

Q′

U

C

M

N
apply

= by def.
Q

Q′′
1

Q′′
2

Q′

Circ(T,U)

T U

C ′

(ℓ⃗, D, ℓ′⃗)

N
apply

= by (9.31)
Q

Q′′′

Q′′
2

Q′

Circ(T,U)

T U

C ′

(ℓ⃗, D, ℓ′⃗)

N
apply

= by funct.
Q

Q′′′

Q′′
2

Q′

Circ(T,U)

T U

C ′′

(ℓ⃗, D, ℓ′⃗)

k⃗
apply

= by (9.32)
Q

Q′′′ = ∅
Q

Q′

Circ(T,U)

T U

C ′′
k⃗ [ℓ⃗, D, ℓ′⃗]

= by (9.38)
Q

Q

Q′

T U

C ′′
k⃗ ℓ⃗

−1 D ℓ′⃗

= by def.
Q

Q T ˜︁Q ˜︁Q′
U

Q′

C ′′
k⃗ k⃗

−1 D′ k′⃗

= by (9.33)
Q

Q T Q Q
′

U

Q′

C ′′

D′ k′⃗

= by inv.
Q

Q Q
′

U

Q′

C ′′′
k′⃗

= by (9.34)
Q

Q U

Q′

= [[(C ′′′, k′⃗)]] by def.

Chapter 10

Conclusion

In this thesis, we developed a new quantum programming language and investigated

its mathematical semantics with the goal of providing a foundation for formal reaso-

ning about quantum programs. This is a nontrivial enterprise since a reliable passage

from quantum algorithms to machine-readable code is rather intricate, and so are the

languages designed to enable such transitions. This problem is moreover aggravated

by the nature of quantum information, which renders some of the classical techniques

used to analyze programs inadequate. We contributed to the solution of some of these

problems by introducing Proto-Quipper-M, a type-safe, categorically sound quantum

programming language for describing families of generalized circuits.

We devised the language as a simply-typed lambda calculus with a designated

type for generalized circuits. To prevent violations of the no-cloning property, Proto-

Quipper-M’s strong type system imposes the linear use of quantum data. We gave the

language computational meaning by equipping it with a big-step operational seman-

tics and showed that it satisfies the subject-reduction and error-freeness properties,

thus guaranteeing its type-safety. The categorical semantics of Proto-Quipper-M was

given in an appropriate class of monoidal categories, which we showed yield linear-

non-linear models, and so models of intuitionistic linear logic. Finally, we proved the

soundness theorem for Proto-Quipper-M, thus solidifying the connection between the

syntax and the semantics of the language.

Several possible directions for future work can be identified. Here, we just present

a few. One possibility is exploring the relationship between Proto-Quipper-M and

Proto-Quipper-S [90]. Since Proto-Quipper-M is the first version of Proto-Quipper

with a categorical semantics rich enough to model the ! modality of linear logic, “lift”

and “force” operations are required to transform terms of linear type into terms of

180

181

non-linear type and vice versa. This makes programming in Proto-Quipper-M incon-

venient. On the other hand, Proto-Quipper-S uses subtyping to determine the linea-

rity of its programs, which makes programming in Proto-Quipper-S less cumbersome.

Thus, it would be interesting to find translations between these two languages.

Another issue that is worthwhile addressing is the lack of a type-safe mechanism to

handle invertible circuits in Proto-Quipper-M. This is relevant since quantum circuits

are not necessarily invertible. For example, those composed exclusively of unitary

gates are invertible while those containing measurements are not, and so trying to

invert a non-invertible circuit would yield a run-time error. To avoid this type of

error, the type system should be enhanced to ensure the proper use of an “invert”

operation: The “invert” operation could be applied to a circuit only if the circuit is

indeed invertible.

Yet another interesting question to consider in the effort to close the gap between

Proto-Quipper-M and Quipper is that of dynamic lifting. Dynamic lifting is an opera-

tion in Quipper that turns a state into a parameter, thus enabling circuit generation

to depend on results obtained during circuit execution. This is indeed useful since

some quantum algorithms require the classical computer and the quantum device to

interact in such a way that the measurements coming from the execution of a partially

constructed circuit are necessary to determine how the construction of the rest of the

circuit should proceed. How to extend the type system of Proto-Quipper-M to enable

the dynamic lifting operation in a type-safe manner is an open question.

Bibliography

[1] Scott Aaronson. Quantum Computing Since Democritus. Cambridge University
Press, 2013.

[2] Ali J. Abhari, Arvin Faruque, Mohammad J. Dousti, Lukas Svec, Oana Catu,
Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, and Fred
Chong. Scaffold: Quantum programming language. Technical report, Princeton
Univ NJ Dept of Computer Science, 2012.

[3] Samson Abramsky and Nikos Tzevelekos. Introduction to categories and cate-
gorical logic. In New Structures for Physics, pages 3–94. Springer, 2010.

[4] Dorit Aharonov. A simple proof that Toffoli and Hadamard are quantum uni-
versal, 2003. Preprint available from arXiv:quant-ph/0301040.

[5] Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and
Oded Regev. Adiabatic quantum computation is equivalent to standard quan-
tum computation. SIAM review, 50(4):755–787, 2008.

[6] D. S. Alexander, Neil J. Ross, P. Selinger, J.M. Smith, and B. Valiron. Pro-
gramming the quantum future. Communications of the ACM, 2015.

[7] Thorsten Altenkirch and Jonathan Grattage. A functional quantum program-
ming language. In Proceedings of the 20th Annual IEEE Symposium on Logic in
Computer Science (LICS 2005), pages 249–258. IEEE Computer Society Press,
2005.

[8] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang. Any

AND-OR formula of size n can be evaluated in time n
1
2
+o(1) on a quantum

computer. SIAM J. Comput., 39:2513—-2530, 2010.

[9] Juan Miguel Arrazola, Timjan Kalajdzievski, Christian Weedbrook, and Seth
Lloyd. Quantum algorithm for nonhomogeneous linear partial differential equa-
tions. Physical Review A, 100(3):032306, 2019.

[10] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann, 2010.

[11] Steve Awodey. Category Theory. Oxford University Press, 2nd edition, 2010.

[12] Andrew G. Barber. Dual intuitionistic linear logic. Technical Report ECS-
LFCS-96-347, Department of Computer Science, University of Edinburgh, 1996.

182

http://arxiv.org/abs/quant-ph/0301040

183

[13] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald
Weinfurter. Elementary gates for quantum computation. Physical Review A,
52(5):3457, 1995.

[14] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland Linguistic Series. North-Holland, 1984.

[15] Michael Barr and Charles Wells. Category Theory for Computing Science. Les
Publications CRM, 3rd edition, 1999.

[16] Paul Benioff. The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing machines.
Journal of statistical physics, 22(5):563–591, 1980.

[17] Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models
(extended abstract). In Proceedings of the 8th Workshop on Computer Science
Logic, CSL’94, Selected Papers, Springer Lecture Notes in Computer Science
933, pages 121–135, 1995.

[18] Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. Li-
near λ-calculus and categorical models revisited. In E. Börger, G. Jäger,
H. Kleine Büning, S. Martini, and M. M. Richter, editors, Computer Science
Logic, pages 61–84, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[19] Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. A term
calculus for intuitionistic linear logic. In Marc Bezem and Jan Friso Groote, edi-
tors, Typed Lambda Calculi and Applications, pages 75–90, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

[20] Nick Benton, Gavin Bierman, Valeria Paiva, and Martin Hyland. Term as-
signment for intuitionistic linear logic (preliminary report). Technical report,
University of Cambridge, Computer Laboratory, August 1992.

[21] Dominic W. Berry. High-order quantum algorithm for solving linear differential
equations. Journal of Physics A: Mathematical and Theoretical, 47(10):105301,
2014.

[22] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum
programming, 2001. Available from arXiv:cs/0103009.

[23] G.M. Bierman. On intuitionistic linear logic. Technical Report UCAM-CL-TR-
346, University of Cambridge, Computer Laboratory, August 1994.

[24] Alex Bocharov, Yuri Gurevich, and Krysta M. Svore. Efficient decomposition
of single-qubit gates into V basis circuits. Phys. Rev. A, 88:012313 (13 pages),
2013. Also available from arXiv:1303.1411.

http://arxiv.org/abs/cs/0103009
http://arxiv.org/abs/1303.1411

184

[25] Francis Borceux. Handbook of Categorical Algebra 1: Basic Category Theory,
volume 1. Cambridge University Press, 1994.

[26] Francis Borceux. Handbook of Categorical Algebra 2: Categories and Structures,
volume 2. Cambridge University Press, 1994.

[27] Luca Cardelli. Type systems. In Allen B. Tucker, editor, Handbook of Computer
Science and Engineering, chapter 97. CRC Press, 2nd edition, 1997.

[28] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman.
Exponential algorithmic speedup by a quantum walk. In Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 59–68,
2003.

[29] Andrew M. Childs and Tongyang Li. Efficient simulation of sparse Markovian
quantum dynamics, 2016. Preprint available from arXiv:1611.05543.

[30] Frederic T. Chong, Diana Franklin, and Margaret Martonosi. Program-
ming languages and compiler design for realistic quantum hardware. Nature,
549(7671):180–187, 2017.

[31] Dominique Clément, Thierry Despeyroux, Gilles Kahn, and Joëlle Despeyroux.
A simple applicative language: Mini-ML. In Proceedings of the 1986 ACM
Conference on LISP and Functional Programming, LFP ’86, page 13–27, New
York, NY, USA, 1986. Association for Computing Machinery.

[32] Richard Cleve. An introduction to quantum complexity theory. Collected Papers
on Quantum Computation and Quantum Information Theory, pages 103–127,
2000.

[33] Roy L. Crole. Categories for Types. Cambridge University Press, 1993.

[34] Andrew W. Cross, Lev S. Bishop, John A Smolin, and Jay M Gambetta. Open
quantum assembly language, 2017. Available from arXiv:1707.03429.

[35] David Deutsch. Quantum theory, the Church–Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London. A. Mathema-
tical and Physical Sciences, 400(1818):97–117, 1985.

[36] David Elieser Deutsch. Quantum computational networks. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences,
425(1868):73–90, 1989.

[37] DGBJ Dieks. Communication by EPR devices. Physics Letters A, 92(6):271–
272, 1982.

[38] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. Quantum-enhanced
machine learning. Physical Review Letters, 117(13):130501, 2016.

http://arxiv.org/abs/1611.05543
http://arxiv.org/abs/1707.03429

185

[39] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum
computation by adiabatic evolution, 2000. Available from arXiv:quant-ph/

0001106.

[40] Richard P. Feynman. Simulating physics with computers. Int. J. Theor. Phys,
21(6/7), 1982.

[41] Michael H. Freedman, Alexei Kitaev, and Zhenghan Wang. Simulation of topo-
logical field theories by quantum computers. Communications in Mathematical
Physics, 227(3):587–603, 2002.

[42] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence. Linear Algebra.
Prentice Hall, 3rd edition, 1997.

[43] Simon J. Gay. Quantum programming languages: Survey and bibliography.
Mathematical Structures in Computer Science, 16(4):581, 2006.

[44] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987.

[45] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types, volume 7.
Cambridge University Press, 1989.

[46] Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benôıt Valiron. An introduction to quantum programming in Quipper. In Pro-
ceedings of the 5th International Conference on Reversible Computation, volume
7948 of Lecture Notes in Computer Science, pages 110–124, 2013. Preprint avai-
lable from arXiv:1304.5485.

[47] Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benôıt Valiron. Quipper: a scalable quantum programming language. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 333–342, 2013. Preprint available
from arXiv:1304.3390.

[48] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[49] Carl Gunter. Semantics of Programming Languages. MIT Press, 1992.

[50] Sean Hallgren. Polynomial-time quantum algorithms for Pell’s equation and
the principal ideal problem. J. ACM, 54(1):4:1–4:19, 2007.

[51] Thomas Häner, Damian S. Steiger, Krysta Svore, and Matthias Troyer. A
software methodology for compiling quantum programs. Quantum Science and
Technology, 3(2):020501, 2018.

http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/1304.5485
http://arxiv.org/abs/1304.3390

186

[52] Sarah L. Harris and David Money Harris. Hardware description languages. In
Sarah L. Harris and David Money Harris, editors, Digital Design and Computer
Architecture, pages 172–237. Morgan Kaufmann, Boston, 2016.

[53] A. W. Harrow, B. Recht, and I. L. Chuang. Efficient discrete approximations
of quantum gates. Journal of Mathematical Physics, 43, 2002. Also available
from arXiv:quant-ph/0111031.

[54] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
linear systems of equations. Phys. Rev. Lett., 103(15):150502, 2009.

[55] Matthew Hennessy. The Semantics of Programming Languages: An Elementary
Introduction Using Operational Semantics. John Wiley and Sons, 1990.

[56] Horst Herrlich and George E. Strecker. Category Theory: An Introduction,
volume 1. Heldermann, 3rd edition, 2007.

[57] Chris Heunen and Jamie Vicary. Categories for Quantum Theory: An Intro-
duction. Oxford University Press, USA, 2019.

[58] Graham Hutton. Programming in Haskell. Cambridge University Press, January
2007.

[59] Gilles Kahn. Natural semantics. In Proceedings of the 4th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 1987), pages 22–39. Springer,
1987.

[60] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to
Quantum Computing. Oxford University Press, 2007.

[61] A. Yu. Kitaev. Quantum computations: algorithms and error correction. Rus-
sian Mathematical Surveys, 52(6):1191, 1997.

[62] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and efficient
exact synthesis of single qubit unitaries generated by Clifford and T gates.
Quantum Information and Computation, 13(7–8):607–630, 2013. Also available
from arXiv:1206.5236v4.

[63] Emmanuel Knill. Conventions for quantum pseudocode. Technical report, Los
Alamos National Lab., NM (United States), 1996.

[64] Yves Lafont. The linear abstract machine. Theor. Comput. Sci., 59:157–180,
1988.

[65] Joachim Lambek and Philip J. Scott. Introduction to Higher-Order Categorical
Logic, volume 7. Cambridge University Press, 1988.

[66] S. Mac Lane. Categories for the Working Mathematician. Graduate Texts in
Mathematics. Springer, 2nd edition, 1998.

http://arxiv.org/abs/quant-ph/0111031
http://arxiv.org/abs/1206.5236v4

187

[67] Tom Leinster. Basic Category Theory. Cambridge University Press, 2014.

[68] Sarah K. Leyton and Tobias J. Osborne. A quantum algorithm to solve nonli-
near differential equations, 2008. Preprint available from arXiv:0812.4423.

[69] Seymour Lipschutz and Marc Lipson. Linear Algebra. Schaum’s Outlines.
McGraw-Hill, 4rd edition, 2009.

[70] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for
supervised and unsupervised machine learning, 2013. Preprint available from
arXiv:1307.0411.

[71] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms for
the triangle problem, 2003. Available from arXiv:quant-ph/0310134.

[72] Paul-André Melliès. Categorical semantics of linear logic. In Interactive Models
of Computation and Program Behaviour, volume 27 of Panoramas et Synthèses,
pages 1–196. Société Mathématique de France, 2009.

[73] Microsoft Corp. What are the Q# programming language and QDK?
Available from https://docs.microsoft.com/en-us/quantum/overview/

what-is-qsharp-and-qdk. Accessed: 2020-12-31.

[74] Jaroslaw Adam Miszczak. Models of quantum computation and quantum pro-
gramming languages, 2011. Available from arXiv:1012.6035.

[75] Michele Mosca, Martin Roetteler, and Peter Selinger. Quantum Programming
Languages (Dagstuhl seminar 18381). In Dagstuhl Reports, volume 8. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2019.

[76] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2002.

[77] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An
Appetizer. Springer, 2007.

[78] Bernhard Ömer. A procedural formalism for quantum computing. Master’s
thesis, Department of Theoretical Physics, Technical University of Vienna, July
1998. Available from http://tph.tuwien.ac.at/~oemer/qcl.html.

[79] Bernhard Ömer. Structured Quantum Programming. PhD thesis, Department
of Theoretical Physics, Technical University of Vienna, May 2003. Available
from http://tph.tuwien.ac.at/~oemer/qcl.html.

[80] Luca Paolini, Mauro Piccolo, and Margherita Zorzi. QPCF: Higher-order lan-
guages and quantum circuits. Journal of Automated Reasoning, 63(4):941–966,
2019.

http://arxiv.org/abs/0812.4423
http://arxiv.org/abs/1307.0411
http://arxiv.org/abs/quant-ph/0310134
https://docs.microsoft.com/en-us/quantum/overview/what-is-qsharp-and-qdk
https://docs.microsoft.com/en-us/quantum/overview/what-is-qsharp-and-qdk
http://arxiv.org/abs/1012.6035
http://tph.tuwien.ac.at/~oemer/qcl.html
http://tph.tuwien.ac.at/~oemer/qcl.html

188

[81] Arun Kumar Pati and Samuel L. Braunstein. Impossibility of deleting an
unknown quantum state. Nature, 404(6774):164–165, 2000.

[82] Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: a core language
for quantum circuits. ACM SIGPLAN Notices, 52(1):846–858, 2017.

[83] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[84] Gordon D. Plotkin. A structural approach to operational semantics. Lecture no-
tes, DAIMI FN-19, Computer Science Department, Aarhus University Aarhus,
Denmark, 1981.

[85] Gordon D. Plotkin. The origins of structural operational semantics. The Journal
of Logic and Algebraic Programming, 60–61:3–15, 2004.

[86] Robert Raussendorf and Hans J. Briegel. Computational model underlying the
one-way quantum computer. Quantum Info. Comput., 2(6):443–486, October
2002.

[87] Oded Regev. Quantum computation and lattice problems. SIAM J. Comput.,
33(3):738–760, 2004.

[88] Emily Riehl. Category theory in context. Courier Dover Publications, 2017.

[89] Francisco Rios and Peter Selinger. A categorical model for a quantum circuit
description language. In Bob Coecke and Aleks Kissinger, editors, Proceedings
of the 14th International Conference on Quantum Physics and Logic, QPL 2017,
Nijmegen, The Netherlands, 3-7 July 2017, volume 266 of EPTCS, pages 164–
178, 2017.

[90] Neil J. Ross. Algebraic and Logical Methods in Quantum Computation. PhD
thesis, Department of Mathematics and Statistics, Dalhousie University, 2015.
Available from arXiv:1510.02198.

[91] Roland Rüdiger. Quantum programming languages: An introductory overview.
The Computer Journal, 50(2):134–150, 2007.

[92] J. W. Sanders and P. Zuliani. Quantum programming. In Mathematics of
Program Construction, Springer LNCS 1837, pages 80–99, 2000.

[93] Robert Seely. Linear logic, *-autonomous categories and cofree coalgebras.
In Applications of Categories in Logic and Computer Science, volume 92 of
Contemporary Mathematics, pages 371–382. American Mathematical Society,
1989.

[94] Peter Selinger. A brief survey of quantum programming languages. In Interna-
tional Symposium on Functional and Logic Programming, pages 1–6. Springer,
2004.

http://arxiv.org/abs/1510.02198

189

[95] Peter Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, 2004.

[96] Peter Selinger. Lecture notes on the lambda calculus. Expository course notes,
120 pages. Available from arXiv:0804.3434, 2013.

[97] Peter Selinger. Efficient Clifford+T approximation of single-qubit operators.
Quantum Information and Computation, 15(1–2):159–180, 2015. Preprint avai-
lable from arXiv:1212.6253.

[98] Peter Selinger and Benôıt Valiron. A lambda calculus for quantum computation
with classical control. Mathematical Structures in Computer Science, 16(3):527–
552, 2006.

[99] Peter Selinger and Benôıt Valiron. Quantum lambda calculus. In Simon Gay and
Ian Mackie, editors, Semantic Techniques in Quantum Computation, chapter 4,
pages 135–172. Cambridge University Press, 2009.

[100] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, pages 124–134, 1994. Also available from arXiv:quant-ph/

9508027.

[101] Robert S. Smith, Michael J. Curtis, and William J. Zeng. A practical quantum
instruction set architecture, 2016. Available from arXiv:1608.03355.

[102] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Gra-
nade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and
Martin Roetteler. Q#: Enabling scalable quantum computing and develop-
ment with a high-level DSL. In Proceedings of the Real World Domain Specific
Languages Workshop 2018, pages 1–10, 2018.

[103] Donald Thomas and Philip Moorby. The Verilog Hardware Description Lan-
guage. Springer Science & Business Media, 2008.

[104] Benôıt Valiron. A functional programming language for quantum computation
with classical control. Master’s thesis, University of Ottawa, September 2004.

[105] André van Tonder. A lambda calculus for quantum computation. SIAM Journal
on Computing, 33(5):1109–1135, 2004.

[106] Philip Wadler. A taste of linear logic. In Andrzej M. Borzyszkowski and Ste-
fan Sokolowski, editors, Mathematical Foundations of Computer Science 1993,
pages 185–210, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[107] James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of
electronic structure Hamiltonians using quantum computers. Molecular Physics,
109(5):735–750, 2011.

http://arxiv.org/abs/0804.3434
http://arxiv.org/abs/1212.6253
http://arxiv.org/abs/quant-ph/9508027
http://arxiv.org/abs/quant-ph/9508027
http://arxiv.org/abs/1608.03355

190

[108] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-
duction. MIT Press, 1993.

[109] William K. Wootters and Wojciech H. Zurek. A single quantum cannot be
cloned. Nature, 299(5886):802–803, 1982.

[110] Noson S. Yanofsky and Mirco A. Mannucci. Quantum Computing for Computer
Scientists. Cambridge University Press, New York, NY, USA, 2008.

[111] Christof Zalka. Simulating quantum systems on a quantum computer. Pro-
ceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 454(1969):313–322, 1998.

[112] Zhikuan Zhao, Alejandro Pozas-Kerstjens, Patrick Rebentrost, and Peter Wit-
tek. Bayesian deep learning on a quantum computer. Quantum Machine Intel-
ligence, 1(1-2):41–51, 2019.

	Title Page
	Table of Contents
	List of Tables
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Formal Methods for Quantum Programming Languages
	The Evolution of Quantum Programming Languages
	Proto-Quipper-M: A Sound Language for Circuit Description
	Outline of Thesis
	Contributions

	Quantum Computation
	Linear Algebra
	Hilbert Spaces
	Operators and Matrix Representations
	Tensor Products

	The Elements of Quantum Computing
	Quantum Bits and Quantum Systems
	Evolution of Quantum Systems
	Measurements
	The Quantum Random Access Machine Model
	Quantum Circuits

	Category Theory
	Elementary Category Theory
	Categories
	Functors and Natural Transformations
	Representable Functors and the Yoneda Lemma
	Limits and Colimits
	Adjunctions
	Monads and Comonads

	Monoidal Category Theory
	Monoidal Categories
	Monoidal Functors
	Monoidal Natural Transformations
	Monoidal Adjunctions
	LNL Models and Monoidal Comonads

	Towards a Quantum Circuit Description Language
	Modeling Parameters and States
	A Presheaf Model
	Parameter and State Objects
	A Language for Parameters and States

	Modeling Families of Circuits
	Generalized Circuits
	A Model of Proto-Quipper-M.

	The Proto-Quipper-M Language
	Circuits, Wires, and Labels
	Circuits and Wire Types
	Labeled Circuits
	Visualizing Labeled Circuits

	The Syntax of Proto-Quipper-M
	Types
	Terms and Values
	The Type System of Proto-Quipper-M

	Operational Semantics
	Evaluation Relation
	Run-Time Errors
	Big-Step Operational Semantics

	Type Safety
	Properties of the Type System
	Weakening Lemma
	Substitution Lemma
	Type Preservation
	Error-Freeness

	The Semantics of Proto-Quipper-M
	A General Categorical Model
	Copowers and Representables
	An LNL Model
	The Boxing Comonad

	Interpreting Types
	Simple M-Types and Inductive Types
	Types in L
	Morphisms box and apply
	Parameter Types

	Interpreting Terms
	Labeling Structure
	Morphisms circ and lift
	Duplicating and Discarding
	Typing Derivations

	Semantic Properties
	Semantic Parameter Value Lemma
	Discarding Simultaneously vs Discarding in Stages
	Special Semantic Weakening Lemma
	Duplicating and Discarding Contexts
	Semantic Weakening Lemma
	Semantic Substitution Lemma

	Soundness
	Categorical Semantics of Configurations
	The Soundness Theorem for Proto-Quipper-M

	Conclusion
	Bibliography

