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Abstract

Invariance to strictly monotonic transformations of the objective function is an im-

portant feature in the design of black-box optimization algorithms. For this reason,

ordinal surrogates have been established as an attractive class of models for inte-

gration into comparison-based optimizers. The recovery of this desirable property

has not been explored for value-based surrogates. In this thesis, we adopt warping

as a strategy to partially regain invariance lost by value-based models and propose

a simple warped Gaussian process assisted covariance matrix adaptation evolution

strategy. The algorithm is validated on families of parametrized, unimodal test prob-

lems and its performance compared with those of several related strategies. More

intensive surrogate model exploitation is empirically demonstrated to benefit perfor-

mance on ill-conditioned test problems. The simplicity and competitive performance

of the proposed approach make it an appealing choice as a baseline for the evaluation

of comparators on unimodal test problems.
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Chapter 1

Introduction

1.1 Context

Surrogate models are mathematical abstractions of physical processes with many ap-

plications in the disciplines of science and engineering. Research and development in

the field have enjoyed a surge in popularity that has paralleled the increase in com-

putational power, as evidenced by a continuous rise in the number of publications

reporting the use of the major surrogate modelling techniques [50]. In engineer-

ing, surrogate models have historically been referred to as response surface methods,

whereby relationships between several explanatory variables are explored with respect

to some response variable in a designed experiment [8]. The process typically involves

the iterative refinement of some response surface, or model, via a sequence of de-

signed experiments. The response surface is then used to explore the behaviour of

some physical system or can be exploited to generate design configurations [8]. While

the field started by primarily employing polynomial regression, other modelling tech-

niques such as radial basis functions (RBF), support vector machines (SVM), and

artificial neural networks are widely used [58]. In the field of geostatistics, surrogate

models are referred to as spacial or spatio-temporal interpolation techniques and are

employed in the study of geological and climatological features. Examples of such

applications range from modelling ground water contamination [55] and mineral re-

source estimation [44], to approximating wind speeds and weather forecasting [76].

Perhaps the most popular modelling method in this discipline is kriging, which is es-

sentially Gaussian process regression naturally focused on two- or three-dimensional

input spaces [10]. The seminal work of Sacks et al. [67] popularized kriging beyond

geostatistics by bringing it into the domain of surrogate modelling, which the au-

thors termed the design of computer experiments. This precipitated the adoption of

such models in a broad array of applications including aircraft design [11], nanoma-

terial property prediction [77], social systems modelling [13], supply chain network

1
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optimization [14], financial modelling [12], etc. More recently, Gaussian processes

have been explored as surrogates in discrete optimization [79] as well in quantum

annealing [39].

Surrogate modelling techniques have been employed in the field of evolutionary

algorithms to address black-box optimization problems where each objective function

evaluation incurs significant cost. In practice, the definition of cost may range from

the duration of a computer simulation to the financial expense of some physical experi-

ment. Surrogate models can be constructed using information gained from evaluations

of candidate solutions in past iterations. Low-order polynomials [46], ranking sup-

port vector machines [51], Gaussian process models [16, 5, 74], neural networks [43],

and an ensemble of various models including radial basis functions [49] are among

a few commonly employed model types. Surrogates can either provide cheap but

inaccurate estimates to replace true objective function evaluations, or be used to de-

termine potentially promising regions of the search space. In the former case, models

can be broadly classified as either value-based, providing function value estimates,

or rank-based (ordinal), approximating the relative quality of candidate solutions.

Surrogate-assisted search strategies must tune their degree of reliance on their mod-

els, weighting the computational savings from avoiding costly function evaluations

against the potentially poorer steps resulting from biased or inaccurate models [45].

Comprehensive reviews of surrogate model assisted evolutionary optimization have

been prepared by Jin [42] and Loshchilov [50].

The incorporation of surrogate models in optimization algorithms naturally in-

vokes a set of fundamental algorithm design decisions that may bear great impact on

the resulting algorithm’s performance. These can be broadly categorized into consid-

erations of model definition and model exploitation. The construction of surrogate

models must first consider the choice of a particular class of modelling technique, such

as polynomial regression, Gaussian process regression, etc. [41]. Decisions regarding

how to fit the model involve such questions as how to pick training points and how

to select model parameters. For instance in the case of kernel-based models, an ap-

propriate kernel must be selected. Questions around model training strategies, such

as by means of heuristics derived from empirical observations or via more disciplined

approaches such as cross-validation and maximum likelihood, must first define some
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criteria by which to assess model quality. Characterizing surrogate model error is itself

not a straight-forward task and has been the subject of research [42]. The definition

of an error metric is often followed by the need to invoke a performant optimization

strategy to reduce that error, again inviting intricate design considerations. Under

the second general category of model exploitation, a key question involves how much

to depend on the model. On one extreme, minimal trust can be afforded to a sur-

rogate by formulating its role as a mere filter for seemingly poor candidate solutions

suggested by the underlying strategy [46, 16], and on the other extreme the surrogate

can be more intensely relied upon to direct sampling [9]. Moreover, the decision to

employ rank-based instead of a value-based model may reflect a more conservative

exploitation of the surrogate [27]. Each of the aforementioned considerations are but

a few areas of inquiry in the field of surrogate-assisted optimization. The potential

impact of these and many more design considerations on the performance of the re-

sulting algorithms motivates their careful consideration and emphasizes the need for

adoption of certain guiding principles.

In the domain of continuous black-box optimization, the Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES) [35, 33] is considered to be competitive on

several black-box optimization benchmarks [18, 29]. A contributing factor to the

success of the CMA-ES is that, like all evolution strategies, it is a comparison-based

optimizer. This implies that the algorithm relies solely on candidate solution rank-

ing information and thus is unaffected by order-preserving objective function value

transformations [35]. The competitive performance of the CMA-ES has identified it

as a promising candidate for further enhancement via the integration of surrogate

modelling approaches. Proposed algorithms [46, 54, 5, 25, 73] employ various mod-

elling techniques and incorporate these models into the CMA-ES in different ways.

Loshchilov [51, 53] argues that the integration of surrogates into optimization algo-

rithms should ideally not disturb the desirable properties of the underlying search

strategies. In particular, he takes inspiration from Runarsson et al. [66] to contend

that comparison-based optimizers need rank-based surrogates in order retain their

invariance with respect to order-preserving transformations of the objective function.

The retention of this desirable invariance property has not yet been explored for

value-based surrogates that assist comparison-based optimizers.
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1.2 Motivation

Invariance is a desirable property in the analysis and design of optimization algo-

rithms. The invariance of an algorithm with respect to some transformation of the

problem domain confers robustness as it implies that any empirical or theoretical

result observed on the problem instance generalizes to an entire associated invariance

class induced by the transformation. Moreover, the retention of these properties as

an algorithm design principle reduces the required number of parameters that need

to be calibrated [51]. In the context of continuous optimization, two such invariance

properties have been acknowledged as attractive, namely: invariance under transfor-

mations of the search space, and invariance under strictly increasing transformations

of the objective function. The latter invariance type is characteristic of those algo-

rithms which rely solely on comparisons between objective function values and has

been theoretically demonstrated to be a source of robustness [19]. This, as well as ro-

bustness to affine transformations of the coordinate system, accounts for the notable

success of the CMA-ES.

Integrating function value based surrogate modelling approaches into comparison-

based optimizers removes the resulting optimizer’s invariance with respect to order-

preserving transformations of the objective function [51]. To address this limitation,

Loshchilov et al. [51] argue that only the objective function ranks of candidate so-

lutions are necessary from such models. They proceed to incorporate a rank-based

support vector machine into the CMA-ES that additionally preserves the strategy’s

invariance with respect to search space transformations by exploiting the covariance

matrix adapted by CMA-ES in the kernel of the SVM model. With the introduc-

tion of a mechanism for self-adaptive control of model hyper-parameters [53], as well

as a procedure to tune the degree of reliance on its surrogate [54], Loshchilov et al.

achieve state-of-the-art performance on a set of noiseless benchmark problems [23]. In

further evolutions of the work, they combine their surrogate-assisted algorithm with

the restart strategies introduced for CMA-ES and demonstrate its competitiveness

on multi-modal test functions [52, 54]. The retention of these invariance properties

is heavily credited by the authors for the success of their evolution strategy. Despite

its remarkable success, the algorithm of Loshchilov et al. is complicated.
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1.3 Contribution

In this thesis, we propose function value warping as a means of regaining some of

the invariance lost when integrating value-based surrogates into comparison-based

optimizers. Inspired by the work of Snelson et al. [69], we aim to adaptively obtain a

representation of the objective function that is easier to model by the Gaussian pro-

cess surrogate. To this end, an error measure based on a parametric warp is defined

and a mechanism for its minimization presented. This warped Gaussian process is

combined with CMA-ES based on the approach by Toal and Arnold [73]. The pro-

posed algorithm is validated on a set of parametrized, unimodal test problems and

shows promise for the partial recovery of invariance with respect to order-preserving

transformations of the objective function. The simplicity and performance of the pro-

posed algorithm make it an appealing choice as a basis of comparison for comparators

on parametrized unimodal test problems.

1.4 Outline

The remainder of this work is organized as follows. In Chapter 2, we establish some

background for the proposed algorithm and highlight related approaches. Chapter 3

describes the mechanism for deriving new transformations of objective function values

and details its integration into the GP-CMA-ES [73]. Experimental validation of the

algorithm and evaluation against comparators is presented in Chapter 4. Chapter 5

concludes the thesis by summarizing our contributions and providing directions for

future inquiry.



Chapter 2

Preliminaries

This chapter provides the necessary background for the algorithm proposed in Chap-

ter 3. First, the general problem setting is established via the definition of basic

terminology in Section 2.1. Then, an introduction of the principles and algorithmic

paradigm of evolutionary strategies is accompanied by an overview of the discipline’s

two canonical algorithms in Section 2.2. This is followed by a description of the class

of surrogate model employed in this work in Section 2.3. Next, relevant aspects of a

systematic approach to the empirical evaluation of stochastic optimization algorithms

are discussed in Section 2.4. The chapter concludes with a brief summary of related

works in Section 2.5.

2.1 Terminology

This section introduces basic terminology adopted in the thesis, including a spec-

ification of the optimization problem considered, as well as definitions of relevant

invariance properties.

2.1.1 Black-Box Optimization

Optimization problems lie at the core of many disciplines. In general, given some

objective function f : X → R to be optimized on some search space X , the goal in

optimization is to locate the setting xopt ∈ X , called the optimizer, that corresponds

to the optimal function value fopt = f(xopt), known as optimum, by incurring the

least cost. In a black-box scenario, no analytic definition of the objective function f

is available; knowledge about f is restricted to the mere polling of a system whereby

some input configuration x ∈ X yields a related observable output f(x). In particular,

no specific assumptions, such as the availability of gradients, are made about the

underlying optimization problem. The evaluation of f(x) is often costly in practice,

thus motivating the economy of objective function evaluations. This work considers,

6
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without loss of generality, the minimization of the following real-valued black-box

function:

f : X ⊆ Rn → R, (2.1)

where there are no constraints imposed on the search domain X ⊆ Rn or function

value range, with cost quantified in terms of the number of objective function calls.

A location x′ ∈ Rn is a local minimizer of function f if there exists some constant

ϵ ∈ R+ such that for every point x that satisfies ∥x− x′∥ < ϵ,

f(x′) ≤ f(x). (2.2)

The definition for a local maximizer is given by inverting the comparison symbol of

equation 2.2. A local optimum is the function value associated with a local mini-

mizer or local maximizer. Functions that exhibit multiple local optimizers are said

to be multimodal. A local optimum is also considered a global optimum iff the above

definition holds for all ϵ ∈ R+.

2.1.2 Invariance

Invariance properties generate equivalence classes between objective functions on

which the cost of the optimization is identical [37]. Consequently, observations of

algorithm performance on a single test function can be generalized to those on the

entire problem class defined by the invariance property. For this reason, invariance is

regarded as an important design principle of search algorithms.

The state s of a search algorithmA can be defined as a v−tuple that fully describes
its configuration at a given iteration. The state encompasses the location in search

space that the algorithm has reached, as well as all strategy internal parameters, such

as step-size and covariance matrix. The state space S of a search algorithm is the

set of all possible such v−tuples. With this definition of the state space S, we quote

Hansen and Auger’s [27] formal definition of invariance in search algorithms:

Definition 1 (Invariance [27]). Let H be a mapping from the set of all functions into

its power set, H : {Rn → R} → P({Rn → R}), f → H(f). Let S be the state space

of the search algorithm, s ∈ S and Af : S → S an iteration step of the algorithm

under objective function f . The algorithm A is invariant under H (in other words:



8

s(t) s(t+1)

Tf→h(s(t)) Tf→h(s(t+1))

Af

Tf→h Tf→hT−1
f→h

Ah

T−1
f→h

Figure 2.1: Commutative diagram for invariance (figure and caption modified
from [27]). Horizontal arrows denote the transition between the state and function
variables for one time step t of the algorithm A. Vertical arrows signify the invertible
transformation of state variables. The two possible paths between a state at time t
and a state at time t + 1 are equivalent in all four cases. When f = h, the diagram
becomes trivial, with Tf→h denoting the identity transformation. One interpretation
of the diagram is that any function h can be optimized like f given T−1.

invariant under the exchange of f with elements of H(f)) if for all f ∈ {Rn → R},
there exists for all h ∈ H(f) a bijective state space transformation Tf→h : S → S

such that for all states s ∈ S

Ah ◦ Tf→h(s) = Tf→h ◦ Af (s) (2.3)

or equivalently

Ah(s) = Tf→h ◦ Af ◦ T−1
f→h(s). (2.4)

If Tf→h is the identity for all h ∈ H(f), the algorithm is unconditionally invariant

under H. For randomized algorithms, the equalities hold in distribution. The set of

functions H(f) is an invariance set of f for algorithm A. □

The idea of invariance expressed by equation 2.3 is illustrated by the commutative

diagram in Figure 2.1, depicting the equivalence of the two paths from the upper left

to the lower right in the diagram. Equation 2.4 implies for all t ∈ N that

A(t)
h (s) = Tf→h ◦ A(t)

f ◦ T
−1
f→h(s), (2.5)

where A(t) denotes the t time steps of the algorithm starting from s [27]. Equation 2.5

implies that for all h ∈ H(f), the algorithm A optimizes the function h with initial

state s just like the function f with initial state T−1
f→h(s).

In the context of evolution strategies, two such invariance properties have been

established as important: invariance to strictly increasing transformations of the
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objective function, and invariance to affine transformations of the search space. These

two invariance types are briefly discussed in the following subsections.

2.1.2.1 Invariance Under Function Value Transformations

A strictly increasing transformation is a one-to-one mapping g : R→ R where

∀x : g(x) < g(x′) ⇐⇒ x < x′. (2.6)

Inverting the order symbol in equation 2.6 yields the corresponding concept of a

strictly decreasing map. A function is strictly monotonic if it is either strictly in-

creasing or strictly decreasing. A strictly increasing mapping g does not change the

order of the input set and is thus referred to as order- or rank-preserving.

Invariance to order-preserving transformations of f is an example of unconditional

invariance and is given by the following definition.

Definition 2 (Invariance to order-preserving transformations [27]). For all strictly

increasing functions g : R → R and for all f : Rn → R, algorithm A is invariant to

order-preserving transformations of f if behaves identically on the objective function

x → f(x) and the objective function x → g(f(x)). In other words, algorithm A is

invariant under

Hmonotonic : f → {g ◦ f | g is strictly increasing}. (2.7)

□

Definition 2 implies that the cost of optimizing f is identical to that of opti-

mizing g ◦ f . Comparison-based optimizers that rely solely on candidate solution

ranking information exhibit this invariance as g does not change this ranking infor-

mation. For example, an optimizer with this invariance property would be indifferent

to non-negative functions f , f 3, or f 1/2, faring equally well on convex functions as on

non-convex ones. Figure 2.2 depicts three example functions on which comparison-

based optimizers that rely solely on objective function value rankings would perform

identically.
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Figure 2.2: Example functions on which comparison-based optimizers that rely solely
on candidate solution ranking information perform identically. As the strictly increas-
ing function g preserves candidate solution ranks, such optimizers are unaffected by
these transformations.

2.1.2.2 Invariance Under Search Space Transformations

An affine transformation is a one-to-one mapping T : Rn → Rn defined as

T (x) = Ax+ b, (2.8)

for a non-singular, matrix A ∈ Rn×n and a vector b ∈ Rn. For a symmetric matrix A,

the matrix multiplication encodes a search space rotation and an axis scaling while

vector b represents a translation in search space.

Invariance to affine transformations of the search space can be defined as transla-

tion invariance to a shift vector b and a general linear invariance to a transformation

matrix A as provided by the following two definitions.

Definition 3 (Translation invariance [27]). An algorithm A is translation invariant

if it is invariant under

Htranslation : f → {hb : x→ f(x− b) | b ∈ Rn}, (2.9)

with the bijective state transformation, Tf→hb
, that maps x to x+ b. □

Definition 4 (General linear invariance [27]). Algorithm A is invariant under full

rank linear transformations of the search space, meaning for each f : Rn → R invariant
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under

HGL : f → {f ◦A−1 : x→ f(A−1x) | A is a full rank n× n matrix}. (2.10)

□

Invariance under affine search space transformations implies that the algorithm

behaves similarly on the original coordinate system x and the coordinate system

defined by T (x), given a correspondingly transformed initial point. This category

of invariance is considered crucial to the success of the CMA-ES in unconstrained

black-box optimization [35, 33].

2.2 Evolution Strategies

Evolution strategies (ES) [63, 68] are general, nature-inspired search paradigms com-

monly applied to black-box optimization problems in continuous search spaces. They

employ two fundamental evolutionary principles: variation to generate a collection of

new candidate solutions from existing ones, and selection to iteratively direct them

towards increasingly promising regions of the search space. In general, the objective

of the search procedure is to locate a local optimum of the function, to within some

arbitrary precision, using a small number of objective function evaluations.

The purpose of this section is to briefly introduce some important aspects of

evolution strategies. First, basic notation commonly used to describe several aspects

of ES is introduced. Next, a brief discussion of the generic algorithm prototype

is presented in the nomenclature of biological evolution. This is followed by the

simplest example of such prototype that embodies two major design philosophies of

ES: unbiasedness, and invariance. The section concludes with an overview of the

Covariance Matrix Adaptation Evolution Strategy (CMA-ES).

2.2.1 Algorithm Prototype

Evolutionary algorithms seek to lead collections of candidate solutions toward increas-

ingly better regions of the search space. In the characteristic terminology of evolution,

we refer to the objective function as the fitness function, to iterations as generations,

to the collection of candidate solutions as a population, and to existing and newly
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population P

offspring Q

variationselection

(plus strategies)

Figure 2.3: A graphical representation of the prototypical evolution loop (figure taken
from [1]). A set of new candidate solutions Q is generated by applying variational
operators to a parental population P . Selection reduces the resulting population to its
original size. Comma-strategies select candidate solutions from the pool of offspring
Q, while plus strategies select from the union Q∪P as indicated by the dashed line.

generated candidate solutions as parents and offspring respectively. A (µ/ρ+, λ)-ES

employs a population P of µ candidate solutions. In each time-step t (denoted by

superscript ”(t)” where necessary), a set Q(t) of λ candidate solutions is created from

P(t) by means of variational operators of mutation and recombination. The symbol

ρ indicates the number of parental candidate solutions involved in producing each

offspring, with the ”/” symbol signifying the operation of recombination. So-called

environmental selection is used to maintain the population size of the next generation

P(t+1) at µ individuals. In the paradigm of fitness-based mating selection, an individ-

ual’s fitness ranking as determined by its objective function value forms the basis of

its selection. Depending on the selection type, P(t+1) is chosen either from P(t)∪Q(t),

or from Q(t). The former is denoted as plus- and the latter as comma-selection. A

graphical representation of this procedure is illustrated in Figure 2.3.

Variation introduces new information on the objective function into the search pro-

cess and is achieved through mutation and recombination operators. In practice, this

is instrumental for preventing stagnation of the evolutionary search. The mutation

operator aims to add small, stochastic, and unbiased perturbations to an individual,
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with the notion of small being determined by the so-called mutation strength σ. Re-

combination also introduces variation and may either depend on, or be independent

of candidate solution fitness rankings. The former paradigm can be implemented by

the uniformly random selection of ρ ≤ µ parents for the computation of a centroid.

Mutation would then consist of adding a normally distributed random vector to that

centroid. For a population P = {x1, . . . ,xµ}, the set Q then consists of offspring

⟨x⟩i =
1

ρ

ρ∑
j=1

xij + σzi for i = 1, . . . , λ, (2.11)

where the indices ij are independently drawn, most often without replacement, and

with equal probability from {1, . . . , µ}. Mutation vectors zi consist of n independent

components drawn from a zero-mean normal distribution with mutation strength (i.e.

step-size) σ. In the case where ρ = µ, recombination is deterministic as all parents

are involved in the production of every offspring. This case is referred to as global

intermediate recombination and is generalized by weighted recombination, where the

contribution of each parent to the resultant centroid is scaled by rank-dependent

weights.

Stationarity, or unbiasedness, under random selection is an important feature of

randomized search algorithms and a design principle consistent with the imposition

of least prior assumptions on the search procedure [35]. Stationarity of a parameter

v under random selection implies that the expected value of the parameter remains

unchanged across generations, that is E[v(t+1)|v(t)] = v(t). This aids generalizability

of algorithm performance as prior assumptions that may be beneficial on one problem

setting may be detrimental on another. Consequently, Hansen and Ostermeier [35]

argue that only the current state and selection information should bias the behaviour

of the search algorithm. From the viewpoint of information theory, the assumption

of least additional information is known as the maximum entropy principle. For a

given mean and covariance, the multivariate normal distribution has maximum en-

tropy which, in addition to its mathematical tractability, makes it a natural choice as

the search strategy’s mutation operator. Informally, minimal variation bias via max-

imum entropy sampling implies maximum exploration of the immediate search space

as the sampling distribution is least expected to generate a favourable outcome, and
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most expected to reduce uncertainty about the search space given current informa-

tion. Thus minimal variation bias, maximum entropy, and maximum exploration are

mutually compatible notions that characterize the role of variation in evolutionary

search.

While variation constitutes the exploratory aspect of evolutionary search, selec-

tion is its exploitative element and necessitates fitness evaluations of the candidate

solution. Selection is a deterministic process that exploits information gained from

objective function evaluations as well as that of the current state in order to bias the

search procedure toward more promising regions of the search space. The (+, ) sym-

bols denote two different selection mechanisms. In comma-selection, the lifespan of a

candidate solution is constrained to one generation, with the µ best of λ offspring (for

λ ≥ µ) in Q(t) forming P(t+1). Plus-selection picks the µ best of the µ+ λ candidate

solutions in P(t) ∪Q(t) to form P(t+1).

Principles of invariance and unbiasedness provide important guidelines in the ap-

plication of variation and selection operators. Invariance confers the ability for the

progress rate, defined as the expected distance change of the parental population

centroid from the optimizer per time step [6], of ES observed on a single problem to

generalize across a problem class induced by the invariance property. Aspects of these

principles are exemplified by the (1+1)-ES with 1/5th rule discussed in the following

section.

2.2.2 (1+1)-ES

The (1 + 1)-ES is arguably the simplest evolution strategy. Algorithm 1 provides

a simple implementation of the (1 + 1)-ES with 1/5th success rule [63]. In each

iteration, Line 2 generates a single offspring x̃(t) from the parent x(t) via mutation by

independently adding a zero-mean Gaussian perturbation to each component of the

parent vector. The covariance of the Gaussian is set to the identity matrix, scaled

by step-size σ. This leads to an isotropic sampling distribution which preserves the

algorithm’s invariance with respect to rotations of the coordinate system about its

mean. Selection is performed in lines 4 to 8, where the new offspring x̃(t) is accepted

only if its value is at least as good as that of the current parent. As objective function

values are only compared against each other during selection, the algorithm retains
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invariance to rank-preserving transformations of the fitness function.

Algorithm 1: The (1 + 1)-ES with 1/5th Rule [26]

Given: n ∈ N+, d ≈
√
n+ 1

Initialize: x ∈ Rn, σ > 0

1: while not terminated do

2: x̃(t) = x(t) + σ(t) ×N (0, I);

3: σ(t+1) ← σ(t) × exp1/d(1f(x̃(t))≤f(x(t)) − 1/5);

4: if f(x̃(t)) ≤ f(x(t)) then

5: x(t+1) = x̃(t);

6: else

7: x(t+1) = x(t);

8: end if

9: end while

10: t← t+ 1

Parameter control is achieved by means of step-size adaptation. Rechenberg [63]

was presumably the first to propose such a mechanism for the (1+ 1)-ES. He defined

success probability ps as the probability that an offspring is superior to its parent,

and specified the notion optimality as achieving the largest expected approach of the

optimum in a single iteration. For the objective functions he considered, he observed

success probabilities of the (1 + 1)-ES with isotropic mutations and with optimally

adjusted step-size to be approximately 1/5. He also noted that increasing the step-size

decreases the success probability, and vice versa. Thus Rechenberg recommended to

approximate an average of success probabilities by monitoring multiple generations,

and increasing the step-size if the observed estimate exceeds 1/5, and decreasing it

if the success probability is lower than 1/5. This idea is implemented in Line 3 of

Algorithm 1. If the offspring x̃(t) prevails, then the mutation strength increases by a

factor of e0.8/d, otherwise it decreases by a factor of e−0.2/d. Parameter d =
√
1 + n,

suggested by Hansen et al. [26], dampens the change rate of the step-size. This

implementation is consistent with Rechenberg’s recommendation because if one out

of every five offspring generated is successful, then the step-size updates neutralize

each other on average and the logarithm of the step-size remains unchanged. If the

success rate exceeds one fifth, then the step-size is enlarged more frequently, leading



16

to a systematic increase in step-size; the converse holds when the success rate is less

than one fifth [46].

2.2.3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Perhaps the greatest drawback of the (1 + 1)-ES is its reliance on an isotropic mu-

tation operator. Most objective functions in practice do not exhibit identical scales

in different dimensions and are non-separable. Thus, correlated mutations as well

as information about the underlying curvature of the objective function are often

necessary to achieve satisfactory performance [35]. The CMA-ES addresses these

and other issues by adapting to the local structure of the objective function [35, 33].

This is attained via adaptive control of its sampling distribution in the search space

while preserving invariance with respect to order-preserving transformations of the

objective function. The strategy independently adapts the scale and orientation of its

mutation distribution, in part, by means of cumulation, which is a process whereby

information about previously selected offspring is used to adjust current strategy pa-

rameters. Invariance to rank-preserving transformations of the objective is preserved

via the strategy’s reliance on offspring ranking information. The remainder of this

section introduces the background for the CMA-ES and concludes with a condensed

transcription of a single iteration of the algorithm.

2.2.3.1 Sampling

A population of λ new search points x ∈ Rn is generated by sampling independently

from a multivariate normal distribution

x
(t+1)
i ∼m(t) + σ(t) ×Ni(0,C

(t)) for i = 1, . . . , λ, (2.12)

where superscript t ∈ N indicates the time or generation index, m(t) ∈ Rn is the esti-

mate of the optimizer at generation t, σ ∈ R+ denotes the step-size, and N (0,C) is

a multivariate normal distribution with zero mean and covariance matrix C ∈ Rn×n.

New candidate solutions x
(t+1)
i obey a multivariate normal distribution with expec-

tation m(t) and covariance σ2C(t). The covariance matrix determines the shape of

the sampling distribution, where the level sets of the probability density function are

hyper-ellipsoids. Equation 2.12 also implements the principle of unbiasedness as the
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expected value of the normal distribution added to the parent is zero across genera-

tions. As mutation does not bias the mean of new offspring, the effect of sampling

is decoupled from that of selection and improvements are made only subsequent to

sampling.

Parameter λ determines the number of objective function evaluations per gener-

ation. A reasonable setting for this parameter cannot be entirely derived from first

principles and is thus based on empirical investigations of the algorithm [27]. While a

discussion of population size is beyond the scope of this thesis, two general bounding

principles are outlined:

1. For large offspring populations λ ≫ n, the likelihood of escaping local optima

is increased and thus the probability of reaching the global optimum is greater.

While the search strategy can thus be interpreted as being more global, this

benefit is accompanied by the cost of increased function evaluations.

2. For small population sizes λ ̸≫ n, the search process is relatively local and

the algorithm can converge using comparatively fewer objective function calls.

Because the mutation distribution is unbiased, new sampled solutions tend to

be worse than previous best solutions. Therefore, the minimal value of λ = 1

is only viable if the best so-far evaluated candidate solution is always retained,

(ie. under ”+” selection) [32]. Comma-selection under the above sampling

procedure must occur with λ > 1 and in practice λ ≥ 5 is recommended [63].

A comparatively successful strategy is to pick a small default population size λ ∼
O(log n) and conduct independent restarts of the algorithm with increasing popula-

tion sizes [3] (see section 2.4.2.1).

2.2.3.2 Selection

The sampling process produces λ candidate solution pairs {xi, f(xi)}i=λ
i=1 that provide

information about the objective function. This information is exploited via selec-

tion to update the incumbent solution m(t) and the distribution covariance matrix

σ(t)2C(t).

A heuristic principle is applied in selecting the new distribution mean: old in-

formation is disregarded. This principle embeds the assumption of locality, which is
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intuitively sensible as with the convergence of the search procedure toward the opti-

mizer, previously sampled points become increasingly farther away from the current

region of interest [27]. Furthermore, disregarding old information also helps to avoid

entrapment in local optima. In addition to these heuristic arguments, theoretical

results have demonstrated that only slight improvements can be made by storing and

using all previously sampled candidate solutions [72, 71].

Exploitation of the objective function is achieved, in part, via a form of trunca-

tion selection whereby candidate solutions with function values of poorer rank are

discarded. Specifically, the algorithm considers the set of candidate function values

{fi}i=λ
i=1 only with respect to its ordering signified via indices i : λ, for i = 1, . . . , µ,

such that

f(x1:λ) ≤ f(x2:λ) ≤ · · · ≤ f(xλ:λ) (2.13)

is satisfied. A weighted arithmetic mean of the µ best candidate solutions is then

computed according to

m(t+1) =
1∑µ

i=1wi

µ∑
i=1

wix
(t+1)
i:λ , (2.14)

where {wi}i=µ
i=1 ∈ R+ represent the set of recombination coefficients. Requiring a

monotonically decreasing sequence of weights normalized such that

µ∑
i=1

wi = 1, w1 ≥ w2 ≥ . . . ≥ wµ > 0 (2.15)

reduces equation 2.14 to

m(t+1) =

µ∑
i=1

wix
(t+1)
i:λ . (2.16)

Equation 2.16 implements weighted intermediate recombination; the setting wi =
1
µ

recovers intermediate recombination. The assignment of fitness-based weights also

constitutes a means of selection since the computation of the resulting parental cen-

troid m(t+1) is more heavily influenced by the more promising regions of the search

space [27].

Truncation and weighting occur based on candidate solution ranks. This implies

that the exploitation of the objective function is rather conservative, potentially ren-

dering the strategy less susceptible to deception [27]. Furthermore, the availability of
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function values is not explicitly assumed, which is beneficial in settings such as the op-

timization of game-playing algorithms, where only ordinal outputs may be available.

Importantly, the strategy’s sole reliance on ranking information makes it invariant

under strictly increasing transformations of the objective function.

A parental population size of µ ≈ ⌊λ
2
⌋ is considered reasonable. This is in part

justified by the consideration that on a linear function, about half of the new can-

didate solutions are expected to be superior to the existing solution m(t). Empirical

observations of the CMA-ES on isotropic quadratic functions as well as on isotropic

multimodal functions suggest up to a factor of half as being beneficial [27].

2.2.3.3 Covariance Matrix Adaptation (CMA)

The covariance matrix represents the variation parameters. Consistent with the

paradigm of evolution, a sensible design principle is the reinforcement of successful

variations in a manner which preserves unbiasedness. Hansen [27] defines successful

variations as

xi;λ −m(t), for i = 1, . . . , µ. (2.17)

Notably, successful variation does not imply f(x
(t+1)
i;λ ) < f(m(t)), which is neither

necessary nor desirable in general as it would often result in an excessively small step-

size [27]. Preservation of unbiasedness is consistent with building the least number

of additional assumptions into the search procedure. This principle is also imple-

mented in the update of the mean parameter, where successful candidate solutions

are reinforced by means of weighting and truncation selection.

This section outlines how candidate solution ranking information is used to update

the strategy’s covariance matrix C. The remainder of this subsection is divided

into three parts. First, a mechanism used to reinforce successful intragenerational

variations, known as the rank-µ update [33], is discussed. A second procedure referred

to as the rank-one update exploits correlations between successful intergenerational

variations. The final covariance matrix update combines both processes in a manner

which preserves stationarity of the covariance matrix update.

Rank-µ Update
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The µ-best variations of a single generation, normalized by step-size σ(t),

x
(t+1)
i;λ −m(t)

σ(t)
(2.18)

for i = 1, . . . , µ are used in a weighted sum of outer products to update the existing

covariance matrix. The update is computed according to:

C(t+1) = (1− cµ)C
(t) + cµ

µ∑
i=1

wi

(
x
(t+1)
i:λ −m(t)

σ(t)

)(
x
(t+1)
i:λ −m(t)

σ(t)

)T

︸ ︷︷ ︸
outer product

, (2.19)

where constant 0 ≤ cµ ≤ 1 weights the influence of prior generations on the covariance

matrix update. Covariance matrices from multiple generations are comparable as the

outer product is normalized by σ(t)2 in equation 2.19. The recursive construction of a

weighted sum, parametrized by learning rate cµ constitutes an exponential smoothing

of past covariances. For learning rate cµ = 1, no prior information is retained, while

for cµ = 0 no learning takes place. The choice of cµ is crucial as too small values

lead to slow learning, while too large values lead to degeneration of the covariance

estimate [24]. Although the best choice of cµ remains an open question, empirical

tuning of the parameter on the quadratic sphere (fsphere : x →
∑i=n

i=1 x
2
i ; see subsec-

tion 2.4.2.2) has proven effective on non-noisy objective functions and is inferred to

be largely independent of the function to be optimized [24]. Observing that the sum

of outer products in 2.19 contains min(µ, n) linearly independent vectors, Hansen et

al. [33] termed this covariance matrix update the rank-µ update. Defining

A(t) := C(t)1/2 (2.20)

as the principal square root of C(t) and

z
(t)
i;λ := C(t)−1/2 x

(t+1)
i:λ −m(t)

σ(t)
∼ N (0, I), (2.21)

equation 2.19 can be reformulated:

C(t+1) = (1− cµ)C
(t) + cµA

(t)

( µ∑
i=1

wi z
(t+1)
i:λ z

(t+1)T

i:λ

)
A(t)T (2.22)

to express the update in the natural coordinate system defined by linear transfor-

mation matrix A applied to isotropically distributed mutation vectors z. This can
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be seen by considering the eigendecomposition of the covariance matrix C into a

set of orthonormal eigenvectors B and a diagonal matrix of eigenvalues D2 such

that C = BD2BT. Thus C’s principal square root A = BDBT since AA =

BDBT(BDBT) = BD2BT = C, encodes an axis rotation by B and an axis scal-

ing via D.

Jastrebski and Arnold [40] introduced active covariance matrix adaptation, which

generalizes the update rule in 2.22 from µ to λ candidate solutions by employing

negative weights for the remaining trial steps xµ+1;λ, . . . ,xλ:λ in order to decrease

variances in less promising regions of the search space. The update in 2.22 can thus

be written

C(t+1) = (1− cµ
∑λ

i=1 wi)C
(t) + cµA

(t)

(∑λ
i=1wi z

(t+1)
i:λ z

(t+1)T

i:λ

)
A(t)T , (2.23)

where {wi}i=λ
i=1 ∈ R form a monotonically decreasing sequence such that w1 ≥ . . . ≥

wµ ≥ 0 ≥ wµ+1 ≥ . . . ≥ wλ, with
∑µ

i=1wi = 1 and
∑λ

i=1wi ≈ 0. Negative recom-

bination weights can compromise the positive definiteness of the resulting covariance

matrix and thus mechanisms outlined in [24] have been introduced [40, 36] to address

this issue. The update has been demonstrated to be beneficial on a noiseless testbed

of problems [36] and implemented in a variant of the (1 + 1)-CMA-ES [2].

Closer inspection of 2.19 reveals that using selected steps y
(t+1)
i:λ = (x

(t+1)
i:λ −

m(t))/σ(t) in an outer product renders the sign of these steps irrelevant as y
(t+1)
i:λ y

(t+1)T

i:λ =

(−y(t+1)
i:λ )(−y(t+1)

i:λ )T. The remainder of this subsection explains the mechanism used

to reintroduce the sign information into the covariance matrix update C(t+1).

Rank-one Update

In order to recover the sign information, the technique of cumulation can be

employed. An elegant means of achieving this end is to sum successive steps taken by

the strategy in previous generations into a so-called evolution- or search-path [20, 34].

To define an unbiased estimator of the sum of successive steps, the evolution path

can be interpreted as the realization of a random vector s
(t)
c from a maximum entropy

distribution in accordance with the stationarity condition

s(t+1)
c ∼ s(t)c . (2.24)

The direction and length of such vector can be encoded by the orientation and scale

of the covariance matrix of a zero-mean multivariate normal distribution.
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Figure 2.4: Construction of the search distribution using a weighted sum of selected
steps (figure and caption modified from [35]). The initial search distribution at gen-
eration t = 0 is isotropic and described by orthogonal search vectors e1 and e2. The
selected steps y

(t)
sel are consecutively added in subsequent generations, with old vectors

multiplied by q = 0.9 in each generation. The schematic shows how N (0,C(1)) tends

to reproduce y
(1)
sel with a larger probability than the initial distribution N (0, I); distri-

bution N (0,C(2)) tends to reproduce y
(2)
sel with a larger probability than N (0,C(1)),

and so on.

In practice, the evolution path sc ∈ Rn is constructed as an exponentially fading

record of previous steps parametrized by constant 0 ≤ cc ≤ 1, with initial setting

s
(0)
c = 0. Normalizing by standard deviations σ(t) of steps, the equation

s(t+1)
c = (1− cc)s

(t)
c +

√
cc(2− cc)µeff

m(t+1) −m(t)

σ(t)
, (2.25)

describes the update of the evolution path, where µeff = 1/
∑µ

i=1w
2
i and the remaining

terms ensure that condition 2.24 is satisfied under random selection.

The evolution path of 2.25 is utilized to construct the covariance matrix update

as in 2.19, yielding [20]:

C(t+1) = (1− c1)C
(t) + c1s

(t)
c s(t)

T

c . (2.26)

A few observations can be made about 2.26. When cc = 1 and µ = 1, equations 2.25

and 2.19 are identical. Furthermore, as s
(t)
c s

(t)T

c has a rank of one, the covariance

matrix update in 2.26 is termed the rank-one update. A learning rate of c1 ≈ 2/n2 is

empirically validated [24]. When weights wi are selected such that µeff is small, using
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the evolution path for the update of C has been found to significantly improve 2.19 as

it results in the exploitation of correlations between successive steps [22]. Figure 2.4

illustrates a simple 2-dimensional scenario for t = 3 generations where the distribution

in each generation tends to reproduce the selected step y
(t)
sel with a larger probability

than the previous generation’s distribution. The combination of the rank-one and

rank-µ covariance matrix updates is discussed in the remainder of the subsection.

The covariance Matrix Update

The rank-one update in 2.26 and rank-µ update of 2.19 are combined to produce

the final covariance matrix update

C(t+1) = (1− c1 − cµ
∑λ

i=1wi︸ ︷︷ ︸
≈ 0

)C(t) + c1 s
(t+1)
c s(t+1)T

c︸ ︷︷ ︸
rank-one update

+cµ

λ∑
i=1

wi y
(t+1)
i:λ (y

(t+1)
i:λ )T︸ ︷︷ ︸

rank-µ update

(2.27)

where y
(t+1)
i:λ = (x

(t+1)
i:λ −m(t))/σ(t). According to the recommendation by Hansen [24],

the sum of weights is selected such that the sum of positive weights is equal to one

and the sum of all weights
∑λ

i=1 wi ≈ −c1/cµ, bringing the multiplicative factor on

C(t) close to one. This implies no decay on C(t), to which the positive update adds,

in expectation, an amount of variance that is removed by the negative weights [24].

Equation 2.27 combines the advantages of 2.19 and 2.26, reducing to 2.19 for

c1 = 0 and to 2.26 for cµ = 0. The former is important in large populations, where

it is desirable to efficiently use information from the entire population while the

latter is particularly consequential in small populations, where correlations between

generations are exploited by means of an evolution path [35, 24]. Computing the

expected value of 2.27 would confirm that the update equation obeys the stationarity

condition E(C(t+1)|C(t)) = C(t) under random selection [27].

2.2.3.4 Cumulative Step-Size Adaptation (CSA)

The covariance matrix adaptation procedure described in the previous subsection

fails to explicitly account for the overall scale, or step-size, of the search distribution.

Hansen and Ostermeier [35] note the importance of adding such a mechanism as being

motivated by at least two requirements. First, achieving satisfactory progress rates

on the simplest of objective function classes, such as the quadratic sphere, would

require that the overall variance is adapted on a timescale proportional to n. This is



24

contrasted by the n2 timescale necessary for adapting the overall shape of the search

distribution due to its O(n2) parameters [35]. Secondly, a poor initial setting of the

search distribution’s overall scale, such as at too small a step-size, would result in

the problem ”appearing” linear and adaptation erroneously increasing the variance

in one direction. Under such a regime, the overall variance must be adapted more

quickly than the distribution shape to prevent this failure [35].

In the field of evolution strategies, well-known heuristics for step-size adaptation

include:

— self-adaptation [68], whereby the strategy’s step-size σ is determined stochasti-

cally via sampling candidate solutions with varying σ and retaining the step-size

of the selected candidate solutions;

— the 1/5th rule [63] (described in section 2.2.2), whereby step-size is adjusted

such that the success rate across generations is approximately equal to 1/5;

— cumulative step-size adaptation (CSA) [60], which controls the length of the

evolution path, taken over a number of generations.

The CMA-ES employs cumulative step-size adaptation to adjust its step-size. As its

design principle, CSA aims to achieve perpendicularity of successive steps. Perpen-

dicularity as an optimality criterion for step-size control can be intuitively understood

by considering the following three cases:

1. If successive steps are negatively correlated, then they tend to be anti-parallel.

Thus successive steps cancel each other out and a similar trajectory could be

covered by fewer, shorter steps. Hence the step-size is assumed to be ”too long”.

2. If successive steps are positively correlated, then they tend to be parallel. Thus

multiple consecutive steps can ideally be replaced by fewer, but longer steps.

In this scenario it is reasonable to assume that the step length is ”too short”.

3. If successive steps are uncorrelated, then they tend to be roughly perpendicular.

It is deduced that step length is neither too short nor too long.

Figure 2.5 illustrates these three cases.
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(a) decrease σ (b) keep σ (c) increase σ

Figure 2.5: Intuition behind step-size adaptation (figure and caption modified
from [27]). The diagram shows three prototypical evolution paths in the search space,
each using six consecutive steps. While the lengths of the single (dashed) steps are
similar, the length of the evolution paths differ greatly. The situation in (a) depicts
single steps that are anti-parallel and thus cancel each other out, resulting in a short
evolution path. Part (b) illustrates steps that are on average perpendicular and a
resulting evolution path that is neither too short nor too long. Part (c) displays cor-
related steps, and the resulting long evolution path. The length of the evolution path
is a good proxy for the optimality of the step-size.

Successive steps are defined in terms of an evolution path

m(t) −m(t−j) (2.28)

where, again, the search algorithm’s solution estimate at generation t is represented by

m(t) and the solution corresponding to j previous generations denoted by m(t−j). Pa-

rameter j can be interpreted as the length of the evolution path, which is constructed

in a manner similar to equation 2.25. Applying exponential smoothing parametrized

by constant 0 ≤ cσ ≤ 1, the evolution path is given by

s(t+1)
σ = (1− cσ)s

(t)
σ +

√
cσ(2− cσ)µeffC

(t)−
1
2 m

(t+1) −m(t)

σ(t)
, (2.29)

where C(t)−
1
2 , denoting the principal square root of C(t)−1

, is the matrix which trans-

forms the selected step into the coordinate system wherein the sampling distribution

is isotropic. The remaining coefficients are added to maintain unit variance of the

path update. Consequently, starting with the initial evolution path s
(0)
σ ∼ N (0, I)

and under random selection of xi:λ in all succeeding generations, for any sequence of

realized covariance matrices C(0),C(1), . . . ,C(t) the following stationarity condition

s(t)σ ∼ N (0, I) for t = 1, 2, 3, . . . , (2.30)
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is satisfied [21].

Perpendicularity is sought by comparing the length of the evolution path ∥s(t+1)
σ ∥

with its expected length under random selection E∥N (0, I)∥ in order to detect whether

the evolution path is long or short. In the ideal situation, selection does not bias the

length of the evolution path and the length of the path equals its expected length

under random selection. This would result in consecutive steps that are independent

and therefore uncorrelated. If selection biases the evolution path to be longer than

expected, then σ should increase, and vice versa. The following construction achieves

the aforementioned requirements:

σ(t+1) = σ(t)exp

(
∥s(t+1)∥

E∥N (0, I)∥
− 1

)
. (2.31)

When the path length equals its length under random selection, ∥s(t+1)
σ ∥

E∥N (0,I)∥ = 1, the

argument of the exponential function evaluates to zero, retaining the current step-

size σ(t). When the ratio of expected lengths is greater than one, the argument

to the exponential function becomes positive and the step-size σ(t) is increased. The

converse holds when the ratio of expected lengths is less than one. This control mech-

anism attempts to achieve unbiasedness under random selection on the logarithmic

scale as E[logeσ(t+1)|σ(t)] = logeσ
(t) and can be further interpreted as striking a bal-

ance between exploration and exploitation. When the step-size is too short, success

probability is increased and thus exploitation is thought to be excessively favoured,

motivating its counteraction with an increase in step-size. The converse is presumed

to hold when the step-size is too long.

2.2.3.5 Algorithm Overview

Algorithm 2 highlights the main steps of the (µ/µw, λ)-CMA-ES with weighted re-

combination in a single generation, where the adoption of the assignment operator←
eliminates the need for superscript t. The state of the algorithm at any time step is

described by the parameter set {m, σ,C, sσ, sc}. The inputs to the algorithm consist

of a problem-dependent initial point m ∈ Rn and step-size σ ∈ R+ as well as an

initial population size λ with default setting 4 + ⌊3logen⌋. Evolution paths sσ and sc

are initialized to 0 and the covariance matrix defaults to C = I at the start.
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Algorithm 2: (µ/µw, λ)-CMA-ES [24]

Input: m ∈ Rn, σ ∈ R+, λ

Initialize: C = I, sc = 0, sσ = 0

Set: cc ≈ 4/n, cσ ≈ 4/n, c1 ≈ 2/n2, cµ ≈ µeff/n
2, c1+ cµ ≤ 1, dσ ≈ 1+

√
µeff

n

1: while not terminated do

2: Compute the principal square root of the covariance matrix

A← C
1
2 (2.32)

3: Sample a new population of search points, for i = 1, . . . , λ

zi ∼ N (0, I) (2.33)

xi = m+ σAzi ∼ N (m, σ2C) (2.34)

4: Select and recombine offspring

⟨z⟩ =
µ∑

i=1

wizi;λ, where

µ∑
i=1

wi = 1, wi > 0 for i = 1, . . . , µ (2.35)

m←m+ σA⟨z⟩ equals
µ∑

i=1

wixi;λ (2.36)

5: Adapt step-size

sσ ← (1− cσ)sσ +
√

cσ(2− cσ)µeff ⟨z⟩ (2.37)

σ ← σ × exp

(
cσ
dσ

(
∥sσ∥

E∥N(0, I)∥
− 1

))
(2.38)

6: Adapt covariance matrix

sc ← (1− cc)sc +
√

cc(2− cc)µeff A⟨z⟩ (2.39)

w◦
i = wi ×

(
1 if wi ≥ 0 else

n

∥zi;λ∥2

)
(2.40)

C← C+ c1scs
T
c + cµA

( λ∑
i=1

w◦
i zi:λz

T
i:λ

)
AT (2.41)

7: end while

Algorithm 2 is expressed in terms of a linear transformation A of the random

mutation vector z ∼ N (0, I), which can be implemented in Matlab using the built-in

randn function. Equation 2.32 of Line 2 computes this transformation by taking the

principal square root of the covariance matrix C. Equation 2.33 of Line 3 samples λ

trial steps zi from a zero-mean normal distribution with covariance C. Equation 2.34

then transforms zi such that the distribution of the resulting candidate solutions

∼ N (m, σ2C). Line 4 employs weighted averaging via equation 2.35 to compute
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the new population centroid where zi:j notation signifies the ith best of j mutation

vectors.

The global step-size update is performed in Line 5 by comparing the length of

the evolution path sσ maintained via equation 2.37 with its expected length under

random selection. This evolution path accumulates steps in the coordinate system

where the mutation distribution is isotropic and which can be derived by adjusting

its scale only. For more suitable change rates, Hansen [21, 24] has added the factor

cσ/dσ, with dσ as the damping parameter to equation 2.38.

The covariance matrix update in Line 6 relies on the evolution path sc given by

equation 2.39, which performs cumulation in the given coordinate system. Equa-

tion 2.41 performs a rank-one update using sc as well as a rank-µ update using trans-

formation matrix A and mutation vectors zi;λ. This rank-µ update is performed with

λ recombination weights w◦
i provided by equation 2.40, which is an implementation

by Hansen [24] that attempts to scale all negative weights such that the coefficient

of C becomes one while guaranteeing the positive definiteness of C. The specific

setting for these weights is given in Table 1 of [24]. The remaining parameters are

set according to the recommendation by Hansen [24], with a thorough motivation for

their setting offered in [35, 33, 24].

2.3 Gaussian Processes

Evolution strategies generate candidate solutions via unbiased probabilistic sampling.

Generally, the majority of candidate solutions are relatively poor and thus discarded.

Efficiency can be gained by substituting evaluations of the expensive objective func-

tion with calls to cheaper, though potentially inaccurate, approximate models of the

objective. Such models can be constructed using information gained from prior objec-

tive function evaluations and are referred to as surrogate models. Various surrogate

modelling approaches have been proposed and surveyed [42, 50] in the context of

evolutionary algorithms.

The remainder of the section provides some background on the particular choice of

model employed in this work. First, a mathematical definition of Gaussian processes

(GP) is presented. Next, the problem of model selection is addressed from both

Bayesian and frequentist viewpoints. The section concludes by briefly covering a
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generalization that allows for non-Gaussian processes.

2.3.1 Model Definition

A stochastic process is a collection of random variables, {f(xt) : t ∈ T }, indexed by

elements from a set T , known as the index set. A Gaussian Process is a stochastic

process such that any finite subset of random variables has a multivariate Gaussian

distribution [62]. Specifically, a collection of random variables {f(xt) : x ∈ Rn, t ∈ T }
is said to be drawn from a Gaussian process with mean function m(·) and covariance

function k(·, ·) if for any finite set of elements x1, . . . ,xt, the associated finite set of

random variables f(x1), . . . , f(xt) have joint Gaussian distribution
f(x1)

...

f(xt)

 ∼ N


m(x1)

...

m(xt)

 ,


k(x1,x2) . . . k(x1,xt)

...
. . .

...

k(xt,x1) . . . k(xt,xt)


 . (2.42)

The mean and variance functions are suitably named since for any pair x,x′ ∈ Rn in

the finite collection of inputs x1, . . . ,xt, the marginalization property of multivariate

normal distributions implies that:

m(x) = E[f(x)], (2.43)

k(x,x′) = E[
(
f(x)−m(x)

)(
f(x′)−m(x′)T

)
]. (2.44)

This property determines that if, for example, the GP specifies p(f(x1), f(x2)) ∼
N (µ,Σ), then it must also specify p(f(x1)) ∼ N (µ1,Σ11), where Σ11 is the relevant

sub-matrix of Σ. The marginalization property, also known as a consistency require-

ment, is automatically satisfied if the covariance function specifies the entries of the

covariance matrix [62]. A standard result in probability theory states that for a valid

GP, k(·, ·) must be positive semi-definite. This is plausible intuitively as variance is

by definition greater than, or equal to zero. A positive semi-definite matrix is also

referred to as a kernel [56] and is used interchangeably with the term covariance

matrix.

The definition of GPs as having any finite number of variables characterized by a

multivariate Gaussian distribution makes the model readily interpretable and analyt-

ically tractable for predictions with data. For a training dataset of observations D =
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{xi, fi}i=m
i=1 , as well as test locations with corresponding values D∗ = {x∗

i , f
∗
i }i=m∗

i=1 ,

the joint distribution of training outputs and test outputs according to the prior is

multivariate Gaussian distributed[
f

f∗

]
∼ N

([
m(x)

m(x∗)

]
,

[
k(x,x) k(x,x∗)

k(x∗,x) k(x∗,x∗)

])
, (2.45)

where x ∈ Rn×m and x∗ ∈ Rn×m∗
are the first component of D and D∗ respectively,

with n denoting dimension. Introducing more compact notation: k(x,x∗) as k∗,

k(x∗,x∗) as k∗∗, and k(x,x) as K, and noting that the conditional probability density

function of a joint Gaussian distribution is itself Gaussian [62], the distribution of test

outputs given training data is

p (f∗|x∗,x, f) ∼ N
(
m(x∗) + kT

∗K
−1(f −m(x)), k∗∗ − kT

∗K
−1k∗

)
. (2.46)

The proof of this property is omitted; interested readers are referred to [75]. The

predictive mean and covariance can be read from 2.46:

E[f ∗|x∗,x, f ] = m(x∗) + kT
∗K

−1(f −m(x)), (2.47)

V[f ∗|x∗,x, f ] = k∗∗ − kT
∗K

−1k∗. (2.48)

A wide range of functions can be modelled by specifying the covariance function

of a GP. Linear regression splines and Kalman filters are examples of GPs with par-

ticular kernels [62]. There are many possible choices of kernel function. One common

example is the squared exponential

k(xp,xq) = θ20exp
(
− 1

2θ21
∥xp − xq∥2

)
+ θ22δpq, (2.49)

where the parameters θ = {θ20, θ21, θ22} are referred to signal variance, length-scale,

and noise variance in order of appearance, with δpq denoting the Kronecker delta,

which is one iff p = q and zero otherwise. Informally, the length-scale characterizes

the ”wiggliness” of a function; the signal variance controls the uncertainty about the

mean function; and the noise variance takes into account observation noise. Fig-

ure 2.6 demonstrates the effect of these kernel parameters on a one dimensional case

of Gaussian process regression.
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Figure 2.6: Impact of the squared exponential kernel parameters θ on one-dimensional
GP mean and variance functions. The dashed line indicates the function f(x) = x2

being modelled and from which five samples, denoted by black dots, are randomly
selected. The coloured lines illustrate the mean functions for various parameter set-
tings and the shades highlight two standard deviations about the mean values. Each
sub-figure displays the GP prediction when one component of θ varies while the oth-
ers remain fixed.
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2.3.2 Model Selection

Model selection refers to the problem of specifying model parameters. Two philo-

sophically distinct approaches to inference can be pursued to this end: Bayesian and

frequentist. While in the former paradigm the problem is formulated as maximiz-

ing the probability of the model for some given observations, the latter approach

involves minimizing an estimate of generalization error. This section briefly describes

how model selection can be performed in the Bayesian sense via maximum likelihood

estimation and in the frequentist sense by means of cross-validation.

2.3.2.1 Maximum Likelihood Estimation

Bayesian principles provide a systematic framework for inference. A full Bayesian

treatment of model selection can involve the application of these principles at various

hierarchical levels: from over the discrete space of covariance function choices, to the

continuous space of covariance function parameters [62]. However the application of

these principles in practice often requires computation of the analytically intractable

marginal likelihood of a dataset, which are integrals over the parameter space for a

given model. This makes deriving good approximations difficult. By virtue of their

definition, GP regression models provide analytically tractable marginal likelihoods

which can be maximized to infer model parameters. In addition to enabling automatic

model construction, the marginal likelihood of a dataset given a particular model,

allows for comparisons between models, balancing between model complexity and

data fit [62]. As these assessments constitute important aspects of model selection,

the Bayesian framework is considered to be persuasive.

Let x ∈ Rn be input locations, f : Rn → R, µ ∈ Rm, and Σ ∈ Rm×m. The marginal

likelihood under a GP prior of a set of function values [f(x1), f(x2), . . . , f(xm)]
T :=

f(x) at locations X ∈ Rn×m is given by:

p(f(X)|X, µ(·), k(·, ·)) = N
(
f(X)|µ(X), k(X,X)

)
, (2.50)

which can be written as:

(2π)−
m
2 ×|k(X,X)|−

1
2×exp

(
− 1

2
(f(X)− µ(X))Tk(X,X)−1(f(X)− µ(X))

)
. (2.51)
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Taking the logarithm of equation 2.51 and dropping X for compactness, the log

marginal likelihood can be written as

log p(f |X, θ) = −m

2
log2π − 1

2
log|K| − 1

2
(f − µ)TK−1(f − µ), (2.52)

where K is the covariance matrix for the targets f . The logarithmic form facilitates

differentiation with respect to the parameters which can be useful in its maximization.

Readers are referred to [62] for a derivation of partial derivatives of equation 2.52 with

respect to θ. The first term in equation 2.52 is a normalization constant; the second

term imposes a complexity penalty as it depends only on the covariance function

and the input locations; and the third term controls the data fit as it is the only

term involving observed data [62]. Informally, complexity refers to the degree of the

Taylor polynomial required to sufficiently approximate the underlying function being

modelled about a given point. In this sense, a linear function would be considered

simple, while a ”wiggly” function would be regarded as more complex. Maximization

of the marginal likelihood favours an increase in the variable terms of equation 2.52,

which requires a less wiggly model defined by a larger length-scale for the second

term and a more wiggly model defined by a smaller length scale for the last term.

Thus the second term can be interpreted as penalizing model complexity, while the

last term can be regarded as encouraging it, leading to a better data fit.

From a Bayesian viewpoint, a complex model is capable of accounting for a wider

range of possible data sets than a simple one. Figure 2.7 illustrates the behaviour of

the marginal likelihood for three different model complexities, given a fixed number

of data points m and input locations X. The horizontal axis is an idealized depic-

tion of all possible vectors of targets f and the vertical axis represents the marginal

likelihood p(f ,X|Hi) for a given model Hi. The marginal likelihood is a probability

distribution over f that must, by definition, normalize to unity. This constraint im-

plies that the marginal likelihood of a simple model that accounts for a limited range

of possible sets of data is larger for those target values which the model can explain.

Conversely, a complex model, being more flexible, accounts for a wider range of pos-

sible data sets and would necessarily attain a smaller marginal likelihood on the same

set of targets. As improving model fit and lowering model complexity are opposing

requirements, maximizing the marginal likelihood thus implies balancing these two

factors. In this way, the marginal likelihood can be interpreted as tending to favour
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Figure 2.7: Data fit versus complexity trade-off (figure and caption modified
from [62]). The marginal likelihood is p(f |X, Hi) is the probability of the data, given
some model Hi. The horizontal axis is an idealized representation of of all possible
vectors of targets f . The number of data points m and the inputs X are fixed and
not shown. Marginal likelihoods for models of three different complexities are plotted
and must normalize to unity. For a particular data set indicated by f (dotted line),
a model of intermediate complexity over too simple or too complex alternatives is
preferred by this measure.

the simplest model that best explains the data. This trade-off is a consequence of GP

model definition and is thus automatic, making this an appealing approach to model

selection.

2.3.2.2 Cross-Validation

Cross-validation (CV) involves partitioning the collection of observations into two

disjoint sets, using one to train and the other to monitor the performance of the

model. Model performance on the latter set (validation set) is used as a proxy for

generalization error. Model selection is thus performed by minimizing this error.

A shortcoming of CV is that only a fraction of the full data can be used for

training, and if the validation set is small, the performance estimate obtained may

be highly variable. To address this, data is split into k disjoint, equally sized subsets;
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validation is done on a single subset and training is done on the union of the remaining

k − 1 subsets. This procedure is repeated k times, until all subsets have been used

for validation. Thus, all cases appear as validation cases and a large fraction of the

data is used for training. This procedure is referred to as k−fold cross-validation and

its drawback is the requirement to build k models instead of one. When k = m,

where m the number of training cases, this is known as leave-one-out cross-validation

(LOO-CV).

Cross-validation can be performed with any loss function. Although the squared

error loss is the most common choice for regression, for probabilistic models such as

GPs it is natural to consider also cross-validation using the negative log probability

loss, known as the log pseudo-likelihood. The predictive log probability when leaving

out training case i is

log p
(
fi|X, f−i, θ

)
= −1

2
log σ2

i −
(fi − µi)

2

2σ2
i

− 1

2
log2π, (2.53)

where fi is the prediction at point xi, f−i refers to all but the ith target in which

the training sets are taken to be (x−i, f−i), and µi and σ2
i are computed according to

equations 2.47 and 2.48 respectively. Accordingly, the LOO log predictive probability

is

LLOO(X, f , θ) =
m∑
i=1

log p(fi|X, f−i, θ). (2.54)

The training cost of building m models is often prohibitive, but for GP regres-

sion, there are cheaper computational alternatives. In each of the m folds, the most

computationally demanding aspect of inference in a GP model with fixed parameters

is a matrix inversion costing O(m3). When repeatedly applying the predictions from

equations 2.47 and 2.48, the expressions are almost identical, with the ith row and

column removed in each fold. Thus a single inverse of the covariance matrix can be

computed using inversion by partitioning, yielding the following expressions for the

LOO-CV predictive mean and variance [70]:

µi = fi −
[K−1f ]i
[K−1]ii

,

σ2
i =

1

[K−1]ii
.

(2.55)

The expense of computing these quantities includes a single matrix inversion costing

O(m3) in addition to them vector multiplications of O(m2) cost (onceK−1 is known).
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Plugging these equations into 2.53 and 2.54 produces a performance estimator that

can be optimized to perform model selection. The partial derivatives of LLOO with

respect to θ are given in [62] and can be employed in the error minimization.

2.3.3 Model Warping

While the presumption of a joint multivariate Gaussian distribution of data enables

predictions using simple matrix manipulations, it is often an unreasonable assumption

in practice. One such example occurs when observations consist of positive quantities

varying over multiple orders of magnitude. In this case, it is common to apply a

logarithmic transformation to the data before modelling [69]. However the logarithm

is but one instance of non-linear transformation, or warp, that could be employed to

render the observation space more suitable for a GP. Further, the ad-hoc choice of

function can be replaced by a principled, probabilistic approach to defining a warp.

Snelson et al. [69] introduce warped Gaussian processes (WGP) that generalize GPs

to non-Gaussian observation spaces within a Bayesian framework.

Given a dataset D consisting of input locations X = {xi}i=m
i=1 and corresponding

real-valued targets {fi}i=m
i=1 , the goal is to predict f ∗ at some new input location x∗.

Instead of placing a prior directly on the function space by assuming that any finite

selection of points x gives rise to a joint normal distribution over function values f ,

Snelson et al. [69] consider a vector of so-called latent targets z that is well-modelled

by a GP such that

log p(z|X, θ) = −m

2
log2π − 1

2
log|K| − 1

2
zTK−1z, (2.56)

where θ parametrizes the covarianceK of latent targets. To obtain z, each component

fi of the target vector f is mapped from the observation space to a component zi in

the latent space via a strictly increasing function Ω : R→ R such that

zi = Ω(fi − µ(X);ω) ∀i = 1, . . . ,m, (2.57)

with ω parametrizing the transformation. To conserve the probability measure, Ω is

by definition required to be a measurable transformation, meaning that the inverse

image of an admissible set R in the range space must be admissible in the domain

space. Moreover, to permit warps from the latent space back into observation space,
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Ω is required to be invertible and again, in order to preserve the probability measure

in that reverse direction, Ω−1 is also required to be measurable. This implies that in

addition to being strictly monotonic, the bijection Ω on f ∈ R must map onto the

entirety of the real line. Including the Jacobian term to account for the transformation

of random variables, the resulting log likelihood in observation space becomes:

log p(f |X, θ, ω) =− m

2
log2π − 1

2
log|K| − 1

2
Ω
(
f − µ(X);ω

)T
K−1Ω

(
f − µ(X);ω

)
+

m∑
i=1

log
δΩ
(
f − µ(X);ω

)
δf

∣∣∣∣
fi

.

(2.58)

The log marginal likelihood of the WGP given by equation 2.58 can be optimized

with respect to both θ and ω in order to perform model selection. This enables the

simultaneous learning of both the kernel parameters and the non-linear transforma-

tion within the same Bayesian framework. The computational cost incurred by the

additional differentiation is negligible compared to the cubic cost of inverting K, as

long as the derivatives of Ω are easy to compute.

The predictive distribution at a new point z∗ in latent variable space is just as

for a regular GP, calculated according to equation 2.47 for the mean µz∗ and 2.48 for

variance because

p(z∗|x∗,D, θ) ∼ N (µz∗(θ), σ
2
z∗(θ)). (2.59)

In observation space, that Gaussian is passed through the non-linear warping function,

yielding:

p(f ∗|x∗,D, θ, ω) = Ω′(f ∗;ω)√
2πσz∗

exp

[
−1

2

(
Ω(f ∗;ω)− µz∗

σz∗

)2
]
. (2.60)

While the shape of the distribution defined by 2.60 depends on the warping function

Ω, in general it may be asymmetric and multimodal [69]. Figure 2.8 visualizes the

space transformations that compose warped GP predictions.

Warping functions should ideally be flexible, allowing for classes of transformations

ranging from linear to highly non-linear. The authors [69] give the example of a neural

network style sum of tanh functions:

Ω(f ;ω) = f +
I∑

i=1

aitanh(bi(f + ci)) ai, bi ≥ 0 ∀i, (2.61)
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Figure 2.8: A schematic of the space transformations involved in generating warped
Gaussian process predictions. Points in the observation space undergo a transforma-
tion Ω into a so-called latent space that renders them more amenable to modelling
by Gaussian Processes. Points from the latent space are then provided as input to
a Gaussian process model whose predictions are ”unwarped” by applying the inverse
transformation.

where ω = {a,b,c} and for each tanh component: a controls the vertical scale,

b controls the horizontal scale, and c controls the horizontal position. The desired

flexibility of the warping function is controlled by parameter I and f is added to make

Ω unbounded on R in order to lead to a proper probability density in the observation

space. Many other warping functions are possible [69].

There are drawbacks to the parametric formulation of warps inWGPs as maximum

likelihood can sometimes fail under low data regimes, data with censored values,

etc. [48] Lázaro-Gredilla [48] addresses this problem by introducing Bayesian warped

Gaussian processes (BWGP) to demonstrate the viability of non-parametric warps in

GP regression.

2.4 Empirical Evaluation

Rigorous quantitative evaluation of algorithm performance is an important aspect in

the research and development of optimization algorithms. This section provides a brief

overview of the components of empirical evaluation related to this work. After a brief

description of the role of benchmarks, the types of difficulties posed by test problems

as well as related function families are discussed. The section concludes by explaining

significant elements of empirical evaluation such as initialization, termination, and

comparison criteria.
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2.4.1 Benchmarks

While at first glance evaluating algorithm performance may appear simple, in practice

it is surprisingly tedious and riddled with intricacies. Benchmarking entails a series

of tasks including: selecting a set of objective functions; defining objective function

transformations; identifying relevant performance criteria; and communicating data

in an interpretable manner. Each task involves subtle decisions crucial for the validity

of the outcome. The goal is to generate results that lead to deeper insights beyond

the standard performance ranking on a problem set.

Benchmarks aim to provide a framework for the systematic assessment of algo-

rithm performance to facilitate an understanding of algorithm behaviour. The COCO

platform [30] (”COCO” standing for COmparing Continuous Optimizers) provides a

comprehensive set of such tools that enable systematic experimentation in the field

of evolution strategies. Among other utilities, COCO offers the Black Box Optimiza-

tion Benchmark (BBOB) test suites, which are collections of test functions used to

systematically evaluate an algorithm’s robustness to problem characteristics such as

noise, ill-conditioning, multi-modality, etc. The BBOB offers multiple test-beds, each

containing numbered problems with corresponding analytic definitions. A subset of

the noiseless test-bed [31] is employed in this investigation.

2.4.2 Test Functions

The choice of test function is motivated by the desire to understand algorithm per-

formance with respect to some specific problem characteristic. A function may be

selected to model a relevant practical difficulty or a simple topology, such as a linear

slope, that every search algorithm should in principle be able to overcome. The fol-

lowing subsections describe a few common classes of difficulty that may be posed by

an objective function as well as a natural grouping by function definitions referred to

as function families.
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2.4.2.1 Characteristics

Multi-modality

Multi-modal functions possess more than one local optimizer. For strategies that

rely on neighbourhood information to converge to the global optimum, local optima

present a challenge as convergence to such solutions may stop progress altogether.

Optimization algorithms often employ restart strategies to overcome this chal-

lenge. Two prominent variants of the CMA-ES that use restart strategies are the

IPOP- [3] and BIPOP-CMA-ES [23]. In IPOP-CMAES, CMA-ES is restarted with

double the population size each time the termination criteria are satisfied. The

BIPOP-CMA-ES operate under two regimes. In the large population regime, CMA-

ES doubles its population size at each restart; in the small population mode, it varies

its population size uniformly at random between [λdefault/2, λdefault] at each restart,

where parameter λdefault denotes the default population size of the CMA-ES adapted

for unimodal functions. BIPOP-CMA-ES start with λdefault and in each restart pick

the mechanism that has incurred the fewest function evaluations thus far. Loshchilov

et al. [53, 54] employ both strategies in their surrogate-assisted CMA-ES variant [50]

to achieve competitive results on multimodal functions.

Ill-conditioning

After multi-modality, Ill-conditioning is perhaps the most common challenge in real

parameter optimization [30]. The condition number of a matrixH refers to the ratio of

the largest to the smallest eigenvalues of H. In the case of convex quadratic functions,

conditioning can be defined as the condition number of the function’s Hessian matrix

H. Level sets of convex quadratic functions are ellipsoids; the condition number

of these functions corresponds to the square of the ratio between the largest and

smallest axes of the ellipsoidal level sets. For more general functions, conditioning

informally refers to the ratio the longest and shortest principal axes of the functions.

Problems that exhibit condition numbers in excess of 105 are considered to be highly

ill-conditioned [28]. The BBOB [31] test-bed contains ill-conditioned functions with

a typical conditioning of 106.

Separability

A problem is considered to be separable if it can be decomposed into a sequence of n
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independent optimization procedures:

arg minx∈Xnf(x) =
(
arg minx1

f(x), . . . , arg minxn
f(x)

)
, (2.62)

where X n is the n-dimensional search space. Non-separable problems are consid-

ered to be much more difficult than separable ones because the difficulty of separable

problems scales linearly in problem dimension n, as the search space volume increases

exponentially in n. Thus most benchmark functions are designed to be non-separable

in order to prevent exploitation of such problem structure. A problem may be non-

separable in the original variables and with a rotation of the coordinates it becomes

separable in the different coordinate system, which an algorithm may be able to learn.

Other problems aren’t separable in any coordinate system. The well-established tech-

nique for generating non-separable functions from separable ones is the application

of a random rotation matrix R to the function’s input coordinates [30]. However this

technique does not work in some cases, such as on functions that feature a perfectly

isotropic topology.

2.4.2.2 Families

The set of test functions considered in this thesis falls into the following four fami-

lies: sphere functions, convex quadratic functions, quartic functions, and power sum

functions. This section describes each family.

Sphere functions take the following form:

f(x) =
(
xTx

)α/2
, (2.63)

where x ∈ Rn and α ∈ R+. The quadratic sphere is obtained for α = 2 in equa-

tion 2.63. Spheres exhibit identical scales in all directions and are thus perfectly

suited to the isotropic mutation operator. The (1+1)-ES without surrogate model

assistance achieves the same convergence rate on all sphere functions. However, un-

less using comparison-based surrogate models as proposed by Loshchilov et al. [51],

surrogate models may exhibit different degrees of accuracy depending on α.

Spheres are a good candidate for theoretical and empirical analyses of evolution

strategies. Mathematical analysis of ES is difficult and analytically feasible only

on simple objective functions [1]. In practice, an optimization algorithm that is
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unsuccessful on an objective function as simple as the sphere cannot reasonably be

expected to perform well on more complicated test functions. Moreover, a search

strategy is ideally able to adapt to the fitness landscape such that locally, the problem

is rescaled into a spherical one [1]. Such local adaptation demand is hoped to be met

by the CMA-ES, which linearly transform the problem into a spherical one on convex

quadratic functions [35]. Analyses of the performance of ES on the sphere can thus

be expected to generalize to other objective functions.

Convex quadratic functions are of the form:

f(x) =
1

2
xTHx, (2.64)

where x ∈ Rn andH ∈ Rn×n is a positive definite matrix. MatrixH can be set to vary

the type of adaptation demand imposed on the optimizer. For H = diag(β, 1, . . . , 1),

this family includes both cigar (β ≪ 1) and discus functions (β ≫ 1). In the

ellipsoid function, β
(i−1)
(n−1) , i = 1, ..., n, with β ≈ 106 in the COCO benchmark [30].

When H equals the identity matrix I, the quadratic sphere is recovered. On convex

quadratic functions, the covariance matrix of the CMA-ES approximately converges

to the inverse Hessian H−1 during its run [24].

Generalized quartic functions

f(x) =
n−1∑
i=1

[γ(xi+1 − x2i )
2 + (1− xi)

2] (2.65)

are less than perfectly conditioned and non-quadratic. These functions feature a bent

ridge whose conditioning increases by increasing γ, thus intensifying the requirement

for constant relearning of the axis scales. At γ = 100, this family includes the

generalized Rosenbrock function, which becomes tedious to optimize without CMA.

The global optimizer for these functions is located at x = 1, however for n ≥ 4 they

exhibit a local optimum.

Power summations of the form:

f(x) =

√√√√ n∑
i=1

|xi|2+4 i−1
n−1 (2.66)

combine the properties of being highly ill-conditioned and non-quadratic. The BBOB [28]

benchmark calls equation 2.66 the Sum of Different Powers (fdiffpow). This family,
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as the generalized quartic functions, cannot be linearly transformed into a spherical

problem. Ill-conditioning continually increases while approaching the optimum. A

strategy that relies on local information is presumed to pursue a progressively nar-

rowing ridge on this class of test problems [35].

2.4.3 Experiment Settings

Decisions regarding how to initialize, terminate, and compare the performance of

optimizers form an important part of their empirical evaluation. This subsection

provides some background on these considerations.

2.4.3.1 Initialization Criteria

Requisite inputs to optimization algorithms typically include: the objective function

of interest, an initial n-dimensional point, and applicable search space constraints.

All functions in the COCO benchmark are defined everywhere in Rn and have their

global optimum in [−5, 5]n, with most having their global optimum in [−4, 4]n [30].

A reasonable setting for the starting location is to provide a point selected uniformly

at random from the interval [−4, 4]n [28]. Functions are typically initialized via the

provision of random shifts and rotation matrices, which test the solvers’ invariance

to translations and rotations of the search space.

2.4.3.2 Termination Criteria

Termination criteria are typically expressed in terms of either: a function evaluation

budget, a target function value, a distance to the optimizer, or a combination thereof.

The specific choice of termination criteria depends on the aspect of the problem under

evaluation and is limited by considerations of numerical accuracy. The number of

function evaluations required to reach a target value is known as the run-time of an

algorithm. This measure can be aggregated from several targets for a given problem

in order to study how algorithm performance scales with respect to problem difficulty.

Target function values ftarget are parametrized as the sum of the optimal function

value fopt and target precision f∆. The optimal function value fopt differs by objec-

tive function. Problem difficulty does not necessarily scale uniformly with decrease

in target function value and may result in varying characteristics of the problem to



44

be solved. The power sum functions are such an example, where ill-conditioning

increases with decreasing distance to the optimizer. However, smaller target val-

ues on the same function are invariably more difficult to reach. Thus the choice

of f∆ depends on the experiment’s objectives. Reasonable values change by simple

modifications in the function definition, such as an order preserving transformation.

The lower-bound on target precision is determined by the computing environment’s

floating point precision. A value of no less than f∆ = 10−8 is used in the COCO

benchmark [30].

2.4.3.3 Comparison Criteria

Performance metrics are ideally quantitative, interpretable, and as simple as possi-

ble [30]. Cost incurred in satisfying termination criteria forms the basis for comparing

algorithm performance. Trial runs terminate when either the budget of function eval-

uations calls is exceeded, or when the optimum fopt is reached to within some prede-

fined precision f∆. The former termination criterion is characterized as a fixed-budget

and the latter as a fixed-target scenario [28].

The fixed-budget scenario is graphically represented by a vertical line on con-

vergence graphs as seen in Figure 2.9, with cost being measured in the number of

objective function calls. The function evaluation budget is often determined by prac-

tical constraints such as CPU time, with larger budgets being generally expected to

lead to better solutions. This mode of measuring cost solely provides a ranking of

comparators; it does not allow quantitatively interpretable comparisons as there is

no a priori evidence regarding the scaling of problem difficulty with respect to func-

tion value. Thus, interpretation of resulting data requires a thorough understanding

of the underlying test function. Values from different test functions are in general

incompatible and therefore not amenable to aggregation. Moreover, for algorithms

that are invariant under transformations of the function value, fixed-budget measures

can be made invariant to these transformations by transforming all resulting function

values.

In the fixed-target scenario, cost is quantified by counting the number of func-

tion evaluations until the target (fopt + f∆) is reached. This can be pictured as a

horizontal line on convergence graphs (see Figure 2.9) and is the preferred setting
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Figure 2.9: Fixed target and fixed budget evaluation scenarios. The fixed budget
criteria depicted by the red vertical line can fail to detect good results, while under
the fixed-target scenario illustrated by the blue horizontal line, bad results can be
missed. Running times are quantitatively meaningful; unless objective function values
are quantitatively meaningful as well, the fixed budget approach is preferable.

for benchmarking as it enables quantitative and interpretable comparisons between

algorithms. The interpretation of cost in the fixed-target scenario is independent of

the test function; hence results from different runs can be aggregated. Fixed function

value targets can be made invariant with respect to rank-preserving transformations

of the objective function simply by transforming the chosen target function value.

Alternatively, parametrizing termination criteria in terms of a target distance to the

optimizer, such as ∥x− xopt∥, avoids the requirement for this adjustment as this

metric is invariant to function value transformations.

The median number of function evaluations required to reach a target function

value in a batch of trials is a reliable means of measuring running-time for unimodal

test problems, which do not in principle require restarts. This median is computed
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over Ntrial runs for a single setup (test function, dimensionality, etc.) and can be a

good choice as it is robust to outliers and permits quantitative comparisons. The

default value for Ntrial is fifteen in the COCO benchmark [30] as this number is

considered sufficiently large to render relevant performance differences statistically

significant, while being small enough be computationally feasible [28].

2.5 Related Work

Surrogate modelling techniques have been applied extensively to black-box opti-

mization problems across various disciplines. In the domain of evolution strate-

gies, multiple such algorithms have been proposed and covered in comprehensive

reviews [42, 61, 5, 50]. This section highlights model-assisted CMA-ES that are

deemed competitive on the COCO benchmark and considers a few algorithm variants

directly related to the current work.

Kern et al. [47] developed one of the first variants of surrogate-assisted CMA-

ES, named lmm-CMA-ES (”lmm” standing for local meta model). They exploit the

strategy’s covariance matrix to construct locally-weighted quadratic models for each

offspring that scale the influence of previously evaluated training points on candidate

solution estimates. In each generation, the strategy produces a population of candi-

date solutions, ranks them using its surrogate, and selects a fraction of its seemingly

best candidate solutions for evaluation on the true objective function. This fraction is

adapted according to rank changes from adding data to the model across generations,

an idea inspired by the work of Runarsson [66] who termed the notion ”approximate

ranking”. Bouzarkouna et al. [7] further refine this algorithm to be more effective for

larger population sizes.

Loshchilov et al. propose the ACM-ES [51] which employ support vector machines

that use the covariance matrix adapted by CMA-ES within a Gaussian kernel. The

surrogate is used to rank candidate solutions, thus preserving the strategy’s invariance

with respect to order-preserving transformations of the objective. They emphasize the

importance of retaining this property in the surrogate models that assist comparison-

based optimizers. In a further evolution of the approach, they integrate a second

CMA-ES to adjust the surrogate’s hyper-parameters throughout the run, as well as a

mechanism to adaptively refine the number of generations required to retrain a new
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model. The algorithm was termed s∗ACM-ES [53] (”s∗” standing for Self-Adaptive

Surrogate-Assisted) and was later upgraded in subsequent work by the authors [54]

to include a procedure for increased exploitation of the model. A greater reliance on

the surrogate was empirically demonstrated to benefit performance on unimodal test

problems while increasing the tendency to fail on multimodal functions.

Bajer et al. [5] focus on Gaussian process assisted CMA-ES variants and use the

COCO benchmark to systematically compare these algorithms against several other

evolutionary black-box optimizers. They find s∗ACM-ES and lmm-CMA-ES to be

more competitive than published GP-assisted CMA-ES variants. The authors pro-

pose the Doubly Trained Surrogate CMA-ES (DTS-CMA-ES) and find that they

perform similarly to the lmm-CMA-ES on many COCO benchmark problems, far-

ing well especially on some classes of multimodal test functions. On unimodal test

problems, s∗ACM-ES are shown to be the most competitive algorithm, performing

similarly to DTS-CMA-ES in five dimensions, but significantly outperforming it in

twenty dimension. They attribute this performance advantage of the s∗ACM-ES

in higher dimensions to the strategy’s invariance with respect to strictly increasing

transformations of the objective function.

Hansen [25] presents the lq-CMA-ES (”lq” denoting linear/quadratic), which ex-

tend the lmm-CMA-ES in multiple ways. The lq-CMA-ES employ a single global

surrogate, instead of multiple local models, to perform weighted regression based on

a distance in function space. The surrogate model produces fitness rankings that are

compared to the true ranks, rather than to rank changes from adding data, in order to

determine when to accept the new model. The surrogate’s optimizer is subsequently

used to compute a candidate direction for the next iteration. Model complexity is

adjusted depending on the number of previously evaluated points in the strategy’s

archive. Hansen also integrates active covariance matrix adaptation [40], which ex-

ploits information about both successful and unsuccessful candidate solutions in order

to decrease variances of the mutation distribution in unpromising search space direc-

tions. Hansen utilizes the COCO benchmark to systematically compare this algo-

rithm against several surrogate-assisted CMA-ES variants, including lmm-CMA-ES,

DTS-CMA-ES, and s∗ACM-ES. These comparisons reveal that despite their relative
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simplicity, lq-CMA-ES perform similarly to the other surrogate model assisted algo-

rithms and appear to surpass their comparators when function evaluation budgets

are up to ten times the number of dimensions of the test problems.

Kayhani and Arnold [45] design a simple Gaussian process assisted (1+1)-ES that

use their surrogate model to filter out potentially unpromising candidate solutions

prior to their evaluation on the true objective function. They apply a step-size adap-

tation mechanism based on the implementation of the 1/5th rule [63] by Kern et

al. [46]. Specifically, they decrease the step-size if either the model-predicted or true

objective function value of the offspring is inferior to that of the parent, and increase

it if the offspring is successful. Yang and Arnold [78] generalize Kayhani’s algorithm

for increased exploitation of the model via preselection. In each iteration, the strat-

egy generates a population of candidate solutions, uses intermediate recombination

to compute the centroid of a fraction of trial points deemed best by the surrogate

model, then assesses this point on the surrogate to determine whether it should be

rejected or evaluated on the true objective function. They find that more intensive

exploitation of the model requires different rates of change for the step-size adaptation

mechanism. Like Loshchilov et al. [54], Yang and Arnold also observe that increased

exploitation of the model is more often beneficial on unimodal problems.

Toal and Arnold [73] introduce the GP-CMA-ES which combine the surrogate-

assisted evolution strategy of Yang and Arnold [78] with the approach to covariance

matrix adaptation. They compare the performance of the resulting algorithm with

competing surrogate-assisted CMA-ES on several families of parametrized unimodal

test problems. They observe that the GP-CMA-ES, despite their simplicity, display

at least the second best performance of all surrogate model assisted CMA-ES variants

on the problems considered. Their comparisons on a set of parametrized unimodal

test problems reveal that lq-CMA-ES excel predominantly on quadratic test prob-

lems, while s∗ACM-ES become increasingly competitive in higher dimensions. They

highlight the invariance of Loshchilov’s algorithm [54] with respect to rank-preserving

transformations of the objective as a source of its robustness to ill-conditioning.

Regis [64] proposes the Constrained Optimization by Radial Basis Function (CO-

BRA) strategies that construct one RBF surrogate model for each constraint function
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as well as the objective function. The author employs a piecewise logarithmic transfor-

mation (termed plog) introduced in an earlier work [65], which is strictly monotonic

and applied to the function values of select test problems in order to render them

more suitable for modelling by the RBF surrogates. Bagheri et al. [4] build on the

work of Regis [64] to present SACOBRA (”SA” standing for Self-Adaptive), which

among other additions, provide a mechanism for the adaptive application of the plog

transformation to objective function values. In each iteration of the algorithm, the

population of candidate solutions is used to train a pair of RBF surrogates, one on

plog-transformed and another on untransformed function values. Models of the ob-

jective function are then employed at every t iterations to produce a fitness estimate

for a new candidate solution to be added to the training archive. The inverse plog

transform is applied to the fitness estimate of the RBF that is trained on the plog-

transformed archive, and a model prediction error is computed by comparing both

models’ fitness estimate against the true function value of the new candidate solution.

The model deemed superior is selected as the surrogate for the next t iterations. The

authors evaluate SACOBRA on the G-function benchmark [17, 57] of constrained

test problems, consuming fewer than one thousand function evaluations on all but

one test problem. The algorithm of Bagheri et al. [4] toggles the application of a warp

rather than attempting to find the most suitable transformation at every iteration;

the latter approach is adopted in this work.



Chapter 3

Algorithm

This chapter highlights the main contribution of this thesis. The remainder of this

chapter describes the proposed algorithm in detail and motivates the choice of pa-

rameters.

3.1 Warped Gaussian Process Assisted CMA-ES (wGP-CMA-ES)

Algorithm 3 shows a single iteration of the wGP-CMA-ES and closely follows the

pseudo-code provided by Toal et al. [73] with modifications necessitated by the in-

troduction of a warp. A value or model prediction that is warped with function

Ω(·;ω) is distinguished with the hat (̂·) symbol. The state of the algorithm is fully

described by candidate solution x ∈ Rn, step-size parameter σ ∈ R+, positive definite

matrix C ∈ Rn×n referred to as the covariance matrix, vector s ∈ Rn referred to as

the evolution path, and an archive A containing m previously evaluated candidate

solutions along with their objective function values. In Line 1, a collection of previ-

ously evaluated points are used to construct a warped surrogate model f̂ε : Rn → R
that approximates the objective function near the previously evaluated points and

is much cheaper to evaluate than the true objective. The details of its construction

are provided in subsection 3.1.3. The algorithm continues in Line 2 by computing

the positive definite principal square root of the covariance matrix C. Lines 3 to 5

implement the variant of preselection introduced by Yang and Arnold in [78]: Line 3

samples λ mutations from a Gaussian distribution with zero mean and unit covari-

ance; the surrogate model is then used to evaluate the λ trial points yi = x+ σAzi

in Line 4; and Line 5 computes the mutation centroid using rank-based weights.

Line 6 generates candidate solution y = x+ σAz using the resultant centroid z from

the prior line and approximates its objective function value using the warped sur-

rogate model. In Line 7, the warping function is used to transform the parent

value prior to comparing it to the warped candidate solution estimate f̂ε in Line 8.

50
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Algorithm 3: Single Iteration of the wGP-CMA-ES

Required: x ∈ Rn, σ ∈ R+, C ∈ Rn×n, s ∈ Rn, A =

{(xk, f(xk))|k = 1, 2 . . . ,m} , Ω(·, ω)
1: Build a warped surrogate model from archive A.
2: Compute A = C1/2.

3: Generate trial step vectors zi ∼ N (0, In×n), i = 1, 2 . . . , λ.

4: Evaluate yi = x+ σAzi using the warped surrogate model, yielding f̂ε(yi).

5: Let z =
∑λ

j=1 wjzj;λ, where j;λ is the index of the jth smallest of the f̂ε(yi).

6: Evaluate y = x+ σAz using the warped surrogate model, yielding f̂ε(y).

7: Warp parent value f(x) with warp function Ω, yielding f̂(x).

8: if f̂ε(y) > f̂(x) then

9: Let σ ← σe−d1/D.

10: else

11: Evaluate y using the objective function, yielding f(y).

12: Add (y, f(y)) to A.
13: Update warp parameters ω.

14: if f(y) > f(x) then

15: Let σ ← σe−d2/D.

16: else

17: Let x← y and σ ← σed3/D.

18: Update s and C.

19: end if

20: end if

If the candidate solution is suggested by the surrogate model to be inferior to that of

the parent, then the step-size is reduced, otherwise the point is evaluated on the true

objective function and added to the archive. In Line 13 the warping parameters are

updated using this newly formed training archive. The true objective function value is

then used to rule out false positives: if the candidate solution is indeed worse than the

parent, the step-size is reduced and the iteration completed, otherwise the candidate

solution replaces the parent, the step-size is increased, and the covariance matrix

C and cumulation path s are updated as described in section 3.1.2. At most one



52

evaluation of the objective function is performed in each iteration of the algorithm.

Moreover, except for the use of a warped surrogate model and the associated lines 7

and 13, Algorithm 3 is identical to that described by Toal and Arnold [73].

3.1.1 Parameter Settings

Parameter λ determines the degree of surrogate model exploitation. Yang and Arnold [78]

discuss how this parameter affects the change rates for step-size adaptation. The im-

pact of parameter λ is experimentally explored in Chapter 4 for the warped surrogate

setting. Following in the steps of Toal and Arnold [73], the remaining parameters of

the algorithm are classified according to the setting for parameter λ as follows:

— if λ = 1, then the only weight used in Line 5 is w1 = 1. The constants which

control step-size adaptation rates in Lines 9, 15, and 17 are fixed at d1 =

0.05, d2 = 0.2, and d3 = 0.6 following the recommendation by Kayhani and

Arnold [45].

— if λ > 1, then the recommendation by Hansen [24] is used to set the rank based

weights in Line 5. Weights w1 through w⌊λ/2⌋ establish a strictly decreasing

sequence of positive values that sum to one and the remaining weights are set

to zero. The constants that determine step-size adaptation rates are set to

d1 = 0.2, d2 = 1.0, and d3 = 1.0 based on the recommendation by Yang and

Arnold [78].

Parameter D, which dampens the rates of the step-size parameter changes, is fixed

at
√
1 + n according to previous work [45, 78].

3.1.2 Covariance Matrix Adaptation

The covariance matrix update proposed by Hansen et al. [35, 33], with some mod-

ifications provided in [24], is employed in Line 18 of the algorithm for λ > 1. The

cumulation path sc, which implements an exponentially moving average of previously

selected steps is updated according to equation 2.39:

sc ← (1− cc)sc +
√

cc(2− cc)µeffA⟨z⟩, (3.1)
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where µeff is computed from rank-based weights as described by Hansen [24]. This

evolution path is used in the covariance matrix update according to equation 2.41:

C← C+ c1scs
T
c + cµA

( λ∑
i=1

w◦
i zi;λz

T
i;λ

)
AT. (3.2)

The covariance matrix update incorporates information from present and prior co-

variance matrices as well as from new candidate solutions. Settings for parameters

cc, c1, and cµ as well as the weights w◦
i are as described by Hansen [24] and preserve

the positive definiteness of the covariance matrix C despite some of the weights w◦
i

being negative. In the single offspring case with λ = 1, the covariance matrix update

described by Igel et al. [38] with corresponding parameter settings is utilized. The

above settings are identical to those used in Toal and Arnold’s GP-CMA-ES [73].

3.1.3 Surrogate Model

Gaussian processes are described in Section 2.3 of this thesis, with a detailed treat-

ment of the subject provided by Rasmussen and Williams [62]. In order to build

a surrogate model from prior observations {xk, f(xk)}i=m
i=1 , the strategy’s covariance

matrix σ2C is used to compute Mahalanobis distances in the squared exponential

kernel described by 2.49. In Line 1 of Algorithm 3, an m×m matrix K with entries

kij = k(xi,xj) is generated using the kernel function

k(xi,xj) = exp

(
− (xi − xj)

TC−1(xi − xj)

2θ21σ
2

)
, (3.3)

with unit signal variance θ0 = 1, length-scale parameter θ1 = 10n, and zero noise

variance θ2 = 0. The choice of the Mahalanobis distance is inspired by the work of

Kern et al [47] who perform polynomial regression using the same distance measure.

The use of the underlying strategy’s covariance matrix in the kernel of the GP makes

the surrogate model robust with respect to affine transformations of the search space

with no additional expense. Parameter θ0 = 1 as θ0 only affects uncertainty predic-

tions during inference and this measure is not employed in Algorithm 3. Experiments

with maximum likelihood estimation and cross-validation to select parameter θ1 did

not result in reliable improvements compared to the simple heuristic employed for

the length-scale parameter. The constant of proportionality chosen here for θ1 is

greater than that used by Toal and Arnold [73], who set θ1 = 8n; this is motivated by
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empirical observations of larger constants of proportionality leading to lower model

prediction error in the limit of numerical precision. Kernel parameter setting θ3 = 0

is reasonable as observations are not corrupted by noise.

The warping function family is chosen to be the power functions with two degrees

of freedom: an exponent for power transformations, and a constant for translations

according to:

Ω(f ;ω) = (f − q)p; ω ∈ {(p, q)|q ≤ f1;m, p ∈ R+, q ∈ R}. (3.4)

Warp parameters ω are selected by maximizing the ranking consistency measured

by Kendall’s correlation coefficient τ between predicted f̂pred(ω) and true f function

values of points in the archive:

ω∗ = argmaxω τ
(
f , f̂pred(ω)

)
. (3.5)

For a given ω, f̂pred is computed by means of LOO-CV according to equation 2.55,

with kernel function given by equation 3.3. This approach to selecting ω bypasses

the need to compute an inverse warp and thus foregoes the requirement to define a

bijective map on R. The procedure employed to find an appropriate warp is outlined

in Algorithm 4; we use the compact notation τ(ω) in lieu of that used in equation 3.5

to denote rank correlations.

Algorithm 4 implements a simple variant of two-dimensional coordinate search in

the parameters ω = (p, q). The success criterion of the warp optimization process

controls the frequency of warp parameter updates and is defined as a rank correla-

tion value of τ ≥ 0.9. Based on empirical investigation across the test problems of

varying dimension presented in the next section, this value was calibrated to balance

higher model accuracy and the greater update frequency observed to be necessary

in higher dimensions with the computational overhead of running Algorithm 4. In

each invocation of Algorithm 4, if warp parameters are deemed to be poor, then kq

points are enumerated linearly in the interval [f1;m, f2;m], where m is the number of

training points in the archive and the i; j convention refers to the ith smallest of j

elements. When rank correlations for each shift component of the warp parameter

in the specified range are enumerated, the maximizer of τ is selected; if the resulting

warp is unsuccessful (i.e. rank correlation τ < 0.9), then kp power values are enumer-

ated logarithmically in the interval [10−1, 101] and the corresponding maximizer of τ
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is selected. If neither adjustment is successful, then no warp is used by the surrogate

model by defaulting to ω = (1, 0). The number of enumeration points kp = kq = 101

are tuned empirically, balancing the trade-off between computational expense and

precision. The range for power values p is constrained to within two orders of mag-

nitude in order to prevent numerical accuracy issues. The interval for shift values is

adapted based on the difference measure between the two smallest function values in

the training set. This helps to maintain an appropriate enumeration density for the

shift variable throughout the run of the optimizer.

Algorithm 4: Warp Update Routine

Required: Archive of points A = {(xk, f(xk))|k = 1, 2 . . . ,m}, function
value predictions of warped GP model f̂pred, warp parameter ω,

1: if τ(ω) ≥ 0.9 then

2: Keep the current warp.

3: else

4: Search for a better shift q by enumeration and set ω̃ ← (p, qnew).

5: if τ(ω̃) ≥ 0.9 then

6: Update warp ω ← ω̃.

7: else

8: Search for a better power p by enumeration and set ω̃ ← (pnew, q).

9: if τ(ω̃) ≥ 0.9 then

10: Update warp ω ← ω̃.

11: else

12: Default to no warp ω ← (1, 0).

13: end if

14: end if

15: end if

Selection of the class of power functions for Ω was driven by the need for a simple,

non-linear transformation with low computational cost of optimizing model parame-

ters. While the choice of Ω is motivated by the requirement to represent a complex

set of transformations, it is tempered by the number free parameters necessitated

by the model as optimization of these parameters can be computationally expensive

and numerically tedious. Gradient descent approaches based on finite differencing
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methods are slow and expensive while quasi-Newton methods can suffer from pre-

mature convergence. Popular numerical solvers such as Matlab’s fminsearch, which

implements Nelder-Mead’s simplex method [59], can fail to consistently provide good

warps. As model expressiveness and computational cost are conflicting requirements,

a balance needs to be struck. The tanh function proposed by Snelson et al. [69] has

four degrees of freedom and is thus more tedious to optimize. Power functions allow

for non-linear transformations while keeping a small number of warping parameters.

Furthermore, the formulation of the optimization error criterion given by equation 3.5

as a rank-based metric circumvents the need to compute the inverse warp Ω−1.

Once a suitable warp is identified, function values in the archive are warped f̂ =

Ω(f ;ω) to perform predictions. In order to evaluate these models in Lines 4 and 6

of Algorithm 3 at a point y ∈ Rn, an m × 1 vector k with entries ki = k(xi,y) is

computed. The warped model prediction becomes

f̂ε(y) = f̂(x) + kTK−1f̂ , (3.6)

where f̂ is an m× 1 vector with warped entries f̂i = f̂(xi)− f̂(x). This implies that

the Gaussian process’s prior mean is set to the warped parental function value. In

contrast to Bajer et al. [5] and consistent with Toal and Arnold [73], the uncertainty

prediction of the Gaussian process is not used in our algorithm.

The maximum length of the archive is constrained to the m = 6n points most

recently evaluated on the objective function. This helps to avoid increasing compu-

tational costs with a growing archive size, resulting from the need to invert matrix

K when building surrogate models. Toal and Arnold [73] construct surrogate models

based on a maximum of the most recent m = (n+2)2 points from the archive in order

to acquire an amount of information that scales linearly in the number of covariance

matrix variables. While we find their motivation compelling, we observe larger model

sizes to decrease model accuracy in the wGP-CMA-ES for ⌊m/n⌋ > 6. For instance

on the sphere, archive lengths larger than this frequently cause convergence failures as

the fast progress rate of the wGP-CMA-ES quickly leads to an ill-conditioned kernel

whose inversion causes numerical accuracy issues.

Figure 3.1 illustrates select convergence plots of the wGP-CMA-ES on three func-

tion value transformed spheres for n = 16. The sub-figure on the right illustrates
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similar running times under linear convergence of the algorithm for α-adjusted termi-

nation criteria ftarget = (10−8)α. The top left sub-figure confirms that the warp search

mechanism is working as expected, with rank correlations of τ ≥ 0.9. The bottom

left sub-figure depicts the procedure’s recovery of a warp of approximately p = 2/α

on the test functions. In effect, the warping mechanism is shown to convert the opti-

mization of a quartic (or linear) sphere into that of a quadratic one. This observation

is consistent with the findings of Yang and Arnold [78], whose GP-assisted ES, as

compared to an unassisted model, enjoyed the greatest speed-ups on the quadratic

sphere.

Figure 3.1: Convergence plots of the wGP-CMA-ES on select 16−dimensional spheres
under varying increasing transformations parametrized by α. The sub-figure on the
right shows roughly similar running times of the wGP-CMA-ES on the three different
spheres. The sub-figure on the top left displays run-time rank correlation values τ(ω)
of no less than 0.9, as stipulated by Algorithm 4. The bottom left sub-figure demon-
strates the warp search strategy of Algorithm 4 recovers the setting of approximately
2
α
for power parameter p on each test function.
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3.1.4 Initialization and Start-Up

Covariance matrix C is initialized to the identity matrix; evolution path sc is set to

the zero vector. The initialization of x and σ are problem-dependent. As with the

algorithm of Toal and Arnold [73], minimum archive length is set to 2n to ensure

that surrogate models are only constructed once sufficient data is available. This is

achieved by defaulting λ = 1 and f̂ε(·) to −∞ while the archive contains fewer than 2n

points. Once 2n points have been recorded in the archive, the initial warp parameter

ω0 is selected by enumerating roughly one thousand points on the 2−dimensional

parameter grid using kp = kq = 31. This setting is a compromise between the

accuracy of ω0 and its computation cost. A visualization of this procedure is provided

in Figure 3.2. The surrogate model is employed immediately after this point. During

the start-up phase, the algorithm is equivalent to the model-free (1+1)-CMA-ES,

whereby the parameters controlling step-size adaption rate are set to d2 = −0.2 and

d3 = 0.8.
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Figure 3.2: Selection of initial warping parameters ω0 = (p, q) by enumeration on
the 8-dimensional quartic sphere. After function values in the archive A are sub-
tracted by the parental function value, kq = 31 points are enumerated linearly such
that f1;m ≤ q ≤ f2;m, where the subscript i; j denotes the ith best (smallest) of j
elements. Likewise, kp = 31 points are enumerated logarithmically in the interval
p ∈ [10−1, 101]. The star (*) symbol locates the parameter pair corresponding to the
empirical maximum of rank correlations τ(ω).



Chapter 4

Evaluation

This section presents an experimental evaluation of the performance of wGP-CMA-ES

and compares it to several related algorithms. Section 4.1 highlights the comparator

algorithms, Section 4.2 describes the experimental setting, and Section 4.3 reports

the empirical results along with a discussion of the findings.

4.1 Comparator Algorithms

We examine the performance of wGP-CMA-ES with λ ∈ {1, 10, 20} as well as that

of four other algorithms:

— CMA-ES Version 3.61.beta; we use the Matlab implementation without surro-

gate model assistance provided by Hansen at cma.gforge.inria.fr.

— s∗ACM-ES Version 2; we use the Matlab implementation by Loshchilov [54] at

loshchilov.com.

— lq-CMA-ES Version 3.0.3; we use the Python implementation by Hansen [25]

on GitHub.

— GP-CMA-ES; we use the Matlab implementation provided Toal and Arnold [73]

Algorithm specific parameters for all but the GP-CMA-ES were fixed at their

default settings. The GP-CMA-ES [54] were run with a linear memory size m = 8n

instead of their default m = (n+2)2, as well as a length scale of 8 ∗n. As the goal of
empirical evaluations is to examine the effect of warping, this setting is selected to rule

out the impact of memory size on algorithm performance. All evolution strategies,

except for lq-CMA-ES, are invariant with respect to rotations of the search space

coordinates. While both CMA-ES and s∗ACM-ES are invariant to strictly monotonic

transformations of objective function values, GP-CMA-ES and lq-CMA-ES are not.

We exclude DTS-CMA-ES from the list of comparators as its advantages are primarily

60
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on multimodal test functions. Moreover, we consider the performance of lq-CMA-ES

to surpass that of lmm-CMA-ES and so omit the latter from our experiments.

4.2 Test Environment

We employ the following four families of parametrized unimodal test problems in

order to assess the relative strengths of the five approaches considered:

— Spherically symmetric functions corresponding to f1 in the BBOB noiseless

test-bed [31] when parameter α = 2.

— Convex quadratic functions for β ∈ {102, 104, 106}, corresponding to f2 of the

BBOB noiseless benchmark [31] at parameter setting {α = 2, β = 106}.

— Generalized quartic functions for γ ∈ {100, 101, 102}, corresponding to f8 in the

BBOB noiseless benchmarks [31] at parameter setting {α = 2, γ = 100}.

— Power sum functions corresponding to f14 in the BBOB noiseless test-bed [31].

Test problems are not rotated. As problem separability may confer an advantage

only in the case of the lq-CMA-ES, and the goal of experiments is to study the effect of

warping, it is reasonable to employ the separable version of the functions in algorithm

evaluation. The optimal function value for all of the functions considered is zero. All

algorithms are tested on each function in dimensions n ∈ {2, 4, 8, 16}. Values of α

ranged between α ∈ [1, 4] with 9 logarithmically-spaced values for all but the power

sum family of functions.

Runs are initialized by sampling starting points uniformly at random from the

interval x ∈ [−4, 4]n. The step-size parameter was initialized to σ = 2 for all runs

of the algorithms. Termination criteria for all strategies under consideration were

set to an objective function value no larger than
(
10−8

)α/2
. As we consider function

value based run times in a fixed target termination scenario, the terminal objective

function value must be transformed according to α in order to ensure fair comparisons

between runs. This transformation of the terminal function value can be avoided if the

stopping criterion is reformulated in terms of the distance (L2 norm) of the solution to

the function’s global optimizer; however we opted for the function-value based metric
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in accordance with related work [51, 25]. The default stopping criteria of the CMA-

ES, lq-CMA-ES, and s∗ACM-ES were adjusted to ensure that the aforementioned

objective function value would be the first enacted termination criterion. For n ≥
4, the generalized quartic functions exhibit a second local minimizer. Runs that

converged to this merely local minimizer were discarded.

4.2.1 Rationale for the Choice of Objective Functions

The choice of functions is motivated by the goal of studying the behaviour of the pro-

posed warping mechanism and to evaluate the potential benefit of its integration into

the GP-CMA-ES. We wish to systematically examine the scaling of algorithm perfor-

mance with respect to problem difficulties including function value transformations,

ill-conditioning due to axis scaling, and dimensionality. A secondary goal is to observe

how performance is affected with increasing exploitation of the surrogate model. The

wGP-CMA-ES is expected to perform at least as well as the GP-CMA-ES while being

more robust to function value transformations. In order to contextualize the advan-

tage of the proposed approach, we provide a comparison to related surrogate-assisted

CMA-ES variants deemed competitive on the COCO Benchmark [30].

Spherically symmetric functions form a natural baseline for the evaluation of the

wGP-CMA-ES as they are the simplest of function families. The sphere’s isotropic

level sets do not necessitate the learning of objective function axis scales and thus

eliminate the need for covariance matrix adaptation. As compared with the GP-

CMA-ES, these functions test only the ability of wGP-CMA-ES to learn a suitable

warp; hence poor performance on the sphere is expected to generalize to more difficult

problems. If warping works as expected, then performance on all spheres should be

invariant under strictly increasing function value transformations, yielding a constant

speed-up over the CMA-ES for varying α.

The primary challenge posed by ellipsoids is their ill-conditioning, which necessi-

tates learning the problem’s axis scales. The degree of ill-conditioning is controlled

by parameters α and β, with the functions being globally quadratic at α = 2 posing

less difficulty for algorithms that internally build quadratic surrogate models. An

objective on this test function is to rule out any major interference of the warping

procedure with the mechanism of covariance matrix adaptation on a problem for
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which the CMA-ES can learn the axis scales during its run. After this adaptation

phase, algorithm behaviour is expected to be identical to that on the sphere family

of functions, as is observed with the CMA-ES.

Generalized quartic functions combine the properties of being less than perfectly

conditioned and being non-quadratic. The Hessian matrix of these functions changes

throughout the runs of the algorithms and thus optimizers need to constantly relearn

the problem’s axis scales. This class of problems is more difficult than the convex

quadratic family as the covariance matrix is never fully learned throughout the run of

the ES. It is thus important to test whether the effectiveness of the warping mechanism

is compromised by this demand. As with the convex quadratic functions, parameter

γ is varied to gradually intensify the severity of this challenge for a range of function

value transformations parametrized by α. While CMA’s robustness to axis scaling is

expected to provide similar conditions of operation for the warping mechanism, this

assumption must be tested explicitly.

The family of power sum functions are highly ill-conditioned, with the degree of

ill-conditioning increasing with the approach toward their optimum. As with the

generalized quartic functions, the axis scales on this problem must be constantly

relearned by the optimizer. We examine whether warping provides an advantage this

test function without function value transformations. While the primary challenge

posed by this problem is one of search space adaptation, we explore whether a warped

GP confers an advantage over the non-warped surrogate of the GP-CMA-ES.

4.3 Results

Fifteen runs of each algorithm were conducted for every problem instance. The figures

plot the number of function evaluations divided by dimension with respect to function

value transformations of the respective objective functions. The lines in each figure

connect medians and the error bars reflect the full range of values observed on the

respective problem instance. For strategies where multiple population sizes were

tested, various line styles are used to distinguish each setting (solid for λ = 1, dashed

for λ = 10, and dotted for λ = 20). Results are presented and discussed in the

following subsections.
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4.3.1 Sphere Functions
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Figure 4.1: Number of objective function evaluations per dimension required to opti-
mize the sphere functions with parameter α ∈ [1, 4]. The lines connect median values;
the error bars reflect the full range of values observed for the respective algorithms.
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Figure 4.1 shows the number of objective function evaluations per dimension required

to optimize the sphere functions for α ∈ [1, 4]. CMA-ES without surrogate model

assistance show invariance with respect to strictly monotonic transformations of the

objective functions and require the largest number of function evaluations as expected.

The s∗ACM-ES also display invariance to rank-preserving function value transforma-

tions and exhibit a constant speed-up that rises with increasing dimension of the

problem being tested. Both GP-CMA-ES and lq-CMA-ES are observed to perform

best when α = 2, with the lq-CMA-ES significantly surpassing all other algorithms

on this test problem as the lq-CMA-ES’ surrogate model perfectly matches the objec-

tive function. The speed-ups attained by both of these algorithms decline as function

value transformations diverge from α = 2, with the GP-CMA-ES having a significant

edge over lq-CMA-ES except in the case of the quadratic sphere. As in Toal and

Arnold [73], we attribute the large performance advantage of the lq-CMA-ES over

(w)GP-CMA-ES for α = 2 to both the lower model accuracy of Gaussian processes

on quadratic functions, as well as to the manner in which the respective surrogates

are exploited. For n ≥ 8 and α in excess of 2, the s∗ACM-ES eventually overtake the

GP-CMA-ES. This observation is consistent with that by Toal and Arnold [73]. The

performance advantage of the wGP-CMA-ES over that of GP-CMA-ES is explained

by the effect of warping.

The wGP-CMA-ES enjoy a near-constant speed-up over the s∗ACM-ES for the α

values tested, highlighting the utility of warping in regaining invariance lost on the

function value based Gaussian process surrogate. The algorithm using a batch size of

λ = 1 performs the best, or similarly to the most competitive algorithm, for all α ̸= 2.

In most cases, larger batch sizes yield a minor speed-up on the wGP-CMA-ES, with

increasing λ causing a small slow-down on larger α values in 16 dimensions. We hy-

pothesize that this is due to sub-optimal parameter settings that can be remedied with

further tuning of the algorithm. Rates of step-size adaptation for the GP-CMA-ES,

which were adopted by the warped variant, were calibrated for a quadratic memory

size with respect to n. Thus further adjustments of these vales are expected to gener-

ate improvements in higher dimensions. The slight difference in performance relative

to GP-CMA-ES on the quadratic sphere is attributable to imperfect optimization of

the warp parameters throughout the run of the wGP-CMA-ES.
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4.3.2 Ellipsoid Functions
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Figure 4.2: Number of objective function evaluations per dimension required to op-
timize the function value transformed ellipsoid functions with parameters α ∈ [1, 4]
and β ∈ 102. The lines connect median values; the error bars reflect the full range of
values observed for the respective algorithms.



67

1 2 4
100

101

102

103

parameter α

fu
n
ct
io
n
ev
al
u
at
io
n
s/
d
im

en
si
on

n = 2

1 2 4
100

101

102

103

parameter α

fu
n
ct
io
n
ev
al
u
at
io
n
s/
d
im

en
si
on

n = 4

1 2 4
100

101

102

103

parameter α

fu
n
ct
io
n
ev
al
u
at
io
n
s/
d
im

en
si
on

n = 8

1 2 4
100

101

102

103

parameter α

fu
n
ct
io
n
ev
al
u
at
io
n
s/
d
im

en
si
on
n = 16

CMA-ES lq-CMA-ES s∗ACM-ES
GP-CMA-ES, λ ∈ {1, 10, 20} wGP-CMA-ES, λ ∈ {1, 10, 20}

Figure 4.3: Number of objective function evaluations per dimension required to op-
timize the function value transformed ellipsoid functions with parameters α ∈ [1, 4]
and β ∈ 104. The lines connect median values; the error bars reflect the full range of
values observed for the respective algorithms.
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Figure 4.4: Number of objective function evaluations per dimension required to op-
timize the function value transformed ellipsoid functions with parameters α ∈ [1, 4]
and β ∈ 106. The lines connect median values; the error bars reflect the full range of
values observed for the respective algorithms.

Figures 4.2 to 4.4 plot the number of objective function evaluations divided by di-

mension for function value transformed ellipsoids with parameter α ∈ [1, 4]. Each

figure corresponds to a different degree of ill-conditioning controlled by parameter
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β ∈ {102, 104, 106}. In Figure 4.2, where the ellipsoid being optimized is mildly ill-

conditioned, the performance advantage of the s∗ACM-ES over the CMA-ES widens

with increasing dimension. This is due to the well-calibrated exploitation of their

surrogate model and is notable as the performance advantage of the comparators

over the CMA-ES either remains unchanged, or slightly deteriorates with increasing

dimension. As with Toal and Arnold [73], more intensive exploitation of the surro-

gate model with larger population sizes is not seen to be detrimental and appears

to especially benefit performance of both GP-CMA-ES and the warped variant with

increasing β.

As with the sphere, the lq-CMA-ES are able to locate the function optimizer within

the fewest number of objective function iterations for α = 2. The performance of the

algorithm appears insensitive to the Ellipsoid’s degree of ill-conditioning controlled

by parameter β as the median number of function evaluations for a given dimension

and a fixed parameter α remains constant across Figures 4.2 to 4.4. We attribute this

to the internally quadratic models which match the quadratic objective function and

are used almost exclusively to locate the optimizer once sufficiently many training

points have been evaluated on the true objective. Although for n = 2 lq-CMA-ES

fare similarly or better than the s∗ACM-ES, their sensitivity to rank-preserving trans-

formations of the objective function constrains their performance between s∗ACM-ES

on the lower and CMA-ES on the upper limits of the range of parameter α ̸= 2 under

consideration.

The GP-CMA-ES generally exhibit an advantage over s∗ACM-ES, but this advan-

tage fades with n ≥ 8 and α > 2. We ascribe this diminishing performance advantage

to three factors. First the invariance of s∗ACM-ES’ surrogate to order-preserving

transformations of the objective function ensures that their performance is consis-

tent for all α values considered. This is confirmed as warping, which is intended to

regain some of this invariance for the value based Gaussian process model, is seen

to significantly narrow the gap in performance between the s∗ACM-ES and the GP-

CMA-ES. Secondly, the s∗ACM-ES adapt their population size with respect to the

dimensionality of the problem being optimized which enable it to more fully exploit

their surrogate model. As can be seen with (w)GP-CMA-ES, using larger batch sizes

reduces the number of objective function evaluations. Third, as was confirmed by
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Toal and Arnold [73], the GP-CMA-ES with an archive size that is quadratic relative

to problem dimensionality, may consistently prevail over s∗ACM-ES on the highly

ill-conditioned ellipsoids. Because in our experiments both GP-CMA-ES and wGP-

CMA-ES employed archive lengths linear in the number of dimensions, we would

expect larger training set sizes to be generally beneficial on this problem in higher

dimensions.

In dimension n = 16, the wGP-CMA-ES exhibit a more variable range in perfor-

mance across across all α values tested, with the median number of required objective

function evaluations being slightly higher than that of GP-CMA-ES for each batch

size at values of α < 3. We attribute this to the update frequency of the shift pa-

rameter in the warp optimization process, where the negative impact of a poor shift

is more pronounced in higher dimensions.

4.3.3 Generalized Quartic Functions

The s∗ACM-ES show a constant speed-up relative to the CMA-ES, which do not use

surrogate models. Variations from the median are much larger for this class of func-

tions than other test problems considered. The invariance of the s∗ACM-ES to strictly

monotonic transformations of the objective function is again observed on this family

of functions, but this and all comparators illustrate a sensitivity to ill-conditioning as

a result of larger γ values. The lq-CMA-ES perform better than s∗ACM-ES in lower

dimensions, but their advantage decreases with increasing dimension and vanishes for

n = 16. In the low-conditioned generalized quartic function with γ = 100, the lq-

CMA-ES display the familiar dip at α = 2 and perform similarly to the GP-assisted

comparators for dimensions n ∈ {4, 8}. However this advantage deteriorates with

progressively larger values of γ, paralleling its decrease in sensitivity to parameter α.

Figures 4.5 to 4.7 plot the number of objective function evaluations divided by di-

mension for function value transformed generalized quartic functions with parameter

α ∈ [1, 4]. Each figure corresponds to a different value of parameter γ ∈ [100, 102],

with the original Rosenbrock function located in the middle of the third figure.
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Figure 4.5: Number of objective function evaluations per dimension required to op-
timize the generalized quartic functions with parameters α ∈ [1, 4] and γ ∈ 100. The
lines connect median values; the error bars reflect the full range of values observed
for the respective algorithms.
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Figure 4.6: Number of objective function evaluations per dimension required to opti-
mize the generalized quartic function functions with parameters α ∈ [1, 4] and γ ∈ 101.
The lines connect median values; the error bars reflect the full range of values ob-
served for the respective algorithms.
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Figure 4.7: Number of objective function evaluations per dimension required to op-
timize the function value transformed generalized quartic function functions with
parameters α ∈ [1, 4] and γ ∈ 102. The lines connect median values; the error bars
reflect the full range of values observed for the respective algorithms.

The GP-CMA-ES perform similarly, or better than, s∗ACM-ES for α > 3 and

n ≤ 8. In sixteen dimensions, increasing γ values cause the gap in performance to

narrow and disappear between s∗ACM-ES and GP-CMA-ES. Warping successfully
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regains the invariance lost from the GP surrogate and, with the exception of α ≈ 4,

enables the wGP-CMA-ES to exhibit at least the second best performance on this

problem class. We hypothesize that the degradation in performance at α ≈ 4 can

be mitigated with a more accurate warp optimization procedure. A more intensive

exploitation of the model for both GP-assisted strategies is observed to be more

advantageous in problems with larger γ.

4.3.4 Power Sum Functions
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Figure 4.8: Number of objective function evaluations per dimension required to opti-
mize the Sum of Different Powers functions with respect to problem dimension. The
lines connect median values; the error bars reflect the full range of values observed
for the respective algorithms.

Figure 4.8 illustrates the performance of the evolution strategies on fdiffpow in var-

ious dimensions. Notably, the s∗ACM-ES are the only comparator whose speed-up
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increases with increasing dimension. The performance of the lq-CMA-ES is highly

competitive on this function and comparable to that of the GP-CMA-ES with γ = 20.

Both Gaussian process surrogate model assisted algorithms benefit form increased

exploitation of the model. The advantage of warping diminishes with increasing di-

mensionality likely due to the imperfect warp produced by the warp search procedure.

Although the advantage of a rank-preserving surrogate is more palpable in dimen-

sions n < 8, the combination of warping and more intensive exploitation of the model

enables the wGP-CMA-ES to achieve competitive performance on this test problem.



Chapter 5

Conclusions

This chapter highlights the importance of warping for value-based surrogates, sum-

marizes the main contributions of the thesis, and offers future directions for research.

5.1 Summary

Invariance is a major design principle of evolution strategies. Adaptation to affine

transformations of the search space as well as invariance with respect to strictly

monotonic transformations of the objective function are thus important features of

the CMA-ES that account for its wide-ranging success. Surrogate models can replace

expensive objective function evaluations by making use of information gathered in

prior iterations of the optimizer to approximate the objective function in the vicin-

ity of the current solution. This approximation can then be used in lieu of the true

objective function, leading to potential savings of costly evaluations. However, the

introduction of value-based surrogate models into comparison-based optimizers can

compromise the resulting strategy’s invariance to rank-preserving transformations

of the objective function. In this work, we have proposed warping as an approach

to regaining some of the invariance lost when employing such surrogate models in

comparison-based optimizers. We have first proposed an error metric that can be

used to learn an appropriate transformation of function values before these values

are employed by the surrogate to construct an approximation. We have then com-

bined this error metric with a previously proposed approach to Gaussian process

assisted CMA-ES [73]. The advantage of warping was demonstrated on four families

of parametrized, unimodal test problems. The proposed wGP-CMA-ES is competitive

with more complicated strategies, but on highly ill-conditioned problems in higher di-

mensions, warping is observed to be a less effective alternative to rank-based surrogate

models. More intensive surrogate model exploitation is shown to provide moderate

speed-ups on ill-conditioned problems.

76
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5.2 Future Directions

Several directions of future work are identifiable. First, strategies for more reliable and

faster learning of the warp parameters are of immediate interest. We expect poorly

conditioned objective functions in high dimensions to benefit from such improvement.

Additionally, an adaptive mechanism for the selection of archive size is desirable.

While some functions such as the quadratic sphere may require smaller archive sizes,

others may benefit from larger training archives whose size scales quadratically with

respect to the number of problem dimensions. This would increase model accuracy

and could be beneficial beyond the unimodal set of test problems. Moreover, the

batch size may be adapted to control the degree of exploitation of the model according

to dimensions. As was noted earlier, part of the success of the s∗ACM-ES in higher

dimension is attributable to the ability to tune the degree of reliance on their surrogate

model. Finally, a Bayesian treatment of model selection, which has shown promise

on multimodal functions in the works of [15, 74, 16, 5], may be a more theoretically

disciplined approach that may also prove beneficial in practice.
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