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Abstract

The set of all invertible affine transformations of a two dimensional real vector space
forms a locally compact group G2 that is isomorphic to the semi-direct product group
R2 o GL2(R), where GL2(R) denotes the group of 2 × 2 real matrices with nonzero
determinant. We give an explicit decomposition of the left regular representation of
G2 as a direct sum of infinitely many copies of a single irreducible representation.
We also obtain an analogue of the continuous wavelet transform associated to the
representation we identify.
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Chapter 1

Introduction

Any affine transformation of the two dimensional real vector space R2 is of the form
z → Az + x, for some linear transformation A of R2 and some vector x ∈ R2.
We will view R2 as column vectors and linear transformations of R2 as given by
2× 2 real matrices. Such a transformation is invertible if and only if A is invertible.
Let G2 denote the set of all invertible affine transformations of R2. Equipped with
composition, G2 is a group and, in fact, is a locally compact group with the natural
topology. As a locally compact group, G2 has a left Haar measure. The main purpose
of this thesis is to develop the details of harmonic analysis of functions on G2 that
are square-integrable with respect to its left Haar measure. To be more precise, the
left regular representation of G2 is decomposed as a direct sum of infinitely many
copies of a single irreducible unitary representation. A secondary purpose is to derive
an analogue of the continuous wavelet transform from the special properties of this
irreducible unitary representation of G2. A new way of transforming and analyzing
functions of three variables is obtained.

Basic properties of locally compact groups, left Haar measure, G-spaces, and
function spaces are introduced in the first section of Chapter 2. This followed by
reviewing Hilbert spaces and operators on Hilbert space, including the unitary group
U(H) of a Hilbert space H and the terminology around unbounded operators on a
Hilbert space. The main calculations in this thesis often use isomorphisms from one
Hilbert space to another related Hilbert space. In the third section of Chapter 2, the
basic form of one of these key Hilbert space isomorphisms is developed. The results
in this section are not original, but details are given in a form that is useful for later
in the thesis.

The fourth section of Chapter 2 introduces the basic theory of unitary represen-
tations. If G is a locally compact group, a unitary representation of G is a homo-
morphism π of G into U(Hπ), the unitary group of some Hilbert space Hπ, that is
continuous in a natural way. If π is a unitary representation of G and η ∈ Hπ, define
Vηξ, for each ξ ∈ Hπ, as a complex-valued function on G, by

Vηξ(x) = 〈ξ, π(x)η〉Hπ , for all x ∈ G.

The continuity assumption on unitary representations means that Vηξ is a bounded

1



continuous function on G, for each ξ ∈ Hπ. These linear maps Vη : ξ → Vηξ play
a key role in this thesis. A unitary representation π is called irreducible if there are
no nontrivial closed subspaces of Hπ that are invariant under π(x), for all x ∈ G.
When π is irreducible, the map Vη is one to one, for any nonzero η ∈ Hπ. The space
of all Borel measurable complex-valued functions on G that are square-integrable
with respect to the left Haar measure forms a Hilbert space with a natural inner
product when functions agreeing almost everywhere are considered equal. This space
of square-integrable functions is denoted L2(G).

For each x ∈ G, define λG(x) : L2(G)→ L2(G) by, for f ∈ L2(G),(
λG(x)f

)
(y) = f(x−1y), for all y ∈ G.

Left invariance of the left Haar measure on G implies that λG is a unitary represen-
tation of G, called the left regular representation. One of the primary goals in doing
harmonic analysis on a particular group is to decompose its left regular represen-
tation into irreducible representations in some sense. When G is a compact group,
the Peter-Weyl Theorem shows how to decompose λG as a direct sum of irreducible
representations. Part of the reason why the Peter-Weyl Theorem holds is that Haar
measure on a compact group is a finite measure. Therefore, every bounded continuous
complex-valued function is in L2(G) when G is compact. Therefore, if π is irreducible
and η ∈ Hπ, then Vη : Hπ → L2(G). In fact, if the norm of η equals the square root
of the dimension of Hπ (which is finite when G is compact), then Vη is a unitary map
of Hπ onto the range of Vη. Moreover, Vη makes π equivalent to a subrepresentation
of λG.

In general, an irreducible representation π of a locally compact group G is called
square-integrable if there exist nonzero vectors η, ξ ∈ Hπ such that Vηξ ∈ L2(G). The
properties of square-integrable representations for a general locally compact group
were studied by Duflo and Moore in [9]. One of the main theorems from [9] is now
called the Duflo-Moore Theorem. This theorem is presented as Theorem 2.5.5 in
the fifth section of Chapter 2, along with other basic properties of square-integrable
representations. A consequence of the Duflo-Moore Theorem is that, if π is a square-
integrable representation of G, then there is a dense subspace Dπ of Hπ and a positive
operator Cπ : Dπ → Hπ such that if η ∈ Dπ satisfies ‖Cπη‖Hπ = 1, then Vη is
an isometry of Hπ into L2(G). A direct consequence of Vη being an isometry was
recognized in [15]. If Vη is an isometry, then it preserves inner products. That is, for
ξ, ν ∈ Hπ,

〈Vηξ, Vην〉L2(G) = 〈ξ, ν〉Hπ . (1.1)

The left hand side of (1.1) can be rearranged using the definition of Vην. The left
Haar measure of G is denoted µG.

〈Vηξ, Vην〉L2(G) =

∫
G

Vηξ(x)〈ν, π(x)η〉Hπ dµG(x)

=

∫
G

Vηξ(x)〈π(x)η, ν〉Hπ dµG(x) =

〈∫
G

Vηξ(x)π(x)η dµG(x), ν

〉
Hπ
,
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where the integral of the Hπ-valued function Vηξ(x)π(x)η is in the weak sense. Using
(1.1) gives, for each ξ ∈ Hπ, 〈ξ, ν〉Hπ =

〈∫
G
Vηξ(x)π(x)η dµG(x), ν

〉
Hπ

, for any ν ∈ Hπ.
That is,

ξ =

∫
G

Vηξ(x)π(x)η dµG(x), weakly in Hπ. (1.2)

Thus, under the special circumstances of a square-integrable representation π and
a distinguished vector η ∈ Hπ satisfying ‖Cπη‖Hπ = 1, any vector ξ ∈ Hπ can be
reconstructed from the function Vηξ on G that records the inner product of ξ with
π(x)η, for each x ∈ G.

The easiest significant example of a non-compact locally compact group with a
square-integrable representation is the group G1 consisting of affine transformations
of the real line. That is, G1 = {[x, a] : x, a ∈ R, a 6= 0}. The group product in
G1 is given by [x, a][y, b] = [x + ay, ab] and the left Haar integral of any function
f : G1 → C for which the integral exists is

∫∞
−∞

∫∞
−∞ f [x, a]dx da

a2
. There is a natural

unitary representation ρ of G1 on the Hilbert space L2(R) given by, for any [x, a] ∈ G1,

ρ[x, a]f(t) = |a|−1/2f

(
t− x
a

)
, for a.e. t ∈ R,

and for any f ∈ L2(R). This unitary representation of G1 has been known to be
irreducible for a long time, for example see page 132 of [22] where it is discussed in an
equivalent form. It is also relatively easy to show that ρ is square-integrable, so the
Duflo-Moore theory applies. A connection was made in [15] with wavelet analysis that
was developing as a tool in signal processing at that time. To describe this connection,
we need the notation of the Fourier transform, which is introduced in section 7 of
Chapter 2. Let F : L2(R) → L2(R̂) denote the unitary map such that Ff = f̂ , for

any integrable f ∈ L2(R). Let D̂ρ =
{
ξ ∈ L2(R̂) :

∫∞
−∞

|ξ(ω)|2
|ω| dω <∞

}
. Define a map

T : D̂ρ → L2(R̂) by Tξ(ω) = |ω|−1/2ξ(ω), for a.e. ω ∈ R̂ and every ξ ∈ D̂ρ. The dense

subspace of L2(R) given in the Duflo-Moore Theorem isDρ = {f ∈ L2(R) : Ff ∈ D̂ρ}.
The positive operator Cρ then takes the form Cρ = F−1TF . Abusing notation,

write f̂ for Ff , for any f ∈ L2(R). Then, for any w ∈ L2(R), the condition that
‖Cρw‖L2(R) = 1 becomes ∫ ∞

−∞

|ŵ(ω)|2

|ω|
dω = 1. (1.3)

For [x, a] ∈ G1, ρ[x, a]w is viewed as w “dilated” by a and “translated” by x. It is
commonly denoted wx,a. That is

wx,a(t) = |a|−1/2w

(
t− x
a

)
, for a.e. t ∈ R. (1.4)

For a w ∈ L2(R) that satisfies (1.3), define Vwf , a function on G1, for each f ∈ L2(R),
by

Vwf [x, a] =

∫ ∞
−∞

f(t)wx,a(t) dt, for all [x, a] ∈ G1. (1.5)
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The reconstruction formula (1.2) becomes, for any f ∈ L2(R),

f =

∫ ∞
−∞

∫ ∞
−∞

Vwf [x, a]wx,a
dx da

a2
, weakly in L2(R). (1.6)

In the language of wavelet theory, a function w ∈ L2(R) satisfying (1.3) is called a
wavelet for the continuous wavelet transform. The map Vw given in (1.5) is called the
continuous wavelet transform with wavelet w and (1.6) is called the reconstruction
formula. See [17] and [7] for good introductions to the continuous wavelet transform
as well as a presentation of discrete versions of the wavelet transform in one dimension.
Note that the transform described in equations (1.3) to (1.6) was known before [15]
and (1.6) is also called the Calderón Reproducing Formula in dimension one.

There are many ways in which wavelet theory has been generalized to higher
dimensions. One line of research is based on the theory of square-integrable represen-
tations and the Duflo-Moore Theorem. In [4], the structure of G1 was generalized.
Let GLn(R) denote the locally compact group of invertible n × n real matrices. Let
H be a closed subgroup of GLn(R). Then H acts on column vectors in Rn by matrix
multiplication. Let G = Rn oH, the semi-direct product group. That is,

G = {[x,A] : x ∈ Rn, A ∈ H},

with group product given by [x,A][y,B] = [x+Ay,AB]. The identity in G is [0, idn],
where idn denotes the n × n identity matrix, and [x,A]−1 = [−A−1x,A−1]. There is
a natural unitary representation ρ of G on the Hilbert space L2(Rn). For [x,A] ∈ G
and any f ∈ L2(Rn),

ρ[x,A]f(y) = | det(A)|−1/2f
(
A−1(y − x)

)
, for a.e. y ∈ Rn. (1.7)

For notational convenience, we use the notation

R̂n = {ω = (ω1, · · · , ωn) : ω1, · · · , ωn ∈ R}.

For ω ∈ R̂n, the H-orbit of ω is Oω = {ωA : A ∈ H} and Hω = {A ∈ H : ωA = ω}
is called the stabilizer of ω. When Hω = {idn}, the H-orbit Oω is called a free H-
orbit. One consequence of the main theorem in [4] is that, if H is such that there

exists an H-orbit Oω that is free, open, and dense in R̂n, then the representation
ρ is a square-integrable representation of G. The operator Cρ of the Duflo-Moore
theory was also identified in [4]. Thus any closed subgroup H of GLn(R) that has

a free, open, and dense orbit in R̂n yields a generalization of the continuous wavelet
transform with a reconstruction formula that is a special case of (1.7). In [14], the

condition that there exists a free H-orbit is weakened slightly. If ω ∈ R̂n is such
that Oω is open, dense, and is such that Hω is compact, then ρ, as given by (1.7), is
a square-integrable representation of G. One of the main results of this thesis is to
develop a generalization of the continuous wavelet transform from a square-integrable
representation of G2 that does not arise as in (1.7). This will be discussed later in
the introduction.
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In Section 2.6, the Peter-Weyl Theorem is presented in a manner that emphasizes
the role of the maps Vη. This theorem gives a method of analyzing functions in
L2(G) when G is a compact group. For compact G, every irreducible representation
of G is square-integrable. Every irreducible representation is finite dimensional also.
Suppose {πj : j ∈ J} is a list of irreducible representations such that any irreducible
representation of G is equivalent to exactly one of the πj. For j ∈ J , let dj = dim(Hπj)

and let {ξjk : 1 ≤ k ≤ dj} be an orthonormal basis of Hπj . The subspace Dπj given
in the Duflo-Moore theory is simply Hπj itself and the operator Cπj is given by

multiplication by the constant d
−1/2
j . Let ηjk = d

1/2
j ξjk, for 1 ≤ k ≤ dj and for each

j ∈ J . Then each ηjk satisfies the condition ‖Cπjη
j
k‖Hπj = 1. Thus Vηjk

is a linear

isometry of Hπj into L2(G). Let Kηjk = Vηjk
Hπj . The Peter-Weyl Theorem implies

that L2(G) decomposes as an orthogonal direct sum of the closed subspaces Kηjk , for

j ∈ J , 1 ≤ k ≤ dj. In particular, {Vηjkξ
j
` : j ∈ J, 1 ≤ k, ` ≤ dj} is an orthonormal

basis of L2(G). Another of the main results in this thesis provides an analog of the
Peter-Weyl Theorem for the non-compact group G2.

A brief review of the Fourier transform and the properties used in this thesis is
given in the seventh section of Chapter 2.

More details are provided for the process of inducing a representation from a
subgroup of a locally compact group and this is done in the eighth section. We use
[12] and [20] as sources for induced representations. If π is a unitary representation
of a closed subgroup H of a locally compact group G, there is a complicated way of
defining a Hilbert space consisting of functions from G to the Hilbert space Hπ which
satisfy certain conditions along with a unitary representation indGHπ of G that acts on
that Hilbert space. In certain circumstances, one can show that indGHπ is equivalent
to a representation acting on a more concrete Hilbert space. In all the cases, where we
induce a representation in this thesis, the following situation holds: There is a closed
subgroup K of G that is complementary to the closed subgroup H in the sense that
G = KH and K ∩H = {e}, where e is the identity element of G. This situation is
discussed in [20], but there is a small error in the treatment in [20]. For that reason,
a careful development is presented in Section 2.8 and the correct formula is given
in Proposition 2.8.9. There is a representation, denoted σπ that acts on the Hilbert
space L2(K;Hπ) and σπ is equivalent to indGHπ. Even though Proposition 2.8.9 is
much easier to work with than the abstract definition of an induced representation,
there are problems to solve to get a simple form for any particular group.

In [22], George Mackey developed a systematic method of constructing all the
irreducible representations of a locally compact group G when G = N oH, where N
is an abelian locally compact group and H is a locally compact group that acts on
N . For all the groups studied in this thesis, N = Rn and H is a closed subgroup of
GLn(R). In Section 2.9, Mackey theory for semi-direct products is summarized for
groups of the form Rn o H. We are particularly interested in the situation where
there exists an ω ∈ R̂n such that the H-orbit Oω is open and dense in R̂n. If π is an
irreducible representation of Hω, define a representation χω ⊗ π of Rn o Hω by, for
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[x,C] ∈ Rn oHω and ξ ∈ Hπ,(
χω ⊗ π

)
[x,C]ξ = e2πiωxπ(C)ξ.

Part of the content of Theorem 2.9.5 is that σ = indRnoH
RnoHω(χω ⊗ π) is an irreducible

representation of Rn o H. Moreover, from [21], Corollary 11.1, we know that this
induced representation σ will be square-integrable when π is a square-integrable rep-
resentation of Hω. Therefore, the Duflo-Moore theory means that there will be an
analog of the continuous wavelet transform associated with such a σ. We know of no
case where such a transform has been investigated except when Hω is compact and
π in the trivial representation of Hω as presented in [14].

The original work of this thesis is presented in Chapters 3, 4, and 5. In Chapter
3, a group of the form R3 oH is investigated as an illustrative example. The closed
subgroup H is selected from one in the list given in [5]. It has the property that there

exists an ω ∈ R̂3 such that Oω is open and dense and Hω is compact. In Theorem
3.1.9 and the material leading up to, a wavelet transform is presented associated with
each irreducible representations of Hω.

Chapter 4 is devoted to the groups Gn = Rn o GLn(R). Various algebraic
properties are developed as well as the left Haar integration formula for different

parametrizations. A key result is Proposition 4.3.3 which says: If A =

(
a b
c d

)
∈

GL2(R), then A can be uniquely decomposed as A = MACA, where

MA =

(
s −t
t s

)
, with s =

d(ad− bc)
b2 + d2

, t =
−b(ad− bc)
b2 + d2

,

and

CA =

(
1 0
u v

)
, with u =

cd+ ab

(ad− bc)
, v =

b2 + d2

(ad− bc)
.

Thus, we can reparametrize GL2(R) as

GL2(R) =

{(
s −t
t s

)(
1 0
u v

)
: s, t, u, v ∈ R, s2 + t2 > 0, v 6= 0

}
. (1.8)

If ω = (1, 0) ∈ R̂2, then

H(1,0) = {A ∈ GL2(R) : (1, 0)A = (1, 0)} =

{(
1 0
u v

)
: u, v ∈ R, v 6= 0

}
.

An important observation is that H(1,0) is isomorphic to the one dimensional affine
group G1. The other factors in the parametrization in (1.8) make up another closed
subgroup of GL2(R). Let

K0 =

{(
s −t
t s

)
: s, t ∈ R, s2 + t2 > 0

}
.
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Then K0 is also a closed subgroup of GL2(R). Moreover, GL2(R) = K0H(1,0) and
K0 ∩H(1,0) = {id2}. This leads to a factorization of G2. Let

K = {[0,M ] : M ∈ K0} and H =
{

[x,C] : x ∈ R2, C ∈ H(1,0)

}
.

Then K and H are closed subgroups of G2 such that G2 = KH and K∩H = {[0, id2]}.
This factorization of G2 makes the computations of Chapter 5 feasible.

In the first section of Chapter 5, a unitary representation of the n-dimensional
affine group Gn is calculated and realized as a subrepresentation of the left regular
representation. Let N = {[x, idn] : x ∈ Rn}. Then N is a closed normal abelian

subgroup of Gn. Its dual group is N̂ = {χω : ω ∈ Rn}, where χω[x, idn] = e2πiωx, for

all [x, idn] ∈ N . Fix ω0 = (1, 0, · · · , 0) ∈ R̂n. The induced representation indGnN χω0
is

unitarily equivalent to a representation πω0 that acts on the Hilbert space L2
(
GLn(R)

)
as follows: For [x,A] ∈ Gn and any f ∈ L2

(
GLn(R)

)
,

πω0 [x,A]f(B) = e2πiω0B
−1xf(A−1B), (1.9)

for almost every B ∈ GLn(R). If n = 1, then ω0 = 1 and π1 is investigated in the
second section of Chapter 5, where it is shown to be irreducible and even square-
integrable. Also, it turns out to be unitarily equivalent to the natural representation
of G1 on L2(R) that leads to the continuous wavelet transform in one dimension.
However, if n > 1, then πω0 is reducible. Nevertheless, we show that πω0 is equivalent
to a subrepresentation of the left regular representation of Gn. In fact, Theorem 5.1.4
shows that the left regular representation of Gn is a direct sum of infinitely many
copies of πω0 .

The third section of Chapter 5 contains the major computation of this work.
We focus on the case of n = 2 to obtain an analysis of functions in L2(G2). The
strategy is to exploit the fact that the stability subgroup H(1,0) of ω0 = (1, 0) is
isomorphic to G1 and π1 happens to correspond to an irreducible representation of
G1. Mackey theory then tells us that we get an irreducible representation of Gn if we
induce χ(1,0)⊗π1 from H = R2oH(1,0) up to G2. Moreover, we know from [21] and [4]
that the resulting induced representation will be square-integrable and equivalent to a
subrepresentation of the left regular representation of G2. We realize indG2

H (χ(1,0)⊗π1)
as a representation we denote by σ acting on the Hilbert space L2

(
K;L2(R∗)

)
, where

R∗ is the multiplicative group of nonzero real numbers and the measures are the Haar
measure of K and R∗. The formula for σ is computed and given in equation (5.8).
In steps, σ is moved, using unitary equivalences from L2

(
K;L2(R∗)

)
to a subspace

of L2
(
K;L2(H(1,0))

)
and then to a subspace of L2

(
GL2(R)

)
, where it is equivalent to

a subrepresentation of π(1,0). Finally, it is moved to L2(G2) and a subrepresentation
of λG2 . One of the main theorems of the thesis is Theorem 5.3.7 which establishes
σ as a square-integrable representation. We also formulate a slightly weaker version,
Theorem 5.3.8, and present a direct proof which is easier to follow.

To make σ easier to understand, it is moved to L2
(
R̂3
)
. The formulas are much

easier to write if R̂3 is written as R̂2× R̂. That is R̂3 = {(ω, ω3) : ω ∈ R̂, ω3 ∈ R̂}. We
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also use the fact that K0 is homeomorphic to O = O(1,0) = R̂2 \ {0}, which is co-null

in R̂2. This homeomorphism is given by γ : O → K0, where γ(ω) = 1
‖ω‖2

(
ω1 −ω2

ω2 ω1

)
,

for all ω = (ω1, ω2) ∈ O. For F ∈ L2
(
K,L2(R∗))

)
and (ω, ω3) ∈ R̂2 × R̂, let

(UF )(ω, ω3) =


(
F [0,γ(ω)]

)
(ω−1

3 )

‖ω‖·|ω3|1/2
for a.e. ω ∈ O, ω3 6= 0

0 otherwise.

Then U is a unitary map from L2
(
K,L2(R∗))

)
onto L2

(
R̂2 × R̂

)
= L2

(
R̂3
)
. Move σ

to L2
(
R̂2 × R̂

)
using U by setting σ1[x,A] = Uσ[x,A]U−1, for all [x,A] ∈ G2. This

gives , for ξ ∈ L2
(
R̂2 × R̂

)
,(

σ1[x,A]ξ
)
(ω, ω3) = | det(A)|·‖ω‖

‖ωA‖ e2πi(ωx+ω3uω,A)ξ
(
ωA, ω3vω,A), (1.10)

for a.e. (ω, ω3) ∈ R̂2 × R̂. In (1.10), there are two functions uω,A and vω,A. They are

rational functions in ω1, ω2, a, b, c, and d, where A =

(
a b
c d

)
. The precise expressions

for uω,A and vω,A are given in Proposition 5.3.2. Our derivation of σ1 shows that it
is a square-integrable representation of G2. We also get explicit ways of showing it
is equivalent to a subrepresentation of λG2 . In fact, we formulate an analog of the
Peter-Weyl Theorem for compact groups.

Let L2
(
R̂2; dω

‖ω‖2

)
denote the weighted L2-space formed from Borel functions ζ

on R̂2 such that
∫
R̂2 |ζ(ω)|2 dω

‖ω‖2 < ∞. Likewise for L2
(
R̂; dν|ν|

)
. Let O1 = R̂ \ {0}.

Note that Cc(O) is dense in L2
(
R̂2; dω

‖ω‖2

)
and Cc(O1) is dense in L2

(
R̂; dν|ν|

)
. Let

{ζi : i ∈ I} be an orthonormal basis of L2
(
R̂2; dω

‖ω‖2

)
consisting of functions in Cc(O)

and let {φj : j ∈ J} be an orthonormal basis of L2
(
R̂; dν|ν|

)
consisting of functions in

Cc(O1). Define ψi,j(ω, ω3) = ζi(ω)φj(ω3), for each (i, j) ∈ I×J . For each (i, j) ∈ I×J ,
the function behaves like a wavelet for the representation σ1. Define

Vψi,jξ[x,A] = 〈ξ, σ1[x,A]ψi,j〉L2(R̂2×R̂)
,

for all [x,A] ∈ G2 and ξ ∈ L2
(
R̂2× R̂

)
. LetMi,j = Vψi,jL

2
(
R̂2× R̂

)
, for (i, j) ∈ I×J .

Then eachMi,j is a closed λG2-invariant subspace of L2(G2) and Vψi,j is an isometry
that intertwines σ1 with the restriction of λG2 to Mi,j. Moreover

L2(G2) =
∑⊕

(i,j)∈I×JMi,j.

In addition to this analog of the Peter-Weyl Theorem, the Duflo-Moore operator is
easily identified after the calculations carried out in Chapter 5 and analogs of the
continuous wavelet transform using σ1 to move the “wavelets” around are presented
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in the final section of the thesis.

9



Chapter 2

General Notation and Background

In this chapter, the notation for basic concepts that will be used in this thesis is
established. There are no original results in this chapter; however, a proof may be
given if it illustrates a concept that is useful in later chapters. The main sources used
are [18], [19], [12], and [20]. When results are taken from other sources, an explicit
reference is given.

2.1 Locally Compact Groups

A group is a set G equipped with a binary operation (x, y) → xy called the group
product. There is an identity element e ∈ G so that ex = xe = x, for each x ∈ G.
The group product is associative: that is x(yz) = (xy)z, for all x, y, z ∈ G. Also, for
each x ∈ G, there is an inverse, denoted x−1 ∈ G, such that xx−1 = x−1x = e. The
group is called abelian if xy = yx, for all x, y ∈ G.

A topological group is a group G that also has a topology on it such that the maps
(x, y) → xy from G × G → G and x → x−1 from G to G are continuous. All the
topological groups that come up in this thesis will be Hausdorff. If the topology on
a topological group G is Hausdorff and locally compact, then G is called a locally
compact group.

If G is a group and H is a nonempty subset of G such that xy and x−1 are in H,
for any x, y ∈ H, then H is called a subgroup of G. If G is a locally compact group
and H is a closed subgroup of G, then H is a locally compact group when given the
topology it inherits as a subset of G. If H is a subgroup of G and x ∈ G, then the
set xHx−1 = {xzx−1 : z ∈ H} is also a subgroup of G. A subgroup H of G is called
a normal subgroup if xHx−1 = H, for all x ∈ G.

If H is a subgroup of G and x ∈ G, then the set xH = {xz : z ∈ H} is called a
left coset of H. Note that xH = yH as sets if and only if x−1y ∈ H. In this thesis,
the space of all left cosets will often be important.

Definition 2.1.1. Let H be a subgroup of a group G. The left coset space of G
modulo H is G/H = {xH : x ∈ G}. The map q : G → G/H given by q(x) = xH,
for all x ∈ G, is called the quotient map. If G is a locally compact group and H
is a closed subgroup of G, then G/H is given the strongest topology such that q is
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continuous. That is, U ⊆ G/H is open if and only if q−1(U) is an open subset of G.
This quotient topology on G/H is also locally compact.

When H is a normal subgroup of G, for any xH, yH ∈ G/H,

xHyH = (xy)(y−1Hy)H = (xy)HH = (xy)H,

so G/H can be made into a group with product given by (xH)(yH) = (xy)H, for
all xH, yH ∈ G/H. This product is well-defined and satisfies the group axioms with
the trivial coset H = eH serving as identity. When G is locally compact and H is a
closed normal subgroup of G, G/H is a locally compact group with this product.

If H is a subgroup of G, any x ∈ G moves around the left cosets of H. For
zH ∈ G/H, x · (zH) = (xz)H ∈ G/H. Note that x · (zH) is well-defined and satisfies:

• e · (zH) = zH, for all zH ∈ G/H

• x ·
(
y · (zH)

)
= (xy) · (zH), for all x, y ∈ G, zH ∈ G/H

• If G is a locally compact group and H is a closed subgroup, then
(
x, zH

)
→

x · (zH) is a continuous map of G×G/H to G/H.

This action of G on the set G/H is a special case of a group action. In this thesis
there will be a number of useful group actions.

Definition 2.1.2. Let G be a group. A G-space is a nonempty set Ω and a map from
G× Ω to Ω denoted by (x, ω)→ x · ω satisfying

• e · ω = ω, for all ω ∈ Ω

• x · (y · ω) = (xy) · ω, for all x, y ∈ G and ω ∈ Ω.

If G is a locally compact group, Ω is a locally compact topological space and (x, ω)→
x · ω is a continuous map of G × Ω to Ω, then Ω is called a topological G-space. We
may say G acts on Ω to mean that Ω is a topological G-space.

Let Ω be a topologicalG-space. For ω ∈ Ω, theG-orbit of ω isOω = {x·ω : x ∈ G}.
The set Hω = {x ∈ G : x · ω = ω} is a closed subgroup of G called the isotropy
subgroup of ω. For x, y ∈ G, x · ω = y · ω if and only if x−1y ∈ Hω; that is, if
and only if xHω = yHω. Thus, θ : G/Hω → Oω given by θ(xHω) = x · ω, for any
xHω ∈ G/Hω, is well-defined. The map θ is one to one, onto and continuous. Often,
θ is a homeomorphism. A topological space X is called σ-compact if X is a countable
union of compact subsets. For a proof of the following proposition, see Proposition
4.6 of [20].

Proposition 2.1.3. Let G be a σ-compact locally compact group and let Ω be a
topological G-space. Let ω ∈ Ω and let θ(xHω) = x · ω, for all xHω ∈ G/Hω. If the
orbit Oω is locally compact and Hausdorff, then θ is a homeomorphism of G/Hω to
Oω.
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A G-space Ω is called transitive if Oω = Ω for some ω ∈ Ω. Then Oω′ = Ω, for all
ω′ ∈ Ω.

Definition 2.1.4. Let Ω be a transitive G-space and fix a point ω0 ∈ Ω. A cross-
section of the G action on Ω based at ω0 is a map γ : Ω→ G such that γ(ω) ·ω0 = ω,
for all ω ∈ Ω.

The cross-sections used in this thesis will often appear in integrals, so they need
to be measurable maps. If X is a locally compact Hausdorff space, BX denotes the
σ-algebra of Borel subsets of X; that is, the smallest σ-algebra containing all the
open subsets of X. Measurability will refer to Borel measurability, which means with
respect to BX for the appropriate space X. Usually, X is an open subset of some Rn

in this thesis.

Proposition 2.1.5. Let G be a separable locally compact group and assume the
topology on G is metrizable. Let Ω be a transitive Hausdorff topological G-space.
Let ω0 ∈ Ω. Then there exists a cross-section γ of the G action on Ω based at ω0

such that γ is Borel measurable.

Proof. Let Hω0 be the isotropy subgroup for ω0. Since G is separable, it is σ-compact,
so G/Hω0 is σ-compact. The hypotheses of Theorem 1 of [10] hold, so there exists
a Borel measurable map τ : G/Hω0 → G such q ◦ τ is the identity map on G/Hω0 ,
where q : G→ G/Hω0 is the quotient map.

Let θ(xHω0) = x·ω0, for each xHω0 ∈ G/Hω0 . Note that Ω = Oω0 , so θ : G/Hω0 →
Ω is a homeomorphism by Proposition 2.1.3. Define γ : Ω→ G by γ(ω) = τ (θ−1(ω)),
for all ω ∈ Ω. Then γ is a cross-section of the G action on Ω based at ω0 and γ is
Borel measurable.

Definition 2.1.6. Let X be a locally compact Hausdorff space. A Radon measure
on X is a Borel measure µ such that

• µ(K) <∞, for any compact K ⊆ X

• µ(U) = sup{µ(K) : K ⊆ U,K compact}

• µ(E) = inf{µ(U) : E ⊆ U ⊆ X,U open}, for any E ∈ BX .

Any locally compact group has a Radon measure on it that is invariant under left
translation.

Proposition 2.1.7. Let G be a locally compact group. There exists a nonzero
Radon measure µ on G such that µ(xE) = µ(E), for all x ∈ G and any Borel E ⊆ G.
Moreover, if ν is any nonzero Radon measure on G satisfying ν(xE) = ν(E), for all
x ∈ G and any Borel E ⊆ G, then there exists a c > 0 such that ν = cµ.

Definition 2.1.8. Let G be a locally compact group. We will fix a Radon measure
µG on G satisfying the properties of Proposition 2.1.7. This measure µG is called the
left Haar measure of G.
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Similarly, G carries a right Haar measure that is unique up to a constant multiple.
The homeomorphism x → x−1 interchanges a right Haar measure with a left Haar
measure. The modern convention is to work with left Haar measures.

We assume the standard theory of the general Lebesgue integral. In particular,
for the measure space (G,BG, µG), where BG is the σ-algebra of Borel subsets of G, if
f : G→ [0,∞] is a Borel measurable function, then

∫
G
f dµG =

∫
G
f(x) dµG(x) exists

in [0,∞]. We have the usual Lebesgue spaces where functions are considered equal if
they agree µG-almost everywhere (µG-a.e.).

Definition 2.1.9. Let G be a locally compact group and 1 ≤ p <∞. Then

Lp(G) =

{
f : G→ C

∣∣ f Borel and

∫
G

|f |pdµG <∞
}
.

Equipped with the norm f → ‖f‖p =
(∫

G
|f |pdµG

)1/p
, Lp(G) is a Banach space.

We have a change of variables formula for left translations that is valid for any
function f on G for which

∫
G
f(x) dµG(x) has meaning. For any such f and fixed

y ∈ G ∫
G

f(yx) dµG(x) =

∫
G

f(x) dµG(x). (2.1)

Definition 2.1.10. Let X be a locally compact space. Let C(X) denote the vector
space of all continuous complex-valued functions on X. For f ∈ C(X), the support
of f is

supp(f) = {x ∈ X : f(x) 6= 0}.

We say f has compact support when supp(f) is a compact set. Let Cc(X) denote the
subspace of C(X) consisting of continuous functions with compact support.

Proposition 2.1.11. Let G be a locally compact group. Then Cc(G) is contained in
Lp(G) as a dense subspace, for any 1 ≤ p <∞.

If y ∈ G is fixed then E → µG(Ey), for Borel sets E, is also a left invariant
nonzero Radon measure on G. Thus, there exists ∆G(y) ∈ (0,∞) such that

µG(Ey) = ∆G(y)µG(E), for any Borel E ⊆ G.

Proposition 2.1.12. LetG be a locally compact group and let R+ denote the positive
real numbers considered as a locally compact group with multiplication as the group
product. There exists a continuous homomorphism ∆G : G→ R+ such that, for any
y ∈ G,

µG(Ey) = ∆G(y)µG(E), for any Borel E ⊆ G.

Definition 2.1.13. The homomorphism ∆G is called the modular function of G. If
∆G(x) = 1, for all x ∈ G, then G is called unimodular.

Observe that G is unimodular when G is Abelian, compact, or discrete. If G
is discrete, then counting measure is the left Haar measure and this is clearly right
invariant as well.
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We have a change of variables formula for right translation of any function f on
G for which

∫
G
f(x) dµG(x) is meaningful. For such an f and any y ∈ G,

∆G(y)

∫
G

f(xy) dµG(x) =

∫
G

f(x) dµG(x) (2.2)

The change of variables formulas (2.1) and (2.2) will be used frequently.
Here are some examples of left Haar measures on different groups and the corre-

sponding modular function. It is often most convenient to give a formula for
∫
G
f dµG,

for any f ∈ Cc(G). By the Riesz Representation Theorem for positive linear function-
als on Cc(X), for a locally compact Hausdorff space X, there exists a unique Radon
measure determined by that formula for f ∈ Cc(G).

Example 1. Let n ∈ N and Rn =

x =

x1
...
xn

 : xk ∈ R, 1 ≤ k ≤ n

, an Abelian

locally compact group with addition as group product. Then, for any f ∈ Cc(Rn),∫
Rn
f dµRn =

∫
Rn
f(x) dx =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x) dx1 · · · dxn,

where
∫∞
−∞ h(t) dt simply denotes the Riemann integral, for h ∈ Cc(R). Left invariance

is just the property that
∫
Rn f(x−y) dx =

∫
Rn f(x) dx, for any y ∈ Rn and f ∈ Cc(Rn).

Since Rn is Abelian, it is unimodular.

Example 2. Let R∗ = R\{0} and equip it with multiplication of real numbers as group
product. Then R∗ is an Abelian locally compact group. For a ∈ R∗ and f ∈ Cc(R∗),
a simple change of variables shows∫ ∞

−∞
f(at)

dt

|t|
=

∫ ∞
−∞

f(t)
dt

|t|

Thus
∫
R∗ f dµR∗ =

∫∞
−∞ f(t) dt

|t| , for all f ∈ Cc(R∗), defines left Haar measure on R∗.
Again, R∗ is unimodular since it is Abelian.

Example 3. The group R∗ acts on the group R by multiplication. For a ∈ R∗, b→ ab
is an automorphism of R. Let G1 = R o R∗, the semi-direct product for this action.
That is,

G1 = Ro R∗ = {[b, a] : b ∈ R, a ∈ R∗},

with product given by [b1, a1][b2, a2] = [b1 + a1b2, a1a2], for all [b1, a1], [b2, a2] ∈ G1.
With this as product, G1 is a group with identity [0, 1] and [b, a]−1 = [−a−1b, a−1],
for [b, a] ∈ G1. The product and inversion maps are continuous when G1 is given the
product topology of R × R∗. Thus, G1 is a locally compact group. The group G1 is
called the affine group of R. It is sometimes also called the ax+ b-group since we can
view an element [b, a] ∈ G1 as the transformation x→ ax+ b of R.
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Fix [b0, a0] ∈ G1. Note that, for f ∈ Cc(G1),∫ ∞
−∞

∫ ∞
−∞

f
(
[b0, a0][b, a]

)db da
a2

=

∫ ∞
−∞

∫ ∞
−∞

f [b0 + a0b, a0a]
db da

a2
=

∫ ∞
−∞

∫ ∞
−∞

f [b, a]
db da

a2
.

Therefore
∫
G1
f dµG1 =

∫∞
−∞

∫∞
−∞ f [b, a]db da

a2
, for all f ∈ Cc(G1). This group is not

Abelian, so we check a translation of the integral on the right. For [b0, a0] ∈ G1 and
f ∈ Cc(G1),∫ ∞

−∞

∫ ∞
−∞

f
(
[b, a][b0, a0]

)db da
a2

=

∫ ∞
−∞

(∫ ∞
−∞

f [b+ ab0, aa0] db

)
da

a2

=

∫ ∞
−∞

(∫ ∞
−∞

f [b, aa0] db

)
da

a2

= |a0|
∫ ∞
−∞

∫ ∞
−∞

f [b, a]
db da

a2

Therefore G1 is nonunimodular and ∆G1 [b0, a0] = |a0|−1, for all [b0, a0] ∈ G1.

Example 4. Let GLn(R) denote the group of all n×n real matrices A with det(A) 6= 0.

For A ∈ GLn(R), let aij denote the i, j entry of A. So A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

.

Considering GLn(R) as an open subset of Rn2
gives GLn(R) a locally compact topol-

ogy and it is a locally compact group using the product of matrices as the group
product. This group is unimodular and the Haar measure µ

GLn(R) is such that, for all
f ∈ Cc(GLn(R)),∫

GLn(R)

f dµ
GLn(R) =

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(A)
da11da12 · · · dann
| det(A)|n

.

In particular, GL2(R) =

{(
a b
c d

)
: a, b, c, d ∈ R, ad− bc 6= 0

}
and, for any f ∈

Cc(GL2(R)),∫
GL2(R)

f dµ
GL2(R)

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f

(
a b
c d

)
da db dc dd

(ad− bc)2
.

Example 5. This is actually a family of examples generalizing the affine group of R to
higher dimensions. Most of the groups arising later in this thesis are of the following
form. Let H be a closed subgroup of GLn(R). Form the new group G = Rn o H
defined by

G = Rn oH = {[x,A] : x ∈ Rn, A ∈ H}.

The group product is given by [x,A][y,B] = [x+Ay,AB], for [x,A], [y,B] ∈ G. The
identity in G is [0, id], where id denotes the identity n × n matrix, and the inverse
operation is [x,A]−1 = [−A−1x,A−1], for [x,A] ∈ G. It is well-known how to find

15



the left Haar measure for a semi-direct product from the left Haar measures of the
factors (see any one of [18], [12], or [20]). For f ∈ Cc(G),∫

G

f dµG =

∫
H

∫
Rn
f [x,A]

dx dµH(A)

| det(A)|
. (2.3)

We can verify this with a short calculation. For [y,B] ∈ G and f ∈ Cc(G),∫
H

∫
Rn
f
(
[y,B][x,A]

) dx dµH(A)

| det(A)|
=

∫
H

∫
Rn
f [y +Bx,BA]

dx dµH(A)

| det(A)|

=

∫
H

∫
Rn
f [x,BA]

dx dµH(A)

| det(BA)|

=

∫
H

∫
Rn
f [x,A]

dx dµH(A)

| det(A)|
.

Thus, (2.3) does give left Haar measure on G. For right translation let [y,B] ∈ G
and f ∈ Cc(G),∫

H

∫
Rn
f
(
[x,A][y,B]

) dx dµH(A)

| det(A)|
=

∫
H

∫
Rn
f [x+ Ay,AB]

dx dµH(A)

| det(A)|

=

∫
H

∫
Rn
f [x,AB]

dx dµH(A)

| det(A)|

= | det(B)|
∫
H

∫
Rn
f [x,AB]

dx dµH(A)

| det(AB)|

=
| det(B)|
∆H(B)

∫
H

∫
Rn
f [x,A]

dx dµH(A)

| det(A)|
.

Thus, ∆G[y,B] = ∆H(B)
|det(B)| , for all [y,B] ∈ G. Note that, if ∆H(B) = | det(B)|, for

each B ∈ H, then G will be unimodular.

2.2 Hilbert spaces, Operators, and the Unitary

Group

In this section, we recall basic definitions and properties of Hilbert spaces, operators
on Hilbert spaces, and the unitary group. We focus on the properties that will be
used in later sections. Of particular importance is the definition of a positive operator,
when the operator may not be bounded. A good reference for this material is [19].

Definition 2.2.1. A Hilbert space is a complex vector space H equipped with an
inner product (ξ, η) → 〈ξ, η〉H such that H is complete with respect to the norm

defined by ‖ξ‖H = 〈ξ, ξ〉1/2H , for all ξ ∈ H. If there is no confusion about what Hilbert
space is being considered 〈ξ, η〉H may be written simply as 〈ξ, η〉.

We frequently need to recover the inner product from the norm.
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Proposition 2.2.2. [Polarization Identity] Let H be a Hilbert space with inner prod-
uct 〈·, ·〉. Then, for any ξ, η ∈ H,

〈ξ, η〉 = 1
4

(
‖ξ + η‖2 − ‖ξ − η‖2 + i‖ξ + iη‖2 − i‖ξ − iη‖2

)
.

Definition 2.2.3. Let H be a Hilbert space. For ξ, η ∈ H, ξ is orthogonal to η if
〈ξ, η〉 = 0; then we write ξ ⊥ η. For A ⊆ H and B ⊆ H, A ⊥ B means ξ ⊥ η, for all
ξ ∈ A and η ∈ B. We also let A⊥ = {η ∈ H : ξ ⊥ η, for all ξ ∈ A}.

If A ⊆ H, then A⊥ is a closed subspace of H. Note that ξ ⊥ ξ implies ξ = 0, the
zero vector in H. Thus, A ∩ A⊥ = {0} always.

Proposition 2.2.4. If K is a closed subspace of a Hilbert space H, then H = K+K⊥.
Any ξ ∈ H is uniquely written as ξ = PKξ + PK⊥ξ, with PKξ ∈ K and PK⊥ξ ∈ K⊥.

The map ξ → PKξ is a linear map of H into H with range K. It satisfies:

• ‖ξ − PKξ‖ ≤ ‖ξ − η‖, for all η ∈ K.

• ‖PKξ‖ ≤ ‖ξ‖, for all ξ ∈ H.

• ‖PKξ‖ = ‖ξ‖ if and only if ξ ∈ K.

• ‖PKξ‖ = 0 if and only if ξ ∈ K⊥.

Definition 2.2.5. If K is a closed subspace of H, then PK is called the orthogonal
projection onto K.

Definition 2.2.6. A set of vectors {ηj : j ∈ J} is called orthonormal if ηj ⊥ ηk, for
j, k ∈ J , j 6= k, and ‖ηj‖ = 1, for j ∈ J .

Proposition 2.2.7. Let H be a Hilbert space. Any orthonormal subset of H is
contained in a maximal orthonormal set in H.

Definition 2.2.8. A maximal orthonormal subset of a Hilbert space H is called an
orthonormal basis of H.

Proposition 2.2.9. Let H be a Hilbert space. Let {ηj : j ∈ J} be an orthonormal
subset of H. Then, the following are equivalent:

(a) {ηj : j ∈ J} is an orthonormal basis of H.
(b) {ηj : j ∈ J}⊥ = {0}.
(c) The closed linear span of {ηj : j ∈ J} is H.
(d) ‖ξ‖2 =

∑
j∈J |〈ξ, ηj〉|2, for all ξ ∈ H.

(e) 〈ξ, ν〉 =
∑

j∈J〈ξ, ηj〉〈ηj, ν〉, for all ξ, ν ∈ H.
(f) ξ =

∑
j∈J〈ξ, ηj〉ηj, for all ξ ∈ H.

The sum in (e) converges absolutely in C. The convergence in (f) is unconditional
norm convergence in H.

Proposition 2.2.10. Let H be a Hilbert space and let A be an orthonormal subset
of H. Then, there exists an orthonormal basis of H which contains A.
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In particular, any Hilbert space has an orthonormal basis. There are many dif-
ferent orthonormal bases in a given Hilbert space, but they will all have the same
cardinality.

Proposition 2.2.11. Any two orthonormal bases of a Hilbert space H have the same
cardinality.

Definition 2.2.12. Let H be a Hilbert space. The cardinality of any orthonormal
basis of H is called the dimension of H and is denoted by dim(H). If dim(H) <∞,
then H is called a finite dimensional Hilbert space.

Definition 2.2.13. Let H1 and H2 be Hilbert spaces. A map U : H1 → H2 is called
a unitary map of H1 onto H2 if U is linear, one to one and onto, and satisfies

〈Uξ, Uη〉H2 = 〈ξ, η〉H1 , for allξ, η ∈ H1.

If U is a unitary map of H1 onto H2, then U−1 is a unitary map of H2 onto H1. When
such a unitary exists, H1 and H2 are isomorphic as Hilbert spaces.

Example 6. Let J be a nonempty set and let

`2(J) =

{
α = (αj)j∈J : αj ∈ C, for all j ∈ J, and

∑
j∈J

|αj|2 <∞

}
,

with coordinate wise vector space operations and inner product

〈α, β〉`2(J) =
∑
j∈J

αjβj, for all α, β ∈ `2(J).

Then `2(J) is a Hilbert space. Moreover, if H is any Hilbert space and {ηj : j ∈ J} is
an orthonormal basis of H, then the map U : `2(J)→ H given by U(α) =

∑
j∈J αjηj,

for all α ∈ `2(J), defines a unitary map of `2(J) onto H. This follows easily from (e)
and (f) of Proposition 2.2.9. Thus, `2(J) and H are isomorphic as Hilbert spaces.

A map W : H1 → H2 is an isometry if ‖Wξ‖H2 = ‖ξ‖H1 , for all ξ ∈ H1. The
Polarization Identity implies that, if W is a linear isometry of H1 onto H2, then W
is a unitary map of H1 onto H2.

If H1 and H2 are Hilbert spaces, let H1 ⊕H2 = {(ξ1, ξ2) : ξ1 ∈ H1, ξ2 ∈ H2} with
coordinate wise vector space operations and inner product

〈(ξ1, ξ2), (η1, η2)〉H1⊕H2 = 〈ξ1, η1〉H1 + 〈ξ2, η2〉H2 ,

for (ξ1, ξ2), (η1, η2) ∈ H1 ⊕H2. If H is a Hilbert space and K is a closed subspace of
H, then both K and K⊥ are Hilbert spaces when given the restriction of the inner
product on H. The map ξ → (PKξ, PK⊥ξ) is a Hilbert space isomorphism of H with
K ⊕K⊥.
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Definition 2.2.14. Suppose Hj is a Hilbert space, for each j ∈ J , where J is a
nonempty index set. The direct sum of these Hilbert spaces is∑⊕

j∈J Hj =
{
ξ =

(
ξj
)
j∈J : ξj ∈ Hj, for each j ∈ J, and

∑
j∈J ‖ξj‖2 <∞

}
.

Equipped with coordinate wise vector space operations and inner product

〈ξ, η〉∑⊕
j∈J Hj

=
∑
j∈J

〈ξj, ηj〉Hj , for ξ, η ∈
∑⊕

j∈J Hj,

∑⊕
j∈J Hj is a Hilbert space.

We need to introduce some of the standard concepts for operators on a Hilbert
space.

Definition 2.2.15. Let H1 and H2 be Hilbert spaces. A linear map A : H1 → H2

is called a bounded operator if ‖A‖ = sup{‖Aξ‖H2 : ξ ∈ H1, ‖ξ‖H1 ≤ 1} < ∞. Let
B(H1,H2) denote the space of all bounded linear operators from H1 into H2. When
equipped with pointwise defined scalar product and vector space sum, B(H1,H2) is
a Banach space with the norm ‖ · ‖. We denote B(H,H) as simply B(H), for any
Hilbert space H. For A,B ∈ B(H), the product AB is simply the composition of
maps and ‖AB‖ ≤ ‖A‖ · ‖B‖. The identity map on H is denoted by I. So Iξ = ξ,
for all ξ ∈ H.

Proposition 2.2.16. Let H be a Hilbert space and let A ∈ B(H). Then there
exists A∗ ∈ B(H) such that 〈A∗ξ, η〉H = 〈ξ, Aη〉H, for all ξ, η ∈ H. Moreover, for all
A,B ∈ B(H) and α ∈ C,

(a) (A+B)∗ = A∗ +B∗.
(b) (αA)∗ = αA∗.
(c) (AB)∗ = B∗A∗.

Definition 2.2.17. For A ∈ B(H), A∗ is called the adjoint of A. A bounded operator
A ∈ B(H) is called self-adjoint if A∗ = A.

Proposition 2.2.18. Let H be a Hilbert space and let W ∈ B(H) be such that W is
one to one and onto. Then W is a unitary map of H onto H if and only if W−1 = W ∗.

Definition 2.2.19. Let H be a Hilbert space. A unitary operator on H is a unitary
map of H onto H. Let U(H) denote the set of all unitary operators on H. This is
a group with identity I when equipped with composition as the group product. We
call U(H) the unitary group of H.

The topology on B(H) given by the norm ‖ ·‖ is called the norm topology. Besides
the norm topology, there are two other topologies on B(H) that we will use.

Definition 2.2.20. Let H be a Hilbert space. The strong operator topology (SOT)
on B(H) is the weakest topology such that A→ ‖Aη‖ is continuous, for every η ∈ H.
The weak operator topology (WOT) is the weakest topology on B(H) such that A→

19



〈Aξ, η〉H is continuous, for every pair of vectors ξ, η ∈ H. For a subset Ω ⊆ B(H),

Ω
SOT

denotes the SOT-topology closure of Ω, Ω
WOT

denotes the WOT-topology

closure of Ω, and Ω
‖·‖

denotes the norm closure of Ω.

Definition 2.2.21. Let H be a Hilbert space and let Ω ⊆ B(H). We say Ω is self-
adjoint if A ∈ Ω implies A∗ ∈ Ω. We say that Ω is a subalgebra of B(H) if Ω is a vector
subspace of B(H) such that A,B ∈ Ω implies AB ∈ Ω. A self-adjoint subalgebra of
B(H) is called a ∗-subalgebra of B(H).

Definition 2.2.22. Let H be a Hilbert space. A von Neumann algebra on H is a
∗-subalgebra M of B(H) containing I and closed in the weak operator topology.

Definition 2.2.23. Let H be a Hilbert space and let Ω ⊆ B(H). The commutant of
Ω is

Ω′ = {T ∈ B(H) : TA = AT, for all A ∈ Ω}.

The maps A → TA, A → AT and A → A∗ are each WOT-continuous, for any
fixed T ∈ B(H). Thus, it is easy to show the following.

Proposition 2.2.24. Let H be a Hilbert space and let Ω ⊆ B(H). Suppose that Ω
is self-adjoint. Then Ω′ is a von Neumann algebra on H.

An important theorem about von Neumann algebras is called the Double Com-
mutant Theorem. For Ω ⊆ B(H), Ω′′ = (Ω′)′ is the double commutant of Ω.

Theorem 2.2.25. [Double Commutant Theorem] Let H be a Hilbert space and let

A be a ∗-subalgebra of B(H) containing I. Then A′′ = AWOT
.

Thus, if Ω ⊆ B(H) is self-adjoint and contains I, then the smallest von Neumann
algebra on H containing Ω is Ω′′.

Later in this thesis, we will use operators that are not bounded. These are oper-
ators whose domain is a non-closed dense subspace of the Hilbert space.

Definition 2.2.26. Let H be a Hilbert space. An operator on H is a pair (DT , T )
where DT is a dense subspace of H and T : DT → H is a linear map. Sometimes, we
simply say T is an operator on H and leave the domain DT understood. If T is an
operator on H with domain DT , the graph of T is

G(T ) = {(ξ, T ξ) : ξ ∈ DT},

a subspace of H⊕H. The operator T is called closed if G(T ) is a closed subspace of
H⊕H.

Definition 2.2.27. Let T be an operator on a Hilbert space H. Let DT ∗ be the set of
all vectors η ∈ H such that there exists a ν ∈ H with 〈ξ, ν〉 = 〈Tξ, η〉, for all ξ ∈ DT .
Then define T ∗η = ν. Then DT ∗ is a dense subspace of H and T ∗ is an operator on H
with domain DT ∗ called the adjoint of T . If DT ∗ = DT and T ∗ = T , then T is called
self-adjoint.
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Definition 2.2.28. Let T be a self-adjoint operator on a Hilbert space H. If

〈Tξ, ξ〉 ≥ 0, for all ξ ∈ DT ,

then T is called a positive operator on H.

Example 7. Let X be a locally compact space and let µ be a Radon measure on X.
The space

L2(X,µ) =

{
f : X → C : f is Borel measurable and

∫
X

|f |2 dµ <∞
}
.

With the usual identification of functions that agree µ-a.e. and inner product given
by

〈f, g〉 =

∫
X

f(x)g(x) dµ(x), for all f, g ∈ L2(X,µ),

L2(X,µ) is a Hilbert space. Let h be a continuous real-valued function on X that
is everywhere positive. Let DTh = {f ∈ L2(X,µ) : hf ∈ L2(X,µ)}. Define Thf =
hf , for all f ∈ DTh . If Cc(X) denotes the space of all continuous complex-valued
functions on X with compact support, then Cc(X) is a dense subspace of L2(X,µ)
and Cc(X) ⊆ DTh . Then Th is a self-adjoint operator on L2(X,µ) (see Theorem 5.6.4
of [19]). Since 〈hf, f〉 =

∫
X
h(x)|f(x)|2dµ(x) ≥ 0, for all f ∈ DTh , Th is a positive

operator on L2(X,µ).

2.3 A Hilbert Space Isomorphism

Let X and Y be σ-compact, second countable, locally compact Hausdorff spaces with
µ and ν Radon measures on X and Y , respectively. The σ-compact assumption
will allow Fubini’s Theorem to be used and second countability means L2(X,µ) and
L2(Y, ν) are separable. There are two other Hilbert spaces that use both measure
spaces, (X,µ) and (Y, ν), that we will consider. They are L2(X × Y, µ × ν) and
L2
(
X,µ;L2(Y, ν)

)
. There is a Hilbert space isomorphism between them that is defined

in a natural manner. This isomorphism will be used in later calculations without much
comment. The purpose of this section is make the details clear. A good reference for
the basic integration theory is [13].

We have not yet defined what L2
(
X,µ;L2(Y, ν)

)
means. It is easier to replace

L2(Y, ν) with an arbitrary separable Hilbert space H. The argument is modeled on
the usual proof that L2(X,µ) is complete (see Theorem 6.6 of [13]).

Let H be a separable Hilbert space. A function f : X → H is called weakly
measurable if, for any η ∈ H, the function x → 〈f(x), η〉H is Borel measurable. If
{η

j
: j ∈ J} is an ONB of H, then f : X → H is weakly measurable if and only

if x → 〈f(x), η
j
〉H is Borel measurable for each j ∈ J , since J is countable when

H is separable. If f, g : X → H are weakly measurable, then x → 〈f(x), g(x)〉H =∑
j∈J
〈f(x), η

j
〉H〈ηj , g(x)〉H is Borel measurable. In particular, x → ‖f(x)‖2 is Borel

21



measurable. Let

L2(X,µ;H) =

{
f : X → H

∣∣ f weakly measurable and

∫
X

‖f(x)‖2
H
dµ(x) <∞

}
Let f, g ∈ L2(X,µ;H). Note that x → ‖f(x)‖H is in L2(X,µ) and we have,
|〈f(x), g(x)〉H| ≤ ‖f(x)‖H ‖g(x)‖H, for µ-a.e. x ∈ X, by the Cauchy-Schwarz in-
equality. Since the product of two L2-functions is integrable, x → 〈f(x), g(x)〉H is
integrable. Also, note that,

‖f(x) + g(x)‖2
H ≤ (‖f(x)‖H + ‖g(x)‖H)2 ≤ (2 max{‖f(x)‖H, ‖g(x)‖H})2

= 4 max{‖f(x)‖2
H, ‖g(x)‖2

H} ≤ 4
(
‖f(x)‖2

H + ‖g(x)‖2
H
)
,

for µ-a.e x ∈ X. Thus f + g ∈ L2(X,µ : H). It is now routine to show that
L2(X,µ : H) is a vector space over C.

Definition 2.3.1. For f, g ∈ L2(X,µ : H), let

〈f, g〉 =

∫
X

〈f(x), g(x)〉Hdµ(x).

Then 〈·, ·〉 is an inner product on L2(X,µ : H) and ‖f‖ = (〈f, f〉)1/2, for all
f ∈ L2(X,µ : H), is a norm when function that agree µ-a.e. are identified.

Theorem 2.3.2. Let µ be a Radon measure on a locally compact Hausdorff space X
and let H be a separable Hilbert space. Then (L2(X,µ : H), 〈·, ·〉) is a Hilbert space.

Proof. The only nontrivial thing to prove is completeness. We use the fact that a
normed vector space V is complete if and only if every absolutely convergent series
converges in V . Suppose fk ∈ L2(X,µ : H), for k ∈ N, and

∑∞
1 ‖fk‖L2(X,µ:H) < ∞.

Let B =
∑∞

1 ‖fk‖L2(X,µ:H). Let hk(x) = ‖fk(x)‖H, for µ-a.e. x ∈ X. Then hk ∈
L2(X,µ) and ‖hk‖2 =

(∫
X
hk(x)2dµ(x)

)1/2
= ‖fk‖L2(X,µ:H).

For n ∈ N, let gn(x) =
∑n

k=1 ‖fk(x)‖H =
∑n

k=1 hk(x), for µ-a.e. x ∈ X, and define

g(x) =
∞∑
k=1

‖fk(x)‖H =
∞∑
k=1

hk(x) = lim
n→∞

gn(x), for µ− a.e. x ∈ X.

So gn ∈ L2(X,µ) and ‖gn‖2 ≤
∑n

k=1 ‖hk‖2 =
∑n

k=1 ‖fk‖L2(X,µ:H) ≤ B. Thus, ‖gn‖ 2
2 ≤

B2, for all n ∈ N. Since g2
n ≤ g2

n+1 ≤ · · · ≤ g2, µ-a.e. By the Monotone Convergence
Theorem, limn→∞ ‖gn‖ 2

2 = limn→∞
∫
X
|gn(x)|2dµ(x) =

∫
X
|g(x)|2dµ(x). Therefore,

we have
∫
X
|g(x)|2dµ(x) ≤ B2. This implies g(x) = |g(x)| <∞, for µ-a.e. x ∈ X.

Thus, for µ-a.e. x ∈ X,
∑∞

k=1 ‖fk(x)‖H < ∞. Since H is complete
∑∞

k=1 fk(x)
converges in H, for those x. Let F (x) =

∑∞
k=1 fk(x) ∈ H, for any x ∈ X such that∑∞

k=1 ‖fk(x)‖H <∞. Each fk is weakly measurable, so F is weakly measurable. For
µ-a.e x ∈ X, ‖F (x)‖H ≤

∑∞
k=1 ‖fk(x)‖H = g(x) and g ∈ L2(X,µ). This implies that
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∫
X
‖F (x)‖2

Hdµ(x) ≤
∫
X
|g(x)|2dµ(x) ≤ B2. Thus, F ∈ L2(X,µ : H) and

‖F −
n∑
k=1

fk‖2
L2(X,µ:H) =

∫
X

‖F (x)−
n∑
k=1

fk(x)‖2
H dµ(x).

For µ-a.e. x ∈ X,

‖F (x)−
n∑
k=1

fk(x)‖2
H ≤

(
‖F (x)‖H +

n∑
k=1

‖fk(x)‖H

)2

≤ (g(x) + g(x))2 = (2g(x))2 = 4g(x)2.

Since
∫
X

4g(x)2dµ(x) <∞. By the Dominated Convergence Theorem and continuity
of ‖ · ‖H,

lim
n→∞

∫
X

‖F (x)−
n∑
k=1

fk(x)‖2
Hdµ(x) =

∫
X

lim
n→∞

‖F (x)−
n∑
k=1

fk(x)‖2
Hdµ(x)

=

∫
X

‖F (x)− lim
n→∞

n∑
k=1

fk(x)‖2
Hdµ(x)

=

∫
X

‖F (x)− F (x)‖2
Hdµ(x) = 0.

Therefore,
∑∞

1 fk(x) converges in the L2(X,µ : H) and L2(X,µ : H) is complete.

Let µ× ν be the product measure on X × Y . Then µ× ν is a Radon measure on
X×Y . Our next goal is to construct a Hilbert space isomorphism from L2(X×Y, µ×ν)
onto L2

(
X,µ : L2(Y, ν)

)
.

For any f ∈ L2(X × Y, µ × ν) we select f from its equivalence class so that f is
an everywhere defined Borel function on X × Y . For x ∈ X, define fx : Y → C by
fx(y) = f(x, y), ∀y ∈ Y, and, for y ∈ Y, define f y by f y(x) = f(x, y), for all x ∈ X.
Then fx is just f|{x} ×Y and f y is f|X×{y} . Thus fx and f y are Borel function on Y

and X, respectively. Fubini’s theorem applied to |f(x, y)|2, says∫
X×Y
|f(x, y)|2d(µ× ν)(x, y) =

∫
X

∫
Y

|fx(y)|2dν(y)dµ(x)

and ∫
X×Y
|f(x, y)|2d(µ× ν)(x, y) =

∫
Y

∫
X

|f y(x)|2dµ(x)dν(y).

Since
∫
X×Y |f(x, y)|2d(µ, ν)(x, y) <∞, we must have

∫
Y
|fx(y)|2dν(y) <∞ for µ-a.e.

x ∈ X. Let Wf : X → L2(Y, ν) be defined by

Wf(x) =

{
fx if

∫
Y
|fx(y)|2dν(y) <∞

0 if
∫
Y
|fx(y)|2dν(y) =∞,
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Then ‖Wf(x)‖2
L2(Y,ν) =

∫
Y
|fx(y)|2dν(y), for µ-a.e. x ∈ X. Moreover,∫

X

‖Wf(x)‖2
L2(Y,ν)dµ(x) =

∫
X

∫
Y

|fx(y)|2dν(y)dµ(x) = ‖f‖2
L2(X×Y,µ×ν). (2.4)

Thus, Wf ∈ L2 (X,µ : L2(Y, ν)) and ‖Wf‖L2(X,µ:L2(Y,ν)) = ‖f‖L2(X,µ×ν).

Theorem 2.3.3. The map W : L2(X × Y, µ× ν)→ L2 (X,µ : L2(Y, ν)) is a Hilbert
space isomorphism. Moreover, W−1 : L2 (X,µ : L2(Y, ν)) → L2(X × Y, µ × ν) is
given by W−1F (x, y) =

(
F (x)

)
(y), for (µ × ν)-a.e. (x, y) ∈ X × Y , for each F ∈

L2 (X,µ : L2(Y, ν)).

Proof. It is clear that W is linear and (2.4) implies W is an isometry. Using the
polarization identity, we see that W preserve inner products. To see that W is onto,
suppose F ∈ L2 (X,µ : L2(Y, ν)) is such that F ⊥ Wf , for all f ∈ L2(X × Y, µ× ν).
Let { gj : j ∈ J} be an ONB of L2(Y, ν).

For each j ∈ J and x ∈ X, let hj(x) = 〈F (x), gj〉L2(Y,ν). Then hj is a Borel
function on X. Also

‖F (x)‖2
L2(Y,ν) =

∑
j∈J

|〈F (x), gj〉L2(Y,ν)|2 =
∑
j∈J

|hj(x)|2.

and
∑

j∈J
∫
X
|hj(x)|2 dµ(x) =

∫
X
‖F (x)‖2

L2(Y,ν)dµ(x) = ‖F‖2
L2(X,µ;L2(Y,ν)) <∞. There-

fore,
∫
X
|hj(x)|2dµ(x) <∞ and hj ∈ L2(X,µ), for all j ∈ J .

Let fj(x, y) = hj(x)gj(y) for all (x, y) ∈ X × Y . Then fj ∈ L2(X × Y, µ× ν), for
each j ∈ J . Notice that Wfj(x) = hj(x)gj, for µ-a.e. x ∈ X and all j ∈ J . However,
F ⊥ Wf , for all f ∈ L2(X × Y, µ× ν) Thus,

0 = 〈F,Wfj〉L2(X,µ;L2(Y,ν)) =

∫
X

〈F (x), hj(x)gj〉L2(Y,ν)dµ(x)

=

∫
X

hj(x)〈F (x), gj〉L2(Y,ν)dµ(x) =

∫
X

|hj(x)|2dµ(x).

Thus, hj = 0 for each j ∈ J . That is 〈F (x), gj〉L2(Y,ν) = 0, for all j ∈ J and µ-
a.e. x ∈ X. This F (x) = 0, for µ-a.e. x ∈ X. Thus F = 0 as a member of
L2 (X,µ;L2(X,µ : L2(Y, ν)). Therefore, W is onto and, so, W is a unitary map and
a Hilbert space isomorphism of L2(X × Y, µ× ν) with L2 (X,µ;L2(Y, ν)).

Similar arguments show that W−1 as defined in the statement of the theorem
maps L2 (X,µ;L2(Y, ν)) into L2(X × Y, µ × ν) and W (W−1F ) = F , for all F ∈
L2 (X,µ;L2(Y, ν)).

Remark. One can also show that L2(Y, ν;L2 (X,µ)) is Hilbert space isomorphic to
L2(X × Y, µ× ν) in the obvious manner.

In the proof of Theorem 2.3.3, we formed a Borel function fj on X × Y from a
Borel function hj on X and a Borel function gj on Y . We will need to do this often
in the following chapters, so we introduce a notation for the combined function.
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Definition 2.3.4. Let X and Y be nonempty sets. Let h : X → C and g : Y → C
be functions. The elementary tensor function h⊗ g : X × Y → C is defined by

(h⊗ g)(x, y) = h(x)g(y), for all (x, y) ∈ X × Y.

See Example 2.6.11 of [19] for a discussion of these elementary tensor functions
from which we formulate the following two propositions.

Proposition 2.3.5. Let X and Y be σ-compact, second countable, locally compact
Hausdorff spaces. Let h : X → C and g : Y → C be Borel functions. Then h⊗ g is a
Borel function on X × Y .

Proposition 2.3.6. Let X and Y be σ-compact, second countable, locally compact
Hausdorff spaces. Let µ and ν be Radon measures on X and Y , respectively.

(a) h ∈ L2(X,µ) and g ∈ L2(Y, ν) imply h⊗ g ∈ L2(X × Y, µ× ν).
(b) If h, h′ ∈ L2(X,µ) and g, g′ ∈ L2(Y, ν), then

〈(h⊗ g), (h′ ⊗ g′)〉L2(X×Y,µ×ν) = 〈h, h′〉L2(X,µ)〈g, g′〉L2(Y,ν).

The Hilbert space tensor product H1 ⊗ H2 of two Hilbert spaces H1 and H2 is
carefully defined in Section 2.6 of [19]. We will not repeat this definition here. In
Example 2.6.11 of [19], they prove that L2(X × Y, µ× ν) is Hilbert space isomorphic
with L2(X,µ) ⊗ L2(Y, ν) is a natural way. In fact, combining Example 2.6.11 with
Theorem 2.6.4(iii) of [19] gives the following.

Proposition 2.3.7. Let X and Y be σ-compact, second countable, locally compact
Hausdorff spaces. Let µ and ν be Radon measures on X and Y , respectively. If {hi :
i ∈ I} is an orthonormal basis of L2(X,µ) and {gj : j ∈ J} is an orthonormal basis
of L2(Y, ν), then {hi⊗ gj : (i, j) ∈ I×J} is an orthonormal basis of L2(X×Y, µ×ν).

2.4 Unitary Representations

In this section, we introduce the definitions and basic properties of unitary represen-
tations of locally compact groups. Let G be a locally compact group.

Definition 2.4.1. A unitary representation of G is a continuous homomorphism of G
into U(Hπ), the unitary group of a Hilbert space Hπ equipped with the weak operator
topology. The Hilbert space Hπ is called the Hilbert space of π and dπ = dim(Hπ) is
called the dimension of π

That is, π is a unitary representation of G on the Hilbert space Hπ if the following
all hold.

1. π(x) is a unitary operator on Hπ, for all x ∈ G.

2. π(xy) = π(x)π(y), for all x, y ∈ G.
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3. For any ξ, η ∈ Hπ, the map x→ 〈π(x)ξ, η〉 of G into C is continuous.

These properties imply that π(e) = I, where e is the identity in G and I is the identity
operator on Hπ, as well as π(x−1) = π(x)−1 = π(x)∗, for any x ∈ G.

Example 8. The left regular representation of G acts on the Hilbert space L2(G). For
x ∈ G and f ∈ L2(G), define λG(x)f on G by,

λG(x)f(y) = f(x−1y), for a.e. y ∈ G.

Then ‖λG(x)f‖ 2
2 =

∫
G
|f(x−1y)|2 dy =

∫
G
|f(y)|2 dy = ‖f‖ 2

2 , by left invariance of
left Haar measure. It is clear that λG(xy) = λG(x)λG(y), for all x, y ∈ G, and that
λG(e) = I, the identity operator on L2(G). Therefore, λG(x) is an invertible isometry;
that is λG(x) ∈ U

(
L2(G)

)
. So properties (1) and (2) above hold for λG. For property

(3), let f, g ∈ L2(G). For any x, y ∈ G,

|〈λG(x)f, g〉 − 〈λG(y)f, g〉| ≤ ‖λG(x)f − λG(y)f‖2‖g‖2 = ‖λG(y−1x)f − f‖2‖g‖2.

So it is sufficient to show that limz→e ‖λG(z)f − f‖2 = 0. See Proposition 2.41 of [12]
for a short and clear proof of this.

Fix a unitary representation π of a locally compact group G.

Definition 2.4.2. For ξ, η ∈ Hπ, let ϕπξ,η(x) = 〈π(x)ξ, η〉, for all x ∈ G. Then ϕπξ,η is
called a coefficient function of π.

Proposition 2.4.3. For any ξ, η ∈ Hπ, ϕπξ,η ∈ Cb(G).

Proof. The continuity of each ϕπξ,η is part of the definition of a unitary representation.
Also, |ϕπξ,η(x)| = |〈π(x)ξ, η〉| ≤ ‖ξ‖ · ‖η‖, for all x ∈ G. Therefore, ϕπξ,η is a bounded
continuous function on G.

Definition 2.4.4. A subspace K of Hπ is called π-invariant if π(x)ξ ∈ K, for all
ξ ∈ K and all x ∈ G.

If a subspace K is π-invariant, then K is also π-invariant by the continuity of π.
If K is π-invariant and η ∈ K⊥, then, for any ξ ∈ K,

〈π(x)η, ξ〉 = 〈η, π(x−1)ξ〉 = 0,

since π(x−1)ξ ∈ K, for any x ∈ G. Thus, π(x)η ∈ K⊥. That is, K⊥ is π-invariant
whenever K is a π-invariant subspace of Hπ.

Definition 2.4.5. If K is a closed π-invariant subspace of Hπ, define πK on G by
πK(x) = π(x)|K , for each x ∈ G. Then πK is a unitary representation of G on the
Hilbert space K. We call πK a subrepresentation of π.

Definition 2.4.6. The unitary representation π is called irreducible if {0} and Hπ

are the only closed π-invariant subspaces of Hπ. Otherwise, π is called reducible.
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Definition 2.4.7. Let π and ρ be unitary representations of G. An intertwining
operator of π with ρ is a T ∈ B(Hπ,Hρ) such that

Tπ(x) = ρ(x)T, for all x ∈ G.

Then, we also say T intertwines π with ρ. Let C(π, ρ) denote the set of all intertwining
operators of π with ρ. Let C(π) = C(π, π).

Definition 2.4.8. Let π and ρ be unitary representations of G. If there exists a
unitary map U ∈ C(π, ρ), then we say π is equivalent to ρ. This is denoted by π ∼ ρ.

Note that

C(π) = {T ∈ B(Hπ) : Tπ(x) = π(x)T, for all x ∈ G} = {π(x) : x ∈ G}′,

the commutant of π(G) in B(Hπ). Let Aπ denote the linear span of {π(x) : x ∈ G},
which is a ∗-subalgebra of B(Hπ). Then A′π = π(G)′ = C(π).

Proposition 2.4.9. Let Aπ denote the linear span of {π(x) : x ∈ G}. Then
(a) C(π) is a von Neumann algebra on Hπ.
(b) C(π)′ is the weak operator topology closure of Aπ.

Proof. Statement (a) is Proposition 2.2.24 and statement (b) is the von Neumann
Double Commutant Theorem. See Theorem 5.3.1 of [19].

For K is a closed subspace of Hπ, PK denotes the orthogonal projection of Hπ

onto K.

Proposition 2.4.10. Let K be a closed subspace of Hπ. Then K is π-invariant if
and only if PK ∈ C(π).

Proof. Suppose K is π-invariant. Then K⊥ is π-invariant as well. Let PK⊥ denote the
orthogonal projection onto K⊥. Then I = PK + PK⊥ . For any ξ ∈ Hπ and x ∈ G,
π(x)PKξ ∈ K and π(x)PK⊥ξ ∈ K⊥. Thus,

PKπ(x)ξ = PKπ(x)
(
PKξ + PK⊥ξ

)
= PKπ(x)PKξ + PKπ(x)PK⊥ξ = π(x)PKξ.

Therefore, PKπ(x) = π(x)PK, for all x ∈ G. That is, PK ∈ C(π).
Conversely, suppose PK ∈ C(π). Let ξ ∈ K. Then, for any x ∈ G,

π(x)ξ = π(x)PKξ = PKπ(x)ξ.

Thus π(x)ξ ∈ K, for all x ∈ G. So K is π-invariant.

We can now collect together several conditions that are equivalent to the irre-
ducibility of π.

Theorem 2.4.11. Let π be a unitary representation of a locally compact group G.
The following are equivalent:
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(a) π is irreducible.
(b) C(π) = CI.
(c) π(G)′′ = B(Hπ).
(d) For ξ, η ∈ Hπ, if ϕπξ,η(x) = 0, for all x ∈ G, then either ξ = 0 or η = 0.

Proof. (a) ⇔ (b) By Proposition 2.4.10, π is irreducible if and only if 0 and I are
the only projections in the von Neumann algebra C(π). By Proposition 2.2.24, this
is equivalent to C(π) = CI.

(b) ⇔ (c) Since π(G)′′ = C(π)′, C(π) = CI is equivalent to π(G)′′ = B(Hπ), by
Theorem 5.3.1 of [19].

(d) ⇔ (a) Assume (d) and suppose K is a nontrivial closed π-invariant subspace
of Hπ. Let ξ ∈ K, ξ 6= 0, and let η ∈ K⊥, η 6= 0. Then ϕπξ,η(x) = 〈π(x)ξ, η〉 = 0, for
all x ∈ G. This contradiction of (d) implies π must be irreducible when (d) holds.
Suppose π is irreducible. Let η ∈ Hπ, η 6= 0 and let K = {π(x)η : x ∈ G}⊥. If ξ ∈ K,
then, for any y ∈ G,

〈π(y)ξ, π(x)η〉 = 〈ξ, π(y−1x)η〉 = 0,

for all x ∈ G. Thus π(y)ξ ∈ K, for all y ∈ G and any ξ ∈ K. Thus, K is a closed
π-invariant subspace ofHπ. Since π is irreducible and η 6= 0, it must be that K = {0}.
This implies (d)

Definition 2.4.12. Let G be a locally compact group. The set of all equivalence
classes of irreducible unitary representations of G is denoted Ĝ.

We will make use of the contragredient of a unitary representation. If H is any
Hilbert space, letH∗ denote the vector space over C consisting of the same elements as
H and the vector space operations of addition (ξ, η)→ ξ+η and scalar multiplication
(α, ξ)→ α · ξ = αξ. Put an inner product on H∗ by defining

〈ξ, η〉H∗ = 〈η, ξ〉H, for all ξ, η ∈ H∗.

Then H∗ is a Hilbert space as well. For each ξ ∈ H∗ define ϕξ : H → C by

ϕξ(ν) = 〈ν, ξ〉H, for all ξ ∈ H.

Then ξ → ϕξ is an isometric isomorphism of H∗ with the Banach space dual of H.
Thus, we can refer to H∗ as the dual Hilbert space to H.

Definition 2.4.13. Let π be a unitary representation of G. For each x ∈ G, define
π(x) on H∗π by setting π(x)η = π(x)η, for each η ∈ H∗.

Note that π(x) is additive, since addition is the same in H∗π as in Hπ. For α ∈ C
and η ∈ H∗π, π(x)(α · η) = π(x)(αη) = απ(x)η = α · π(x)η = α · π(x)η. So π(x) is a
linear mapping on H∗π. It is similarly verified that π(x) is a unitary operator on H∗π
and that x→ π(x) is a unitary representation.

Definition 2.4.14. If π is a unitary representation of G, then the representation π
is called the contragredient of π. We let Hπ = H∗π.
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It is clear that π is irreducible if and only if π is irreducible.

Example 9. Suppose π is a one dimensional representation of G. Fix η ∈ Hπ with
‖η‖ = 1. Then Hπ = {αη : α ∈ C} and ‖αη‖ = |α|, for any α ∈ C. For any x ∈ G,
‖π(x)η‖ = ‖η‖ = 1. Thus π(x)η = αxη, for some αx ∈ C with |αx| = 1. Note that
x→ αx is then a homomorphism of G into T. On the other hand, π(x)η = π(x)η =
αxη = αx · η. Thus, while π(x)ξ = αxξ, for all ξ ∈ Hπ, we have π(x)ξ = αx · ξ, for
any ξ ∈ Hπ.

For a general unitary representation π, the coefficient functions of π are complex
conjugates of the coefficient functions of π.

Proposition 2.4.15. Let π be a unitary representation of a locally compact group
G. Let η, ξ ∈ Hπ and consider them as members of Hπ as well. Then ϕπη,ξ = ϕπη,ξ.

Proof. For any x ∈ G,
ϕπη,ξ(x) = 〈π(x)η, ξ〉Hπ = 〈ξ, π(x)η〉Hπ = 〈π(x)η, ξ〉Hπ = ϕπη,ξ(x).

The linear map ξ → 〈ξ, π(x)η〉Hπ plays an important role in this study.

Definition 2.4.16. If π is a unitary representation of G and η ∈ Hπ, let

Vηξ(x) = 〈ξ, π(x)η〉Hπ = ϕπη,ξ(x), for all x ∈ G,

and each ξ ∈ Hπ.

Proposition 2.4.17. Let π be a unitary representation of a locally compact group G.
For each η ∈ Hπ, Vη is a bounded linear map of Hπ into Cb(G). The representation
π is irreducible if and only if Vη is injective, for every nonzero η ∈ Hπ.

Proof. For any ξ ∈ Hπ, Vηξ = ϕπη,ξ ∈ Cb(G) and ‖Vηξ‖∞ ≤ ‖η‖Hπ‖ξ‖Hπ . It is easily
checked that Vη is linear. Thus, it is a bounded linear map of Hπ into Cb(G). The
representation π is irreducible if and only if π is irreducible and this is equivalent
to Vη being injective for each nonzero η ∈ Hπ by the equivalence of (a) and (d) in
Theorem 2.4.11.

2.5 Square-integrable Representations

If G is a non-compact locally compact group and π is an irreducible representation
of G, the coefficient functions of π or π are always bounded, but they do not need
to be in L2(G). For example, if G = R and χω : x → e2πiωx is a typical irreducible
unitary representation of R, then any coefficient function of χω is just a constant
multiple of χω, which will not be in L2(R) unless the constant is 0. If it happens
that an irreducible unitary representation has a nonzero coefficient function that lies
in L2(G), then there are significant implications. These properties are introduced in
this section.
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Definition 2.5.1. Let π be an irreducible representation of a locally compact group
G. For η ∈ Hπ, Vηξ(x) = 〈ξ, π(x)η〉, for x ∈ G and ξ ∈ Hπ. If there exist nonzero
η, ξ ∈ Hπ such that Vηξ ∈ L2(G), then π is called a square-integrable representation
of G.

Note that π is square-integrable if and only if π is square-integrable and Vηξ = ϕπη,ξ.
For a proof of the following proposition, see the proof of part (b) of Theorem 2.25 in
[14].

Proposition 2.5.2. If π is a square-integrable representation of a locally compact
group G and η ∈ Hπ is such that Vηξ ∈ L2(G), for one nonzero ξ ∈ Hπ, then
Vηξ ∈ L2(G), for all ξ ∈ Hπ.

Definition 2.5.3. Let π be a square-integrable representation of a locally compact
group G. Let Dπ denote the set of all η ∈ Hπ such that Vηη ∈ L2(G) (equivalently,
Vηξ ∈ L2(G), for all ξ ∈ Hπ).

Proposition 2.5.4. Let π be a square-integrable representation of a locally compact
group G. Then Dπ is a dense subspace of Hπ.

Proof. Suppose η1, η2 ∈ Dπ, then, for any ξ ∈ Hπ, Vη1+η2ξ = Vη1ξ + Vη2ξ ∈ L2(G), by
Proposition 2.5.2. Thus, η1 + η2 ∈ Dπ. Likewise, αη1 ∈ Dπ, for any α ∈ C. That is,
Dπ is a subspace of Hπ. Let η be a nonzero member of Dπ. For any y ∈ G and any
ξ ∈ Hπ, Vπ(y)ηξ(x) = Vηξ(xy), for all x ∈ G. Thus,∫
G

∣∣Vπ(y)ηξ(x)
∣∣2dµG(x) =

∫
G

∣∣Vηξ(xy)
∣∣2dµG(x) = ∆G(y)−1

∫
G

∣∣Vηξ(x)
∣∣2dµG(x) <∞.

Therefore, Dπ is a π-invariant subspace of Hπ. Then Dπ is a π-invariant closed
subspace, which must be Hπ, since π is irreducible. Thus Dπ is dense.

If G is a compact group, Cb(G) = C(G) ⊆ L2(G). So any irreducible representa-
tion π of G is square-integrable. In a later section, we describe the Peter-Weyl theory
for compact groups. A part of that theory is a theorem called the orthogonality rela-
tions for irreducible representations of compact groups. A key relation (see Corollary
2.6.8) states: If π is an irreducible unitary representation of a compact group G and
if η, η′, ξ, ξ′ ∈ Hπ, then

〈Vηξ, Vη′ξ′〉L2(G)
=

1

dπ
〈ξ, ξ′〉Hπ 〈η

′, η〉Hπ . (2.5)

Duflo and Moore [9] established an important generalization of (2.5). The statement
we give is derived from Theorem 2.25 of [14].

Theorem 2.5.5. [Duflo-Moore] Let π be a square-integrable representation of a lo-
cally compact group G. There exists a positive, self-adjoint, densely defined, operator
Cπ on Hπ with dom(Cπ) = Dπ and such that, for ξ, ξ′ ∈ Hπ and η, η′ ∈ Dπ,

〈Vηξ, Vη′ξ′〉L2(G)
= 〈ξ, ξ′〉Hπ 〈Cπη

′, Cπη〉Hπ .
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Moreover, Cπ satisfies the semi-invariance property π(x)Cππ(x)∗ = ∆G(x)1/2Cπ, for
all x ∈ G.

Definition 2.5.6. Let π be a square-integrable representation of a locally compact
group G. The operator Cπ of Theorem 2.5.5 is called the Duflo-Moore operator of π.

Duflo and Moore (Lemma 1 of [9]) also showed that there is a strong uniqueness
of the Duflo-Moore operator of a square-integrable representation that is determined
by the semi-invariance property.

Proposition 2.5.7. Let π be a square-integrable representation of a locally compact
group G. Suppose T is a positive, self-adjoint, densely defined, operator on Hπ that
satisfies π(x)Tπ(x)∗ = ∆G(x)1/2T , for all x ∈ G. Then dom(T ) = Dπ and T = Cπ.

Grossmann, Morlet and Paul [15] showed how the Duflo-Moore Theorem leads to
generalizations of the continuous wavelet transform and the associated reconstruction
formula. The process follows.

Let π be a square-integrable representation of a locally compact group G. Select
η ∈ Dπ so that ‖Cπη‖Hπ = 1. Then Theorem 2.5.5 implies Vη : Hπ → L2(G) is an
isometry. Thus Kη = VηHπ is a closed subspace of L2(G).

Proposition 2.5.8. With the above notation, Kη is a λG-invariant closed subspace
of L2(G) and Vη intertwines π with λG.

Proof. Let f ∈ Kη and y ∈ G. There is a unique ξ ∈ Hπ such that Vηξ = f . Then

Vηπ(y)ξ(x) = 〈π(y)ξ, π(x)η〉Hπ = 〈ξ, π(y−1x)η〉Hπ = Vηξ(y
−1x) = λG(y)f(x),

for all x ∈ G. Thus, λG(y)f ∈ Kη, for each y ∈ G and f ∈ Kη. That is, Kη is
λG-invariant. Also, the above calculation shows that Vη intertwines π with λG.

Note that Vη, considered as a unitary map from Hπ to Kη intertwining π with

λ
Kη
G , shows that π ∼ λ

Kη
G . An expression for the inverse V ∗η : Kη → Hπ is provided by

a reconstruction formula.

Proposition 2.5.9. Let π be a square-integrable representation of a locally compact
group G and let η ∈ Dπ be such that ‖Cπη‖Hπ = 1. Then, for any ξ ∈ Hπ,

ξ =

∫
G

Vηξ(x)π(x)η dµG(x), weakly in Hπ.

Proof. Fix ξ ∈ Hπ. For any ξ′ ∈ Hπ,

〈ξ, ξ′〉Hπ = 〈Vηξ, Vηξ′〉L2(G) =

∫
G

Vηξ(x)〈ξ′, π(x)η〉HπdµG(x)

=

∫
G

Vηξ(x)〈π(x)η, ξ′〉HπdµG(x) =

∫
G

〈Vηξ(x)π(x)η, ξ′〉Hπ dµG(x).

Thus, ξ =
∫
G
Vηξ(x)π(x)η dµG(x), weakly in Hπ.
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Thus, if g ∈ Kη, then there exists a unique ξ ∈ Hπ such that, for all ξ′ ∈ Hπ, we
have 〈ξ, ξ′〉Hπ =

∫
G
〈g(x)π(x)η, ξ′〉Hπ dµG(x). Then V ∗η g = ξ.

Example 10. The group of all invertible affine transformations of R can be written as
G1 = {[x, a] : x ∈ R, a ∈ R∗} with group product given by [x, a][x′, a′] = [x+ax′, aa′],
identity [0, 1], and inverses given by [x, a]−1 = [−a−1x, a−1]. There is a good discussion
of this group in [17] and it will be studied in more detail later in this thesis. Let π be
the unitary representation of G1 on L2(R) given by, for [x, a] ∈ G1 and f ∈ L2(R),

π[x, a]f(y) = |a|−1/2f
(
y−x
a

)
, for all y ∈ R.

It turns out that π is irreducible and, in fact, square-integrable. See [15] or [17] for a
proof. Or see [4] for a more general result. To describe the Duflo-Moore operator Cπ,
we need the Fourier transform, which is introduced carefully in the next section. Here,
we will assume it is familiar. Write R̂ for frequency space and let F : L2(R)→ L2(R̂)

denote the unitary map such that Ff(ω) = f̂(ω) =
∫
R f(y)e−2πiyωdy, for all ω ∈ R̂

and f ∈ L1(R) ∩ L2(R). The Duflo-Moore operator is a multiplication operator on

the Fourier transform side. For any ξ ∈ L2(R̂), let

Tξ(ω) = |ω|−1/2ξ(ω), for a.e. ω ∈ R̂.

Then T is a positive, self-adjoint, operator on L2(R̂) and Cπ = F−1TF . Thus,
w ∈ L2(R) satisfying ‖Cπw‖2 = 1 means the same as

∫
R̂ |ŵ(ω)|2 dω|ω| = 1. For such a

w, define Vwf , for any f ∈ L2(R), by

Vwf [x, a] = 〈f, π[x, a]w〉L2(R), for all [x, a] ∈ G1. (2.6)

Proposition 2.5.9 tells us that, for any f ∈ L2(R),

f =

∫
R

∫
R
Vwf [x, a]π[x, a]w dx da

a2
, weakly in L2(R). (2.7)

Starting in the 1980s, the map Vw has been called a continuous wavelet transform and
(2.7), the continuous wavelet reconstruction formula. But (2.7) was known earlier
and is version of the Calderón Reproducing Formula in one dimension. A function
w ∈ L2(R) satisfying

∫
R̂ |ŵ(ω)|2 dω|ω| = 1 is called a wavelet for the continuous wavelet

transform on R.

In analogy with the situation in the above example, the term wavelet is used more
generally.

Definition 2.5.10. Let π be a square-integrable representation of a locally compact
group. A π-wavelet is a vector η ∈ Hπ such that ‖Cπη‖Hπ = 1, where Cπ is the
Duflo-Moore operator of π.

Remark. If π is a square-integrable representation of G and η′ ∈ Dπ and η′ 6= 0, then
η = 1

‖Cπη′‖Hπ
η′ is a π-wavelet. So the linear span of the set of all π-wavelets is the

dense subspace Dπ of Hπ.
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2.6 Compact Groups and the Peter-Weyl Theo-

rem

In this section we will give a brief summary of the Peter-Weyl theorem. This theorem
shows exactly how the left regular representation of a compact group is a direct
sum of irreducible representations. The presentation draws on [12]. We need some
fundamental facts about compact groups.

If G is a compact group, the Haar measure of G is finite. We normalize the Haar
measure so that µG(G) = 1. Note that G is unimodular when G is compact. Since
µG(G) = 1, C(G) ⊆ L2(G). Let π be any unitary representation of G. For ξ, η ∈ Hπ,
Vηξ ∈ C(G) ⊆ L2(G), where Vηξ(x) = 〈ξ, π(x)η〉, for all x ∈ G. Recall that, if π and
ρ are unitary representations of G, then T ∈ C(π, ρ) that means T ∈ B(Hπ,Hρ) and
Tπ(x) = ρ(x)T , for all x ∈ G.

Proposition 2.6.1. Let π be a unitary representation of a compact group G and let
η ∈ Hπ.

(a) Vη : Hπ → L2(G) is a bounded linear map.
(b) Vη intertwines π with λG. That is, Vη ∈ C(π, λG).
(c) If π is irreducible and η 6= 0, then Vη is injective.

Proof. (a) Let η ∈ Hπ. Then Vη is linear because the inner product is linear in the
first argument. For ξ ∈ Hπ,∫

G

|Vηξ(x)|2dµG(x) =

∫
G

|〈ξ, π(x)η〉|2dµG(x)

≤
∫
G

‖ξ‖2‖η‖2dµG(x) = ‖ξ‖2‖η‖2.

Thus,Vη ∈ B
(
Hπ, L

2(G)
)

and ‖Vη‖ ≤ ‖η‖.
(b) For any y ∈ G and ξ ∈ Hπ,(

Vηπ(y)ξ
)
(x) = 〈π(y)ξ, π(x)η〉 = 〈ξ, π(y)∗π(x)η〉

= 〈ξ, π(y−1x)η〉 = Vηξ(y
−1x) = λG(y)Vηξ(x),

for any x ∈ G. Thus, Vηπ(y) = λG(y)Vη, for any y ∈ G. That is, Vη intertwines π
with λG.

(c) This follows from Proposition 2.4.17.

In particular, any irreducible representation of G is square-integrable. We state
this in a proposition together with several other basic properties of representations
of compact groups. See Theorem 5.2 of [12] for the proofs of parts (b) and (c).

Proposition 2.6.2. Let G be a compact group.
(a) Any irreducible representation of G is square-integrable.
(b) Any irreducible representation of G is finite dimensional.
(c) Any unitary representation of G is a direct sum of irreducible representations.

33



Recall that a coefficient function of a unitary representation, π, is a function of
the form ϕπη,ξ, for η, ξ ∈ Hπ, where ϕπη,ξ(x) = 〈π(x)η, ξ〉, for all x ∈ G. Note that

ϕπη,ξ = Vηξ. Let Eπ denote the linear span of all coefficient functions of π. That is,
Eπ = linear span{ϕπη,ξ : ξ, η ∈ Hπ}. It is a subspace of C(G) and hence subspace
of L2(G). Suppose that π′ is a unitarily equivalent to π. That is, there is a unitary
operator U ∈ C(π, π′). Then, for η, ξ ∈ Hπ,

ϕπη,ξ(x) = 〈π(x)η, ξ〉Hπ = 〈Uπ(x)η, Uξ〉Hπ′ = 〈π′(x)Uη, Uξ〉Hπ′ = ϕπ
′

Uη,Uξ(x),

for any x ∈ G. Thus any coefficient function of π is also a coefficient function of
π′ and conversely. That is, Eπ depends only on the unitary equivalence class of π.
Moreover, it is invariant under left and right translations.

Proposition 2.6.3. Let π be a unitary representation of a compact group G. The
subspace of C(G) of the form Eπ is invariant under both left and right translations.

Proof. Let ϕ ∈ Eπ. Then, there exist n ∈ N, ηj, ξj ∈ Hπ and αj ∈ C, for 1 ≤ j ≤ n,
such that ϕ =

∑n
j=1 αjϕ

π
ηj ,ξj

. For any y ∈ G,

λG(y)ϕ(x) = ϕ(y−1x) =
n∑
j=1

αjϕ
π
ηj ,ξj

(y−1x) =
n∑
j=1

αj〈π(y−1x)ηj, ξj〉

=
n∑
j=1

αj〈π(x)ηj, π(y)ξj〉 =
n∑
j=1

αjϕ
π
ηj ,π(y)ξj

(x),

for all x ∈ G. Similarly, ρG(y)ϕ =
∑n

j=1 αjϕ
π
π(y)ηj ,ξj

.

The Schur orthogonality relations give information about the inner product of two
coefficient functions of irreducible representations of G. The presentation here adapts
material from Section 5.2 of [12].

Let π and π′ be two representations of G. First, we introduce a method of creating
elements of C(π, π′). Start with any A ∈ B(Hπ,Hπ′) and let Ã =

∫
G
π′(x−1)Aπ(x) dx.

This operator valued integral can be interpreted as follows: The operator Ã is the
unique element of B(Hπ,Hπ′) such that

〈Ãξ, ξ′〉 =

∫
G

〈π′(x−1)Aπ(x)ξ, ξ′〉dx, for all ξ ∈ Hπ, ξ
′ ∈ Hπ′ .

Proposition 2.6.4. Let G be a compact group and let π, π′ be representations of G.
If A ∈ B(Hπ,Hπ′), then Ã ∈ C(π, π′).
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Proof. Let y ∈ G. For any ξ ∈ Hπ and ξ′ ∈ Hπ′ ,

〈Ãπ(y)ξ, ξ′〉 =

∫
G

〈π′(x−1)Aπ(x)π(y)ξ, ξ′〉dx =

∫
G

〈π′(x−1)Aπ(xy)ξ, ξ′〉dx

=

∫
G

〈π′((xy−1)−1)Aπ(x)ξ, ξ′〉dx =

∫
G

〈π′(y)π′(x−1)Aπ(x)ξ, ξ′〉dx

=

∫
G

〈π′(x−1)Aπ(x)ξ, π′(y−1)ξ′〉dx = 〈Ãξ, π′(y−1)ξ′〉 = 〈π′(y)Ãξ, ξ′〉.

Thus Ãπ(y) = π′(y)Ã, for any y ∈ G. Therefore Ã ∈ C(π, π′).

We immediately recognize that, if π and π′ are irreducible representations of G
such that π is not equivalent π′, then Ã = 0, for any A ∈ B(Hπ,Hπ′).

In the case where π = π′ is a finite dimensional representation of G, the traces of
Ã and A agree.

Lemma 2.6.5. Let G be a compact group and let π be a finite dimensional repre-
sentation of G. If A ∈ B(Hπ), then tr(Ã) = tr(A).

Proof. Recall that dπ = dim(Hπ). Let {ξj : 1 ≤ j ≤ dπ} be an orthonormal basis of
Hπ. For each x ∈ G, {π(x)ξj : 1 ≤ j ≤ dπ} is an orthonormal basis of Hπ. Then

tr(Ã) =
dπ∑
j=1

〈Ãξj, ξj〉 =
dπ∑
j=1

∫
G

〈π(x−1)Aπ(x)ξj, ξj〉dx

=

∫
G

(
dπ∑
j=1

〈Aπ(x)ξj, π(x)ξj〉

)
dx =

∫
G

tr(A)dx = tr(A),

using the fact that Haar measure on G is normalized.

Now, let π and π′ be any irreducible representations of G. Fix vectors η ∈ Hπ

and η′ ∈ Hπ′ and define A ∈ B(Hπ,Hπ′) by Aξ = 〈ξ, η〉η′, for all ξ ∈ Hπ. For ξ ∈ Hπ

and ξ′ ∈ Hπ′ ,

〈Ãξ, ξ′〉 =

∫
G

〈π′(x−1)Aπ(x)ξ, ξ′〉dx

=

∫
G

〈Aπ(x)ξ, π′(x)ξ′〉dx

=

∫
G

〈〈π(x)ξ, η〉η′, π′(x)ξ′〉dx

=

∫
G

〈π(x)ξ, η〉〈η′, π′(x)ξ′〉dx

=

∫
G

ϕξ,η(x)ϕξ′,η′(x) dx.

(2.8)

If π and π′ are not equivalent, then Ã = 0. This leads to the following proposition.
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Proposition 2.6.6. Let G be a compact group and let π and π′ be irreducible
representations of G such that π is not equivalent to π′. Then any coefficient function
of π is perpendicular to any coefficient function of π′ as members of L2(G).

Let’s look at the implications of (2.8) when π = π′. Thus, let π be an irreducible
representation of G and let η, η′ ∈ Hπ. Define A ∈ B(Hπ) by Aξ = 〈ξ, η〉η′, for all
ξ ∈ Hπ. Then, using Lemma 2.6.5,

tr(Ã) = tr(A) =
dπ∑
j=1

〈Aξj, ξj〉 =
dπ∑
j=1

〈〈ξj, η〉η′, ξj〉 =
dπ∑
j=1

〈ξj, η〉〈η′, ξj〉 = 〈η′, η〉,

by the Parseval Identity. On the other hand, we know by Proposition 2.6.4 that
Ã ∈ C(π). Since π is irreducible, there is a constant c ∈ C such that Ã = cI, where

I is the identity operator on Hπ. Therefore, tr(Ã) = cdπ. Thus, c = 〈η′,η〉
dπ

and

Ã = 〈η′,η〉
dπ

I.

Theorem 2.6.7. Let G be a compact group and let π be an irreducible representation
of G. Let η, η′, ξ, ξ′ ∈ Hπ. Then∫

G

ϕξ,η(x)ϕξ′,η′(x) dx =
1

dπ
〈ξ, ξ′〉〈η′, η〉.

Proof. This follows immediately from (2.8) and the fact that Ã = 〈η′,η〉
dπ

I when A is
defined by Aξ = 〈ξ, η〉η′, for all ξ ∈ Hπ.

The results in Proposition 2.6.6 and Theorem 2.6.7 together are called the Schur
Orthogonality Relations. For the purpose of this thesis, Theorem 2.6.7 is restated in
terms of the Vη maps.

Corollary 2.6.8. LetG be a compact group and let π be an irreducible representation
of G. Let η, η′, ξ, ξ′ ∈ Hπ. Then

〈Vηξ, Vη′ξ′〉L2(G)
=

1

dπ
〈ξ, ξ′〉Hπ 〈η

′, η〉Hπ .

Proof. In the following calculation the fact that G is unimodular is used in the x−1 →
x variable change.∫

G

Vηξ(x)Vη′ξ′(x) dx =

∫
G

〈ξ, π(x)η〉Hπ 〈ξ′, π(x)η′〉Hπdx

=

∫
G

〈π(x−1)ξ, η〉Hπ 〈π(x−1)ξ′, η′〉Hπdx

=

∫
G

〈π(x)ξ, η〉Hπ 〈π(x)ξ′, η′〉Hπdx

=

∫
G

ϕξ,η(x)ϕξ′,η′(x) dx =
1

dπ
〈ξ, ξ′〉Hπ 〈η

′, η〉Hπ .
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Thus 〈Vηξ, Vη′ξ′〉L2(G)
= 1

dπ
〈ξ, ξ′〉Hπ 〈η

′, η〉Hπ .

Let π be an irreducible representation of G. For η ∈ Hπ, let Kη = {Vηξ : ξ ∈ Hπ}.
Since Hπ is finite dimensional, so is Kη. Consider Kη as a subspace of L2(G). By
Proposition 2.6.1, Vη intertwines π with λG. Thus Kη is a closed λG-invariant subspace
of L2(G).

Corollary 2.6.9. LetG be a compact group and let π be an irreducible representation
of G.

(a) If η ∈ Hπ satisfies ‖η‖ =
√
dπ, then Vη is a unitary map from Hπ onto Kη.

(b) If η1, η2 ∈ Hπ are orthogonal, then Kη1 ⊥ Kη2 .

Proof. Both claims follow immediately from Corollary 2.6.8.

In the language of square-integrable representations and wavelets, we have the
following:

Corollary 2.6.10. Let G be a compact group and let π be an irreducible representa-
tion of G. The Duflo-Moore operator for π is d

−1/2
π I, where I is the identity operator

on Hπ, Dπ = Hπ, and η ∈ Hπ is a π-wavelet if and only if ‖d−1/2
π η‖Hπ = 1.

If π is an irreducible representation ofG and η is a π-wavelet, thenKη ⊆ Eπ, the lin-
ear span of the coefficient functions of π. Let’s fix an orthonormal basis {ξ1, · · · , ξdπ}
of Hπ. For 1 ≤ j ≤ dπ, let ηj = d

1/2
π ξj. Then each ηj is a π-wavelet and Kηk ⊥ Kηj

if 1 ≤ k < j ≤ dπ. Suppose ϕπη,ξ is any coefficient function of π. Since {η1, · · · , ηdπ}
spans Hπ, we can write η =

∑dπ
j=1 αjηj, for some αj ∈ C, 1 ≤ j ≤ dπ.

ϕπη,ξ(x) = 〈π(x)η, ξ〉Hπ = 〈ξ, π(x)η〉Hπ

=
dπ∑
j=1

αj〈ξ, π(x)ηj〉Hπ =
dπ∑
j=1

αjVηjξ(x),

for all x ∈ G. This shows that Eπ = Kη1⊕· · ·⊕Kηdπ and, thus, Eπ is finite dimensional
of dimension d 2

π = d 2
π . Note that Proposition 2.6.6 implies Eπ ⊥ Eπ′ if π and π′ are

inequivalent irreducible representations of G. Let E denote the linear span of ∪π∈ĜEπ.

Then E is dense in L2(G) (see Theorem 5.11 of [12]). Thus, L2(G) =
∑⊕

π∈Ĝ Eπ. Note,

we could also write L2(G) =
∑⊕

π∈Ĝ Eπ. We organize these points in a final theorem
for this section.

Theorem 2.6.11. Let G be a compact group.

(a) For each π ∈ Ĝ, let Eπ denote the linear span of the coefficient functions of π.
Then L2(G) =

∑⊕
π∈Ĝ Eπ.

(b) For each π ∈ Ĝ, let {ηj : 1 ≤ j ≤ dπ} be an orthogonal set of vectors in Hπ such
that ‖dπηj‖Hπ = 1, for 1 ≤ j ≤ dπ. Let Kηj = VηjHπ, for 1 ≤ j ≤ dπ. Then Kηj is a

λG-invariant subspace of L2(G) and λ
Kηj
G ∼ π. Moreover, Eπ = Kη1 ⊕ · · · ⊕ Kηdπ .
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2.7 The Fourier Transform

In this section, we recall the basic properties of Fourier analysis on Rn and introduce
notation that will be used later. There are many references for the material in this
section and also different notational conventions. Versions of the results can be found
in [23] and [11]

It is useful to distinguish between Rn and its Fourier dual R̂n by column and row
vectors. So

Rn =

x =

 x1
...
xn

 : x1, · · · , xn ∈ R


and R̂n = {ω = (ω1, · · · , ωn) : ω1, · · · , ωn ∈ R}. Note that ωx =

∑n
j=1 ωjxj, for

ω ∈ R̂n and x ∈ Rn. Also, if A is an n× n-real matrix, then ω(Ax) = (ωA)x.
Any irreducible unitary representation of Rn is one dimensional and of the form

x→ e2πiωx, for some ω ∈ R̂n.
If f ∈ L1(Rn), the Fourier transform of f is a function f̂ : R̂n → C defined as

follows:

f̂(ω) =

∫
Rn
f(x)e−2πiωxdx, for ω ∈ R̂n.

Then f → f̂ is a linear map of L1(Rn) into C0(R̂n) such that ‖f̂‖∞ ≤ ‖f‖1. In this
thesis, frequent use is made of a closely related unitary map.

Theorem 2.7.1. [Plancherel] There exists a unitary map F of L2(Rn) onto L2(R̂n)

such that Ff = f̂ for all f ∈ L1(Rn) ∩ L2(R̂n). Moreover,

F−1ξ(x) =

∫
R̂n
ξ(ω)e2πiωxdω,

for any x ∈ Rn and ξ ∈ L1(R̂n) ∩ L2(R̂n).

For f ∈ L2(Rn), the notation f̂ will sometimes be used for Ff even if f /∈ L1(Rn).
Also, F−1ξ may be denoted ξ̌. However, we usually use F to emphasize its importance
as a unitary map. To illustrate this, consider the left regular representation λRn of
the additive group Rn acting on L2(Rn). Define an equivalent unitary representation

λ̂Rn acting on L2(R̂n) by λ̂Rn(x) = FλRn(x)F−1, for all x ∈ Rn.

Proposition 2.7.2. For x ∈ Rn and ξ ∈ L2(R̂n),(
λ̂Rn(x)ξ

)
(ω) = e−2πωxξ(ω), for a.e. ω ∈ R̂n.

Proof. Fix x ∈ Rn. First, assume ξ = f̂ , for f ∈ L1(Rn) ∩ L2(Rn). So ξ = F−1f .
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Then λRn(x)f ∈ L1(Rn) ∩ L2(Rn) as well. Thus,

(
λ̂Rn(x)ξ

)
(ω) = F

(
λRn(x)f

)
(ω) =

∫
Rn

(
λRn(x)f

)
(y)e−2πiωydy =

∫
Rn
f(y − x)e−2πiωydy

=

∫
Rn
f(y)e−2πiω(y+x)dy = e−2πiωx

∫
Rn
f(y)e−2πiωydy = e−2πiωxξ(ω),

for all ω ∈ R̂n. Now define Mx on L2(R̂n) by
(
Mxη

)
(ω) = e−2πiωxη(ω), for a.e.

ω ∈ R̂n and each η ∈ L2(R̂n). Then Mx ∈ U
(
L2(R̂n)

)
. Moreover, Mx agrees with the

unitary operator λ̂Rn(x) on F
(
L1(Rn) ∩ L2(Rn)

)
, a dense subspace of L2(R̂n). Thus,

λ̂Rn(x) = Mx.

Proposition 2.7.2 can be used to identify many closed λRn-invariant subspaces of
L2(Rn).

Definition 2.7.3. Let Ω be a Borel subset of R̂n. We use the notation L2(Ω) for the

set of functions in L2(R̂n) that are essentially supported on Ω. That is

L2(Ω) =
{
ξ ∈ L2(R̂n) : ξ(ω) = 0, for a.e. ω ∈ R̂n \ Ω

}
.

Let H2
Ω = {f ∈ L2(Rn) : Ff ∈ L2(Ω)}.

Note that L2(Ω) is a closed subspace of L2(R̂n). We have L2(Ω) = {0} if and

only if |Ω| = 0, where |Ω| is the Lebesgue measure of Ω, and L2(Ω) = L2(R̂n) if and

only if |R̂n \ Ω| = 0. Thus, if |Ω| > 0 and |R̂n \ Ω| > 0, then L2(Ω) is a nontrivial

closed subspace of L2(R̂n). For any Borel Ω ⊆ R̂n and x ∈ Rn, if ξ ∈ L2(Ω), then

Mxξ ∈ L2(Ω). So L2(Ω) is invariant under the action of λ̂Rn(x), for any x ∈ Rn.

That is, L2(Ω) is a λ̂Rn-invariant closed subspace of L2(R̂n). Therefore, H2
Ω is a λRn-

invariant closed subspace of L2(Rn). In fact, every λRn-invariant closed subspace of

L2(Rn) is of the form H2
Ω for some Borel subset Ω of R̂n. See Theorem 9.17 of [23]

for a proof when n = 1. This proof is easily adapted for general n.

Proposition 2.7.4. If K is any λRn-invariant closed subspace of L2(Rn) such that
K 6= {0}, then there exist two λRn-invariant closed subspaces of L2(Rn), say K1 and
K2, such that K1 6= {0}, K2 6= {0}, K1 ⊥ K2 and K = K1 +K2.

Proof. By the discussion above, there exists a Borel Ω ⊆ R̂n such that K = H2
Ω. Since

K 6= {0}, |Ω| > 0. By properties of Lebesgue measure, we can find Borel subsets Ω1

and Ω2 of Ω so that Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = Ω. Then just take K1 = H2
Ω1

and
K2 = H2

Ω2
.

One consequence of Proposition 2.7.4 is that λRn cannot be written as a direct
sum of irreducible representations unlike the case for a compact group.
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2.8 Induced Representations

SupposeG is a locally compact group andH is a closed subgroup ofG. If π is a unitary
representation of H, there is a procedure for building a unitary representation of G by
combining the action of G on G/H with π. This new representation is known as an
induced representation, the representation of G induced by π. A detailed treatment
of the theory of induced representations can be found in [20]. The parts of the theory
used in this thesis are gathered in this section and adapted for convenient use.

Let q : G→ G/H be the quotient map, q(x) = xH, for x ∈ G. The space G/H is
locally compact when endowed with the quotient topology. We will assume also that
we have chosen a map p : G/H → G such that q

(
p(ω)

)
= ω, for all ω ∈ G/H. That

is, we use the axiom of choice to pick a distinguished element in each left H-coset.
For all groups and subgroup pairs considered in this thesis, it is easy to find a Borel
measurable p, but measurability of p is not needed for this section.

We begin with the existence of a special kind of function on G that relates left Haar
integration on G with left Haar integration on H and a quasi-invariant integration
over G/H.

Definition 2.8.1. A rho-function for (G,H) is a measurable map ρ : G → R+ that
satisfies

ρ(xh) = ∆H(h)
∆G(h)

ρ(x), for all x ∈ G, h ∈ H.

Proposition 2.8.2. There exists a continuous rho-function ρ for (G,H) such that
ρ(x) > 0, for all x ∈ G.

See Lemma 1.20 of [20] for the proof.

Example 11. Suppose there exists a closed subgroup K of G such that K ∩H = {e},
G = KH, and the map (k, h) → kh is a homeomorphism of K ×H with G. Such a
complementary subgroup K of H exists in many useful situations. Then, for x ∈ G,
there exist unique kx ∈ K and hx ∈ H such that x = kxhx and the map x→ (kx, hx) is

continuous since it is the inverse of the above homeomorphism. Then ρ(x) = ∆H(hx)
∆G(hx)

,

for all x ∈ G, defines a continuous and everywhere positive rho-function for (G,H).

Any continuous rho-function determines an associated measure on G/H. The
following is a consequence of the Riesz Representation Theorem for positive linear
functionals on Cc(G/H) (see Proposition 1.14 in [20]).

Proposition 2.8.3. Let ρ be a continuous rho-function for (G,H). There exists a
positive regular Borel measure µρ on G/H such that∫

G

f(x)ρ(x) dµG(x) =

∫
G/H

∫
H

f
(
p(ω)h

)
dµH(h) dµρ(ω),

for all f ∈ Cc(G).

Recall that G acts on G/H by, for x ∈ G and yH ∈ G/H, x · (yH) = (xy)H. This
can also be written neatly as, for x ∈ G and ω ∈ G/H, x · ω = q

(
xp(ω)

)
. For any
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subset E of G/H, let x ·E = {x · ω : ω ∈ E}. If E is a Borel subset of G/H, then so
is x · E. For any Borel measure ν on G/H and x ∈ G, define a new Borel measure
x · ν on G/H by (x · ν)(E) = ν(x · E), for any Borel E ⊆ G/H.

Definition 2.8.4. A regular Borel measure on G/H is quasi-invariant if, for every
x ∈ G, x · ν and ν are mutually absolutely continuous.

Suppose ν is a quasi-invariant regular Borel measure on G/H. For each x ∈ G,[
d(x·ν)
dν

]
denotes the Radon-Nikodym derivative. That is,

[
d(x·ν)
dν

]
is the non-negative

measurable function on G/H such that, for any ϕ ∈ Cc(G/H),∫
G/H

ϕ(ω) d(x · ν)(ω) =

∫
G/H

ϕ(ω)
[
d(x·ν)
dν

]
(ω) dν(ω).

It is also useful to move functions on G/H by elements of G. For x ∈ G and any
function ϕ on G/H, let Lxϕ(ω) = ϕ(x−1 · ω). Elementary integration theory shows
that, for a regular Borel measure ν on G/H, ϕ ∈ Cc(G/H), and x ∈ G,∫

G/H

ϕ(ω) d(x · ν)(ω) =

∫
G/H

ϕ(x−1 · ω) dν(ω) =

∫
G/H

Lxϕ(ω) dν(ω). (2.9)

We also use Lx to denote the operation of moving functions on G by x. That is, if Z
is any set and f : G→ Z, then, for x ∈ G, Lxf(y) = f(x−1y), for all y ∈ G.

Now, let ρ be a continuous rho-function for (G,H) and let µρ be the associated
regular Borel measure as in Proposition 2.8.3. For x ∈ G, it is clear that Lx−1ρ is also
a continuous rho-function for (G,H). For any ϕ ∈ Cc(G/H), there exists a function
f ∈ Cc(G) such that ϕ(ω) =

∫
H
f
(
p(ω)h

)
dµH(h), for all ω ∈ G/H (see Proposition

1.9 in [20]). Then,

Lxϕ(ω) =

∫
H

f
(
p(x−1·ω)h

)
dµH(h) =

∫
H

f
(
x−1p(ω)h

)
dµH(h) =

∫
H

Lxf
(
p(ω)h

)
dµH(h),

for any ω ∈ G/H. Using (2.9), Proposition 2.8.3, and left invariance of the Haar
integral on G,∫

G/H

ϕd(x · µρ) =

∫
G/H

Lxϕ(ω) dµρ(ω) =

∫
G/H

∫
H

Lxf
(
p(ω)h

)
dµH(h) dµρ(ω)

=

∫
G

Lxf(y)ρ(y) dµG(y) =

∫
G

f(y)Lx−1ρ(y) dµG(y)

=

∫
G/H

∫
H

f
(
p(ω)h

)
dµH(h) dµ

L
x−1ρ

(ω) =

∫
G/H

ϕdµ
L
x−1ρ

.

(2.10)

Since ϕ ∈ Cc(G/H) was arbitrary, x · µρ = µ
L
x−1ρ

.

If ρ is a continuous and everywhere positive rho-function for (G,H) and µρ is the
associated regular Borel measure on G/H as in Proposition 2.8.3, notice that, for
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x, y ∈ G and any h ∈ H,
ρ(xyh)

ρ(yh)
=
ρ(xy)

ρ(y)
,

using the defining property of rho-functions. So, with x fixed, y → ρ(xy)
ρ(y)

is constant

on left H-cosets. Therefore, we can define rρ : G×G/H → (0,∞) by

rρ(x, ω) =
ρ
(
xp(ω)

)
ρ
(
p(ω)

) , for all (x, ω) ∈ G×G/H.

This does not depend on the choice of the cross-section map p : G/H → G. Then
rρ is a continuous and everywhere positive function on G × G/H. The following is
based on Theorem 1.18 in [20].

Theorem 2.8.5. Let H be a closed subgroup of a locally compact group G. Let ρ
be a continuous and everywhere positive rho-function for (G,H) and let µρ be the
associated regular Borel measure on G/H. Then µρ is a quasi-invariant measure on

G/H. Moreover, for any x ∈ G,
[
d(x·µρ)

dµρ

]
(ω) = rρ(x, ω), for a.e. ω ∈ G/H.

Proof. To show that
[
d(x·µρ)

dµρ

]
(ω) = rρ(x, ω), for a.e. ω ∈ G/H, let ϕ ∈ Cc(G/H) be

arbitrary. Select f ∈ Cc(G) such that ϕ(ω) =
∫
H
f
(
p(ω)h

)
dµH(h), for all ω ∈ G/H.

Then, using x · µρ = µ
L
x−1ρ

and Proposition 2.8.3,∫
G/H

ϕ(ω) d(x · µρ)(ω) =

∫
G/H

∫
H

f
(
p(ω)h

)
dµH(h) dµ

L
x−1ρ

(ω)

=

∫
G

f(y)Lx−1ρ(y) dµG(y) =

∫
G

f(y)ρ(xy) dµG(y)

=

∫
G

f(y)
ρ(xy)

ρ(y)
ρ(y) dµG(y)

=

∫
G/H

∫
H

f
(
p(ω)h

)ρ(xp(ω)h)

ρ(p(ω)h)
dµH(h) dµρ(ω)

=

∫
G/H

∫
H

f
(
p(ω)h

)
dµH(h)rρ(x, ω) dµρ(ω)

=

∫
G/H

ϕ(ω)rρ(x, ω) dµρ(ω),

since ρ(xp(ω)h)
ρ(p(ω)h)

= rρ(x, ω), for all h ∈ H, (x, ω) ∈ G×G/H. This proves that rρ(x, ω) =[
d(x·µρ)

dµρ

]
(ω), for a.e. ω ∈ G/H and all x ∈ G. Moreover, it also shows that x · µρ is

absolutely continuous with respect to µρ, for every x ∈ G. Using the properties of
group actions shows these measures are mutually absolutely continuous. Thus, µρ is
a quasi-invariant measure on G/H.
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For ϕ ∈ Cc(G/H) and x ∈ G,∫
G/H

Lxϕ(ω) dµρ(ω) =

∫
G/H

ϕ(ω) d(x · µρ)(ω) =

∫
G/H

ϕ(ω)rρ(x, ω) dµρ(ω).

Thus, for ϕ ∈ Cc(G/H) and x ∈ G,∫
G/H

ϕ(ω) dµρ(ω) =

∫
G/H

Lx−1

(
Lxϕ

)
(ω) dµρ(ω) =

∫
G/H

(
Lxϕ

)
(ω)rρ(x

−1, ω) dµρ(ω).

Integration theory now leads to the following change of variables formula.

Corollary 2.8.6. Let H be a closed subgroup of a locally compact group G. Let ρ
be a continuous and everywhere positive rho-function for (G,H) and let µρ be the
associated regular Borel measure on G/H. For any Borel function g : G/H → [0,∞],
or any g : G/H → C that is µρ-integrable,∫

G/H

g(ω) dµρ(ω) =

∫
G/H

Lxg(ω)rρ(x
−1, ω) dµρ(ω),

for all x ∈ G.

This change of variables formula for the G action on G/H, when G/H carries
the quasi-invariant measure µρ, is what is needed to get a concrete definition of a
representation of G induced from a representation of H. There are a variety of ways
(all resulting in equivalent representations) of defining induced representations. The
most efficient one for the purposes of this thesis is based on Proposition 2.28 of [20].
The same construction is presented in Section 6.1 of [12].

Fix a continuous and everywhere positive rho-function ρ and associated quasi-
invariant measure µρ on G/H. Let π be a unitary representation of H on the Hilbert
space Hπ. The first step is to define a Hilbert space consisting of Hπ-valued functions
on G that encode the action of H through π. Recall that a function ξ : G → Hπ is
called weakly Borel measurable if x→ 〈ξ(x), v〉 is Borel measurable, for each v ∈ Hπ.
We will call such functions measurable for simplicity. There are two properties that
measurable functions ξ : G → Hπ could satisfy, the second depending on the first
being satisfied.

Property 1: ξ(xh) = π(h−1)ξ(x), for all h ∈ H and all x ∈ G.
Note that if ξ satisfies ξ(xh) = π(h−1)ξ(x), for all h ∈ H and almost all x ∈ G,

then let A denote the set of all x ∈ G such that ξ(xh) 6= π(h−1)ξ(x), for some h ∈ H.
Then Ak = A, for all k ∈ H; so A is a union of left H-cosets. Thus, if we define
ξ′ : G→ Hπ by

ξ′(x) =

{
ξ(x) if x ∈ G \ A
0 if x ∈ A,

then ξ′ = ξ almost everywhere and ξ′ satisfies Property 1.
Suppose ξ satisfies Property 1. Then, for any ω ∈ G/H, ‖ξ

(
p(ω)h

)
‖Hπ =

‖ξ
(
p(ω)

)
‖Hπ , for all h ∈ H, so ‖ξ

(
p(ω)

)
‖Hπ does not depend on the choice of p.
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Property 2:
∫
G/H
‖ξ
(
p(ω)

)
‖ 2
Hπdµρ(ω) <∞.

Standard arguments show that if ξ1 and ξ2 are measurable functions from G into
Hπ that satisfy Properties 1 and 2 and α ∈ C, then ξ1 + ξ2 and αξ1 satisfy Properties
1 and 2. As usual, if ξ1

(
p(ω)

)
= ξ2

(
p(ω)

)
for µρ-a.e. ω ∈ G/H, then we say ξ1 and

ξ2 are equivalent.

Definition 2.8.7. Let Hρ
indπ denote the vector space of equivalence classes of mea-

surable ξ : G→ Hπ that satisfy Properties 1 and 2.

If ξ1, ξ2 ∈ Hρ
indπ, for any ω ∈ G/H,〈

ξ1

(
p(ω)h

)
, ξ2

(
p(ω)h

)〉
Hπ

=
〈
ξ1

(
p(ω)

)
, ξ2

(
p(ω)

)〉
Hπ
, for any h ∈ H.

Thus,
〈
ξ1

(
p(ω)h

)
, ξ2

(
p(ω)h

)〉
Hπ

does not depend on the choice of p. Also∣∣∣〈ξ1

(
p(ω)

)
, ξ2

(
p(ω)

)〉
Hπ

∣∣∣ ≤ ‖ξ1

(
p(ω)

)
‖Hπ‖ξ2

(
p(ω)

)
‖Hπ

≤ ‖ξ1

(
p(ω)

)
‖ 2
Hπ

+ ‖ξ2

(
p(ω)

)
‖ 2
Hπ
.

Thus, ω →
〈
ξ1

(
p(ω)

)
, ξ2

(
p(ω)

)〉
Hπ

is integrable on G/H with respect to the measure

µρ. Let

〈ξ1, ξ2〉Hρ
indπ

=

∫
G/H

〈
ξ1

(
p(ω)

)
, ξ2

(
p(ω)

)〉
Hπ
dµρ(ω).

This defines an inner product on Hρ
indπ. Natural modifications of the usual arguments

show thatHρ
indπ is complete in the norm defined by this inner product (see Proposition

2.28 in [20]). The induced representation is defined on this Hilbert space.

Definition 2.8.8. Let π be a unitary representation of a closed subgroup H of a lo-
cally compact group G. Let ρ be a continuous and everywhere positive rho-function
for (G,H) and let µρ be the associated quasi-invariant measure on G/H. The repre-
sentation of G induced by π is denoted indGHπ and acts on the Hilbert space Hρ

indπ.
For ξ ∈ Hρ

indπ and x ∈ G,

indGHπ(x)ξ(y) =
[
ρ(x−1y)
ρ(y)

]1/2

ξ(x−1y), for y ∈ G.
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Let us check that indGHπ(x) is a unitary operator. For ξ1, ξ2 ∈ Hρ
indπ,

〈
indGHπ(x)ξ1, indGHπ(x)ξ2

〉
Hρ

indπ

=

∫
G/H

〈
indGHπ(x)ξ1

(
p(ω)

)
, indGHπ(x)ξ2

(
p(ω)

)〉
Hπ
dµρ(ω)

=

∫
G/H

〈
ξ1

(
x−1p(ω)

)
, ξ2

(
x−1p(ω)

)〉
Hπ

ρ
(
x−1p(ω)

)
ρ
(
p(ω)
) dµρ(ω)

=

∫
G/H

〈
ξ1

(
x−1p(ω)

)
, ξ2

(
x−1p(ω)

)〉
Hπ
rρ(x

−1, ω) dµρ(ω)

=

∫
G/H

〈
ξ1

(
p(ω)

)
, ξ2

(
p(ω)

)〉
Hπ

dµρ(ω)

= 〈ξ1, ξ2〉
Hρ

indπ

.

Thus, indGHπ(x) preserves inner products. It is clear that indGHπ(x) is linear. For
x, z ∈ G and ξ ∈ Hρ

indπ,

indGHπ(x)
(
indGHπ(z)ξ

)
(y) =

[
ρ(x−1y)
ρ(y)

]1/2 (
indGHπ(z)ξ

)
(x−1y)

=
[
ρ(x−1y)
ρ(y)

]1/2 [
ρ(z−1x−1y)
ρ(x−1y)

]1/2

ξ(z−1x−1y)

=
[
ρ((xz)−1y)

ρ(y)

]1/2

ξ((xz)−1y)

= indGHπ(xz)ξ(y), for a.e. y ∈ G.

Since indGHπ(e) is clearly the identity operator on Hρ
indπ, each indGHπ(x) must be a

unitary operator and indGHπ : G→ U (Hρ
indπ) is a homomorphism. See Section 6.1 of

[12] for the proof that x→ indGHπ(x)ξ is continuous for each ξ ∈ Hρ
indπ. Thus, indGHπ

is a unitary representation of G.

Remark. If ρ′ is another continuous and everywhere positive rho-function for (G,H)
the resulting induced representation is unitarily equivalent to the one constructed
using ρ. Thus, it is common to suppress the dependency on ρ in the notation indGHπ.
(See page 154 in [12].)

In many cases, the closed subgroup H is sitting inside G in a special way and
indGHπ is unitarily equivalent to a representation with a more transparent structure.

As in Example 11, suppose there exists a closed subgroup K of G such that
K ∩ H = {e}, G = KH, and the map (k, h) → kh is a homeomorphism of K × H
with G. Then, for x ∈ G, there exist unique kx ∈ K and hx ∈ H such that x = kxhx.
Then ρ(x) = ∆H(hx)

∆G(hx)
, for all x ∈ G, defines a continuous and everywhere positive

rho-function for (G,H). Note that ρ(kx) = ρ(x), for all x ∈ G and k ∈ K.
If we restrict the quotient map q to K, so q|K (k) = kH, for all k ∈ K, then q|K is a

homeomorphism. Then there is a very nice cross-section map p : G/H → G given by
p(kH) = k, for k ∈ K. If ν is a regular Borel measure on G/H, define a regular Borel
measure ν̃ on K by ν̃(E) = ν

(
q(E)

)
, for all Borel E ⊆ K. Then, for any ϕ ∈ Cc(K),∫

K
ϕ(k) dν̃(k) =

∫
G/H

ϕ
(
p(ω)

)
dν(ω). Let µρ be the measure on G/H associated with
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ρ as in Proposition 2.8.3. For any ϕ ∈ Cc(K), ϕ ◦ p ∈ Cc(G/H). Let f ∈ Cc(G) be
such that

ϕ(k) = (ϕ ◦ p)(kH) =

∫
H

f
(
p(kH)h

)
dµH(h) =

∫
H

f(kh) dµH(h),

for any k ∈ K. Note that, for ` ∈ K, L`ϕ(k) =
∫
H
L`f(kh) dµH(h). Then Proposition

2.8.3 implies, for any ` ∈ K,∫
K

ϕ(k) dµ̃ρ(k) =

∫
K

∫
H

f(kh) dµH(h) dµ̃ρ(k) =

∫
G/H

∫
H

f
(
p(ω)h

)
dµH(h) dµρ(ω)

=

∫
G

f(x)ρ(x) dµG(x) =

∫
G

f(`−1x)ρ(`−1x) dµG(x)

=

∫
G

L`f(x)ρ(x) dµG(x) =

∫
K

∫
H

L`f(kh) dµH(h) dµ̃ρ(k)

=

∫
K

L`ϕ(k) dµ̃ρ(k).

That is
∫
K
L`ϕ(k) dµ̃ρ(k) =

∫
K
ϕ(k) dµ̃ρ(k), for any ` ∈ K and any ϕ ∈ Cc(K). This

means µ̃ρ must be a left Haar measure on K. Thus, we can take µK = µ̃ρ.
Define W : Hρ

indπ → L2(K,Hπ) as follows: For ξ ∈ Hρ
indπ, we can select a repre-

sentative function in the equivalence class of ξ, also denoted ξ, so that Properties 1
and 2 hold. Let Wξ : K → Hπ be given by simply restricting ξ to K. That is

Wξ(k) = ξ(k), for all k ∈ K.

Then
∫
K
‖Wξ(k)‖ 2

HπdµK(k) =
∫
K
‖ξ(k)‖ 2

Hπdµ̃ρ(k) =
∫
G/H
‖ξ
(
p(ω)

)
‖ 2
Hπdµρ(ω) < ∞,

by Property 2. Thus, Wξ ∈ L2(K,Hπ) and W is an isometry. It is obvious that W is
linear. Also, for any F ∈ L2(K,Hπ), we can chose F so that it is everywhere defined
on K. Define ξ : G→ Hπ by ξ(x) = π(h−1

x )F (kx), for all x ∈ G. If h ∈ H and x ∈ G,
kxh = kx and hxh = hxh. Thus ξ(xh) = π

(
(hxh)−1

)
F (kx) = π(h−1)π(h−1

x )F (kx) =
π(h−1)ξ(x). Thus ξ satisfies Property 1 and clearly also Property 2. Therefore,
ξ ∈ Hρ

indπ. Moreover, Wξ = F . So W : Hρ
indπ → L2(K,Hπ) is a unitary map and

W−1F is given by W−1F (x) = π(h−1
x )F (kx), for all x ∈ G.

In preparation for using W to transfer indGHπ from Hρ
indπ to an equivalent rep-

resentation on L2(K,Hπ), we make some notational observations. The action of
G on G/H transfers to an action of G on K as a topological space homeomor-
phic to G/H. That is, for x ∈ G and k ∈ K, x−1 · k = p(x−1kH) = kx−1k.
Since x−1k = kx−1khx−1k = (x−1 · k)hx−1k, we have hx−1k = (x−1 · k)−1x−1k and
h −1
x−1k = k−1x(x−1 · k). We will also need ρ(x−1k)/ρ(k). But

ρ(x−1k)

ρ(k)
=

∆H(hx−1k)/∆G(hx−1k)

∆H(hk)/∆G(hk)
=

∆H(hx−1k)/∆G(hx−1k)

∆H(e)/∆G(e)
=

∆H(hx−1k)

∆G(hx−1k)
.

Let σπ(x) = W indGHπ(x)W−1, for all x ∈ G. For F ∈ L2(K,Hπ), let ξ = W−1F .

46



Then, for k ∈ K,

σπ(x)F (k) = W
(
indGHπ(x)ξ

)
(k) = indGHπ(x)ξ(k) =

[
∆H(hx−1k)

∆G(hx−1k)

]1/2

ξ(x−1k)

=
[

∆H(hx−1k)

∆G(hx−1k)

]1/2

W−1F (x−1k) =
[

∆H(hx−1k)

∆G(hx−1k)

]1/2

π
(
h −1
x−1k

)
F (x−1 · k).

The situation just discussed is based on Example 2.29 in [20]. However, there is an
error in the definition of the rho-function in the last line of page 74 of [20]. As a
result the formula for the representation is incorrect there. Therefore, we state the
correct expression in a proposition.

Proposition 2.8.9. Let H and K be closed subgroups of a locally compact group
G that satisfy K ∩H = {e} and (k, h)→ kh is a homeomorphism of K ×H onto G.
Let π be a unitary representation of H. Then indGHπ is equivalent to σπ acting on
L2(K,Hπ) by

σπ(x)F (k) =
[

∆H(hx−1k)

∆G(hx−1k)

]1/2

π
(
h −1
x−1k

)
F (x−1 · k), for a.e. k ∈ K,

for all F ∈ L2(K,Hπ) and for every x ∈ G.

This formula simplifies further when H is an abelian normal subgroup and π is a
one dimensional representation of H. When this simplified form is used in this thesis,
H is actually an isomorphic copy of Rn. We now work out this simplified form.

Suppose n ∈ N and K0 is a closed subgroup of GLn(R). Let

G = Rn oK0 = {[x,A] : x ∈ Rn, A ∈ K0}.

Let H = {[x, id] : x ∈ Rn}. Then H is an abelian normal closed subgroup of G. Let
K = {[0, A] : A ∈ K0}, a closed subgroup of G. We have K ∩ H = {[0, id]} and(
[0, A], [x, id]

)
→ [0, A][x, id] = [Ax,A] is a homeomorphism of K ×H with G. Note

that
k[x,A] = [0, A] and h[x,A] = [A−1x, id], for all [x,A] ∈ G. (2.11)

The modular function of G is given by

∆G[x,A] =
∆K(A)

| det(A)|
, for all [x,A] ∈ G.

Note that ∆G ≡ 1 on H and H, itself, is unimodular. So
[

∆H [x,0]
∆G[x,0]

]1/2

= 1, for all

[x, 0] ∈ H.

The irreducible representations of H are all of the form χω, for ω ∈ R̂n, where

χω[x, id] = e2πiωx, for all [x, id] ∈ H.

Corollary 2.8.10. Let G = RnoK0, where K0 is a closed subgroup of GLn(R). Let

H = {[x, id] : x ∈ Rn} and let ω ∈ R̂n. Then indGHχω is unitarily equivalent to σω,
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which acts on L2(K0) as follows: For [x,A] ∈ G and f ∈ L2(K0),

σω[x,A]f(B) = e2πiωB−1xf(A−1B), for all B ∈ K0.

Proof. For [x,A] ∈ G and [0, B] ∈ K, [x,A]−1[0, B] = [−A−1x,A−1B], so

[x,A] · [0, B] = k[x,A]−1[0,B] = [0, A−1B] and h[x,A]−1[0,B] = [−B−1x, id].

By Proposition 2.8.9, indGHχω is unitarily equivalent to σχω acting on L2(K) by, for
[x,A] ∈ G and f ∈ L2(K),

σχω [x,A]f [0, B] = χω

(
h −1

[x,A]−1[0,B]

)
f [0, A−1B] = e2πiωB−1xf [0, A−1B],

for all [0, B] ∈ K. Let U : L2(K) → L2(K0) be the obvious unitary map Uf(B) =
f [0, B], for all B ∈ K0 and f ∈ L2(K0). Then define σω acting on L2(K0) by
σω[x,A] = Uσχω [x,A]U−1, for all [x,A] ∈ G. Thus, σω[x,A]f(B) = e2πiωB−1xf(A−1B),
for all B ∈ K0 and indGHχω is unitarily equivalent to both σχω and σω.

Remark. Continuing with the notation of the Corollary, let J : L2(K0)→ L2(K0) be
given by, for f ∈ L2(K0),

Jf(B) = ∆K0(B)−1/2f(B−1), for a.e. B ∈ K0.

Then J is a unitary operator on L2(K0) with J−1 = J and, for any [x,A] ∈ G and
f ∈ L2(K0),

Jσω[x,A]J−1f(B) = ∆K0(B)−1/2σω[x,A](J−1f)(B−1)

= ∆K0(B)−1/2e2πiωBx(J−1f)(A−1B−1)

= ∆K0(A)1/2e2πiωBxf(BA),

for a.e. B ∈ K0. This provides another equivalent representation to indGHχω. For
now, it will be unnamed.

2.9 Mackey Theory for Semi-direct Products

In [22], George Mackey developed a systematic method of describing Ĝ in certain
situations where G is a semi-direct product. We will introduce Mackey Theory in
this section for the kinds of groups we are interested in. Most of the results are taken
from [20].

Throughout this section, H is a closed subgroup of GLn(R) and

G = Rn oH = {[x,A] : x,∈ Rn, A ∈ H},

with group product [x,A][y,B] = [x + Ay,AB], identity [0, id] and inverse of [x,A]
given by [x,A]−1 = [−A−1x,A−1]. Let N = {[x, id] : x ∈ Rn}. a closed normal
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Abelian subgroup of G. As in Section 2.7, the space of row vectors is denoted R̂n.
That is R̂n = {ω = (ω1, · · · , ωn) : ω1, · · · , ωn ∈ R}. For each ω ∈ R̂n, define a
character χω on N by,

χω[x, id] = e2πiωx, for all [x, id] ∈ N.

Then N̂ =
{
χω : ω ∈ R̂n

}
. The group G acts on N̂ as follows: If [x,A] ∈ G and

χ ∈ N̂ , then

([x,A] · χ)[y, id] = χ
(
[x,A]−1[y, id][x,A]

)
, for all [y, id] ∈ N. (2.12)

Compute [x,A]−1[y, id][x,A] = [−A−1x,A−1][y + x,A] = [A−1y, id]. If ω ∈ R̂n and
χ = χω in (2.12), then

([x,A] · χω)[y, id] = χω[A−1y, id] = e2πiωA−1y = χωA−1 [y, id],

for all [y, id] ∈ N . Thus, [x,A] ·χω = χωA−1 . Thus, the action of G on N̂ is completely

determined by the action of H on R̂n given by A · ω = ωA−1. The G-orbits in N̂
are fundamental to Mackey Theory. Here, we will express the statements in terms of
H-orbits in R̂n.

Definition 2.9.1. Let ω ∈ R̂n. The H-orbit of ω is

Oω = {A · ω : A ∈ H} = {ωA−1 : A ∈ H} = {ωA : A ∈ H}.

The stability subgroup for ω is

Hω = {A ∈ H : A · ω = ω} = {A ∈ H : ωA = ω}.

Note that Hω is a closed subgroup of H. For a given ω ∈ R̂n,

{[x,A] ∈ G : [x,A] · χω = χω} = Rn oHω.

Definition 2.9.2. For any unitary representation π of Hω and any [x,A] ∈ RnoHω,
let

(χω ⊗ π)[x,A] = χω[x, id]π(A) = e2πiωxπ(A).

Proposition 2.9.3. Let ω ∈ R̂n and let π be a unitary representation of Hω. Then
χω ⊗ π is a unitary representation of Rn o Hω also acting on the Hilbert space Hπ.
Moreover, χω ⊗ π is an irreducible representation of Rn o Hω if and only if π is an
irreducible representation of Hω.

Proof. Clearly, e2πiωxπ(A) is a unitary operator on Hπ, for each [x,A] ∈ Rn o Hω.
Let [x,A], [y,B] ∈ Rn oHω. Then, for any ξ ∈ Hπ

(χω ⊗ π)[x,A](χω ⊗ π)[y,B]ξ = e2πiωxπ(A)
(
(χω ⊗ π)[y,B]ξ

)
= e2πiωxπ(A)e2πiωyπ(B) = e2πiω(x+y)π(AB).
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On the other hand, [x,A][y,B] = [x+ Ay,AB], so

(χω ⊗ π)
(
[x,A][y,B]

)
= e2πiω(x+Ay)π(AB)

= e2πiω(x+y)π(AB),

since ωA = ω, because A ∈ Hω. Thus, χω⊗π : RnoHω → U(Hπ) is a homomorphism.
The rest of the claims of the proposition are now easy to check.

We need to make an assumption on the topology of the H-orbits.

Definition 2.9.4. Let X be a topological space. A subset A ⊆ X is called locally
closed if there exists an open U ⊆ X and a closed F ⊆ X such that A = U ∩ F .

If each H-orbit in R̂n is locally closed, then Remark 4.26(2) of [20] shows that N is
a Mackey compatible subgroup of G in the sense defined in Definition 4.25 of [20]. In
this case, there is a systematic method of constructing one member of each equivalence
class of irreducible representations of G from the irreducible representations of the
stability subgroups, Hω. The method is summarized in Theorem 4.29 of [20], which
is restated here in our notation.

Theorem 2.9.5. Let H be a closed subgroup of GLn(R), let G = Rn o H, and let

N = {[x, id] : x ∈ Rn}. Assume that each H-orbit in R̂n is locally closed. Let X ⊆ R̂n

be such that O ∩X is a singleton, for each H-orbit O in R̂n. Then
(a) For each ω ∈ X and each irreducible representation π of Hω, indGRnoHω(χω⊗π)

is an irreducible representation of G.
(b) For each irreducible representation σ of G, there exists a unique ω ∈ X and,

up to equivalence, a unique irreducible representation of Hω such that

σ ∼ indGRnoHω(χω ⊗ π).

Often notation is abused by using the same symbol for an irreducible representa-
tion and its equivalence class. If we do that, the conclusions of Theorem 2.9.5 can be
summarized by

Ĝ =
⋃
ω∈X

{
indGRnoHω(χω ⊗ π) : π ∈ Ĥω

}
. (2.13)

Remark. It is easy to check the condition that every H-orbit is locally closed and
every example considered in this thesis satisfies this condition. However, there is a

closed subgroup HM of GL4(R) such that the HM -orbits in R̂4 are not locally closed.
See Example 4.45 of [20]. The group R4 o HM is called a Mautner group and the
description given in (2.13) fails for this group.

The main focus of this thesis is on irreducible representations that are square-
integrable. So, we might ask when a representation included in (2.13) is square-
integrable. There is a clear answer. The following theorem is a consequence of
Corollary 11.1 of [21].
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Theorem 2.9.6. Let H be a closed subgroup of GLn(R), let G = Rn o H, and let

N = {[x, id] : x ∈ Rn}. For ω ∈ R̂n and an irreducible representation of Hω, the
representation indGRnoHω(χω ⊗ π) is square-integrable if and only if the H-orbit Oω is
open and π is a square-integrable representation of Hω.

Corollary 2.9.7. Let H be a closed subgroup of GLn(R), let G = Rn oH, and let

N = {[x, id] : x ∈ Rn}. For ω ∈ R̂n, if the H-orbit Oω is open and Hω is compact,

then indGRnoHω(χω ⊗ π) is square-integrable for each π ∈ Ĥω.

The nature of the wavelet transform associated with the square-integrable rep-
resentations of the form indGRnoHω(χω ⊗ π) as in Corollary 2.9.7 has been studied
by Führ, see [14], in the case where π is the trivial representation of the compact
stability subgroup. In Chapter 3, we work out the details for all square-integrable
representations of an example where the orbit is open and the stability subgroup is
compact.
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Chapter 3

An Example with a Compact
Stability Subgroup

In [5], they classified the closed connected subgroups H of GL3(R) with an open orbit

O in R̂3 and such that the stability subgroup Hω is compact for ω ∈ O. Since Hω

is compact, if π is an irreducible representation of Hω, then π is a square-integrable
representation of Hω. If we induce the representation χω ⊗ π from R3 o Hω up to
R3oH, the result will be a square-integrable representation of R3oH by Proposition
11.1 of [21] or the first section of [4], but there is value in working out the details.

3.1 The Example

In this section, we work out the details of a square-integrable representation and the
associated wavelet theory for an illustrative example selected from the list in [5].

Let H =


a t1 t2

0 cos(2πu) − sin(2πu)
0 sin(2πu) cos(2πu)

 : a, t1, t2 ∈ R, a 6= 0, u ∈ [0, 1)

. In order

to keep the formulas compact and easier to read, let

Ru =

(
cos(2πu) − sin(2πu)
sin(2πu) cos(2πu)

)
, for u ∈ R.

Note that Ru+k = Ru, for all k ∈ Z, and Ru1Ru2 = Ru1+u2 , for u, u1, u2 ∈ R. Also,

write R3 = R×R2 =

{(
x1

y

)
: x1 ∈ R, y ∈ R2

}
and let tt = (t1, t2), for t ∈ R2. Then

H =

{(
a tt

0 Ru

)
: a ∈ R∗, t ∈ R2, u ∈ [0, 1)

}
. For A =

(
a tt

0 Ru

)
and B =

(
b st

0 Rv

)
in H,

BA =

(
ba btt + stRu

0 Rv+u

)
and A−1 =

(
a−1 −a−1ttR−u
0 R−u

)
.
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One can check that left Haar integration on H is given by, for any f ∈ Cc(H),∫
H

f(A) dµH(A) =

∫
R

∫
R2

∫ 1

0

f

(
a tt

0 Ru

)
du dt da

|a|3
(3.1)

and the modular function of H is ∆H

(
a tt

0 Ru

)
= a−2.

Let G = {[x,A] : x ∈ R3, A ∈ H}. The left Haar integral on G is given by∫
H

∫
R3

f [x,A]
dx dµH(A)

| det(A)|
, (3.2)

for any f ∈ Cc(G). We also have ∆G

[(
x1

y

)
,

(
a tt

0 Ru

)]
= |a|−3.

Let N =

{[(
x1

y

)
, id3

]
: x1 ∈ R, y ∈ R2

}
, where idj denotes the j × j identity

matrix, for j = 2 or 3. For (ω1, ω) ∈ R̂× R̂2, define χ(ω1,ω) on N by

χ(ω1,ω)

[(
x1

y

)
, id3

]
= e2πi(ω1x1+ωy), for all

[(
x1

y

)
, id3

]
∈ N.

Then N̂ = {χ(ω1,ω) : (ω1, ω) ∈ R̂× R̂2}. The action of H on N̂ is given by the action

of H on R̂× R̂2. For A =

(
a tt

0 Ru

)
∈ H and (ω1, ω) ∈ R̂× R̂2,

A · (ω1, ω) = (ω1, ω)A−1 = (ω1, ω)

(
a−1 −a−1ttR−u
0 R−u

)
=
(
a−1ω1, (ω − a−1ω1t

t)R−u
)
.

The H-orbit of (1, 0) = (1, 0, 0) is

O = {(a−1,−a−1ttR−u) : a ∈ R∗, t ∈ R2, u ∈ [0, 1)} = {(ω1, ω) : ω1 6= 0, ω ∈ R̂2}.

Note that O is co-null in R̂3, so L2(R̂3) = L2(O). There are other H-orbits, but they
are null sets and are not used in the following.

We will compute the irreducible representations of G that are associated with the
orbit O, show that they are square-integrable and work out the associated Duflo-
Moore operators. The stability subgroup H(1,0) is found by solving (1, 0)A−1 = (1, 0).
But

(1, 0) = (a−1,−a−1ttR−u) implies a = 1 and tt = (0, 0).

Thus H(1,0) =

{(
1 0t

0 Ru

)
: u ∈ [0, 1)

}
. This is a compact subgroup of H that is

isomorphic to T via the map

(
1 0t

0 Ru

)
→ e2πiu. Therefore, Ĥ(1,0) = {ψj : j ∈ Z},
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where

ψj

(
1 0t

0 Ru

)
= e2πiju, for u ∈ [0, 1).

For each j ∈ Z, the representation χ(1,0) ⊗ ψj of R3 oH(1,0) is given by

(χ(1,0)⊗ψj)
[(
x1

y

)
,

(
1 0t

0 Ru

)]
= e2πi(x1+ju), for all

[(
x1

y

)
,

(
1 0t

0 Ru

)]
∈ R3oH(1,0).

Denote H ′ = R3 o H(1,0) and πj = χ(1,0) ⊗ ψj, an irreducible representation of H ′.
We can use Proposition 2.8.9 to find the unitary representation σπj equivalent to
indGH′(πj), acting on L2(K), if we can find a closed subgroup K of G such that
G = KH ′ and K ∩H ′ = {[0, id3]}. This is not difficult in this group. Let

K =

{[(
0
0

)
,

(
a tt

0 id2

)]
: a 6= 0, t ∈ R2

}
.

It is clear that K is a closed subgroup of G and K ∩H ′ = {[0, id3]}. Note that, for

any

[(
x1

y

)
,

(
a tt

0 Ru

)]
∈ G, we have

[(
x1

y

)
,

(
a tt

0 Ru

)]
=

[(
0
0

)
,

(
a ttR−u
0 id2

)][(
a−1(x1 − ttR−uy)

y

)
,

(
1 0t

0 Ru

)]
. (3.3)

Thus, G = KH ′ and the hypotheses of Proposition 2.8.9 hold. In order to use the
formula in Proposition 2.8.9, we need the modular function of H ′. But, it is easy to
verify that H ′ is unimodular and the Haar integral on H ′ is given by∫

H′
f dµH′ =

∫ 1

0

∫
R

∫
R2

f

[(
x1

y

)
,

(
1 0t

0 Ru

)]
dy dx1 du,

for all f ∈ Cc(H ′). Then
[

∆H′ (h)

∆G(h)

]1/2

= ∆G(h)−1/2, for h ∈ H ′. But any h ∈ H ′ is of

the form

[(
x1

y

)
,

(
1 0t

0 Ru

)]
, so ∆G(h) = 1. Thus, the first factor on the right hand

side of the formula from Proposition 2.8.9 is 1. To complete the evaluation of the
formula in Proposition 2.8.9, we need the following lemma.

Lemma 3.1.1. Let x =

[(
x1

y

)
,

(
a tt

0 Ru

)]
∈ G and k =

[(
0
0

)
,

(
b st

0 id2

)]
∈ K.

Then x−1k = kx−1khx−1k, where

kx−1k =

[(
0
0

)
,

(
a−1b a−1(stRu − tt)

0 id2

)]
∈ K

and

hx−1k =

[(
b−1(sty − x1)
−R−uy

)
,

(
1 0t

0 R−u

)]
∈ H ′.
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Proof. Compute x−1 =

[(
−a−1(x1 − ttR−uy)

−R−uy

)
,

(
a−1 −a−1ttR−u
0 R−u

)]
. So

x−1k =

[(
−a−1(x1 − ttR−uy)

−R−uy

)
,

(
a−1b a−1(st − ttR−u)

0 R−u

)]
.

Now use (3.3) to find kx−1k and hx−1k. We check by computing kx−1khx−1k.[(
0
0

)
,

(
a−1b a−1(stRu − tt)

0 id2

)][(
b−1(sty − x1)
−R−uy

)
,

(
1 0t

0 R−u

)]

=

[(
−a−1(x1 − ttR−uy)

−R−uy

)
,

(
a−1b a−1(st − ttR−u)

0 R−u

)]
This verifies the expressions given for kx−1k and hx−1k.

We need h −1
x−1k =

[(
b−1(x1 − sty)

y

)
,

(
1 0t

0 Ru

)]
and the notation

x−1 · k = kx−1k =

[(
0
0

)
,

(
a−1b a−1(stRu − tt)

0 id2

)]
.

Then πj(h
−1
x−1k) = e2πi

(
b−1(x1−sty)+ju

)
. Plugging this and the expression for x−1 ·k into

the formula in Proposition 2.8.9 gives the induced representation σπj .

Proposition 3.1.2. Let

[(
x1

y

)
,

(
a tt

0 Ru

)]
∈ G. Then σπj

[(
x1

y

)
,

(
a tt

0 Ru

)]
acts

on f ∈ L2(K) as follows:(
σπj
[(
x1

y

)
,

(
a tt

0 Ru

)]
f

)[(
0
0

)
,

(
b st

0 id2

)]

= e2πi
(
b−1(x1−sty)+ju

)
f

[(
0
0

)
,

(
a−1b a−1(stRu − tt)

0 id2

)]
,

for all

[(
0
0

)
,

(
b st

0 id2

)]
∈ K.

For each (ω1, ω) ∈ O, there is a unique γ(ω1, ω) ∈ K such that

(ω1, ω) = γ(ω1, ω) · (1, 0).

Let K0 =

{(
a tt

0 id2

)
: a ∈ R∗, t ∈ R2

}
. So K = {[0, A] : A ∈ K0}. Note that

(
b st

0 id2

)(
a tt

0 id2

)
=

(
ba btt + st

0 id2

)
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(
b st

0 id2

)
,

(
a tt

0 id2

)
∈ K0. Thus, for f ∈ Cc(K0),

∫
R

∫
R2

f

((
b st

0 id2

)(
a tt

0 id2

))
dt da

|a|3
=

∫
R

∫
R2

f

(
ba btt + st

0 id2

)
dt da

|a|3

=

∫
R

(∫
R2

f

(
ba btt + st

0 id2

)
b2dt

(ba)2

)
da

|a|

=

∫
R

(∫
R2

f

(
ba tt

0 id2

)
dt

(ba)2

)
da

|a|

=

∫
R

(∫
R2

f

(
a tt

0 id2

)
dt

a2

)
da

|a|

=

∫
R

∫
R2

f

(
a tt

0 id2

)
dt da

|a|3
.

Thus,
∫
K0
f dµK0 =

∫
R

∫
R2 f

(
a tt

0 id2

)
dt da
|a|3 , for any integrable function f on K0. So∫

K
f dµK =

∫
R

∫
R2 f

[(
0
0

)
,

(
a tt

0 id2

)]
dt da
|a|3 , for any integrable function f on K. The

map A → A · (1, 0) is a homeomorphism of K0 with the H-orbit O. Let γ denote
the inverse of this homeomorphism. That is, for each (ω1, ω) ∈ O, γ(ω1, ω) · (1, 0) =

(ω1, ω). If γ(ω1, ω) =

(
a tt

0 id2

)
, then

γ(ω1, ω) · (1, 0) = (1, 0)γ(ω1, ω)−1 = (1, 0) =

(
a−1 −a−1tt

0 id2

)
= (a−1,−a−1tt).

Thus γ(ω1, ω) · (1, 0) = (ω1, ω) implies γ(ω1, ω)−1 =

(
ω1 ω
0 id2

)
and

γ(ω1, ω) =

(
ω−1

1 −ω−1
1 ω

0 id2

)
. (3.4)

Then (ω1, ω) → [0, γ(ω1, ω)] is a homeomorphism of O to K, which can be used to
define a unitary map of L2(K) onto L2(O).

Definition 3.1.3. For f ∈ L2(K) define Uf onO by (Uf)(ω1, ω) = |ω1|−1/2f [0, γ(ω1, ω)],
for a.e. (ω1, ω) ∈ O.

Proposition 3.1.4. For each f ∈ L2(K) , Uf ∈ L2(O). Moreover, U is a unitary
map of L2(K) onto L2(O).
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Proof. For f ∈ L2(K),∫
R̂

∫
R̂2

|Uf(ω1, ω)|2dω dω1 =

∫
R̂

∫
R̂2

|f [0, γ(ω1, ω)]|2|ω1|−1dω dω1

=

∫
R̂

(∫
R2

∣∣∣∣f [(0
0

)
,

(
ω−1

1 −ω−1
1 ω

0 id2

)]∣∣∣∣2 dω
)
|ω1|−1dω1

=

∫
R̂

(∫
R̂2

∣∣∣∣f [(0
0

)
,

(
ω−1

1 tt

0 id2

)]∣∣∣∣2 dt
)
|ω1| dω1

=

∫
R

∫
R̂2

∣∣∣∣f [(0
0

)
,

(
a tt

0 id2

)]∣∣∣∣2 dt da|a|3
=

∫
K

|f |2dµK .

Thus Uf ∈ L2(O) and U is an isometry. Clearly, U is linear. Moreover, for ξ ∈ L2(O),

define f on K by f

[(
0
0

)
,

(
a tt

0 id2

)]
= |a|−1/2ξ(a−1,−a−1tt), for

[(
0
0

)
,

(
a tt

0 id2

)]
in K. Then a similar change of variables calculation shows f ∈ L2(K) and Uf = ξ.
Thus, U is a unitary map onto L2(O).

The unitary U can be used to move σπj to an equivalent representation acting on
L2(O).

Definition 3.1.5. For

[(
x1

y

)
,

(
a tt

0 Ru

)]
∈ G, let

σ
πj
1

[(
x1

y

)
,

(
a tt

0 Ru

)]
= Uσπj

[(
x1

y

)
,

(
a tt

0 Ru

)]
U−1.

Then σ
πj
1 is a unitary representation of G on L2(O). To compute an explicit

expression for σ
πj
1 , let ξ ∈ L2(O) and let f = U−1ξ. For

[(
x1

y

)
,

(
a tt

0 Ru

)]
∈ G,

σ
πj
1

[(
x1

y

)
,

(
a tt

0 Ru

)]
ξ(ω1, ω) = U

(
σπj
[(
x1

y

)
,

(
a tt

0 Ru

)]
f

)
(ω1, ω)

= |ω1|−1/2σπj
[(
x1

y

)
,

(
a tt

0 Ru

)]
f

[(
0
0

)
,

(
ω−1

1 −ω−1
1 ω

0 id

)]
= |ω1|−1/2e2πi(ω1x1+ωy+ju)U−1ξ

[(
0
0

)
,

(
(ω1a)−1 −(ω1a)−1ωRu − a−1tt

0 id

)]
= |a|1/2e2πi(ω1x1+ωy+ju)ξ(aω1, ωRu + ω1t

t).
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To make this representation clear in the natural notation of three dimensions, let

[x,A] =

x1

x2

x3

 ,

a t1 t2
0 cos(2πuA) − sin(2πuA)
0 sin(2πuA) cos(2πuA)

 ∈ G,
where we introduce the notation uA to keep track of the connection to the matrix

A. Then σ
πj
1 [x,A]ξ(ω) = | det(A)|1/2e2πi(ωx+juA)ξ(ωA), for a.e. ω ∈ R̂3 and we are

considering ξ ∈ L2(R̂3) = L2(O). It is easy to verify directly that σ
πj
1 [x,A] is a

unitary operator on L2(R̂3).

Theorem 3.1.6. Let

G =


x1

x2

x3

 ,

a t1 t2
0 cos(2πu) − sin(2πu)
0 sin(2πu) cos(2πu)

 : a ∈ R∗, t1, t2, u ∈ R,

x1

x2

x3

 ∈ R3

 .

For each j ∈ Z, define σ
πj
1 : G→ U

(
L2(R̂3)

)
by, for

[x,A] =

x1

x2

x3

 ,

a t1 t2
0 cos(2πu) − sin(2πu)
0 sin(2πu) cos(2πu)

 ∈ G,
σ
πj
1 [x,A]ξ(ω) = | det(A)|1/2e2πi(ωx+juA)ξ(ωA), for a.e. ω ∈ R̂3 and each ξ ∈ L2(R̂3).

Then σ
πj
1 is a square-integrable representation of G.

Proof. (Note that this proof closely follows the proof for open and free orbits given
in [4].) Standard arguments show that σ

πj
1 is a unitary representation of G. To prove

that σ
πj
1 is irreducible, we use property (d) of Theorem 2.4.11. Let ξ, η ∈ L2(R̂3). For

simplicity of notation write ϕξ,η for ϕ
σ
πj
1
ξ,η . Then∫

G

|ϕξ,η|2 dµG =

∫
G

∣∣〈σπj1 [x,A]ξ, η〉
∣∣2 dµG[x,A]

=

∫
G

∣∣∣∣∫
R̂3

σ
πj
1 [x,A]ξ(ω)η(ω) dω

∣∣∣∣2 dµG[x,A]

=

∫
G

| det(A)|
∣∣∣∣∫

R̂3

e2πi(ωx+juA)ξ(ωA)η(ω) dω

∣∣∣∣2 dµG[x,A].

(3.5)

Note that e2πijuA factors out of the inner integral and has absolute value 1. Also, let

φA(ω) = ξ(ωA)η(ω), for a.e. ω ∈ R̂3 and each A ∈ H. Then φA ∈ L1(R̂3) and the
inverse Fourier transform of φA is denoted φ̌A. Using the left Haar integration on G
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given in (3.2), (3.5) becomes∫
G

|ϕξ,η|2 dµG =

∫
H

∫
R3

| det(A)| · |φ̌A(x)|2dx, dµH(A)

| det(A)|

=

∫
H

∫
R3

|φ̌A(x)|2dx dµH(A) =

∫
H

∫
R̂3

|φA(ω)|2dω dµH(A),

(3.6)

where we have used Plancherel’s Theorem, which gives ∞ for both sides if φA is not

in L2(R̂3). Recalling what φA is and changing the order of integration, (3.6) becomes∫
G

|ϕξ,η|2 dµG =

∫
R̂3

(∫
H

|ξ(ωA)|2|η(ω)|2dµH(A)

)
dω

=

∫
R̂3

|η(ω)|2
(∫

H

|ξ(ωA)|2dµH(A)

)
dω.

(3.7)

Note that
∫
H
|ξ(ωBA)|2dµH(A) =

∫
H
|ξ(ωA)|2dµH(A), for any B ∈ H. Thus, we can

define cξ =
∫
H
|ξ(ωA)|2dµH(A), for any ω ∈ O. Then

∫
H
|ξ(ωA)|2dµH(A) = cξ, for

a.e. ω ∈ R̂3. Thus (3.7) becomes∫
G

|ϕξ,η|2 dµG = cξ

∫
R̂3

|η(ω)|2dω. (3.8)

Therefore, if ϕξ,η[x,A] = 0, for all [x,A] ∈ G, then either η = 0 or cξ = 0. But

cξ = 0 implies ξ(ω) = 0, for a.e. ω ∈ R̂3. By condition (d) of Theorem 2.4.11, σ
πj
1 is

irreducible.
On the other hand, if ξ ∈ Cc(O), ξ 6= 0, then cξ < ∞, so ϕξ,η ∈ L2(G), for all

η ∈ L2(R̂3). In the notation of Section 2.5, Vξη = ϕξ,η ∈ L2(G). Therefore, σ
πj
1 is

square-integrable.

The domain of the Duflo-Moore operator for the square-integrable representation

σ
πj
1 (see Section 2.5) is D = {ξ ∈ L2(R̂3) : Vξξ ∈ L2(G)}. Since

∫
G
|Vξξ|2dµG = c2

ξ ,

D = {ξ ∈ L2(R̂3) : cξ <∞}. A closer look at the condition that cξ <∞ will give us
a candidate for the Duflo-Moore operator for σ

πj
1 . Recall the Haar integral on H. Let

ω0 = (1, 0, 0) be a fixed element of O. If A =

a t1 t2
0 cos(2πuA) − sin(2πuA)
0 sin(2πuA) cos(2πuA)

 ∈ H,

then (1, 0, 0)A = (a, t1, t2). Thus, using (3.1), for ξ ∈ L2(R̂3),

cξ =

∫
H

|ξ
(
(1, 0, 0)A

)
|2 dµH(A) =

∫
R

∫
R

∫
R

∫ 1

0

|ξ(a, t1, t2)|2 du dt2 dt1 da
|a|3

.

Note that the integrand is independent of u. We also can use ω1, ω2, and ω3 as the

other variables of integration. Thus, for ξ ∈ L2(R̂3),

ξ ∈ D ⇔
∫
R

∫
R

∫
R

∣∣|ω1|−3/2ξ(ω1, ω2, ω3)
∣∣2 dω3 dω2 dω1 <∞. (3.9)
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Define T : D → L2(R̂3) by

(Tξ)(ω1, ω2, ω3) = |ω1|−3/2ξ(ω1, ω2, ω3), for a.e. (ω1, ω2, ω3) ∈ R̂3,

and each ξ ∈ L2(R̂3). Then T is a densely defined, positive, self-adjoint operator on

L2(R̂3).

Lemma 3.1.7. For any [x,A] ∈ G, σ
πj
1 [x,A]Tσ

πj
1 [x,A]∗ = ∆G[x,A]1/2T .

Proof. If ω = (ω1, ω2, ω3) ∈ R̂3 and A =

a t1 t2
0 cos(2πuA) − sin(2πuA)
0 sin(2πuA) cos(2πuA)

, then the

first component of ωA is aω1. Also, note that ∆G[x,A] = |a|−3, by the observation

after (3.2). For any ξ ∈ L2(R̂3),

σ
πj
1 [x,A]Tσ

πj
1 [x,A]∗ξ(ω) = | det(A)|1/2e2πi(ωx+juA)Tσ

πj
1 [−A−1x,A−1]ξ(ωA)

= | det(A)|1/2e2πi(ωx+juA)|aω1|−3/2σ
πj
1 [−A−1x,A−1]ξ(ωA)

= e2πi(ωx+juA)|aω1|−3/2e2πi
(
ωA(−A−1x)+j(−uA)

)
ξ(ω)

= |a|−3/2|ω1|−3/2ξ(ω) = ∆G[x,A]1/2Tξ(ω),

for a.e. ω ∈ R̂3. Thus σ
πj
1 [x,A]Tσ

πj
1 [x,A]∗ = ∆G[x,A]1/2T .

By Proposition 2.5.7, T is the Duflo-Moore operator, C
σ
πj
1

, for σ
πj
1 . Then, we

can follow the procedure in Proposition 2.5.9 to describe the wavelet transform and
reconstruction formula associated with σ

πj
1 .

Definition 3.1.8. A function η ∈ L2(R̂3) is called a σ
πj
1 -wavelet if∫

R̂3

|η(ω)|2

|ω1|3
dω = 1.

If η is a σ
πj
1 -wavelet, then Vηξ[x,A] = 〈ξ, σπj1 [x,A]η〉

L2(R̂3)
, for [x,A] ∈ G and ξ ∈

L2(R̂3), defines the σ
πj
1 -wavelet transform with σ

πj
1 -wavelet η. For [x,A] ∈ G, let

ηx,A = σ
πj
1 [x,A]η, for each [x,A] ∈ G.

Theorem 3.1.9. Let η ∈ L2(R̂3) be a σ
πj
1 -wavelet. Then, for any ξ ∈ L2(R̂3),

ξ =

∫
G

Vηξ[x,A] ηx,A dµG[x,A], weakly in L2(R̂3).

Proof. This is just Proposition 2.5.9 in this situation.

We can move the representation σ
πj
1 using the Fourier unitary map to get an

equivalent representation acting on L2(R3). There is a small abuse of notation as we
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use F1 to also denote the map from L2(R̂3)→ L2(R3) such that

F1ξ(y) =

∫
R̂3

ξ(ω)e−2πiωydω, for all y ∈ R3,

and ξ ∈ L1(R̂3) ∩ L2(R̂3).

Definition 3.1.10. For [x,A] ∈ G, let ρj[x,A] = F1σ
πj
1 [x,A]F−1

1 .

Then ρj is an irreducible representation of G acting on L2(R3), which is square-
integrable, since it is equivalent to σ

πj
1 .

Proposition 3.1.11. For any [x,A] ∈ G and f ∈ L2(R3),

ρj[x,A]f(y) = | det(A)|−1/2e2πijuAf
(
A−1(y − x)

)
,

for a.e. y ∈ R3.

Proof. First, assume f is such that F−1
1 f is integrable. Let ξ = F−1

1 f . Then

ρj[x,A]f(y) = F1

(
σ
πj
1 [x,A]ξ

)
(y) =

∫
R̂3

σ
πj
1 [x,A]ξ(ω)e−2πiωydω

= | det(A)|1/2
∫
R̂3

e2πi(ωx+juA)ξ(ωA)e−2πiωydω

= | det(A)|1/2e2πijuA

∫
R̂3

ξ(ωA)e−2πiω(y−x)dω

= | det(A)|−1/2e2πijuA

∫
R̂3

ξ(ω)e2πiωA−1(y−x)dω

= | det(A)|−1/2e2πijuAf
(
A−1(y − x)

)
,

for any y ∈ R3. Since {f ∈ L2(R3) : F−1
1 f ∈ L1(R̂3)} is dense in L2(R3), the formula

for ρj[x,A] given in the proposition holds for any f ∈ L2(R3).

Remark. When j = 0, ρ0 is what is sometimes referred as the natural representation
of G on L2(R3).

We can now restate the σ
πj
1 -wavelet analysis in terms of ρj. Note that

Definition 3.1.12. For any j ∈ Z, w ∈ L2(R3) is called a ρj-wavelet if∫
R̂3

|ŵ(ω)|2

|ω1|3
dω = 1.

(Note that this condition is the same for all j.) For a ρj-wavelet w and each [x,A] ∈ G,
let

wx,A(y) = | det(A)|−1/2e2πijuA w
(
A−1(y − x)

)
, for a.e. y ∈ R3,

and let Vwf [x,A] = 〈f, wx,A〉, for any [x,A] ∈ G and f ∈ L2(R3). The map Vw :
L2(R3)→ L2(G) is a linear isometry called the ρj-wavelet transform with ρj-wavelet
w.
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Corollary 3.1.13. Let j ∈ Z and let w ∈ L2(R3) be a ρj-wavelet. Then, for any
f ∈ L2(R3),

f =

∫
H

∫
R3

Vwf [x,A]wx,A
dµH(A) dx
| det(A)| , weakly in L2(R3).
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Chapter 4

The Affine Groups

In this chapter, we establish both algebraic and analytic properties of the groups of
affine transformations of Rn with an emphasis on n = 1 and 2.

4.1 The Affine Group of Rn

The affine group of Rn is

Gn = Rn o GLn(R) = {[x,A] : x ∈ Rn, A ∈ GLn(R)},

where the group product is, for [x,A], [y,B] ∈ Gn, given by

[x,A][y,B] = [x+ Ay,AB].

We described the Haar integral on the unimodular group GLn(R) earlier. When there
is no chance of confusion, dµGLn(R)(A) will be denoted simply as dA. Thus, the left
Haar integral on Gn is given by, for f ∈ Cc(Gn),∫

Gn

f dµGn =

∫
GLn(R)

∫
Rn
f [x,A]

dx dA

| det(A)|
.

In later sections, we will use a unitary map to move the left regular representation
of Gn on L2(Gn) to an equivalent representation on L2

(
Rn ×GLn(R)

)
, where µRn ×

µGLn(R) is the measure understood to be on Rn ×GLn(R).

Proposition 4.1.1. For f ∈ L2(Gn), define Uf on Rn ×GLn(R) by

Uf(y,B) = f [By,B], for a.e. [y,B] ∈ Gn.

Then Uf ∈ L2
(
Rn ×GLn(R)

)
, for all f ∈ L2(Gn), and

U : L2(Gn)→ L2
(
Rn ×GLn(R)

)
is a unitary map.

63



Proof. First U is an isometry into L2
(
Rn ×GLn(R)

)
since,∫

GLn(R)

∫
Rn
|Uf(y,B)|2dµRn(y) dB =

∫
GLn(R)

∫
Rn
|f [By,B]|2 dy dB

=

∫
GLn(R)

∫
Rn
|f [y,B]|2

dy dB

| det(B)|

=

∫
GLn(R)

∫
Rn
|f [y,B]|2 dµGn [y,B]

= ‖f‖2
L2(Gn)

It is clear that U : L2(Gn)→ L2
(
Rn ×GLn(R)

)
is linear. It remains to show that U

is onto. Let g ∈ L2
(
Rn ×GLn(R)

)
. Define f on Gn by f [y,B] = g(B−1y,B), for a.e.

[y,B] ∈ Gn. Then a calculation very similar to the above shows that f ∈ L2(Gn) and
Uf = g. Thus, U is a unitary map.

4.2 The Group G1

When n = 1, GL1(R) = R∗, so G1 = R o R∗ = {[x, a] : x ∈ R, a ∈ R∗}. It is called
the affine group the real line. As a locally compact space G1 is identified with the
plane with the x-axis removed. Left Haar integration on G1 is given by∫

G1

f dµG1 =

∫
R

∫
R
f [x, a]

dx da

a2
, for all f ∈ Cc(G1).

Note that G1 is non-unimodular and ∆G1 [y, b] = |b|−1, for [y, b] ∈ G1. This can be
verified with some simple changes of variables and order of integration:

|b|−1

∫
R

∫
R
f
(
[x, a][y, b]

)dx da
a2

= |b|−1

∫
R

∫
R
f [x+ ay, ab] dx

da

a2

= |b|−1

∫
R

∫
R
f [x, ab]

dx da

a2

=

∫
R

∫
R
f [x, ab]

|b|da
(ba)2

dx =

∫
R

∫
R
f [x, a]

dx da

a2
.

A key part of later arguments is that G1 sits as a closed subgroup of GL2(R). For

each [u, v] ∈ G1, let θ[u, v] =

(
1 0
u v

)
. We use the parameters u ∈ R and v ∈ R∗ to

be consistent with notation used later.

Proposition 4.2.1. The map θ is an injective homomorphism of G1 into GL2(R)
and θ(G1) is a closed subgroup of GL2(R).
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Proof. For [u1, v1], [u2, v2] ∈ G1,

θ
(
[u1, v1][u2, v2]

)
= θ[u1 + v1u2, v1v2] =

(
1 0

u1 + v1u2 v1v2

)
=

(
1 0
u1 v1

)(
1 0
u2 v2

)
= θ[u1, v1]θ[u2, v2].

Thus, θ is a homomorphism and θ[u, v] =

(
1 0
0 1

)
if and only if [u, v] = [0, 1], the

identity in G1. Therefore θ is injective.

The image of a homomorphism is a subgroup and the map ϕ : GL2(R) → R̂2

given by ϕ

(
a b
c d

)
= (a, b) is continuous and θ(G1) = ϕ−1{(1, 0)}, so it is a closed

subgroup.

4.3 The Group G2

For the group G2, we need to look closely at its structure. We will find different
parametrizations of G2 that will be useful in constructing an induced representation in
a later section. We also must identify left Haar integration in the new parametrization.

The natural way of parametrizing G2 is

G2 =

{[(
x1

x2

)
,

(
a b
c d

)]
: x1, x2, a, b, c, d ∈ R, ad− bc 6= 0

}
.

In this parametrization, for f ∈ Cc(G2),∫
G2

f dµG2 =

∫
R

∫
R

∫
R

∫
R

∫
R

∫
R
f

[(
x1

x2

)
,

(
a b
c d

)]
dx1 dx2 da db dc dd

|ad− bc|3
.

Our first step in reparametrizing G2 is to focus on factoring GL2(R) as a product
of two closed subgroups. Let

K0 =

{(
s −t
t s

)
: s, t ∈ R, s2 + t2 > 0

}
and

H(1,0) =

{(
1 0
u v

)
: u, v ∈ R, v 6= 0

}
.

In Proposition 4.2.1, we showed that H(1,0) is a closed subgroup of GL2(R) that is
isomorphic to the group G1. The left Haar measure of G1 transfers through the
isomorphism θ of Proposition 4.2.1. Thus, for f ∈ Cc(H(1,0)),∫

H(1,0)

f dµH(1,0)
=

∫
R

∫
R
f

(
1 0
u v

)
du dv

v2
. (4.1)
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Let C∗ = {z ∈ C : z 6= 0}, considered as a locally compact Abelian group under
multiplication as the group product. If z ∈ C, let s = Re(z) and t = Im(z). Then
z = s + it and z ∈ C∗ if and only if s2 + t2 > 0. If z1 = s1 + it1 and z2 = s2 + it2,
then z1z2 = (s1s2 − t1t2) + i(s1t2 + s2t1). Define φ : C∗ → K0 by

φ(s+ it) =

(
s −t
t s

)
, for all s+ it ∈ C∗.

Proposition 4.3.1. The map φ : C∗ → K0 is is an isomorphism of locally compact
groups.

Proof. For z1 = s1 + it1 and z2 = s2 + it2 in C∗,

φ(z1z2) = φ
(
(s1s2 − t1t2) + i(s1t2 + s2t1)

)
=

(
s1s2 − t1t2 −s1t2 − s2t1
s1t2 + s2t1 s1s2 − t1t2

)
=

(
s1 −t1
t1 s1

)(
s2 −t2
t2 s2

)
= φ(z1)φ(z2).

Thus, φ is a homomorphism. It is clear that φ is a bijection between C∗ and K0. It is
also easy to show that it is a homeomorphism. Thus, φ is an isomorphism of locally
compact groups.

Proposition 4.3.2. Left Haar measure µK0 on K0 is such that, for any f ∈ Cc(K0),∫
Ko

f dµK0 =

∫
R

∫
R
f

(
s −t
t s

)
ds dt

s2 + t2
.

Proof. Fix

(
a −b
b a

)
∈ K0. Then

(
a −b
b a

)(
s −t
t s

)
=

(
as− bt −(at+ bs)
at+ bs as− bt

)
.

Thus, left multiplication by

(
a −b
b a

)
is the same as the map of ϕ : R2\{0} → R2\{0}

given by ϕ

(
s
t

)
=

(
as− bt
at+ bs

)
. The Jacobian matrix of φ is Jφ =

(
a −b
b a

)
, which is

constant with determinant a2 + b2. Using the fact that B → | det(B)| is a homomor-
phism of K0 into R+ and the change of variables formula, we have∫

R

∫
R
f

((
a −b
b a

)(
s −t
t s

))
ds dt

s2 + t2

=

∫
R

∫
R
f

(
as− bt −(at+ bs)
at+ bs as− bt

)
(a2 + b2) ds dt

(as− bt)2 + (at+ bs)2

=

∫
R

∫
R
f

(
s −t
t s

)
ds dt

s2 + t2
.

This verifies that
∫
K0
f dµK0 =

∫
R

∫
R f

(
s −t
t s

)
ds dt

s2 + t2
.
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Proposition 4.3.3. If A =

(
a b
c d

)
∈ GL2(R), then A can be uniquely decomposed

as A = MACA, where

MA =

(
s −t
t s

)
, with s =

d(ad− bc)
b2 + d2

, t =
−b(ad− bc)
b2 + d2

,

and

CA =

(
1 0
u v

)
, with u =

cd+ ab

(ad− bc)
, v =

b2 + d2

(ad− bc)
.

Proof. Fix A =

(
a b
c d

)
∈ GL2(R) and define s = d(ad−bc)

b2+d2
, t = −b(ad−bc)

b2+d2
, u = cd+ab

(ad−bc) ,

and v = b2+d2

(ad−bc) . We compute the four entries of

(
s −t
t s

)(
1 0
u v

)
. The (1,1) entry is

s− tu =
d(ad− bc)
b2 + d2

− −b(ad− bc)
b2 + d2

cd+ ab

(ad− bc)

=
ad2 − dbc+ bcd+ ab2

b2 + d2
= a.

Similarly, the (1,2) entry is −tv = b, the (2,1) entry is t+ su = c and the (2,2) entry

is sv = d. If we let MA =

(
s −t
t s

)
and CA =

(
1 0
u v

)
, then MA ∈ K0, CA ∈ H(1,0)

and MACA = A. It is clear that K0 ∩H(1,0) = {id}. Thus, if M ∈ K0 and C ∈ H(1,0)

are such that MC = A = MACA, then M−1MA = CC −1
A . Thus, both M−1MA and

CC −1
A are the identity. That is M = MA and C = CA. This proves the uniqueness

of the factorization.

Recall that GL2(R) is a unimodular group and the Haar integral is given by∫
GL2(R)

f dµGL2(R) =

∫
R

∫
R

∫
R

∫
R
f

(
a b
c d

)
da db dc dd

(ad− bc)2
.

However, the parametrization resulting from factoring GL2(R) as K0H(1,0) gives an
alternate expression for the Haar integral.

Proposition 4.3.4. Haar integration on GL2(R) is given by, for f ∈ Cc(GL2(R)),∫
GL2(R)

f dµGL2(R) =

∫
R

∫
R

∫
R

∫
R
f

((
s −t
t s

)(
1 0
u v

))
ds dt du dv

|v|(s2 + t2)
.

Proof. Let U = { z ∈ R4 : z1z4 − z2z3 > 0}, an open subset of R4. Let V =
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

s
t
u
v

 ∈ R4 : v > 0

, an open subset of R4. Note that

(
s −t
t s

)(
1 0
u v

)
=

(
s− tu −tv
t+ su sv

)

and define φ : V → U by φ


s
t
u
v

 =


s− tu
−tv
t+ su
sv

, for all


s
t
u
v

 ∈ V. That is, φ =


φ1

φ2

φ3

φ4

,

where φ1


s
t
u
v

 = s − tu, φ2


s
t
u
v

 = −tv, φ3


s
t
u
v

 = t + su and φ4


s
t
u
v

 = sv. Let

Jφ


s
t
u
v

 denote the Jacobian matrix of φ of


s
t
u
v

 . Then Jφ


s
t
u
v

 =


1 −u −t 0
0 −v 0 −t
u 1 s 0
v 0 0 s


and

∣∣∣∣∣∣∣∣det

Jφ

s
t
u
v



∣∣∣∣∣∣∣∣ = v(s2 + t2). Define g ∈ Cc(U) by g(z) =

f

z1 z2

z3 z4


(z1z4−z2z3)2

for all

z ∈ U.
Since φ is a continuously differentiable bijection of V and U and det(Jφ) vanishes

nowhere on V , the change of variables formula holds.

∫
GL2(R)

f dµGL2(R) =

∫
φ(V )

g(z)dz =

∫
V

g(φ(w))| det Jφ(w)|dw. (4.2)

If we write w =


s
t
u
v

 , | det Jφ(w)| = |v|(s2 + t2). If z = φ(w), then we need

z1z4 − z2z3 = (s − tu)(sv) − (−tv)(t + su) = s2v − tusv + t2v + tusv = v(s2 + t2).
Recalling, the definition of g, we have from (4.2) that∫

GL2(R)

f dµGL2(R) =

∫
R

∫
R

∫
R

∫
R
f

(
s− tu −tv
t+ su sv

)
|v|((s2 + t2)

(v(s2 + t2))2
ds dt du dv

=

∫
R

∫
R

∫
R

∫
R
f

((
s −t
t s

)(
1 0
u v

))
ds dt du dv

|v|(s2 + t2)
.

This gives us the Haar integral in this new parametrization.
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Recalling left Haar integration onH(1,0) as given in (4.1) and the Haar integral

on Ko from Proposition 4.3.2 and noting that det

(
1 0
u v

)
= v, we get a compact

expression for the Haar integral on GL2(R) in terms of those for the two factor
subgroups.

Proposition 4.3.5. For f ∈ Cc(GL2(R)),∫
GL2(R)

f dµGL2(R) =

∫
K0

∫
H(1,0)

f(MC)| det(C)| dµH(1,0)
(C) dµK0(M).

We return toG2 and identify two closed subgroups closely related to the subgroups,
K0 and H(1,0), of GL2(R). Define

K = {[0,M ] : M ∈ K0} and H = {[x,C] : x ∈ R2, C ∈ H(1,0)}.

Then K is a closed subgroup of G2, isomorphic to K0 under the map [0,M ] → M
with Haar integration given by

∫
K
f dµK =

∫
K0
f [0,M ] dµKo(M), for all f ∈ Cc(K).

Also, H is a closed subgroup of G2 isomorphic to R2 oH(1,0). Recall that left Haar
integration on H(1,0) is given by (4.1). Then left Haar integration on H is given by∫

H

f dµH =

∫
H(1,0)

∫
R2

f [x,C]
dx dµH(1,0)

(C)

| det(C)| , for all f ∈ Cc(H).

For [x,A] ∈ GL2(R), let MA ∈ K0 and CA ∈ H(1,0) be as in Proposition 4.3.3 so
that A = MACA. Then

[x,A] = [0,MA][M −1
A x,CA], (4.3)

where [0,MA] ∈ K and [M −1
A x,CA] ∈ H. It is clear that K and H only share [0, id]

as a common element.

Proposition 4.3.6. The group G2 factors as G2 = KH with K ∩H = {id}. More-
over, the map

(
[0,M ], [x,C]

)
→ [Mx,MC] is a homeomorphism of K × H with

G2.

Proof. If M =

(
s −t
t s

)
∈ K0 and C =

(
1 0
u v

)
∈ H(1,0), then

MC =

(
s− ut −vt
t+ us vs

)
∈ GL2(R).

The map (M,C) → MC is clearly continuous from K0 × H(1,0) to GL2(R). Its
inverse as given by Proposition 4.3.3 is also continuous. Thus (M,C) → MC is a
homeomorphism. Also, the map the map

(
[0,M ], [x,C]

)
→ [Mx,MC] is continuous

and its inverse, given in (4.3), is easily seen to be continuous.

Sometimes it may be convenient to integrate over G2 in terms of this special
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factoring. Recall that∫
G2

f dµG2 =

∫
GL2(R)

∫
R2

f [x,A]
dx dµGL2(R)(A)

| det(A)|
, for f ∈ Cc(G2).

Using Proposition 4.3.5, we get the following expression for left Haar integration over
G2.

Proposition 4.3.7. For f ∈ Cc(G2),∫
G2

f dµG2 =

∫
K0

∫
H(1,0)

∫
R2

f [x,MC]
dx dµH(1,0)

(C) dµK0(M)

| det(M)|
.
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Chapter 5

Decomposing the Regular
Representation of the Full Affine
Group

In this chapter, we will study the left regular representation of the group of invertible
affine transformations of Rn. First, we obtain a decomposition into subrepresenta-
tions, which are irreducible when n = 1 but reducible for n > 1. Then case of n = 1
is explored in more detail and compared to known results for the affine group of the
real line and connected to the continuous wavelet transform. The information about
the case of n = 1 is used to obtain a complete decomposition of the left regular
representation for n = 2.

5.1 The Affine Group on Rn

Let Gn = Rn o GLn(R) = {[x,A] : x ∈ Rn, A ∈ GLn(R)}. Let N = {[y, id] : y ∈ Rn},
a closed normal abelian subgroup of G. Note that, for [x,A] ∈ Gn and [y, id] ∈ N ,

[x,A]−1[y, id][x,A] =
[
−A−1x,A−1

]
[y + x,A] =

[
A−1y, id

]
.

For ω ∈ R̂n, define a character χω on N by

χω[y, id] = e2πiωy, for all [y, id] ∈ N.

Then N̂ = {χω : ω ∈ R̂n}. For [x,A] ∈ Gn and χ ∈ N̂ , [x,A] · χ ∈ N̂ is defined by(
[x,A] · χ

)
[y, id] = χ

(
[x,A]−1[y, id][x,A]

)
= χ

[
A−1y, id

]
.

Therefore, for ω ∈ R̂n, [x,A] · χω = χωA−1 . It is convenient to work with the action

of GLn(R) on R̂n given by (A, ω) → ωA−1. There are just two orbits, {0} and

O = R̂n \ {0}. Let ω0 = (1, 0, · · · , 0). Then the orbit O = {ω0A
−1 : A ∈ GLn(R)}.
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We fix a measurable map γ : O → GLn(R) that satisfies

ω0γ(ω)−1 = ω (equivalently ωγ(ω) = ω0), for all ω ∈ O.

For ω ∈ R̂n, by Corollary 2.8.10, the induced representation indGnN χω is unitarily
equivalent to πω which acts on L2

(
GLn(R)

)
as follows: For [x,A] ∈ Gn,

πω[x,A]f(B) = e2πiωB−1xf
(
A−1B

)
, for all B ∈ GLn(R), f ∈ L2

(
GLn(R)

)
.

Proposition 5.1.1. For ω ∈ O, πω ∼ πω0 .

Proof. Define Vω : L2
(
GLn(R)

)
→ L2

(
GLn(R)

)
by, for f ∈ L2

(
GLn(R)

)
,

Vωf(B) = f
(
Bγ(ω)−1

)
, for all B ∈ GLn(R).

Since GLn(R) is unimodular, ‖Vωf‖2 = ‖f‖2, for all f ∈ L2
(
GLn(R)

)
. It is also clear

that Vω is linear, one to one, and onto. So Vω is a unitary map of L2
(
GLn(R)

)
with

itself. For [x,A] ∈ Gn, f ∈ L2
(
GLn(R)

)
, and B ∈ GLn(R),

Vωπ
ω[x,A]V −1

ω f(B) = πω[x,A]V −1
ω f

(
Bγ(ω)−1

)
= e2πiωγ(ω)B−1xV −1

ω f
(
A−1Bγ(ω)−1

)
= e2πiωγ(ω)B−1xf

(
A−1B

)
= e2πiω0B

−1xf
(
A−1B

)
= πω0 [x,A]f(B).

This shows that πω ∼ πω0 .

Our goal now is to establish an explicit unitary equivalence of the left regular
representation, λGn , of Gn with an infinite multiple of πω0 .

For any f ∈ L2(Gn), define Uf on Rn × GLn(R) by Uf(y,B) = f [By,B], for all

(y,B) ∈ Rn × GLn(R). By Proposition 4.1.1, Uf ∈ L2
(
Rn × GLn(R)

)
and U is a

unitary map when Rn × GLn(R) is equipped with the product of Lebesgue measure
with Haar measure on GLn(R). Moreover, U−1 : L2

(
Rn×GLn(R)

)
→ L2(Gn) is given

by
U−1f [y,B] = f(B−1y,B), for [y,B] ∈ Gn, f ∈ L2

(
Rn ×GLn(R)

)
.

Let F1 : L2
(
Rn×GLn(R)

)
→ L2

(
R̂n×GLn(R)

)
be the unitary map consisting of

taking the Fourier transform in the first variable. That is, for f ∈ Cc
(
Rn ×GLn(R)

)
and any (ω,B) ∈ R̂n ×GLn(R),

F1f(ω,B) =

∫
Rn
f(y,B)e2πiωydy.

The left regular representation λGn of Gn is unitarily equivalent, via F1 ◦ U to a

unitary representation λ̃Gn acting on L2
(
R̂n ×GLn(R)

)
. For f ∈ L2

(
R̂n ×GLn(R)

)
,
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[x,A] ∈ Gn, and (ω,B) ∈ R̂n ×GLn(R), we have

λ̃Gn [x,A]f(ω,B) = F1UλGn [x,A]
(
U−1F−1

1 f
)
(ω,B)

=

∫
Rn
UλGn [x,A]

(
U−1F−1

1 f
)
(y,B)e2πiωydy

=

∫
Rn
λGn [x,A]

(
U−1F−1

1 f
)
[By,B]e2πiωydy

=

∫
Rn

(
U−1F−1

1 f
) (

[x,A]−1[By,B]
)
e2πiωydy

=

∫
Rn

(
U−1F−1

1 f
) (

[A−1(By − x), A−1B]
)
e2πiωydy

=

∫
Rn

(
F−1

1 f
) (
B−1(By − x), A−1B

)
e2πiωydy

=

∫
Rn

(
F−1

1 f
) (
B−1(By − x), A−1B

)
e2πiωydy

=

∫
Rn

(
F−1

1 f
) (
y −B−1x), A−1B

)
e2πiωydy

=

∫
Rn

(
F−1

1 f
)
(z, A−1B)e2πiω(B−1x+z)dz

= e2πiωB−1x

∫
Rn

(
F−1

1 f
)
(z, A−1B)e2πiωzdz

= e2πiωB−1xf
(
ω,A−1B

)
.

That is, λ̃Gn [x,A]f(ω,B) = e2πiωB−1xf (ω,A−1B). Notice the similarity with the
πω. This shows how we could write the left regular representation as a direct integral
of the πω. But Proposition 5.1.1 shows all πω, ω ∈ O, are equivalent to πω0 .

Note that O is a co-null open subset of R̂n. We will consider Lebesgue measure on
O as its standard measure, so L2(O×GLn(R)) is the same Hilbert space as L2

(
R̂n×

GLn(R)
)
. We define W on L2(O×GLn(R)) as follows: For f ∈ L2(O×GLn(R)) and

(ω,B) ∈ O ×GLn(R),
(Wf)(ω,B) = f

(
ω,Bγ(ω)−1

)
.

Then Wf is measurable and, using Fubini’s Theorem and that GLn(R) is unimodular,∫
GLn(R)

∫
O
|(Wf)(ω,B)|2dω dB =

∫
O

∫
GLn(R)

|f
(
ω,Bγ(ω)−1

)
|2dB dω

=

∫
GLn(R)

∫
O
|f
(
ω,B

)
|2dω dB = ‖f‖ 2

2 .

Thus Wf ∈ L2(O×GLn(R)) and W is a linear isometry on L2(O×GLn(R)). Clearly,
W is onto and W−1 is given by

(
W−1g

)
(ω,B) = g

(
ω,Bγ(ω)

)
, for all (ω,B) ∈ O ×

GLn(R). So W is a unitary.
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Define the unitary representation λ0
Gn

of Gn on L2(O×GLn(R)) by, for [x,A] ∈ Gn,

λ0
Gn [x,A] = Wλ̃Gn [x,A]W−1.

So, for f ∈ L2
(
O ×GLn(R)

)
and (ω,B) ∈ O ×GLn(R),

λ0
Gn [x,A]f(ω,B) = Wλ̃Gn [x,A]W−1f(ω,B) = λ̃Gn [x,A]W−1f

(
ω,Bγ(ω)−1

)
= e2πiωγ(ω)B−1x

(
W−1f

) (
ω,A−1Bγ(ω)−1

)
= e2πiω0B

−1xf
(
ω,A−1B

)
.

So we have λ0
Gn

[x,A]f(ω,B) = e2πiω0B
−1xf

(
ω,A−1B

)
, for a.e. (ω,B) ∈ O ×GLn(R),

for all f ∈ L2
(
O × GLn(R)

)
, and all [x,A] ∈ Gn. The unitary representation λ0

Gn
is

equivalent to λGn .
Let η ∈ L2(O) be such that ‖η‖2 = 1. Let Hη = {η⊗f : f ∈ L2

(
GLn(R)

)
}, where

η⊗f is defined by (η⊗f)(ω,B) = η(ω)f(B), for all (ω,B) ∈ O×GLn(R). ThenHη is
a closed subspace of L2

(
O×GLn(R)

)
. Define Wη : L2

(
GLn(R)

)
→ L2

(
O×GLn(R)

)
by, for f ∈ L2

(
GLn(R)

)
,

Wηf(ω,B) = (η ⊗ f)(ω,B) = η(ω)f(B), for a.e. (ω,B) ∈ O ×GLn(R).

Proposition 5.1.2. Let {ηj : j ∈ J} be an orthonormal basis of L2(O). For each
j ∈ J , Hηj is a closed λ0

Gn
-invariant subspace of L2(O × GLn(R)) and the map Wηj

intertwines πω0 with the restriction of λ0
Gn

to Hηj . Moreover,

L2(O ×GLn(R)) =
∑⊕

j∈J Hηj .

Proof. Since {ηj : j ∈ J} is an orthonormal basis of L2(O), it follows from Proposition
2.3.7 that L2(O × GLn(R)) =

∑⊕
j∈J Hηj . For each j ∈ J , it is clear that Wηj is a

unitary map onto Hηj . For [x,A] ∈ Gn and f ∈ L2(GLn(R)),

Wηjπ
ω0 [x,A]W −1

ηj
(ηj ⊗ f)(ω,B) = Wηj

(
πω0 [x,A]f

)
(ω,B)

= ηj(ω)
(
πω0 [x,A]f

)
(B)

= ηj(ω)e2πiω0B
−1xf

(
A−1B

)
= e2πiω0B

−1x(ηj ⊗ f)
(
ω,A−1B

)
= λ0

Gn [x,A](ηj ⊗ f)(ω,B),

for all (ω,B) ∈ O × GLn(R). Therefore Hηj is a λ0
Gn

-invariant subspace of L2(O ×
GLn(R)) and the map Wηj intertwines πω0 with the restriction of λ0

Gn
to Hηj .

Returning to a single η ∈ L2(O) with ‖η‖2 = 1, let us see where η ⊗ f goes as we
map it with the above unitaries back into L2(Gn).

First, we have W−1(η ⊗ f)(ω,B) = η(ω)f
(
Bγ(ω)

)
, for (ω,B) ∈ O × GLn(R).

Next,

F−1
1 W−1(η ⊗ f)(y,B) =

∫
R̂n
η(ω)f

(
Bγ(ω)

)
e−2πiωydω.
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Finally,

U−1F−1
1 W−1(η ⊗ f)[y,B] = F−1

1 W−1(η ⊗ f)(B−1y,B)

=

∫
R̂n
η(ω)f

(
Bγ(ω)

)
e−2πiωB−1ydω.

We can define Uη : L2(GLn(R))→ L2(Gn) by

Uηf [y,B] =

∫
R̂n
η(ω)f

(
Bγ(ω)

)
e−2πiωB−1ydω, (5.1)

for a.e. [y,B] ∈ Gn, f ∈ L2(GLn(R)). Thus, we obtain the following result:

Proposition 5.1.3. Let η ∈ L2(O) satisfy ‖η‖2 = 1. Then Uη is an isometric linear
map of L2(GLn(R)) into L2(Gn) that intertwines πω0 with λGn .

Now, fix an orthonormal basis {ηj : j ∈ J} of L2(O). For each j ∈ J , let
Lηj = U−1F−1

1 W−1Hηj . Since U−1F−1
1 W−1 is a unitary map of L2(O × GLn(R))

onto L2(Gn),
L2(Gn) =

∑⊕
j∈J Lηj .

Thus, we have a decomposition of the left regular representation of Gn. Note that
L2(O) is identified with L2(R̂n).

Theorem 5.1.4. Let O = R̂n \ {0}. Let {ηj : j ∈ J} be an orthonormal basis of

L2(R̂n). For each j ∈ J , define Uηj : L2(GLn(R))→ L2(Gn) by

Uηjf [y,B] =

∫
R̂n
ηj(ω)f

(
Bγ(ω)

)
e−2πiωB−1ydω,

for [y,B] ∈ Gn, and f ∈ L2(GLn(R)). Let Lηj = UηjL
2(GLn(R)). Then Lηj is a

closed λGn-invariant subspace of L2(Gn) and Uηj intertwines πω0 with the restriction

of λGn to Lηj . Moreover, L2(Gn) =
∑⊕

j∈J Lηj

5.2 The Affine Group on R
When n = 1, G1 = Ro R∗. We recall that∫

R∗
f dµR∗ =

∫
R
f(b)

db

|b|
,

where the integral on the right hand side is the Lebesgue integral on R, and∫
G1

f dµG1 =

∫
R

∫
R
f [y, b]

dy db

b2
.

We continue to write N = {[y, 1] : y ∈ R} and N̂ = {χω : ω ∈ R}, where χω[y, 1] =
e2πiωy, for [y, 1] ∈ N . Select ω0 = ω0 = 1. Then πω0 = π1 acts on L2(R∗) via, for
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[x, a] ∈ G1, f ∈ L2(R∗), and a.e. b ∈ R∗,

π1[x, a]f(b) = e2πib−1xf
(
a−1b

)
.

For any g ∈ L2(R∗), define Vg : L2(R∗) → C(G1) by Vgf [x, a] = 〈f, π1[x, a]g〉, for
[x, a] ∈ G1 and f ∈ L2(R∗).

Proposition 5.2.1. For g ∈ L2(R∗), if there exists a nonzero f0 ∈ L2(R∗) such that

Vgf0 ∈ L2(G1), then
∫
R

∣∣|u|1/2g(u)
∣∣2 du
|u| < ∞. Moreover, if

∫
R

∣∣|u|1/2g(u)
∣∣2 du
|u| < ∞,

then Vgf ∈ L2(G1), for all f ∈ L2(R∗).

Proof. This proof follows the pattern of derivation of the admissiblility condition for
the continuous wavelet transform (see [4], for example). Let f, g ∈ L2(R∗). Then∫

G1

|Vgf [x, a]|2dµG1

(
[x, a]

)
=

∫
R

∫
R
|〈f, π1[x, a]g〉|2dx da

a2

=

∫
R

∫
R

∣∣∣∣∫
R
f(b)π1[x, a]g(b)

db

|b|

∣∣∣∣2 dx daa2

=

∫
R

∫
R

∣∣∣∣∫
R
f(b−1)g(a−1b−1)e−2πibx db

|b|

∣∣∣∣2 dx daa2

(5.2)

Let ϕa(b) = |b−1|f(b−1)g(a−1b−1), for a, b ∈ R∗. Note that∫
R
|ϕa(b)| db =

∫
R
|f(b−1)g(a−1b−1)| db

|b|
=

∫
R∗
|f(b−1)g(a−1b−1)| dµR∗(b)

=

∫
R∗
|f(b)| · |g(a−1b)| dµR∗(b) = 〈|f |, λR∗(a)|g|〉L2(R∗).

Thus,
∫
R |ϕa(b)| db = 〈|f |, λR∗(a)|g|〉L2(R∗) ≤ ‖f‖2‖g‖2 < ∞, so ϕa ∈ L1(R̂). Let

ϕ∨a ∈ C0(R) denote the inverse Fourier transform of ϕa. Then (5.2) becomes∫
G1

|Vgf [x, a]|2dµG1

(
[x, a]

)
=

∫
R

∫
R

∣∣∣∣∫
R
ϕa(b)e

−2πibx db

∣∣∣∣2 dx daa2
=

∫
R

∫
R
|ϕ∨a (x)|2 dx da

a2
.

Plancherel’s Theorem implies ‖ϕ∨a‖ 2
2 = ‖ϕa‖ 2

2 even when either side is ∞. Thus∫
G1

|Vgf [x, a]|2dµG1

(
[x, a]

)
=

∫
R

∫
R̂
|ϕa(ω)|2 dω da

a2

=

∫
R

∫
R̂

∣∣∣∣ 1

|ω|
f(ω−1)g(a−1ω−1)

∣∣∣∣2 dω daa2

=

∫
R

∫
R̂

∣∣|ω−1|1/2f(ω−1)g(a−1ω−1)
∣∣2 dω da
|ω|a2

=

∫
R

∫
R̂

∣∣|ω|1/2f(ω)g(a−1ω)
∣∣2 dω da
|ω|a2

(5.3)

76



Note that the integration with respect to dω
|ω| can be viewed as the Haar integral on

R∗. Thus,∫
G1

|Vgf [x, a]|2dµG1

(
[x, a]

)
=

∫
R

(∫
R∗

∣∣|ω|1/2f(ω)g(a−1ω)
∣∣2 dµR∗(ω)

)
da

a2

=

∫
R

(∫
R∗

∣∣|aω|1/2f(aω)g(ω)
∣∣2 dµR∗(ω)

)
da

a2

=

∫
R

(∫
R∗
|f(aω)|2

∣∣|ω|1/2g(ω)
∣∣2dµR∗(ω)

)
da

|a|

=

∫
R∗

(∫
R
|f(ωa)|2 da

|a|

) ∣∣|ω|1/2g(ω)
∣∣2dµR∗(ω)

=

∫
R∗

(∫
R
|f(a)|2 da

|a|

) ∣∣|ω|1/2g(ω)
∣∣2dµR∗(ω)

=

∫
R∗
|f(a)|2dµR∗(a)

∫
R∗

∣∣|ω|1/2g(ω)
∣∣2dµR∗(ω)

= ‖f‖ 2
2

∫
R∗

∣∣|u|1/2g(u)
∣∣2dµR∗(u).

(5.4)

Therefore, for any f, g ∈ L2(R∗),∫
G1

|Vgf [x, a]|2dµG1

(
[x, a]

)
= ‖f‖ 2

2

∫
R∗

∣∣|u|1/2g(u)
∣∣2dµR∗(u).

If the exists one nonzero f0 ∈ L2(R∗) such that Vgf0 ∈ L2(G1), then we must have∫
R∗

∣∣|u|1/2g(u)
∣∣2dµR∗(u) <∞.

On the other hand, if
∫
R∗
∣∣|u|1/2g(u)

∣∣2dµR∗(u) <∞, then Vgf ∈ L2(G1), for every
f ∈ L2(R∗).

Let D =
{
g ∈ L2(R∗) :

∫
R∗
∣∣|u|1/2g(u)

∣∣2dµR∗(u) <∞
}

. This is a subspace of

L2(R∗). It is not a closed subspace, but it is dense in L2(R∗).
Remark. The R∗-orbit of 1 in R̂ is O1 = R̂ \ {0}. Writing L2(O1) indicates functions
square-integrable with respect to Lebesgue measure on O1 while L2(R∗) is formed
with respect to the Haar measure of R∗. Both O1 and R∗ are parametrized by the
nonzero real numbers. So we can think of D as L2(O1) ∩ L2(R∗). If it is necessary
to distinguish which norm or inner product is in use, a subscript of either L2(O1) or
L2(R∗) will be used.

Proposition 5.2.2. Let f1, f2 ∈ L2(R∗) and g1, g2 ∈ D. Then

〈Vg1f1, Vg2f2〉L2(G1)
= 〈f1, f2〉L2(R∗)

〈g2, g1〉L2(O1)
.

Proof. This can be established with a lengthy calculation similar to that in the proof
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of Proposition 5.2.1. However, there is a more efficient proof. By (5.4), for g ∈ D
and f ∈ L2(R∗), ∫

G1

|Vgf [x, a]|2dµG1([x, a]) = ‖f‖ 2

L2(R∗)
‖g‖ 2

L2(O1)

If we fix a g ∈ D, g 6= 0, and let Cg = ‖g‖
L2(O1)

, thenBg(f1, f2) = C−2
g 〈Vgf1, Vgf2〉L2(G1)

,

for all f1, f2 ∈ L2(R∗), defines a sesquilinear form on L2(R∗). Since Bg(f, f) =
‖f‖ 2

L2(R∗)
, for all f ∈ L2(R∗), the polarization identity impliesBg(f1, f2) = 〈f1, f2〉L2(R∗)

.

Thus,

〈Vgf1, Vgf2〉L2(G1)
= 〈f1, f2〉L2(R∗)

‖g‖ 2

L2(O1)
, for f1, f2 ∈ L2(R∗), g ∈ D. (5.5)

Now, fix f1, f2 ∈ L2(R∗) such that Cf1,f2 = 〈f1, f2〉L2(R∗)
6= 0. Define a sesquilinear

form Bf1,f2 on D now, by

Bf1,f2(g1, g2) = C−1
f1,f2
〈Vg1f1, Vg2f2〉L2(G1)

, for all g1, g2 ∈ D.

Then (5.5) implies Bf1,f2(g, g) = ‖g‖ 2

L2(O1)
, for all g ∈ D. By polarization again

Bf1,f2(g1, g2) = 〈g1, g2〉L2(O1)
, for all g1, g2 ∈ D. This implies

〈Vg1f1, Vg2f2〉L2(G1)
= 〈f1, f2〉L2(R∗)

〈g2, g1〉L2(O1)
,

for all g1, g2 ∈ D, when 〈f1, f2〉L2(R∗)
6= 0. Of course, this identity trivially holds if

〈f1, f2〉L2(R∗)
= 0.

Theorem 5.2.3. The representation π1 is irreducible and square-integrable. More-

over, if g ∈ L2(R∗) satisfies
∫
R

∣∣|u|1/2g(u)
∣∣2 du
|u| = 1, Vg is a linear isometry of L2(R∗)

into L2(G1) that intertwines π1 with a subrepresentation of the left regular represen-
tation of G1.

Proof. The identity in∫
G1

|Vgf [x, a]|2dµG1

(
[x, a]

)
= ‖f‖ 2

2

∫
R∗

∣∣|u|1/2g(u)
∣∣2dµR∗(u)

shows that Vgf = 0 implies either f or g is 0. This implies that π1 is irreducible.

Moreover, if g ∈ D, then Vgf is square-integrable and if
∫
R∗
∣∣|u|1/2g(u)

∣∣2dµR∗(u) = 1,

then Vg : L2(R∗) → L2(G1) is an isometry. Also, if
∫
R∗
∣∣|u|1/2|g(u)

∣∣2dµR∗(u) = 1 and
f ∈ L2(R∗), then, for [x, a] ∈ G1,

Vgπ
1[x, a]f [y, b] = 〈π1[x, a]f, π1[y, b]g〉 = 〈f, π1[x, a]∗π1[y, b]g〉

= 〈f, π1
(
[x, a]−1[y, b]

)
g〉 = λG1 [x, a]Vgf [y, b],

for all [y, b] ∈ G1. This shows that the range of Vg is a λG1-invariant subspace of
L2(G1) and Vg intertwines π1 with the restriction of λG1 to this subspace.
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If g ∈ L2(R∗) satisfies
∫
R

∣∣|u|1/2g(u)
∣∣2 du
|u| = 1, then Vg is a version of the continuous

wavelet transform on R. To see this recall that O1 = {ω ∈ R̂ : ω 6= 0} and γ : O1 →
R∗ is simply the map γ(ω) = ω−1. For f ∈ L2(R∗), define Uγf on O1 by(

Uγf
)
(ω) = |ω|−1/2f

(
γ(ω)

)
, for all ω ∈ O1 and

(
Uγf

)
(0) = 0.

Then∫
R̂
|
(
Uγf

)
(ω)|2dω =

∫
R̂

∣∣|ω|−1/2f(ω−1)
∣∣2dω =

∫
R

∣∣f(u−1)
∣∣2 du
|u|

=

∫
R̂

∣∣f(u)
∣∣2 du
|u|

= ‖f‖ 2
2 .

That is, Uγf ∈ L2(R̂) and Uγ is an isometry. It is easily verified that Uγ is a unitary

map. Now, if g ∈ L2(R∗) satisfies
∫
R∗
∣∣|u|1/2|g(u)

∣∣2dµR∗(u) = 1, let ζ = Uγg. Then∫
R̂

|ζ(ω)|2

|ω|
dω =

∫
R̂

∣∣|ω|−1/2g(ω−1)
∣∣2 dω
|ω|

=

∫
R

∣∣|u|1/2g(u)
∣∣2 du
|u|

=

∫
R∗

∣∣|u|1/2g(u)
∣∣2dµR∗(u) = 1.

What does π1 become when conjugated by Uγ. Let π[x, a] = Uγπ
1[x, a]U −1

γ , for all

[x, a] ∈ G1. For any ξ ∈ L2(R̂), we have (writing f = U −1
γ ξ)

π[x, a]ξ(ω) = Uγπ
1[x, a]f(ω) = |ω|−1/2π1[x, a]f

(
ω−1

)
= |ω|−1/2e2πiωxf

(
a−1ω−1

)
= |a|1/2e2πiωx

∣∣ωa∣∣−1/2
f
(
(ωa)−1

)
= |a|1/2e2πiωxξ(ωa), for all ω ∈ R̂.

Thus, π[x, a]ξ(ω) = |a|1/2e2πiωxξ(ωa), for all ω ∈ R̂, ξ ∈ L2(R̂), and [x, a] ∈ G1.
Finally, we use the inverse Fourier transform to move π to a representation on L2(R).
Let ρ[x, a] = F−1π[x, a]F , for all [x, a] ∈ G1. Then, for f ∈ L2(R), ξ = Ff , and
t ∈ R,

ρ[x, a]f(t) = F−1π[x, a]ξ(t) =

∫
R̂
π[x, a]ξ(ω)e−2πiωtdω

=

∫
R̂
|a|1/2e2πiωxξ(ωa)e−2πiωtdω =

∫
R̂
|a|1/2ξ(ωa)e−2πiω(t−x)dω

=

∫
R̂
|a|−1/2ξ(ν)e−2πiνa−1(t−x)dν = |a|−1/2f

(
a−1(t− x)

)
.

Thus, ρ is the natural representation of G1 on L2(R) and w ∈ L2(R) is admissible if
ŵ = ζ, where ζ is as above. That is, if∫

R̂

|ŵ(ω)|2

|ω|
dω = 1.

Therefore Vg : L2(R∗) → L2(G1) above is just the standard continuous wavelet
transform in disguise, converted using F and Uγ. Note that Vg intertwines π1 with
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the left regular representation of G1 restricted to the image of Vg.

Comparing Uη and Vg

Let’s simplify Uη from Proposition 5.1.3 when n = 1. Then η ∈ L2(O1) and∫
R̂ |η(ω)|2dω = 1. For f ∈ L2(R∗), we have

Uηf [y, b] =

∫
R̂
η(ω)f

(
bω−1

)
e−2πiωb−1y dω, for any [y, b] ∈ G1.

For [x, a] ∈ G1, f ∈ L2(R∗), and [y, b] ∈ G1,

Uηπ
1[x, a]f [y, b] =

∫
R̂
η(ω)π1[x, a]f

(
bω−1

)
e−2πiωb−1ydω

=

∫
R̂
η(ω)e2πiωb−1xf

(
a−1bω−1

)
e−2πiωb−1ydω

=

∫
R̂
η(ω)f

(
(a−1b)ω−1

)
e−2πiω(a−1b)−1a−1(y−x)dω

= Uηf
(
[a−1(y − x), a−1b]

)
= Uηf

(
[−a−1x, a−1][y, b]

)
= λG1 [x, a]Uηf [y, b].

On the other hand, if g ∈ L2(R∗) satisfies
∫
R∗
∣∣|u|1/2g(u)‖2dµR∗(u) = 1, then

Vgf [y, b] =

∫
R∗
f(u)g(b−1u)e−2πiu−1ydµR∗(u) =

∫
R
f(u−1)g(b−1u−1)e−2πiuy du

|u|
, (5.6)

for [y, b] ∈ G1 and f ∈ L2(R∗). Change variables in (5.6). Let ω = bu. So u = b−1ω
and du = |b|−1dω. Then

Vgf [y, b] =

∫
R̂

g(ω−1)

|ω|
f(bω−1)e−2πib−1ωy dω.

Thus, if η(ω) = g(ω−1)
|ω| , for all ω ∈ O1, then Uη = Vg. Note that

∫
R̂
|η(ω)|2dω =

∫
R̂

∣∣∣∣g(ω−1)

|ω|

∣∣∣∣2 dω =

∫
R

∣∣∣∣g(ω−1)

|ω|1/2

∣∣∣∣2 dω|ω| =

∫
R

∣∣|u|1/2g(u)
∣∣2 du
|u|

=

∫
R∗

∣∣|u|1/2g(u)
∣∣2 dµR∗(u) =

∫
O1

|g(u)|2du = 1.

(5.7)

Proposition 5.2.4. If g ∈ L2(R∗) satisfies
∫
R∗
∣∣|u|1/2g(u)‖2dµR∗(u) = 1 and η(ω) =

g(ω−1)
|ω| , for all ω ∈ O1, then η ∈ L2(O1), ‖η‖

L2(O1)
= 1 and Uη = Vg.

More generally, if g, g′ ∈ D, η(ω) = g(ω−1)
|ω| and η′(ω) = g′(ω−1)

|ω| , for all ω ∈ O1,

then the same change of variables as in (5.7) shows that 〈η, η′〉
L2(O1)

= 〈g′, g〉
L2(O1)

.

This means that if J is an index set and {gj : j ∈ J} is a set of members of L2(R∗)
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such that each gj ∈ D = L2(R∗) ∩ L2(O1) and {gj : j ∈ J} is an orthonormal set in

L2(O1), then letting ηj(ω) =
gj(ω

−1)

|ω| , for all ω ∈ O1 and j ∈ J gives an orthonormal

set {ηj : j ∈ J} in L2(O1). Combining this observation with Theorem 5.1.4 in the
case of n = 1, we get the following result.

Theorem 5.2.5. Let O1 = R̂ \ {0} be equipped with the restriction of Lebesgue
measure and let D = L2(O1) ∩ L2(R∗). Suppose {gj : j ∈ J} is a set in D that forms
an orthonormal basis in L2(O1). For each j ∈ J , define

Vgjf [x, a] = 〈f, π1[x, a]gj〉L2(R∗)
, for [x, a] ∈ G1, f ∈ L2(R∗).

Let Kgj = VgjL
2(R∗). Then Kgj is a closed λG1-invariant subspace of L2(G1) and Vgj

is a unitary map of L2(R∗) onto Kgj that intertwines π1 with the restriction of λG1

to Kgj . Moreover, L2(G1) =
∑⊕

j∈J Kgj .

5.3 The Affine Group of the Plane

Throughout this section, let G denote G2 = R2 oGL2(R). The closed subgroup N =
{[y, id] : y ∈ R2} is normal and abelian. As we saw for Gn there is just one nontrivial

orbit for the action of G on N̂ . In this section, we will follow the procedure in Section
2.8 to find a distinguished representation of G. Then a sequence of unitary maps
between different Hilbert spaces will be used to move this distinguished representation
into a subrepresentation of the left regular representation of G.

The nontrivial orbit in N̂ is {χω : ω ∈ O}, where O = R̂2 \ {(0, 0)}. Recall that
[x,A] ∈ G acts on χω so that [x,A] · χω = χωA−1 . The point ω0 = (1, 0) will serve as
a representative point in O. The stability subgroup for this point is

H(1,0) =
{
A ∈ GL2(R) : (1, 0)A = (1, 0)

}
=

{(
1 0
u v

)
: u, v ∈ R, v 6= 0

}
.

Recall from Section 4.3 that K0 =

{(
s −t
t s

)
: s, t ∈ R, s2 + t2 > 0

}
is a subgroup

in GL2(R) that is complementary to H(1,0) in the sense that K0 ∩H(1,0) = {id} and
GL2(R) = K0H(1,0). For each ω = (ω1, ω2) ∈ O, there is a unique matrix γ(ω) ∈ K0

such that γ(ω) · (1, 0) = ω. Since ω = γ(ω) · (1, 0) = (1, 0)γ(ω)−1, the top row of
γ(ω)−1 must be (ω1 ω2). Thus

γ(ω)−1 =

(
ω1 ω2

−ω2 ω1

)
and γ(ω) =

1

‖ω‖2

(
ω1 −ω2

ω2 ω1

)
.

We will frequently use that (1, 0)γ(ω)−1 = ω and ωγ(ω) = (1, 0), for any ω ∈ O.
We also have, for each A ∈ GL2(R), unique matrices MA ∈ K0 and CA ∈ H(1,0)

such that A = MACA. In our calculations later, various matrices related to A ∈
GL2(R) and ω ∈ O arise and there are a number of identities involving these matrices
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that are useful. We also use the entries of the matrix C −1
A−1γ(ω) and need a notation

for these entries. Let uω,A = (0, 1)C −1
A−1γ(ω)

(
1
0

)
and vω,A = (0, 1)C −1

A−1γ(ω)

(
0
1

)
. Then

C −1
A−1γ(ω) =

(
1 0

uω,A vω,A

)
. The identities we need are collected into a proposition.

Proposition 5.3.1. Let A,B ∈ GL2(R) and ω ∈ O. Then

(a) MA = γ
(
(1, 0)A−1

)
and CA = γ

(
(1, 0)A−1

)−1
A,

(b) MAγ(ω) = γ
(
ωA−1

)
and CAγ(ω) = γ

(
ωA−1

)−1
Aγ(ω),

(c) MA−1γ(ω) = γ
(
ωA
)

and CA−1γ(ω) = γ
(
ωA
)−1

A−1γ(ω),

(d) uω,AB = uω,A + vω,AuωA,B and vω,AB = vω,AvωA,B,

(e) det (γ(ω)−1) = ‖ω‖2 and det (γ(ω)) = ‖ω‖−2,

(f) det
(
CA−1γ(ω)

)
= ‖ωA‖2

det(A)‖ω‖2 , and

(g) vω,A = det
(
C −1
A−1γ(ω)

)
= det(A)‖ω‖2

‖ωA‖2 .

Proof. (a) and (c) follow from (b), since γ
(
(1, 0)

)
is the identity matrix. For any

ω ∈ O, γ
(
ωA−1

)
∈ K0 by definition of γ. On the other hand,

(1, 0)
(
γ
(
ωA−1

)−1
Aγ(ω)

)
=
(

(1, 0)γ
(
ωA−1

)−1
)
Aγ(ω)

= ωA−1Aγ(ω) = ωγ(ω) = (1, 0).

Thus CAγ(ω) = γ
(
ωA−1

)−1
Aγ(ω) and MAγ(ω) = γ

(
ωA−1

)
, by uniqueness. Clearly (e)

is true while (f) and (g) follow from (c) and (e). It remains to verify (d).
By (c), C −1

A−1γ(ω) = γ(ω)−1Aγ(ωA). Thus

C −1
(AB)−1γ(ω) = γ(ω)−1(AB)γ(ωAB) = γ(ω)−1Aγ(ωA)γ(ωA)−1Bγ(ωAB)

= C −1
A−1γ(ω)C

−1
B−1γ(ωA).

That is, (
1 0

uω,AB vω,AB

)
=

(
1 0

uω,A vω,A

)(
1 0

uωA,B vωA,B

)
=

(
1 0

uω,A + vω,AuωA,B vω,AvωA,B

)
,

which establishes (d).

The detailed values of uω,A and vω,A are usually not needed, but may sometimes
be useful.
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Proposition 5.3.2. Let A =

(
a b
c d

)
∈ GL2(R) and ω = (ω1, ω2) ∈ O. Then

uω,A =
(ac+ bd)(ω2

1 − ω2
2)− (a2 + b2 − c2 − d2)ω1ω2

(aω1 + cω2)2 + (bω1 + dω2)2

and

vω,A =
(ad− bc)(ω2

1 + ω2
2)

(aω1 + cω2)2 + (bω1 + dω2)2
.

Proof. These are both obtained by straightforward calculation from the definitions of
uω,A and vω,A.

The map [u, v] →
(

1 0
u v

)
is an isomorphism of the group G1 = R o R∗ with

H(1,0). Recall the representation π1 of G1 acts on the Hilbert space L2(R∗) by, for
[u, v] ∈ G1 and f ∈ L2(R∗),

π1[u, v]f(t) = e2πit−1uf(v−1t), for t ∈ R∗.

By Theorem 5.2.3, π1 is an irreducible representation of G1. We will simplify notation

by considering π1 as an irreducible representation of H(1,0). That is, if C =

(
1 0
u v

)
∈

H(1,0), then we let π1(C) = π1[u, v].
Let H = R2 oH(1,0). The representation χ(1,0) ⊗ π1 of H given by(

χ(1,0) ⊗ π1
)

[x,B] = χ(1,0)(x)π1(B), for [x,B] ∈ H,

is an irreducible representation of H on L2(R∗). Then indGH
(
χ(1,0) ⊗ π1

)
is an irre-

ducible representation of G by Theorem 2.9.5. Let K = {[0, L] : L ∈ K0}, a closed
subgroup of G that is complementary to H. That is K ∩H = {[0, id]} and G = KH.
By Proposition 2.8.9, indGH

(
χ(1,0) ⊗ π1

)
is equivalent to a representation σ acting on

L2
(
K,L2(R∗)

)
. In preparation to defining σ, take [x,A] ∈ G, and [0, L] ∈ K and

compute [x,A]−1[0, L] = [−A−1x,A−1L]. Now factor

[−A−1x,A−1L] = [0,MA−1L][−M −1
A−1LA

−1x,CA−1L],

with the elements [0,MA−1L] ∈ K and [−M −1
A−1LA

−1x,CA−1L] ∈ H. Observe that

C −1

A−1L
M −1

A−1LA
−1 =

(
MA−1LCA−1L

)−1
A−1 = L−1. Therefore,

[−M −1
A−1LA

−1x,CA−1L]−1 = [L−1x,C −1

A−1L
].

Thus, Proposition 2.8.9 gives, for F ∈ L2
(
K,L2(R∗)

)
, [x,A] ∈ G, and [0, L] ∈ K,

σ[x,A]F [0, L] =
∣∣det

(
C
A−1L

)∣∣−1/2 (
χ(1,0) ⊗ π1

) [
L−1x,C −1

A−1L

]
F [0,MA−1L]

=
∣∣det

(
C
A−1L

)∣∣−1/2
e2πi(1,0)L−1x π1

(
C −1

A−1L

)
F [0,MA−1L].

(5.8)
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To make σ more concrete, use a unitary map to move to the Hilbert space L2(R̂3).

The formulas are simplified if we write R̂3 as R̂2 × R̂. Define U : L2
(
K,L2(R∗))

)
→

L2
(
R̂2 × R̂

)
by, for F ∈ L2

(
K,L2(R∗)

)
and a.e. (ω, ω3) ∈ R̂2 × R̂, let

(UF )(ω, ω3) =


(
F [0,γ(ω)]

)
(ω−1

3 )

‖ω‖·|ω3|1/2
for ω ∈ O, ω3 6= 0

0 otherwise.

Proposition 5.3.3. The map U : L2
(
K,L2(R∗)

)
→ L2

(
R̂2 × R̂

)
is unitary with

inverse U−1 given by, for f ∈ L2
(
R̂2 × R̂

)
and [0, L] ∈ K,

(
U−1f [0, L]

)
(ν) =

‖(1,0)L−1‖ f
(

(1,0)L−1,ν−1
)

|ν|1/2 if ν 6= 0

0 if ν = 0.

Proof. For F ∈ L2
(
K,L2(R∗))

)
,

‖UF‖2

L2(R̂2×R̂)
=

∫
R̂2

∫
R̂
|UF (ω, ω3)|2dω3 dω

=

∫
R̂2

∫
R̂

∣∣∣∣(F [0, γ(ω)]) (ω−1
3 )

‖ω‖ · |ω3|1/2

∣∣∣∣2 dω3 dω

=

∫
R̂2

∫
R̂

∣∣(F [0, γ(ω)]) (ω−1
3 )
∣∣2 dω3

|ω3|
dω

‖ω‖2

=

∫
K

∫
R∗

∣∣(F [0, L]) (ω−1
3 )
∣∣2 dµR∗(ω3) dµK([0, L]

= ‖F‖L2(K,L2(R∗))

This shows that U is an isometry. Then, U is one-to-one. Moreover, U is onto since

for f ∈ L2(R̂2 × R̂), we will show U−1f ∈ L2(K,L2(R∗)). Then

U(U−1f)(ω, ω3) =
U−1f [0, γ(ω)](ω−1

3 )

‖ω‖ · |ω3|1/2

=
1

‖ω‖ · |ω3|1/2
‖ω‖ f(ω, ω3)

|ω−1
3 |1/2

= f(ω, ω3),
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for a.e. (ω, ω3) ∈ R̂2 × R̂. Now, for any g ∈ L2(R̂2 × R̂),

‖U−1g‖2
L2(K,L2(R∗)) =

∫
K

∫
R∗
|U−1g[0, L](ν)|2dµR∗(ν) dµK([0, L])

=

∫
K

∫
R

∣∣∣∣∣‖(1, 0)L−1‖ g
(
(1, 0)L−1, ν−1

)
|ν|1/2

∣∣∣∣∣
2
dν

|ν|
dµK([0, L])

=

∫
R̂2

∫
R∗
‖ω‖2|g(ω, ν−1)|2 dν

|ν|2
dω

‖ω‖2

=

∫
R∗

∫
R̂2

|g(ω, ν−1) |2 dω dν

|ν|2

=

∫
R̂2

∫
R̂
| g(ω, ω3) |2dω3 dω

= ‖g‖2

L2(R̂2×R̂)

Note that, L =

(
ω1/‖ω‖2 −ω2/‖ω‖2

ω2/‖ω‖2 ω1/‖ω‖2

)
if (1, 0)L−1 = ω for any ω ∈ O.

For [x,A] ∈ G, let σ1[x,A] = Uσ[x,A]U−1. Then σ1 is an irreducible represen-

tation of G on L2
(
R̂2 × R̂

)
. To find a formula for σ1, let ξ ∈ L2

(
R̂2 × R̂

)
and set

F = U−1ξ ∈ L2
(
K,L2(R∗)

)
. For [x,A] ∈ G and a.e. (ω, ω3) ∈ R̂2 × R̂,

(
σ1[x,A]ξ

)
(ω, ω3) =

(
Uσ[x,A]F

)
(ω, ω3) =

(
σ[x,A]F [0, γ(ω)]

)
(ω−1

3 )

‖ω‖ · |ω3|1/2

=
| det(CA−1γ(ω))|−1/2

‖ω‖ · |ω3|1/2
e2πiωx

(
π1
(
C −1
A−1γ(ω)

)
F [0,MA−1γ(ω)]

)
(ω−1

3 ).

(5.9)

By Proposition 5.3.1 (f),
|det(CA−1γ(ω))|

−1/2

‖ω‖·|ω3|1/2
= | det(A)|1/2
‖ωA‖·|ω3|1/2

. By Prop. 5.3.1 (c), MA−1γ(ω) =

γ(ωA). Also, recall that C −1
A−1γ(ω) =

(
1 0

uω,A vω,A

)
. Thus, (5.9) implies

(
σ1[x,A]f

)
(ω, ω3) =

| det(A)|1/2

‖ωA‖ · |ω3|1/2
e2πiωx

(
π1[uω,A, vω,A]F [0, γ(ωA)]

)
(ω−1

3 )

=
| det(A)|1/2

‖ωA‖ · |ω3|1/2
e2πiωxe2πiω3uω,A

(
U−1ξ[0, γ(ωA)]

)
(v−1
ω,Aω

−1
3 )

(5.10)

Before applying U−1, recall (1, 0)γ(ω)−1 = ω, for any ω ∈ O, so (1, 0)γ(ωA)−1 = ωA.
Thus,

(
σ1[x,A]ξ

)
(ω, ω3) =

| det(A)|1/2

‖ωA‖ · |ω3|1/2
e2πiωxe2πiω3uω,A

‖ωA‖ξ
(
ωA, ω3vω,A)

|v−1
ω,Aω

−1
3 |1/2

= | det(A)|1/2|vω,A|1/2e2πiωxe2πiω3uω,Aξ
(
ωA, ω3vω,A).
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Finally, Proposition 5.3.1 (g) says vω,A = det(A)‖ω‖2
‖ωA‖2 . Therefore,(

σ1[x,A]ξ
)
(ω, ω3) = | det(A)|·‖ω‖

‖ωA‖ e2πi(ωx+ω3uω,A)ξ
(
ωA, ω3vω,A). (5.11)

Note that (5.11) is for almost every (ω, ω3) ∈ R̂2 × R̂, for any ξ ∈ L2(R̂2 × R̂), and
for any [x,A] ∈ G.

Remark. As a check on the accuracy of the calculations leading to (5.11), we verify
that

(a) ‖σ1[x,A]ξ‖ 2

L2(R̂2×R̂)
= ‖ξ‖ 2

L2(R̂2×R̂)
, for all ξ ∈ L2(R̂2× R̂), and for any [x,A] ∈ G.

(b) σ1[x,A]σ1[y,B] = σ1[x+ Ay,AB], for all [x,A], [y,B] ∈ G.

Proof. First, we prove (a). Let ξ ∈ L2(R̂2 × R̂). Then

‖σ1[x,A]ξ‖ 2

L2(R̂2×R̂)
=

∫
R̂2

∫
R̂

∣∣∣ | det(A)|·‖ω‖
‖ωA‖

∣∣∣2 ∣∣e2πi(ωx+ω3uω,A)ξ
(
ωA, ω3vω,A)

∣∣2 dω3 dω

=

∫
R̂2

∫
R̂

| det(A)|2·‖ω‖2
‖ωA‖2

∣∣ξ(ωA, ω3vω,A)
∣∣2 dω3 dω

by change the variables, let t = ω3 vω,A; dt = vω,A dω3. Thus

‖σ1[x,A]ξ‖ 2

L2(R̂2×R̂)
=

∫
R̂2

∫
R̂
| det(A)|

∣∣ξ(ωA, t)∣∣2 dt dω
by change the variables again, let ω

′
= ωA; dω

′
= | det(A)| dω. So

‖σ1[x,A]ξ‖ 2

L2(R̂2×R̂)
=

∫
R̂

∫
R̂2

|ξ
(
ω
′
, t)|2dω′ dt = ‖ξ‖ 2

L2(R̂2×R̂)
.

Second, to prove (b), let ξ ∈ L2(R̂2× R̂). For any [y,B] ∈ G, let η = σ1[y,B]ξ. Then,
for any [x,A] ∈ G.

σ1[x,A]
(
σ1[y,B]ξ

)
(ω, ω3) = σ1[x,A]η(ω, ω3)

= | det(A)|·‖ω‖
‖ωA‖ e2πi(ωx+ω3uω,A)η

(
ωA, ω3vω,A)

= | det(A)| | det(B)|·‖ω‖
‖ωAB‖ e2πiω(x+Ay) e2πiω3(uω,A+vω,AuωA,B)ξ(ωAB, ω3vω,AvωA,B),

using, η(ωA, ω3vω,A) = | det(B)|·‖ωA‖
‖ωAB‖ e2πi(ωAy+ω3vω,AuωA,B)f(ωAB, ω3vω,AvωA,B). On the

other hand, the right hand side of (b) is given by

σ1[x+ Ay,AB]f(ω, ω3) = |det(AB)|·‖ω‖
‖ωAB‖ e2πi(ω(x+Ay)+ω3uω,AB)f(ωAB, ω3vω,AB).

By proposition 5.3.1 (d), we have that νω,AνωA,B = νω,AB and uω,AB = uω,A +
νω,AuωA,B. By these we get the equality in (b).

Now, return to the representation σ on the Hilbert space L2
(
K,L2(R∗)

)
. Using

the homeomorphism γ : O → K0 and the identities collected in Proposition 5.3.1 help
make the expression given in (5.8) easier to read. For F ∈ L2

(
K,L2(R∗)

)
, [x,A] ∈ G,
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and a.e. ω ∈ O,

σ[x,A]F [0, γ(ω)] = | det(A)|1/2‖ω‖
‖ωA‖ e2πiωx π1

(
γ(ω)−1Aγ(ωA)

)
F [0, γ(ωA)]. (5.12)

Theorem 5.2.3 says that, if g ∈ L2(R∗) satisfies
∫
R∗
∣∣|ν|1/2g(ν)

∣∣2dµR∗(ν) = 1, then
Vg : L2(R∗)→ L2(H(1,0)) is an isometry that intertwines π1 with λH(1,0)

. Recall that

Vgf(D) = 〈f, π1(D)g〉
L2(R∗)

, for all D ∈ H(1,0), f ∈ L2(R∗).

Let Kg = VgL
2(R∗), a closed λH(1,0)

-invariant subspace of L2(H(1,0)).

Let V ′g : L2
(
K,L2(R∗)

)
→ L2

(
K,L2(H(1,0))

)
be given by

(
V ′gF

)
[0, L] = Vg

(
F [0, L]

)
,

for all [0, L] ∈ K and F ∈ L2
(
K,L2(R∗)

)
. Since Vg is an isometry, so is V ′g and the

range of V ′g is L2(K,Kg). For [x,A] ∈ G, F ∈ L2
(
K,L2(R∗)

)
, and ω ∈ O,

(V ′gσ[x,A]F )[0, γ(ω)] = |det(A)|1/2‖ω‖
‖ωA‖ e2πiωx Vg

(
π1
(
γ(ω)−1Aγ(ωA)

)
F [0, γ(ωA)]

)
= |det(A)|1/2‖ω‖

‖ωA‖ e2πiωx λH(1,0)

(
γ(ω)−1Aγ(ωA)

)
Vg
(
F [0, γ(ωA)]

)
.

Thus, σ is equivalent to a representation σ2 acting on L2(K,Kg) as follows: For
[x,A] ∈ G, ϕ ∈ L2(K,Kg), and ω ∈ O,(

σ2[x,A]ϕ
)
[0, γ(ω)] = | det(A)|1/2‖ω‖

‖ωA‖ e2πiωx λH(1,0)

(
γ(ω)−1Aγ(ωA)

)
ϕ[0, γ(ωA)]. (5.13)

The next step is to map L2(K,Kg) isometrically into L2
(
GL2(R)

)
.

Let W1 : L2
(
GL2(R)

)
→ L2

(
K,L2(H(1,0))

)
be given by(

W1f [0,M ]
)
(C) = | det(C)|1/2f(MC),

for all C ∈ H(1,0), [0,M ] ∈ K.

Proposition 5.3.4. The map W1 is a unitary map onto L2
(
K,L2(H(1,0))

)
and its

inverse is given by, for F ∈ L2
(
K,L2(H(1,0))

)
and B ∈ GL2(R),(

W−1
1 F

)
(B) = | det(CB)|−1/2(F [0,MB])(CB).

Proof. For any integrable h on GL2(R), the Haar integral on GL2(R) can be expressed
as ∫

GL2(R)

h dµGL2(R) =

∫
K0

∫
H(1,0)

h(MC) | det(C)| dµH(1,0)
(C) dµK0(M).
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Thus, for any f ∈ L2(GL2(R)),∫
K0

‖W1f [0,M ]‖ 2

L2(H(1,0))
dµK0(M) =

∫
K0

∫
H(1,0)

|(W1f [0,M ])(C)|2dµH(1,0)
dµK0(M)

=

∫
K0

∫
H(1,0)

|f(MC)|2| det(C)| dµH(1,0)
dµK0(M)

=

∫
GL2(R)

|f |2 dµGL2(R) <∞.

Thus, W1f ∈ L2
(
K,L2(H(1,0))

)
and W1 is an isometry. It is clear W1 is linear. Thus,

the range of W1 is a closed subspace of L2
(
K,L2(H(1,0))

)
. We need to show that

the range of W1 is all of L2
(
K,L2(H(1,0))

)
. For any k ∈ Cc(K0) and h ∈ Cc(H(1,0)),

define Fk,h ∈ L2
(
K,L2(H(1,0))

)
by
(
Fk,h[0,M ]

)
(C) = k(M)h(C). The linear span of

{Fk,h : k ∈ Cc(K0), h ∈ Cc(H(1,0))} is dense in L2
(
K,L2(H(1,0))

)
. So we just need

to show each Fk,h is in W1L
2
(
GL2(R)

)
. For k ∈ Cc(K0) and h ∈ Cc(H(1,0)), let

fk,h(B) = | det(CB)|−1/2k(MB)h(CB), for all B ∈ GL2(R). Since B → (MB, CB) is a
homeomorphism of GL2(R) with K0 × H(1,0) and B → | det(CB)|−1/2 is continuous,
fk,h ∈ Cc

(
GL2(R)

)
⊆ L2

(
GL2(R)

)
. Moreover, since MMC = M and CMC = C,(

W1fk,h[0,M ]
)
(C) = | det(C)|1/2fk,h(MC) = | det(C)|1/2| det(C)|−1/2k(M)h(C)

=
(
Fk,h[0,M ]

)
(C),

for any C ∈ H(1,0) and [0,M ] ∈ K. Thus, Fk,h ∈ W1L
2
(
GL2(R)

)
, for any k ∈ Cc(K0)

and h ∈ Cc(H(1,0)). This implies W1 is a unitary map onto L2
(
K,L2(H(1,0))

)
. Also,

W−1
1 Fk,h = fk,h so, for any B ∈ GL2(R),

W−1
1 Fk,h(B) = fk,h(B) = | det(CB)|−1/2k(MB)h(CB)

= | det(CB)|−1/2(Fk,h[0,MB])(CB).

Since {Fk,h : k ∈ Cc(K0), h ∈ Cc(H(1,0)} is total in L2
(
K,L2(H(1,0))

)
,(

W−1
1 F

)
(B) = | det(CB)|−1/2(F [0,MB])(CB),

for all B ∈ GL2(R) and F ∈ L2
(
K,L2(H(1,0))

)
.

Continuing with a fixed g ∈ L2(R∗) satisfying
∫
R∗
∣∣|ν|1/2g(ν)

∣∣2dµR∗(ν) = 1, let

Hg = W−1
1 L2(K,Kg) ⊆ L2

(
GL2(R)

)
.

Then Hg is a closed subspace of L2
(
GL2(R)

)
and W1 : Hg → L2(K,Kg) is a unitary

map. Note that we use the same notation for W1 and its restriction to Hg. Recall the
representation π(1,0) of G acting on the Hilbert space L2

(
GL2(R)

)
. For [x,A] ∈ G,

f ∈ L2
(
GL2(R)

)
,

π(1,0)[x,A]f(B) = e2πi(1,0)B−1xf(A−1B), for all B ∈ GL2(R).
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Proposition 5.3.5. Let g ∈ L2(R∗) satisfy
∫
R∗
∣∣|ν|1/2g(ν)

∣∣2dµR∗(ν) = 1. The sub-

space Hg of L2
(
GL2(R)

)
is π(1,0)-invariant and the restriction of π(1,0) to Hg is equiv-

alent to σ2 via the unitary map W1 : Hg → L2(K,Kg).
Proof. Let [x,A] ∈ G. For f ∈ Hg, let F = W1f ∈ L2(K,Kg) and L2(K,Kg) is σ2-
invariant. Then σ2[x,A]F ∈ L2(K,Kg) as well. ThusW−1

1 σ2[x,A]F = W−1
1 σ2[x,A]W1f ∈

Hg.
For any B ∈ GL2(R), let ω = (1, 0)B−1. By Proposition 5.3.1 (a) MB = γ(ω) and

CB = γ(ω)−1B. Then, using (5.13) and | det
(
γ(ω)

)
|1/2 = ‖ω‖−1,

W−1
1 σ2[x,A]F (B) = | det(CB)|−1/2

(
σ2[x,A]F [0,MB]

)
(CB)

= | det(γ(ω))|1/2
| det(B)|1/2

(
σ2[x,A]F [0, γ(ω)]

)
(γ(ω)−1B)

= | det(A)|1/2
| det(B)|1/2‖ωA‖e

2πiωx λH(1,0)

(
γ(ω)−1Aγ(ωA)

)(
F [0, γ(ωA)]

)
(γ(ω)−1B)

= | det(A)|1/2
| det(B)|1/2‖ωA‖e

2πiωx
(
F [0, γ(ωA)]

)
(γ(ωA)−1A−1B)

= | det(A)|1/2
| det(B)|1/2‖ωA‖e

2πiωx
(
W1f [0, γ(ωA)]

)(
γ(ωA)−1A−1B

)
.

Before applying W1, note that | det
(
γ(ωA)−1A−1B

)
|1/2 = | det(B)|1/2‖ωA‖

| det(A)|1/2 , which will

cancel the first factor in the previous expression. Therefore, recalling that ω =
(1, 0)B−1,

W−1
1 σ2[x,A]W1f(B) = e2πiωxf(A−1B) = e2πi(1,0)B−1xf(A−1B) = π(1,0)[x,A]f(B).

This implies that Hg is π(1,0)-invariant and the restriction of π(1,0) to Hg is equivalent
to σ2.

Recall Theorem 5.2.5. The nontrivial orbit in the one dimensional case is O1 =
R̂ \ {0}, which is naturally identified with R∗ and D = L2(O1) ∩ L2(R∗). Fix {gj :
j ∈ J} ⊆ D such that {gj : j ∈ J} is an orthonormal basis in L2(O1). For any j ∈ J ,∫

R∗

∣∣|ν|1/2gj(ν)
∣∣2dµR∗(ν) =

∫
O1

|gj(ν)|2dν = ‖gj‖L2(O1)
= 1.

Identifying H(1,0) with G1, Theorem 5.2.5 says that L2(H(1,0)) =
∑⊕

j∈J Kgj . Therefore,

L2
(
K,L2(H(1,0))

)
=
∑⊕

j∈J L
2(K,Kgj).

ApplyingW−1
1 , now considered as a unitary map of L2

(
K,L2(H(1,0))

)
onto L2

(
GL2(R)

)
,

we get a decomposition of L2
(
GL2(R)

)
.

Proposition 5.3.6. Let {gj : j ∈ J} ⊆ D be an orthonormal basis in L2(O1). Then
each Hgj is a closed π(1,0)-invariant subspace of L2

(
GL2(R)

)
and the restriction of

π(1,0) to Hgj is equivalent to σ. Moreover, L2
(
GL2(R)

)
=
∑⊕

j∈J Hgj .

Recall from Proposition 5.1.3, if η ∈ L2(O) satisfies ‖η‖
L2(O)

= 1, then there is an

isometric linear map Uη : L2
(
GL2(R)

)
→ L2(G) that intertwines π(1,0) with λG. The
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map Uη is defined by

Uηf [y,B] =

∫
R̂2

η(ω)f
(
Bγ(ω)

)
e−2πiωB−1ydω, for all [y,B] ∈ G, f ∈ L2

(
GL2(R)

)
.

The steps we have taken to move from L2
(
K,L2(R∗)

)
to L2(G) are summarized in

the following diagram. (
L2
(
K,L2(R∗)

)
;σ
)

(L2(K,Kg);σ2)

(
L2
(
GL2(R)

)
; π(1,0)

)
(L2(G);λG)

V ′g

W−1
1

Uη

The vertical maps are linear isometries from the upper Hilbert space into the lower
Hilbert space intertwining the corresponding unitary representations. Thus, Φη,g =
Uη ◦W−1

1 ◦ V ′g is a linear isometry of L2
(
K,L2(R∗)

)
into L2(G) that intertwines σ

with λG.
Let F ∈ L2

(
K,L2(R∗)

)
. For [x,A] ∈ G,

Φη,gF [x,A] =

∫
R̂2

η(ω)
(
W−1

1 V ′gF
))(

Aγ(ω)
)
e−2πiωA−1xdω

= | det(A)|
∫
R̂2

η(ωA)
(
W−1

1 V ′gF
))(

Aγ(ωA)
)
e−2πiωxdω.

(5.14)

Observe that MAγ(ωA) = γ(ω) and CAγ(ωA) = γ(ω)−1Aγ(ωA). So

det(CAγ(ωA)) = det
(
γ(ω)−1Aγ(ωA)

)
=
‖ω‖2 det(A)

‖ωA‖2

Thus,(
W−1

1 V ′gF
))(

Aγ(ωA)
)

= ‖ωA‖
‖ω‖·| det(A)|1/2Vg(F [0, γ(ω)])

(
γ(ω)−1Aγ(ωA)

)
= ‖ωA‖
‖ω‖·| det(A)|1/2 〈F [0, γ(ω)], π1

(
γ(ω)−1Aγ(ωA)

)
g〉

L2(R∗)

= ‖ωA‖
‖ω‖·| det(A)|1/2

∫
R∗

(F [0, γ(ω)])(ν)π1
(
γ(ω)−1Aγ(ωA)

)
g(ν) dµR∗(ν).

Inserting this into (5.14) gives
Φη,gF [x,A] =∫
R̂2

∫
R∗
| det(A)|1/2‖ωA‖

‖ω‖ η(ωA)e−2πiωx(F [0, γ(ω)])(ν)π1
(
γ(ω)−1Aγ(ωA)

)
g(ν) dµR∗(ν) dω.

We will compare the expression for Φη,gF with a coefficient function of the irre-
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ducible representation σ.
If E ∈ L2

(
K,L2(R∗)

)
is fixed, then, for any F ∈ L2

(
K,L2(R∗)

)
, VEF is the contin-

uous function on G defined by VEF [x,A] = 〈F, σ[x,A]E〉
L2(K,L2(R∗))

, for all [x,A] ∈ G.
Recall that the Haar integral over K can be expressed using the parametrization

ω → γ(ω) by O, which is co-null in R̂2. Then, for [x,A] ∈ G,

VEF [x,A] = 〈F, σ[x,A]E〉
L2(K,L2(R∗))

=

∫
R̂2

∫
R∗

(F [0, γ(ω)])(ν)σ[x,A](E[0, γ(ω)])(ν) dµR∗(ν)
dω

‖ω‖2
.

(5.15)

Note that

σ[x,A](E[0, γ(ω)])(ν) =
| det(A)|1/2‖ω‖
‖ωA‖

e−2πiωx π1
(
γ(ω)−1Aγ(ωA)

)
E[0, γ(ωA)](ν).

If we select E as a function built from η and g, then we can make the expression for
VEF coincide with that for Φη,g. Define E as follows: For [0, L] ∈ K and ν ∈ R∗,

E[0, L](ν) = η((1,0)L−1)
| det(L)| g(ν).

If L = γ(ωA), then E[0, γ(ωA)](ν) = η(ωA)
| det(γ(ωA))| g(ν) = ‖ωA‖2η(ωA) g(ν). Thus

σ[x,A](E[0, γ(ω)])(ν)
1

‖ω‖2
=
| det(A)|1/2‖ωA‖

‖ω‖
η(ωA) e−2πiωx π1

(
γ(ω)−1Aγ(ωA)

)
g(ν).

Substituting into (5.15), there is a perfect match with the expression for Φη,gF . Thus,
we have the following theorem.

Theorem 5.3.7. Let g ∈ L2(R∗) satisfy
∫
R∗
∣∣|ν|1/2g(ν)

∣∣2dµR∗(ν) = 1 and let η ∈
L2(R̂2) satisfy ‖η‖

L2(R̂2)
= 1. Let E ∈ L2

(
K,L2(R∗)

)
be defined as

E[0, L](ν) =
η((1, 0)L−1)

| det(L)|
g(ν), for each [0, L] ∈ K and ν ∈ R∗.

Define VEF [x,A] = 〈F, σ[x,A]E〉
L2(K,L2(R∗))

, for [x,A] ∈ G and F ∈ L2
(
K,L2(R∗)

)
.

Then VE is a linear isometry of L2
(
K,L2(R∗)

)
into L2(G) that intertwines σ with λG.

In particular, σ is a square-integrable representation of G.

Remark. It is perhaps useful to formulate a more direct proof of a weaker version
of Theorem 5.3.7 that still implies the full content of Theorem 5.3.7 using Duflo-
Moore theory. The arguments below show the connection with the continuous wavelet
transform in one dimension clearly.

Let η ∈ L2(O) satisfy ‖η‖L2(O) = 1. Let g ∈ L2(R∗) satisfy
∫
R

∣∣|ν|1/2g(ν)
∣∣2 dν
|ν| = 1.

Let E ∈ L2 (K,L2(R∗)) be defined by

E[0, L](ν) = | det(L)|−1η
(
(1, 0)L−1

)
g(ν),
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for a.e ν ∈ R∗ and [0, L] ∈ K. Fix nonzero ξ ∈ L2(K0) and nonzero h ∈ L2(R∗). De-
fine F : K → L2(R∗) by F [0, L] = ξ(L)h, for a.e. L ∈ K0. Then F ∈ L2

(
K,L2(R∗)

)
and ‖F‖2

L2(K,L2(R∗)) = ‖ξ‖2
L2(K0)‖h‖2

L2(R∗).

Theorem 5.3.8. Let E,F ∈ L2
(
K,L2(R∗)

)
be defined as above. Then VEF ∈

L2(G) and, thus, σ is a square-integrable representation of G. Moreover, VE :
L2
(
K,L2(R∗)

)
→ L2(G) is an isometry.

Proof. Our main goal is to show that: ‖VEF‖2
L2(G) = ‖F‖2

L2(K,L2(R∗)). Recall the maps

Uη and Vg. From (5.1), for f ∈ L2
(
GL2(R)

)
,

Uηf [y,B] =

∫
R̂2

η(ω)f
(
Bγ(ω)

)
e−2πiωB−1y dω, for a.e. [y,B] ∈ G2. (5.16)

Since η ∈ L2(O) and ‖η‖L2(O) = 1, Proposition 5.1.3 implies Uη is a linear isometry
of L2

(
GL2(R)

)
into L2(G).

We also have the isometry W−1
1 : L2

(
K,L2(H(1,0))→ L2

(
GL2(R)

)
given by

W−1
1 F0(B) = | det(CB)|−1/2

(
F0[0,MB]

)
(CB), (5.17)

for a.e. B ∈ GL2(R) and F0 ∈ L2
(
K,L2(H(1,0)).

Since g ∈ L2(R∗) satisfies
∫
R

∣∣|ν|1/2g(ν)
∣∣2 dν
|ν| = 1, Theorem 5.2.3 implies Vg is a

linear isometry of L2(R∗) into L2(H(1,0)), where, for f ∈ L2(R∗),

Vgf(C) = 〈f, π1(C)g〉L2(R∗) =

∫
R
f(ν)π1(C)g(ν)

dν

|ν|
, for C ∈ H(1,0).

Note that, since F [0, L](ν) = ξ(L)h(ν), for a.e. ν ∈ R∗ and [0, L] ∈ K,

VEF [x,A] =

∫
K

∫
R
ξ(L)h(ν)

(
σ[x,A]E[0, L]

)
(ν)

dν

|ν|
dµK([0, L])

=

∫
R̂2

∫
R
ξ
(
γ(ω)

)
h(ν)

(
σ[x,A]E[0, γ(ω)]

)
(ν)

dν

|ν|
dω

‖ω‖2
.

(5.18)

Now(
σ[x,A]E[0, γ(ω)]

)
(ν)

=
∣∣det

(
CA−1γ(ω)

)∣∣−1/2
e2πiω xπ1

(
C −1
A−1γ(ω)

)
E
[
0,MA−1γ(ω)

]
(ν)

(5.19)

Note

E
[
0,MA−1γ(ω)

]
(ν) =

η
(
(1, 0)M−1

A−1γ(ω)

)∣∣det
(
MA−1γ(ω)

)∣∣ g(ν) =
η(ωA)∣∣det
(
MA−1γ(ω)

)∣∣g(ν).
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So (
σ[x,A]E[0, γ(ω)]

)
(ν)

=
∣∣det

(
CA−1γ(ω)

)∣∣−1/2
e2πiω x η(ωA)∣∣det

(
MA−1γ(ω)

)∣∣π1
(
C −1
A−1γ(ω)

)
g(ν)

(5.20)

Insert this into (5.18) and rearrange to get

VEF [x,A] =∫
R̂2

∣∣det (CA−1γ(ω)

)∣∣−1/2
e−2πiωxη(ωA)

ξ
(
γ(ω)
)∣∣∣det

(
MA−1γ(ω)

)∣∣∣
∫
R
h(ν)π1

(
C −1
A−1γ(ω)

)
g(ν)

dν

|ν|
dω

‖ω‖2

=

∫
R̂2

∣∣det (CA−1γ(ω)

)∣∣−1/2
e−2πiωxη(ωA)

ξ
(
γ(ω)
)∣∣∣det

(
MA−1γ(ω)

)∣∣∣Vgh(C −1
A−1γ(ω)

)
dω
‖ω‖2 .

Make the change of variables ω → ωA−1. From Proposition 5.3.1, we have that
γ(ωA−1) = MAγ(ω) and C −1

A−1γ(ωA−1) = CAγ(ω). Thus

VEF [x,A] =

∫
R̂2

| det(CAγ(ω)|1/2

| det(A)| e−2πiωA−1xη(ω)
ξ(MAγ(ω))

|det
(
γ(ω)
)
|
Vgh
(
CAγ(ω)

)
dω

‖ωA−1‖2 .

But
| det(CAγ(ω))|1/2

| det(A)|·| det
(
γ(ω)
)
|·‖ωA−1‖2

= | det(CAγ(ω))|−1/2, which can be verified using the iden-

tities in Proposition 5.3.1. Thus,

VEF [x,A] =

∫
R̂2

η(ω)e−2πiωA−1x| det(CAγ(ω))|−1/2ξ(MAγ(ω))Vgh
(
CAγ(ω)

)
dω.

Now, using (5.17),

| det(CAγ(ω))|−1/2ξ(MAγ(ω))Vgh
(
CAγ(ω)

)
= W−1

1 (V ′gF )
(
Aγ(ω)

)
.

Then

VEF [x,A] =

∫
R̂2

η(ω)(W−1
1 (V ′gF ))

(
Aγ(ω)

)
e−2πiωx dω = Uη

(
W−1

1 (V ′gF )
)
[x,A].

using (5.16). Since Uη, W
−1
1 , and V ′g are all linear isometries,

‖VEF‖2
L2(G) = ‖F‖2

L2(K,L2(R∗)).

Therefore, VEF ∈ L2(G) and thus σ is a square-integrable representation (see Def-
inition 2.5.1). Moreover E is a nonzero vector in Dσ and F is a nonzero vector in
L2
(
K,L2(R∗)

)
with ‖VEF‖L2(G) = ‖F‖L2(K,L2(R∗)). It follows from Theorem 2.5.5

that VE is a linear isometry of the Hilbert space of σ into L2(G).

It is useful to formulate the content of Theorem 5.3.7 for the representation σ1

on the Hilbert space L2
(
R̂2 × R̂

)
. Recall the unitary map U : L2

(
K,L2(R∗)

)
→
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L2
(
R̂2 × R̂

)
given by, for F ∈ L2

(
K,L2(R∗)

)
and (ω, ω3) ∈ R̂2 × R̂, let

(UF )(ω, ω3) =


(
F [0,γ(ω)]

)
(ω−1

3 )

‖ω‖·|ω3|1/2
for ω ∈ O, ω3 6= 0

0 otherwise.

For E as in Theorem 5.15, ξ ∈ L2
(
R̂2 × R̂

)
, let F = U−1ξ. Then, for [x,A] ∈ G,

〈ξ, σ1[x,A]UE〉
L2(R̂2×R̂)

= 〈UF,Uσ[x,A]E〉
L2(R̂2×R̂)

= 〈F, σ[x,A]E〉
L2(K,L2(R∗))

= VEF [x,A].

Let ψ = UE and define Vψξ[x,A] = 〈ξ, σ1[x,A]ψ〉
L2(R̂2×R̂)

, for [x,A] ∈ G and ξ ∈

L2
(
R̂2× R̂

)
. Then Vψ is a linear isometry of L2

(
R̂2× R̂

)
into L2(G) that intertwines

σ1 with λG. Note that det
(
γ(ω)

)
= ‖ω‖−2, so

ψ(ω, ω3) = UE(ω, ω3) =
(
E[0, γ(ω)]

)
(ω−1

3 )‖ω‖−1|ω3|−1/2

=
η
(
(1, 0)γ(ω)−1

)
| det

(
γ(ω)

)
|
g(ω−1

3 )‖ω‖−1|ω3|−1/2 = ‖ω‖η(ω)|ω3|−1/2g
(
ω−1

3

)
,

(5.21)

for a.e. (ω, ω3) ∈ R̂2 × R̂. Define ζ(ω) = ‖ω‖η(ω), for a.e. ω ∈ R̂2, and φ(ν) =

|ν|−1/2g
(
ν−1
)
, for a.e. ν ∈ R̂. Then 1 =

∫
R̂2 |η(ω)|2dω =

∫
R̂2 |ζ(ω)|2 dω

‖ω‖2 and

1 =

∫
R∗

∣∣|ν|1/2g(ν)
∣∣2dµR∗(ν) =

∫
R∗

∣∣|ν|−1/2g(ν−1)
∣∣2dµR∗(ν) =

∫
R̂
|φ(ν)|2 dν|ν| .

Recall the notation for elementary tensor products of functions on the factors of a

product space. For κ ∈ L2
(
R̂2
)

and θ ∈ L2
(
R̂
)
, κ⊗ θ ∈ L2

(
R̂2 × R̂

)
is defined by

(κ⊗ θ)(ω, ω3) = κ(ω)θ(ω3), for all (ω, ω3) ∈ R̂2 × R̂.

Thus, we can restate Theorem 5.3.7 in terms of the equivalent representation σ1 as a
corollary.

Corollary 5.3.9. Let ζ ∈ L2
(
R̂2
)

satisfy the condition that
∫
R̂2 |ζ(ω)|2 dω

‖ω‖2 = 1

and φ ∈ L2
(
R̂
)

satisfy
∫
R̂ |φ(ω3)|2 dω3

|ω3| = 1. Let ψ = ζ ⊗ φ and define Vψξ[x,A] =

〈ξ, σ1[x,A]ψ〉
L2(R̂2×R̂)

, for all [x,A] ∈ G and each ξ ∈ L2
(
R̂2 × R̂

)
. Then Vψ is a linear

isometry of L2
(
R̂2 × R̂

)
into L2(G) intertwining σ1 with λG.

Combining Theorem 5.1.4 with Proposition 5.3.6 will now provide a decompo-
sition of the regular representation, λG on L2(G), into infinitely many copies of σ.

Recall that O1 = R̂ \ {0} is the orbit of 1 in R̂ under the action of R∗ = GL1(R) and
it is endowed with Lebesgue measure. When the nonzero real numbers are consid-
ered as a group, R∗, it is endowed with Haar measure, µR∗ . The vector space D =
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{
h ∈ L2(R∗) :

∫
R∗
∣∣|u|1/2h(u)

∣∣2dµR∗(u) <∞
}

can be thought of as L2(O1) ∩ L2(R∗).
Fix an orthonormal basis {gj : j ∈ J} of L2(O1) consisting of functions in D as in
Proposition 5.3.6. For each j ∈ J , Kgj = VgjL

2(R∗) and Hgj = W−1
1 L2(K,Kgj).

Then Hgj is a closed π(1,0)-invariant subspace of L2
(
GL2(R)

)
and the restriction

of π(1,0) to Hgj is equivalent to σ via W−1
1 ◦ V ′g . Moreover, Proposition 5.3.6 says

L2
(
GL2(R)

)
=
∑⊕

j∈J Hgj .

On the other hand, O = R̂2\{(0, 0)} is the orbit of (1, 0) in R̂2 under the action of

GL2(R). It is equipped with the Lebesgue measure of R̂2. Fix an orthonormal basis

{ηi : i ∈ I} of L2(R̂2) = L2(O). For each i ∈ I, Uηi : L2(GL2(R)) → L2(G) is given
by

Uηif [y,B] =

∫
R̂2

ηi(ω)f
(
Bγ(ω)

)
e−2πiωB−1y dω,

for [y,B] ∈ G and f ∈ L2
(
GL2(R)

)
. By Theorem 5.1.4, each UηiL

2
(
GL2(R)

)
is a

λG-invariant closed subspace of L2(G) and Uηi intertwines π(1,0) with the restriction
of λG to UηiL

2
(
GL2(R)

)
and L2(G) =

∑⊕
i∈I UηiL

2
(
GL2(R)

)
.

For each (i, j) ∈ I × J , form Ei,j ∈ L2
(
K,L2(R∗)

)
by

Ei,j[0, L](ν) = ηi((1,0)L−1)
|det(L)| gj(ν), (5.22)

for ν ∈ R∗ and [0, L] ∈ K. The orthogonal decompositions just recalled imply the
following theorem.

Theorem 5.3.10. Let {ηi : i ∈ I} be an orthonormal basis of L2(O) and let
{gj : j ∈ J} be an orthonormal basis of L2(O1) consisting of functions in L2(R∗).
For each (i, j) ∈ I × J , form Ei,j ∈ L2

(
K,L2(R∗)

)
as in (5.22) and let Mi,j =

VEi,jL
2
(
K,L2(R∗)

)
. Then each Mi,j is a closed λG-invariant subspace of L2(G) and

VEi,j is an isometry that intertwines σ with the restriction of λG to Mi,j. Moreover

L2(G) =
∑⊕

(i,j)∈I×JMi,j.

Again, we consider this for the representation σ1 acting on L2
(
R̂2× R̂

)
. First, let

L2
(
R̂2 × R̂; dω dν

‖ω‖2|ν|

)
, L2

(
R̂2; dω

‖ω‖2

)
, and L2

(
R̂; dν|ν|

)
denote the weighted L2-spaces with respect to the indicated weights. Recall that

L2
(
R̂2 × R̂; dω dν

‖ω‖2|ν|

)
is naturally isomorphic to L2

(
R̂2; dω

‖ω‖2

)
⊗ L2

(
R̂; dν|ν|

)
.

For κ ∈ L2
(
R̂2; dω

‖ω‖2

)
, define U1κ(ω) = ‖ω‖−1κ(ω), for a.e. ω ∈ R̂2. For θ ∈

L2
(
R̂; dν|ν|

)
, define U2θ(ν) = |ν|−1/2θ(ν−1), for a.e. ν ∈ R̂.

Lemma 5.3.11. The map U1 is a unitary map of L2
(
R̂2; dω

‖ω‖2

)
onto L2

(
R̂2
)

and U2

is a unitary map of L2
(
R̂; dν|ν|

)
onto L2

(
R̂
)
.

95



Proof. We show the calculation for U2, which is a little more complicated than that

for U1. Let θ ∈ L2
(
R̂; dν|ν|

)
. Then

‖U2θ‖ 2

L2(R̂)
=

∫
R̂

∣∣|ν|−1/2θ(ν−1)
∣∣2dν (ω = ν−1, dν = ω−2dω)

=

∫
R̂

∣∣|ω|1/2θ(ω)
∣∣2ω−2dω

=

∫
R̂
|θ(ω)|2 dω|ω| = ‖θ‖ 2

L2(R̂;|ν|−1dν)
.

Thus U2θ ∈ L2
(
R̂
)

and U2 is an isometry. It is clear that U2 is linear. Also, the fact

that U2 is onto L2
(
R̂
)

and U−1
2 g(ν) = |ν|−1/2g(ν−1), for a.e. ν ∈ R̂, g ∈ L2(R̂). Thus,

U2 is a unitary map of L2
(
R̂; dν|ν|

)
onto L2

(
R̂
)
.

It is useful to have an orthonormal basis for L2
(
R̂2; dω

‖ω‖2

)
consisting of functions

which also lie in L2
(
R̂2
)

as well as for the pair L2
(
R̂; dν|ν|

)
and L2

(
R̂
)
.

Lemma 5.3.12. (a) There exists a countable set {ζi : i ∈ I} in Cc(O) that is an

orthonormal basis of L2
(
R̂2; dω

‖ω‖2

)
. (b) There exists a countable set {φj : j ∈ J} in

Cc(O1) that is an orthonormal basis of L2
(
R̂; dν|ν|

)
.

Proof. We start with the proof for (b). Because the unitary U2 of Lemma 5.3.11

maps Cc(O1) to Cc(O1), it suffices to find an orthonormal basis of L2(R̂) consisting

of functions in Cc(O1). Start with an orthonormal basis, {gk : k ∈ N}, of L2(R̂)

consisting of functions in Cc(R̂) such as the basis given by a Daubechies wavelet. Let

C =

{
n∑
j=1

ajgkj : n ∈ N, k1, · · · , kn ∈ N, aj ∈ Q + iQ, 1 ≤ j ≤ n

}
.

Then C is a countable dense subset of L2(R̂) consisting of continuous functions of
compact support. Our next step is to replace each member of C with a sequence of
from Cc(O1). For each k ∈ N, let

sk(ω) =


1 if |ω| > 1/k

k(k + 1)
(
|ω| − 1/(k + 1)

)
if 1/(k + 1) ≤ |ω| ≤ 1/k

0 if |ω| < 1/(k + 1),

for all ω ∈ R̂. Then, for any h ∈ C, limk→∞ ‖h − skh‖L2(R̂) = 0. Moreover, skh ∈
Cc(O1), for all h ∈ C and k ∈ N. Then C ′ = {skh : h ∈ C, k ∈ N} is a countable dense

sunset of L2
(
R̂
)

consisting of members of Cc(O1). Now, index the members of C ′ by
N. Thus, write C ′ as a sequence h1, h2, h3, · · · . Apply the Gram-Schmidt process to
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this sequence to generate an orthonormal basis B of L2
(
R̂
)

consisting of finite linear
combinations of members from C ′. This proves (b).

To prove (a), for g, h ∈ B, let g⊗h be defined on R̂2 by (g⊗h)(ω1, ω2) = g(ω1)h(ω2),

for all (ω1, ω2) ∈ R̂2. Then {g ⊗ h : (g, h) ∈ B × B} is countable set in Cc(O) that is

an orthonormal basis of L2
(
R̂2; dω

‖ω‖2

)
.

Fix countable sets {ζi : i ∈ I} in Cc(O) and {φj : i ∈ J} in Cc(O1) as in Lemma

5.3.12. For each i ∈ I, let ηi = U1ζi. Since U1 : L2
(
R̂2; dω

‖ω‖2

)
→ L2

(
R̂2
)

is a unitary

map, {ηi : i ∈ I} is an orthonormal basis of L2
(
R̂2
)

= L2(O). Likewise, let gj = U2φj,

for each j ∈ J , to get an orthonormal basis of L2
(
R̂
)

= L2(O1). If ψi,j = ζi⊗φj, then

ψi,j ∈ L2
(
R̂2 × R̂

)
. If Ei,j is defined from ηi and gj as in equation (5.22), for each

(i, j) ∈ I×J , then ψi,j = UEi,j, as in equation (5.21). Combining Corollary 5.3.9 with

Theorem 5.3.10, gives a corollary of Theorem 5.3.10. Note that, for ξ ∈ L2
(
R̂2 × R̂

)
and F = U−1ξ,

Vψi,jξ[x,A] = 〈ξ, σ1[x,A]ψi,j〉 = 〈F, σ[x,A]Ei,j〉 = VEi,jF [x,A],

for all [x,A] ∈ G. Therefore, the closed λG-invariant subspaces in Theorem 5.3.10

can also be given as Mi,j = Vψi,jL
2
(
R̂2 × R̂

)
, for (i, j) ∈ I × J .

Corollary 5.3.13. Let {ζi : i ∈ I} be an orthonormal basis of L2
(
R̂2; dω

‖ω‖2

)
consist-

ing of functions in Cc(O) and let {φj : j ∈ J} be an orthonormal basis of L2
(
R̂; dν|ν|

)
consisting of functions in Cc(O1). Let ψi,j = ζi ⊗ φj and let Mi,j = Vψi,jL

2
(
R̂2 × R̂

)
,

for (i, j) ∈ I × J . Then each Mi,j is a closed λG-invariant subspace of L2(G) and
Vψi,j is an isometry that intertwines σ1 with the restriction of λG to Mi,j. Moreover

L2(G) =
∑⊕

(i,j)∈I×JMi,j.

5.3.1 The Duflo-Moore Operator

Recall that, for η ∈ L2
(
R̂2 × R̂

)
, the linear map Vη : L2

(
R̂2 × R̂

)
→ Cb(G) is defined

by
Vηξ[x,A] = 〈ξ, σ1[x,A]η〉

L2(R̂2×R̂)
,

for any [x,A] ∈ G and any ξ ∈ L2
(
R̂2 × R̂

)
.

The steps leading to Corollary 5.3.13 indicate that the space

DT = L2
(
R̂2 × R̂

)⋂
L2
(
R̂2 × R̂; dω dν

‖ω‖2|ν|

)
=

{
η ∈ L2

(
R̂2 × R̂

)
:

∫
R̂

∫
R̂2

|η(ω, ν)|2 dω dν
‖ω‖2|ν| <∞

}

97



is important. It is a dense subspace of L2
(
R̂2×R̂

)
. We define a multiplication operator

T on L2
(
R̂2 × R̂

)
by, for ξ ∈ L2

(
R̂2 × R̂

)
,

Tξ(ω, ν) = ‖ω‖−1|ν|−1/2ξ(ω, ν), for a.e. (ω, ν) ∈ R̂2 × R̂.

Then Tξ is a Borel measurable function on R̂2× R̂, for any ξ ∈ L2
(
R̂2× R̂

)
. However

Tξ ∈ L2
(
R̂2 × R̂

)
if and only if ξ ∈ DT . Thus, T is an unbounded operator. For any

ξ ∈ DT , 〈Tξ, ξ〉
L2(R̂2×R̂)

≥ 0. That is, T is a positive operator.

Lemma 5.3.14. For any ξ ∈ DT , σ1[x,A]ξ ∈ DT , for all [x,A] ∈ G.

Proof. Fix [x,A] ∈ DT . For any ξ ∈ DT and a.e. (ω, ω3) ∈ R̂2 × R̂, by (5.11),∫
R̂

∫
R̂2

|σ1[x,A]ξ(ω, ω3)|2 dω dω3

‖ω‖2|ω3|
= | det(A)|2

∫
R̂

∫
R̂2

‖ω‖2
‖ωA‖2 |ξ(ωA, ω3vω,A)|2 dω dω3

‖ω‖2|ω3|

= | det(A)|
∫
R̂

∫
R̂2

1
‖ω‖2 |ξ(ω, ω3vωA−1,A)|2 dω dω3

|ω3|

= | det(A)|
∫
R̂2

∫
R̂

1
‖ω‖2 |ξ(ω, ω3vωA−1,A)|2 dω3

|ω3|dω

= | det(A)|
∫
R̂

∫
R̂2

|ξ(ω, ω3)|2 dω dω3

‖ω‖2|ω3|
<∞

Thus, σ1[x,A]ξ ∈ DT .

So DT is a (non-closed) σ1-invariant subspace of L2
(
R̂2 × R̂

)
. For any [x,A] ∈ G,

it is easy to see that σ1[x,A]Tσ1[x,A]∗ is a self-adjoint positive operator with domain
DT . It is an important fact that σ1[x,A]Tσ1[x,A]∗ is just a special multiple of the
operator T .

Proposition 5.3.15. For any [x,A] ∈ G, σ1[x,A]Tσ1[x,A]∗ = ∆G[x,A]1/2T .

Proof. Fix [x,A] ∈ G and recall that ∆G[x,A] = | det(A)|−1. For any ξ ∈ DT , let
ξ′ = σ1[x,A]−1ξ = σ1[−A−1x,A−1]ξ. Using (5.11),

σ1[x,A]Tξ′(ω, ω3) = | det(A)|·‖ω‖
‖ωA‖ e2πi(ωx+ω3uω,A)

(
Tξ′
)(
ωA, ω3vω,A)

= |det(A)|·‖ω‖
‖ωA‖2|ω3vω,A|1/2

e2πi(ωx+ω3uω,A)ξ′
(
ωA, ω3vω,A),

(5.23)

for a.e. (ω, ω3) ∈ L2
(
R̂2 × R̂

)
. On the other hand,

ξ′
(
ωA, ω3vω,A) = σ1[−A−1x,A−1]ξ

(
ωA, ω3vω,A)

= | det(A−1)|·‖ωA‖
‖ωAA−1‖ e2πi(ωA(−A−1x)+ω3vω,AuωA,A−1 )ξ(ω, ω3)

= | det(A)|−1·‖ωA‖
‖ω‖ e−2πi(ωx+ω3uω,A)ξ(ω, ω3)

(5.24)

using vω,AvωA,A−1 = 1 and vω,AuωA,A−1 = −uω,A, which follow from Proposition 5.3.1
(d) and the observation that Cγ(ω) = id, for any ω ∈ O. Inserting (5.24) in (5.23),
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using |vω,A|1/2 = | det(A)|1/2‖ω‖
‖ωA‖ from Proposition 5.3.1 (g), and reducing gives

σ1[x,A]Tσ1[x,A]∗ξ(ω, ω3) = | det(A)|−1/2‖ω‖−1|ω3|−1/2ξ(ω, ω3)

= ∆G[x,A]1/2Tξ(ω, ω3),

for a.e. (ω, ω3) ∈ R̂2 × R̂. This shows that σ1[x,A]Tσ1[x,A]∗ and ∆G[x,A]1/2T agree

as self-adjoint positive operators on L2
(
R̂2 × R̂

)
.

In the terminology of [9], Proposition 5.3.15 says T is semi-invariant, with weight

∆
1/2
G , with respect to the irreducible representation σ1. However, Corollary 5.3.9

implies that σ1 is a square-integrable representation. Let Cσ1 denote the Duflo-Moore
operator associated with σ1 as described in Theorem 2.25 of [14]. In particular, Cσ1
is semi-invariant, with weight ∆

1/2
G , with respect to the irreducible representation σ1

as well. By Lemma 1 of [9], there is a positive constant c such that Cσ1 = cT .

Theorem 5.3.16. The Duflo-Moore operator Cσ1 associated with σ1 is given by, for

any ξ ∈ L2
(
R̂2 × R̂

)
, Cσ1ξ(ω, ω3) = ‖ω‖−1|ω3|−1/2ξ(ω, ω3), for a.e. (ω, ω3) ∈ R̂2 × R̂.

Proof. Let c > 0 be such that Cσ1 = cT . As in Corollary 5.3.9, let ζ ∈ L2
(
R̂2
)

satisfy

the condition that
∫
R̂2 |ζ(ω)|2 dω

‖ω‖2 = 1 and φ ∈ L2
(
R̂
)

satisfy
∫
R̂ |φ(ω3)|2 dω3

|ω3| = 1. Let
ψ = ζ ⊗ φ. Then

‖Tψ‖2

L2(R̂2×R̂)
=

∫
R̂

∫
R̂2

∣∣‖ω‖−1|ω3|−1/2ψ(ω, ω3)
∣∣2dω dω3

=

∫
R̂

(∫
R̂2

|ζ(ω)|2 dω
‖ω‖2

)
|φ(ω3)|2 dω3

|ω3| = 1.

Moreover, Vψ is an isometry of L2
(
R̂2 × R̂

)
into L2(G). On the other hand, from

Theorem 2.25 of [14] we see that Vψ is an isometry of L2
(
R̂2× R̂

)
into L2(G) exactly

when
1 = ‖Cσ1ψ‖L2(R̂2×R̂)

= ‖cTψ‖
L2(R̂2×R̂)

= c‖Tψ‖
L2(R̂2×R̂)

= c.

Therefore, Cσ1 = T .

The Duflo-Moore orthogonality relations for the square-integrable representation
σ1 can now be stated.

Corollary 5.3.17. Let ξ1, ξ2 ∈ L2
(
R̂2 × R̂

)
and ψ1, ψ2 ∈ DT . Then

〈Vψ1ξ1, Vψ2ξ2〉
L2(G)

= 〈ξ1, ξ2〉
L2(R̂2×R̂)

〈Tψ2, Tψ1〉
L2(R̂2×R̂)

.

Corollary 5.3.18. Let ψ ∈ L2
(
R̂2 × R̂

)
satisfy∫

R̂

∫
R̂2

|ψ(ω, ω3)|2

‖ω‖2|ω3|
dω dω3 = 1. (5.25)
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Then Vψ : L2
(
R̂2 × R̂

)
→ L2(G) is an isometry that intertwines σ1 with λG.

5.4 The Generalized Wavelet Transforms

Corollaries 5.3.17 and 5.3.18 are the critical parts of forming a continuous wavelet
transform and reconstruction formula arising from the square-integrable representa-
tion σ1 of G.

Definition 5.4.1. A function ψ ∈ L2
(
R̂2 × R̂

)
is called a σ1-wavelet if∫

R̂2

∫
R̂

|ψ(ω, ω3)|2

‖ω‖2|ω3|
dω dω3 = 1.

For each x ∈ R2 and A =

(
a b
c d

)
∈ GL2(R), define ψx,A on R̂2 × R̂ by

ψx,A(ω, ω3) = |det(A)|·‖ω‖
‖ωA‖ e2πi(ωx+ω3uω,A)ψ

(
ωA, ω3vω,A), for a.e. (ω, ω3) ∈ R̂2 × R̂,

where

uω,A =
(ac+ bd)(ω2

1 − ω2
2)− (a2 + b2 − c2 − d2)ω1ω2

(aω1 + cω2)2 + (bω1 + dω2)2

and

vω,A =
(ad− bc)(ω2

1 + ω2
2)

(aω1 + cω2)2 + (bω1 + dω2)2
.

Then ψx,A ∈ L2
(
R̂2 × R̂

)
.

Definition 5.4.2. For each ξ ∈ L2
(
R̂2 × R̂

)
, let

Vψξ[x,A] = 〈ξ, ψx,A〉L2(R̂2×R̂)
, for all x ∈ R2, A ∈ GL2(R).

Then Vψ is called the σ1-wavelet transform with σ1-wavelet ψ.

The reconstruction formula given in Proposition 2.5.9 can now be stated for the
σ1-wavelet transform.

Theorem 5.4.3. Let ψ ∈ L2
(
R̂2×R̂

)
be a σ1-wavelet. Then, for any ξ ∈ L2

(
R̂2×R̂

)
,

ξ =

∫
GL2(R)

∫
R2

Vψξ[x,A]ψx,A
dx dµGL2(R)(A)

| det(A)| ,

weakly in L2
(
R̂2 × R̂

)
.

Recall that the integral in Theorem 5.4.3 is over the 6 real variables x1, x2, a, b, c, d,

where A =

(
a b
c d

)
and

dx dµGL2(R)(A)

| det(A)| = dx1 dx2 da db dc dd
|ad−bc|3 .
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This transform can also be expressed in a related manner by taking a Fourier
transform in the distinguished third variable.

Let F3 : L2
(
R̂2 × R̂

)
→ L2

(
R̂2 × R

)
be the unitary map such that

F3ξ(ω, t) =

∫
R̂
ξ(ω, ω3)e−2πiω3tdω3, for any (ω, t) ∈ R̂2 × R,

and ξ ∈ Cc
(
R̂2 × R̂

)
. Use F3 to move σ1 to an equivalent representation acting on

L2
(
R̂2 × R

)
. Then F−1

3 : L2
(
R̂2 × R

)
→ L2

(
R̂2 × R̂

)
is such that

F−1
3 f(ω, ω3) =

∫
R
f(ω, t)e2πiω3tdt, for all (ω, t) ∈ R̂2 × R

and f ∈ Cc
(
R̂2 × R

)
.

Definition 5.4.4. For each [x,A] ∈ G2, let ρ[x,A] = F3σ1[x,A]F−1
3 .

Proposition 5.4.5. The map ρ is a square-integrable representation of the affine

group G = R2 o GL2(R) on the Hilbert space L2
(
R̂2 × R

)
. For f ∈ L2

(
R̂2 × R

)
and

[x,A] ∈ G,

ρ[x,A]f(ω, t) = ‖ωA‖
‖ω‖ e

2πiωxf
(
ωA,

t−uω,A
vω,A

)
,

for a.e. (ω, t) ∈ R̂2 × R.

Proof. Since ρ is equivalent to σ1 (and σ), it is an irreducible representation that is
square-integrable. To verify its formula, let ξ = F−1

3 f . Then

ρ[x,A]f(ω, t) = F3σ1[x,A]ξ(ω, t) =

∫
R̂
σ1[x,A]ξ(ω, ω3)e−2πiω3tdω3

=

∫
R̂

| det(A)|·‖ω‖
‖ωA‖ e2πi(ωx+ω3uω,A)ξ(ωA, ω3vω,A)e−2πiω3tdω3

= |det(A)|·‖ω‖
‖ωA‖ e2πiωx

∫
R̂
ξ(ωA, ω3vω,A)e−2πiω3(t−uω,A)dω3.

(5.26)

Make the change of variables ω′3 = ω3vω,A. So dω′3 = |vω,A|dω3 = | det(A)|·‖ω‖2
‖ωA‖2 dω3.

Thus, (5.26) becomes

ρ[x,A]f(ω, t) = ‖ωA‖
‖ω‖ e

2πiωx

∫
R̂
ξ(ωA, ω′3)e−2πiω′3v

−1
ω,A(t−uω,A)dω′3

= ‖ωA‖
‖ω‖ e

2πiωxf
(
ωA,

t−uω,A
vω,A

)
,

for a.e. (ω, t) ∈ R̂2 × R.

Definition 5.4.6. A function w ∈ L2
(
R̂2 × R

)
is called a ρ-wavelet if F−1

3 w is a
σ1-wavelet.
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If w is a ρ-wavelet, for each [x,A] ∈ G, define wx,A = ρ[x,A]w. That is,

wx,A(ω, t) = ‖ωA‖
‖ω‖ e

2πiωxw
(
ωA,

t−uω,A
vω,A

)
, for a.e. (ω, t) ∈ R̂2 × R,

where uω,A and vω,A are as above.

Definition 5.4.7. For each f ∈ L2
(
R̂2 × R

)
, let

Vwf [x,A] = 〈f, wω,A〉L2(R̂2×R)
, for all x ∈ R2, A ∈ GL2(R).

Then Vw is the ρ-wavelet transform with ρ-wavelet w.

Theorem 5.4.8. Let w ∈ L2
(
R̂2×R

)
be a ρ-wavelet. Then, for any f ∈ L2

(
R̂2×R

)
,

f =

∫
GL2(R)

∫
R2

Vwf [x,A]wx,A
dx dµGL2(R)(A)

| det(A)| ,

weakly in L2
(
R̂2 × R

)
.
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