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Abstract

Epidemics require dynamic response strategies that encompass a multitude of policy

alternatives to effectively balance health, economic, and societal considerations. Due

to the complexity and wide array of policy alternatives, decision makers require tools

to determine effective strategies and assess their impact. This thesis proposes a

simulation-optimization framework to aid policymakers select closure, protection, and

travel policies to minimize the total number of infections under a limited budget. The

proposed framework combines a modified, age-stratified susceptible-exposed-infected-

recovered (SEIR) compartmental model to evaluate the health impact of response

strategies and two meta-heuristic optimization procedures, namely Genetic Algorithm

(GA) and Simulated Annealing (SA), to effectively search for better strategies. Two

types of response strategies are considered: time-based and state-based. The former is

proactive in nature, prescribing at the outset response policies to be implemented over

a set period of time, whereas the latter is a reactive strategy that adjusts the policies

based on the number of new infections observed, mimicking the method often used

by policymakers. Both frameworks were implemented on a real case study in Nova

Scotia to devise optimized response strategies to COVID-19. The two approaches

found a clear trade-off between health and economic considerations. The time-based

results show regardless of the budget, policy makers should oscillate between policies

of varying degrees of strictness. Closure policies seem to be the most sensitive to policy

restrictions, followed by travel policies. Results suggest that after a budget threshold

is met, practicing social distancing and wearing masks are always recommended. The

state-based results set the optimal limits such that restrictions are tightened whenever

there are signs of a potential community spread and loosened when the spread is

contained. Given the high infectivity of the disease, the lower limits (triggering the

shift to less strict policies) are set quite low, ranging between 0 and 20 infections

depending on the budget and the existing policies. Both frameworks are generic and

can be extended to encompass vaccination policies and to use different epidemiological

models or optimization methods. The model was also used to compare potential

policy scenarios during the vaccination period, to help determine a suitable timeline

for lifting the restrictions while minimizing the public health impact. The test results

indicate that masks and social distancing will be required in order to continue to

keep the case count and hospitalizations low, even as closure and travel policies are

relaxed.
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Chapter 1

Introduction

Epidemics and pandemics have become a major concern for policymakers around

the world. What most people considered a distant threat turned into a catastrophic

reality when the World Health Organization (WHO) declared the Coronavirus Disease

2019 (COVID-19) a pandemic in March 2020. Despite the drastic actions taken by

governments, approximately 205 million COVID-19 cases and 4.3 million deaths have

been reported globally as of August 2021. Given the enormous cost humanity has

been paying due to COVID-19, experts warn that the world cannot afford to be

unprepared again when the next pandemic hits (15).

1.1 Existing Research

It is possible to reduce the spread of an epidemic disease caused by a respiratory virus

such as COVID-19 through measures that involve minimizing people’s contact, which

can be achieved by implementing policies that, for example, restrict travel and ban

gatherings. These policies, however, have substantial economic and societal costs if

implemented for extended periods. Thus, selecting from the wide array of response

policy alternatives to minimize the health impacts of an epidemic without causing

disastrous side effects on the economy and the health of people, including mental

health and delayed surgeries, is a challenging task for policymakers. In the absence of

systematic and evidence-based methods to develop response strategies, policymakers

have no choice but to rely on ad-hoc and reactive responses, which might be far

from optimum. Operations Research (OR) methods can be helpful in informing high

quality response strategies that balance health, economic, and societal considerations.

However, they are yet to be used to their full potential.

Currently, most of the quantitative methods used by practitioners to test response

policies and predict the trajectory of epidemics are based on simulation models that

1
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approximate dynamic epidemiological models like the famous susceptible-infected-

recovered (SIR) model. These compartmental models are popular among practition-

ers due to their simplicity and intuitiveness. Other statistical (e.g., network (7)) and

simulation (e.g., agent-based (45)) models have been proposed in the literature for the

same purpose. While simulation models can be used for decision making by changing

input parameters and observing the change in outputs, they have well-known limita-

tions (41). When the number of possible alternatives is very large (as in the case when

different policies could be implemented at different stages), simulation techniques can

be used to evaluate and compare only a small subset of these alternatives. More im-

portantly, these alternatives are restricted by the imagination of the model user. This

issue is particularly vital when dealing with new situations like COVID-19. Another

common issue of simulation models is the difficulty of translating their outputs into

useful decisions, as the model provides a range of possible outputs for each set of

parameters and inputs. There is often a significant overlap between output ranges of

different strategies, rendering them of little value in policy formulation.

1.2 Thesis Contributions and Areas for Future Work

This thesis proposes a novel framework for using OR tools to devise response strategies

to epidemics. This framework is a simulation-optimization that combines a compart-

mental model with two meta-heuristic optimization procedures to find near-optimal

strategies that minimizes the number of cumulative infections given a limit on the

total economic cost of the response strategy. In particular, a simulation model based

on a modified, age-stratified susceptible-exposed-infected-recovered (SEIR) compart-

mental model is used to evaluate response strategies, each of which defines closure,

protection, and travel policies in every time period of the planning horizon. The

epidemiological model captures, in detail, the contact frequencies among different

age groups, the presence of co-morbidities, and the self quarantine behaviour, among

other realistic considerations. In the time-based framework, the simulation model

is embedded in a Genetic Algorithm (GA) that uses the population of evaluated

strategies to iteratively generate new (and hopefully better) ones through cross over

and mutation. In the state-based framework, the simulation model is embedded in a

Simulated Annealing (SA) algorithm that evaluates neighbor strategies to find new
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and potentially better solutions. The second framework uses the same modified, age-

stratified SEIR simulation model to capture the health impact of policy thresholds

that determine whether restrictions should be increased, decreased, or maintained.

The research presented here was developed while working on a project with Nova

Scotia Health Authority (NSHA) to build decision support tools based on OR meth-

ods that could be used by NSHA to extract response strategies to COVID-19 that

strike a balance between health and economic objectives. Hence, the proposed frame-

works were applied to the Canadian province of NS as a real life case study. The

simulation-optimization frameworks give policymakers optimal strategies; however,

the simulation (compartmental) model can also be used on its own to test strategies

of interest to policymakers. The simulation model was used to test specific strategies

such as immediately removing all restrictions, maintaining all restrictions, and several

in between. The resulting cumulative infections, active infections, hospitalizations,

and deaths from each scenario were then compared. The model used in the scenario

testing was extended to include the proposed immunization plan for NS. The im-

munization plan was made up of multiple phases. The first two phases focused on

vaccinating high risk individuals in long term care facilities and frontline workers,

whereas the final phase was open to all Nova Scotians starting with people over the

age of 80 and working downward in 5 year increments. All eligible and willing Nova

Scotians were able to get their first dose by June 31, 2021 and the second dose a

maximum of 4 months later.

Although the simulation-optimization frameworks were developed for COVID-

19 in NS, they are quite generic and can be easily tailored to be used by other

jurisdictions and for other epidemics. The population demographics can be modified

by updating the number of individuals in each age group as well as their health status.

The simulation model could be replaced by a model that considers spatial aspects,

or the current compartmental model could be modified to include several connected

populations. The optimization algorithms can also be modified, such as changing

the single-start SA to a multi-start SA. The vaccination compartment added for the

strategy testing could be added to the compartmental model used in the optimization

frameworks. As well, the vaccination plan could be updated to reflect the vaccination

data as the original plan was conservatively estimated.
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Throughout this thesis, the term policy is used to refer to a pre-defined set of

decisions specific to a single response aspect (i.e., closure, protection, or travel) in a

single time period. An example is restricting all international travel during a given

week. The time-based optimization framework uses the term strategy to refer to a

series of policy tuples for the entire planning horizon, where each tuple consists of a

closure, protection, and travel policy. The state-based optimization framework uses

policy levels, where a policy level is a combination of closure, protection, and travel

interventions of varying strictness. A strategy in this framework is the set of upper

and lower limits that trigger a shift between different policies. There are 5 upper

limits and 5 lower limits, where an upper limit means that the policy level shifts

upward to a more strict level, and a lower limit means that the policy level shifts

downward to a more relaxed level. A threshold is defined as the cumulative number

of cases in a single time period and could represent an upper limit or lower limit for

moving between policy levels.

This thesis is organized as follows: Chapter 2 reviews related work, highlighting

the research gaps and the contributions of this thesis. Chapter 3 describes the simu-

lation model components, the types of response policies considered, the mathematical

formulation and how the model was verified and validated. Section 4 describes the

GA used to optimize the time-based response strategies, the SA used to optimize the

state-based response strategies, the numerical results obtained by implementing the

proposed frameworks on the case study of NS, and provides some managerial insights.

Chapter 5 describes the selected opening scenarios during vaccination, their result-

ing health implications, and the interpretation of findings for policymakers. Finally,

conclusions and possible extensions are provided in Chapter 6.



Chapter 2

Related Work

Before describing the simulation-optimization framework proposed to optimize re-

sponse strategies to COVID-19, related work is reviewed. The first part surveys the

OR methods proposed in the literature to formulate response strategies to epidemics

and contrasts this work with them, highlighting research gaps and contributions. This

review focuses on prescriptive, as opposed to descriptive or predictive, approaches,

i.e., those which aim at informing (near-)optimal response strategies, especially when

a large number of strategies could be efficiently evaluated and compared. This choice,

to a great extent, excludes most simulation and statistical models commonly used in

the quantitative epidemiology literature, which usually have predictive or analytical

purposes. Readers interested in the classical epidemiological models are referred to

the texts of Brauer (4) and Kramer (26). The second part focuses on the COVID-19

pandemic, particularly the models proposed in the literature to evaluate its impact

and aid policymakers in making decisions regarding public health interventions, and

how they relate to this work. Given the sheer number of mathematical models devel-

oped for COVID-19, it is not possible to include all of them here. Interested readers

are referred to the survey of Adiga et al. (1) for a detailed account.

2.1 The Role of OR Methods in Developing Epidemic Response

Strategies

Health care has been one of the main application areas, and a prominent success

story, of OR in the last four decades (40; 23; 63). However, except for widely used

simulation frameworks (system dynamics (60), discrete event (32), agent-based (45))

to model the progression of epidemics, using OR tools to devise response strategies

to disease outbreaks has not received much attention prior to the COVID-19 pan-

demic. Among the few early attempts is the work of Lee and Pierskalla (29), which

5
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developed a mathematical program for computing the optimal test choice and screen-

ing periods in diseases which have zero or negligible latent periods. Dimitrov et al.

(9) presented a tactical optimization model for distributing a stockpile of a pH1N1

antiviral treatment, which efficiently searches large sets of intervention strategies ap-

plied to a stochastic network model of pandemic influenza transmission within and

among U.S. cities. Other vaccine allocation optimization approaches proposed include

stochastic programming (53; 62), derivative free optimization (8) and heuristics (54).

Long and Brandeau (31) surveyed the application of different OR tools, including

Decision Trees, Markov Models, Network Models and Linear Programming to ana-

lyze infectious disease control decisions. One of the most related studies to this work

is the simulation-optimization framework presented by Uribe-Sanchez et al. (57) to

optimize mitigation strategies for pandemics affecting several regions. It allocates a

limited budget to procure vaccines and antivirals, capacities for their administration,

and resources required to enforce social distancing. However, two major differences

between this work and the work completed by Uribe-Sanchez et al. (57) are noted.

First, in their framework, available budget is allocated progressively, i.e., allocation

of available resources, including remaining resources from previous allocation, is per-

formed individually for each new regional outbreak episode (epoch), as opposed to the

holistic approach used in this research to optimize the response strategy for the entire

planning horizon. Secondly, and more importantly, they select non-pharmaceutical

policies (e.g., social distancing, quarantine, closure) based on static guidelines that

depend on pandemic severity, in contrast to this framework that lets the optimization

procedure freely decide these policies for each time period.

The emergence of COVID-19 has led to a surge in its research among the OR

community. OR tools have been implemented mainly to allocate resources optimally.

Risanger et al. (43) presented a facility location model to determine which pharma-

cies in the U.S. should be testing for COVID-19 to maximize accessibility. Mehrotra

et al. (34) developed a stochastic optimization model to share ventilators across the

US, aiming to minimize shortfall. More related to this work, Kaplan (24) used prob-

ability models to assess the effectiveness of case isolation of infected individuals and

quarantine of exposed individuals, and found that case isolation alone is sufficient

to end community outbreaks, provided that cases are detected efficiently. Rawson
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et al. (42) applied an optimal control framework to a modified SEIR model to in-

vestigate the efficacy of two potential lockdown release strategies. A gradual release

strategy is optimized to determine how to maximize those working while prevent-

ing the health service from being overwhelmed. Although having some similarity

with the proposed framework, there is a much narrower focus on releasing a locked

down population and using a simple search heuristic to identify the optimal solution.

Bertsimas et al. (2) address the problem of allocating vaccine quantities among ge-

ographical areas and population groups. The problem was formulated as a bilinear,

non-convex optimization model and a coordinate descent algorithm that iterates be-

tween optimizing vaccine allocations and simulating the dynamics of the pandemic

(using an extended version of an epidemiological prediction model known as “DEL-

PHI”) was proposed to solve it. The “DELPHI” model is an extended compartmental

model adapted for COVID-19 to include under-detected cases, government and so-

cietal responses, and declining mortality rates. Similar to Bertsimas et al. (2), this

research uses a simulation-optimization framework that combines an epidemiological

prediction model with a search algorithm. However, this work uses GA and SA meta-

heuristics to effectively cover a vast search space and has a different focus on closure,

protection, and travel policies rather than vaccination plans.

This review reveals that, with the exception of few noticeable attempts, OR is

yet to be utilized to its full potential to guide response strategies to epidemics and

pandemics. It is argued that OR methods and tools can play an important role in in-

forming high-quality policy alternatives that formally model policymakers’ objectives,

restrictions, and priorities, as opposed to the widely used trial-and-error methods.

The framework proposed in this thesis is a significant step towards normalizing the

use of OR methods in the area of response strategies to epidemic outbreaks. From the

completed literature review, this is the first comprehensive OR-based framework for

optimizing a multifaceted (i.e., closure, protection, travel) pandemic response strat-

egy over a long-time horizon while trying to strike a balance between health and

economic considerations. This framework has a broader scope and higher flexibil-

ity than previous studies. Unlike the simple models used in some past studies, the

detailed epidemic model used in this study adequately captures the characteristics

and behaviours of the population (e.g., age groups, co-morbidities, contact patterns,
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quarantine, infection severity, hospital, and intensive care unit (ICU) admission, in-

troduction of new cases through travel). Furthermore, using metaheuristics like GA

and SA enables the exploration of the vast search space and reach (near-)optimal

strategies effectively, as opposed to the simple heuristics proposed in the literature.

2.2 COVID-19 Models and Response Policies

COVID-19 is a respiratory illness caused by a novel type of the coronavirus called Se-

vere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has proven to

be a dangerous pathogen due to its high infectivity, long incubation period, and acute

health impact on the population. Compartmental models have been used extensively

to study the spread of the virus and to evaluate potential intervention policies. Among

them, modified SEIR models were the most widely used since they were deemed more

suitable to capture the disease profile. Two representative examples for COVID-19

are Tuite et al. (56) and Giordano et al. (14) which utilized modified SEIR models,

though with different additional compartments, to evaluate interventions such as case

identification or contact tracing, case isolation, and social distancing. Both reached

the same conclusion, that contact tracing and isolation on their own are insufficient to

prevent the epidemic spread and that social distancing measures are necessary to pre-

vent over-burdening of the health system. Tuite et al. (56) also compared fixed versus

dynamic strategies and showed that dynamic strategies have a comparable effective-

ness in maintaining cases below ICU capacity but result in less overall time under

restrictive policies. However, neither of the models offered precise policy prescrip-

tions in terms of how the reductions associated with physical distancing strategies

that were modeled are to be achieved. Another limitation was that policymakers

must have the strategy determined beforehand to test.

A few models in the literature attempted to evaluate and devise response strate-

gies while considering the opposing goals of reducing infections and the economic and

health burdens simultaneously. Toda (55) used two separate models, an SIR com-

partmental model, and a stylized production-based asset pricing model, respectively,

to evaluate the disease spread and economic impact. An optimal policy introduc-

ing social distancing depending on the average number of cases was determined and

showed a reduction of 21.8 % in peak cases. The economic model used to evaluate
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the intervention policy showed that while it leads to two disease peaks, its expected

economic decline is moderate, amounting to 10% only compared to 50% for the single

peak base case. Guadalupe (58) also used an SIR model while measuring economic

impact by looking at the time to reach steady state for different quarantine strate-

gies. It is assumed that the faster a policy results in reaching steady state it will have

a lower impact on the economy. Both models have the same limitation seen above

where they do not offer detailed strategies on when to implement interventions and for

how long. Popa (39) proposed a combinatorial optimization model to optimize social

distancing policies while taking into consideration their impact on the economy. For

a given total budget, the model determines its optimal allocation between isolating

people and closing facilities. Hence, it requires a significant amount of granular data

e.g., all facilities and the associated cost of closing them, as well as people and their

associated cost of isolating, making it difficult to test and validate. Other models

that evaluated case management strategies included: a system of integro-differential

equations (25) and dynamic transmission models based on the Erlang and Poisson

distributions (64). The models used similar interventions including lockdowns, social

distancing, and contact tracing. They also had similar results stating the importance

of using all interventions concurrently to ensure that health systems are not over-

whelmed by cases. Furthermore, it is shown that early lockdown without additional

public health interventions will result in a delayed second wave of similar magnitude

once restrictions are lifted.

As COVID-19 remains to be a major threat, new models are being developed to

offer insights into managing it from a policy perspective. However, a notable gap

with the current models is that, while they show that public health interventions

are needed to manage COVID-19 cases, they do not offer precise prescriptions that

inform policymakers what level of intervention to implement and when. Moreover,

these models, regardless of their accuracy and sophistication, can evaluate only the

strategies predetermined by the policymaker, but not develop new ones. This re-

search fills these gaps by developing a systematic approach that enables detailed and

dynamic response strategies to be generated and evaluated efficiently, thus helping

policymakers to make informed decisions.
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2.3 Research Aim and Objectives

The gaps highlighted in the previous section give rise to the aims and objectives of this

research. The aim of the research is to develop prescriptive decision support tools for

policymakers to devise optimal policy strategies to minimize the impacts of infectious

disease spread. These tools should be capable of being adapted to various diseases or

locations with the adjustment of model parameters. The objectives include:

1. Develop a compartmental model to accurately depict the transmission and

health impact of COVID-19 in NS

2. Construct a simulation-optimization framework that uses the compartmental

model along side an optimization algorithm to derive optimal response strategies

to minimize the economic and health burden

3. Test opening scenarios in NS of varying strictness

Each of these objectives is addressed in one of the following three chapters: SEIR

Compartmental Model (3), Simulation-Optimization Approach (4), and Scenario

Testing (5).



Chapter 3

SEIR Compartmental Model

In this section, the central component of the decision support tools is presented,

which is a modified, age-stratified SEIR model that evaluates the health impact (i.e.,

total number of infections) of response strategies. This section begins by outlining

the model structure, then describing the response policies considered, presenting the

mathematical formulation, and finally showing how the model is verified and vali-

dated.

The SEIR model is a compartmental model in which the population is divided into

compartments and people move between compartments at different rates of transfer

(4). It is an expanded version of the famous Kermack-McKendrick’ SIR model (27)

with an exposed compartment added. The susceptible (S) compartment contains peo-

ple who are able to contract the disease. The exposed (E) compartment has people

who have been infected but are not yet infectious. The infected (I) compartment con-

sists of people who are infectious and capable of spreading the disease. The recovered

(R) compartment contains people who have been infected and either have immunity

or died, meaning they can no longer get the disease and spread it to others. The

independent variable in the model is time, and the rate of transfer between compart-

ments is described mathematically using differential equations. Figure 3.1 shows a

flowchart representation of the SEIR model, highlighting the different compartments

and the flows between them. This flowchart is based on the model structure devel-

oped in Tuite et al. (56). A stock-and-flow diagram of the same model (constructed

using Vensim) is shown in Figure 3.2. The model begins with the susceptible com-

partment which encompasses the population under study. Susceptible can lead into

two categories: exposed, which refers to people who have been exposed to the dis-

ease and are continuing to move around the community, and exposed (quarantined),

which refers to people who have been exposed to the disease but have been identified

11
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through contact tracing and are self-isolating according to restrictions. The two ex-

posed streams transition into the pre-symptomatic infection period where individuals

can spread the disease but do not have symptoms yet. The infection period follows

the pre-symptomatic period and is classified by mild-moderate or severe. The sepa-

ration of infection into two categories is because individuals have different likelihood

of outcomes depending on the disease severity. When an individual moves into the

severe compartment it does not mean they go from no symptoms to severe symptoms.

It means the individual will develop into a severe case, whether initially they have

mild to moderate symptoms or start with severe symptoms. The mild-moderate com-

partment and a portion of the severe compartment will recover, while the remaining

severe cases will move into the hospitalization compartment. From the hospital, pa-

tients can recover or move into the intensive care unit (ICU). Those patients in the

ICU can then recover or die.

Figure 3.1: Flow diagram of disease compartments used in the modified SEIR model
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Like most compartmental models, the SEIR model is built on basic assumptions,

including that the epidemic process is deterministic and that the number of members

in a compartment is a differentiable function of time, which only becomes accurate

once there are significant number of infections. It is also assumed that the time scale

of the disease is much faster than births and natural deaths, so demographic effects

are ignored. Furthermore, the following assumptions are made in the SEIR model:

1. No re-infection is possible and recovered individuals remain immune;

2. The model runs in periods of one week, meaning that a policy change can occur

at a maximum of once per week;

3. An individual is only infectious during the pre-symptomatic, mild-moderate,

and severe compartments;

4. Individuals have the same duration in a compartment regardless of age or health

status; and

5. The model is a closed system and the population is constant.

The model is based on the case study of COVID-19 in NS and all inputs are

modified to accurately depict it. These inputs include population demographics and

health status.

3.1 Model Parameters

The age distribution of the NS population was incorporated by stratifying by age, and

each group was further stratified by health status. There are seventeen age groups

in 5-year increments using 2019 population data from Statistics Canada (48). The

health status stratification comprises of two categories: those with and those without

comorbidities. A comorbidity is an underlying health condition or disease that is

present within an individual. Examples of common comorbidities include: heart

disease, asthma, diabetes, stroke, and cancer. It is important to understand the health

characteristics of the population, as it has been found that underlying conditions can

have a significant impact on patient outcomes (61; 59). Statistics Canada released

population health data outlining the percentage of the population by age category
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Figure 3.2: Detailed stock and flow diagram developed in Vensim
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with at least one underlying health condition that will increase the likelihood of a

severe outcome given infection with COVID-19 (47). This data only pertained to

Canadians over age 18, thus, to account for increased severity in Canadians under 18,

Asthma data was used (16). It was assumed this would be sufficient as the majority of

younger people do not have diseases such as hypertension or stroke. The parameters

describing the clinical course of COVID-19 were derived from Tuite et al. (56) and

can be seen in Table 3.1.

Due to the evolving nature of COVID-19 there is limited data about the disease

parameters, transmission dynamics, and impacts of policy restrictions. There is a

wide variety of publications and research which resulted in a large range of estimates

used for modelling. For example, Tuite et al. (56) estimated the latent period to be

2.5 days in their model whereas Giordano et al. (14) used a latent period of 0 days. As

the knowledge and body of research surrounding COVID-19 increases it can be noted

that parameters such as basic reproduction number or patient outcomes, like death,

change based on the population demographics, COVID-19 variant under study, and

social norms within a region. Gallo et al. (13) completed a rapid review of literature

to identify and quantify epidemiological parameters that impact COVID-19 transmis-

sion. The review’s key findings were that the basic reproduction varied between 0.48

and 14.8, and was very sensitive to local context. The median hospitalization time

also had significant variation, between 1 and 3 weeks. In this thesis, the variation

in data was dealt with by choosing reliable sources and reviewing parameters with

NSHA experts to verify they were inline with what was being observed within NS.

3.1.1 Contact Tracing

Contact tracing is a public health intervention used to control the spread of COVID-

19. It is the process of identifying, assessing, and managing individuals who have been

exposed to COVID-19 to prevent further transmission. In NS, once an individual is

contacted, there are three potential action plans depending on their risk level (36).

The action plans have changed throughout the pandemic for each risk level: low,

moderate, and high. As of February 2021, a low risk classification does not require

any action, but it is recommended they complete a phone assessment. A moderate risk

must take a COVID-19 test and self-isolate while waiting for the results. If the test
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comes back negative, self-isolation is no longer required. A high risk must self-isolate

for 14 days, record their temperature daily, and take a COVID-19 test. Regardless of

the test result, the individual must isolate for the full 14 days. Contact tracing was

incorporated into the model by adding a quarantine stream. All individuals identified

through contact tracing will flow through the quarantine stream. In consultation with

NSHA it was determined that their conservatively estimated ability to trace contacts

was 30%. This means they are able to identify 30% of an infected persons contacts

and inform them of the exposure.

3.1.2 Case Importation

Travel restrictions are another public health intervention that can be implemented

to manage infections and the transmission of COVID-19. By restricting travel, the

opportunity for introduction of new cases is limited, which minimizes the likelihood

of community spread and increased cases. Travel restrictions have clear benefits when

the region has few or no cases, which has been the case in NS (46). There are four

different levels of travel policies in the model: No travel, Atlantic Canada travel, Na-

tional travel, and International travel. For each travel policy, the estimated number of

daily imported COVID-19 cases was determined. The purpose of separating domes-

tic travel into National and Atlantic was due to the implementation of the Atlantic

Bubble. The Atlantic Bubble was the agreement among Atlantic Canadian provinces

that permitted free movement between them without the need for isolation (17).

Statistics Canada provides data for the number of international and domestic

travellers that visited NS in 2017 and 2018 (50; 49). This data was used to estimate

the number of people that visit NS from within Canada and from outside of Canada,

respectively. A simplifying assumption was made that the travellers are evenly dis-

tributed throughout the year. The yearly estimate was used to determine the number

of incoming travellers per day. The international travel data from Statistics Canada

reported the top 13 countries international travellers originate from. The prevalence

of COVID-19 was then estimated in cases per million for each country (44). Bhatia

and Klausner (3) determined the probability that a random community contact has

COVID-19 in the United States. A ratio of cases per million between the United States

and the remaining 12 countries was used to determine the probability of a random
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traveller having COVID-19 for each country. The international travellers originating

from the United States accounted for approximately 4/5 of all travellers with the

remaining 1/5 spread between the remaining countries. Therefore, a weighted aver-

age probability for an international traveller was determined, with the United States

accounting for 78.05% and an average of the other countries for the other 21.95%.

The weighted average probability of a traveller having COVID-19 is dependent on

the country of origin in combination with the quantity of daily travellers, allowing

for the calculation of the number of daily incoming travellers with COVID-19.

In the model, the imported cases were defined in terms of the subscripts: age group

and health status. Statistics Canada describes the age distribution of people that

travel domestically in Canada. It was assumed that incoming international travellers

would have a similar age distribution. This data was then applied to each case

importation rate, including international, to determine the distribution of incoming

COVID-19 cases. The incoming travellers need to be assigned a health status in

the model, it was assumed that travellers would be healthy and therefore have no-

comorbidities. While this may not be realistic, the number of imported cases is

relatively small in comparison to the size of the NS population, so it should have

little impact on the results. When cases are imported, they come directly from the

existing susceptible population and move into the exposed compartments because the

model assumes a closed population. It is assumed that infected travellers will interact

with the NS population and cause new infections.

3.1.3 Transmission

While transmission occurs during some form of contact between individuals, contact

with an infected individual does not guarantee transmission of infection. The trans-

mission rate is a combination of the contact rate and the probability of transmission

upon contact (27). In this thesis, the probability of transmission upon contact is re-

ferred to as transmissibility. The probability is dependent on several factors including

the closeness and duration of the contact, infectivity of the disease, and susceptibility

of the individual. Transmissibility can be impacted by public health interventions

such as social distancing, which reduces the likelihood of transmitting the disease

by increasing the distance between individuals. The transmissibility value given no
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interventions used for this research was 15.6% (38). This value was taken from a

study in Phuket, Thailand that recorded the percentage of high risk contacts of in-

fected individuals that had developed COVID-19. A high risk contact was defined as

a contact who spent longer than five minutes exposed to a confirmed case without

a facial mask or being within physical distance of one meter. The simulation model

includes two public health interventions that impact disease transmissibility: masks

and social distancing. Chu et al. (6) studied the impact of different interventions,

including social distancing, wearing eye protection, or wearing masks on the reduction

in transmission of respiratory diseases. A comparison group and intervention group

were used to show the chance of viral infection with and without the intervention i.e.

social distancing. The study found that incorporating social distancing resulted in

a reduction in transmission of 10.2%, with a 95% CI of [%11.5, %7.5], and wearing

masks alone resulted in a reduction of transmission of 14.3%, with a 95% CI of [%15.9,

%10.7]. The authors estimate their confidence in the results, stating that the effect of

social distancing has moderate certainty and wearing masks has low certainty. The

low certainty in masks is partially attributed to the utilization of different mask types

including: N95 or surgical. This is a limitation with the study as different mask types

could potentially result in a more or less substantial reduction in transmission. The

reduction in transmissibility of 10.2 points was used because of the higher certainty;

therefore, the transmissibility with public health interventions in place was estimated

to be 5.4%. A limitation with the data is that it is assumed that there is 100% mask

and social distancing compliance, which results in a full reduction in transmissibility.

3.1.4 Contact Matrices

Transmission of COVID-19 is driven by individuals’ social contacts. The definition

of a social contact is taken from Mossong et al. (35) where it is defined as either

skin-to-skin contact such as a kiss or handshake (a physical contact), or a two-way

conversation with three or more words in the physical presence of another person but

no skin-to-skin contact (a nonphysical contact). The study found that contact pat-

terns were highly assortative with age: schoolchildren and young adults in particular

tended to mix with people of the same age (35). The typical SEIR framework as-

sumes homogeneous mixing between individuals, which does not accurately represent
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population mixing dynamics. To mitigate the impact on the validity of the model,

mixing between individuals was stratified by age. Mossong et al. (35) determined

contact patterns for different age groups to help understand the spread of respiratory

diseases. The study collected data from 8 countries: Poland, Belgium, Germany,

Finland, Great Britain, Italy, The Netherlands, and Luxembourg. An average of the

age-age contacts for all countries was used to determine the contact matrix with no

public health interventions. The contact matrix was calibrated using the transmissi-

bility parameter to get an acceptable basic reproduction number (R0) of 3.47 (37),

where R0 represents the number of secondary infections cause by a single infected

member into a completely susceptible population. Its value determines whether a

disease will cause an epidemic (when R0 > 1) or the infection dies (when R0 < 1).

The public health interventions selected that could impact contact rates were defined

in five different combinations with varying strictness. Examples of interventions in-

cluded no day care, moving public school to online platforms, moving universities

to online platforms, and restricting access to long-term care facilities. The no inter-

vention contact matrix was extrapolated into 4 new contact matrices, each of which

represented the estimated effect of the interventions on daily contact rates. For ex-

ample, if the intervention of no day care was in effect, the age to age contacts for

individuals aged 0 to 4 were reduced to 0. As well, if universities were online the age

to age contacts for individuals aged 20 to 24 were reduced to 0.

3.2 Response Policies to Epidemics

Governments and health authorities can implement different policies to contain, and

hopefully eradicate, epidemic outbreaks like COVID-19. Examples include setting

limits on gathering sizes, imposing travel restrictions, quarantining symptomatic and

high-risk individuals, conducting contact tracing, and promoting or mandating PPE

usage. Each policy has multiple levels of strictness and scopes of implementation in

terms of duration, geographical boundaries, and/or target population. For instance,

gathering limitations can be very mild (e.g., allowing up to 100 people to gather in

one place) or very strict (a total curfew), can extend for hours or months, and cover

few communities or the entire country. Each policy alternative has quantifiable effects

on the spread on the disease, along with economic and social costs. In general, one
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can expect that the stricter the policy is and the longer it is applied, the greater

the effect it has in reducing the spread, albeit the higher it costs. A rational decision

maker would try to maximize the positive spread reduction effects of the implemented

policies while minimizing their costs, giving rise to a multi-objective problem. It is

not easy to develop an exhaustive list of response policies that could be used during

epidemic outbreaks. However, this work focuses on three overarching categories:

closure, protection, and travel.

The policies used in this model were derived by reviewing the policies implemented

within NS from March through July 2020 (5). This allowed for review of a large

variety of policies of varying strictness. Generally speaking, policies implemented

during March and April imposed strict restrictions on the population, whereas the

policies from May through July gradually relaxed some restrictions. Therefore, a wide

range of policies implemented in NS were observed and could be used to infer what

policies would be used in the future given the state of infections within the province.

Examples of these restrictions include: closing childcare facilities, stopping elective

surgeries, closing personal services, and online public school. The list was consolidated

into three overarching categories, closure, protection, and travel, and each category

was narrowed down into policies which could be quantified and were assumed to

have a significant impact. The main closure components are gathering limitations

and closure of public schools, universities or colleges, daycare facilities, businesses

such as restaurants and stores, and public outdoor facilities. These policies focus on

reducing the average number of daily contacts of an individual. There are five different

closure levels which all have different strictness ranging from keeping everything open

to sheltering in place. Protection policies focus on reducing transmissibility, and

account for the implementation of social distancing and masks. Two protection policy

alternatives are considered: enforced and not enforced. Social distancing and masks

are combined into one policy as they are commonly enforced together. However,

they could be separated into two alternatives. This would allow more flexibility by

not restricting the capacities of businesses to allow for social distancing, and only

reducing transmissibility through the use of masks. There is also data available on

their effectiveness in reducing spread as seen in Chu et al. (6), however, the results

are strongly associated to the mask type, such as an N95 versus cotton, which led to
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the simplification of combining social distancing with masks. The travel restriction

policies account for the limitations on travellers to prevent case importation. There

are four travel policies, where level one is allowing all travel including international

and domestic, and level four is disallowing all travel. A summary of each policy class

and their levels can be seen in Table 3.2.

The weekly economic cost was determined for each policy. The closure policy costs

were determined using the reduction in Canadian Gross Domestic Product (GDP) in

NS (52). The GDP in February 2020 was taken as a baseline (i.e., level 1) while the

GDP in April 2020 was used for the strictest closure policy (i.e., level 5). The three

policies in between were scaled based on the estimated average daily contacts. The

protection policy costs were estimated based on the GDP specifically for restaurants

and accommodations (52). Again, the GDP in February 2020 was taken as the

baseline while the GDP in July/August was used for level two. The reasoning is

that April 2020 had the most significant drop at 18%; however, as business began

opening with restrictions, it increased and leveled off in July and August prior to the

second wave. The travel policy costs were based on the estimated loss of tourism

GDP (51). It was estimated that 20% of tourism is from international visitors while

80% is from domestic visitors (30). Combining the GDP loss and visitor estimates,

a cost was determined for each level. A limitation of the approach used to estimate

the cost data is that it ignores the potential interaction between the costs of different

interventions. The cost for each policy alternative can be found in Table 3.2.

3.3 Model Formulation

Table 3.3 depicts the notations used to formulate the compartmental model. The

model consists of the system of equations (3.1)-(3.15), which describe the flow of

individuals with age group i and co-morbidity status k between the different com-

partments in the simulation model. The flows are later approximated using algebraic

(difference) equations in the discrete time simulation model by replacing dt with Δt,

where Δt is the simulation step size and was set at 0.25 days. Most equations are self

explanatory, though a few clarifications are warranted. As shown in Figure 3.1, the

flow from the Susceptible compartment splits into two streams depending on whether

the case is discovered and isolated or not. Both streams go through the same steps
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Table 3.2: Description and cost of closure, protection, and travel policy alternatives
Type Level Description Cost ($)
Closure

1 No closures 0
2 Mild restrictions 54,232,512
3 Moderate restrictions 114,530,501
4 Severe restrictions 147,530,815
5 Shelter in place 204,807,485

Protection
1 No interventions 0
2 Masks required and social distancing 7,619,073

Travel
1 International travel 0
2 Domestic travel 214,795
3 Atlantic travel 1,040,711
4 No travel 1,073,975

and merge again in the Hospitalized and Recovered compartments. Also, all cases

introduced through travel are assumed to be in the exposed phase, thus are added

to the Exposed compartments (with or without quarantine, depending on the policy

applied) and deducted from the Susceptible compartment to keep the total popula-

tion unchanged. It is clear that the flows are dependent on selection of the closure,

protection, and travel policies.
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Table 3.3: Model notations
Indices
i, j Age group, i, j = 1, . . . , J
k Co-morbidity status, k = 1, . . . , K
t Time period, t = 1, . . . , T
l Closure policy, l = 1, . . . , L
p Protection policy, p = 1, . . . , P
q Travel policy, q = 1, . . . , Q
Parameters
ni,k Population of age group i with co-morbidity status k
ci,j,l Contact rate for a person in age group i with people in age group j under closure policy l
cqi,j Contact rate for a quarantined person in age group i with people in age group j
α1 Average exposure duration
α2 Average pre-symptomatic duration
α3 Average infection duration
α4 Average hospital duration
α5 Average ICU duration
σt Proportion contacts traced
σs
i,k Probability of severe infected, given infected

σh
i,k Probability hospitalized, given severe infected

σc Probability ICU, given hospitalized
σd
i,k Probability death, given ICU

τq Rate of new exposed cases introduced by travel policy q
λi force of infection
λqi quarantine force of infection
γp Transmissibility under protection policy p
Compartments
Si,k Number of susceptible of age group i with co-morbidity status k
Ei,k Number of exposed of age group i with co-morbidity status k
IPi,k Number of infected pre-symptomatic of age group i with co-morbidity status k
IMi,k Number of infected mild-moderate of age group i with co-morbidity status k
ISi,k Number of infected severe of age group i with co-morbidity status k
EQi,k Number of exposed quarantined of age group i with co-morbidity status k
IPQi,k Number of infected pre-symptomatic quarantined of age group i with co-morbidity status k
IMQi,k Number of infected mild-moderate quarantined of age group i with co-morbidity status k
ISQi,k Number of infected severe quarantined of age group i with co-morbidity status k
Hi,k Number of hospitalized of age group i with co-morbidity status k
Ii,k Number of ICU of age group i with co-morbidity status k
Ri,k Number of recovered of age group i with co-morbidity status k
Di,k Number of dead of age group i with co-morbidity status k



25

dSi,k

dt
= −λiSi,k − λqiSi,k − τq (3.1)

dEi,k

dt
=

(
1− σt

)
λiSi,k + τq −

(
1

α1

)
Ei,k (3.2)

dIPi,k

dt
=

(
1

α1

)
Ei,k −

(
1

α2

)
IPi,k (3.3)

dIMi,k

dt
=

(
1− σs

i,k

)( 1

α2

)
IPi,k −

(
1

α3

)
IMi,k (3.4)

dISi,k

dt
=

(
σs
i,k

)( 1

α2

)
IPi,k −

(
1

α3

)
ISi,k (3.5)

dEQi,k

dt
=

(
σt
)
λqiSi,k + τq −

(
1

α1

)
EQi,k (3.6)

dIPQi,k

dt
=

(
1

α1

)
EQi,k −

(
1

α2

)
IPQi,k (3.7)

dIMQi,k

dt
=

(
1− σs

i,k

)( 1

α2

)
IPQi,k −

(
1

α3

)
IMQi,k (3.8)

dISQi,k

dt
=

(
σs
i,k

)( 1

α2

)
IPQi,k −

(
1

α3

)
ISQi,k (3.9)

dHi,k

dt
=

(
σh
i,k

)(
1

α3

)
(ISi,k + ISQi,k)−

(
1

α4

)
Hi,k (3.10)

dIi,k
dt

= (σc)

(
1

α4

)
Hi,k −

(
1

α5

)
Ii,k (3.11)

dDi,k

dt
=

(
σd
i,k

)(
1

α5

)
Ii,k (3.12)

dRi,k

dt
=

(
1

α3

)
(IMi,k + IMQi,k) +

(
1− σh

i,k

)(
1

α3

)
(ISi,k + ISQi,k) + (1− σc)

(
1

α4

)
Hi,k

+
(
1− σd

i,k

)(
1

α5

)
Ii,k (3.13)

λi = γp

J∑
j=1

ci,j,l

(∑K
k=1 (IPj,k + IMj,k + ISj,k)∑J

j=1

∑K
k=1 nj,k

)
(3.14)

λqi = γp

J∑
j=1

cqi,j

(∑K
k=1 (IPj,k + IMj,k + ISj,k)∑J

j=1

∑K
k=1 nj,k

)
(3.15)

3.4 Model Verification and Validation

In what follows, a brief explanation on how the compartmental model was verified and

validated is provided. Verification aims to ensure that the computer programming

and implementation of the conceptual model are correct. Validation, on the other

hand, aims to ensure that the system accurately depicts reality.
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3.4.1 Verification

Model verification was primarily performed by comparing the results obtained from

three computer programs written based on the conceptual model using different plat-

forms: an Excel spreadsheet, a Vensim stock-and-flow model (Figure 3.2), and a

computer code on Julia. The Vensim model was built first in small sub-modules that

were tested and debugged individually before being added up iteratively until the en-

tire model is assembled. The equations were then written in excel to verify they were

operating as intended in Vensim. The Julia code was completed last and eventually

used in the simulation-optimization framework. Several instances were tested in each

platform and ensured that all three models led to the same results.

3.4.2 Validation

Model validity was established by, first and foremost, determining its structure in

consultation with health policy experts at NSHA and obtaining its data from highly

credible sources. Moreover, a sensitivity analysis was performed to understand the

uncertainty around the input parameters and their impact on cumulative infections.

The parameters selected were transmissibility, contact rate, quarantine contact rate,

probability tracing, exposure duration, pre-symptomatic duration, infection duration,

and initial infected. To perform the analyses, some model parameters were replaced

by a weighted average to allow for sampling. Two sensitivity analyses were performed:

univariate and multivariate. The univariate analysis focuses on the effect of each pa-

rameter individually. The parameter values are initialized using the current value

defined in Chapter 3 or a weighted average such as for contact rate. The parameters

that changed depending on the subscripts such as age or comorbidity status were

modified to a weighted average, as a subscripted value cannot be sampled. The simu-

lation time was set to 100 days. During a simulation run, the model will sample from

a uniform random distribution to determine a new parameter value while holding all

other parameters constant. The uniform distribution limits for each parameter were

± 10% of the nominal/mean value. For example, the probability tracing parameter

is initialized at 0.3, and during a run the model will sample between [0.27,0.33]. An

output parameter needs to be defined and the model will monitor how the changed

parameter will impact the output. The output selected was cumulative infections.
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Figure 3.3: Univariate sensitivity analysis of model parameters on cumulative infec-
tions over a 100 day period

There were 200 simulation runs performed for each parameter for a total of 1600

runs. Figure 3.3 displays the results of the univariate analysis on cumulative infec-

tions over 100 days. The confidence bounds at 50%, 75%, 95%, and 100% are also

included. The minimum cumulative infections, maximum cumulative infections, and

range from the set of 200 simulations for each parameter are summarized in Table

3.4.

Table 3.4: Univariate sensitivity analysis results on cumulative infections by param-
eter over a 100 day period

Parameter Minimum Maximum Range

Transmissibility 549,683 901,984 47%
Contact Rate 574,184 875,188 43%
Contact Rate Quarantine 812,042 829,335 2%
Probability Tracing 759,003 860,514 14%
Exposure Duration 784,656 847,144 8%
Pre-symptomatic Duration 802,829 836,4038 4%
Infection Duration 732,640 870,382 18%
Initial Infected 813,278 827,236 2%

The results of the univariate analysis show that changes in the transmissibility and

contact rate have the most significant impact on the cumulative infections. The users

of the model should take into consideration the potential inaccuracy in the model

output if these values are not accurate. The parameters should also be updated as

new information becomes available on the transmission of COVID-19. The remaining
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Figure 3.4: Multivariate sensitivity analysis of model parameters on cumulative in-
fections over a 100 day period

parameters have a smaller impact on model output and therefore do not need to be

scrutinized or updated to the same degree.

The multivariate analysis observes the impact of changing model parameters si-

multaneously. The same parameters used in the univariate analysis were used in the

multivariate analysis and a simulation period of 100 days was selected. During a sim-

ulation run, the model will sample from a uniform random distribution to determine

a new parameter value for all parameters. The uniform distribution limits for each

parameter were ± 10% of the nominal/mean value. There were 200 simulations per-

formed each with a different combination of parameters within the uniform random

distributions. Figure 3.4 displays the results of the multivariate analysis on cumula-

tive infections over 100 days. The confidence bounds at 50%, 75%, 95%, and 100%

are also included. The multivariate analysis results show that there are interaction ef-

fects between the parameters and changing them simultaneously results in significant

variation in the model output. The minimum and maximum number of infections

obtained from the multivariate sensitivity analysis were 130,239 and 938,060 people,

respectively.

Lastly, the model output was retrospectively compared to the initial infection wave

that occurred in NS. The policies were combined and implemented following a similar

timeline to what was actually enforced. The model was run for a period of 120 days

starting on March 1st, 2020. The model resulted in 1070 cumulative infections with a

peak daily cases of 429, while NS had 1087 cumulative infections with a daily peak of
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422. Figure 3.5 shows the active cases obtained from the model and the actual active

cases for NS. Although this model predicted a faster spread and an earlier peak of

the epidemic, the differences in cumulative infections and daily peaks were 1.56% and

1.57% only, leading to the conclusion that the model is valid.

Figure 3.5: Compartmental model active infections and Nova Scotia active infections
from March 2020 to June 2020

It should be highlighted that the results found in this work are based on previous

parameter estimates found in literature and that the results and inferences are sig-

nificantly impacted by the accuracy of the parameters. To ensure the usefulness of

the results, the parameters should be updated to reflect the most accurate estimates

to date.



Chapter 4

A Simulation-Optimization Approach

The compartmental model described in the previous section is embedded in two sep-

arate optimization frameworks, a time-based, which aims to find a proactive strategy,

and a state-based, which aims to find a reactive one. Using a simulation-optimization

framework enables a large number of response strategies to be evaluated effectively

and accurately, which makes it a favorable alternative to both pure simulation (com-

partmental) and mathematical programming methods. While mathematical program-

ming produces a global optimal, the compartmental model requires substantial sim-

plification which limits the accuracy in assessing the health impact of COVID-19.

Mathematical programming was attempted, however, even with simplifying the SEIR

model significantly, the problem remained too large to be solved. Table 4.1 summa-

rizes the pros and cons of each approach considered.

Table 4.1: Strengths and limitations of different methodologies considered
Strengths Limitations

Compartmental High accuracy and flexibility Few solutions tested
Easy to use Can not explore new strategies

Mathematical Programming Guaranteed optimality Simplified model
All solutions considered Computationally expensive

Simulation-Optimization High accuracy and flexibility Local optimality
Good exploration Difficult implementation

4.1 GA to Optimize Time-Based Response Strategies

A GA is used as the optimization procedure as it enables effective exploration of

the feasible region by gradually evolving towards a superior feasible solution. The

algorithm attempts to find a solution that minimizes the total number of infections,

evaluated using the compartmental model, within a pre-defined budget. Each strategy

(chromosome) is encoded as a matrix of size 3×T , where each column is a tuple (l, p,

q) of closure, protection, and travel policies. For this case study, and as presented in

30
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Table 3.2, the values for closure, protection, and travel are as follows, l ∈ [1, 2, 3, 4, 5],

p ∈ [1, 2], and q ∈ [1, 2, 3, 4]. The budget constraint is implemented in the GA using

a penalty function that penalizes infeasible solutions by reducing their fitness values,

in this case number of cumulative infections from a strategy, in proportion to the

violation of the constraint. The fitness function can be seen in equation 4.1.

fitness = cumulative infections+ penalty ∗max(0, cost− budget). (4.1)

There were two forms of the penalty scalar considered: a static penalty and a dynamic

penalty. The static penalty remains constant while running the algorithm, however,

this can result in the penalty being too strong or too weak at different phases in

the evolution processes. In contrast, the dynamic penalty starts off small to allow a

broad range of solutions then increases during the evolution process to slowly weed out

infeasible solutions. A small analysis was completed to determine values for the static

penalty and the dynamic penalty, and test which would result in the best solution

(minimum cumulative infections). The fixed analysis tested four penalty values and

the GA was run three times for each, for which the results are found in Table 4.2. The

fixed penalty of 0.00001 resulted in the lowest cumulative infections; this value was

then used in the dynamic penalty analysis. While the GA runs, it records the number

of iterations completed and uses the counter to change the penalty value during the

algorithm’s progression. The dynamic functions considered and their results can be

seen in Table 4.3. The first dynamic penalty function resulted in the fewest cumulative

infections and was therefore selected.

Table 4.2: Fixed penalty analysis for the time-based optimization, comparing penalty
values and resulting cumulative infections

Penalty Value Average Cumulative Infections
0.000005 275
0.000001 296
0.00005 259
0.00001 248

The GA is given a budget then runs to find an optimal response strategy. The

budgets range from $0 at no restrictions to $10,675,026,650 at maximum restrictions

throughout the 50 week planning horizon. The GA starts by generating the initial

population of feasible solutions. Initially, the solution generation was random and
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Table 4.3: Dynamic penalty analysis for the time-based optimization, comparing
penalty functions and resulting cumulative infections

Penalty Function Average Cumulative Infections
0.00001×counter 87
0.00001× counter

2 103
0.00001 × counter2 112

would generate a combination of policies using a random function. This was modified

because when the budget was more constrained (less than $2 billion) the algorithm

had a difficult time generating a solution within the budget by using only random

numbers and would run for an excessively long amount of time. The generation

method was modified by determining the midpoint budget between having no restric-

tions and having maximum restrictions, which is $5,337,513,325. If the budget was

below the midpoint then a portion of the solutions generated favoured less expensive

policies, l ∈ {1, 2}, p ∈ {1, 2}, and q ∈ {1, 2} while the remaining solutions were

generated randomly. Conversely, if the budget exceeded the midpoint then a portion

of the solutions generated favoured expensive policies, l ∈ {3, 4, 5}, p ∈ {1, 2}, and
q ∈ {3, 4} and the remaining solutions were generated randomly. The algorithm then

selects parents from the most fit and least fit of the initial population, randomly

pairs the parents into couples, and generates two children solutions per couple using

uniform crossover. Then the children solutions are mutated gene by gene using a

mutation rate of d. The original stopping rule was a set number of iterations without

improvement in the cumulative infections from a strategy. However, after running

the model for several hours, while there were a few (maximum 5) iterations with-

out improvement, overall, the strategy continued to improve over time. This led to

changing the stopping rule to the percent improvement in the new solution over the

previous best solution. This enabled a good solution, approaching the optimal, to be

found significantly faster. For example, the iteration stopping rule took 7 hours to

reach a strategy with 61 cumulative infections and only stopped because of a timer,

whereas the percent stopping rule took 1.5 hours to reach a strategy with 63 cumu-

lative infections. The difference in solution is 3.7%, however, it resulted in a time

savings of 5.5 hours. A pseudocode of the GA is provided in Table 4.4.

The parameters in the GA were optimized using parameter tuning and comparing

the runtime, solution fitness, and solution feasibility at different parameter values.
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Table 4.4: A pseudocode of the Genetic Algorithm
Inputs

Population size n
Number of iterations without improvement l
Number of high fitness parents selected a
Number of low fitness parents selected b
Mutation rate d

Code
1 Set counter = 1
2 Randomly generate initial population of size n
3 Evaluate the fitness of each solution in the population
4 While counter < l do
5 Select a parents from the 50% most fit and b parents from the 50% least fit solutions
6 Randomly pair parent solutions
7 Generate two children from each pair using uniform crossover
8 With probability d, mutate the genes of the children
9 Evaluate the fitness of the children solutions
10 if max(population fitness) ≥ max(children fitness) then
10 counter = counter + 1
10 end if
11 Replace the worst (a+ b) solutions in the population with the children solutions
12 end while
13 Return best solution

There were four parameters that were tuned: percent improvement in solution for

terminating the algorithm, the initial population size, the mutation rate, and the

initial solution randomness. The initial solution randomness is defined as the propor-

tion of solutions generated randomly or generated by favouring policies based on the

budget. There were 6 trials run for each parameter. This was because of the random-

ness in the solution generation, and allowed an average runtime, average number of

infections, and average strategy cost to be determined. The trial values and results

can be found in Table 4.5. The parameters that performed the best, namely trials 2,

4, 8, and 10, were combined in the final algorithm.

The problem under consideration naturally gives rise to a multi-objective opti-

mization problem that has two conflicting objectives: minimizing the total number of

infections and minimizing the economic cost of the response strategy implemented.

The goal of solving such problems is usually to obtain a set of non-dominated so-

lutions, also known as Pareto-optimal solutions, that can be presented to policy-

makers (12). The well-known ε-constraint method is used, which transforms the

multi-objective problem into a constrained single objective optimization problem by
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keeping one objective while turning all other objectives into constraints (11). By min-

imizing the cumulative infections and converting the cost objective into a constraint,

an optimal solution was determined without assigning a monetary value to human

life, which is not always palatable to policymakers. This technique also allows the

decision-maker to set a personalized budget for policy strategies and review alterna-

tives of different budgets. The mathematical formulation of the optimization problem

is provided in equations (4.2)-(4.10).

min f(Xl,t, Xp,t, Xq,t, t = 1, . . . , T ) (4.2)

s.t ci,j,t =

L∑
l=1

ci,j,lXl,t i = 1, . . . , I, j = 1, . . . , J, t = 1, . . . , T

(4.3)

γt =

P∑
p=1

γpXp,t t = 1, . . . , T (4.4)

τt =

Q∑
q=1

τqXq,t t = 1, . . . , T (4.5)

L∑
l=1

Xl,t = 1 t = 1, . . . , T (4.6)

P∑
p=1

Xp,t = 1 t = 1, . . . , T (4.7)

Q∑
q=1

Xq,t = 1 t = 1, . . . , T (4.8)

T∑
t=1

(
L∑

l=1

ClXl,t +
P∑

p=1

CpXp,t +

Q∑
q=1

CqXq,t

)
≤ B (4.9)

Xl,t, Xp,t, Xq,t ∈ {0, 1} l = 1, . . . , L, p = 1, . . . , P, q = 1, . . . , Q, t = 1, . . . , T.

(4.10)

The binary variables Xl,t, Xp,t and Xq,t, respectively, take values 1 if closure policy

l, protection policy p, and travel policy q are used in week t, and 0 otherwise. The

objective function f(.), which counts the cumulative infections, is evaluated through

the compartmental model for given values of the decision variables. Constraints (4.3)-

(4.5) link the decision variables with their corresponding policy selections to obtain

the compartmental model parameters ci,j,t, γt and τt in every week. Constraints (4.6)-

(4.8) stipulate that in each week, exactly one closure, protection, and travel policy

level are selected. Constraint (4.9) states that the total cost of the strategy over the
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entire planning horizon must not exceed the budget B, where the parameters Cl, Cp

and Cq denote the cost of implementing closure policy l, protection policy p, and

travel policy q, respectively, for one week. Note that this constraint is incorporated

into the fitness function of the GA using a linear penalty. Finally, (4.10) is a domain

constraint.

4.1.1 Results

This section presents the results obtained from implementing the proposed framework

on the case study under consideration, NS. For the purpose of demonstrating the ap-

plicability of the proposed framework and to show the trade-off between health and

economic considerations, the optimal response policies over a 50 week period at vary-

ing budgets are found. The strategy cost at maximum restrictions is $10,675,026,650,

while the strategy cost with no restrictions is $0. Originally, eleven budgets were

tested, incrementally decreasing from the maximum to the minimum. However, there

is a large shift downward in infections when the budget increases from $1,067,502,665

to $2,135,005,330. This region was explored further by creating three intermediary

budgets. Table 4.6 depicts the optimal strategies at all budgets and their resulting

cumulative infections. Figure 4.1 shows budgets and cumulative infections plotted

against each other to give the Pareto frontier. This graph visually demonstrates to

policymakers the economic and health trade-off of policy strategies. It is seen that

there is a sudden decrease in cumulative infections as the budget approaches $2B,

a steady linear relation between budget and infections until $7.5B, and diminishing

returns thereafter.

There were similar trends among similar budgets, so three budgets, a low cost

($1,334,378,331), medium cost ($3,202,507,995), and high cost ($7,472,518,655) are

compared to demonstrate the different trends. The remaining strategies are provided

in Appendix A and the costs and infections can be found in Appendix B. All three

strategies, with the policy decision in each time period are displayed in Figure 4.2.

For each budget the first row is the closure policy, the second row is the protection

policy, and the third row is the travel policy. The heat map shows strict policies as

darker and gets lighter as policies are less strict. Figure 4.3 depicts the resulting cost,

cumulative infections, and weekly cases for each.
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Table 4.6: Incremental budgets and cumulative infections over a 50 week period
Budget Cumulative Infections

1 0 693705
2 1,067,502,665 636591
2.1 1,334,378,331 554338
2.2 1,601,253,998 491254
2.3 1,868,129,664 2613
3 2,135,005,330 2419
4 3,202,507,995 1290
5 4,270,010,661 748
6 5,337,513,325 476
7 6,405,015,990 256
8 7,472,518,655 70
9 8,540,021,320 71
10 9,607,523,985 66
11 10,675,026,650 59

Figure 4.1: Cumulative infections plotted against cumulative strategy cost for all 14
budgets

Figure 4.2: Weekly policy strategy heatmap for low, medium, and high budgets over
a 50 week horizon
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Figure 4.3: Cumulative infections, weekly infections, and cumulative strategy cost for
low, medium, and high budgets over a 50 week horizon
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4.1.2 Analysis

There are different trends that can be seen at the different budget levels. The higher

budgets, starting at $7,472,518,655 and up, effectively place no restriction on the

budget. The model chooses to impose strict policies to keep the number of cumulative

infections at a very low level, all below 100. If all restrictions were at their maximum,

the resulting infections is 55, therefore, once the budget approaches $7.5 billion there

are diminishing returns and it is unnecessary to continue increasing the budget. Figure

4.2 shows that throughout nearly the entire 50 week planning horizon, the closure

policy cycled between 3, 4, and 5, while spending the most time in 5 (i.e., shelter

in place). Furthermore, social distancing and wearing masks were enforced 70% of

the time. When it comes to travel policies, the model almost always selected stricter

policies. The no travel policy, 4, was selected 78% of the time with Atlantic travel,

3, being selected 20% of the time. The third row in Figure 4.3, shows the progress of

cumulative infections and spending over time for the high budget scenario. The cost

over the planning horizon is linear while the infections have a few spikes but remain

low over all. Starting at budget 8 ($7,472,518,655), the model spent 91.11% of the

budget, however, as the budget increased, less of the overall budget was used with

scenario 11 spending only 74.5% of the total budget.

When the budget is cut to the medium range ($2 billion to $6 billion), the closure

policies become more dynamic and proactive. Instead of the strict closures, the model

recommended alternating between strict and lenient closure policies. In particular,

a no closure policy is implemented for a few weeks, followed by a partial closure

for another week or two. This pattern clearly demonstrates an attempt to contain

outbreaks as they reach a critical level, then relaxing the closure policy to salvage

the economy, a strategy that might be suitable to countries with modest financial

resources. Interestingly, the “shelter in place” closure policy was selected only 4% of

the time, likely due to its high cost. It is also interesting to note that even when the

budget is significantly reduced, the stricter protection policy (practice social distanc-

ing and wear masks) remained unchanged, being implemented 74% of the time. This

policy has one of the lower financial impacts as it does not force businesses to close,

but modify their operations and capacity to ensure patrons are able to social distance.

It also has a high impact on spread because it reduces the transmissibility from 15.6%
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to 5.4%. Therefore, having people social distance and wear masks should always be

enforced. Finally, travel policies oscillated between all four levels with some negative

correlation between the travel and closure policies, meaning that international and

domestic travel is more likely to be allowed during closure weeks and prevented when

there is no closure. Row 2 in Figure 4.3 shows the progress of infections and spending

over time for the chosen medium budget scenario ($1,868,129,664). One can see that

the proactive interventions recommended kept the growth in cumulative infections

almost linear, as opposed to the exponential growth expected without them. The cu-

mulative infections remained below 3000, and the cost is seen to be cyclical to match

the increases and decreases in policy strictness.

Finally, the low budget scenario oscillated between closure policies 1 (27/50 weeks)

and 2 (23/50 weeks). This is expected since closures are extremely expensive. Like

the two other scenarios, social distancing and wearing masks were recommended but

only in a cyclical pattern during the first 16 weeks of the planning horizon. This is

likely from the model trying to reduce infections as long as possible but not having

sufficient budget to implement the protection policy for longer. The travel policies

recommended are generally more relaxed than in the other scenarios, ranging between

international travel and national travel. Row 1 of Figure 4.3 shows the progress of

infections and spending over time for the low budget scenario. Spending sprees were

observed whenever a strict closure policy was implemented. The cumulative infections

increased more than 200 times compared to the medium budget case. The strategic

interventions implemented were sufficient to reduce infections, however, exponential

growth was still observed.

The results obtained can, to a great extent, explain the pandemic pattern observed

in NS, where a high value was placed on minimizing infections and ensuring that cases

did not exceed healthcare capacity. The economic impact was considered secondary

to the healthcare impact. This is evidenced by the strict long term policy strategy put

in place while there were few identified cases and maintained until the total active

cases began to drop. Between March 4, 2020 and Mach 22, 2020 the Government

of NS implemented various restrictions limiting interactions until finally declaring

a provincial state of emergency. At this point, there was a maximum limit of five

people gathering, several businesses were closed or limited to contactless service, and
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movement outside the home was greatly restricted. These measures remained in place

until May 2020 when restrictions began to relax. The responsiveness and strict policy

strategy was able to drive the total active cases from a peak of 422 on April 24, 2020

to zero by June 22, 2020 (5).

4.2 SA to Optimize State-Based Response Strategies

The time-based framework in section 4.1 has advantages and disadvantages that im-

pact its applicability to real life situations. The entire strategy is determined at the

beginning of the planning horizon, which can be beneficial as it allows people to

prepare for moving between restrictions. However, this means that the strategy is

inflexible and does not account for uncertainty. There are scenarios that the SEIR

compartmental model does not account for, such as super spreader events, which

could have a major impact on policy restrictions. An alternative approach to the

time-based framework is a state-based framework which chooses policy restrictions

based on the current state of the system. The current state could be defined as the

number of new infections, the number of deaths, number of new hospitalizations, or

another metric. The number of new infections was chosen over other metrics due to

the fact that the infections are identified before a case reaches hospitalization or death

and allows for faster reaction to surges in cases. An example of a state-based strat-

egy is what NS has implemented throughout the COVID-19 pandemic by modifying

restrictions based on increases or decreases in infections.

The state-based simulation-optimization framework was created using a similar

SEIR compartmental model, however, policy levels were used instead of having in-

dividual closure, protection, and travel policies. There are 6 policy levels, each with

a specific combination of all three policy types at varying strictness’s. The levels

were derived by reviewing the policy combinations implemented within NS and are

provided in Table 4.7. The framework determines optimal thresholds for changing

between the policy levels based on the cumulative cases in the previous time period,

which was set at 1 week. Thresholds were chosen for shifting between policies in-

stead of having policies be a direct function of new infections, meaning the model

is not constantly oscillating between policies and does need to move in steps. The

state-based framework has 10 limit variables that need to be optimized:
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1. Limit moving from level 1→2 (UL12);

2. Limit moving from level 2→1 (LL21);

3. Limit moving from level 2→3 (UL23);

4. Limit moving from level 3→2 (LL32);

5. Limit moving from level 3→4 (UL34);

6. Limit moving from level 4→3 (LL43);

7. Limit moving from level 4→5 (UL45);

8. Limit moving from level 5→4 (LL54);

9. Limit moving from level 5→6 (UL56);

10. Limit moving from level 6→5 (LL65);

The limits are separated by policy because it allows for gradual implementation of

restrictions that are tailored to the current state of infections. For example, if a surge

of 20 cases occurs, the next policy level can be implemented and the resulting cases

that week will show if the increased restrictions was sufficient to stop the spread.

If the cases continue to rise and there are 30 new cases, then restrictions can be

tightened further until the outbreak is stifled, where restrictions will begin to relax.

The limits were also separated into upper limits and lower limits because restrictions

should be increased when there are rises in cases, and restrictions should be decreased

when there is a reduction in cases.

Table 4.7: Summary of policy levels implemented in NS
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Closure 1 1 2 3 4 5
Protection 1 2 2 2 2 2
Travel 1 2 3 3 4 4

A few different optimization algorithms were considered including: GA, Tabu

Search (TS), and SA. The GA method is a population-based method that generates

and evaluates solutions randomly, which inevitably leads to many solutions that do
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not make sense, such as the lower limits being larger than the upper limits. The

randomness and the reduction in variables to 10 limits meant that GA was not the

most effective optimization approach. Whereas with the neighborhood-based methods

of TS and SA, if the current solution is sensible, most of its neighboring solutions

will also be sensible. SA was selected over TS because it selects neighbor solutions at

random to search the neighborhood, whereas TS requires the entire neighborhood to

be enumerated (22). As well, the SA moves in small (and largely controllable) steps,

whereas GA makes erratic moves all over the search area.

The SA algorithm functions by starting with an initial solution of upper and lower

limits. The neighbor solutions are defined by a change of plus or minus 1 on each

limit value, meaning if UL12 starts at 30 the immediate neighbors are 31 and 29. In

each iteration 10 random numbers are generated that determine if a limit will move

to either neighbor or remain at its current value. The probability that a limit moves

to either neighbor is 0.1 each, and the probability the limit remains the same is 0.8.

The purpose of having low probabilities for moving to neighbors is that it allows for

the neighborhood to be searched gradually. After a new solution is generated, the

solution fitness, defined as cumulative infections, is calculated. The algorithm then

compares the fitness of the new solution to the fitness of the current solution. If

the new solution is more fit, then the current solution shifts to the new one. If the

new solution is less fit, then the current solution moves to the new solution with

the probability pa or remains the same with probability 1 − pa. Incorporating the

probability pa allows non-improving solutions to be accepted in the hope of it leading

a better solution. The function for pa is provided in equation 4.11 where Zc is the

fitness of the current solution, Zn is the fitness of the new solution, and T is the

temperature.

pa = exp
Zc − Zn

T
(4.11)

The probability pa changes over time with temperature T . It starts high to frequently

allow non-improving solutions but decreases over time which puts more emphasis on

moving to more fit solutions. The temperature T0 must be initialized at a sufficiently

large value, a rule of thumb is it should be large in comparison to typical values

of | Zc − Zn | (22). The temperature then decreases over each iteration according

to a temperature schedule. The algorithm concludes when the entire temperature
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Table 4.8: A pseudocode of the simulated annealing process
Inputs

Initial solution C
Initial temperature T0

Temperature schedule f(T )
Number iterations i at each T
Iteration stopping rule s

Code
1 While counter < s do
2 Generate a neighbor solution N
3 if N fitness ≥ C fitness then
4 C = N
5 else
6 C = N with pa= e(Cfitness−Nfitness)/T

7 end if
8 counter=counter+1
9 if remainder( counteri ) = 0 then
10 T=f(T)
11 end if

schedule has been run through. A pseudocode for the SA algorithm can be found in

Table 4.8.

The starting solution was created by reviewing the results of the time-based op-

timization. Three budgets were chosen, $1.3B, $3.2B, and $7.5B. The strategy and

weekly infections for each budget were analysed to determine at what number of cases

in the previous week was there a shift upward or shift downward in policy strictness.

Reconciling when policies shifted in the time-based framework to the state-based

framework was challenging because the time-based framework uses disaggregate poli-

cies whereas the state-based framework uses aggregate policy levels. An assumption

was made that using the closure policy shifts would be close to the level shifts because

the main difference is that policy levels 1 and 2 use closure policy 1 as seen in Table

4.7. Therefore, it was assumed policy levels 1 and 2 would have the same upper and

lower limits. Another challenge was that there was missing data for some limits as

not every strategy shifted between all 10 limits. For example, with a budget of 1.3$B

only shifts between closure policies 1 and 2 were observed. Table 4.9 shows the limits

derived from the time-based optimization. Budget 4 was the only one which provided

a semi viable initial solution, however, not all the limits made sense. For instance,

UL34 was 53 and UL45 was 32, meaning even if the weekly cases decrease by 21 there

will still be a shift upward to a stricter policy level. This solution was used as a basis
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for a more logical initial solution which is provided in the last row of table 4.9.

Table 4.9: Initial limit solutions derived from the time-based optimization results for
the low, medium, and high budgets

UL12 UL23 UL34 UL45 UL56 LL65 LL54 LL43 LL32 LL21
Budget 2.1 23494.25 23494.25 NA NA NA NA NA NA 14652.49 14652.49
Budget 4 29.13 29.13 53.39 31.99 NA 11.57 18.05 34.52 20.26 20.26
Budget 8 0.34 0.34 0.00007 0.17 0.33 0.26 0.001 0.17 0.17 NA
Generated 20 25 30 35 40 10 15 20 15 10

A budget constraint is implemented in the SA using a penalty function that pe-

nalizes infeasible solutions by reducing their fitness values, in this case number of

cumulative infections from a strategy, in proportion to the violation of the constraint.

Only dynamic penalties were considered as this algorithm functions similarly to the

GA by searching for improving solutions and an initial move might be over budget,

but could lead to a better solution within budget. The dynamic penalty will start

small to allow over budget strategies, but will increase over time to slowly weed out

infeasible solutions. The same penalty value of 0.00001 was used from the time-based

framework, and a small analysis was completed testing different dynamic penalty

functions. The functions and their results are found in Table 4.10. The second dy-

namic penalty function was selected as it resulted in the fewest cumulative infections.

Table 4.10: SA dynamic penalty functions and cumulative infections
Penalty Function Minimum Cumulative Infections
0.00001×counter 889
0.00001× counter

2 821
0.00001× counter2 841

The initial temperature should be large compared to | Zc − Zn | as this will

encourage an almost random search through the feasible region (22). Therefore, an

initial temperature of 3× 109 was selected. The number of iterations at each T value

was defined as 10 as it is common to select 5 or 10. The temperature schedule was

optimized using parameter tuning and testing different rates at which T decreases.

To ensure the pa was small near the end of the run, the temperature schedule always

decreased until reaching T < 1. This ensures non-improving solutions will not be

selected near the end of the optimization run, and puts emphasis on only moving to

better solutions. There were three temperature schedules tested and 5 trials of each

schedule were run. The schedules and results of the parameter tuning are provided



46

in Table 4.11. Temperature schedule 2 found the best solution and was used in

generating the results.

Table 4.11: SA parameters used in parameter optimization trials and results of each
trial

1 2 3
Initial T 3,000,000,000 3,000,000,000 3,000,000,000
T Function Tnew = 0.3Told Tnew = 0.75Told Tnew = 0.5Told

Number of T values 20 80 35
Iterations at each T 10 10 10
Total Iterations 200 800 350

Minimum Cumulative Infections 848 821 860

4.2.1 Results

This section presents the results obtained from implementing the state-based frame-

work. The framework was run using four different initial solutions which are provided

in table 4.12. Each initial solution was run 5 times and had a budget of $1,000,000,000.

Initial solutions 1, 3, and 4 generated optimal strategies. Figure 4.4 shows a snippet

of the SA for initial solution 1 around the optimal solution. Detailed results for the

state-based approach can be found in Appendix C.

Table 4.12: SA initial solutions of upper and lower limits for shifting between policy
levels

UL12 LL21 UL23 LL32 UL34 LL43 UL45 LL54 UL56 LL65
1 20 10 25 15 30 20 35 15 40 10
2 25 15 30 20 35 25 40 20 45 15
3 15 5 20 10 25 15 30 10 35 5
4 30 10 35 15 40 20 45 15 50 10

4.2.2 Analysis

The results seen in Figure 4.4 show that there are multiple combinations of lower and

upper limits that will produce the minimum cumulative infections. This is because

the combinations generate the same policy level strategy which is provided in Figure

4.5. The policy levels immediately move up in the first 3 weeks then maintain level 4

restrictions for 4 weeks. It then decreases to level 2 where it maintains a steady state

where cases that are too high to move down to level 1, but too low to move up to level
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Figure 4.4: Subsection of SA output for initial solution 1
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Figure 4.5: Weekly policy level strategy heatmap over a 50 week horizon

3. This can be explained from the initial number of cases being significant enough to

cause wide spread, so the model immediately moves to strict restrictions where the

active cases will decrease. By week 7 there are few enough infected individuals to

relax restrictions so the policy level decreases until it reaches level 2.

Though there are several combinations of limits, there are trends that can be

observed among them. The lower limits generally do not get very high, meaning the

cases need to drop significantly to trigger a relaxation in restrictions. For example

the range on LL21 is [0,10] and LL43 is [4,6]. The outlier is LL32 which has a range of

[5,35], however, this could be attributed to the fact that restrictions are not relaxed

enough to cause a spike in cases when moving from level 3 to level 2, so the number

of cases does not need to be as low. Also the UL12 is the lowest with a range of

[1,26] meaning the model wants to quickly move into level 2 given a few cases in a

week. Another observation is that UL23 is typically the largest with a range of [20,53]

meaning there needs to be a jump in cases from the previous week to trigger a shift

into policy level 3.

The limits generated through the SA are similar to what has been observed in

NS. Restrictions have often been increased quickly after small spikes in weekly cases.

In particular, during the second wave in November 2020, restrictions were increased

after 26 cases in a week (21). They were further increased after 111 cases in the

following week and maintained for 3 to 4 weeks until slowly relaxing. NS has also never

reached a point where restrictions have been completely removed, social distancing

and wearing masks, as well as travel restrictions continue to be enforced.



Chapter 5

Scenario Testing

Mathematical models are being developed to predict the spread of COVID-19 and

determine its potential economic impact and impact to health care systems. Specif-

ically, SIR and SEIR models are commonly being used to predict the spread of the

COVID-19 and the impact on health care resources (28; 10; 33; 55). Modelling is

also being used to determine the impact of policy decisions on the spread of the virus

(56; 14; 58). An extension was added to the modified, age-stratified SEIR simula-

tion model described in Chapter 3 which encompasses the proposed vaccine rollout

schedule within NS. The updated conceptual model is provided in Figure 5.1. The

extended model allowed for testing several different policy scenarios and their im-

pact on infections, hospital resources, and cumulative deaths. The difference between

this part and the remainder of the thesis, apart from including the vaccine rollout,

is that it does not try to optimize the response strategy, but merely compare a few

pre-determined opening strategies. This should become clear at the outset. It could,

however, be incorporated in an optimization framework like the previous cases, which

is something that was not done but can become a potential future extension.

5.1 Methodology

The extended compartmental model considers the efficacy of the vaccine, the propor-

tion of the NS population that will voluntarily receive a vaccine, and the age groups

eligible to receive a vaccine. The vaccination stream pulls from the susceptible group

and moves individuals directly into the recovered group. The vaccination schedule

was built into the model using NS’s existing and planned vaccination rollout. The

initial phases focused on frontline workers who had an increased likelihood of encoun-

tering infected individuals and residents of long-term care (LTC) facilities. Frontline

or high risk workers can include but are not limited to nurses, physicians, firefighters,

49
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Figure 5.1: Conceptual SEIR model of COVID-19 with vaccination
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and police officers. It is estimated through consultation with NSHA that the vacci-

nations completed in the initial phases targeted people over 80 in LTC facilities and

workers aged 20-59. The last phase of the rollout is age-based only, starting with

people over 80 and proceeding downward in 5-year increments. The entire eligible

population was expected to have access to their first vaccine by June 30, 2021 (19).

There were three vaccines approved for use by Health Canada that were distributed

in NS (18). The first, Pfizer-BioNTech, was approved for individuals 16 and up as

of December 9, 2020 then expanded to individuals 12 and up on May 5, 2021. The

second vaccine, Moderna, was approved for individuals 18 and up as of December

23, 2020. The final vaccine, AstraZeneca, was approved for individuals 18 and up

on February 26, 2021, however, was discontinued in NS on May 12, 2021. The ini-

tial eligible population was individuals over 15, however, due to the changes with

Pfizer-BioNTech it was updated to individuals over 11 and is reflected in the model.

The minimum daily vaccinations by age group needed to meet the June deadline was

determined and the resulting vaccination schedule was modeled. The second vaccine

dose (or completed vaccine) will occur a maximum of 4 months later, which models

the worst-case scenario. This model has given a general vaccine efficacy of 85% at the

first dose, and efficacy of 92% at the second dose which is an approximation of the

vaccines that were being used in NS (Pfizer-BioNTech, Moderna, AstraZeneca). The

efficacy is modeled by only moving a portion of those vaccinated into the recovered

compartment, meaning on 85% of the individuals that get a their first dose will be

immune. Initially, it was assumed that 80% of the population would choose to get

a vaccine, however, this was updated to 90% of the population to better reflect the

reality in NS. The minimum target set by the Chief Medical Officer of NS, Dr. Strang,

is 75% of the overall population which equates to approximately 85% of the eligible

population (20).

The scenarios were derived in consultation with NSHA to provide insight on the

health implications of relaxing restrictions at different periods during the vaccination

rollout. The health implications included cumulative infections, active infections,

hospital admissions, and deaths. The simulation was run using the Vensim model

(Figure 5.2). The scenarios were run starting from March 15, 2021.
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Figure 5.2: Vensim compartmental model of COVID-19 with vaccination
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5.2 Results

Figure 5.3 shows the results of four conservative approaches to the relaxation of

restrictions. The top row of Figure 5.3, shows the results if there were no changes to

the current restrictions, as of March 15, 2021, in terms of closure level, continued use

of masks and social distancing, and a 2-week quarantine for travellers from outside of

the province. This yields only a small number of active cases, 22, that is at its peak at

the beginning. The second row of Figure 5.3 shows the results with loosening of travel

restrictions by allowing travel from Atlantic Canada without quarantine restrictions

(Atlantic Bubble) on April 15, 2021. This yields essentially identical results to the

first scenario. The third row of Figure 5.3 goes further by loosening both closure and

opening the Atlantic Bubble on April 15, 2021, which yields only an additional 11

cases from the first two scenarios. The final row of Figure 5.3 shows the results from

maintaining restrictions until May 14, 2021, opening the Atlantic Bubble until June

30, 2021, and opening national travel until July 5, 2021 where international travel is

opened. The closure policy is loosened on June 30, 2021 and the protection policies

are kept in place. This yields a maximum of 22 active infections which peaks on

March 15, 2021 and 86 cumulative infections. None of these scenarios resulted in any

hospitalizations.

Figure 5.4 shows the effects of less restrictive policy options. The top row of

Figure 5.4 shows the effects of opening the Atlantic Bubble on May 14, 2021, opening

to national travel on July 1, 2021, and moving to the least strict closure level on

September 1, 2021. This results in a steady increase in cases from July 9, 2021 with

572 cumulative infections after one year. A small number of hospitalizations result

from this scenario with 2 deaths over the year. The second row of Figure 5.4 shows

the effects of opening the Atlantic Bubble on May 14, 2021, opening to national travel

on July 5, 2021 and moving to the least strict closure level on September 3, 2021. It

then toggles between removing and invoking the mask and social distancing policy

starting October 18, 2021 to January 16, 2022 where it removes masks and social

distancing. This results in a delayed active infection peak of 6,010 on June 11, 2022

and 103 hospitalizations on July 2, 2022. The third row of Figure 5.4 shows the

effects of opening the Atlantic Bubble and loosening the closure policy on May 14,

2021, opening to national travel on July 5, 2021, and removing the mask and social
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Figure 5.3: Model outputs with conservative policy scenarios from March 15 2021;
the charts on the left show the change in the number of people susceptible, infected,
and recovered; the charts on the right show the active and cumulative infections over
time in NS.
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distancing policy on September 13, 2021. This results in peak active infections of

6,115 by February 16, 2022 and 105 hospitalizations on March 8, 2022. The fourth

row of Figure 5.4 shows the results from immediately opening the Atlantic Bubble,

opening all businesses without restrictions, and the removal of the mask and social

distancing policy. This yields a maximum of 72,913 active infections on May 29, 2021

and a maximum of 1109 hospitalizations on June 13, 2021.

5.3 Analysis

These results indicate that closure levels, protection through masks and social dis-

tancing, and restricting travel, all impact the number of COVID-19 infections and

hospitalizations. The first two rows in Figure 5.3 demonstrate that quarantine does

not have a significant impact on infections if other restrictions are kept in place. By

maintaining an Atlantic Bubble along with masks and social distancing, the model

predicts NS will have a negligible rise in infections, even when restrictions on busi-

nesses and gatherings are loosened during the vaccination period. From a policy

perspective, this means that the mandatory quarantining for travellers can be re-

moved safely if the closure and protection restrictions are followed. The results of

the third conservative scenario suggest that as long as the mask and social distancing

policy is maintained while closure and travel restrictions are loosened, NS will only

see a small steady rise in the cumulative infections without any significant hospital-

izations. However, if the mask and social distancing policy are removed by the fall,

the remaining unvaccinated population will drive a large surge in infections. This will

result in approximately 6,010 peak active infections, cumulative infections of 70,341,

and a peak of 103 hospitalizations by March 2022. This is lower than the impact of re-

moving restrictions immediately, which would result in 72,913 peak active infections,

328,405 cumulative infections, and 1,109 hospitalizations. These results show that if

restrictions are opened too soon, a surge in cases will occur before herd immunity can

be met through vaccination. The liberal policy results indicate that masks and social

distancing will be required in order to continue to keep the case count and hospital-

izations low, as closure and travel policies are relaxed. The policy implications from

the strategy testing can still provide insight for policy decisions on new mutations

of COVID-19 such as the delta variant. The delta variant is more infective than the
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Figure 5.4: Model outputs with liberal policy scenarios from March 15 2021; the
charts on the left show the change in the number of people susceptible, infected, and
recovered; the charts in the middle show the active and cumulative infections; and
the charts on the right show the hospitalizations, ICU admissions, and deaths over
time in NS.
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original variant meaning the policy decisions should be at least as strict as the ones

derived from the strategy testing. Therefore, if the delta variant were to start a fourth

wave in NS, it is important to continue to enforce social distancing and masks as seen

in the conservative scenario testing. There should also be further incentives for Nova

Scotians to get vaccinated, as of August 2021, while older age groups have uptake as

high as 99% the younger populations have as few as 53% (20).



Chapter 6

Conclusions and Extensions

This chapter draws some insights and conclusions based on the results obtained from

the simulation-optimization and the scenario testing experiments. It also proposes

some future extensions for both research themes.

6.1 Simulation-Optimization

In this thesis, a simulation-optimization framework for optimizing response strate-

gies to epidemics is presented and applied to devise response strategies in NS to the

COVID-19 outbreak. The proposed framework combines a modified, age-stratified

SEIR compartmental model to evaluate dynamic response strategies that include dif-

ferent levels of closure, protection, and travel policies with metaheuristic algorithms

that iteratively search for better strategies. Response strategies were evaluated based

on both their health and economic impact, represented by the total number of in-

fections, and their economic cost. The results for the time-based strategies showed

a clear trade-off between health and economic objectives, and the model proposed

different strategies depending on the available budget. Under the high budget sce-

nario tested, stricter closure policies were recommended throughout nearly the entire

planning horizon, whereas under low and medium budget scenarios, it swung between

no closure and partial closures, trying to suppress disease outbreaks while giving the

economy some room to breathe. The medium budget results show that even if a region

does not have a large budget, through cyclical implementation of restrictions cases

can be kept within a manageable range 2,600 cumulative infections to 250 cumulative

infections over a 50 week period. Social distancing and wearing masks were almost

always recommended with medium and high budgets. Therefore, wearing masks and

social distancing should always be enforced for regions with a sufficient budget. The

travel policy was always enforced in an oscillating pattern, but was less sensitive to

the budget when strict closure policies were in place. This means if policymakers
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are enforcing strict travel regulations closures could be relaxed a or vice versa. The

Atlantic Bubble is a real implementation of this approach where travel was relaxed

while closures were maintained at more strict levels. Along with prescribing (near-

)optimal strategies under budget constraints, this tool can also help policymakers

leverage existing capacity and plan for peak cases.

As the time-based framework is limited by the fact the entire strategy is deter-

mined at the outset, a state-based framework was also developed. This framework

finds (near-)optimal policy level thresholds for shifting between restriction levels. It

was also applied to the COVID-19 outbreak in NS. Threshold limits were evaluated

in terms of their health impact and economic cost. The results show that the lower

limits should be small, generally in the range of [0,20]. This ensures the outbreak has

been reduced enough that relaxing restrictions will not lead to a large influx in cases.

The best way to allocate funds is to have limits that immediately stifle an outbreak

with strict restrictions, then move to a low level as soon as possible where active cases

will reach a steady state. The initial upper limit should also be small so to quickly

increase restrictions to prevent the spread from becoming exponential. The thresh-

old limits can be used in conjunction with the time-based strategy by prescribing an

optimal policy strategy, then updating restrictions according to thresholds if there

is significant deviation from the initial strategy. The simulation model used does

not consider unique scenarios such as super spreader events, therefore, if one were to

occur the strategy could be updated according to the thresholds.

The proposed GA and SA frameworks are quite generic and can be easily tailored

for other epidemics or jurisdictions. The current population demographics such as

the number of people in each age category and proportion of people with at least one

comorbidity by age can be changed to evaluate the response strategies in a different

region. To model a different disease, the disease parameters such as the latent period,

infection period, and probability of death can be modified to evaluate another virus.

This could be expanded to include the delta variant of COVID-19 by increasing the

transmissibility, or having a stream from recovered back to susceptible if previously

infected individuals are still susceptible to becoming infected. Furthermore, other epi-

demiological models might be utilized, along with alternative optimization techniques.

The epidemiological model could be modified to include seasonality by increasing or
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decreasing the likelihood of transmission given the season, or include a spatial com-

ponent. The spatial aspect could be included by having multiple populations that are

interconnected such as major cities within a province. The SA optimization could be

extended to a multi-start SA algorithm which has multiple initial solutions that are

run simultaneously and prevents getting stranded in a poor area of the search space.

Another potential, and quite interesting, extension of the compartmental model is to

include vaccination, which has recently become a viable alternative at the disposal

of policymakers for the COVID-19 pandemic. This can be done by adding a direct

flow from the Susceptible to the Recovered compartments that is regulated through a

vaccination policy to be selected. The state-based framework could also be updated

to allow for the policy level to move to any level instead of the immediate neighbor

levels. Finally, a more accurate calibration of the economic burden of policies can be

performed to capture issues like the interactions between different classes of policies

and the nonlinear cost as a function of the implementation duration of a given policy.

6.2 Scenario Testing

The modified, age-stratified SEIR compartmental can be used by decision makers

to test and compare different policy strategies within NS. The health implications

of each scenario is estimated, which can help with selecting a policy strategy and

resource planning. The scenarios tested range from gradual relaxation of restrictions

to immediate removal. The results of the first two conservative model scenarios

show that requiring quarantine for travellers has negligible impact on cumulative

infections if other restrictions remain in place. This means the quarantine period for

travellers can be removed if masks and social distancing are enforced and closures

are not fully relaxed. The closure and travel restrictions should be relaxed gradually

through the vaccination rollout or there will be a large surge in cases, as predicted in

liberal policy scenario 4. After a sufficient number of people are vaccinated, loosening

restrictions results in minimal infections among the remaining population as long as

social distancing and masks are enforced. If social distancing and masks are removed,

as seen in liberal strategies 2 and 3, there is still a smaller wave with a peak active

cases of around 6000 that is predicted. Therefore, policymakers should incentivize

vaccinations in age groups where the uptake is low to minimize the size of a potential
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fourth wave.

The model uses a basic vaccination rollout plan based on the initial immunization

plan outlined by the Government of NS. The initial plan is conservative and could be

improved by using actual data to reflect the rate at which people were and are being

vaccinated.
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[8] Dalgıç, O., Özaltın, O. Y., Ciccotelli, W. A., and Erenay, F. S.
Deriving effective vaccine allocation strategies for pandemic influenza: Compar-
ison of an agent-based simulation and a compartmental model. PLOS ONE 12,
2 (Feb, 2017). doi:10.1371/journal.pone.0172261.

62



63

[9] Dimitrov, N. B., Goll, S., Hupert, N., Pourbohloul, B., and Mey-
ers, L. A. Optimizing tactics for use of the U.S. antiviral strategic na-
tional stockpile for pandemic influenza. PLOS ONE 6, 1 (Jan, 2011), 1–10.
doi:10.1371/journal.pone.0016094.

[10] Ediriweera, D. S., de Silva, N. R., Malavige, G. N., and
de Silva, H. J. An epidemiological model to aid decision-making for
COVID-19 control in Sri Lanka. PLOS ONE 15, 8 (Aug, 2020), 1–10.
doi:10.1371/journal.pone.0238340.

[11] Ehrgott, M. Scalarization techniques. In Multicriteria Optimization. Springer
Berlin Heidelberg, 2005, pp. 97–126. isbn:978-3-540-27659-3.

[12] Emmerich, M. T. M., and Deutz, A. H. A tutorial on multiobjective
optimization: fundamentals and evolutionary methods. Natural Computing 17,
3 (Sep, 2018), 585–609. doi:10.1007/s11047-018-9685-y.

[13] Gallo, L. G., Oliveira, A. F. d. M., Abrahão, A. A., Sandoval, L.
A. M., Martins, Y. R. A., Almirón, M., dos Santos, F. S. G., Araújo,
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