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Abstract

The set of all invertible affine transformations of a two dimensional real vector space
forms a locally compact group G5 that is isomorphic to the semi-direct product group
R? x GLy(R), where GLy(R) denotes the group of 2 x 2 real matrices with nonzero
determinant. We give an explicit decomposition of the left regular representation of
(G5 as a direct sum of infinitely many copies of a single irreducible representation.
We also obtain an analogue of the continuous wavelet transform associated to the
representation we identify.
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Chapter 1

Introduction

Any affine transformation of the two dimensional real vector space R? is of the form
z — Az + z, for some linear transformation A of R? and some vector z € R2.
We will view R? as column vectors and linear transformations of R? as given by
2 x 2 real matrices. Such a transformation is invertible if and only if A is invertible.
Let G5 denote the set of all invertible affine transformations of R?. Equipped with
composition, GG is a group and, in fact, is a locally compact group with the natural
topology. As a locally compact group, G5 has a left Haar measure. The main purpose
of this thesis is to develop the details of harmonic analysis of functions on G5 that
are square-integrable with respect to its left Haar measure. To be more precise, the
left regular representation of G5 is decomposed as a direct sum of infinitely many
copies of a single irreducible unitary representation. A secondary purpose is to derive
an analogue of the continuous wavelet transform from the special properties of this
irreducible unitary representation of G5. A new way of transforming and analyzing
functions of three variables is obtained.

Basic properties of locally compact groups, left Haar measure, G-spaces, and
function spaces are introduced in the first section of Chapter 2. This followed by
reviewing Hilbert spaces and operators on Hilbert space, including the unitary group
U(H) of a Hilbert space H and the terminology around unbounded operators on a
Hilbert space. The main calculations in this thesis often use isomorphisms from one
Hilbert space to another related Hilbert space. In the third section of Chapter 2, the
basic form of one of these key Hilbert space isomorphisms is developed. The results
in this section are not original, but details are given in a form that is useful for later
in the thesis.

The fourth section of Chapter 2 introduces the basic theory of unitary represen-
tations. If G is a locally compact group, a unitary representation of G is a homo-
morphism 7 of G into U(H,), the unitary group of some Hilbert space H,, that is
continuous in a natural way. If 7 is a unitary representation of G and n € ‘H,, define
V€, for each £ € H,, as a complex-valued function on G, by

Vié(z) = (&, m(@)n)2,, forall z € G.

The continuity assumption on unitary representations means that V,§ is a bounded



continuous function on G, for each { € H,. These linear maps V, : { — V,,§ play
a key role in this thesis. A unitary representation 7 is called irreducible if there are
no nontrivial closed subspaces of H, that are invariant under w(x), for all x € G.
When 7 is irreducible, the map V,, is one to one, for any nonzero n € H,. The space
of all Borel measurable complex-valued functions on G that are square-integrable
with respect to the left Haar measure forms a Hilbert space with a natural inner
product when functions agreeing almost everywhere are considered equal. This space
of square-integrable functions is denoted L?(G).
For each x € G, define \g(z) : L*(G) — L*(G) by, for f € L*(G),

(Ae(@)f) () = flay), forall y € G.

Left invariance of the left Haar measure on GG implies that Ag is a unitary represen-
tation of G, called the left regular representation. One of the primary goals in doing
harmonic analysis on a particular group is to decompose its left regular represen-
tation into irreducible representations in some sense. When G is a compact group,
the Peter-Weyl Theorem shows how to decompose Ag as a direct sum of irreducible
representations. Part of the reason why the Peter-Weyl Theorem holds is that Haar
measure on a compact group is a finite measure. Therefore, every bounded continuous
complex-valued function is in L?(G) when G is compact. Therefore, if 7 is irreducible
and 1 € H,, then V,, : H, — L*(G). In fact, if the norm of 7 equals the square root
of the dimension of H, (which is finite when G is compact), then V, is a unitary map
of H, onto the range of V,,. Moreover, V,, makes 7 equivalent to a subrepresentation
of )‘G-

In general, an irreducible representation 7 of a locally compact group G is called
square-integrable if there exist nonzero vectors 1, & € H, such that V,¢ € L*(G). The
properties of square-integrable representations for a general locally compact group
were studied by Duflo and Moore in [9]. One of the main theorems from [9] is now
called the Duflo-Moore Theorem. This theorem is presented as Theorem 2.5.5 in
the fifth section of Chapter 2, along with other basic properties of square-integrable
representations. A consequence of the Duflo-Moore Theorem is that, if 7 is a square-
integrable representation of GG, then there is a dense subspace D, of H, and a positive
operator Cr : D — H, such that if n € D, satisfies ||Crnll%, = 1, then V], is
an isometry of H, into L*(G). A direct consequence of Vj, being an isometry was
recognized in [15]. If V}, is an isometry, then it preserves inner products. That is, for
&veH,,

(Va&, Vi) 2y = (& V), (1.1)

The left hand side of (1.1) can be rearranged using the definition of V,v. The left
Haar measure of G is denoted p.

Vot Vi) sy = /G Vg (o) o @), dps ()

= [ Vi mom . duato) = ( [ Vitamamduatav)

Hr



where the integral of the H, Valued function V, S(x)w( )n is in the weak sense. Using
(1.1) gives, for each & € H, (&, = ([, Vo&(@)m(z)n dpc(x 1/>H forany v € H,.
That is,

£= /V§ x)ndug(x), weakly in H,. (1.2)

Thus, under the special circumstances of a square-integrable representation 7 and
a distinguished vector nn € H, satisfying ||Crn||3, = 1, any vector £ € H, can be
reconstructed from the function V,§ on G that records the inner product of § with
m(x)n, for each = € G.

The easiest significant example of a non-compact locally compact group with a
square-integrable representation is the group G; consisting of affine transformations
of the real line. That is, G = {[z,a] : z,a € R,a # 0}. The group product in
G is given by [z,ally,b] = [x + ay,ab] and the left Haar integral of any function
[+ Gi — C for which the integral exists is [~ [* f[z,a]%4%. There is a natural
unitary representation p of G on the Hilbert space L*(R) given by, for any [x,a] € G4,

plz,alf(t) = |a|™ 1/2f( - ) for a.e. t € R,

and for any f € L?*(R). This unitary representation of G; has been known to be
irreducible for a long time, for example see page 132 of [22] where it is discussed in an
equivalent form. It is also relatively easy to show that p is square-integrable, so the
Duflo-Moore theory applies. A connection was made in [15] with wavelet analysis that
was developing as a tool in signal processing at that time. To describe this connection,
we need the notation of the Fourier transform, which is introduced in section 7 of
Chapter 2. Let F : L*(R) — L2( ) denote the unitary map such that Ff = f, for

any integrable f € L?(R). Let Dp = {5 € L2( ) 7 E@PE g, < oo} Define a map

el
T :D, — LA(R) by T¢(w) = |w|~/2¢(w), for a.e. w € R and every &€ € D,. The dense
subspace of L?(R) given in the Duflo-Moore Theorem is D, = {f € L*(R) : Ff € 15,,}.
The positive operator C, then takes the form C, = F'T'F. Abusing notation,
write f for Ff, for any f € L*(R). Then, for any w € L*(R), the condition that

|Cow|| 2y = 1 becomes

00 |50 V|2

/ UG (1.3)
m——

For [z,a] € G1, plz,alw is viewed as w “dilated” by a and “translated” by z. It is

commonly denoted w, ,. That is

t —
W o(t) = |a| ™ w ( a$> , for a.e. t € R. (1.4)

For a w € L*(R) that satisfies (1.3), define V,, f, a function on Gy, for each f € L*(R),
by

Vi flz,a) = /_OO f(t)wyqo(t) dt, for all [z,a] € Gh. (1.5)



The reconstruction formula (1.2) becomes, for any f € L?(R),
f= / / Vwflz,al wy, #, weakly in L*(R). (1.6)
—o0 J —o0 a

In the language of wavelet theory, a function w € L?*(R) satisfying (1.3) is called a
wavelet for the continuous wavelet transform. The map V,, given in (1.5) is called the
continuous wavelet transform with wavelet w and (1.6) is called the reconstruction
formula. See [17] and [7] for good introductions to the continuous wavelet transform
as well as a presentation of discrete versions of the wavelet transform in one dimension.
Note that the transform described in equations (1.3) to (1.6) was known before [15]
and (1.6) is also called the Calderén Reproducing Formula in dimension one.

There are many ways in which wavelet theory has been generalized to higher
dimensions. One line of research is based on the theory of square-integrable represen-
tations and the Duflo-Moore Theorem. In [4], the structure of G| was generalized.
Let GL,(R) denote the locally compact group of invertible n x n real matrices. Let
H be a closed subgroup of GL,(R). Then H acts on column vectors in R” by matrix
multiplication. Let G = R" x H, the semi-direct product group. That is,

G=A{[z,A]:z e R", A€ H},

with group product given by [z, A]ly, B] = [z + Ay, AB]. The identity in G is [0,1id,],
where id,, denotes the n x n identity matrix, and [z, A]" = [-A~'z, A~!]. There is
a natural unitary representation p of G' on the Hilbert space L*(R™). For [z, A] € G
and any f € L*(R"),

plz, Alf(y) = | det(A)|~Y2f (A™'(y —2)), for a.e. y € R™ (1.7)
For notational convenience, we use the notation
@:{g: (wh... 7wn) CW,c ,Wh ER}

Forgeﬂ/%;, the H-orbit of wis O, = {wA: A€ H} and H, = {A € H : wA = w}
is called the stabilizer of w. When H, = {id,}, the H-orbit O, is called a free H-
orbit. One consequence of the main theorem in [4] is that, if H is such that there
exists an H-orbit O, that is free, open, and dense in IE{TT, then the representation
p is a square-integrable representation of G. The operator C, of the Duflo-Moore
theory was also identified in [4]. Thus any closed subgroup H of GL,(R) that has
a free, open, and dense orbit in Rn yields a generalization of the continuous wavelet
transform with a reconstruction formula that is a special case of (1.7). In [14], the

o~

condition that there exists a free H-orbit is weakened slightly. If w € R” is such
that O, is open, dense, and is such that H, is compact, then p, as given by (1.7), is
a square-integrable representation of G. One of the main results of this thesis is to
develop a generalization of the continuous wavelet transform from a square-integrable
representation of G that does not arise as in (1.7). This will be discussed later in
the introduction.



In Section 2.6, the Peter-Weyl Theorem is presented in a manner that emphasizes
the role of the maps V;. This theorem gives a method of analyzing functions in
L?*(G) when @G is a compact group. For compact G, every irreducible representation
of GG is square-integrable. Every irreducible representation is finite dimensional also.
Suppose {7, : j € J} is a list of irreducible representations such that any irreducible
representation of G is equivalent to exactly one of the 7;. For j € J, let d; = dim(H,)
and let {{i : 1 <k < d;} be an orthonormal basis of H.,. The subspace D, given
in the Duflo-Moore theory is simply H,, itself and the operator C5, is given by

multiplication by the constant dj_l/ ®. Let ni = d;/ 25%, for 1 < k < d; and for each
j € J. Then each 7j satisfies the condition ||C7rj77i||7-£«j = 1. Thus V”i is a linear
isometry of H,, into L*(G). Let }Cni = VniH“J' The Peter-Weyl Theorem implies
that L?(G) decomposes as an orthogonal direct sum of the closed subspaces K L for
j€J, 1<k <dj In particular, {V Q cje J,1 <kt <d}isan orthonormal

basis of L?(G). Another of the main results in this thesis provides an analog of the
Peter-Weyl Theorem for the non-compact group Gs.

A brief review of the Fourier transform and the properties used in this thesis is
given in the seventh section of Chapter 2.

More details are provided for the process of inducing a representation from a
subgroup of a locally compact group and this is done in the eighth section. We use
[12] and [20] as sources for induced representations. If 7 is a unitary representation
of a closed subgroup H of a locally compact group G, there is a complicated way of
defining a Hilbert space consisting of functions from G to the Hilbert space H, which
satisfy certain conditions along with a unitary representation indgﬂ of G that acts on
that Hilbert space. In certain circumstances, one can show that indgﬂ is equivalent
to a representation acting on a more concrete Hilbert space. In all the cases, where we
induce a representation in this thesis, the following situation holds: There is a closed
subgroup K of G that is complementary to the closed subgroup H in the sense that
G = KH and K N H = {e}, where e is the identity element of G. This situation is
discussed in [20], but there is a small error in the treatment in [20]. For that reason,
a careful development is presented in Section 2.8 and the correct formula is given
in Proposition 2.8.9. There is a representation, denoted ¢™ that acts on the Hilbert
space L?*(K;H,) and o™ is equivalent to indgﬁ. Even though Proposition 2.8.9 is
much easier to work with than the abstract definition of an induced representation,
there are problems to solve to get a simple form for any particular group.

In [22], George Mackey developed a systematic method of constructing all the
irreducible representations of a locally compact group G when G = N x H, where N
is an abelian locally compact group and H is a locally compact group that acts on
N. For all the groups studied in this thesis, N = R™ and H is a closed subgroup of
GL,(R). In Section 2.9, Mackey theory for semi-direct products is summarized for
groups of the form R" x H. We are particularly interested in the situation where
there exists an w € R such that the H-orbit O,, is open and dense in Rn, If 7 is an
irreducible representation of H,, define a representation x, ® m of R" x H,, by, for



[z,C] € R" x H, and £ € H,,
(Xg ® 7T) [z, C)¢ = ™21 (C)E.

Part of the content of Theorem 2.9.5 is that o = ind%ijgw(xg ® ) is an irreducible
representation of R™ x H. Moreover, from [21], Corollary 11.1, we know that this
induced representation o will be square-integrable when 7 is a square-integrable rep-
resentation of H,. Therefore, the Duflo-Moore theory means that there will be an
analog of the continuous wavelet transform associated with such a o. We know of no
case where such a transform has been investigated except when H,, is compact and
7 in the trivial representation of H, as presented in [14].

The original work of this thesis is presented in Chapters 3, 4, and 5. In Chapter
3, a group of the form R® x H is investigated as an illustrative example. The closed
subgroup H is selected from one in the list given in [5]. It has the property that there
exists an w € R? such that O, is open and dense and H,, is compact. In Theorem
3.1.9 and the material leading up to, a wavelet transform is presented associated with
each irreducible representations of H,,.

Chapter 4 is devoted to the groups G, = R"™ x GL,(R). Various algebraic
properties are developed as well as the left Haar integration formula for different

parametrizations. A key result is Proposition 4.3.3 which says: If A = (Z 2) €

GL2(R), then A can be uniquely decomposed as A = M4C}y, where

(s —t , _d(ad —bc) ,  —b(ad — bc)
MA—(t S),WIthS— T = ERTE

and

10 , cd + ab v’ + d?
Ca = (u U), with v = (ad—bc)’v_ (ad —bo)’

Thus, we can reparametrize GLy(R) as

GLy(R) = {(i _t) (i 2) s, t,u,v € R, §%+ ¢ >0,v7é0}. (1.8)

S

If w=(1,0) € R2, then

Hug) = {A € GLy(R) : (1,004 = (1,0)} = {(i g) cu,v € R, v £ 0} .

An important observation is that H(j ¢y is isomorphic to the one dimensional affine
group (1. The other factors in the parametrization in (1.8) make up another closed
subgroup of GLy(R). Let

KOZ{G _St) :s,teR,52+t2>O}.



Then K is also a closed subgroup of GLy(R). Moreover, GLy(R) = KoH ) and
KoM Hq gy = {ide}. This leads to a factorization of G,. Let

K ={[0,M]: M € Ky} and H:{[Q,O]IQGRQ,CGH(LU)}.

Then K and H are closed subgroups of G such that Go = K H and KNH = {[0, idy]}.
This factorization of G5 makes the computations of Chapter 5 feasible.

In the first section of Chapter 5, a unitary representation of the n-dimensional
affine group G, is calculated and realized as a subrepresentation of the left regular
representation. Let N = {[z,id,] : z € R"}. Then N is a closed normal abelian
subgroup of G,,. Its dual group is N = {Xw : w € R"}, where x,[z,id,] = e*™£ for
all [z,id,] € N. Fix w, = (1,0,---,0) € R, The induced representation ind§ Xw, 18
unitarily equivalent to a representation %o that acts on the Hilbert space L? (GLn(]R))
as follows: For [z, A] € G, and any f € L?(GL,(R)),

wolz, Alf(B) = e>™0B 2 f(AT'B), (1.9)

for almost every B € GL,(R). If n = 1, then w, = 1 and 7! is investigated in the
second section of Chapter 5, where it is shown to be irreducible and even square-
integrable. Also, it turns out to be unitarily equivalent to the natural representation
of G; on L?(R) that leads to the continuous wavelet transform in one dimension.
However, if n > 1, then 7% is reducible. Nevertheless, we show that 7% is equivalent
to a subrepresentation of the left regular representation of G,,. In fact, Theorem 5.1.4
shows that the left regular representation of G, is a direct sum of infinitely many
copies of w0,

The third section of Chapter 5 contains the major computation of this work.
We focus on the case of n = 2 to obtain an analysis of functions in L*(G3). The
strategy is to exploit the fact that the stability subgroup Hp ) of wy, = (1,0) is
isomorphic to G; and 7! happens to correspond to an irreducible representation of
(1. Mackey theory then tells us that we get an irreducible representation of GG, if we
induce x(1,0)@7" from H = R?x H(; o) up to G». Moreover, we know from [21] and [4]
that the resulting induced representation will be square-integrable and equivalent to a
subrepresentation of the left regular representation of G5. We realize indff (x(1,0®7")
as a representation we denote by o acting on the Hilbert space L? (K L2 (R*)), where
R* is the multiplicative group of nonzero real numbers and the measures are the Haar
measure of K and R*. The formula for ¢ is computed and given in equation (5.8).
In steps, o is moved, using unitary equivalences from L? (K ; LZ(R*)) to a subspace
of L*(K; L*(H1,)) and then to a subspace of L?(GL2(R)), where it is equivalent to
a subrepresentation of 7("?). Finally, it is moved to L?(G3) and a subrepresentation
of Ag,. One of the main theorems of the thesis is Theorem 5.3.7 which establishes
o as a square-integrable representation. We also formulate a slightly weaker version,
Theorem 5.3.8, and present a direct proof which is easier to follow.

To make o easier to understand, it is moved to L? (]1/%\3) The formulas are much
casier to write if R3 is written as R? x R. That is R = {(w,ws) 1w € R,wy € I@} We



also use the fact that K is homeomorphic to O = Oy ) = R2 R2\ {0}, which is co-null

in R2. This homeomorphism is given by v : O — Kj, where v(w) = m ” <w1 _:)2>,
1
for all w = (wy,ws) € O. For F € L2(K, L(R*))) and (w,ws) € R? x R, let
(Flor(@)]) (w3 )
(UF)(Qa W3) = lwlllws| 172 forae. we O,ws #0
0 otherwise.

Then U is a unitary map from L*(K, L*(R*))) onto L? (]1/%\2 X @) L? (R ). Move o
to L*(R? x I@) using U by setting o[z, A] = Uc[z, AJU!, for all [z, A] € G5. This
gives , for £ € L*(R? x I@),

(01, AJE) (w, wy) = LAl e2mitwrtasuna) ¢ (WA, wyn,, 4), (1.10)

llwAll

for a.e. (w,ws) € R2xR. In (1.10), there are two functions u, 4 and v, 4. They are
a b

d
for u, 4 and v, 4 are given in Proposition 5.3.2. Our derivation of o; shows that it
is a square-integrable representation of GG5. We also get explicit ways of showing it
is equivalent to a subrepresentation of A\g,. In fact, we formulate an analog of the
Peter-Weyl Theorem for compact groups.

Let L2 <]R2, T ”2) denote the weighted L2-space formed from Borel functions ¢
on R? such that J& [CW)? %5 < co. Likewise for L2 (HA% d—”). Let O; = R\ {0}.

[lwl] )y

Note that C.(O) is dense in L? (RZ, ”w”2> and C.(O) is dense in L? <]1/§ @>. Let

" vl

rational functions in wy,ws, a, b, ¢, and d, where A = . The precise expressions

{¢; : i € I} be an orthonormal basis of L? <]R2; ﬁ) consisting of functions in C,(O)

and let {¢; : 7 € J} be an orthonormal basis of L? (R, |d”|) consisting of functions in
Ce(O1). Define 9; j(w, ws) = Gi(w)p;(ws), for each (4, j) € IxJ. Foreach (i,7) € Ix.J,

the function behaves like a wavelet for the representation ;. Define
Vwi,j§[£7 A] = <§7 01 [&7 A]¢i,j>L2(ﬂ/@X]§)7

for all [z, A] € Gy and ¢ € L?(R2x R). Let M,; = V,, L2(R?xR), for (i,5) € I x J.
Then each M, ; is a closed Ag,-invariant subspace of L?(G3) and Vj, ; is an isometry
that intertwines oy with the restriction of A\g, to M, ;. Moreover

LQ(G2) = Z??,j)eliMi,j

In addition to this analog of the Peter-Weyl Theorem, the Duflo-Moore operator is
easily identified after the calculations carried out in Chapter 5 and analogs of the
continuous wavelet transform using o; to move the “wavelets” around are presented



in the final section of the thesis.



Chapter 2

General Notation and Background

In this chapter, the notation for basic concepts that will be used in this thesis is
established. There are no original results in this chapter; however, a proof may be
given if it illustrates a concept that is useful in later chapters. The main sources used
are [18], [19], [12], and [20]. When results are taken from other sources, an explicit
reference is given.

2.1 Locally Compact Groups

A group is a set G equipped with a binary operation (z,y) — zy called the group
product. There is an identity element e € G so that ex = xe = x, for each z € G.
The group product is associative: that is x(yz) = (zy)z, for all z,y,2z € G. Also, for
each x € G, there is an inverse, denoted 7! € G, such that z2~! = 2712 = e. The
group is called abelian if xy = yx, for all z,y € G.

A topological group is a group G that also has a topology on it such that the maps
(z,y) — xy from G x G — G and z — z~! from G to G are continuous. All the
topological groups that come up in this thesis will be Hausdorff. If the topology on
a topological group G is Hausdorff and locally compact, then G is called a locally
compact group.

If G is a group and H is a nonempty subset of GG such that ry and x=" are in H,
for any x,y € H, then H is called a subgroup of G. If GG is a locally compact group
and H is a closed subgroup of GG, then H is a locally compact group when given the
topology it inherits as a subset of G. If H is a subgroup of G and x € G, then the
set tHx ' = {xzax™': 2z € H} is also a subgroup of G. A subgroup H of G is called
a normal subgroup if tHx=' = H, for all x € G.

If H is a subgroup of G and = € G, then the set tH = {zz: 2z € H} is called a
left coset of H. Note that xH = yH as sets if and only if 27ty € H. In this thesis,
the space of all left cosets will often be important.

1

Definition 2.1.1. Let H be a subgroup of a group G. The left coset space of G
modulo H is G/H = {zH : x € G}. The map ¢ : G — G/H given by ¢(x) = zH,
for all z € G, is called the quotient map. If G is a locally compact group and H
is a closed subgroup of G, then G/H is given the strongest topology such that ¢ is

10



continuous. That is, U C G/H is open if and only if ¢7'(U) is an open subset of G.
This quotient topology on G/H is also locally compact.

When H is a normal subgroup of G, for any xH,yH € G/H,
vHyH = (xy)(y~ Hy)H = (xy) HH = (xy)H,

so G/H can be made into a group with product given by (zH)(yH) = (xy)H, for
all tH,yH € G/H. This product is well-defined and satisfies the group axioms with
the trivial coset H = eH serving as identity. When G is locally compact and H is a
closed normal subgroup of G, G/H is a locally compact group with this product.

If H is a subgroup of G, any z € G moves around the left cosets of H. For
zH e G/H,z-(zH) = (zz)H € G/H. Note that z- (zH) is well-defined and satisfies:

e ¢c-(zH)=zH, for all zH € G/H
e z-(y-(2H)) = (zy) - (zH), forall z,y € G, zH € G/H

e If G is a locally compact group and H is a closed subgroup, then (m, zH ) —
x - (zH) is a continuous map of G x G/H to G/H.

This action of G on the set G/H is a special case of a group action. In this thesis
there will be a number of useful group actions.

Definition 2.1.2. Let G be a group. A G-space is a nonempty set €2 and a map from
G x Q to Q denoted by (x,w) — = - w satisfying

e c-w=uw,forallwe
e v (y-w)=(ry) w,foral z,y € G and w € Q.

If G is a locally compact group, (2 is a locally compact topological space and (x,w) —
x - w is a continuous map of G x €2 to 2, then € is called a topological G-space. We
may say G acts on € to mean that {2 is a topological G-space.

Let Q be a topological G-space. For w € Q, the G-orbitof wis O, = {z-w : = € G}.
The set H, = {z € G : x - w = w} is a closed subgroup of G called the isotropy
subgroup of w. For z,y € G, - w = y - w if and only if 2=ty € H,; that is, if
and only if zH, = yH,. Thus, 6 : G/H, — O, given by 0(zH,) = = - w, for any
xH, € G/H,, is well-defined. The map 6 is one to one, onto and continuous. Often,
0 is a homeomorphism. A topological space X is called o-compact if X is a countable
union of compact subsets. For a proof of the following proposition, see Proposition
4.6 of [20].

Proposition 2.1.3. Let G be a o-compact locally compact group and let €2 be a
topological G-space. Let w €  and let §(xH,,) = = - w, for all xH,, € G/H,,. If the
orbit O, is locally compact and Hausdorff, then 6 is a homeomorphism of G/H,, to
O,.
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A G-space € is called transitive if O, = ) for some w € ). Then O, = 2, for all
w e Q.

Definition 2.1.4. Let 2 be a transitive G-space and fix a point wg € Q. A cross-
section of the G action on 2 based at wq is a map 7 : 2 — G such that y(w) - wy = w,
for all w € €.

The cross-sections used in this thesis will often appear in integrals, so they need
to be measurable maps. If X is a locally compact Hausdorff space, Bx denotes the
o-algebra of Borel subsets of X; that is, the smallest o-algebra containing all the
open subsets of X. Measurability will refer to Borel measurability, which means with
respect to Bx for the appropriate space X. Usually, X is an open subset of some R"
in this thesis.

Proposition 2.1.5. Let G be a separable locally compact group and assume the
topology on G is metrizable. Let €2 be a transitive Hausdorff topological G-space.
Let wy € €. Then there exists a cross-section v of the G action on €2 based at wy
such that v is Borel measurable.

Proof. Let H,,, be the isotropy subgroup for wy. Since G is separable, it is o-compact,
so G/H,, is o-compact. The hypotheses of Theorem 1 of [10] hold, so there exists
a Borel measurable map 7 : G/H,, — G such ¢ o 7 is the identity map on G/H,,,
where ¢ : G — G/H,, is the quotient map.

Let 6(zH,,) = x-wy, for each 2H,, € G/H,,. Note that Q = O,,,,s060 : G/H,, —
Q is a homeomorphism by Proposition 2.1.3. Define v : Q@ — G by y(w) = 7 (07 (w)),
for all w € 2. Then 7 is a cross-section of the G action on () based at wy and 7 is
Borel measurable. O

Definition 2.1.6. Let X be a locally compact Hausdorff space. A Radon measure
on X is a Borel measure p such that

e u(K) < oo, for any compact K C X
o u(U)=sup{u(K): K CU, K compact}
o u(F)=inf{u(U): ECU C X,U open}, for any F € By.

Any locally compact group has a Radon measure on it that is invariant under left
translation.

Proposition 2.1.7. Let G be a locally compact group. There exists a nonzero
Radon measure p on G such that p(zFE) = p(E), for all x € G and any Borel E C G.
Moreover, if v is any nonzero Radon measure on G satisfying v(zF) = v(F), for all
x € G and any Borel F C G, then there exists a ¢ > 0 such that v = cp.

Definition 2.1.8. Let GG be a locally compact group. We will fix a Radon measure
e on G satistying the properties of Proposition 2.1.7. This measure u is called the
left Haar measure of G.
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Similarly, G carries a right Haar measure that is unique up to a constant multiple.
The homeomorphism x — x~! interchanges a right Haar measure with a left Haar
measure. The modern convention is to work with left Haar measures.

We assume the standard theory of the general Lebesgue integral. In particular,
for the measure space (G, Bg, 1iq), where B is the o-algebra of Borel subsets of G, if
f G —[0,00] is a Borel measurable function, then [, f duc = [, f(x) duc(z) exists
in [0, co]. We have the usual Lebesgue spaces where functions are con81dered equal if
they agree ug-almost everywhere (ug-a.e.).

Definition 2.1.9. Let G be a locally compact group and 1 < p < oo. Then
LP(G) = {f:G—)(C’fBorel and / |fIPduc <oo}.
el

Equipped with the norm f — || f]l, = (/, |f|pdug)1/p, LP(G) is a Banach space.

We have a change of Variables formula for left translations that is valid for any
function f on G for which fG x) dpg(r) has meaning. For any such f and fixed
yedG

/fyiﬁ duc(x /f ) dpc(w (2.1)

Definition 2.1.10. Let X be a locally compact space. Let C(X) denote the vector

space of all continuous complex-valued functions on X. For f € C(X), the support
of fis

supp(f) = {z € X : f(z) # 0}.

We say f has compact support when supp(f) is a compact set. Let C.(X) denote the
subspace of C(X) consisting of continuous functions with compact support.

Proposition 2.1.11. Let G be a locally compact group. Then C.(G) is contained in
LP(@) as a dense subspace, for any 1 < p < oc.

If y € G is fixed then F — pug(Ey), for Borel sets E, is also a left invariant
nonzero Radon measure on G. Thus, there exists Ag(y) € (0,00) such that

pe(Ey) = Aq(y)na(E), for any Borel E C G.

Proposition 2.1.12. Let G be a locally compact group and let R denote the positive
real numbers considered as a locally compact group with multiplication as the group
product. There exists a continuous homomorphism Ag : G — R* such that, for any
y€G,

e (Ey) = Aq(y)na(E), for any Borel E C G.

Definition 2.1.13. The homomorphism Ag is called the modular function of G. If
Ag(z) =1, for all z € G, then G is called unimodular.

Observe that G is unimodular when G is Abelian, compact, or discrete. If G
is discrete, then counting measure is the left Haar measure and this is clearly right
invariant as well.
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We have a Change of variables formula for right translation of any function f on
G for which fG x) dug(x) is meaningful. For such an f and any y € G,

/ F (o) dpa(z / £(#) duc(a 2.2)

The change of variables formulas (2.1) and (2.2) will be used frequently.

Here are some examples of left Haar measures on different groups and the corre-
sponding modular function. It is often most convenient to give a formula for | o fdua,
for any f € C.(G). By the Riesz Representation Theorem for positive linear function-
als on C.(X), for a locally compact Hausdorff space X, there exists a unique Radon
measure determined by that formula for f € C.(G).

x1

Example 1. Let n € Nand R" = cx=| ! | iz, € R, 1 <k <np, an Abelian
'CCTZ

locally compact group with addition as group product. Then, for any f € C.(R"),

dimen = dr = OO... - dzy - - - dz,,
R”f LR Rnf(z)z /OO /oof(z) zy---de

where [*°_h(t) dt simply denotes the Riemann integral for h € C.(R). Left invariance
is just the property that [, f(z—y)dz = [, f(z)dz, for any y € R" and f € C.(R").
Since R™ is Abelian, it is unimodular.

Ezample 2. Let R* = R\ {0} and equip it with multiplication of real numbers as group
product. Then R* is an Abelian locally compact group. For a € R* and f € C.(R*),
a simple change of variables shows

/_Zf(at)%zf_Zf(t)%

Thus [, fdur = [*°_ f(?) | t| for all f € C.(R*), defines left Haar measure on R*.

Again, R* is unlmodular since it is Abelian.

Ezxample 3. The group R* acts on the group R by multiplication. For a € R*, b — ab
is an automorphism of R. Let G; = R x R*, the semi-direct product for this action.
That is,

Gi=RxR*"={[ba]l : b€ R, acR"},

with product given by [b1, a1][be, as] = [b1 + a1ba, ajas], for all [by,a4], [be, as] € Gy.
With this as product, G is a group with identity [0,1] and [b,a]™! = [—a"'b,a™!],
for [b,a] € G1. The product and inversion maps are continuous when G is given the
product topology of R x R*. Thus, (G; is a locally compact group. The group G; is
called the affine group of R. It is sometimes also called the ax + b-group since we can
view an element [b,a] € G; as the transformation x — ax + b of R.
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Fix [bo, ag] € G1. Note that, for f € C.(Gy),

dbd bd dbd
/ / bo,ao 10, a @ / / flbo + aob, apal a4 / / f1o, @

Therefore [, fdua, = [ [, fIb,a]®24%, for all f € C.(G,). This group is not
Abelian, so we check a translation of the integral on the right. For [by, ag] € G and

f € CC(Gl)u

/ / b al[ bo,ao])dl;ga —/ (/ flb+ abo, aag) db) da
/ (/ £[b, aao db) da
‘a0|/ / flb.al dbda

Therefore G is nonunimodular and Ag, [bo, ao] = |ag|™, for all [by, ag] € G;.

Ezample 4. Let GL,(R) denote the group of all n x n real matrices A with det(A) # 0.
aix a2 - Qip

For A € GL,(R), let a;; denote the i, j entry of A. So A = a21 a22 aZ"
Qn1 Qn2 " Onp

Considering GL,(R) as an open subset of R gives GL,(R) a locally compact topol-
ogy and it is a locally compact group using the product of matrices as the group
product. This group is unimodular and the Haar measure p, . is such that, for all

[ € C(GL,(R)),

I > dayidays - - - dapy,
o [ [ g0 |
/Gmf Howw = | 0 | I T e

In particular, GLy(R) = {(CCL Z) ca,b,c,d € R, ad — be # 0} and, for any [ €

Ce(GL2(R)),

ST = [ LG 8) G see

Example 5. This is actually a family of examples generalizing the affine group of R to
higher dimensions. Most of the groups arising later in this thesis are of the following
form. Let H be a closed subgroup of GL,(R). Form the new group G = R" x H
defined by

G=R"xH={[z,Al :z e R" A€ H}.

The group product is given by [z, A][y, B] = [z + Ay, AB], for [z, A, [y, B] € G. The
identity in G is [0,id], where id denotes the identity n x n matrix, and the inverse
operation is [z, A]7! = [-A7z, A7, for [z, A] € G. It is well-known how to find
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the left Haar measure for a semi-direct product from the left Haar measures of the
factors (see any one of [18], [12], or [20]). For f € C.(G),

dx dMH( )
[ e = [ [ s T (23)

We can verify this with a short calculation. For [y, B] € G and f € C.(G),

dz dMH dz dpp(A)
// A) T qer(a / W B BAI= )
dz dpn(A)
[ s B et (BA)|
dwd#H( )
/ oo T2 A Tt

Thus, (2.3) does give left Haar measure on G. For right translation let [y, B] € G
and f € C.(G),

dz dpr (A dzx dpp(A)
/:/n (f2- Ally: B1) = ey t/ T A ABIT )

dzdpn(A)
= [, [, feam T

_ |det(B)|/ Rnf[zﬂﬂ%

_ [det(B)| | e dpg(4)
An(B / A Ty

Thus, Acly, B] = ﬁ’i for all [y, B] € G. Note that, if Ay(B) = |det(B)], for
each B € H, then Wllf be unimodular.

2.2 Hilbert spaces, Operators, and the Unitary
Group

In this section, we recall basic definitions and properties of Hilbert spaces, operators
on Hilbert spaces, and the unitary group. We focus on the properties that will be
used in later sections. Of particular importance is the definition of a positive operator,
when the operator may not be bounded. A good reference for this material is [19].

Definition 2.2.1. A Hilbert space is a complex vector space H equipped with an
inner product (§,n7) — (&, 1) such that H is complete with respect to the norm
defined by ||€||l3 = (&,& >1/ ? for all ¢ € H. If there is no confusion about what Hilbert
space is being considered (£, )y may be written simply as (£, 7).

We frequently need to recover the inner product from the norm.
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Proposition 2.2.2. [Polarization Identity] Let H be a Hilbert space with inner prod-
uct (-,-). Then, for any &, € H,

(& n) = 3(IE+ 0l = 1€ = nll* +ll€ +inl|* — ill€ — in]?).

Definition 2.2.3. Let H be a Hilbert space. For &, € H, £ is orthogonal to n if
(€,m) = 0; then we write { L n. For ACH and BC H, AL B means £ L n, for all
€ Aandne€ B. Wealsolet AL ={neH:&Ln, forall £ € A}

If A C H, then At is a closed subspace of H. Note that & L ¢ implies £ = 0, the
zero vector in H. Thus, AN AL = {0} always.

Proposition 2.2.4. If K is a closed subspace of a Hilbert space H, then H = K+K+.
Any ¢ € H is uniquely written as £ = Pc€ + Per&, with Peé € K and P € € K+

The map £ — Px€ is a linear map of H into H with range K. It satisfies:
o [[§— Pcéll < [|€—mnl, for all n € K.
o [I1Pc€ll < [lg], for all € € H.
o || P&l = ||| if and only if £ € K.
o | Pcg|l = 0 if and only if £ € K+

Definition 2.2.5. If I is a closed subspace of H, then Px is called the orthogonal
projection onto /.

Definition 2.2.6. A set of vectors {n; : j € J} is called orthonormal if n; L ny, for
jok€d,j K and gl =1, for j € J.

Proposition 2.2.7. Let H be a Hilbert space. Any orthonormal subset of H is
contained in a maximal orthonormal set in H.

Definition 2.2.8. A maximal orthonormal subset of a Hilbert space H is called an
orthonormal basis of H.

Proposition 2.2.9. Let H be a Hilbert space. Let {n; : j € J} be an orthonormal
subset of H. Then, the following are equivalent:

(a) {n; : j € J} is an orthonormal basis of H.

(b) {n; : j € J} = {0},

(c) The closed linear span of {n; : j € J} is H.

(d) [IE]1* = 32,5146, my)|?, for all £ € H.

(€) (&, v) =2 e, (& m5) (nj, v), for all &, v € H.

(£) €= 2_;e,(& my)m;, for all € € H.

The sum in (e) converges absolutely in C. The convergence in (f) is unconditional
norm convergence in H.

Proposition 2.2.10. Let H be a Hilbert space and let A be an orthonormal subset
of H. Then, there exists an orthonormal basis of H which contains A.
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In particular, any Hilbert space has an orthonormal basis. There are many dif-
ferent orthonormal bases in a given Hilbert space, but they will all have the same
cardinality.

Proposition 2.2.11. Any two orthonormal bases of a Hilbert space H have the same
cardinality.

Definition 2.2.12. Let H be a Hilbert space. The cardinality of any orthonormal
basis of H is called the dimension of H and is denoted by dim(#). If dim(H) < oo,
then H is called a finite dimensional Hilbert space.

Definition 2.2.13. Let H; and Hs be Hilbert spaces. A map U : H; — H is called
a unitary map of Hy onto H, if U is linear, one to one and onto, and satisfies

<U§7 U77>'H2 = <£7 77>H17 for auga n € Hl-

If U is a unitary map of H; onto Hs, then U~ is a unitary map of H, onto H;. When
such a unitary exists, H; and Hy are isomorphic as Hilbert spaces.

Example 6. Let J be a nonempty set and let

() = {g: (aj)jes :aj € C, for all j € J, and Z o ? < oo},

jeJ
with coordinate wise vector space operations and inner product

(@, By = D By, for all a, B € °(J).

jedJ

Then ¢2(J) is a Hilbert space. Moreover, if H is any Hilbert space and {n; : j € J} is
an orthonormal basis of #, then the map U : £*(J) — H given by U(a) = ZjEJ a;n;,
for all o € £%(J), defines a unitary map of ¢£2(.J) onto H. This follows easily from (e)
and (f) of Proposition 2.2.9. Thus, ¢?(.J) and H are isomorphic as Hilbert spaces.

A map W : Hy — Hy is an isometry if ||WE||3, = ||€]|n,, for all £ € Hy. The
Polarization Identity implies that, if W is a linear isometry of H; onto Hs, then W
is a unitary map of H; onto Ho.

If H; and H, are Hilbert spaces, let Hq @ Ho = {(&1,&2) : &1 € Hi, & € Ho} with
coordinate wise vector space operations and inner product

<(€1> 52)7 (7717 772)>H1®H2 = <§1’ 771>H1 + <§27 772>H27

for (&1,&2), (m,m2) € H1 @& Hao. If H is a Hilbert space and K is a closed subspace of
H, then both K and K+ are Hilbert spaces when given the restriction of the inner
product on H. The map £ — (P&, Pc1€) is a Hilbert space isomorphism of H with
KoKt
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Definition 2.2.14. Suppose H; is a Hilbert space, for each j € J, where J is a
nonempty index set. The direct sum of these Hilbert spaces is

o H; = {§ = (&), & € My, foreach j € J, and Y, [Ig]17 < oo}.
Equipped with coordinate wise vector space operations and inner product

<£ 77 - Z §gﬂ7g Hj»s fOl"f n € Z]eJHj7

52
ZJGJHJ

Z;BEJ H; is a Hilbert space.

We need to introduce some of the standard concepts for operators on a Hilbert
space.

Definition 2.2.15. Let H; and H, be Hilbert spaces. A linear map A : H; — Ho
is called a bounded operator if ||Al| = sup{||A&||3, : & € Hi,||&|ln, < 1} < co. Let
B(H1,Hs) denote the space of all bounded linear operators from H; into Hy. When
equipped with pointwise defined scalar product and vector space sum, B(Hy, Hs) is
a Banach space with the norm || - ||. We denote B(H,#H) as simply B(#), for any
Hilbert space H. For A, B € B(H), the product AB is simply the composition of
maps and ||[AB|| < [|A|| - ||B]|. The identity map on H is denoted by I. So I = &,
for all £ € H.

Proposition 2.2.16. Let H be a Hilbert space and let A € B(#). Then there
exists A* € B(H) such that (A*¢,n)y = (£, An)y, for all £, n € H. Moreover, for all
A,B e B(H) and o € C,

(a) (A+ B)* = A* + B*.
(b) (aA)* = aA*.
(c) (AB)* = B*A*.

Definition 2.2.17. For A € B(H), A* is called the adjoint of A. A bounded operator
A € B(H) is called self-adjoint if A* = A.

Proposition 2.2.18. Let H be a Hilbert space and let W € B(H) be such that W is
one to one and onto. Then W is a unitary map of H onto H if and only if W1 = W*.

Definition 2.2.19. Let H be a Hilbert space. A unitary operator on ‘H is a unitary
map of H onto H. Let U(H) denote the set of all unitary operators on H. This is
a group with identity I when equipped with composition as the group product. We
call U(H) the unitary group of H.

The topology on B(#) given by the norm || - || is called the norm topology. Besides
the norm topology, there are two other topologies on B(#H) that we will use.

Definition 2.2.20. Let H be a Hilbert space. The strong operator topology (SOT)
on B(H) is the weakest topology such that A — ||An]| is continuous, for every n € H.
The weak operator topology (WOT) is the weakest topology on B(H) such that A —
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(A&, n)% is continuous, for every pair of vectors &, € H. For a subset Q C B(H),
Q9" denotes the SOT-topology closure of €2, Q7" denotes the WOT-topology
closure of €2, and Q' denotes the norm closure of Q.

Definition 2.2.21. Let H be a Hilbert space and let Q C B(H). We say € is self-
adjoint if A € Q implies A* € Q. We say that (2 is a subalgebra of B(H) if € is a vector
subspace of B(H) such that A, B € Q implies AB € . A self-adjoint subalgebra of
B(H) is called a x-subalgebra of B(H).

Definition 2.2.22. Let H be a Hilbert space. A von Neumann algebra on H is a
x-subalgebra M of B(H) containing I and closed in the weak operator topology.

Definition 2.2.23. Let ‘H be a Hilbert space and let Q C B(H). The commutant of
Qis
O ={T eB(H): TA= AT, for all A€ Q}.

The maps A — TA, A — AT and A — A* are each WOT-continuous, for any
fixed T' € B(#H). Thus, it is easy to show the following.

Proposition 2.2.24. Let H be a Hilbert space and let Q C B(#H). Suppose that €
is self-adjoint. Then €’ is a von Neumann algebra on H.

An important theorem about von Neumann algebras is called the Double Com-
mutant Theorem. For Q C B(H), Q" = (£') is the double commutant of Q.

Theorem 2.2.25. [Double Commutant Theorem] Let H be a Hilbert space and let
A be a x-subalgebra of B(H) containing /. Then A" = A

Thus, if Q C B(H) is self-adjoint and contains /, then the smallest von Neumann
algebra on ‘H containing €2 is ”.

Later in this thesis, we will use operators that are not bounded. These are oper-
ators whose domain is a non-closed dense subspace of the Hilbert space.

Definition 2.2.26. Let H be a Hilbert space. An operator on H is a pair (Dr,T)
where Dr is a dense subspace of H and T : Dy — H is a linear map. Sometimes, we
simply say 7' is an operator on H and leave the domain Dy understood. If T is an
operator on H with domain Dr, the graph of T is

G(T) ={(,T¢) : £ € Dr},

a subspace of H @ H. The operator T is called closed if G(T) is a closed subspace of
HOH.

Definition 2.2.27. Let T" be an operator on a Hilbert space H. Let Dy« be the set of
all vectors n € H such that there exists a v € H with (£, v) = (T, n), for all £ € Dr.
Then define T*n = v. Then Dyp- is a dense subspace of H and 7™ is an operator on ‘H
with domain Dy« called the adjoint of T'. If Dy« = Dy and T* = T, then T is called
self-adjoint.
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Definition 2.2.28. Let T be a self-adjoint operator on a Hilbert space H. If
<T€7£> 2 07 for all 5 € DT7

then T is called a positive operator on H.

Ezxample 7. Let X be a locally compact space and let u be a Radon measure on X.
The space

LA(X, p) = {f:X—HC : f is Borel measurable and / |fI?dp < oo}.
X

With the usual identification of functions that agree p-a.e. and inner product given
by

/ f(z (z), for all f,g € L*(X,p),

L?(X,p) is a Hilbert space. Let h be a continuous real-valued function on X that
is everywhere positive. Let Dy, = {f € L*(X,u) : hf € L*(X,u)}. Define T),f =
hf, for all f € Dy,. If C.(X) denotes the space of all continuous complex-valued
functions on X with compact support, then C.(X) is a dense subspace of L?(X, 1)
and C.(X) C Dr,. Then T}, is a self—adjoint operator on L*(X, p1) (see Theorem 5.6.4
of [19]). Since (hf, f) = [y h( z)|*dp(x) > 0, for all f € Dr,, Tj, is a positive
operator on L?(X, p).

2.3 A Hilbert Space Isomorphism

Let X and Y be o-compact, second countable, locally compact Hausdorff spaces with
1 and v Radon measures on X and Y, respectively. The o-compact assumption
will allow Fubini’s Theorem to be used and second countability means L?*(X, ) and
L*(Y,v) are separable. There are two other Hilbert spaces that use both measure
spaces, (X,u) and (Y,v), that we will consider. They are L*(X x Y,u x v) and
L*(X, p; L*(Y,v)). There is a Hilbert space isomorphism between them that is defined
in a natural manner. This isomorphism will be used in later calculations without much
comment. The purpose of this section is make the details clear. A good reference for
the basic integration theory is [13].

We have not yet defined what L? (X s LAY, u)) means. It is easier to replace
L*(Y,v) with an arbitrary separable Hilbert space H. The argument is modeled on
the usual proof that L?*(X, i) is complete (see Theorem 6.6 of [13]).

Let H be a separable Hilbert space. A function f : X — H is called weakly
measurable if, for any n € H, the function + — (f(z),n),, is Borel measurable. If
{n, :j € J} is an ONB of H, then f : X — H is weakly measurable if and only
if x — (f(x),n,), is Borel measurable for each j € J, since J is countable when
H is separable. If f,g : X — H are weakly measurable, then x — (f(z),g(z))y =
Zjej(f(x), n,)#(n,, g(x)),, is Borel measurable. In particular, z — || f(z)||* is Borel
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measurable. Let

LA X, 3 H) = {f : X — M| f weakly measurable and / ||f(:c)||idu(x) < oo}
X

Let f,g € L*(X,;H). Note that z — ||f(z)|l% is in L?*(X,pn) and we have,
[(f(x),9(x)ul < |If(@)]n lg(x)||n, for p-a.e. z € X, by the Cauchy-Schwarz in-
equality. Since the product of two L2-functions is integrable, z — (f(x), g(x))y is
integrable. Also, note that,

1F(2) + 9@ 3, < (1 @)l + lg(@)llz)” < 2max{[[f (@) 5. lg(2)ll2})*
= dmax{|| f(2)[l3, lg(@) 15} < 4 (I1f @) 15 + llg(@)I3) .

for pra.e z € X. Thus f+ g € L*(X,u : H). It is now routine to show that
L3(X, pu: H) is a vector space over C.

Definition 2.3.1. For f,g € L*(X,u: H), let
(1.9) = [ @) g(@)udnlz).
X

Then (-,-) is an inner product on L*(X,u : H) and ||f|| = ((f, )2, for all
f e L*X,u:H),is anorm when function that agree p-a.e. are identified.

Theorem 2.3.2. Let u be a Radon measure on a locally compact Hausdorff space X
and let H be a separable Hilbert space. Then (L?(X, i : H),(-,-)) is a Hilbert space.

Proof. The only nontrivial thing to prove is completeness. We use the fact that a
normed vector space V is complete if and only if every absolutely convergent series
converges in V. Suppose fr € L*(X,pu: H), for k € N, and Y0 || full r2(x pum) < 00
Let B = > || fellc2x pmy- Let he(x) = || fu(@)|n, for p-a.e. & € X. Then hy €
L3(X, 1) and hlla = ([ hi(@)2dp(@)) " = | fill e pero-

Forn € N, let g,(z) = Zk (@)l = Dok —; hi(2), for prae. x € X, and define

Z | fr ()l = th Jgglogn(x), for p —a.e.x € X.

S0 4, € LX) and onlly < Sy Il = S50 illcung < B Thus, )12 <
B? for all n € N. Since g2 < ¢g2,, < --- < g%, p-a.e. By the Monotone Convergence
Theorem, lim, o [|gnll? = limy o0 [y |gn(z |2d,u = [ lg(x)?du(x). Therefore,
we have [, |g(z)[?du(x) < B?. This implies g(z) = |g( )| < oo, for pae z€X.
Thus, for p-ae. z € X, > 77, || fe(x)|ln < oo. Since H is complete Y . fi(z)
converges in H, for those z. Let F(z) =Y ;| fu(x) € H, for any z € X such that
S ore i k()|]3¢ < co. Each f, is weakly measurable, so F' is weakly measurable. For
prae x € X, ||F(2)|ln < 3 opey 1 fe(2)]l3 = g(z) and g € L*(X, u). This implies that
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Jx 1F ()7 du(z) < [ lg(@)|*du(z) < B?. Thus, F € L*(X,pu: H) and

1F =5 fullZapmn = /X |F( ka )2, dulz)
k=1

For p-a.e. z € X,

n

1F(z) = > (@)l < (HF HHJrZka Ha)
< (9(2) + g(2))* = (29(2))" = 4g(2)*.

Since [, 4g(x)*dpu(x) < oo. By the Dominated Convergence Theorem and continuity
of || ’ ||H7

Y NECEWICTZIERY BENGER wATTYAE

:/ ||F(:z:)—nli_>HC}Oka(I)H3{dﬂ($)
/ |F () = F (@) 3dn(x) = 0.

Therefore, >°7° fx(x) converges in the L*(X, u: H) and L*(X, n : H) is complete. [

Let o x v be the product measure on X x Y. Then u X v is a Radon measure on
X xY. Our next goal is to construct a Hilbert space isomorphism from L*(X xY, uxv)
onto L2(X, pu: L*(Y,v)).

For any f € L*(X x Y, u x v) we select f from its equivalence class so that f is
an everywhere defined Borel function on X x Y. For x € X, define f, : Y — C by
fz(y) = f(z,y), Yy € Y, and, for y € Y, define f¥ by fY(z) = f(z,y), for all x € X.
Then f; is just f,,, ., and f¥is fj, .. Thus f, and f¥ are Borel function on Y’

and X, respectively. Fubini’s theorem applied to | f(z,y)|?, says

/X (o) <)) = /X /Y o) 2o (y)dp(z)

| ewPixn@n = [ [ 17 P,

Since [ [f(z,y)|?d(p, v)(x,y) < co, we must have [, |f.(y)[*dv(y) < oo for p-a.e.
r € X. Let Wf: X — L*Y,v) be defined by

and

fo if [ [fe(y)Pdu(y) < oo

Wite) = {o it 1oy Pavly) =
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Then |W f(z)|)? T2(v) = [, [fa(y)?dv(y), for p-a.e. x € X. Moreover,

JIW @I dite) = [ [ 1P )dno) = 1 B 2:0)

Thus, Wf € L2 (X,/L . LQ(YV, l/)) and ||Wf||L2(X,,u:L2(Y,z/)) = Hf||L2(X,u><l/)'

Theorem 2.3.3. The map W : L*(X x Y, u x v) = L? (X, : L*(Y,v)) is a Hilbert
space isomorphism. Moreover, W' : L* (X, pu: L*(Y,v)) — L*(X X Y,u X v) is
given by W='F(z,y) = (F(z))(y), for (4 x v)-a.e. (z,y) € X x Y, for each F €
L2 (X, p: LAY, v)).

Proof. 1t is clear that W is linear and (2.4) implies W is an isometry. Using the
polarization identity, we see that W preserve inner products. To see that W is onto,
suppose F' € L* (X, : L*(Y,v)) is such that FF L W f, for all f € L*(X x Y, x v).
Let { g; : j € J} be an ONB of L*(Y, v).

For each j € J and x € X, let hj(x) = (F(x),9;)r2(vp)- Then h; is a Borel
function on X. Also

1E @) vy = D KE (@), g3 2o = D Iy (a

jed jeJ

and deJ fX |hy(2)|* dp( fX | F(x HL2 Yov) du(r) = ||F||%2(X,,u;L2(Y,Z/)) < 00. There-
fore, [ [hj(x)?du(z) < oo and h; € LQ(X ,u) for all j € J.

Letfj(x y)—h( )95 (y )forall(x y) € X xY. Then f; € L*(X x Y, x v), for
each j € J. Notice that ij( x) = h;(x)g;, for p-a.e. € X and all j € J. However,
F1LWf forall fe (X xY,ux 1/) Thus,

0= (W s = [ (PG5 (@0)gradute)
_ /X T @(F (@), 95} 20y i) / Iy () Pdpu(a

Thus, h; = 0 for each j € J. That is (F(x),g;)r2(vs,) = 0, for all j € J and p-
a.e. © € X. This F(z) = 0, for prae. x € X. Thus FF = 0 as a member of
L? (X, p; L*(X, pu : L*(Y,v)). Therefore, W is onto and, so, W is a unitary map and
a Hilbert space isomorphism of L*(X x Y,y x v) with L? (X, u; L*(Y,v)).

Similar arguments show that W1 as defined in the statement of the theorem
maps L? (X, u; L*(Y,v)) into L*(X x Y,u x v) and W(W™'F) = F, for all F €
L2 (X, p; L*(Y,v)). O

Remark. One can also show that L2(Y,v; L? (X, u)) is Hilbert space isomorphic to
L?(X x Y, x v) in the obvious manner.

In the proof of Theorem 2.3.3, we formed a Borel function f; on X x Y from a
Borel function h; on X and a Borel function g; on Y. We will need to do this often
in the following chapters, so we introduce a notation for the combined function.
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Definition 2.3.4. Let X and Y be nonempty sets. Let h: X - Cand g:Y — C
be functions. The elementary tensor function h ® g : X x Y — C is defined by

(h® g)(x,y) = h(x)g(y), for all (z,y) € X x Y.

See Example 2.6.11 of [19] for a discussion of these elementary tensor functions
from which we formulate the following two propositions.

Proposition 2.3.5. Let X and Y be o-compact, second countable, locally compact
Hausdorff spaces. Let h: X — C and g : Y — C be Borel functions. Then h ® g is a
Borel function on X x Y.

Proposition 2.3.6. Let X and Y be o-compact, second countable, locally compact
Hausdorff spaces. Let ;1 and v be Radon measures on X and Y, respectively.

(a) h € L*(X,p) and g € L*(Y,v) imply h®@ g € L*(X x Y, X v).

(b) If h,h' € L*(X,u) and g,¢ € L*(Y,v), then

(h®g), (M & 9)) 2 (xxvuxe) = (h, h/>L2(X,u) (9, g/>L2(Y,z/)'

The Hilbert space tensor product H; ® Hy of two Hilbert spaces H; and Hsy is
carefully defined in Section 2.6 of [19]. We will not repeat this definition here. In
Example 2.6.11 of [19], they prove that L*(X x Y, u x v) is Hilbert space isomorphic
with L*(X, ) ® L*(Y,v) is a natural way. In fact, combining Example 2.6.11 with
Theorem 2.6.4(iii) of [19] gives the following.

Proposition 2.3.7. Let X and Y be o-compact, second countable, locally compact
Hausdorff spaces. Let p and v be Radon measures on X and Y, respectively. If {h; :
i € I} is an orthonormal basis of L?(X, u) and {g; : j € J} is an orthonormal basis
of L2(Y,v), then {h; ®g; : (i,j) € I x J} is an orthonormal basis of L*(X X Y, u X v).

2.4 Unitary Representations

In this section, we introduce the definitions and basic properties of unitary represen-
tations of locally compact groups. Let G be a locally compact group.

Definition 2.4.1. A unitary representation of G is a continuous homomorphism of G
into U(H), the unitary group of a Hilbert space H, equipped with the weak operator
topology. The Hilbert space H, is called the Hilbert space of m and d, = dim(H,) is
called the dimension of

That is, 7 is a unitary representation of G on the Hilbert space H if the following
all hold.

1. m(x) is a unitary operator on H,, for all x € G.

2. w(xy) = w(x)w(y), for all z,y € G.
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3. For any &,n € H,, the map = — (7(z),n) of G into C is continuous.

These properties imply that m(e) = I, where e is the identity in G and [ is the identity
operator on H,, as well as w(z™1) = 7(x)~! = w(x)*, for any = € G.

Ezample 8. The left reqular representation of G acts on the Hilbert space L*(G). For
r € G and f € L*(G), define A\g(z)f on G by,

Ma(2)f(y) = f(z™ty), for ae. y € G.

Then [Aa(@)fI2 = [, |f(@m)dy = [,1f@)Pdy = [1f2 by left invariance of
left Haar measure. It is clear that Ag(zxy) = Ag(x)Ag(y), for all z,y € G, and that
Ag(e) = I, the identity operator on L*(G). Therefore, Ag(x) is an invertible isometry;
that is Ag(z) € U(L?*(G)). So properties (1) and (2) above hold for Ag. For property
(3), let f,g € L*(G). For any z,y € G,

[(Aa(@)f,9) = AaW)f, 9] < (@) f = Aa@) fll2llglls = Ma(y™ 2) f = Fll2llgllo-

So it is sufficient to show that lim,_,. |[Ac(2)f — f|l2 = 0. See Proposition 2.41 of [12]
for a short and clear proof of this.

Fix a unitary representation 7 of a locally compact group G.

Definition 2.4.2. For ,n € Hn, let ¢f  (z) = (7(x){,n), for all x € G. Then ¢f, is
called a coefficient function of .

Proposition 2.4.3. For any £, € Hn, ¢f, € Cp(G).

Proof. The continuity of each ¢f , is part of the definition of a unitary representation.
Also, 7, (x)| = [{m(x)§,m)| < [[€]] - [|In]], for all z € G. Therefore, ¢f , is a bounded
continuous function on G. O

Definition 2.4.4. A subspace K of H, is called m-invariant if 7(z){ € K, for all
e andall z edG.

If a subspace K is m-invariant, then K is also m-invariant by the continuity of 7.
If K is m-invariant and n € K*, then, for any £ € K,

(m(z)n,§) = (n,w(x71)€) =0,

since m(z71)¢ € K, for any x € G. Thus, 7(x)n € K*+. That is, K+ is 7-invariant
whenever K is a w-invariant subspace of H,.

Definition 2.4.5. If K is a closed m-invariant subspace of H,, define 7* on G by
™ (x) = 7(x)),, for each z € G. Then 7" is a unitary representation of G on the
Hilbert space K. We call 7% a subrepresentation of .

Definition 2.4.6. The unitary representation 7 is called irreducible if {0} and H,
are the only closed m-invariant subspaces of H,. Otherwise, 7 is called reducible.
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Definition 2.4.7. Let m and p be unitary representations of G. An intertwining
operator of m with p is a T' € B(H,, H,) such that

Tr(z) = p(x)T, for all x € G.

Then, we also say T intertwines m with p. Let C(m, p) denote the set of all intertwining
operators of m with p. Let C(7) = C(m, 7).

Definition 2.4.8. Let m and p be unitary representations of GG. If there exists a
unitary map U € C(m, p), then we say 7 is equivalent to p. This is denoted by 7 ~ p.

Note that
C(r)=A{T € B(H,) : Tr(z) = n(x)T, for all z € G} = {n(x) : x € G},

the commutant of 7(G) in B(H,). Let A, denote the linear span of {7 (z) : z € G},
which is a *-subalgebra of B(H,). Then A, = 7n(G) = C(n).

Proposition 2.4.9. Let A, denote the linear span of {m(x) : x € G}. Then
(a) C(m) is a von Neumann algebra on H,.
(b) C(m)" is the weak operator topology closure of A,.

Proof. Statement (a) is Proposition 2.2.24 and statement (b) is the von Neumann
Double Commutant Theorem. See Theorem 5.3.1 of [19]. O

For K is a closed subspace of H,, Pc denotes the orthogonal projection of H,
onto .

Proposition 2.4.10. Let K be a closed subspace of H,. Then K is w-invariant if
and only if P¢ € C(m).

Proof. Suppose K is m-invariant. Then Kt is 7-invariant as well. Let Pc. denote the
orthogonal projection onto X*+. Then I = P¢ + Pc.. For any £ € H, and = € G,
7(2)Pc€ € K and 7(x) P& € KL, Thus,

Per(2)€ = Per(x) (Peé + Per€) = Pem(x) Peé + Per(3) P& = m(z) Peé.

Therefore, Pcr(z) = w(x) Pk, for all x € G. That is, Pc € C(m).
Conversely, suppose Px € C(m). Let £ € K. Then, for any = € G,

m(x)§ = m(x) P = Pem(x)¢.
Thus 7(z)€ € K, for all x € G. So K is m-invariant. O

We can now collect together several conditions that are equivalent to the irre-
ducibility of .

Theorem 2.4.11. Let 7 be a unitary representation of a locally compact group G.
The following are equivalent:

27



(a) 7 is irreducible.

(b) C(m) = CI.

(c) 7(G)" = B(H).

(d) For §,m € Hy, if ¢f  (x) =0, for all z € G, then either { = 0 or n = 0.

Proof. (a) < (b) By Proposition 2.4.10, 7 is irreducible if and only if 0 and I are
the only projections in the von Neumann algebra C(w). By Proposition 2.2.24, this
is equivalent to C(w) = CI.

(b) < (c) Since 7(G)" = C(w)’, C(n) = CI is equivalent to 7(G)" = B(H,), by
Theorem 5.3.1 of [19].

(d) < (a) Assume (d) and suppose K is a nontrivial closed 7-invariant subspace
of Hy. Let £ € K, €#0, and let n € K+, n # 0. Then ¢t () = (m(z)§,m) = 0, for
all x € G. This contradiction of (d) implies 7 must be irreducible when (d) holds.
Suppose 7 is irreducible. Let n € H,, n# 0 and let K = {n(z)n: z € G}+. If £ € K,
then, for any y € G,

(m(y)€, m(x)n) = (€, m(y~"z)n) =0,

for all x € G. Thus 7(y)¢ € K, for all y € G and any £ € K. Thus, K is a closed
m-invariant subspace of H,. Since  is irreducible and 1 # 0, it must be that L = {0}.
This implies (d) O

Definition 2.4.12. Let G be a locally compact group. The set of all equivalence
classes of irreducible unitary representations of GG is denoted G.

We will make use of the contragredient of a unitary representation. If H is any
Hilbert space, let H* denote the vector space over C consisting of the same elements as
‘H and the vector space operations of addition (£,7n) — &+ n and scalar multiplication
(o, &) = a- & =a&. Put an inner product on H* by defining

<€’ 77)7-[* = <777£>H7 for all 5777 € H*

Then H* is a Hilbert space as well. For each £ € H* define ¢ : H — C by

e (V) = (1, &)y, for all € € H.

Then & — ¢ is an isometric isomorphism of H* with the Banach space dual of H.
Thus, we can refer to H* as the dual Hilbert space to H.

Definition 2.4.13. Let 7 be a unitary representation of G. For each = € G, define
m(z) on H: by setting 7(z)n = mw(x)n, for each n € H*.

Note that 7(x) is additive, since addition is the same in ‘H: as in H,. For « € C
and n € H:, T(x)(a-n) = w(x)(an) = ar(z)n = a - w(x)n = a - 7(x)n. So 7(zx) is a
linear mapping on #H*. It is similarly verified that 7(z) is a unitary operator on #*
and that x — 7(z) is a unitary representation.

Definition 2.4.14. If 7 is a unitary representation of GG, then the representation 7
is called the contragredient of m. We let Hz = H..
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It is clear that 7 is irreducible if and only if 7 is irreducible.

Ezxample 9. Suppose 7 is a one dimensional representation of G. Fix n € H, with
Inll = 1. Then H, = {an : a € C} and ||an|| = |af, for any o € C. For any z € G,
|7 (x)n|| = |Inl| = 1. Thus n(x)n = a,n, for some «, € C with |a,| = 1. Note that
x — a is then a homomorphism of G into T. On the other hand, 7(z)n = 7(z)n =
a,n = @ - n. Thus, while 7(2)§ = &, for all £ € H,, we have 7(x){ = @ - &, for
any £ € Hx.

For a general unitary representation m, the coefficient functions of 7 are complex

conjugates of the coefficient functions of 7.

Proposition 2.4.15. Let m be a unitary representation of a locally compact group
G. Let n,§ € Hx and consider them as members of H, as well. Then ¢f . = e

Proof. For any x € G,
one(@) = (T(@)n, O = (& m(@)Nr, = (m(@)n, O, = (). O

The linear map & — (£, m(z)n)%, plays an important role in this study.

Definition 2.4.16. If 7 is a unitary representation of G and n € H,, let

Vo) = (&, m(z)n)n, = ¢y (x), forall z € G,
and each & € H,.

Proposition 2.4.17. Let 7w be a unitary representation of a locally compact group G.
For each n € H,, V,, is a bounded linear map of H, into C,(G). The representation
7 is irreducible if and only if V}, is injective, for every nonzero n € H.

checked that V,, is linear. Thus, it is a bounded linear map of #H, into C(G). The
representation 7 is irreducible if and only if 7 is irreducible and this is equivalent

to V,, being injective for each nonzero n € H, by the equivalence of (a) and (d) in
Theorem 2.4.11. O

Proof. For any § € Hqx, Vi§ = o] - € Cp(G) and ||V, €|l < [Inll2,[[]l2,- Tt is easily

2.5 Square-integrable Representations

If G is a non-compact locally compact group and 7 is an irreducible representation
of GG, the coeflicient functions of m or 7 are always bounded, but they do not need
to be in L*(G). For example, if G = R and x,, :  — €*™*7 is a typical irreducible
unitary representation of R, then any coefficient function of y, is just a constant
multiple of y,,, which will not be in L?(R) unless the constant is 0. If it happens
that an irreducible unitary representation has a nonzero coefficient function that lies
in L?(G), then there are significant implications. These properties are introduced in
this section.
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Definition 2.5.1. Let 7 be an irreducible representation of a locally compact group
G. For n € Hy, V,4(z) = ({,m(x)n), for v € G and £ € H,. If there exist nonzero
n,€ € Hn such that V,¢ € L*(G), then 7 is called a square-integrable representation
of G.

Note that 7 is square-integrable if and only if 7 is square-integrable and V,,§ = go?s.
For a proof of the following proposition, see the proof of part (b) of Theorem 2.25 in
[14].

Proposition 2.5.2. If 7 is a square-integrable representation of a locally compact
group G and n € H, is such that V¢ € L*(G), for one nonzero £ € H,, then
V,€ € L*(Q), for all £ € H,.

Definition 2.5.3. Let m be a square-integrable representation of a locally compact
group G. Let D, denote the set of all n € H, such that V,n € L*(G) (equivalently,
V& € L*(@G), for all £ € H,).

Proposition 2.5.4. Let m be a square-integrable representation of a locally compact
group G. Then D, is a dense subspace of H..

Proof. Suppose n1,12 € D, then, for any & € H,, Vi, 10, = Vi &+ Vi€ € L*(G), by
Proposition 2.5.2. Thus, n; + 1o € D,. Likewise, an, € D,, for any a € C. That is,
D, is a subspace of H,. Let  be a nonzero member of D,. For any y € G and any
£ € He, Vagmé(z) = Vo€(xy), for all x € G. Thus,

[ Vet @ duote) = | Vigla)dnate) = Aot | Vi@ Pdta) < .

Therefore, D, is a m-invariant subspace of H,. Then D, is a 7-invariant closed
subspace, which must be H,, since 7 is irreducible. Thus D, is dense. O

If G is a compact group, Cy(G) = C(G) C L*(G). So any irreducible representa-
tion 7 of GG is square-integrable. In a later section, we describe the Peter-Weyl theory
for compact groups. A part of that theory is a theorem called the orthogonality rela-
tions for irreducible representations of compact groups. A key relation (see Corollary
2.6.8) states: If 7 is an irreducible unitary representation of a compact group G' and

if n,n',§,&" € Hy, then

1
<V;7€7 ‘/;7/5/>L2(G) - d_<€7§,>7-[7r <77,777>H7T' (25)

Duflo and Moore [9] established an important generalization of (2.5). The statement
we give is derived from Theorem 2.25 of [14].

Theorem 2.5.5. [Duflo-Moore] Let 7 be a square-integrable representation of a lo-
cally compact group GG. There exists a positive, self-adjoint, densely defined, operator
Cr on H, with dom(C) = D, and such that, for £, ¢ € H, and n,n € D,,

<V77£7 an£/>L2(G) = <£7 £/>H,, <CW77I7 C?TT]>HW'
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Moreover, Cy satisfies the semi-invariance property m(z)Crm(x)* = Ag(x)Y/2C,, for

all z € G.

Definition 2.5.6. Let 7 be a square-integrable representation of a locally compact
group G. The operator C; of Theorem 2.5.5 is called the Duflo-Moore operator of .

Duflo and Moore (Lemma 1 of [9]) also showed that there is a strong uniqueness
of the Duflo-Moore operator of a square-integrable representation that is determined
by the semi-invariance property.

Proposition 2.5.7. Let 7 be a square-integrable representation of a locally compact
group GG. Suppose T’ is a positive, self-adjoint, densely defined, operator on H, that
satisfies ()T (7)* = Ag(z)Y?T, for all x € G. Then dom(T) = D, and T = C,.

Grossmann, Morlet and Paul [15] showed how the Duflo-Moore Theorem leads to
generalizations of the continuous wavelet transform and the associated reconstruction
formula. The process follows.

Let m be a square-integrable representation of a locally compact group G. Select
n € D, so that ||Crnll3, = 1. Then Theorem 2.5.5 implies V,, : H, — L*(G) is an
isometry. Thus K, = V, 1, is a closed subspace of L*(G).

Proposition 2.5.8. With the above notation, K, is a Ag-invariant closed subspace
of L*(G) and Vj, intertwines m with Ag.

Proof. Let f € K, and y € G. There is a unique { € ‘H, such that V,§ = f. Then

Var(y)é(@) = (m(y)&, (@), = (€ 7y~ @), = Vab(y™'2) = Aa(y) f(2),

for all x € G. Thus, A¢(y)f € K,, for each y € G and f € K,. That is, K, is
Ag-invariant. Also, the above calculation shows that V,, intertwines 7 with Ag. O

Note that Vj,, considered as a unitary map from H, to K, intertwining = with

/\g”, shows that 7 ~ )\g". An expression for the inverse V" : K, — H; is provided by
a reconstruction formula.

Proposition 2.5.9. Let 7 be a square-integrable representation of a locally compact
group G and let n € D, be such that |Cn||3, = 1. Then, for any £ € H,,

£ = / Vié(x)m(x)n dpc(x), weakly in H,.
G
Proof. Fix £ € H,. For any & € H.,
= (Vi Vi )1y = /G V() @, m @) dyic ()
_ / Vi (@) (), €0, dps () = / (V@))€ dic(a).

Thus, £ = [, V,&(z)m(x)ndpc(z), weakly in H,. O
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Thus, if g € IC,), then there exists a unique £ € H, such that, for all £’ € H,, we
have (£, = [ (g )0, &)y, dpc(x). Then Vg = ¢.
Example 10. The group of all invertible affine transformations of R can be written as
G1 =A{[z,a] : x € R,a € R*} with group product given by [z, a][z/, d'] = [+ ax’, ad'],
identity [0, 1], and inverses given by [z, a] ™ = [~a~'z,a™']. There is a good discussion
of this group in [17] and it will be studied in more detail later in this thesis. Let 7 be

the unitary representation of Gy on L?(R) given by, for [z,a] € Gy and f € L*(R),
wlz, alf(y) = |a| Y2 f (=), forall y € R.

It turns out that 7 is irreducible and, in fact, square-integrable. See [15] or [17] for a
proof. Or see [4] for a more general result. To describe the Duflo-Moore operator C,
we need the Fourier transform, which is introduced carefully in the next section. Here,
we will assume it is familiar. Write R for frequency space and let F: L*(R) — L*(R)
denote the unitary map such that Ff(w) fR e~2mivedy for all w € R
and f € LY(R) N L?*(R). The Duflo- Moore operator is a mult1plication operator on
the Fourier transform side. For any £ € LQ(I@), let

Té(w) = |w|7Y2€(w), for ae. we R.

Then T is a positive, self-adjoint, operator on L%(R) and C, = F~'TF. Thus,
w € L*(R) satisfying ||Crwl|[> = 1 means the same as [5 |@( )|2d°"

o = 1. For such a
w, define V,, f, for any f € L*(R), by
Vwflz,a] = (f, 7z, a]w) 2w, for all [z,a] € G. (2.6)

Proposition 2.5.9 tells us that, for any f € L*(R),

_ dx da ; 2
f—/R/Rwa[x,a]ﬂ[x,a]w -3+, weakly in L*(R). (2.7)

Starting in the 1980s, the map V,, has been called a continuous wavelet transform and
(2.7), the continuous wavelet reconstruction formula. But (2.7) was known earlier
and is version of the Calderén Reproducing Formula in one dimension. A function
w € L*(R) satisfying |5 |0(w |2dw = 1 is called a wawvelet for the continuous wavelet
transform on R.

In analogy with the situation in the above example, the term wavelet is used more
generally.

Definition 2.5.10. Let 7 be a square-integrable representation of a locally compact
group. A m-wavelet is a vector n € H, such that ||Crn|ly, = 1, where C; is the
Duflo-Moore operator of .

Remark. If 7 is a square-integrable representation of G and ' € D, and 1’ # 0, then
n = mn’ is a m-wavelet. So the linear span of the set of all m-wavelets is the
dense subspace D, of H..
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2.6 Compact Groups and the Peter-Weyl Theo-
rem

In this section we will give a brief summary of the Peter-Weyl theorem. This theorem
shows exactly how the left regular representation of a compact group is a direct
sum of irreducible representations. The presentation draws on [12]. We need some
fundamental facts about compact groups.

If G is a compact group, the Haar measure of G is finite. We normalize the Haar
measure so that ug(G) = 1. Note that G is unimodular when G is compact. Since
pe(G) =1, C(G) C L*(G). Let 7 be any unitary representation of G. For &, 1 € H.,,
V€ € C(G) C L*(G), where V,{(z) = (§, m(x)n), for all € G. Recall that, if 7 and
p are unitary representations of G, then T' € C(m, p) that means T' € B(H.,H,) and
Tr(x) = p(x)T, for all x € G.

Proposition 2.6.1. Let 7w be a unitary representation of a compact group G and let
n e Hsy.

(a) V, : Hr — L*(G) is a bounded linear map.

(b) V, intertwines = with Ag. That is, V, € C(7, Ag).

(c) If 7 is irreducible and 7 # 0, then V,, is injective.

Proof. (a) Let n € H,. Then V, is linear because the inner product is linear in the
first argument. For £ € H.,,

[ Wt@)Pauata) = [ 1€ n(z)n)Pduc(z)
G G
< [ 161l duc(o) = el

Thus,V, € B(Hx, L*(G)) and ||V ]| < [|n]l.
(b) For any y € G and & € H,,

(Vor()€) (z) = (m(y)&, m(2)n) = (€, 7(y) 7 (z)n)
= (& 7y 'o)n) = V,€(yx) = Aa(y)Vié(),

for any € G. Thus, V,7(y) = Aa(y)V;, for any y € G. That is, V), intertwines 7
(c) This follows from Proposition 2.4.17. O

In particular, any irreducible representation of GG is square-integrable. We state
this in a proposition together with several other basic properties of representations
of compact groups. See Theorem 5.2 of [12] for the proofs of parts (b) and (c).

Proposition 2.6.2. Let G be a compact group.
(a) Any irreducible representation of G is square-integrable.
(b) Any irreducible representation of G is finite dimensional.
(¢) Any unitary representation of G is a direct sum of irreducible representations.
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Recall that a coefficient function of a unitary representation, m, is a function of
the form 7 ., for 1,§ € Hy, where ¢ (z) = (7(z)n,§), for all z € G. Note that

Ope = W Let &, denote the linear span of all coefficient functions of w. That is,
Ex = linear span{y] . : {,n € H}. It is a subspace of C(G) and hence subspace
of L*(G). Suppose that 7’ is a unitarily equivalent to . That is, there is a unitary
operator U € C(m,7’). Then, for n,£ € H,,

o (z) = (n(2)n, ), = {Un(z)n, Uy, = (7' (x)Un, U)u., = @5y ve(®),

for any x € G. Thus any coefficient function of 7 is also a coefficient function of
7" and conversely. That is, £, depends only on the unitary equivalence class of .
Moreover, it is invariant under left and right translations.

Proposition 2.6.3. Let m be a unitary representation of a compact group GG. The
subspace of C(G) of the form &, is invariant under both left and right translations.

Proof. Let ¢ € &:. Then, there exist n € N, 1;,&; € H, and o; € C, for 1 < j <,
such that ¢ = >, ajepp ¢ Forany y € G,

Aa)e(e) = ply™'e) =Y o) o (v ') ZO@ w(y~ o). &)
=1

— Z a] 77]7 )£J> = Z O(nggjm(y)fj (ZE)
j=1

for all z € G. Similarly, pe(y)p = >, OGN (s O

The Schur orthogonality relations give information about the inner product of two
coefficient functions of irreducible representations of G. The presentation here adapts
material from Section 5.2 of [12].

Let m and 7’ be two representations of G. First, we introduce a method of creating
elements of C(m, 7’). Start with any A € B(Hr, Hn) and let A = [, 7' (27 ")An(z) dz.
This operator valued integral can be interpreted as follows: The operator A is the
unique element of B(H,, H,/) such that

(Ag, &) = L(W'(x_l)Aﬁ(x)f,ﬁl)dx, for all £ € Hr, &' € Hor

Proposition 2.6.4. Let G be a compact group and let 7, 7’ be representations of G.
If A€ B(Hx, Hr), then A € C(m, 7).
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Proof. Let y € G. For any £ € H, and & € H,

(An(y)t, ) = / (n' (&) Am(a)m ()€, £') e = / (n' () Am(zy)€, €')di

- /G (n'(ay ™)) An(2)E, €)de = /G (7' ()7 (&™) A (2)€, € da

=/G<7T’(96_1)A7T(93)€,W’(y‘1)§’>dx= (Ag, 7' (y™)e) = (' (y) Ag, &),

Thus An(y) = @' (y)A, for any y € G. Therefore A € C(n, ). O

We immediately recognize that, if 7 and 7’ are irreducible representations of G
such that 7 is not equivalent 7/, then A = 0, for any A € B(H,, H).
_ In the case where m = 7' is a finite dimensional representation of G, the traces of
A and A agree.

Lemma 2.6.5. Let G be a compact group and let 7 be a finite dimensional repre-
sentation of G. If A € B(#H,), then tr(A) = tr(A).

Proof. Recall that d, = dim(#,). Let {§; : 1 < j < d,} be an orthonormal basis of
H,. For each z € G, {n(z)§; : 1 <j <d,} is an orthonormal basis of H,. Then

dr

r(d) = 3_(36.6) = Y [ (rla ) An()g o

j=
dr

-/ (Z<Aw<x>»sm<x>§j>) o = [ (Ao = (4,

using the fact that Haar measure on G is normalized. O]

Now, let m and 7’ be any irreducible representations of G. Fix vectors n € H,
and ' € H, and define A € B(H,, H) by A = (&, m)n/, for all £ € H,. For € € H,
and & € H,

ie.g) = [ (e An(og €)ds
_ / (Ar(2)€, o/ (2)€)dz
G
- /G<<7r<x>f,n>n', 7 (2)€')da (2.8)
- / (r(@)E, et 7 (@)€Y de
G
— [ vealaloey @ da.
G

If 7 and 7’ are not equivalent, then A = 0. This leads to the following proposition.
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Proposition 2.6.6. Let G be a compact group and let 7 and #n’ be irreducible
representations of G such that 7 is not equivalent to 7. Then any coefficient function
of 7 is perpendicular to any coefficient function of 7' as members of L?(G).

Let’s look at the implications of (2.8) when 7 = 7’. Thus, let 7 be an irreducible
representation of G and let 1,1 € H,. Define A € B(H,) by A& = (£, n)n, for all
¢ € H,. Then, using Lemma 2.6.5,

dr dr dr

tr(A) = tr(A) = Y (A&, &) = Y (& mn's &) = > (& m &) = (' sm),

Jj=1 Jj=1 Jj=1

by the Parseval Identity. On the other hand, we know by Proposition 2.6.4 that
A € C(m). Since 7 is irreducible, there is a constant ¢ € C such that A = ¢I, where

I is the identity operator on H,. Therefore, tr(A) = cd,. Thus, ¢ = % and

A — ('m)
A=y

Theorem 2.6.7. Let G be a compact group and let 7 be an irreducible representation
of G. Let n,1,&,& € Hr. Then

| ool da = (€€ )
G m

Proof. This follows immediately from (2.8) and the fact that A= %—;ml when A is

defined by A& = (£, n)1/, for all £ € H,,. O

The results in Proposition 2.6.6 and Theorem 2.6.7 together are called the Schur
Orthogonality Relations. For the purpose of this thesis, Theorem 2.6.7 is restated in
terms of the V,, maps.

Corollary 2.6.8. Let GG be a compact group and let 7 be an irreducible representation
of G. Let n,n,&,& € Hy. Then

1
<V;7€7 ‘/;7’5/>L2(G) = d_<€7 §,>H-,r <77,7 77>’Hﬂ-'

Proof. In the following calculation the fact that G is unimodular is used in the 27 —
x variable change.

| V@@ de = [ (¢ontain),, Erom], do
G G
~ / ()Y, @ e, Y,y de
G
- / (r(2)E, 1) (A @) E i i
G
— [ Geolaoer @ de = €€, (),
G T
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Thus <‘/;7€> ‘/;7’§I>L2(G) = i(& §/>Hﬂ <77/7 77>H7T : L

Let 7 be an irreducible representation of G. For n € H,, let IC,, = {V,,§ : £ € H,}.
Since H, is finite dimensional, so is K,. Consider K, as a subspace of L*(G). By

Proposition 2.6.1, V,, intertwines m with Ag. Thus K, is a closed Ag-invariant subspace
of L*(G).

Corollary 2.6.9. Let GG be a compact group and let 7 be an irreducible representation
of G.
(a) If n € H, satisfies ||n|| = v/dx, then V,, is a unitary map from H, onto K,,.
(b) If m1,n2 € H, are orthogonal, then I, L IC,,.

Proof. Both claims follow immediately from Corollary 2.6.8. O

In the language of square-integrable representations and wavelets, we have the
following:

Corollary 2.6.10. Let G be a compact group and let m be an irreducible representa-
tion of G. The Duflo-Moore operator for 7 is dyt 2T , where I is the identity operator
on Hy, D = H,, and n € H, is a m-wavelet if and only if ||al7_r1/277||7.[7r =1.

If 7 is an irreducible representation of G and 7 is a m-wavelet, then IC,, C &, the lin-

ear span of the coefficient functions of 7. Let’s fix an orthonormal basis {&;,- -+, &4, }

of Hy. For 1 <j <d,, let n; = dy 25’]-. Then each n; is a m-wavelet and K,, L I,

if 1 <k<j<d,; Suppose gafg is any coefficient function of 7. Since {ny,--- ,n4.}
dx

spans H,, we can write n = ZJ L a;n;, for some o; € C, 1 < j < d,.
wig()zf( )1, ) = (€ (@ ) V-
= ZO‘J §m ZO‘J

for all z € G. This shows that & = K, @---@®K,, and, thus, & is finite dimensional
of dimension d? = d2. Note that Proposition 2.6.6 implies &, L &, if 7 and 7’ are
inequivalent irreducible representations of G. Let & denote the linear span of U__s&;.
Then € is dense in L*(G) (see Theorem 5.11 of [12]). Thus, L*(G) = Zfe@ Er. Note,

we could also write L*(G) = fe o & We organize these points in a final theorem
for this section.

Theorem 2.6.11. Let G be a compact group.

(a) For each m € @G, let & denote the linear span of the coefficient functions of .
Then L?(G) = @ee Ex.

(b) For each 7 € G, let {n; : 1 <j <d.} be an orthogonal set of vectors in H, such
that ||dxn;|ls, =1, for 1 < j < dr. Let K, = V;,Hx, for 1 < j < dp. Then K, is a

Ko,
Ag-invariant subspace of L*(G) and A" ~ m. Moreover, & = K,, & --- & K, .
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2.7 The Fourier Transform

In this section, we recall the basic properties of Fourier analysis on R” and introduce
notation that will be used later. There are many references for the material in this
section and also different notational conventions. Versions of the results can be found
in [23] and [11]

It is useful to distinguish between R™ and its Fourier dual Rn by column and row

vectors. So
€

R"=<z = : C Ty, Ty €R

T

and R" = {w= (w1, ,wn) : w1, ,w, € R}, Note that we = > 77wy, for

wE R” and z € R™. Also, if A is an n X n-real matrix, then w(Az) = (wA)z.

Any irreducible unitary representation of R™ is one dimensional and of the form
z — ¥ for some w € R™. L

If f e LY(R"), the Fourier transform of f is a function f : R* — C defined as
follows:

Flw) = f(z)e *™2dy, for w € R
R™

Then f — f is a linear map of L'(R") into CO(H/%’\”L) such that Hf”oo < || f]}1. In this
thesis, frequent use is made of a closely related unitary map.

Theorem 2.7.1. [Plancherel] There exists a unitary map F of L(R") onto L*(R")
such that Ff = f for all f € L*(R™) N L?*(R"). Moreover,

F(z) = | &(w)e’ ™ dw,

R
for any z € R" and ¢ € LY(R") N L2(R™).

For f € L2(R™), the notation f will sometimes be used for Ff even if f ¢ L'(R").
Also, F~'¢ may be denoted ¢. However, we usually use F to emphasize its importance
as a unitary map. To illustrate this, consider the left regular representation Ag» of
the additive groupEl acting on L?*(R™). Define an equivalent unitary representation

Arn acting on L?(R") by XR\'H(£> = Fgn(z)F 1, for all z € R™.
Proposition 2.7.2. For z € R™ and ¢ € L*(R"),
Mg (2)€) (w) = e 2™2¢(w), for a.e. w € R™.

Proof. Fix z € R™. First, assume £ = ]?, for f € L'(R") N L*(R"). So ¢ = F-LF.
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Then Agn(z)f € LY(R™) N L*(R") as well. Thus,

en (2)€) (w) = F (Mg (2) ) (w) = / (Arn (@) f) (e > ™dy = | fly — z)e *™Ydy

n R
[ femtray — e [ pge-tmingy - ),
R - R -
for all w € R". Now define M, on L2(R") by (Myn)(w) = e *™%2p(w), for a.e.
w € R" and each n € L?(R"). Then M, € U(L*(R")). Moreover, M, agrees with the
unitary operator Ag-(z) on F(L*(R") N L*(R")), a dense subspace of L*(R"). Thus,
A (2) = M, O

Proposition 2.7.2 can be used to identify many closed Agn-invariant subspaces of
LA(R™).

Definition 2.7.3. Let Q be a Borel subset of R". We use the notation L*(Q) for the
set of functions in L?*(R") that are essentially supported on 2. That is

L2(Q) = {5 € L2A(R") : £(w) = 0, for ace. w € R7\ Q} .

Let H = {f € LA(R") : Ff € L2(Q)}.

Note that L2(Q) is a closed subspace of L*(R"). We have L2(Q) = {0} if and
only if |2 = 0, where |Q] is the Lebesgue measure of Q, and L2(Q) = L*(R") if and
only if ]]1/@ \ Q] = 0. Thus, if |2 > 0 and \@ \ Q| > 0, then L*(Q) is a nontrivial
closed subspace of LQ(]I/@). For any Borel Q C Rm and z € R", if £ € L*(Q), then
M,¢ € L*(Q). So L*(Q) is invariant under the action of XR\n(g), for any z € R™
That is, L2(Q) is a Agn-invariant closed subspace of L2(R"). Therefore, H2 is a Agn-
invariant closed subspace of L?(R"). In fact, every Agn-invariant closed subspace of

L*(R") is of the form H2 for some Borel subset  of R". See Theorem 9.17 of [23]
for a proof when n = 1. This proof is easily adapted for general n.

Proposition 2.7.4. If K is any Agn-invariant closed subspace of L?(R™) such that
K # {0}, then there exist two Agn-invariant closed subspaces of L?(R"), say K; and
ICo, such that IC; # {0}, Ky # {0}, K1 L Ky and K = K + Ks.

Proof. By the discussion above, there exists a Borel {2 C R” such that K = H% Since
K # {0}, |©2] > 0. By properties of Lebesgue measure, we can find Borel subsets
and Q, of Q so that QN Qy = 0 and Q; UQy = Q. Then just take K; = HSQh and
Ko = H,. 0

One consequence of Proposition 2.7.4 is that Ag» cannot be written as a direct
sum of irreducible representations unlike the case for a compact group.
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2.8 Induced Representations

Suppose G is a locally compact group and H is a closed subgroup of G. If 7 is a unitary
representation of H, there is a procedure for building a unitary representation of G by
combining the action of G on G/H with m. This new representation is known as an
induced representation, the representation of G induced by 7. A detailed treatment
of the theory of induced representations can be found in [20]. The parts of the theory
used in this thesis are gathered in this section and adapted for convenient use.

Let ¢ : G — G/H be the quotient map, q(z) = xH, for x € G. The space G/H is
locally compact when endowed with the quotient topology. We will assume also that
we have chosen a map p : G/H — G such that ¢(p(w)) = w, for all w € G/H. That
is, we use the axiom of choice to pick a distinguished element in each left H-coset.
For all groups and subgroup pairs considered in this thesis, it is easy to find a Borel
measurable p, but measurability of p is not needed for this section.

We begin with the existence of a special kind of function on G that relates left Haar
integration on G with left Haar integration on H and a quasi-invariant integration

over G/H.

Definition 2.8.1. A rho-function for (G, H) is a measurable map p : G — R that
satisfies

p(xh) = AG(Z) p(x), forall x € G,h € H.

Proposition 2.8.2. There exists a continuous rho-function p for (G, H) such that
p(x) >0, for all x € G.

See Lemma 1.20 of [20] for the proof.

Ezample 11. Suppose there exists a closed subgroup K of G such that K N H = {e},
G = KH, and the map (k,h) — kh is a homeomorphism of K x H with G. Such a
complementary subgroup K of H exists in many useful situations. Then, for z € G,
there exist unique k, € K and h, € H such that x = k,h, and the map © — (k,, h,) is

continuous since it is the inverse of the above homeomorphism. Then p(x) = ig ((Z””g,

for all z € G, defines a continuous and everywhere positive rho-function for (G, H).

Any continuous rho-function determines an associated measure on G/H. The
following is a consequence of the Riesz Representation Theorem for positive linear
functionals on C.(G/H) (see Proposition 1.14 in [20]).

Proposition 2.8.3. Let p be a continuous rho-function for (G, H). There exists a
positive regular Borel measure y, on G/H such that

/ £ (2)ple) ducla /G B / ) dpuss (h) dja, (),

for all f € C.(G).

Recall that G acts on G/H by, for x € Gand yH € G/H, x-(yH) = (xy)H. This
can also be written neatly as, for x € G and w € G/H, x - w = q(xp(w)). For any
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subset £ of G/H,let v+ E = {z-w:w € E}. If Fis a Borel subset of G/H, then so
is z - E. For any Borel measure v on G/H and x € G, define a new Borel measure
x-vonG/H by (x-v)(E) =v(x- E), for any Borel E C G/H.

Definition 2.8.4. A regular Borel measure on G/H is quasi-invariant if, for every
r € G, x-v and v are mutually absolutely continuous.

Suppose v is a quasi-invariant regular Borel measure on G/H. For each = € G,

[%] denotes the Radon-Nikodym derivative. That is, %

measurable function on G/H such that, for any ¢ € C.(G/H),

/G/H (W) d(z - v)(w) = /G/H p(w) [%} (w) dv(w).

It is also useful to move functions on G/H by elements of G. For x € G and any
function ¢ on G/H, let Lyp(w) = o(x7! - w). Elementary integration theory shows
that, for a regular Borel measure v on G/H, ¢ € C.(G/H), and x € G,

/G P )) = /G P ) ) = / e i), @)

We also use L, to denote the operation of moving functions on G by z. That is, if Z
is any set and f: G — Z, then, for x € G, L, f(y) = f(z7'y), for all y € G.

Now, let p be a continuous rho-function for (G, H) and let 41, be the associated
regular Borel measure as in Proposition 2.8.3. For x € G, it is clear that L,-1p is also
a continuous rho- functlon for (G, H ) For any ¢ € C. (G /H), there exists a function
[ € C.(G) such that p(w fH (p(w)h) dpg(h), for all w € G/H (see Proposition
1.9 in [20]). Then,

] is the non-negative

Lip@) = [ F(pta™ ) dum(h) = [ £ p)h) duan(h) = [ Lo (p)h) dun (i)

for any w € G/H. Using (2.9), Proposition 2.8.3, and left invariance of the Haar
integral on G,

/G/de(x-up) :/G/HL w) dp,(w /G/H/ Lo f (p(w)h) dpg (h) dps(w)
:/fo(y) ) dpcy /f Lo-1p(y) duc(y)
/G/H/ h) dug () dp,, (@) = /G/Hsodu%l,f
(2.10)

Since ¢ € C.(G/H) was arbitrary, x - yu, = Moy
If p is a continuous and everywhere positive rho-function for (G, H) and p, is the
associated regular Borel measure on G/H as in Proposition 2.8.3, notice that, for
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x,y € Gand any h € H,
playh)  play)
p(yh) — ply)’

using the defining property of rho-functions. So, with x fixed, y — ’;f(iyy)) is constant

on left H-cosets. Therefore, we can define r, : G x G/H — (0, 00) by

p(zp(w))
p(p(w))
This does not depend on the choice of the cross-section map p : G/H — G. Then

r, is a continuous and everywhere positive function on G x G/H. The following is
based on Theorem 1.18 in [20].

ro(x,w) = , for all (z,w) € G x G/H.

Theorem 2.8.5. Let H be a closed subgroup of a locally compact group G. Let p
be a continuous and everywhere positive rho-function for (G, H) and let p, be the
associated regular Borel measure on G/H. Then p, is a quasi-invariant measure on

G/H. Moreover, for any x € G, [&pp)] (w) = r,(z,w), for a.e. we G/H.
Proof. To show that [ x’:")} (w) = 71y(z, w) for a.e. w e G/H, let p € C.(G/H) be

arbitrary. Select f € C.(G) such that p(w) = [, f(p(w)h) duw(h), for all w € G/H.
Then, using = - p, = pt, and Proposmon 2.8.3,

_1p

/G/H p(w) d(x - ) /G/H/ h) dp(h) dp, (@)
/f w1p(y) dpc(y /f p(xy) dpc(y)
= [ 1022 0t0) di

- /G/H/ /ol ))h};) dppr(h) dp,(w)
/G/H/ F(p()h) dur (h)ry(z, w) dpy(w)

- /G P9 d),

since % =r,(z,w), forallh € H, (x,w) € GXxG/H. This proves that r,(z,w) =

[%} (w), for a.e. w € G/H and all x € G. Moreover, it also shows that x - 41, is
Hp

absolutely continuous with respect to p,, for every x € G. Using the properties of
group actions shows these measures are mutually absolutely continuous. Thus, p, is
a quasi-invariant measure on G/ H. [
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For p € C.(G/H) and = € G,

/| )y (0) = | e = [ P, )

G/H

Thus, for ¢ € C.(G/H) and z € G,

/G o p(w) dpy(w) = /G . Ly=1 (Lap) (w) dpp(w) = /G o (Latp) (@)rp(z™, w) dprp(w).

Integration theory now leads to the following change of variables formula.

Corollary 2.8.6. Let H be a closed subgroup of a locally compact group G. Let p
be a continuous and everywhere positive rho-function for (G, H) and let p, be the
associated regular Borel measure on G/H. For any Borel function g : G/H — [0, 0o,
or any ¢ : G/H — C that is p,-integrable,

w) dp,(w) = L, wrp:c_l,wdpw,
[ o) = [ Lt ) dne)

G/H
for all z € G.

This change of variables formula for the G action on G/H, when G/H carries
the quasi-invariant measure p,, is what is needed to get a concrete definition of a
representation of G induced from a representation of H. There are a variety of ways
(all resulting in equivalent representations) of defining induced representations. The
most efficient one for the purposes of this thesis is based on Proposition 2.28 of [20].
The same construction is presented in Section 6.1 of [12].

Fix a continuous and everywhere positive rho-function p and associated quasi-
invariant measure y, on G/H. Let 7 be a unitary representation of H on the Hilbert
space H,. The first step is to define a Hilbert space consisting of H-valued functions
on GG that encode the action of H through 7. Recall that a function £ : G — H, is
called weakly Borel measurable if x — (£(x),v) is Borel measurable, for each v € H,.
We will call such functions measurable for simplicity. There are two properties that
measurable functions ¢ : G — H, could satisfy, the second depending on the first
being satisfied.

Property 1: {(zh) = m(h™1)&(z), for all h € H and all z € G.

Note that if £ satisfies £(zh) = w(h™1)&(x), for all h € H and almost all z € G,
then let A denote the set of all € G such that £(zh) # w(h™)&(x), for some h € H.
Then Ak = A, for all k € H; so A is a union of left H-cosets. Thus, if we define
& .G — H, by
¢lo) - {§(ac) ifzeG\A

0 if x € A,

then £ = £ almost everywhere and £ satisfies Property 1.
Suppose ¢ satisfies Property 1. Then, for any w € G/H, [|£(p(w)h)||ln, =
1€ (p(w)) |2, for all h € H, so ||£(p(w)) ||#, does not depend on the choice of p.
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Property 2: [, 1€ (p(w)) 157 dpp(w) < oo

Standard arguments show that if £&; and & are measurable functions from G into
‘H, that satisfy Properties 1 and 2 and a € C, then & + &, and &, satisfy Properties
1 and 2. As usual, if & (p(w)) = &(p(w)) for pyae. w € G/H, then we say & and
&y are equivalent.

Definition 2.8.7. Let H! , denote the vector space of equivalence classes of mea-
surable £ : G — H, that satisfy Properties 1 and 2.

If &,& € HE ., for any w € G/H,

<§1 (p(w)h),fg (p(w)h)>Hw = <£1 (p(w)),fg (p(cu))>%7r , for any h € H.

Thus, <§1 (p(w)h),{z (]D(cu)h)>mr does not depend on the choice of p. Also

‘<€1 (p@)), &(p(w))),,

< 1161 (P(@)) s, 162 (p(@)) [,
< & (p@)l;, + Ig2(p@)ll,;, -

Thus, w — <£1 (p(w)),fg (p(w))>H is integrable on G/H with respect to the measure
tp. Let i
<§17 £2>H‘.D

indm

= [ (6 0e). &), )

This defines an inner product on H! , . Natural modifications of the usual arguments
show that H{ , is complete in the norm defined by this inner product (see Proposition
2.28 in [20]). The induced representation is defined on this Hilbert space.

Definition 2.8.8. Let 7 be a unitary representation of a closed subgroup H of a lo-
cally compact group G. Let p be a continuous and everywhere positive rho-function
for (G, H) and let p1, be the associated quasi-invariant measure on G/H. The repre-
sentation of GG induced by 7 is denoted indgﬁ and acts on the Hilbert space HY , .
For ¢ € H! , and z € G,

indm

i| 1/2

indm(2)8(y) = [£452] T ga ), fory € G.
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Let us check that ind%n(z) is a unitary operator. For &, & € M’

indm?

Har

_ / (6 @), 6 @), ) g )
G/H i p(p( )
- /G o (& (27'pw), & (a7 ), rola™,w) dpy(w)

— [ (b)) &), il
G/H
= (&, &),

ind7

<indf17r(:c)§1,indgw(w)fﬁﬂp :/G/H<indg7r(:c)§1(p(w)),ind%w(w)ﬁg(p(w)» dp,(w)

indm

Thus, ind%7(z) preserves inner products. It is clear that indGn(x) is linear. For

r,z€ Gand £ € H

indm>

indgm(z) (indgm(2)€) (y) = :%} v (ind§m(2)€) (z~'y)

r -1 1/2 s 11 1/2 _ _
_ _ﬂ(m y)} [p(p(zfly)y)} £(z 1, 1y)

[ o((z2)~1y 1/2 _
— A0 P e((22) )
1ndfl7r( 2)¢(y), for ae. y € G.

Since ind§n(e) is clearly the identity operator on H/ , , each ind§m(z) must be a
unitary operator and indGm : G — U (H? 4.) is a homomorphism. See Section 6.1 of
[12] for the proof that z — ind%n ()¢ is continuous for each € € H, . Thus, ind%7
is a unitary representation of G.

ind7m*

Remark. If p' is another continuous and everywhere positive rho-function for (G, H)
the resulting induced representation is unitarily equivalent to the one constructed
using p. Thus, it is common to suppress the dependency on p in the notation indfﬂr
(See page 154 in [12].)

In many cases, the closed subgroup H is sitting inside G in a special way and
indgﬂ is unitarily equivalent to a representation with a more transparent structure.

As in Example 11, suppose there exists a closed subgroup K of G such that
KnNH ={e}, G=KH, and the map (k,h) — kh is a homeomorphism of K x H
with G. Then, for :v € (G, there exist unique k, € K and h, € H such that x = k_h,.
Then p(z) = 2’;’ é ””) for all x € @, defines a continuous and everywhere positive
rho-function for (G, H). Note that p(kz) = p(x), for all x € G and k € K.

If we restrict the quotient map ¢ to K, so ¢, (k) = kH, for all k € K, then ¢/, isa
homeomorphism. Then there is a very nice cross-section map p : G/H — G given by
p(kH) =k, for k € K. If v is a regular Borel measure on G/H, define a regular Borel
measure 17 on K by U(E) = v(q(E)), for all Borel E C K. Then, for any ¢ € C.(K),
[ o(k = Jom ¢(p(w)) dv(w). Let p, be the measure on G/H associated with
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p as in Proposition 2.8.3. For any ¢ € C.(K), pop € C.(G/H). Let f € C.(G) be
such that

(k) = (00 p) (kH) = /H F(p(kH)R) dp () = /H F (k) dyasa (),

for any k € K. Note that, for ¢ € K, Lyp(k) = [}, L¢f(kh) dpig (R). Then Proposition
2.8.3 implies, for any ¢ € K,

[ ety = [ [ ) dun ) i /G B [ F @) dun () duy ()

/f 2) dug(a /fé D)o(01) dpia ()
- /G Lof(2)p() dpic (s / / Lo f(kh) dyuse (1) diiy ()
- /K Lup(k) i, (k).

That is [, Lep(k) dii,(k) = [, ¢(k) dfi,(k), for any ¢ € K and any ¢ € C.(K). This
means /i, must be a left Haar measure on K. Thus, we can take pux = fi,.

Define W : H. , — L*(K,H,) as follows: For £ € H. , , we can select a repre-
sentative function in the equivalence class of £, also denoted &, so that Properties 1
and 2 hold. Let W¢ : K — H, be given by simply restricting £ to K. That is

We(k) = €(k), for all k € K.

Then [i [WE(R) 57, dux (k) = [i 1€GR)Z, diio(k) = [0 16 (p(w)) 132, dpp(w) < o0,
by Property 2. Thus, W¢ € L*(K,H,) and W is an isometry. It is obvious that W is
linear. Also, for any F' € L?*(K,H,), we can chose F' so that it is everywhere defined
on K. Define ¢ : G — H, by &(z) = n(h;)F(k,), forallz € G. If h € H and z € G,
kun = kg and hyy, = hyh. Thus (zh) = 7((hoh) ™) F(k,) = m(h)m(h ') F(k,) =
m(h™1)&(x). Thus € satisfies Property 1 and clearly also Property 2. Therefore,
¢ e Hl, . Moreover, W¢ = F. So W : H! ., — L*(K,H,) is a unitary map and
W=LE is given by W= F(x) = n(h;')F(k,), for all z € G.

In preparation for using W to transfer ind 7 from HY , to an equivalent rep-
resentation on L*(K,H,), we make some notational observations. The action of
G on G/H transfers to an action of G on K as a topological space homeomor-
phic to G/H. That is, for x € G and k € K, 7' -k = p(z7'kH) = k1.
Since 27tk = ky-1phy-1, = (271 - k)hg-1y, we have hy1p, = (27! - k)~lz7'k and
h, = =k 'z(z7' - k). We will also need p(z~'k)/p(k). But

P k) _ Ap(hei)/Aa(ha-1) _ Ap(ho-1)/Aclhe1s) _ Ap(ha-1)
p(k) Ap(he)/Ac(hy) An(e)/Aale) Ag(ha-11)

Let o™ (z) = Wind%r(z)W =1, for all x € G. For F € L*(K,H,), let £ = W~'F.
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Then, for k € K,

. : : Anlhy 1) |? o -
o™ (2)F (k) = W (ind§im(2)¢) (k) = ind§m(@)é(k) = | 22023 (o 1h)
Apg(h,—1,) vz o - _ | Au(h,—14) 1/2 - -
=[] e = (] () P ),

The situation just discussed is based on Example 2.29 in [20]. However, there is an
error in the definition of the rho-function in the last line of page 74 of [20]. As a
result the formula for the representation is incorrect there. Therefore, we state the
correct expression in a proposition.

Proposition 2.8.9. Let H and K be closed subgroups of a locally compact group
G that satisfy K N H = {e} and (k, h) — kh is a homeomorphism of K x H onto G.
Let m be a unitary representation of H. Then indgﬂ is equivalent to ¢™ acting on
L*(K,H,) by

T _ {Aulh,—1,) 1/2 -1 -1
o"(z)F (k) = Ao oy| T (h, =) F(z™' - k), for ae. k € K,

for all F € L*(K,H,) and for every = € G.

This formula simplifies further when H is an abelian normal subgroup and = is a
one dimensional representation of H. When this simplified form is used in this thesis,
H is actually an isomorphic copy of R". We now work out this simplified form.

Suppose n € N and Kj is a closed subgroup of GL,(R). Let

G=R" NKQZ{[g,A] &ER”,AEK()}

Let H = {[z,id] : z € R"}. Then H is an abelian normal closed subgroup of G. Let
K = {[0,4] : A € Ky}, a closed subgroup of G. We have K N H = {[0,id]} and
([Q, Al [z, id]) — [0, A][z,id] = [Az, A] is a homeomorphism of K x H with G. Note
that

kia = [0, A] and  hy = [A7'z,id], for all [z, A] € G. (2.11)
The modular function of G is given by
Ak (A)
A Al = ———= for all [z, A] € G.
G[za ] |det(A)|7 or a [l? ] 6

Ayl
Agl

=3

B

)

1/2
Note that Ag = 1 on H and H, itself, is unimodular. So [ }

[z,0] € H.
The irreducible representations of H are all of the form x,, for w € R?, where

= 1, for all

=Y

18

)

Xulz,id] = > for all [z,id] € H.

Corollary 2.8.10. Let G = R" x Ky, where K| is a closed subgroup of GL,(R). Let
H = {[z,id] : z € R"} and let w € R®. Then ind%y,, is unitarily equivalent to o,
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which acts on L?(Ky) as follows: For [z, A] € G and f € L*(K)),
o[z, Alf(B) = >™«B7'2 (A~ B), for all B € K.
Proof. For [z, A] € G and [0, B] € K, [z, A]7'[0, B] = [-A~'z, A7' B], so
[z, A]- [0, B] = kg ap0.5 = [0,A7'B] and hyapp = [-B 'z, id].

By Proposition 2.8.9, ind%y,, is unitarily equivalent to oX« acting on L*(K) by, for
[z, A] € G and f € L*(K),

O’X£[£7 A]f[Q, B] = Xw (h[g_,jl]—l[gB]) f[Q) A*lB] _ eZm'nglgf[Q’ A*lB],

for all [0, B] € K. Let U : L*(K) — L*(Kj) be the obvious unitary map U f(B) =
fl0,B], for all B € K, and f € L*(K;). Then define 0% acting on L?(K,) by
0¥z, Al = Uoxe[z, AJU!, for all [z, A] € G. Thus, 0¥z, A]f(B) = e2"@B 'z (A1 B),
for all B € K and inde}X£ is unitarily equivalent to both X« and o“. O]

Remark. Continuing with the notation of the Corollary, let J : L*(Ky) — L*(Ky) be
given by, for f € L*(Ky),

Jf(B) = Ak, (B)"Y2f(B™Y), for a.e. B € K.

Then J is a unitary operator on L?*(Kj) with J~! = J and, for any [z, A] € G and
f S L2<K0)7
Jola, AJJ 7 f(B) = Mgy (B) 2oz, AJ(J - f)(B™)
— AKO(B)71/262m‘ng(J71f>(Alefl)
= Ag (A)2e?T B f(BA),

for a.e. B € Ky. This provides another equivalent representation to indgxg For
now, it will be unnamed.

2.9 Mackey Theory for Semi-direct Products

In [22], George Mackey developed a systematic method of describing G in certain
situations where G is a semi-direct product. We will introduce Mackey Theory in
this section for the kinds of groups we are interested in. Most of the results are taken
from [20].

Throughout this section, H is a closed subgroup of GL,(R) and

G=R"xH={[z,A]:z,e R", A€ H},

with group product [z, A]ly, B] = [z + Ay, AB], identity [0,id] and inverse of [z, A]
given by [z, A]7! = [-A7'z, A7Y. Let N = {[z,id] : z € R"}. a closed normal
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Abelian subgroup of G. As in Section 2.7, the space of row vectors is denoted R
That is R* = {w = (w1, -+ ,wp) : wy, - ,w, € R}. For each w € R”, define a
character x, on NN by,

Xulz,id] = > for all [z,id] € N.

Then N = {Xg Tw e @7‘} The group G acts on N as follows: If [z, A] € G and
X € ]/\\7, then

(lz, A] - X)[y,id] = x([z, A] [y, id][z, A]), for all [y,id] € N. (2.12)

COIHPUte [£7 A]il[g7 ld] [&, A] = [—Aili’ A*l][g + x, A] — [A*lg’ ld] If w c R;l and
X = Xw in (2.12), then

([, A] - X[y, id] = xW[A 71y, id] = 247 = x4 [y, id],

for all [y,id] € N. Thus, [z, A]- Xw = Xwa-1. Thus, the action of G on N is completely

determined by the action of H on R” given by A-w = wA~!. The G-orbits in N
are fundamental to Mackey Theory. Here, we will express the statements in terms of
H-orbits in R”.

Definition 2.9.1. Let w € R". The H-orbit of w is
O,={A-w:AcH} ={wA™' - Ac H} = {wA: Ac H}.
The stability subgroup for w is
H,={AceH: A w=w}={A€ H: wA=uw}.
Note that H, is a closed subgroup of H. For a given w € ]1/%’\1,
{lz,A] € G: [z, A] - X0 = X} =R" x H,.

Definition 2.9.2. For any unitary representation 7 of H, and any [z, A] € R" x H,,
let
<X£ ® ﬂ—) [@7 A] - X&[&v ld]ﬂ-(A) - 627‘,1‘%%(14)'

Proposition 2.9.3. Let w € R" and let 7 be a unitary representation of H,. Then
Xw ® 7 is a unitary representation of R" x H, also acting on the Hilbert space H,.
Moreover, y, ® 7 is an irreducible representation of R" x H,, if and only if 7 is an
irreducible representation of H,,.

Proof. Clearly, e*™%m(A) is a unitary operator on H,, for each [z, A] € R™ x H,,.
Let [z, A, [y, B] € R" x H,,. Then, for any § € H,

(e ® )z, Al (x ® )y, BE = ™2 7(A) ((x ® m)[y, BJE)
= 22 (A)e?™ U (B) = @) r(AB).
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On the other hand, [z, Al[y, B] = [z + Ay, AB], so

(xe @ ) ([z, Ally, B]) = ™= (AB)
= €2ﬂi£(£+y)ﬂ-(AB),

since wA = w, because A € H,,. Thus, x,®n : R"xH, — U(H,) is a homomorphism.
The rest of the claims of the proposition are now easy to check. O

We need to make an assumption on the topology of the H-orbits.

Definition 2.9.4. Let X be a topological space. A subset A C X is called locally
closed if there exists an open U C X and a closed F' C X such that A=UNF.

If each H-orbit in R” is locally closed, then Remark 4.26(2) of [20] shows that N is
a Mackey compatible subgroup of GG in the sense defined in Definition 4.25 of [20]. In
this case, there is a systematic method of constructing one member of each equivalence
class of irreducible representations of G from the irreducible representations of the
stability subgroups, H,. The method is summarized in Theorem 4.29 of [20], which
is restated here in our notation.

Theorem 2.9.5. Let H be a closed subgroup of GL,(R), let G = R™ x H, and let
N ={[z,id] : z € R"}. Assume that each H-orbit in R~ is locally closed. Let X C R»
be such that O N X is a singleton, for each H-orbit O in R". Then

(a) For each w € X and each irreducible representation 7 of H,, ind$, 1, (Xe®T)
is an irreducible representation of G. -

(b) For each irreducible representation o of G, there exists a unique w € X and,
up to equivalence, a unique irreducible representation of H, such that

7~ G, (0 © 7).

Often notation is abused by using the same symbol for an irreducible representa-
tion and its equivalence class. If we do that, the conclusions of Theorem 2.9.5 can be
summarized by

G = U {indﬁani(X£® T):mE f/f;} . (2.13)

weX
Remark. It is easy to check the condition that every H-orbit is locally closed and
every example considered in this thesis satisfies this conditi/_o\n. However, there is a
closed subgroup HM of GL4(R) such that the HM-orbits in R* are not locally closed.
See Example 4.45 of [20]. The group R* x HM is called a Mautner group and the
description given in (2.13) fails for this group.

The main focus of this thesis is on irreducible representations that are square-
integrable. So, we might ask when a representation included in (2.13) is square-
integrable. There is a clear answer. The following theorem is a consequence of
Corollary 11.1 of [21].
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Theorem 2.9.6. Let H be a closed subgroup of GL,(R), let G = R" x H, and let
N = {[z,id] : z € R"}. For w € R" and an irreducible representation of H,, the
representation ind$, 1., (Xw ® ) is square-integrable if and only if the H-orbit O, is
open and 7 is a square-integrable representation of H,,.

Corollary 2.9.7. Let H be a closed subgroup of GL,(R), let G = R" x H, and let
N ={[z,id] : z € R"}. For w € R, if the H-orbit O, is open and H, is compact,
then ind$, Hy(Xw ® ) is square-integrable for each 7 € H,.

The nature of the wavelet transform associated with the square-integrable rep-
resentations of the form ind$,, ., (Xo ® ™) as in Corollary 2.9.7 has been studied
by Fiihr, see [14], in the case where 7 is the trivial representation of the compact
stability subgroup. In Chapter 3, we work out the details for all square-integrable
representations of an example where the orbit is open and the stability subgroup is
compact.
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Chapter 3

An Example with a Compact
Stability Subgroup

In [5], they classified the closed connected subgroups H of GL3(R) with an open orbit
O in R? and such that the stability subgroup H, is compact for w € O. Since H,,
is compact, if 7 is an irreducible representation of H,, then 7 is a square-integrable
representation of H,. If we induce the representation y, ® 7 from R* x H,, up to
R3 x H, the result will be a square-integrable representation of R? x H by Proposition
11.1 of [21] or the first section of [4], but there is value in working out the details.

3.1 The Example

In this section, we work out the details of a square-integrable representation and the
associated wavelet theory for an illustrative example selected from the list in [5].
a tl t2
Let H = 0 cos(2mu) —sin(27u) | :a,ty,ts € Rya #0,u € [0,1) p. In order
0 sin(27mu)  cos(27mu)
to keep the formulas compact and easier to read, let

_ (cos(2mu) —sin(27u)
v (sin(Zﬂu) cos(2mu) )’ for u € R.
Note that R, x = Ry, for all k € Z, and Ry, Ry, = Ry, +u,, for u,u;,us € R. Also,

write R? = R x R? = xyl .21 €R,y € R2{ and let t = (t1,1,), for £ € R2. Then

— a ét . * 2 _ a fn _ b §t
H_{(Q Ru>.a€R,§€R,u€[0,l)}. ForA-(Q Ru) andB—(Q Rv)

in H,
_ (ba bt'+ 'R, 1 (at —a't'R_,
BA = (0 Ry ) and A™" = ( 0 R, .
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One can check that left Haar integration on H is given by, for any f € C.(H),

/Hf(A)duH //]R?/ (0 R)dﬁrja (3.1)

and the modular function of H is Ay (g R > a 2.
Let G = {[z,A] : z € R3] A € H}. The left Haar integral on G is given by

dxduH(A)
[, [ e AT (3-2)

t
for any f € C.(G). We also have Ag [(”Zl) , (8 é )] = |al 3.

Y

Let N = {[(x1> ,id3:| cr €Rjy € RQ}, where id; denotes the j x j identity

matrix, for j =2 or 3. For (wy,w) € R x R2 define x(u, w) on N by

X(w1.w) [(a;/l) ,id3:| = eZrilwimtwy) - for g]] [(a;) ,id3:| € N.

Then N = X w) @ (Wi, w) € R x ]RQ} The action of H on N is given by the action

e — t
of H on R x R2. ForA:(g é)EHand(wl, )ERXR2

-1 _ =14t
A (w17g> = (wlag)A_l = (whg) (ao aR% Ru)

= (a_lwl, (w— a_lwlf)R_u).
The H-orbit of (1,0) = (1,0,0) is
O={(a!,—a"'R_):a € R tcR*uec[0,1)} = {(w,w) :w #0,w € Rz}

Note that © is co-null in R3, so L2(R3) = L?(©). There are other H-orbits, but they
are null sets and are not used in the following.

We will compute the irreducible representations of GG that are associated with the
orbit O, show that they are square-integrable and work out the associated Duflo-
Moore operators. The stability subgroup H(; g is found by solving (1,0)A" = (1,0).
But

(1,0) = (a™ ', —a 't*R_,) implies @ = 1 and t' = (0, 0).

t
Thus Hg) = {(é ]% ) cu €0, 1)} This is a compact subgroup of H that is

t

isomorphic to T via the map (1 ) — 2™ Therefore, [@ ={y; : j € Z},

0 R,
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where

t ..
oy ((1) ]%u) = ™" for u € [0,1).

For each j € Z, the representation x (1,0 ® ¥; of R* x Hy ) is given by

x 1 0 ri(z1 i x 1 0
(X(1,0 @) K;) , <o R )} = ¥ for all KD : (0 R )} € R®x Hy ).

Denote H' = R x Hp9) and m; = x(1,0) ® ¥;, an irreducible representation of H’.
We can use Proposition 2.8.9 to find the unitary representation ¢” equivalent to
ind%, (;), acting on L?*(K), if we can find a closed subgroup K of G such that
G = KH' and KN H' = {[0,ids])}. This is not difficult in this group. Let

([0 5] rueew)

It is clear that K is a closed subgroup of G and K N H' = {[0,ids]}. Note that, for

s [(5). (4 £)] £ we e
()G R -[0)-6 ) 1) 6 &) e

Thus, G = KH’ and the hypotheses of Proposition 2.8.9 hold. In order to use the
formula in Proposition 2.8.9, we need the modular function of H'. But, it is easy to
verify that H’ is unimodular and the Haar integral on H’ is given by

o= [ LG B o

1/2
= Ag(h)~Y2, for h € H'. But any h € H' is of

A (h)
for all f € C.(H'). Then [A@(h)}

t
the form [<x;> , <(1) }% ﬂ, so Ag(h) = 1. Thus, the first factor on the right hand
side of the fo_rmula_from Proposition 2.8.9 is 1. To complete the evaluation of the
formula in Proposition 2.8.9, we need the following lemma.

B ) a tt . 0 b §t
Lemma 3.1.1. Let x = [(g) ; (Q Ru):| € Gand k = [(Q) ) (Q id2>] € K.

Then 271k = ky—1,hy—15, where

_[/0 a”'b a'(s'R, —t*)
o= |(0) (" )

_ [0 sy —a)) (1O :
hp—1p, = [( _R_fug \0 R, e 0.

o4

and



—a Yz, =t -1 _ 14t
Proof. Compute 71 = [( (2 z_fR_ug)) ’ (ao GRE R—u)‘|. %6

1y —a Nz, — t'R_.y) a'b a”(s'—t'R_,)
. B _Rfug ’ Q Rfu ‘

Now use (3.3) to find k-1, and h,-1,. We check by computing k,-1,h,-1;.

() (" O 5 e

_ K—a—l(g{ _, ZRUQ)) | (a—glb a‘l(gtR— ftR_u))}

This verifies the expressions given for k -1, and h,-1j. O
(o ot t
We need h ~} = G y) , L0 and the notation

1, _|/(0 a'b a'(s'R, —t")
ikt (0 (7 )]

Then 7;(h,~1,) = e27ri<b_l(’”l_§t3)+j“). Plugging this and the expression for 71 -k into

the formula in Proposition 2.8.9 gives the induced representation ™.

i ) a t° = | (T a t°
Proposition 3.1.2. Let [(Q) , (Q Ru):| € GG. Then o [(g) , (Q Ru):| acts

on f € LA(K) as follows:
(=166 &) 106 &)
) ()

0 b st
for all [(Q) , (Q id2>:| € K.

For each (wy,w) € O, there is a unique v(w;,w) € K such that

(w1, w) = (w1, w) - (1,0).

t
Let Koy = {(a L > :aER*,EERQ}. So K ={[0,A] : A € Ky}. Note that

0 idy
b s\ (a t'\  [(ba bt'+ s
0 idy/ \0 idy) ~\ 0  idy

%)



b st a t
(_ 1d2) (0 d2) S KO Thus for f c C (Ko)

Jer () G )5 = L (6 )
(LG
ARG
/(/

t
Thus, fKo fduk, = fR fRQ f g 'E ) dida for any integrable function f on Ky. So

1d2 |a|3 ’

¢
S fdpr =[5 [oo f [(8) , <3 ii)} %, for any integrable function f on K. The

map A — A - (1,0) is a homeomorphism of K with the H-orbit O. Let v denote
the inverse of this homeomorphism. That is, for each (wy,w) € O, v(wy,w) - (1,0) =

t
(w1, ). Tf 7wy, w) = (g ’é) then

) (1.0 = LOnne) = 0.0 = (% T E) =t i)

Thus v(wi,w) - (1,0) = (wy,w) implies y(wy,w) ™! = (061 ﬁ) and
0 ids

-1 -1
_ (% W w
Then (wy,w) — [0,7(w1,w)] is a homeomorphism of O to K, which can be used to

define a unitary map of L?(K) onto L*(0O).

Definition 3.1.3. For f € L?(K) define U f on O by (U f)(w1,w) = |wi| Y2 [0, (w1, w)],
for a.e. (wy,w) € O.

Proposition 3.1.4. For each f € L?*(K) , Uf € L*(O). Moreover, U is a unitary
map of L?*(K) onto L*(O).
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Proof. For f € L*(K),

/@ @|Uf(wl’g)|2dgdah:/@/ﬁ@|f[Q’7(w17£)]|2|w1|_1dt_ddwl
:/R</R o) (5 02 Qdc_v> ] o
:/ﬂ§</ﬁ fK) (“’i fiz)] 2dz> | deon

- L) G b)) i
= [ 1P

Thus Uf € L*(O) and U is an isometry. Clearly, U is linear. Moreover, for ¢ € L?(0),

define f on K by f [(8) ; <8 ii)] = |a|~Y2¢(a™t, —a~'tY), for [(8) , (8 igz)}

in K. Then a similar change of variables calculation shows f € L*(K) and Uf = £.
Thus, U is a unitary map onto L*(O). O

o o

The unitary U can be used to move 07/ to an equivalent representation acting on

L2(0).

t
Definition 3.1.5. For | , a t € G, let
Y 0 R,

P06 &)= 1G) G R

Then o’ is a unitary representation of G on L?(0). To compute an explicit

t
expression for o7, let £ € L*(O) and let f = U~'£. For [(‘?) , (8 é )] €q,

S5 Dm0 ([(5) G £)]7)es
e [ D65 59

0 wia)™? (w a) 'wR, — a1t
1/2 27rz(w1ml+wy+]u 1 1 14
~ el o (o) (“ .

= o] 0y, wR, + nt).
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To make this representation clear in the natural notation of three dimensions, let

s} a tl t2
[z, Al = | |22 ], |0 cos(2mus) —sin(2mua) || € G,
T3 0 sin(2rua) cos(2muy)

where we introduce the notation u,4 to keep track of the connection to the matrix
A. Then o)7 [z, AJ¢(w) = |det(A)|}/2e2milwztiual¢(wA), for a.e. w € R? and we are
considering ¢ € L*(R3) = L2(0). It is easy to verify directly that o}’[z, 4] is a

—

unitary operator on L*(R3).

Theorem 3.1.6. Let

T a tl t2 T
G = o |, [0 cos(2mu) —sin(27u) ra €ER* t,tp,u €R, [ 29 | €R3
T3 0 sin(27u) cos(2mu) T3

For each j € Z, define o7’ : G — L{(Lz(R?’)) by, for

T a tl t2
[z, Al = [ 22|, [0 cos(2ru) —sin(27u) | | € G,
T3 0 sin(27u)  cos(27mu)

o[z, Al¢(w) = | det(A)|V/2e2rilwztiuag(wA), for ae. w € R3 and each ¢ € L2(R3).
Then o}’ is a square-integrable representation of G.

Proof. (Note that this proof closely follows the proof for open and free orbits given
in [4]. ) Standard arguments show that o7 is a unitary representation of G. To prove

that o’ is irreducible, we use property (d) of Theorem 2.4.11. Let {,n € LZ(@). For
simplicity of notation write ¢ ,, for gpg . Then

[ Vool dic = [ (o7 e, Al dcle, 4
G G
2

duglz, Al (3.5)

2
d:uG [£7 A] :

oy [z, AJé(w)n(w) dw

G |JRr3
_ / | det(A)
G
Note that e?7“4 factors out of the inner integral and has absolute value 1. Also, let

ba(w) = E(wA)n(w), for ae. w € R3 and each A € H. Then ¢, € L'(R3) and the
inverse Fourier transform of ¢, is denoted ¢,. Using the left Haar integration on G

i 627ri(ﬂ+j“A)§(£A)@ dw
R
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given in (3.2), (3.5) becomes

[k = [ o o

(3.6)
— [ [ 6@ Pdzdun() = / [ 1oa(@)Pdadun(4)

where we have used Plancherel’s Theorem, which gives oo for both sides if ¢4 is not
in L?(R3). Recalling what ¢4 is and changing the order of integration, (3.6) becomes

[ tesal® = [ ( / |5<c_uA>|2|n<c_u>|2duH<A>) e
= [ ([ et Paun) de

Note that [, |{(wBA)[Pdun(A) = [, |§(wA)[Pdug(A), for any B € H. Thus, we can
define ¢e = [, [€(wA)Pdup (A ) for any w € O. Then [, |£(wA)|*dpun(A) = c, for

a.c. w € R3. Thus (3.7) becomes

(3.7)

[ lecol? diic = [ )P 35)
G R3

Therefore, if ¢¢ [z, A] = 0, for all [z, A] € G, then either n = 0 or ¢¢ = 0. But
ce = 0 implies {(w) = 0, for a.e. w € RS, By condition (d) of Theorem 2.4.11, o7’ is
irreducible.

On the other hand, if £ € C.(O), & # 0, then ¢¢ < 00, s0 ¢, € L*(G), for all
n € LAR3). In the notation of Section 2.5, Ven = @en € L*(G). Therefore, o7’ is
square-integrable. O]

The domain of the Duflo-Moore operator for the square-integrable representation
oy’ (see Section 2.5) is D = {¢ € L*(R?) : V¢& € L*(G)}. Since [, |Veé|Pdua = ¢,
D ={¢ e L*(R%) : ¢¢ < oo}. A closer look at the condition that ¢ < co will give us
a candidate for the Duflo-Moore operator for o}’. Recall the Haar integral on H. Let

a tl tz
= (1,0,0) be a fixed element of O. If A= [0 cos(2muas) —sin(2rua) | € H,
0 sin(2muag)  cos(2muy)

then (1,0,0)A = (a,t1,t,). Thus, using (3.1), for £ € L*(R3),

du dt- dt, da
¢ = /If (1,0,0)A) P dusr (A //// (o, )2 L

Note that the integrand is independent of u. We also can use wy, wo, and ws as the
other variables of integration. Thus, for £ € L?(R3),

EeD & ///||w1|_3/2§(w1,w2,w3)‘2dwgduJdel<oo. (3.9)
RJRJR
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Define T : D — L2(R3) by
(T€)(wy, wa, ws) = |wi|~2€(wy, wa, ws), for a.e. (wi,ws,ws) € R3,

and each £ € LQ(@). Then T is a densely defined, positive, self-adjoint operator on
L3(IR3).

Lemma 3.1.7. For any [z, A] € G, o)’ [z, A|To,’ [z, A]* = Ag|z, A]V?T.

/\ a tl tQ
Proof. If w = (w1,wq,w3) € R3 and A = 0 cos(2muy) —sin(2mua) |, then the
0 sin(2rua)  cos(2muy)
first component of wA is aw;. Also, note that Aglz, A] = |a|=3, by the observation

after (3.2). For any £ € LQ(@\?’L

o' [z, A|To [z, A]*¢(w) = | det(A )|1/2 2mi(watjua) Toy [—A 'z, A NE(wA)
= [ det(A) 267D oy | 20T [~ AN, A7 (wA)
— eQﬂi(@+juA)|aw1|73/2€27ri (gA(—A*lg)—i-j(—uA))g(g)

= Ja] 72| |2 (w) = Aclz, A]?TE(w),

for a.e. w € R3. Thus oy [z, A|Toy [z, A]* = Aglz, A]V?T. O

By Proposition 2.5.7, T' is the Duflo-Moore operator, C' ., for op’. Then, we

1
can follow the procedure in Proposition 2.5.9 to describe the wavelet transform and
reconstruction formula associated with oy”.

Definition 3.1.8. A function n € L%]@”) is called a o;’ -wavelet if

2
/ @l
& |wi

If n is a o)’ -wavelet, then V,¢[z, A] = (¢, 07’ [z, Aln >L2(R3 for [z, A] € G and £ €

LQ(I/RE), defines the o,’-wavelet transform with o)’-wavelet 1. For [z, A] € G, let
7]27/'1 - O-irj [&7 A]n7 fOI' eaCh [@7 A] S G

Theorem 3.1.9. Let € L2(R3) be a o}’-wavelet. Then, for any & € L2(R3),

€= / Vilz, Al g a dpglz, A], weakly in LQ(@).
a

Proof. This is just Proposition 2.5.9 in this situation. [
We can move the representation o]’ using the Fourier unitary map to get an
equivalent representation acting on L?(R3). There is a small abuse of notation as we
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use Fi to also denote the map from L2(R3) — L2(R?) such that

Fié(y) = [ &(w)e ™ dw, for all y € R?,
w= Y

and ¢ € LY(R3) N L2(R3).
Definition 3.1.10. For [z, 4] € G, let p’[z, A] = Fioy’ [z, AJF; .

Then p’ is an irreducible representation of G' acting on L?*(R?®), which is square-
integrable, since it is equivalent to o,’.

Proposition 3.1.11. For any [z, A] € G and f € L*(R3),

Pl Alf(y) = | det(A)|"2e A f (A7 (y — ),
for a.e. y € R?.
Proof. First, assume f is such that F; ' f is integrable. Let & = F; ' f. Then

Ple Alfy) = F(or [z, AlE) (y) = /A o7 [z, Al (w)e > dw

RS

— ‘det(A)]l/Q /A eQm’(ﬂﬂ'uA)g(o_JA)e—%@gdc_d

R?)

— |det(A>|1/2e27rijuA A é;(gA)e—%rig(y—g)dg
R3

_ | det(A)|—1/2€2m’juA (Q)GQWiQAfl(g—g)dc_d

£

R3
= |det(A)| /2P f (AN (y — 2))

for any y € R?. Since {f € L*(R%) : F{ ' f € LY(R3)} is dense in L2(R?), the formula

for p’[x, A] given in the proposition holds for any f € L*(R3?). O

Remark. When j = 0, p° is what is sometimes referred as the natural representation
of G on L*(R3).
We can now restate the o;’-wavelet analysis in terms of p/. Note that
Definition 3.1.12. For any j € Z, w € L*(R3) is called a p’/-wavelet if
|@(w)[*

B |wif?

dw = 1.

(Note that this condition is the same for all j.) For a p/-wavelet w and each [z, A] € G,
let

w%A(g) = |det(A)\’1/262“j“A w (A’l(g — g)) , for a.e. y € R3,
and let V., f[z, A] = (f,wy4), for any [z, A] € G and f € L*(R?®). The map V,, :
L*(R3) — L3*(G) is a linear isometry called the p’-wavelet transform with p’-wavelet
w.

61



Corollary 3.1.13. Let j € Z and let w € L?*(R?) be a p/-wavelet. Then, for any
f e LA(R?),

f= / / Vi flz, Al wg a dﬁ’tmd@, weakly in L?(R3).
R3
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Chapter 4
The Affine Groups

In this chapter, we establish both algebraic and analytic properties of the groups of
affine transformations of R™ with an emphasis on n = 1 and 2.

4.1 The Affine Group of R"
The affine group of R™ is
G, =R"xGL,(R) = {[z,A] : x € R", A € GL,(R)},
where the group product is, for [z, A], [y, B] € G, given by
[z, Ally, B] = [z + Ay, AB].

We described the Haar integral on the unimodular group GL,(R) earlier. When there
is no chance of confusion, duqr,®)(A) will be denoted simply as dA. Thus, the left
Haar integral on G, is given by, for f € C.(G,),

dx dA
fdpc, = / fla, A 2244
/Gn Tl S L AT

In later sections, we will use a unitary map to move the left regular representation
of G,, on L*(G,,) to an equivalent representation on L*(R™ x GL,(IR)), where pign x
pcr, ) is the measure understood to be on R™ x GL, (R).

Proposition 4.1.1. For f € L?(G,,), define U f on R™ x GL,(R) by
Uf(y, B) = f[By, B], for a.e. [y, B] € G,.
Then Uf € L*(R™ x GL,(R)), for all f € L*(G,), and
U: L*G,) — L*(R" x GL,(R))

is a unitary map.
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Proof. First U is an isometry into L?(R" x GL,(R)) since,

/ U f(y, B)Pdjugn(y) dB = / \f[By, B)]* dydB
GLyn (R) JR® GLn (R) JR

- [ L i

QL. (R) JR" & ]det( )|

- / [ 11y BIF duc . B
GLn(R)

= Her‘LQ(%

It is clear that U : L*(G,) — L*(R" x GL,(R)) is linear. It remains to show that U
is onto. Let g € L*(R" x GL,(R)). Define f on G, by fly, B] = g(B~'y, B), for a.c.
ly, B] € G,,. Then a calculation very similar to the above shows that f € L*(G,,) and
Uf = g. Thus, U is a unitary map. O]

4.2 The Group G,

When n = 1, GL1(R) = R*, so G; = R x R* = {[z,a] : x € R,a € R*}. It is called
the affine group the real line. As a locally compact space G is identified with the
plane with the z-axis removed. Left Haar integration on G is given by

dzd
/Glfdpgl = /R/Rf[x,a]%, for all f € C.(Gy).

Note that Gy is non-unimodular and Ag, [y,b] = |b|7!, for [y,b] € G;. This can be
verified with some simple changes of variables and order of integration:

|b|_1/R/Rf([:v,a][y,b])dzja = |b\_1/R/Rf[$+ay, ab) d:p%
=|b|‘1//f[x,ab]@
//f Iblda //f dxda.

A key part of later arguments is that G sits as a closed subgroup of GLy(R). For

each [u,v] € Gy, let Ofu,v] = (i g) We use the parameters u € R and v € R* to

be consistent with notation used later.

Proposition 4.2.1. The map 6 is an injective homomorphism of G into GLy(R)
and 0(G4) is a closed subgroup of GLy(R).
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Proof. For [uy,v1], [uz, v2] € Gy,

U1l + ViUg V1V2

_ ( ) ( 5’2) Oy, 010, 03]

Thus, 6 is a homomorphism and f[u,v] = (é (1)) if and only if [u,v] = [0, 1], the

0 ([ur, v1][uz, va]) = Our + viug, v102] = ( 1 0 )

identity in G;. Therefore 6 is injective.
The image of a homomorphism is a subgroup and the map ¢ : GLy(R) — R?2

given by ¢ (Z Z) = (a,b) is continuous and 6(G;) = ¢~ *{(1,0)}, so it is a closed
subgroup. O

4.3 The Group G5

For the group G, we need to look closely at its structure. We will find different

parametrizations of GG that will be useful in constructing an induced representation in

a later section. We also must identify left Haar integration in the new parametrization.
The natural way of parametrizing G is

b
G2:{|:(i;)’<ccl d):| :$17x27a7bac,d€R7ad—bc7£O}.

In this parametrization, for f € C.(G2),

[omam [ L L) ()] ottt

Our first step in reparametrizing G is to focus on factoring GLy(R) as a product
of two closed subgroups. Let

Ky = st st eR,SZ+t2>0
t s
10
H(LO):{(u v):u,vER,v;«éO}.

In Proposition 4.2.1, we showed that H, ) is a closed subgroup of GLy(R) that is
isomorphic to the group G;. The left Haar measure of G, transfers through the
isomorphism 6 of Proposition 4.2.1. Thus, for f € C.(H(1,0)),

/H(lo)fd“H“m //( )duzdv- (4.1)
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Let C* = {z € C: z # 0}, considered as a locally compact Abelian group under
multiplication as the group product. If z € C, let s = Re(z) and ¢ = Im(z). Then
2 =s+it and z € C* if and only if s2 + 2 > 0. If 2 = s; +it; and 2o = 89 + ito,
then z129 = (s189 — tite) + i(s1t2 + Sat1). Define ¢ : C* — Kj by

S

. —1 .
(s +it) = <t . ) , for all s+ it € C*.
Proposition 4.3.1. The map ¢ : C* — K is is an isomorphism of locally compact
groups.
Proof. For z; = s1 + ity and z5 = s9 + ity in C*,

8182 — ity —S1ta — Saty
Sltg -+ Sgtl 5182 — tltg

P(z122) = P((s152 — tata) + i(s1la + s2t1)) = (

(st —tr (S22 —t2)
() = etenet,
Thus, ¢ is a homomorphism. It is clear that ¢ is a bijection between C* and K. It is

also easy to show that it is a homeomorphism. Thus, ¢ is an isomorphism of locally
compact groups. ]

Proposition 4.3.2. Left Haar measure pg, on Ky is such that, for any f € C.(K)),

s —t\ dsdt
d = —_.

fa —b a —b\ (s —t\ _ [(as—0bt —(at+ bs)
Proof. Fix (b a) € Ky. Then (b a) (t 3 ) - (at+bs as — bt )
Thus, left multiplication by <Z _ab) is the same as the map of  : R*\ {0} — R?\ {0}

a

given by ¢ (j) = (Z:; gz) The Jacobian matrix of ¢ is Jy = (b _ab), which is

constant with determinant a? + b?. Using the fact that B — | det(B)| is a homomor-
phism of K into R™ and the change of variables formula, we have

a —b\ (s —t dsdt
LLo (GG
://f(as—bt —(at—l—bs)> (a® +b*)dsdt
rJr” \at+bs as—0t ) (as—bt)2+ (at + bs)2
s —t ds dt
:/R/Rf(t s) s

This verifies that fKo fduk, = fR fRf (i —St>

dsdt
§2 412
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Proposition 4.3.3. If A = (CCL Z

as A = M,Cy, where

M, = (s —St> . with s = d(ad — bc) o —b(ad — be)

) € GLy(R), then A can be uniquely decomposed

¢ b +d? b +d>

and

10 cd + ab b’ + d?
Cy = ith u = = )
4 (u v) VR (ad — be)’ ! (ad — be)

) _fa b d(ad—bc) —blad—bc)  _ cdtab
Proof. Fix A = (c d) € GLy(R) and define s = e L= s U= (meC),

2 g2 . s —t 1 0 .
and v = %. We compute the four entries of (t . ) <u v)' The (1,1) entry is
.ty — d(ad —bc)  —b(ad —bc) cd + ab
b+ d? b2+ d?> (ad — be)

ad?® — dbe + bed + ab®
= Ew = a.

Similarly, the (1,2) entry is —tv = b, the (2,1) entry is ¢ + su = ¢ and the (2,2) entry
is sv = d. If we let My = (i _St) and C'y = (i O) then My € Ky, C4 € H1

and M,Cy = A. It is clear that Ko N H ) = {id}. Thus, if M € Ky and C € H
are such that MC = A = M4Cy, then M~'M, = CC’XI. Thus, both M~'M, and
cCy I are the identity. That is M = M4 and C' = C4. This proves the uniqueness
of the factorization. O

Recall that GLy(R) is a unimodular group and the Haar integral is given by

Jo P = [ [ L0 () e

However, the parametrization resulting from factoring GLy(R) as Ky H1) gives an
alternate expression for the Haar integral.

Proposition 4.3.4. Haar integration on GLy(R) is given by, for f € C.(GLy(R)),

o= [ L L L (G ) G 0) e

Proof. Let U = { z € R* : 2124 — 2923 > 0}, an open subset of R*. TLet V =
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€ R*:v >0 7, an open subset of R*. Note that

s —t 1 0y [s—tu —tv
t s u v) \t+su sv

S 2+ W

S s —tu S 01
and define ¢ : V — U by ¢ Bl for all t € V. That is, ¢ = P2
u t+su |’ u ’ o3 |’
v SV v 04
s 5 s s
where ¢, = s — tu, Po = —tv, ¢3 = t 4+ su and ¢4 b= sv. Let
u u u u
v v v v
s s S 1 —u —t 0
Jo t denote the Jacobian matrix of ¢ of t . Then Jy = 0 —v 0~
U u u u 1 s
v v v v 0 0 s
S 7 (2’1 ZQ)
and |det | J, i = v(s®> + t?). Define g € C.(U) by g(z) = (Zlff Z2i4)2 for all
v
zeU.

Since ¢ is a continuously differentiable bijection of V' and U and det(.Jy) vanishes
nowhere on V', the change of variables formula holds.

/GLQ(R)fdPJGLz(R) :/¢>(V)g<§)d§:/\/ (¢(w))] det Jy(w)]|dw. (4.2)

If we write w = [ det Jg(w)| = |v|(s* +2). If z = ¢(w), then we need

S 2+ W

2124 — 2923 = (8 — tu)(sv) — (=tv)(t + su) = s*v — tusv + t*v + tusv = v(s* + t?).
Recalling, the definition of g, we have from (4.2) that

s—tu —to) Pl((s + )
d g dsdt dud
/GLQ( f HGLy(R) = //// (t+su sv )(< —i—t?)) S U adv
//// s —t\ (1 0 ds dt du dv
u v) ) |v|(s?+1t2)
This gives us the Haar integral in this new parametrization. O
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Recalling left Haar integration onH ¢y as given in (4.1) and the Haar integral
on K, from Proposition 4.3.2 and noting that det <3L S) = v, we get a compact

expression for the Haar integral on GLy(R) in terms of those for the two factor
subgroups.

Proposition 4.3.5. For f € C.(GLy(R)),

/ F g = / / F(MC)| det(C) | dpurr, o (C) dpry (M),
GL2(R) Ko J H,0)

We return to GG and identify two closed subgroups closely related to the subgroups,
Ky and H gy, of GLy(R). Define

K={0,M]: M€ Ky} and H={[z,C] : z € R*.C € Hp)}.

Then K is a closed subgroup of G, isomorphic to Ky under the map [0, M] — M
with Haar integration given by [ fdux = fK fl0, M) dug, (M), for all f € C.(K).
Also, H is a closed subgroup of G5 isomorphic to R? x H(; ). Recall that left Haar
integration on H ¢y is given by (4.1). Then left Haar mtegratlon on H is given by

/ fduH_/ fla, ) Z22a0 @ for all f € Cu(H).
H(1 0) R2

For [z, A] € GLy(R), let M4 € Ko and C4 € H(1) be as in Proposition 4.3.3 so
that A = M4C4. Then
[£7 A] = [Qa MA][MA_lga OA]7 (43)

where [0, M4] € K and [M'z,C4] € H. Tt is clear that K and H only share [0, id]
as a common element.

Proposition 4.3.6. The group G factors as Gy = KH with K N H = {id}. More-
over, the map ([Q, M], [z, C’]) — [Mz, MC] is a homeomorphism of K x H with
Gs.

Proof. If M = (j _St) € Ky and C = (i 0) € H1 ), then

s—ut —vut
MC = (t+us US) € GLy(R).

The map (M,C) — MC is clearly continuous from Ky x H(1 ) to GLy(R). Its
inverse as given by Proposition 4.3.3 is also continuous. Thus (M,C) — MC is a
homeomorphism. Also, the map the map ([0, M], [z, C]) — [Mz, MC] is continuous
and its inverse, given in (4.3), is easily seen to be continuous. [l

Sometimes it may be convenient to integrate over (Go in terms of this special
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factoring. Recall that

dz dpar,r)(A)
fd 2—/ flz, A , for f € Cu(Ga).
Go He GLy(R) JR2 | ] | det(A)] (G2)

Using Proposition 4.3.5, we get the following expression for left Haar integration over
G.

Proposition 4.3.7. For f € C.(G3),

drdpg, , (C)dpk,(M)
Fano,= [ [ [ rlevey = |
e A T L A FT)]

70



Chapter 5

Decomposing the Regular
Representation of the Full Affine
Group

In this chapter, we will study the left regular representation of the group of invertible
affine transformations of R". First, we obtain a decomposition into subrepresenta-
tions, which are irreducible when n = 1 but reducible for n > 1. Then case of n =1
is explored in more detail and compared to known results for the affine group of the
real line and connected to the continuous wavelet transform. The information about
the case of n = 1 is used to obtain a complete decomposition of the left regular
representation for n = 2.

5.1 The Affine Group on R"

Let G, = R" x GL,(R) = {[z, A] : z € R", A € GL,(R)}. Let N = {[y,id] : y € R"},
a closed normal abelian subgroup of G. Note that, for [z, A] € G, and [y,id] € N,

[z, A [y, id][z, A] = [~A7 2, AT [y + 2, A] = [A7y,id] .

For w € I@;‘, define a character y, on N by

Xoly,id] = ™2 for all [y,id] € N.

Then N = {Xw W€ H/%?L} For [z, A] € G, and x € N, [z, A] - x € N is defined by
(lz, AT %)y, 1d] = x([z A [y, id][z, A]) = x [A"y,id].

Therefore, for w € H/@, [z, A] - Xw = Xwa-1. It is convenient to work with the action
of GL,(R) on R” given by (A,w) — wA™!. There are just two orbits, {0} and
O =R\ {0}. Let wy = (1,0,---,0). Then the orbit O = {w,A : A € GL,(R)}.
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We fix a measurable map v : O — GL,(R) that satisfies
wyy(w) ™ = w (equivalently wy(w) = w,), forallw € O.

For w € ]1/@, by Corollary 2.8.10, the induced representation ind%” Xw 1S unitarily
equivalent to 7 which acts on L*(GL,(R)) as follows: For [z, A] € G,,

mla, AJf(B) = 2B 2§ (A71B) | for all B € GL,(R), f € L*(GL,(R)).
Proposition 5.1.1. For w € O, 7% ~ 7%,
Proof. Define V,, : L?(GL,(R)) — L*(GL,(R)) by, for f € L?(GL,(R)),
Vof(B) = f(By(w)™), forall B € GL,(R).

Since GL,(R) is unimodular, ||V, f|l2 = || f|2, for all f € L*(GL,(R)). It is also clear
that V,, is linear, one to one, and onto. So V,, is a unitary map of L*(GL,(R)) with
itself. For [z, A] € G, f € L*(GL,(R)), and B € GL,(R),

Vorla, AlV, ' f(B) = oz, AV, f(By(w) ™) = 627”'&7(£)B712V;1f(Aiqu/(g)il)

= @B (AT B) = 2mienB e f(ATIB) = r%z, A]f(B).
This shows that 7 ~ %o, O]

Our goal now is to establish an explicit unitary equivalence of the left regular
representation, \g,, of G, with an infinite multiple of 7%o.

For any f € L*(Gy), define Uf on R" x GL,(R) by Uf(y, B) = f[By, B, for all
(y,B) € R* x GL,(R). By Proposition 4.1.1, Uf € L*(R" x GL,(R)) and U is a
unitary map when R" x GL,(R) is equipped with the product of Lebesgue measure
with Haar measure on GL,,(R). Moreover, U~" : L*(R" x GL,(R)) — L*(G,,) is given
by

U ' fly, Bl = f(B™'y,B), forly,B] € G,, f€L*(R"x GL,(R)).

Let Fi : L*(R™ x GL,(R)) — L? (I@?L x GL,(R)) be the unitary map consisting of
taking the Fourier transform in the first variable. That is, for f € C.(R" x GL,(R))
and any (w, B) € R x GL,(R),

Fif(w, B) = f(y, B)e%@gdg.
]RTL

The left regular representation Ag, of G, is unitarily equivalent, via F; o U to a
unitary representation A, acting on L*(R” x GL,(R)). For f € L*(R™ x GL,(R)),
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[z, A] € G, and (w, B) € R» x GL,(R), we have

A, [z, Alf(w, B) = FiUNq, [z, AJ(U'Fi ' f) (w, B)
Ulg, |z, Al (U_l]:l_lf) (¥, B)e%igﬂdg

3

Aa, [z, AJ(UT'FTf) [By, Ble?™dy

3

~

UTFT) ([ AT By, B]) emevdy

3

(UTPF) ([A7Y(By — z), A" B]) e™%dy

3

(Fi'f) (BN (By — ), A"'B) e*™%dy

I
N i L T Bt B e

3

(Fi'f) (BN (By —z), A™'B) ™¥dy

3

(Fl_lf) (g_ B_II),A_IB) 627riggdg

3

(Fi'f) (e AT B e g

_ e27rin_13:/ (]_—1—1f)(£7 A_IB)eQ’”'%dg
=B Tef (y ATIB).

That is, X&:[L Alf(w,B) = e2miwB iz f (w, A7'B). Notice the similarity with the
<. This shows how we could write the left regular representation as a direct integral
of the . But Proposition 5.1.1 shows all 7%, w € O, are equivalent to 7

Note that O is a co-null open subset of R”. We will consider Lebesgue measure on
O as its standard measure, so L?(O x GL,(R)) is the same Hilbert space as L*(R" x
GL,(R)). We define W on L*(O x GL,(R)) as follows: For f € L*(O x GL,(R)) and

(w, B) € O x GL,(R),
(Wf)(w, B) = f(w, By(w)™).

Then W f is measurable and, using Fubini’s Theorem and that GL, (R) is unimodular,

[ fwnespws= [ [ et
Lm/V B)['dwdB = | f1;"

Thus W f € L*(O x GL,(R)) and W is a linear isometry on L?(O x GL,(R)
W is onto and W~ is given by (W™¢)(w, B) = g(w, By(w)), for all (w,
GL,(R). So W is a unitary.

). Clearly,
B) e O x
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Define the unitary representation Ag; of G,, on L?(OxGL,(R)) by, for [z, A] € G,,,
N [, Al = Wg, [z, AW,
So, for f € L?*(O x GL,(R)) and (w, B) € O x GL,(R),
N, 2, Al (@, B) = Wi, [z, AW f(w, B) = g, [z, AW (i, By(w) ™)

_ 627rig’y(g)B_lg (W—lf) (% A—le(gyl) _ e27rigoB_lgf(g7 A—IB)'

So we have A, [z, A]f(w, B) = 62”@03_@]‘“(% A7IB), for a.e. (w, B) € O x GL,(R),
for all f € L? (O X GLn(]R)), and all [z, A] € G,,. The unitary representation \¢, is
equivalent to Ag, .

Let n € L*(O) be such that ||n]| = 1. Let H,, = {n® f : f € L*(GL,(R))}, where
n® f is defined by (n® f)(w, B) = n(w) f(B), for all (w, B) € O xGL,(R). Then H,, is
a closed subspace of L?(O x GL,(R)). Define W, : L?(GL,(R)) — L*(O x GL,(R))
by, for f € L? (GLn(R)),

Wy f(w, B) = (n® f)(w, B) = n(w)f(B), forae. (w,B) €O xGLy(R).

Proposition 5.1.2. Let {n; : j € J} be an orthonormal basis of L*(O). For each
j€J, Hy, is a closed A\ -invariant subspace of L?*(O x GL,(R)) and the map W,
intertwines 7% with the restriction of A\, to #,,. Moreover,

L*(O x GL,(R)) = 35, H,,..

Jj€J

Proof. Since {n; : j € J} is an orthonormal basis of L?(0), it follows from Proposition
2.3.7 that L?(O x GL,(R)) = % H,,. For each j € J, it is clear that W, is a

unitary map onto H,,. For [z, A] jeeén and f € L*(GL,(R)),
W, mo [z, AIW, "1 (n; @ f)(w, B) = W, (7 [z, Al f) (w, B)
=nj(w (7r*0 z, Alf)(B)
~ i) 2 (A7)
o (1, f) (e, A™'B)
= A, [z, Al(n; ® f)(w, B),

for all (w, B) € O x GL,(R). Therefore H,, is a A\ -invariant subspace of L2((’) X
GL,(R)) and the map W, intertwines 7% with the restriction of A, to Hy, O

Returning to a single n € L*(O) with HnHQ = 1, let us see where n ® f goes as we
map it with the above unitaries back into L*(G,,).

First, we have W™'(n ® f)(w, B) = n(w)f(By(w)), for (w,B) € O x GL,(R).
Next,

FW o uB) = [ nw@)f (Brw)e >
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Finally,
U FIW e Ay, Bl = FL'W(n @ f)(B™'y, B)
= / _nw)f (By(w))e 2B vy,

We can define U, : L*(GL,(R)) — L*(G,) by

U,fly, B] = /An n(g)f(By(g))e—zn@—lgd% (5.1)

for a.e. [y, B] € G,, f € L*(GL,(R)). Thus, we obtain the following result:

Proposition 5.1.3. Let n € L*(O) satisfy |||l = 1. Then U, is an isometric linear
map of L?*(GL,(R)) into L*(G,,) that intertwines 7% with \g, .

Now, fix an orthonormal basis {n; : j € J} of L*(O). For each j € J, let
L, = U'F'WH, . Since U7'F "W~ is a unitary map of L*(O x GL,(R))
onto L*(G,),

L*(G,) = ;BeJ Ly;.
Thus, we have a decomposition of the left regular representation of G,. Note that
L?*(0) is identified with L*(R").

Theorem 5.1.4. Let O = R» \ {0}. Let {n; : j € J} be an orthonormal basis of
L?(R"). For each j € J, define Uy, : L*(GL,(R)) — L*(G,) by

Uyl Bl = [ (@) (Br(w)e 8 v,
R
for [y, B] € Gn, and f € L*(GL,(R)). Let £, = U, L*(GL,(R)). Then L, is a

closed Ag,-invariant subspace of L?(G,) and U, intertwines 7 with the restriction
of A, to Ly, Moreover, L*(G,) = 7., Ly,

5.2 The Affine Group on R
When n =1, G; = R x R*. We recall that
db
Faus = [ FO)T
R* r |0l

where the integral on the right hand side is the Lebesgue integral on R, and

- dy db
Glfd,uGl_/]R/Rf[y’b] h2 -

We continue to write N = {[y,1] : y € R} and N = {x., : w € R}, where y,[y,1] =
e*™wy for [y,1] € N. Select wy = wy = 1. Then 7% = 7' acts on L*(R*) via, for
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[z,a] € Gy, [ € L*(R*), and a.e. b € R*,
[z, a)f(b) = 62”ib_1$f(a_1b).

For any g € L*(R*), define V, : L*(R*) — C(G;) by V,f[z,a] = (f,7'[z,d]g), for
[z,a] € Gy and f € L*(R*).

Proposition 5.2.1. For g € L*(R*), if there exists a nonzero f, € L*(R*) such that
Vyfo € L*(Gy), then [ ||ul'?g(u) 2du o6 Moreover, if i [l 2g(w) P oo,
then V, f € L*(G,), for all f € L*(R*).

|ul |ul

Proof. This proof follows the pattern of derivation of the admissiblility condition for
the continuous wavelet transform (see [4], for example). Let f,g € L?*(R*). Then

dmda
Vi e al P (2. ) L//| PP
G1
db|* dxd
)iz, alg(b) — % (5.2)
(a1 M)e zmbx@ * dz da
| a?

Let ¢q(b) = |07 f(b1)g(a™'b71), for a,b € R*. Note that

0! db N P

|90a )| db = |f b7 oL [f (07 )gla™ 07| dpge(b)

. [FO)] -+ 1g(a™"b)| dure (b) = (| f], A (a)]g]) r2re).

Thus, [ [9a(b)|db = I/, Ae- (@)lg) ragee) < < |Ifll2llglls < oo, s0 @ € LY(R). Let

! € Cy(R) denote the inverse Fourier transform of ©q. Then (5.2) becomes

4,% (b)e2rite db’ dx;ia //| V()2 dwda‘

Vyflz,all*dug, ([x, a])

G1
Plancherel’s Theorem implies ||oY || = ||@all even when either side is co. Thus
dw da
| WarlealPdue, (in.al) = [ [ leat) %5
G1 R JR a
2
PN dw da
= [ [ | et te | S
jwl @ (5.3)

—1(1/2 ¢, — -1,,-1 2 dw da
= [ [kttt

B / o 2 dw da
= [ [l st 55
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Note that the integration with respect to i}—“" can be viewed as the Haar integral on

R*. Thus,

/Gl Voflo, alPduc, ([, al =/(/ [ 2 ()7 )| dpz >)d—
/(/ [law]2 f (aw)g ()| dpase >>%
= [ (] 1o Plior gt e ) &
= [ ([ 1raPi ) ot g @) 69
= [ ([ 1@ ) el e due- @)
- /}R* | f(a)*dug-(a) /R* [lw[*2g(w)| dpiz- ()

= 1712 [l gte) s (o)

Therefore, for any f,g € L*(R*),

Vi lowalfdii, () = 117 | [l 00 de 0

G1

If the exists one nonzero fy € L?(R*) such that V, fo € L?*(G;), then we must have
[ Nl 2900 P (0) < .
R*

On the other hand, if [, u|1/29(u)’2d,uR* (u) < oo, then V, f € L*(G,), for every
f € L*(RY). O

Let D = { € LA(R*) « [o. [Jul"?g( )|2duR* (u) < oo}. This is a subspace of
L3(R*). Tt is not a closed subspace, but it is dense in L?(R*).
Remark. The R*-orbit of 1 in R is O; = R\ {0}. Writing L*(®;) indicates functions
square-integrable with respect to Lebesgue measure on O; while L*(R*) is formed
with respect to the Haar measure of R*. Both O; and R* are parametrized by the

nonzero real numbers. So we can think of D as L?*(0;) N L*(R*). If it is necessary
to distinguish which norm or inner product is in use, a subscript of either L?*(O;) or

L?(R*) will be used.
Proposition 5.2.2. Let fi, f» € L*(R*) and g1, g» € D. Then

<‘/91f17 ‘/;]2f2>L2(G ) <f1’f2>L2<R* <92’91>L2(o )’

Proof. This can be established with a lengthy calculation similar to that in the proof
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of Proposition 5.2.1. However, there is a more efficient proof. By (5.4), for ¢ € D
and f € L*(R*),

L2(R*) L2(01)

/G Vi Sl al Pdpc (z.a]) = I£1 % [lg]]

Ifwefixag €D, g#0,andlet Cy = HgHLQ(Ol), then By(f1, f2) = C;*(Vy f1, ng2>L2(Gl),
for all fi, fo» € L*(R*), defines a sesquilinear form on L*(R*). Since By(f,f) =
||f||L22(R*), for all f € L*(R*), the polarization identity implies By(f1, f2) = (f1, f2)
Thus,

Vaf1,Val2) o,y = (10 2) o,

L2(R*) "

gl ? for f1, f» € L*(R*), g € D. (5.5)

20y’

Now, fix fi, f» € L*(R*) such that Cy, 5, = <f1,f2>L2(R*) # 0. Define a sesquilinear
form By, f, on D now, by

thfz(glagQ) = Cf_SfQ <‘/91f17 %2f2>L2(Gl)’ for all 91,92 € D.

Then (5.5) implies By, 1,(9,9) = ||g||L22((9 g for all ¢ € D. By polarization again
1
By, (91, 92) = <91792>L2(ol>’ for all g1, go € D. This implies

<‘/;]1f17 ‘/‘92f2>L2(G1) = <f17 f2>L2(R*) <927 gl)LQ(Ol)’

for all g1,92 € D, when (f, fg)LQ(R*) # 0. Of course, this identity trivially holds if
<fl> f2>L2(R*) =0. O

Theorem 5.2.3. The representation 7! is irreducible and square-integrable. More-

over, if g € L*(R*) satisfies [, |[u["/?g(u) du — 1V, is a linear isometry of L2(R¥)

Jul
into L?(G1) that intertwines 7! with a subrepresentation of the left regular represen-
tation of G.

Proof. The identity in
2
[ Watlo. P () = 1113 [ [l di ()

shows that V,f = 0 implies either f or g is 0. This implies that 7! is irreducible.
Moreover, if g € D, then V, f is square-integrable and if [, u]l/Qg(u)’2duR* (u) =1,
then V, : L*(R*) — L*(G4) is an isometry. Also, if [,. u|1/2|g(u)‘2d,uR* (u) = 1 and
f € L*(R*), then, for [z,a] € Gy,

Vo' [z, a fly, b] = (7' [z, al f, 7' [y, blg) = (f, 7' [z, a]*7" [y, b]g)

- <f7 WI([xaa]_l[ya b])g> = )\Gl [m,a]ng[y,b],

for all [y,b] € G;. This shows that the range of V, is a A, -invariant subspace of
L*(G4) and V, intertwines 7! with the restriction of Ag, to this subspace. O
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If g € L*(R*) satisfies [; |[u|"/?g(u) ?du — 1 then V, is a version of the continuous

Jul
wavelet transform on R. To see this recall that Oy = {w € R: w # 0} and v: O; —
R* is simply the map vy(w) = w™'. For f € L*(R*), define U, f on O; by

(U, f) (w) = [w| 2 f(y(w)), for all w € Oy and (U, f)(0) =
Then

L1 n@ras= [ e s Pas = [ |raPe= [lrwle =2

That is, U, f € L2(A) and U, is an isometry. It is easily verified that U, is a unitary
map. Now, if g € L*(R*) satisfies [5. |[u|"?|g(v) ‘ dpg<(u) = 1, let ¢ = U,g. Then

|<(W>|2 1/2 W) de 12, 2 du
/@ w] /HW‘ /Hu! ’ ]u\
- /R [Ju2g(u)|* duR*(U) =1L

What does 7 become when conjugated by U,. Let [z, a] = U,r'[x,a]U,", for all
[z,a] € G. For any ¢ € L*(R), we have (writing f = U, ')

[z, alé(w) = val[x, alf(w) = |w|_1/27r1[x, a]f(w_l) = |w|_1/262m“’$f(a_1w_1)

= ]a\l/ze%iwx‘wa|71/2f((wa)_1) = |a|"?e>™*¢(wa), for all w € R.

Thus, 7z, a]¢(w) = |a|"/2e2™“*¢(wa), for all w € R,¢ € LAR), and [z,d] € Gi.
Finally, we use the inverse Fourier transform to move 7 to a representation on L*(R).
Let plz,a] = F'x[z,a)F, for all [x,a] € Gy. Then, for f € L*(R), £ = Ff, and
teR,

pleal(t) = 7l alg(t) = [ nlr.alé(wye > d
R
= /\ |a|1/262”iwx§(wa)6_27rmdw _ [ |a|1/2€(wa)6—27riw(t—w)dw
B R
= [l e Ay = ol V2 (0 - ).
R

Thus, p is the natural representation of G; on L*(R) and w € L*(R) is admissible if
w = ¢, where ( is as above. That is, if

-~ 2
JL
R |wl

Therefore V,, : L*(R*) — L*(G4) above is just the standard continuous wavelet
transform in disguise, converted using F and U,. Note that V, intertwines 7' with
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the left regular representation of GGy restricted to the image of V.

Comparing U, and V
Let’s simplify U, from Proposition 5.1.3 when n = 1. Then n € L*(O;) and
Jz In(w)|?dw = 1. For f € L*(R*), we have

U, fly, b = /An(w)f(bwl)e%””b_ly dw, for any [y,b] € G.
R

For [z,a] € Gy, f € L*(R*), and [y,b] € Gy,
Uﬂﬂ-l[x> a]f[yv b] = /An(w)ﬂ'l[g’ a]f(bw_l)e_%mflydw
R

_ /An<w)€27riwb_1xf(albw1)627riwb_1ydw

R

_ [ n(w)f((a—1b>w—1)6—27riw(a*1b)*1a*1(y—;t)dw
R
— Uy (g — ), ™) = Uy (=, a7 b)
= )\G1 [l', a]UT]f[ya b]
On the other hand, if g € L*(R*) satisfies [. ||u|1/2g(u)]|2duR* (u) =1, then

Vol = [ g e s (o) = [ fla g e e

o (59

for [y,b] € Gy and f € L*(R*). Change variables in (5.6). Let w = bu. So u = b~'w
and du = |b|"'dw. Then

V£l b = / T ) f(ptye2mi o g,

R |w|

Thus, if n(w) = E(Ti'l), then U, = V,. Note that

gw™) / / 1/2 2du
dw = d / e
/ n(w)fde = / ‘ W | = |w|1/2 |w| [l )]
—/ llul2g(w)|” dpg- (u / |g(u)[du = 1.
R*

Proposition 5.2.4. If g € L*(R*) satisfies [g. ||u]"?g(w)|]*dpr-(u) = 1 and n(w) =
g(TJ , for all w € Oy, then n € L*(0,), 111l 20, = 1 and U, =V,

2

(5.7)

More generally, if g,¢" € D, n(w) = E(T’T_l and 7/ (w) = & | | , for all w € Oy,

then the same change of variables as in (5.7) shows that (1,7 )L2 o = = (¢ ,g>L2(o -
This means that if J is an index set and {g; : j € J} is a set of members of L*(R*)
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such that each g; € D = L*(R*) N L*(O;) and {g; : j € J} is an orthonormal set in
L*(0), then letting n;(w) = M, for all w € Oy and j € J gives an orthonormal

|

set {n; : j € J} in L?*(O;). Combining this observation with Theorem 5.1.4 in the
case of n =1, we get the following result.

Theorem 5.2.5. Let O; = R \ {0} be equipped with the restriction of Lebesgue
measure and let D = L*(O;) N L*(R*). Suppose {g; : j € J} is a set in D that forms
an orthonormal basis in L?(0;). For each j € J, define

V,, fle.al = {f.7' [z, alg,) .. . for 2] € G, f € L2(RY),

Let Ky, =V, L*(R*). Then K, is a closed Ag,-invariant subspace of L*(G:) and V,
is a unitary map of L*(R*) onto Ky, that intertwines m' with the restriction of A,
to Ky,. Moreover, L*(G1) = >, K

jeJ Mvaj

5.3 The Affine Group of the Plane

Throughout this section, let G denote G = R? x GLy(R). The closed subgroup N =
{[y,id] : y € R?} is normal and abelian. As we saw for G, there is just one nontrivial

orbit for the action of G on N. In this section, we will follow the procedure in Section
2.8 to find a distinguished representation of G. Then a sequence of unitary maps
between different Hilbert spaces will be used to move this distinguished representation
into a subrepresentation of the left regular representation OE\ G.

The nontrivial orbit in N is {Xw 1w € O}, where O = R2\ {(0,0)}. Recall that
[z, A] € G acts on x,, so that [z, A] - xw = Xwa-1. The point w, = (1,0) will serve as
a representative point in . The stability subgroup for this point is

10

Hap) = {A € GLy(R) : (1,00A = (1,0)} = {(u U) cu,v € Rjv# 0}.

S

Recall from Section 4.3 that Ky = {(t
in GLy(R) that is complementary to H(; o) in the sense that Ko N Hp gy = {id} and
GLy(R) = KoH(1,9). For each w = (w;1,w2) € O, there is a unique matrix y(w) € Ko
such that y(w) - (1,0) = w. Since w = y(w) - (1,0) = (1,0)y(w)~ !, the top row of
y(w)™! must be (w; wy). Thus

YW t= () and () = 12 Wil
(L 2) &)

—wz W lwl[* \w2 w1

—t .
. ) cs,t€R, 2 +12 > O} is a subgroup

We will frequently use that (1,0)y(w)™! = w and wy(w) = (1,0), for any w € O.

We also have, for each A € GLy(R), unique matrices My € Ky and Cy € H 0
such that A = M4C4. In our calculations later, various matrices related to A €
GL2(R) and w € O arise and there are a number of identities involving these matrices
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that are useful. We also use the entries of the matrix C A_}ly(w) and need a notation

for these entries. Let u, 4 = (0, 1)0,4_—117(&) ((1)) and v, 4 = (0, 1)0,4_—117@ ((1)) Then

1 0
1 . . " . ..
C A () = (Uw,A UW,A)' The identities we need are collected into a proposition.

Proposition 5.3.1. Let A, B € GLy(R) and w € O. Then
(a) Ma=~((1,0047") and Cy = 7((1,0)A*1)_1A,

b) Masw) = ¥(wA™) and Cay) = 7(wA™) " Av(w),
¢) Ma-1y) = ¥(wA) and Ca-iy = 7(wA) A7y (w),

-1

AB = Uy A+ Uy AUy B aNd Uy AB = Uy AVwA B,

A
e) det (y(w)™) = ||lw|* and det (v(w)) = [lw]| 7,
wAl?

£) det (Ca-14(0)) = det”(A)|||‘wH2’ and

_ S ) det(A)w]?
(8) V4 = det (CA—IM)) = Al

Proof. (a) and (c) follow from (b), since v((1,0)) is the identity matrix. For any
we O, 7(@14‘1) € Ky by definition of 4. On the other hand,

(1,0) (V(QA*)_IA’V(@D = ((1,0)7@14’1)_1) Ay(w)
= wA  Ay(w) = wy(w) = (1,0).

Thus Cay) = 7(wA 1) (w) and May(w) = 7(gA*1), by uniqueness. Clearly (e)
is true while (f) and (g) follow from (c) and (e). It remains to verify (d).
( )7 CA 11,y - (_) IA’)/(QA) Thus

Ciapy-1w) = 7@ (AB)Y(wAB) = y(w) " Ay(wA)y(wA) ' By(wAB)
_ C 71 C —1

y(w) > B~y (wA)*

1 0 1 0 1 0
Uw,AB Vw,AB Uw, A Vw, A UwA,B VwA,B

1 0
Uw, A + VU, AUWA,B Vw, AVwA,B 7
which establishes (d). O

That is,

The detailed values of u, 4 and v, 4 are usually not needed, but may sometimes
be useful.
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a b

Proposition 5.3.2. Let A = (c d) € GLy(R) and w = (w1, wsy) € O. Then

(ac + bd)(w? — w3) — (a* + b* — ¢ — d*)wywo
(awy + cwa)? + (bwy + dws)?

Uw, A =

and

. (ad — be)(w? + w3)
wA = (awy + cwq)? + (bwy + dwy)?

Proof. These are both obtained by straightforward calculation from the definitions of
Uy A4 and v, 4. O

The map [u,v] — (i 2) is an isomorphism of the group G; = R x R* with

H(1). Recall the representation 7' of Gy acts on the Hilbert space L?(R*) by, for
[u,v] € Gy and f € L*(R*),

Hu, o] f(t) = 2™ U f(o7), for t € R*.
By Theorem 5.2.3, 7! is an irreducible representation of G;. We will simplify notation

by considering 7' as an irreducible representation of H; o). That is, if C' = (i 2) €
H(1 ), then we let 7 (C) = 7'[u, v].

Let H = R? x H(y ). The representation (1,0 ® m' of H given by
(X0 ®@7") [z, Bl = x,0)(z)7" (B), for [z, B] € H,

is an irreducible representation of H on L*(R*). Then ind% (y,0 ® 7') is an irre-
ducible representation of G by Theorem 2.9.5. Let K = {[0, L] : L € Ky}, a closed
subgroup of G that is complementary to H. That is KN H = {[0,id]} and G = K H.
By Proposition 2.8.9, indg (X(l,O) ® 7r1) is equivalent to a representation o acting on
L?*(K,L*(R*)). In preparation to defining o, take [z, A] € G, and [0, L] € K and
compute [z, A|7'[0, L] = [-A7 'z, A7'L]. Now factor

[_A_lga A_lL] = [Qv MAflL] [_MA_fllLA_lga CA*IL]a
with the elements [0, Ma-1;] € K and [-M i, Az, Ca-1;] € H. Observe that
C LM AT = (M C,) A7t = L1 Therefore,
[—MA__llLA_lL C(A—IL]_1 = [L_1£7 CA__llL]'
Thus, Proposition 2.8.9 gives, for F € L?(K, L*(R*)), [z,A] € G, and [0, L] € K,

ole, AFI0, L] = [det (€, )| 7 (xaoy @ 7) [L7'2,C 7L | IO, Moy 55)
— |det (C |

A*lL)

-1/2 2ri(1,0)L" 'z 1( 71>
|7 e m(C T ) FlO, Ma-1p].
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To make o more concrete, use a un1tary map tc to move to the Hilbert space LQ(]R3 )
The formulas are simplified if we write R3 as R2 x R. Define U : L? (K, L*(R"))) —
L2(R? x R) by, for F € L2(K, L2(R*)) and a.c. (w,ws) € R? x R, let

(Plov)) w3h)

(UF)(w,ws) = 4 Tl forw€Ows#0
0 otherwise.

Proposition 5.3.3. The map U : L*(K, L*(R*)) — Lz(]l/é3 X I@) is unitary with
inverse U~! given by, for f € L*(R? x ]IA%) and [0, L] € K,

jaoL ) r(oLte1)
(Uﬁlf[Qa L]) (V) = |,,(|1/2 ) if v 7& 0
0 ifv=0.

Proof. For F € L*(K, L*(R"))),

U s, = [ [rUF<g,w3>|2dW3dg

2
W31)
R2 |W3|1/2

- L é}(F[Q,v(c_u)] ;Uﬁfj’j Hij’,Q

- /K R* [(F[0, L)) (w3 )] dptme (w3) dpc ([0, L]

= [1Fll 2 20y

dws dw

This shows that U is an isometry. Then, U is one-to-one. Moreover, U is onto since
for f € L*(R? x R), we will show U~!f € L*(K, L*(R*)). Then

U~ f10, y(@)l(ws 1)

ol - s 72
1 el S
ol s oy 72

= f(('_da w3),

UU™ f)(w,ws) =
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for a.e. (w,ws) € R2 x R. Now, for any g € L*(R? x R),

1T gl 22 a2 =/ U~ g[0, L) (v)[*dpm- (v) durc ([0, L])

1(1,0) L7 g((1,0) L7, vt C v
dv  dw
lwl*lg(w, v )75
/ / w2 lwl?
d
- [ [ e pas
/ /|gww3 |dws dw
R2
”gHL2 R2><R)
_ (wr/llel® —w/ [l 1
Note that, L = (wz/H&)Hz oy if (1,0)L™! = w for any w € O. O

For [z, A] € G, let oy [:c A] = Uo|z, AJU™!. Then oy is an irreducible represen-
tation of G on L2 (R2 X R) To find a formula for oy, let £ € L? (]R2 X R) and set

F=U""% € L*(K,L*(R")). For [z, A] € G and a.e. (w,ws) € R? x R,

(o], AJF[0, y(w)]) (w3 )

laoff - fews /2

ot e (o (o )
= o e (7 (Ch) FIR Macl) ()

(o1]z, AlE) (w, ws) = (Uoz, AJF) (w, ws) =
(5.9)

e 3 —1/2
By Proposition 5.3.1 (f), [ 4UCaty |77 |det(A))1/2 By Prop. 5.3.1(c), Ma-1y(w) =

llw]|-Jews |1 /2 lwAl|-|ws| /2
1 0
1 o . .
Y(wA). Also, recall that €)=y ) = os Vun) Thus, (5.9) implies

o 1/2 ,
%eﬁwwwmwu WwA)) (w3

[ det(A)]?
lwAll - |ws|'/?

(o1]z, Al f) (w, ws) =
(5.10)

et eimieaton (U1E[0, y(wA)]) (v ws )

Before applying U~!, recall (1,0)y(w)™! = w, for any w € O, so (1,0)y(wA)™! = wA.
Thus,

’det( )‘1/2 2MIWET 2w U, A ||£AH€(O‘)A W3l A)

lw Al - |ws|'/ [0 w3 '[!/

_ |d€t( )|1/2|U£, |1/2 27rzw:p€27rzw3uw’A£<£A’ ngH,A).

(o1]z, AJ¢) (w, ws) =
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det(4)lw|?

Finally, Proposition 5.3.1 (g) says v,4 = Al Therefore,
(01, AJE) () = LM pamilembinin Vg (WA, wiv, ). (5.11)

Note that (5.11) is for almost every (w,ws) € R? x R, for any & € L?(H/Q\2 x R), and
for any [z, A] € G.

Remark. As a check on the accuracy of the calculations leading to (5.11), we verify
that
(a) ||loy [z, AJE]| 2 =€l 2 , for all £ € L*(R2 x R), and for any [z, A] € G.

LQ(R? xR) L2(R

(b) o1]z, Alo1ly, B] = o1]z + Ay, AB], for all [z, A], [y, B] € G.

Proof. First, we prove (a). Let £ € L2(I?§\2 X ]1/%) Then

) | det(A)[llwl| )l |2
o[z, AéHLW . /R/ T wAl
2 2 2
/ 2 / MADPIl ¢ (0 A, wyy) | iy dw
R

by change the variables, let ¢ = w3 v, 4; dt = v, 4 dws. Thus

‘ erilwztwste,a) ¢ (QA, W3V, 4) ‘2 dws dw

Il A2, = [ [ et fe(ea of dr do

L2R2 xR)
by change the variables again, let w = wA; dw" = | det(A)| dw. So

oz, Al / / (& )P dt = ||¢]|?

L2 (R2 xR) L2 (]R2 ]R)

Second, to prove (b), let £ € LQ(R2 x R). For any ly, B] € G, let n = o1y, B|¢. Then,
for any [z, A] € G.

o1lz, A] (o1]y, BJ¢) (w,ws) = o1]z, Aln(w, ws)

— |det”(A)‘HH£|| e2mi(wr w3y, A)
wA

(wA W3,y A)

|det(A)| | det(B) | ||wl| ,2miw(z+Ay) p2mics (uw, 4+0w, AUwA, B)
lwAB] w AT AteA B (WA B, w3, AUwA,B)

. det(B)|-||wA|| 2mi(wA w w
using, n(wA,wsv,a) = %e milwAytwsts atean) f(wAB, wav, AVuap). On the

other hand, the right hand side of (b) is given by

o1[z + Ay, AB] f (w,ws) = W 27rz(W(£+AE)+w3ug,AB)f(gAB,wgvﬂ,AB).

By proposition 5.3.1 (d), we have that v, aVwap = Vyap and Uyap = Uya +
Vy AUuA - By these we get the equality in (b). O

Now, return to the representation ¢ on the Hilbert space L?(K, L*(R*)). Using
the homeomorphism v : O — K| and the identities collected in Proposition 5.3.1 help
make the expression given in (5.8) easier to read. For F € L?(K, L*(R*)), [z, A] € G,
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and a.e. w € O,

ol AJF[0, y(w)] = MLl comiom 7l (y() 1 Ay (wA)) FIO, y(wA)].  (5.12)

Theorem 5.2.3 says that, if g € L*(R*) satisfies [, 1/|1/29(1/)‘2d,uR*(y) = 1, then
Vgt L*(R*) — L*(H(1)) is an isometry that intertwines m' with A, ;. Recall that

Vof(D) = (f, Wl(D)g)LQ(R*), for all D € Hyy ), f € L*(R%).

Let Iy = V,L*(R*), a closed A, , -invariant subspace of L?(H(y))-

Let V! : L2(K, L2(R*)) — L2(K, L*(H(10))) be given by (V/F)[0, L] = V,(F[0, L]),
for all [0,L] € K and F € L*(K, L*(R*)). Since V, is an isometry, so is V; and the
range of V/ is L*(K,K,). For [z, A] € G, F € L*(K,L*(R*)), and w € O,

(Vyolz, AIF)[0,(w)] = Ll el orivz v (71 (y(w) L Ay(wA)) FI0, v(wA))

e V2|w|| 2riwe -
— L ] o (o (10) 1 Ay (wA)) V (FIO, 7(wA)]).

Thus, o is equivalent to a representation o acting on L*(K,K,) as follows: For
[z, Al € G, p € L*(K,K,), and w € O,
€ 12 ||w TIWL —
(o2liz, Al) 0, y(w)] = HRE ™ A, (7(w) 7 AY(wA)) [0, 7(wA) - (5.13)

llwAll

The next step is to map L?(K, K,) isometrically into L?(GLy(R)).
Let W, : L? (GLQ(R)) — L? (K, L2(H(1,0))) be given by

(Wif10, M])(C) = | det(C)V2f(MC),
for all C' € H1 ), [0, M] € K.

Proposition 5.3.4. The map W; is a unitary map onto L*(K, L*(H())) and its
inverse is given by, for F' € L*(K, L*(H1,))) and B € GLy(R),

(Wi 'F)(B) = | det(C)|~*(F[0, Mg))(Cp).

Proof. For any integrable h on GL2(R), the Haar integral on GLy(R) can be expressed

/ h iy — / / R(MC) | det(C)| dpun,, , (C) dpuscy (M),
GL2(R) Ko v H )
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Thus, for any f € L*(GLy(R)),

L2(H(1,0

[ owiroann 2, dueOn= [ [ 10V MO dun  dur (1)
Ky ) Ko v H(,0)
= [ [ VMO det(©)] dua, dre (1)
Ko J H(,0)

— [P e < .
GL2(R)

Thus, W, f € L? (K , LQ(H(LO))) and W is an isometry. It is clear W is linear. Thus,
the range of W is a closed subspace of L? (K , LQ(H(LO))). We need to show that
the range of W, is all of L?(K, L*(H1,0))). For any k € C.(Ky) and h € C.(Hp ),
define Fy,j, € L*(K,L*(Hq,0))) by (Fin[0, M])(C) = k(M)h(C). The linear span of
{Fip : k € Co(Ko),h € Co(Hpp))} is dense in L2(K, L*(H(1,9))). So we just need
to show each Fyj is in W;L? (GLQ(]R)). For k € C.(Ky) and h € C.(Hn,), let
fen(B) = |det(Cp)|~2k(Mp)h(Cp), for all B € GLy(R). Since B — (Mp,Cp) is a
homeomorphism of GLy(R) with Ko x H; ) and B — |det(Cp)|~'/? is continuous,
frn € Ce (GLQ(R)) C L? (GLQ(R)). Moreover, since My;c = M and Cyc = C,

(W1 fi[0, M]) () = [ det(C)[2 frn(MC) = | det(C) V| det(C)|/2k(M)A(C)
= (Frnl0, M])(C),
for any C' € H(19) and [0, M] € K. Thus, F;, € W1L?(GLy(R)), for any k € C.(Ko)
and h € C.(H(1,0)). This implies W} is a unitary map onto L*(K, L*(H(9))). Also,
W Eep = frn so, for any B € GLy(R),

Wi Fiun(B) = fun(B) = | det(Cp)| " /*k(Mp)h(Cp)
= [ det(Cp)|~/*(Fr,n[0, Mp])(Ch).

Since {Fj, : k € Co(Ko), h € C.(H10)} is total in L?(K, L*(Hq 0)),
(W' F)(B) = |det(Cp)|~*(F[0, Mp]) ().
for all B € GLy(R) and F € L*(K, L*(H19))- O

Continuing with a fixed g € L*(R*) satisfying [. V\l/Qg(u)‘QduR*(y) =1, let

H, = WL (K, K,) C L*(GLy(R)).

Then H, is a closed subspace of L?(GLy(R)) and W, : Hy, — L*(K, K,) is a unitary
map. Note that we use the same notation for W; and its restriction to H,. Recall the
representation 7% of G acting on the Hilbert space L?(GL»(R)). For [z, 4] € G,
f € L*(GLy(R)),

710 [z, A]f(B) = 2705 2 f(A=1B) | for all B € GLy(R).
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Proposition 5.3.5. Let g € L*(R*) satisfy [,. ||V|1/29(V)|2dMR*<V) = 1. The sub-
space H, of L?(GLy(R)) is m9-invariant and the restriction of 719 to H,, is equiv-
alent to oy via the unitary map Wy : H, — L*(K, KC,).
Proof. Let [z, A] € G. For f € Hy, let F =W, f € L*(K,K,) and L*(K,K,) is oo-
invariant. Then oyfz, A|F € L*(K, K,) as well. Thus W 'oz[z, A|JF = Wy log[z, AJW, f €
H,.

For any B € GLy(R), let w = (1,0)B~!. By Proposition 5.3.1 (a) Mp = v(w) and
Cp = v(w) 'B. Then, using (5.13) and | det (y(w))|"/? = |||,

Wi loylx, AJF(B) = |det(C’B)|_1/2(02[g, A|F|0, MB])(CB)
= lablll = (oale, AJF[0, y(w)]) (v(w) ' B)

€ 1/2 TIWT — —
= el et g ((w) T Ay (wA)) (FI0 v(wA))) (1(w) ' B)

€ 1/2 TIWT — _
= e (F[0, v(wA))) (v(wA) ' A7 B)

€ 1/2 TIWT — —
= e (WL [0, v(wA))) (v(wA) A B).

Before applying Wi, note that |det (y(wA) ™A™ B)[Y/2 = W, which will

cancel the first factor in the previous expression. Therefore, recalling that w =
(1,O)B_1,

Wi oale, AW f(B) = e f (A7 B) = 08 (41 B) = 700, A (B).

This implies that H,, is 7:9-invariant and the restriction of 7(2% to H,, is equivalent
to 09. ]

R Recall Theorem 5.2.5. The nontrivial orbit in the one dimensional case is O; =
R\ {0}, which is naturally identified with R* and D = L*(0;) N L*(R*). Fix {g; :
j € J} C D such that {g; : j € J} is an orthonormal basis in L?(0;). For any j € J,

[ 1250 P (0 /|gj D) Edy = gl =

Identifying H gy with Gy, Theorem 5.2.5 says that L*(H ) = deJ ICy;- Therefore,

L*(K, L*(Hqg))) = L2(K, K,,).

]EJ

Applying Wi, now considered as a unitary map of L?(K, L*(H(1 0))) onto L? (GLy(R)),
we get a decomposition of L?(GLy(R)).
Proposition 5.3.6. Let {g; : j € J} C D be an orthonormal basis in L*(O;). Then

each H,, is a closed 7('%-invariant subspace of L?(GLy(R)) and the restriction of

710 to H,, is equivalent to o. Moreover, L*(GLy(R)) = Y7, Hy,-
Recall from Proposition 5.1.3, if n € L?(O) satisfies 171l 20, = 1, then there is an

isometric linear map U, : L?(GL2(R)) — L?(G) that intertwines 7(1* with Ag. The
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map U, is defined by

U, fly. B = /@\ n(w)f (Br(w))e 28 Vdw, for all [y, B] € G, f € L*(GLy(R)).

The steps we have taken to move from L?*(K, L*(R*)) to L*(G) are summarized in
the following diagram.

(L*(K,L*(R"));0)

Vs

v

(L*(K,Ky); 02)
(12(GL(R)): 709
Un

(L2(G): o)

The vertical maps are linear isometries from the upper Hilbert space into the lower
Hilbert space intertwining the corresponding unitary representations. Thus, ®, , =
U, o Wy oV is a linear isometry of L?(K, L*(R*)) into L*(G) that intertwines o
with Ag.

Let F € L*(K, L*(R*)). For [z, A] € G,

P, Flz, Al = /A n(w) (Wfl‘/;]’F)) (A’y(g))e’Qﬂ@Ail@dg
e (5.14)
— | det(A), /ﬁ n(wA) (Wi VI F)) (Ay(wA))e 2 dy,

Observe that My wa)y = ¥(w) and Caywa) = 7(w) tAy(wA). So

det(Cay(wa)) :det( (w)™ 1A’y(wA)) %
Thus,
(W'VF)) (Av(wA)) = el Vo (FI0 7)) (v(w) Ay (wA))

= T (P10, v (@) 7 (v(w)  Av(@A)g)

- % /[R *(F[QaV(Q)])(V)Wl(7(&)*1A7(c_uA)) g(v) dpg- (v).

Inserting this into (5.14) gives
Dy Fz, A] =

Jis Jipe AL ) A)em2riez( R0, y(w)]) () (Y(w) LAY (wA) ) g(v) dpg (v) du.

We will compare the expression for ®, ,F' with a coefficient function of the irre-
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ducible representation o.

If £ € L*(K, L*(R*)) is fixed, then, for any ' € L*(K, L*(R*)), Vg F is the contin-
uous function on G defined by Vg Fz, A] = (F, oz, A]E>L2(K Ry, for all [z, A] € G.
Recall that the Haar integral over K can be expressed using the parametrization
w — v(w) by O, which is co-null in R2, Then, for [z, A] € G,

VeF|z, Al = (F, o[z, A|E)

L2(K,L2(R*))
w 5.15
/R2/* (v)olz, AJ(E[0, y(w)])(¥) dﬂR*(y)Hiﬁ‘ (5.15)
Note that
€ 12)|w ,
o AL A = tﬂf;)ll” Il omie 2 ) T Ay (@A) B, 1 @A) ).

If we select F as a function built from 7 and ¢, then we can make the expression for
Ve F coincide with that for @, ,. Define E as follows: For [0, L] € K and v € R*,

B0, () = B9 g(v).

| det(L

If L = y(wA), then E[0, 7(wA)|(v) = gy 9(v) = |wA|*M(wA) g(v). Thus

1 [det(A)]?]lwAl

n(wA) e > 1l (y(w) T Ay (wA)) g (v).

olz, A|(E[0, y(w)])(v) ME -

lwll
Substituting into (5.15), there is a perfect match with the expression for ®, ,F'. Thus,

we have the following theorem.

Theorem 5.3.7. Let g € L*(R*) satisfy [p. u|1/zg(u)‘2duR*(y) =1 and let n €
L*(R?) satisfy HnHLQO@) = 1. Let £ € L*(K, L*(R*)) be defined as

7((1,0) L1
E[0, L](v) = %g(y), for each [0, L] € K and v € R".
Define VpF(z, A] = (F,olz, A|E) , 2., for [2,A] € G and F € L*(K, L*(R)).
Then Vj is a linear isometry of L?(K, L?(R*)) into L?(G) that intertwines o with Ag.
In particular, o is a square-integrable representation of G.

Remark. 1t is perhaps useful to formulate a more direct proof of a weaker version
of Theorem 5.3.7 that still implies the full content of Theorem 5.3.7 using Duflo-
Moore theory. The arguments below show the connection with the continuous wavelet
transform in one dimension clearly.

Let n € L*(O) satisfy ||n]/r20) = 1. Let g € L*(R*) satisfy [, ||V|1/2g(y)}2|‘17”‘ =1
Let £ € L? (K, L*(R*)) be defined by

E0, L)(v) = | det(L)|~'7((1,0)L7") g(v),
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for a.e v € R* and [0, L] € K. Fix nonzero ¢ € L*(K,) and nonzero h € L*(R*). De-
fine F: K — LQ(R*) by F[0,L] = £&(L)h, for a.e. L € Ky. Then F € L*(K, L*(R*))
and HFHL2 K,L2(R = [[€1122 (Ko) HhH%Z(R*)-

Theorem 5.3.8. Let E,F € L?(K,L*(R*)) be defined as above. Then VpF €
L*(G) and, thus, o is a square-integrable representation of G. Moreover, Vg :
L*(K,L*(R*)) — L*(G) is an isometry.

Proof. Our main goal is to show that: ||VEF||L2(G) ||F||L2(K 12(r+))- Recall the maps
U, and V,. From (5.1), for f € L?(GLy(R)),

Ul B) = [ @) (Brw)e " 2, for ac. [3.Bl € Go (516

Since n € L*(O) and ||n|| 120y = 1, Proposition 5.1.3 implies U, is a linear isometry
of L?(GLy(R)) into L*(G).
We also have the isometry Wy ' : L2(K, L?(H(1,09)) — L*(GL2(R)) given by

W Fy(B) = | det(Cp)|~*(Fy[0, M3]) (Cp), (5.17)

for a.e. B € GLy(R) and Fy € L*(K, L*(H(1,0))-

Since g € L*(R*) satisfies [, [|v|"2g(v) 2|d”| = 1, Theorem 5.2.3 implies V is a

linear isometry of L*(R*) into L*(H (1)), where, for f € L*(R*),

Vf( ) <f 7T LQ(]R* /f ’7T1 ) fOI' C - H(1 0)-

[v] |
Note that, since F[0, L](v) = £&(L)h(v), for a.e. v € R* and [0, L] € K,

verle A= [ [ &) B L)) due([0. )
b dw (5.18)
- L / §(y (ol AIE0 A )50
Now
(olz, AJE[0,7(w)]) (v) (5.19)
= ‘det (OA*W@)) ’_1/2 €2m££ﬂ'1 <0Ai%,y(£)> E [Q, MAflry(g)} (V) '
Note
o ﬁ((l? O)Mg—ll'y(g)) . ﬁ(&A)
FE [Q, MA—l'y(g)} (7/) - ’det (MA—lfy(g)ﬂ g(V> - ’det (MA—l'y(g))’gO/).
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So

(ofz, AJE[0, v(w)]) (v)

B , T(wA) B (5.20)
= |det (C' 4 1/2 2miwa 77(& 1 (C 71 )
‘ € ( A 17(&))| € |det (MAflry(y))VT A~ 1y(w) g(y)

Insert this into (5.18) and rearrange to get

VeFz, A] =

/ |det (C’Aqv(w))}*l/z eQWiWn(wA)M/ h(v)r! <C’Aj ) g(z/)@diwf2

R2 = ‘det (MA_I’Y(ﬁ))’ R 7(w) |V| HQH
E(v(g))

vph (C)7)

=1/2 _omiwz w
= /@\det (Camiyw) |7 e 2 en(wA) w(g)) Talz-

‘det (MA*IW(Q))’

Make the change of variables w — wA~!. From Proposition 5.3.1, we have that
Y(wA™) = M () and CAjy(gA—l) = Cay(w)- Thus

|det(C w ‘1/2 —2miw 71;1: §(M w ) dw
VelFlz, Al = /A_ |de1221513)| oAy () e ‘/gh(CA’Y(ﬂ))HgAleQ'
o |det (v(w))]

| det(cA'y(g))Il/2
| det ()| det (v(w) ) [lwA 1]}
tities in Proposition 5.3.1. Thus,

But = | det(Cay(w))| /2, which can be verified using the iden-

VieF[z, Al = /A (w)e > A7 det (Cay )| ™26 (Man(w) ) Vo h (Car ) dw.

RQ
Now, using (5.17),
‘det(CAv(g))|_1/2§(MA7(£))V9}L(OAW(£)) = Wl_l(VgIFxA’V(Q))'

Then

VepFlz, Al = //\ U(%)(Wfl(vg/F))(AV(C_U))@_QMM dw = U, (Wl_l(‘/;]/F)) [z, A].

RQ

using (5.16). Since U,, Wi, and Vv, are all linear isometries,

||VEFH%2(G) = ||FH%2(K,L2(]R*))'

Therefore, Vg F € L*(G) and thus o is a square-integrable representation (see Def-
inition 2.5.1). Moreover E is a nonzero vector in D, and F' is a nonzero vector in
L*(K, L*(R*)) with ||[VeF| 2y = | Fllz2r,22ry). 1t follows from Theorem 2.5.5
that Vg is a linear isometry of the Hilbert space of o into L*(G). O

It is useful to formulate the content of Theorem 5.3.7 for the representation o
on the Hilbert space L? (R2 X R). Recall the unitary map U : L? (K, LQ(R*)) —
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LZ(]I/R\2 X I@) given by, for F' € L*(K, L*(R*)) and (w,ws) € R2 x R, let

(F[Q»’Y(Q)D (ws 1)
(UF)(w,ws) = ez forw € O,w #0

0 otherwise.

For E as in Theorem 5.15, £ € L? (]1/%\2 X I@), let F'=U"'¢. Then, for [z, A] € G,

<€7UI[£7 A]UE>L2(H@ &) = <UF7 UU[E: A]E>L2(D@ &)
= <F70-[£’ A]E>L2(K,L2(]R*)) = VEF[gv A]
Let v = UE and define Vyp&[z, A] = (£, 01[z, A]¢>L2(H@ . for [z, A] € G and ¢ €

L? (]I/Q\2 X I@) Then V}, is a linear isometry of L? (R2 X ]R) into L?(G) that intertwines
o1 with A¢. Note that det (y(w)) = [|w 72, so

Y(w,ws) = UB(w,ws) = (B0, y(@)]) (w3 llwll " ws| 72

= IOV ) oty 2 = @) o] 2g ).

)~
| det (v(w))]

for a.e. (w,ws3) € R2 x R. Define ((w) = ||w||7(w), for a.e. w € R2, and o(v) =
]y|_1/29(u_1), for a.e. v € R. Then 1 = [ [n(w)]*dw = [ [C(w)] 2 dw

= [ a0 = [ %007 s / o0

Recall the notation for elementary tensor products of functions on the factors of a
product space. For x € L?(R?) and 6 € L*(R), k ® 6 € L*(R? x R) is defined by

(5.21)

(k®0)(w,ws) = k(w)b(ws), for all (w,ws) € R? x R.

Thus, we can restate Theorem 5.3.7 in terms of the equivalent representation o; as a
corollary.

Corollary 5.3.9. Let ¢ € LQ(R) satisfy the condition that [ |C(g)|2ﬁ =1
and ¢ € L? (f&) satisfy [ [¢(ws)]? % = 1. Let v = ( ® ¢ and define Vy&[z, A] =
(&, o]z, A]1/J>L2(D@X@), for all [z, A] € G and each ¢ € L? (]1/%3 X ]@) Then Vj, is a linear
isometry of L?(R? x R) into L*(G) intertwining oy with Ag.

Combining Theorem 5.1.4 with Proposition 5.3.6 will now provide a decompo-
sition of the regular representation, A\g on L?*(G), into infinitely many copies of o.

Recall that O; = ]@\ {0} is the orbit of 1 in R under the action of R* = GL;(R) and
it is endowed with Lebesgue measure. When the nonzero real numbers are consid-
ered as a group, R*, it is endowed with Haar measure, ur-. The vector space D =
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{h € LA(R*) : [ [Ju]'?h(v) ‘ dpr-(u) < oo} can be thought of as L*(O;) N L?(R*).
Fix an orthonormal basis {g; : j € J} of L*(O;) consisting of functions in D as in
Proposition 5.3.6. For each j € J, Ky, = V,, L*(R*) and H,, = W 'L*(K,K,,).
Then H,, is a closed 7-invariant subspace of L?(GLy(R)) and the restriction
of 719 to H,, is equivalent to o via W, ' o V/. Moreover, Proposition 5.3.6 says
L*(GLy(R)) = >0, Hy,.-

On the other hand, O = I@\Q\{(O, 0)} is the orbit of (1,0) in R? under the action of
GL2(R). It is equipped with the Lebesgue measure of R2. Fix an orthonormal basis
{n: i € I} of LAR?) = L*(0). For each i € I, Uy, : L*(GLy(R)) — L*(G) is given
by

Umf@, B] - /I@ ni(g)f(B’Y((/_U))e_%@Bilg dw,

for [y, B] € G and f € L?*(GLy(R)). By Theorem 5.1.4, each U, L*(GLy(R)) is a
Ag-invariant closed subspace of L?(G) and U, intertwines 79 with the restriction
of A¢ to U, L*(GL2(R)) and L*(G) = 31, UmL2 (GL2(R)).

For each (i,j) € I x J, form E;; € L*(K, L*(R*)) by

Eij[0, L)(v) = BGAED g,(v), (5.22)

for v € R* and [0, L] € K. The orthogonal decompositions just recalled imply the
following theorem.

Theorem 5.3.10. Let {n; : ¢ € I} be an orthonormal basis of L?*(O) and let
{g; : 7 € J} be an orthonormal basis of L?*(O;) consisting of functions in L*(R*).
For each (i,j) € I x J, form E;; € L*(K,L*(R*)) as in (5.22) and let M,; =
Vg, ,L* (K, L*(R*)). Then each M, is a closed Ag-invariant subspace of L*(G) and
Vg, , is an isometry that intertwines o with the restriction of Ag to M, ;. Moreover
LQ(G) = 2,j)€1><JMi»j'

Again, we consider this for the representation o, acting on L? (]I/Q\2 X HA%) First, let

L2 <R2  R; M) L2 (RZ do ) and L’ (R, M)

" lwl?[v] wl®
denote the weighted L2-spaces with respect to the indicated weights. Recall that

L? <R2 R, Hd‘*ﬁd{") is naturally isomorphic to L? (Rz, H 12) ® L? <]R, B ‘)

For k € L? <R2, T ”2>, define U1k(w) = ||w|'F(w), for a.e. w € R2. For § ¢
L? (R, ‘d"|>, define Uy0(v) = |v|~/20(v71), for ae. v € R.

Lemma 5.3.11. The map U; is a unitary map of L? (]1/@, HiﬂP) onto L? (I/R\?) and U,
is a unitary map of L? <]1§, “17”‘) onto L? (f&)
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Proof. We show the calculation for Us, which is a little more complicated than that

for U;. Let 6 € L? <R, B |> Then

2
10:6]12 , =

/A ‘|1/|_1/2«9(1/_1)‘2d1/ (w=v!dv=w?dw)
/ ‘|w|1/29 | w 2dw

_ 2dw __ 2
= [l =012,

Thus Usf € L? (]IA%) and U, is an isometry. It is clear that U, is linear. Also, the fact
that U, is onto L? (IR ) and Uy 'g(v) = |v|72g(v™1), for ae. v € R, g € L*(R). Thus,

U, is a unitary map of L? <]R; ‘—;’|> onto L2 (]IA%) O

It is useful to have an orthonormal basis for L? <R2 ) consisting of functions

el

which also lie in L? (@) as well as for the pair L? ( f—) and L? (]R)

Lemma 5.3.12. (a) There exists a countable set {(; : i € I} in C.(O) that is an
orthonormal basis of L? <R2, m ”2) (b) There exists a countable set {¢; : j € J} in

C.(O,) that is an orthonormal basis of L? <]1§, %)

Proof. We start with the proof for (b). Because the unitary Us of Lemma 5.3.11
maps C.(O;) to C.(Oy), it suffices to find an orthonormal basis of LQ(I@) consisting
of functions in C,(O;). Start with an orthonormal basis, {g, : k € N}, of L%(R)
consisting of functions in C’c(f@) such as the basis given by a Daubechies wavelet. Let

:{Zajgkj in €Nk, ,kneN,ajEQ—i—iQ,lgjgn}.

J=1

Then C is a countable dense subset of LZ(I@) consisting of continuous functions of

compact support. Our next step is to replace each member of C with a sequence of
from C.(O,). For each k € N, let

1 if w| > 1/k
spw) =S k(k+1)(Jw| —1/(k+1)) if1/(k+1) <|w| <1/k
0 if jw| < 1/(k+1),

for all w € R. Then, for any h € C, limj_yo0 ||k — skhll 2@ = 0. Moreover, sph €
Ce(Oy), forall h € C and k € N. Then C' = {sih : h € C,k € N} is a countable dense
sunset of L? (HAQ) consisting of members of C.(O;). Now, index the members of C’ by
N. Thus, write C’ as a sequence hq, ho, h3,---. Apply the Gram-Schmidt process to
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this sequence to generate an orthonormal basis B of L? (I/Eé) consisting of finite linear
combinations of members from C’. This proves (b).

To prove (a), for g, h € B, let g®h be defined on R2 by (9®h) (w1, wa) = g(w1)h(wa),
for all (w1, ws) € R2. Then {g ® h: (g,h) € B x B} is countable set in C,(O) that is

an orthonormal basis of L2 (R2 dw > m

Fix countable sets {¢; : i € I} in C.(O) and {¢; : i € J} in C.(O;) as in Lemma
5.3.12. For each i € I, let n; = U;(;. Since U; : L? <R2; ﬁ) — LQ(RZ) is a unitary

map, {n; : « € I} is an orthonormal basis of L? (@) = L*(0). Likewise, let g; = Us;,
for each j € J, to get an orthonormal basis of L? (H/é) = L*(Oy). If ¢y ; = (;® ¢, then
Vi; € L*(R? x I@) If E;; is defined from 7; and g; as in equation (5.22), for each
(i,j) € IxJ, then v, ; = UE, ;, as in equation (5.21). Combining Corollary 5.3.9 with

Theorem 5.3.10, gives a corollary of Theorem 5.3.10. Note that, for ¢ € L2 (@ X ]l/é)
and FF = U1,

th’,]‘g[&? A] = <£> Ul[£7 A]%J) = <F,O’[§, A]Ei,j> = VEMF[Q, A],

for all [z, A] € G. Therefore, the closed Ag-invariant subspaces in Theorem 5.3.10
can also be given as M;; = Vj, . L*(R? x R), for (¢,5) € I x J.

Corollary 5.3.13. Let {(; : i € I} be an orthonormal basis of L? (Rz, le|2> consist-

ing of functions in C.(O) and let {¢; : j € J} be an orthonormal basis of L? (R, ﬁ)

consisting of functions in C.(O). Let ¢;; = (; ® ¢; and let M, ; = ‘/wl.J.L2 (]R2 X R),
for (i,7) € I x J. Then each M, is a closed A\g-invariant subspace of L*(G) and
Vi, is an isometry that intertwines oy with the restriction of Ag to M; ;. Moreover

LZ(G) = Zg,j)elei,j

5.3.1 The Duflo-Moore Operator

Recall that, for n € L? (@ X I@), the linear map V}, : L? (@ X I@) — Cy(G) is defined
by
‘/77€[£7 A] = <£7 01 [&a A]n>L2(D@X@)a
for any [z, A] € G and any £ € LQ(I/RS3 X I@)
The steps leading to Corollary 5.3.13 indicate that the space

" lewll?[v]

{nEL2 ]RQXR // In(w,v) 2i°ﬁgll;|<oo}

Dy = L*(R? x R) ﬂLQ(RQ <« R: dwdy)
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is important. It is a dense subspace of L? (]1/%\2 X ]@) We define a multiplication operator
T on L*(R? x R) by, for € € L*(R? x R),
Té(w,v) = |lwll v V%€ (w, v), for ae. (w,v) € RZxR.

Then T¢ is a Borel measurable function on R? x I@, for any & € L? (@ X H/é) However

T¢ € L? (]1/%\2 X ]IAR) if and only if £ € Dy. Thus, T' is an unbounded operator. For any
€Dy, (TE,E) . >0. That is, T is a positive operator.

L2(R2 xR)

Lemma 5.3.14. For any & € Dr, o1z, A]§ € Dr, for all [z, A] € G.
Proof. Fix [z, A] € Dy. For any £ € Dy and a.e. (w,ws) € R? x R, by (5.11),

dwdw w dw
// o1 [z, AJ¢(w WS)|2 & = | det(A // HwA||2‘£ (WA, w3, A)‘2|\iﬂ2d\w3|
© [wl[?[ws| ’

dw d,
o) | | ol s

= aet(4)] [ [l a0 Pt
5 dwd
= | det(A |//|§ =5 %
||w|| |ws|

Thus, o[z, A] € Dr. O

So Dr is a (non-closed) o;-invariant subspace of L? (I/R53 X I@) For any [z, A] € G,
it is easy to see that oy[z, A|Toq [z, A]* is a self-adjoint positive operator with domain
Dr. Tt is an important fact that o[z, A|Toq[z, A]* is just a special multiple of the
operator T

Proposition 5.3.15. For any [z, A] € G, o1[z, A]To, [z, A]* = Aglz, A]Y/2T.
Proof. Fix [z, A] € G and recall that Aglz, A] = |det(A)|~'. For any & € Dr, let
¢ =0z, A]7Y = 0y[-Alz, A7YE. Using (5.11),

o1[z, ATE (w, wy) = Ll itz 1) (T¢') (WA, wyv, )

| det(A)[-[lwl| 2mi(wz+wsuy, 4) !
= TwAlPlosoga 72 22 (WA, wvy,a),

(5.23)

for a.e. (w,w3) € L? (@ X HA%) On the other hand,

£ (gA,w;z,v%A) =o[-A""'z, A_l]ﬁ(wA W3l A)

de D |wA mi(wA(—A™1z)+wsv, au _
e Al AT AT et ) (5.2

€ LlwAll - mi(wr+wsu
_ |det(4 l)‘L” [l || 27i(wa+ws g,,4)5(%%)
using vy, AVua,4-1 = 1 and v, aUu4 4-1 = —U, 4, Which follow from Proposition 5.3.1
(d) and the observation that C,) = id, for any w € O. Inserting (5.24) in (5.23),
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using |v,, 4|Y? = %ﬁf”g” from Proposition 5.3.1 (g), and reducing gives
oz, ATo: [z, A€ (w, ws) = | det(A)| 72 [|wl| ™ ws| ~/2¢ (w, ws)
= AG[Q’ A]l/QTg(('_da UJ3),

for a.e. (w,ws) € R2 x R. This shows that o, [z, A|Toy [z, A]* and Ag[z, A]Y?T agree
as self-adjoint positive operators on L? (R2 X R). n

In the terminology of [9], Proposition 5.3.15 says T is semi-invariant, with weight

AgQ, with respect to the irreducible representation o;. However, Corollary 5.3.9
implies that oy is a square-integrable representation. Let C,, denote the Duflo-Moore
operator associated with o as described in Theorem 2.25 of [14]. In particular, C,,

is semi-invariant, with weight Ag ?. with respect to the irreducible representation o
as well. By Lemma 1 of [9], there is a positive constant ¢ such that C,, = ¢T.

Theorem 5.3.16. The Duflo-Moore operator C,, associated with oy is glven by, for
any € € L2(R2 x R), Co&(w,ws) = |~ oos| V26, ws), for aue. (w,uws) € B2 x R.

Proof. Let ¢ > 0 be such that C,, = ¢T'. As in Corollary 5.3.9, let ( € L? (]1/%\2) satisfy
the condition that [ [¢(w)[? d‘ﬁ2 =1 and ¢ € L*(R) satisfy [5|¢(ws) 2&”" =1. Let
Y =(® ¢. Then

- _ 2
||T¢||L2(R2X]R) [ I@}HC_UH 1|w3| 1/2¢(c_u,w3)’ dw dws

= [ (L ) lownpss =1

Moreover, Vj, is an isometry of L? (]T%\Q X ]l/é) into L?(G). On the other hand, from

Theorem 2.25 of [14] we see that V}, is an isometry of L? (@ X ]IA%) into L*(G) exactly
when

=

L= Hme’L2(n@xu§) = ”CTme(u@x@) - CHTwHLQ(J@x@) - ¢
Therefore, C,, =T. ]

The Duflo-Moore orthogonality relations for the square-integrable representation
o1 can now be stated.

Corollary 5.3.17. Let &, & € L2(R? x R) and ¢y, 5 € Dr. Then

<Vw1§17 v¢2§2>L2(G) = (&1, §2>L2<D@X@) (Ta, T¢1>L2(D@X@) .

Corollary 5.3.18. Let ¢ € L? (I/R53 X I@) satisfy

// [Pl )l ) g = 1. (5.25)
2 [lw[]?|ws]
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Then V, : L? (@ X H/é) — L?(@G) is an isometry that intertwines o; with Ag.

5.4 The Generalized Wavelet Transforms

Corollaries 5.3.17 and 5.3.18 are the critical parts of forming a continuous wavelet
transform and reconstruction formula arising from the square-integrable representa-
tion oy of G.

Definition 5.4.1. A function ¢ € L? (@ X ]1/\%) is called a o1-wavelet if

2
/ —W(% ws)| dw dws = 1.
r2 JR

le|[?|es]

a b

For each x € R? and A = (c d) € GLy(R), define 9, 4 on R? x R by

Vg a(w, ws) = LAl amiluatanin )y (WA, wyv, ), for ace. (w,ws) € R2 xR,

lwAll

where
(ac + bd)(w? — w?) — (a® + b* — & — d*)wywo

(awy + cws)? + (bwy + duws)?

Uw, A =

and
(ad — be)(w? + w3)

wA = (awr + cw2)? + (bwy + dws)?

Then ¢, 4 € L*(R? x R).
Definition 5.4.2. For each & € L? (]1/%\2 X ]l/é), let
Vplz, Al = (€, ¢, A)LQ(RQX]R for all z € R?*, A € GLy(R).

Then V), is called the oq-wavelet transform with o-wavelet ).

The reconstruction formula given in Proposition 2.5.9 can now be stated for the
o1-wavelet transform.

Theorem 5.4.3. Let ¢ € L? (@ X ]l/é) be a oj-wavelet. Then, for any £ € L? (@ X @),

dz dpgr, (R) )
Vip€lz, Al by 4 — 20—
§= /GL2 /]1@2 wf w A T Tdet(A

weakly in L2(R? x R).

Recall that the integral in Theorem 5.4.3 is over the 6 real variables x1, x2, a, b, ¢, d,

a b dz dpcr,®)(A)  dzy doo dadbdedd
where A = (c d) and et lad—bc]® :
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This transform can also be expressed in a related manner by taking a Fourier
transform in the distinguished third variable.
Let F3: L*(R? x R) — L*(R? x R) be the unitary map such that

F3é(w,t) = /Af(g, wg)e_%i“:”tdwg, for any (w,t) € R? x R,
R

and ¢ € C. (]/R;2 X I@) Use F3 to move o7 to an equivalent representation acting on
[*(R? x R). Then F;': L?(R? x R) — L*(R2 x R) is such that

Folf(w,ws) = / fw, t)e*™ st dt, for all (w,t) € R2 x R
R

and f € C.(R? x R).
Definition 5.4.4. For each [z, A] € Gy, let plz, A] = Fsoy[z, A]JF; "

Proposition 5.4.5. The map p is a square-integrable representation of the affine
group G = R? x GLy(R) on the Hilbert space L*(R? x R). For f € L*(R? x R) and
[z, A] € G,

plz, Al f(w, t) = Legle 2mwxf( t— uwAA> |
for a.e. (w,t) € R? x R.

Proof. Since p is equivalent to oy (and o), it is an irreducible representation that is
square-integrable. To verify its formula, let ¢ = F; ' f. Then

ple, Alf (. t) = Faorlz, Alg(w, 1) = / o1z, A6 (w, wy)e " duy
R
:[W62wi(wm+wsuwﬁ)§<£/hWSUW7A)627riW3tdw3 (5.26)
s e

_ | det(A)[-|lw]| p2miwz —2miws (t—uy A)
= @A fWA W3l A)€ @A) dws.

. d t 2
Make the change of variables wj = wsv, 4. So dwf = vy al|dws = %d w3.

Thus, (5.26) becomes

wl|

M 27rzwxf t—uy A
wl| w, A ’

for a.e. (w,t) € R2 x R. O

plz, Alf(w, t) = Q—AH Pt /E (WA, wh)e 2Tt () gyt

Definition 5.4.6. A function w € L? (@ x R) is called a p-wavelet if Fy'w is a
o1-wavelet.
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If w is a p-wavelet, for each [z, A] € G, define w, 4 = p[z, Ajw. That is,

Wy a(w, t) = —‘W“‘H Zmige (gA, t;ZﬂAA> , for a.e. (w,t) € R2 x R,

w

where u,, 4 and v, 4 are as above.
Definition 5.4.7. For each f € L2(R? x R), let

Vo flz, Al = (f, w%A>L2(H@XR), for all z € R?, A € GLy(R).
Then V,, is the p-wavelet transform with p-wavelet w.

Theorem 5.4.8. Let w € L? (I@\? xR) be a p-wavelet. Then, for any f € L? (]1/%\2 xR),

f / / V. f z, A w A d$d/-LGL2(R)(A)
GLa(R) JR2 | det(A)]

weakly in L2(R? x R).
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