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Abstract

The heritability of a quantitative trait is a very important parameter to quantify the

genetic variation present in a population. Although traditional techniques for esti-

mating heritability require accurate information of the genetic relationship among

individuals, pedigree structure is generally lacking in natural population. Nowadays,

the development of DNA markers is making possible to reconstruct pedigree accu-

rately with sufficient markers. These reconstructed pedigrees have then been used

with restricted maximum likelihood under a general linear mixed model to estimate

heritability. In this thesis, we use markers and phenotypic observations jointly to es-

timate the pedigree and heritability simultaneously. We develop a MCMC sampling

method of moving through the sibship configuration space and space of parameters

of quantitative trait, and finding the configuration and optimal parameter values

that maximizes the full joint likelihood or posterior distribution of proposed family

structure and genetic variance components. Using this method, we estimate of heri-

tabilities of 318 abalone at different time points separately and independently. Both

MLE and Bayes estimate are superior to two-step method using insufficient markers

(two microsatellite markers). We also give the discussion about the choices of prior

distributions of parameters in the model. At the end, we extend our method to incor-

porate with observations at multiple time points, but we don’t obtain any significant

improvements.

ix
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Chapter 1

Introduction

Abalone is one of the most valuable mollusks in the international market, but it

has a low growth rate. Aquaculture of abalone has become very popular through-

out the world due to their high commercial value and over-exploitation of most wild

stocks (Gordon and Cook (2004)). In Chile, abalones are not an indigenous species.

However, significant quantities of farmed abalone, the red abalone especially, are pro-

duced today since they had been introduced for culture purposes from other countries

20 years ago (Flores-Aguilar et al. (2007)). Abalone only reach commercial size in

around 4 years, and their slow growth is a main concern for abalone growers. Thus,

it is important to continue increasing their growth rates through selective breeding

and genetic improvement (Viana (2002)).

The existence of additive genetic variability for the growth trait in the population

determines the success of a selective breeding program (Falconer and Mackay (1996)).

Response to selection or genetic gain depends on heritability, the proportion of total

phenotypic variance in a population that is attributable to the additive genetic effect

(Lynch and Walsh (1998)). Additionally, heritability is not always constant for a

population, as a consequence of changes in the magnitude of the genetic variance due

1
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to modifications in allele frequencies or appearance of new variants in the population

(Visscher et al. (2008)). Therefore, estimating the variance components and heritabil-

ity for growth traits of abalone throughout the productive cycle is necessary in order

to optimise the selection process. The changes in heritability of growth traits for red

abalone, measured during 3 years from juvenile stage (27 months) to the harvesting

adult stage (51 months) have been estimated by Brokordt et al. (2015). In their

study, variance components for growth traits were estimated using the animal model

with a restricted maximum likelihood (REML) approach (Johnson and Thompson

(1995)). They fitted the animal model with fixed effects (covariates), and random

effects including additive genetic effect and other random effect (i.e., a confounded

maternal effect, common environmental effects and non-additive genetic effects).

One of the greatest technical limitations of animal model with REML for estimat-

ing genetic variance components is their requirement for pairs of individuals of known

relatedness or full pedigree structure. In natural populations, detailed knowledge of

pedigree is absent in all but the most carefully studied populations, and even then

may be subject to error. Therefore, it is important and necessary to develop methods

for estimating variance components and heritability with unknownn pedigree struc-

ture. In this thesis, we estimate the heritability of a growth trait with a red abalone

data set used in Brokordt et al. (2015), but we assume the family structure is unknown.

This introductory chapter presents some basic concepts of quantitative-genetic
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theory. In particular, we give the definition of a number of genetic terms, such as

heritability (broad-sense and narrow-sense), additive and dominance effects, breeding

value, etc. We also explain the genetic covariance between different types of relatives.

We then introduce our hybrid data set and give a preliminary study of phenotypic

observations. At the end of this chapter, we provide an outline of the remainder of

the thesis.

1.1 Introduction of Quantitative-Genetic Theory and Heritability

The expression of quantitative characters is typically influenced by both genetic and

environmental factors. From the perspectives of both evolutionary theory and applied

breeding programs, genetic components of variance are important to understand be-

cause they determine the rates at which characters respond to selection (Lande (1982);

Mousseau et al. (1987)). Environmental variance reduces the efficiency of response

to selection by causing the phenotypes of selected individuals to depart from their

underlying genotypic values. There are many methods to partition phenotypic vari-

ance into its various components. They are based on the principle that the phenotypic

resemblance between relatives provides information on the degree of genetic differenti-

ation among individuals. Different components of variance influence the resemblance

between relatives to different degrees, and have substantially different influences on

the evolutionary process (Fisher (1919); Wright (1922)). The additive component of

the genetic variance, which is defined below, is of particular interest because it is
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the primary determinant of the degree to which offspring resemble their parents, and

governs the rate of response of a character to selection.

The evolutionary response of a trait to selection is a function of the intensity of

selection and the fraction of the phenotypic variance attributable to certain genetic

effects. The within-generation difference between the mean phenotype µS after an

episode of selection (but before reproduction) and the mean before selection µ, is

called the directional selection differential (Lynch and Walsh (1998)).

S = µS − µ (1.1)

The value of S depends on the survivorship and reproductive rates of individuals

with difference phenotypes. If all individuals have the same fertility and viability,

then µS = µ, and S = 0, which indicates the population mean phenotype is not ex-

pected to change between generations. The directional selection differential also can

be viewed as the covariance of phenotype and relative fitness (Price et al. (1970)).

When the regression of offspring phenotype on the average parent is linear with

slope β, the change in the parental mean phenotype leads to an expected change in

the mean phenotype across generations equal to

∆µ = µo − µ = βS (1.2)
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where µo is the mean phenotype of the offspring. This equation is called the breeders’

equation (Lush (1937)) and it combines information on the forces of selection (S)

with that on inheritance (β) to produce a predictive equation for evolutionary change

across generations.

1.1.1 The Heritability in the Broad Sense

The breeders’ equation shows the importance of heritable variation in the evolution

of a trait through natural selection. The response to selection across generations

is zero if β = 0, no matter how large S is. Quantification of the correspondence

between phenotypic and genotypic values is related to one of the central goals of

quantitative genetics - the partitioning of the phenotypic variance into genetic and

nongenetic components. The phenotypic value of an individual, Y , can be considered

as the sum of the total effects of all loci on the trait, G (the genotypic value), and an

environmental effect E (Kempthorne (1957)).

Y = G+ E (1.3)

The covariance between phenotypic and genotypic values can be written as

σY,G = σ[(G+ E), G] = σ2
G + σG,E (1.4)

If we assume no genotype-environment covariance, i.e., σG,E = 0, the squared corre-

lation coefficient can be simplified as
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ρ2
Y,G =

( σY,G
σY · σG

)2
=

(σ2
G + σG,E)2

σ2
Y σ

2
G

=
σ2
G

σ2
Y

(1.5)

The squared correlation coefficient is simply the proportion of the total phenotypic

variance that is genetic. The quantity
σ2
G

σ2
Y

is generally referred as broad-sense heri-

tability and noted as H2 (Plomin (1990)). The broad-sense heritability provides some

insight into the partitioning of the phenotypic variance into genetic and residual com-

ponents without getting stuck in genetic complexities. However, while this leads to

methods for estimation, the approach is not particularly informative to the practic-

ing geneticist. The broad-sense heritability estimates the degree to which differences

among individuals are genetically based, but not all genetically based differences can

be passed from parents to offsprings. The underlying genetic values are essentially

unobservable without an extensive breeding program.

1.1.2 The Heritability in the Narrow Sense

Based on the simple fact that related individuals carry copies of many of the same

alleles, the resemblance between phenotypes of offspring (Yo) and their midparents

(Ymp) inspires a method to estimate levels of genetic variance of quantitative traits.

A midparent value is the average phenotype of a mother (Ym) and a father (Yf ),

Ymp =
Ym + Yf

2
(1.6)
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We will start with a simple genetic situation - a single locus with purely additive

gene effects, diploidy, random mating, and no selection. Let gm and gf be the effects of

the alleles that the offspring inherits from its mother and father, respectively, and g′m

and g′f be the effects of the alleles that the parents do not transmit to their offspring.

Let Em, Ef and Eo be the environmental effects on the phenotypes of mother, father

and offspring, respectively. The three phenotypes can be written as

Ym = gm + g′m + Em (1.7)

Yf = gf + g′f + Ef (1.8)

Yo = gm + gf + Eo (1.9)

Therefore, the midparent phenotype can be expressed as

Ymp =
gm + g′m + Em + gf + g′f + Ef

2
(1.10)

The complete expression for the midparent-offspring covariance, σYmp,Yo is quite

complex, containing 18 = (6× 3) terms. However, most of these terms have expected

values equal to zero under the following assumptions:

� Under the assumptions of random mating and no selection, there is no co-

variance between the effects of alleles within individuals. The effects of genes

inherited by an offspring have zero covariance with the effects of genes that are

not inherited, and the effects of genes in mothers are not correlated with those
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in fathers.

� Under the assumption of no genotype-environment covariance, the covariances

between genetic effects and environmental effects are all equal to zero.

� Provided the parents do not transmit their environmental effects to their progeny,

then the covariance between the environmental effects of parents and environ-

mental effects of offspring are equal to zero.

Assuming all above assumptions are fulfilled, the only potential sources of covari-

ance that exist between midparent and offspring phenotypes are those based on the

inherited genes. Therefore,

σYmp,Yo = σ
[
(
Ym + Yf

2
), Yo

]
= σ

[(gm + gf
2

)
,
(
gm + gf

)]
=
σ2
gm + σ2

gf

2
(1.11)

Since we assumed the genotypic value to be entirely defined by the additive effects

of the two alleles, the total genetic variance in the population is the sum of the

variances of maternally and paternally derived genes, σ2
gm + σ2

gf
. Because the gene

effects are purely additive, this quantity is also be referred to as the additive genetic

variance, σ2
A. Thus, we conclude that the covariance between midparent and offspring

phenotypes is equal to half of the additive genetic variance in the population, and

this relationship holds for any number of loci provided they interact additively.

σYmp,Yo =
σ2
A

2
(1.12)
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In order to get the expected least-squares regression of offspring on midparent

phenotype, the slope is equal to the covariance divided by the variance of midparent

phenotypes. Under random mating, we believe that the phenotypic covariance be-

tween parents is zero, σYf ,Ym = 0. We also believe that the phenotypic variance in

the two sexes is the same, and equal to the phenotypic variance in the population,

σ2
Y . Thus,

σ2
Ymp

= σ2
(Ym + Yf

2

)
=
σ2
Ym

+ σ2
Yf

4
=
σ2
Y

2
(1.13)

The slope of the least-squares linear regression of offspring phenotype on midparent

phenotype is then,

βo,mp =
σ2
A

σ2
Y

(1.14)

The slope of a midparent-offspring regression provides an estimate of proportion of

the phenotypic variance that is attributable to additive factors. The ratio σ2
A/σ

2
Y is

known as the narrow-sense heritability and is denoted as h2 (Lynch and Walsh (1998)).

Recall the breeders’ equation (equation 1.2), where β can be treated as h2. If S

is the change in mean phenotype caused by selection prior to reproduction, then the

response to selection across generations can be written as,
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∆µ = h2S (1.15)

The narrow-sense heritability can be expressed as the efficiency of the response to se-

lection. Regardless of the strength of selection, when h2 = 0, there is no evolutionary

change.

The heritability has a value that lies between 0 and 1. It is important to un-

derstand that the heritability of a trait is defined for a given population at a given

time. This quantity can vary between populations, and can change from time to

time (Visscher et al. (2008)). As allele frequencies change, so does heritability. A

population with a high h2 value may have a heritability drop to zero very quickly,

while another population with a much smaller h2 value may have heritability increase

during selection as rare alleles become more frequent. Therefore, heritability is an

unreliable predictor for long-term response, although it is generally a good predictor

of short-term response.

1.2 Genotypic Value and Decomposition of the Genetic Variance

1.2.1 Allele and Genotype Frequencies

The genetic information encoding for characters resides on extremely long strands

of deoxyribonucleic acid (DNA) called chromosomes. DNA sequences that encode

for particular products are referred to as gene, and their chromosomal locations are
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called loci. Many organisms are said to be diploid since they have two copies of each

of several chromosomes, one copy from a female parent, and one from a male parent.

As we know, DNA replication is an imperfect process and the two copies of each

gene carried by diploid individuals need not be identical to those in the parents when

mutations appear. The various forms of gene are called alleles.

When denoting the genotype at a single locus, we refer to the pair of alleles that

a diploid individual carries at the locus. Individuals that have two identical alleles

are called homozygotes, and those that have different alleles are called heterozygotes.

For example, we denote the alleles at a particular diallelic locus as B1 and B2. There

are three possible genotypes: B1B1 and B2B2 homozygotes, and B1B2 heterozygotes.

Allele frequencies are defined uniquely by genotype frequencies. Suppose we use

P11, P12, and P22 represent the proportions of the population that are B1B1, B1B2,

and B2B2. By definition, P11 + P12 + P22 = 1 if these are the only genotypes at the

locus. Therefore, the relative frequency of the B1 allele is

p1 = P11 +
1

2
P12 (1.16)

Thus, the frequency of an allele can be estimated by the observed frequency of ho-

mozygotes plus one-half the observed frequency of all heterozygotes containing that

allele.
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1.2.2 Genotypic values and Fisher’s Decomposition

The phenotype (Y ) of an individual can be partitioned to a genotypic value (G) and

an environmental deviation (E), where G is the expected phenotype (for a given geno-

type) resulting from the joint expression of all of the genes underlying the trait. The

expression for the genotypic value G can be a complicated function for a multilocus

trait. However, we will only consider the simpler situation with direct contribution

from a single autosomal locus. For now, we start with the special case in which there

are only two alleles. Lynch and Walsh (1998) explained a way to define the genotypic

values. The genotypic values of the B1B1 and B2B2 homozygotes can be set to zero

and 2a respectively, with 2a representing the difference between the mean phenotypes

of B2B2 and B1B1. The genotypic value of B1B2 is defined to be (1 + k)a, where k

provides a measure of dominance. Alleles B1 and B2 behave in a completely additive

fashion when k = 0, whereas k = +1 implies complete dominance of the B2 allele,

and k = −1 implies complete dominance of the B1 allele. If k > 1, the phenotypic

expression of the heterozygote exceeds both homozygotes, and the locus is said to

exhibit overdominance, whereas k < −1 implies underdominance.

The number of copies of a particular allele (B2) in a genotype (N2 = 0, 1 or 2

for diploid individuals) is referred to as the gene content. It is useful to consider

the best linear approximation to the relationship between the gene content and the

genotypic value. Genotypic values can be partitioned into their expected values based

on additivity (Ĝ) and deviations from those expectations resulting from dominance
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(δ).

The preceding points can be formalized by least-squares regression of genotypic

values on the number of B1 and B2 alleles in the genotype, N1 and N2.

Gij = Ĝij + δij = µG + α1N1 + α2N2 + δij (1.17)

The genotypic value of genotype BiBj is a function of µG, the population mean

genotypic value, α1 and α2, the slopes of the regression of the predictor variables N1

and N2, and δij, the residual error. This partitioning of genotypic values into various

components is one of several major advances developed in Fisher (1919). For the two

alleles case, the model can be reduced to a standard univariate regression by noting

that for any individual, N1 = 2−N2, then

Gij = µG + α1(2−N2) + α2N2 + δij

= ι+ (α2 − α1)N2 + δij (1.18)

where ι = µG + 2α1 is the intercept. The slope of this regression can be written as

α = α2 − α1 (1.19)

As we know, the slope of a univariate regression is simply the covariance between

response and predictor variable divided by the variance of the predictor variable.
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Thus, the slope of the regression α is

α =
σG,N2

σ2
N2

(1.20)

The terms σG,N2 and σ2(N2) are functions of the gene effects (a and k) and proportions

of the B1 and B2 alleles (p1 and p2). They can be easily derived by using the quantities

in Table 1.1. Thus, we obtain

α = a[1 + k(p1 − p2)] (1.21)

Under the assumption of random mating, α is known as the average effect of allelic

substitution. It represents the average change in genotypic value that results when a

B2 allele is randomly substituted for a B1 allele. For the purely additive case where

k = 0, α is simply equal to a.

Table 1.1: Properties of a single segregating diallelic locus under random mating.

Gene Dominance
Content Genotypic Regression Deviation

Genotype (N2) Values (G) Freq G ·N2 N2 Value (Ĝ) (δ)
B1B1 0 0 p2

1 0 0 ι −ι
B1B2 1 (1 + k)a 2p1p2 (1 + k)a 1 ι+ α (1 + k)a− ι− α
B2B2 2 2a p2

2 4a 4 ι+ 2α 2a− ι− 2α
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1.2.3 Partitioning the Genetic Variance

Once the genotypic values have been partitioned in the above manner, it is a relatively

simple step to partition the sources of genetic variation at a locus. Recalling the

equation G = Ĝ+ δ, the total genetic variance can be written as

σ2
G = σ2

Ĝ+δ
= σ2

Ĝ
+ 2σĜ,δ + σ2

δ (1.22)

Based on the property of least-squares regression, the regression prediction is

uncorrelated with the residual error. Thus, the total genetic variance attributable to a

locus simplifies to the sum of additive and dominance components. These components

are denoted as σ2
A and σ2

D.

σ2
G = σ2

A + σ2
D (1.23)

Statistically speaking, σ2
A is the amount of variance of G that is explained by the

regression on N2, whereas σ2
D is the residual variance for the regression. Biologically

speaking, σ2
A is the genetic variance associated with the average additive effects of

alleles (the additive genetic variance), and σ2
D is the genetic variance associated with

dominance effects (the dominance genetic variance).

Partitioning the genotypic value into additive and dominance components is very

useful. In randomly mating diploid species, a parent donates only one allele per lo-

cus to each of its offspring. The transmitted allele exhibits its additive effect when

randomly combined with a gene from other parents. The dominance deviation of a
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parent, which is a function of the interaction between two parental genes, is elimi-

nated when gametes are produced. Thus, Ĝ and δ can be considered as the heritable

and nonheritable components of an individual’s genotypic value.

1.2.4 Additive Effects and Breeding Values

The additive effects, αi, can be defined to be the least-squares regression coefficients

of genotypic value on gene content (equation 1.17). They are obtained by finding the

α1 and α2 that minimize the mean-squared residual deviation

MSE = E(δ2
ij) = E[(Gij − µG − α1N1 − α2N2)2]

= (G11 − Ĝ11)2P11 + (G12 − Ĝ12)2P12 + (G22 − Ĝ22)2P22

where Pij is the relative frequency of the ijth genotype. For a randomly mating

population, setting the partial derivatives of MSE with respect to αi equal to zero,

the solutions are

α2 = p1a[1 + k(p1 − p2)] = p1α (1.24)

α1 = −p2a[1 + k(p1 − p2)] = −p2α (1.25)
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The αi are often referred to as average effects, but we use additive effects to discrim-

inate them from average effects of higher-order gene actions (such as dominance).

An individual’s breeding value, denoted by A, is the sum of the additive effects

of its genes. In other words, the breeding value of a B1B1 homozygote is simply 2α1,

that of a heterozygote is (α1 +α2), and that of B2B2 is 2α2. The definitions for addi-

tive effects and breeding value present a very useful relationship for a random-mating

population. The breeding value of a genotype is equivalent to twice the expected

deviation of its offspring mean phenotype from the population mean. Therefore, the

breeding value of an individual can be estimated by mating it to many randomly

chosen individuals from the population and taking twice the deviation of its offspring

mean from the population mean.

1.2.5 Additive Genetic Variance for Multiple Alleles

Although the preceding results were obtained under the assumption of a diallelic locus

and random mating, they can be generalized to situations with an arbitrary number

of alleles, as well as to nonrandomly mating populations.

As in the diallelic case, with n alleles the additive effects are defined to be the set

of αi that minimizes the mean- squared residual deviations, E(δ2
ij), obtained from the
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least- squares solution for the multiple regression

G = µG +
n∑
i=1

αiNi + δ (1.26)

This equation is the n-allele extension of equation 1.17, with Ni being the number

of copies of allele i carried by an individual. For example, for the genotype G12,∑
αiNi = α1 + α2, and δ12 = G12 − µG − α1 − α2.

Finally, we consider the general definition of the breeding value (Aij) under ran-

dom mating. Returning to equation 1.26,

Gij = µG + αi + αj + δij

= µG + Aij + δij (1.27)

Therefore, the genotypic value can be decomposed into four quantities: the mean

of genotypic value for the population, the additive effects of the two genes, and a

dominance deviation due to the interaction between the genes. By the properties of

least-squares regression, Aij and δij are uncorrelated, and

σ2
G = σ2

αi+αj
+ σ2

δij
(1.28)

This is a completely general equation, applying even to the case of nonrandom mating.
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For the special case of random mating, αi and αj are uncorrelated, and

σ2
G = σ2

A + σ2
D (1.29)

Comparing this with equation 1.23, we find σ2
A has a very specific and useful mean-

ing. Under random mating assumption, the additive genetic variance is equivalent

to the variance of breeding values of individuals in the population. More detailed

explanations can be found in Lynch and Walsh (1998).

1.2.6 A General Least-Squares Model for Genetic Effects for Multilocus

Traits

In the previous section, the genetic variance associated with a single locus can be par-

titioned into additive and dominance components. This approach will be generalized

below to account for all of the loci contributing to the expression of a quantitative

trait, as well as to allow for variance arising from gene interaction among loci.

As shown in previous section, the dominance effect at a locus was defined to be

the deviation of the observed genotypic value from the expectation based on additive

effects. Thus, dominance is considered as a measure of nonadditivity of allelic effects

within loci. Epistasis describes the nonadditivity of effects between loci. With only

two loci, there are actually three ways in which epistatic interactions can arise be-

tween loci: additive × additive (αα), additive × dominance (αδ), and dominance ×
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dominance (δδ). With three loci, there are four additional types of epistasis, (ααα),

(ααδ), (αδδ), and (δδδ). For example, consider an individual with allele Ai and Aj

at one locus and Bk and Bl at another. The genotypic value Gijkl, can be expressed

as the sum of the effects within loci and a deviation ε due to interaction between loci,

Gijkl = µG + (αi + αj + δij) + (αk + αl + δkl) + εijkl (1.30)

where εijkl contains all the epistatic interactions.

Lynch and Walsh (1998) provided a detailed statistical procedure to define epistatic

effects in two loci linear model and the a general least-squares model for genetic effects.

It can be considered as a simple extension of the one-locus linear model introduced

previously. With the one-locus model, the additive effect of an allele was defined as

the deviation of the phenotype for members of the population with the allele from the

population mean phenotype. This definition remains the same with the addition of

loci. Letting Gi... represent the conditional mean phenotype of individuals with allele

i at the first locus without regard to the other allele at the locus or to the genotype

at the second locus, then

αi = Gi... − µG (1.31)

The other three additive effects (αj, αk, αl) can be defined in the same way. Let Gij..

represent the conditional mean phenotype of individuals with alleles i and j at the

first locus without regard to genotypic state at the second locus. When the mean
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genotypic value and the additive effects have been removed, the dominance effect is

left as the only unexplained portion of the conditional mean at the locus.

δij = Gij.. − µG − αi − αj (1.32)

δkl = G..kl − µG − αk − αl (1.33)

Because within each locus the mean value of the additive effects is equal to zero, the

mean dominance deviation is equal to zero as well.

The definition of epistatic effects can be expressed in a similar fashion. Letting

Gi.k. be the mean of phenotype of individuals with gene i at locus 1 and k at locus 2,

without regard to the other two genes, the ik’th additive × additive effect is

(αα)ik = Gi.k. − µG − αi − αk (1.34)

It is the deviation of the conditional mean Gi.k. from the expectation based on the

population mean µG and the additive effects αi and αk. An additive × dominance

effect measures the interaction between an allele at one locus with a particular geno-

type at another locus. It is defined as the deviation of the conditional mean Gi.kl from

the expectation based on all lower-order effects, which include three additive effects,

one dominance effect, and two additive × additive effects involving the constituent

genes,
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(αδ)ikl = Gi.kl − µG − αi − αk − αl − δkl − (αα)ik − (αα)il (1.35)

Last, for a dominance × dominance effect,

(δδ)ijkl = Gijkl − µG − αi − αj − αk − αl − δij − δkl

− (αα)ik − (αα)il − (αα)jk − (αα)jl

− (αδ)ikl − (αδ)jkl − (αδ)ijk − (αδ)ijl (1.36)

The total genotypic value has been partitioned into a series of effects. First,

additive effects of alleles which is the lower-order effects, account for as much of

the variance in genotypic values as possible. Then, higher-order effects are defined

progressively, each time accounting for as much of the residual variation as possible.

In the two-locus case, (δδ)ijkl represents the final part of variation not accounted by

additive, dominance, additive × additive, or additive × dominance effects. Therefore,

the genotypic value can be expressed as

Gijkl.... = µG + [αi + αj + αk + αl] + [δij + δkl]

+ [(αα)ik + (αα)il + (αα)jk + (αα)jl]

+ [(αδ)ikl + (αδ)jkl + (αδ)ijk + (αδ)ijl] + (δδ)ijkl + ... (1.37)
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The open-ended equation only implies that there are more terms when more than two

loci are involved in the expression of a trait. The parameters in this model depend

upon the genotype frequencies in the population and they change as allele frequencies

change. However, the mean value of each effect is always equal to zero.

Provided that mating is random and segregation of loci is independent, there is no

statistical relationship between the genes found within or among loci. Therefore, the

total genetic variance is simply the sum of the variances of individual effects. Letting

σ2
A = σ2

αi
+ σ2

αj
+ σ2

αk
+ σ2

αl
, σ2

D = σ2
δij

+ σ2
δkl

, σ2
AA = σ2

(αα)ik
+ σ2

(αα)il
+ σ2

(αα)jk
+ σ2

(αα)jl
,

and so on, the total genetic variance can be expressed as

σ2
G = σ2

A + σ2
D + σ2

AA + σ2
AD + σ2

DD + ... (1.38)

This partitioning of the genetic variance into a series of components was developed

independently, but with very different approaches, by both Cockerham (1954) and

Kempthorne (1954). Because of the hierarchical way in which genetic effects are

defined, the magnitude of genetic variance components might be expected to become

progressively smaller at higher stages in the hierarchy.

1.3 Genetic Covariance Between Relatives

The phenotypic variance of a trait can theoretically be partitioned into a number of

genetic and environmental components. Because various genetic and environmental

sources of variance contribute differentially to the resemblance between different types
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of relatives(Fisher (1919); Wright (1922)), the significant practical issue of how these

components can be estimated remains.

Assuming no genotype × environmental interaction, let Yi = Gi + Ei + ei and

Yj = Gj +Ej +ej be the phenotypic values of two members of particular relationship,

such as parent and offspring or half sibs. G, E and e denote genotypic values, en-

vironmental effects and residual deviations, respectively. The phenotypic covariance

between relatives i and j can be expressed as

σY (i, j) = σ[(Gi + Ei + ei), (Gj + Ej + ej)]

= σG(i, j) + σG,E(i, j) + σG,E(j, i) + σE(i, j) (1.39)

When we ignore the issue of genotype-environmental covariance, the equation 1.39 is

simplified to

σY (i, j) = σG(i, j) + σE(i, j) (1.40)

The phenotypic covariance between relatives has been partitioned into genetic co-

variance and covariance between environmental effects. The genetic covariance is a

natural consequence of relatives inheriting copies of the same genes. Similar to genetic

variance, the genetic covariance between relatives can be partitioned into components

attributable to additive, dominance, and various epistatic effects. Each term consists

of one of the familiar components of genetic variance weighted by a coefficient that
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describes the joint distribution of genetic effects in pairs of relatives.

1.3.1 Measures of Relatedness

Many relatedness measures have found their way into the population-genetic and so-

ciobiological literature (Wright (1922); Cotterman (1940); Grafen (1985)). All mea-

sures are based upon the concept of identity by descent (IBD). Genes that are identical

by descent are direct descendents of a specific gene carried in some ancestral individ-

ual.

Lange (2003) provides an easy to follow introduction to the concept of identity by

descent, and the derivation of a number of associated probabilities.

Consider a single locus in two diploid individuals. There are 15 possible configu-

rations of identity by descent due to the fact that identity may exist within as well

as between individuals (Gillois (1965)). If we ignore the distinction between mater-

nally and paternally derived genes, the 15 possible configurations reduce to 9 identity

states. Each of these 9 condensed identity states has an associated probability. The

collection of 9 probabilities ∆1 to ∆9 associated with the 9 identity states were re-

ferred to in Jacquard (1974) as condensed coefficients of identity. These coefficients

provide a complete description of the probability distribution of identity by descent
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at a single locus in a pair of individuals. The values of the condensed identity coeffi-

cients depend on the relationship between individuals.

Suppose that the single genes are drawn randomly from individuals x and y.

The probability that these two genes are identical by descent is called coefficient of

coancestry, Θxy. It is also referred to as the coefficient of consanguinity, coefficient of

kinship, or coefficient de parenteé. In terms of the condensed coefficient of identity,

Θxy = ∆1 +
1

2
(∆3 + ∆5 + ∆7) +

1

4
∆8 (1.41)

This formula weights each condensed identity coefficient by the conditional probabil-

ity that a randomly draw gene from x is identical by descent with a randomly selected

gene from y at the same locus (Lange (2003)). For example, ∆8 is the probability

that one copy of the gene in individual x is IBD to one copy of the gene in individual

y. There are 4 possible ways that this can happen: maternal gene in x is IBD with

maternal gene in y; maternal gene in x is IBD with paternal gene in y; paternal gene

in x is IBD with maternal gene in y and paternal gene in x is IBD with paternal gene

in y. Given this condensed state, if single genes are drawn at random from the two

individuals, the probability of drawing the pair which is IBD is 1
4
.

Another useful measure of relatedness is the probability that single-locus geno-

types (both genes) of two individuals are identical by descent. The formulation of this

measure was called the coefficient of fraternity by Trustrum and Williamson (1961).
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It can be denoted as ∆xy.

1.3.2 The Genetic Covariance Between Relatives

Karigl (1981) provides a general recursive procedure for calculating all 9 condensed

coefficients of identity for arbitrary pedigrees. The identity coefficients for several

common relationship as summarized in the Table 1.2 (Lynch and Walsh (1998)). Un-

der assumption of no inbreeding, ∆1 to ∆6 are all equal to zero. ∆7 is the probability

that x and y have two genes IBD, ∆8 is the probability that x and y have single genes

which are IBD, and ∆9 is the probability that x and y have no genes IBD at the locus

of interest. It is fairly straightforward to understand these coefficients. For example,

if an offspring arises from the mating of two unrelated parents who share no genes

IBD, then a parent and offspring are guaranteed to have 1 and only 1 copy IBD, the

copy of the gene which was passed from the parent to the offspring. Hence, ∆7 = 0,

∆8 = 1 and Θxy = 1
4
.

Before we give the expression of genetic covariance between relatives, we have

to make some assumptions: (1) all the genetic variation is attributable to diploid,

autosomal loci; (2) mating is random; (3) all loci are unlinked and in gametic phase

equilibrium; (4) there is no genetic variation from maternal effects; (5) genotype-

environment covariance and interaction are unimportant; (6) there is no sexual di-

morphism; (7) selection is not operating on the population. We will assume all of
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Table 1.2: Identity coefficients for common relationships.

Relationship ∆7 ∆8 ∆9 Θxy ∆xy

Parent-offspring 0 1 0 1/4 0
Grandparent-grandchild 0 1/2 1/2 1/8 0
Great grandparent-great grandchild 0 1/4 3/4 1/16 0
Half sibs 0 1/2 1/2 1/8 0
Full sibs, dizygotic twins 1/4 1/2 1/4 1/4 1/4
Uncle(aunt)-nephew(niece) 0 1/2 1/2 1/8 0
First cousins 0 1/4 3/4 1/16 0
Double first cousins 1/16 6/16 9/16 1/8 1/16
Second cousins 0 1/16 15/16 1/64 0
Monozygotic twins (clonemates) 1 0 0 1/2 1

these conditions hold. Associated definitions - eg. gametic phase equilibrium, sexual

dimorphism, etc can be found in Lynch and Walsh (1998).

Consider a collection of pairs of individuals all of the same type of relationship,

and let x and y represent the members of a random pair. From equation 1.38, we can

write the genotypic values of the two individuals as follow:

Gijkl....(x) = µG + [αxi + αxj + αxk + αxl + ...] + [δxij + δxkl + ...]

+ [(αα)xik + (αα)xil + (αα)xjk + (αα)xjl + ...]

+ [(αδ)xikl + (αδ)xjkl + (αδ)xijk + (αδ)xijl + ...] + (δδ)xijkl + ... (1.42)
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Gijkl....(y) = µG + [αyi + αyj + αyk + αyl + ...] + [δyij + δykl + ...]

+ [(αα)yik + (αα)yil + (αα)yjk + (αα)yjl + ...]

+ [(αδ)yikl + (αδ)yjkl + (αδ)yijk + (αδ)yijl + ...] + (δδ)yijkl + ... (1.43)

where i, j and k, l represent genes at the first and second loci. Fisher (1919) showed

that different types of effects are uncorrelated within individuals and between in-

dividuals when all of the preceding assumptions are met. Therefore, the genetic

covariance between relatives can be expanded into a series of terms, each describing

the covariance between the same kinds of effects in two individuals:

σG(x, y) = σA(x, y) + σD(x, y) + σAA(x, y) + σAD(x, y) + σDD(x, y) + ... (1.44)

When x = y, equation 1.45 reduces to equation 1.39, the usual expression for the

genetic variance.

Following Lynch and Walsh (1998), each term in equation 1.45 can be expressed in

terms of variance components and coefficients of relationship. The covariance between

relatives can be defined as
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σG(x, y) =
∑

(2Θxy)
n∆m

xyσ
2
AnDm

= 2Θxyσ
2
A + ∆xyσ

2
D + (2Θxy)

2σ2
AA

+ 2Θxy∆xyσ
2
AD + ∆2

xyσ
2
DD + (2Θxy)

3σ2
AAA + ... (1.45)

where n and m represent the number of additive effects and the number of domi-

nance effects in a type of gene action. Taking the values of the coefficients Θxy and

∆xy from Table 1.2, explicit expressions for the genetic covariances between com-

mon types of relatives can be calculated, and are given in Table 1.3. Note that,

these results are only expanded to include two-locus epistatsis. To obtain the covari-

ance expression for a particular type of relationship, multiply each variance com-

ponent by its coefficient and sum. For example, the genetic covariance between

parent-offspring is (σ2
A/2) + (σ2

AA/4). The genetic covariance between full sibs is

(σ2
A/2) + (σ2

D/4) + (σ2
AA/4) + (σ2

AD/8) + (σ2
DD/16), but if we assume no dominance

and epistasic effects, then the genetic covariance between full sibs is half the additive

genetic variance. We will use this result when we estimate heritability after we find

the estimation of interclass correlation in section 2.2.

Although these expressions are only expanded to include two-locus epistasis, some

features are immediately apparent. First of all, gene action involving dominance only

rarely contributes to the covariance between relatives. Second, the coefficient for σ2
AA
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Table 1.3: Coefficients for the components of genetic covariance between different
types of relatives under the assumptions of random mating, free recombination, and
gametic phase equilibrium.

Relationship σ2
A σ2

D σ2
AA σ2

AD σ2
DD

Parent-offspring 1/2 0 1/4 0 0
Grandparent-grandchild 1/4 0 1/16 0 0
Great grandparent-great grandchild 1/8 0 1/64 0 0
Half sibs 1/4 0 1/16 0 0
Full sibs, dizygotic twins 1/2 1/4 1/4 1/8 1/16
Uncle(aunt)-nephew(niece) 1/4 0 1/16 0 0
First cousins 1/8 0 1/64 0 0
Double first cousins 1/4 1/16 1/16 1/64 1/256
Second cousins 1/32 0 1/1024 0 0
Monozygotic twins (clonemates) 1 1 1 1 1

declines more rapidly with the distance of the relationship than does that for σ2
A.

The expressions in Table 1.3 provides a method of the estimation of the different

variance components from linear combinations of different observed genetic covari-

ances between relatives. For example, 2× [(4× half-sib covariance)−(parent-offspring

covariance)] has an expected value of σ2
A.

1.4 Hybrid Data Set

The thesis uses a hybrid data set, with genetic marker value and phenotypic obser-

vational value for each individual selected from two separate data sets.

Microsatellite markers are both rich and polymorphic in the several fish species

(Goff et al. (1992); Colbourne et al. (1996)). Because of the variability of these loci

and ease of examination using the polymerase chain reaction (PCR), microsatellites
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are popular as genetic markers for a range of applications in fisheries and aquaculture,

such as population differentiation (McConnell et al. (1995)), parentage determination

in mixed family groups (Herbinger et al. (1995)), and family relatedness in natural

populations (Herbinger et al. (1997)). The genetic marker data (microsatellites) that

we used in the thesis comes from a study of Atlantic salmon by O’reilly et al. (1998).

Four microsatellites from Atlantic salmon were isolated in that study, including three

teranucleotide loci and an additional dinucleotide locus. All four loci can be ampli-

fied in a single reaction and exhibit nonoverlapping allele size distribution, permit-

ting identification using standard autoradiographic detection methods. The combined

probability of match value for all four loci was approximately 3.4 × 10−5 (O’Reilly

et al. (1996)). Therefore, given the accuracy of scoring alleles and combined informa-

tion content, this microsatellite system is ideal for familial identification. This is a

large data set consisting of 759 Atlantic salmon from 12 full-sib families, with family

size varying from 8 to 140. Each offspring was typed at four microsatellite loci, with

11, 14, 10, and 8 alleles per locus. The empirical allele frequencies of the offspring

were used as estimates of the allele frequencies, which are required to calculate the

likelihood, as will be seen in the later chapter.

The phenotypic trait observations were chosen from a study on growth of abalone

(Brokordt et al. (2015)). Sixty full-sib families were produced using Haliotis refescens

abalone broodstock randomly obtained from a base population of 600 adults, which
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were provided by three different abalone breeding companies (200 abalone per com-

pany). The mature broodstock were induced to spawn separately and crossing was

conducted following a paternal half-sib nested design (Morse et al. (1977)). Seawater

containing gametes of one male was used to fertilize oocytes from three females ran-

domly selected from the base population, for a total of 20 males and 60 females. The

entire process of production of families took 3 months approximately. After settling,

each full-sib family was cultured separately in 200-L tanks with continuous water flow

and constant aeration for 14 months. Individuals from different families were mixed

and transferred to baskets placed in a 10000-L raceway-type tank after they reached

a size of ≥ 20 mm shell length (∼ 14 months). After that, abalone were maintained

during 3 years with continuous water flow, with constant aeration, at ambient temper-

ature between 13 � and 20 � during the year. From 27 to 51 months of age, growth

traits (the shell length, width and the total and flesh masses) were measured every 4

months in 15-30 individuals per full-sib family for the 60 families. We used the total

mass (shell plus soft tissues) as the phenotypic measurements in our hybrid data set,

for ease of implementation. Since the flesh mass (only soft tissues) and foot protein

were measured in the original study as well, and these measures required sacrifice

the animals, there were some missing values after first two measurement time points.

The original data set also contained a number of other variables (position, module,

tank, and so on) which may be included in the modeling as fixed effect covariate

components.
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The total of 318 abalones, which were from 12 full-sib families were selected from

the original data set, 10 families with size of 30, one family with 10 and the last

family with size of 8. The same numbers of salmons were picked up from the Atlantic

salmon data set. They also came from 12 full-sib families with the same arrangements

of family size as in the abalone data set.

The two separate data sets were merged together, such that each individual has

measurements on the phenotypic trait observation plus the genetic marker data at

four loci. Given the different sources of the data, it is reasonable to assume that

genetic information is statistically independent of phenotypic values given the pedi-

gree structure. More discussion about independence will be covered in chapter 4.

Furthermore, we have assumed that individuals in distinct full sib families have no

common ancestors.

Some preliminary study of the phenotypic observations has been carried out. Sum-

mary statistics for each family are listed in the Table 1.4. The boxplots of weights in

figures 1.1 through 1.4 clearly indicate variation among families across all four time

points. The differences in distribution between some families are quite large and they

are easily identified visually, for example, family 62 and 25. However, the weight

distributions of some families are very close, which is likely to make it difficult to

distinguish those families successfully, based on phenotype alone.
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Figure 1.1: Weight values at the first measurement time point

Figure 1.2: Weight values at the second measurement time point
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Figure 1.3: Weight values at the third measurement time point

Figure 1.4: Weight values at the fourth measurement time point
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Figure 1.5: The average weight value for each family at four time points

Figure 1.5 shows the average weight in each family at the four measurements, and

shows that differences persist over time. For example family 62 (Series2) consistently

has the lowest average weight, while family 25 (Series8) has highest or second highest

average weight throughout. The ability to detect differences will be largely dependent

on the variation of individual measurements about the average curve. In principle one

would like to fit a growth curve model to the longitudinal growth measurements, for

example a four or five parameter logistic function. However, in the thesis we restrict

attention to fitting scalar models at a single time point, or multivariate models for

multiple measurements, albeit in the difficult situation of unknown pedigree structure.

In general, the plots and summary statistics give us some confidence that the

phenotypic observations should be included in the model of pedigree structure and

heritability estimation.
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1.5 Outline

This thesis develops a hybrid Markov chain Monto Carlo (MCMC) sampling meth-

ods to obtain estimations of heritability using phenotypic observations and genetic

marker data simultaneously when the pedigree is unknown. That methodology is

then applied to the hybrid data that introduced in section 1.4.

The thesis is organized as follows. In chapter 2 we review three commonly used

method to estimate heritability with the knowledge of relatedness or full pedigree

structure. Parent-offspring regression has its natural reason to be used since the de-

sire to estimate heritability comes from a specific interest in the resemblance between

parent and offspring phenotypes. The statistical inferences are well developed be-

cause the compuatations are based on least-squares regression. Sib analysis gives us

an alternative when the information from both parent and offspring are not avail-

able. The family struture permits one to partition the total phenotypic variance into

within- and among-family components, both of which can be interpreted in terms of

covariance between relatives. One way random effects analysis of variance (ANOVA)

is designed to deal with this kind of data. Fitting a linear mixed model with restricted

maximum likelihood method offers more power to deal with unbalanced design and

complex but known pedigree structure.

In chapter 3, we present some possible ways to estimate heritability when pedi-

gree is completely unknown. In case that only phenotypic observations are availalbe,
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we could use expectation-maximization (EM) algorithm to fit a Gaussian mixture

model. We define a heritability like object based on the variance decompositon. As

we expect, the estimation results are disappointing since we deal with an extremely

challenging situation. With the development of genetic markers, a two-step method

has become popular to estimate the variance components of a quantitative trait. The

pedigree can be reconstructed based on marker information, and then linear mixed

model will provide the estimation of variance components in step 2. With sufficient

marker data, this method guarantees an accurate result since the pedigree structure

can be accurately reconstructed.

The proposed method is presented in chapter 4. We begin the chapter by defining

the joint posterior distribution of pedigree and variance components parameters. We

then introduce a moving algorithm and possible prior distributions of model parme-

ters. In contrast to the two-step method, we believe our method provides a more

accurate estimate of heritability when marker information is limited. We also extend

our model to incorporate observations at multiple time points. However, when using

the first two time points, we don’t obtain a significant improvement compared with

estimating heritability at each time point separately and independently. Chapter 5

contains a summary of the thesis and some further suggestions.



Chapter 2

Estimation of Heritability with Known Pedigree Structure

There are many methods to estimate the components of variance for quantitative

traits. In comparison among the alternatives, two issues should be carefully consid-

ered. First, attention has to be given to the kinds of relatives that should be analyzed.

Certain kinds of relationships are observed more easily in some species than in oth-

ers, and some types of phenotypic covariances between relatives are more likely to

approximate desired quantities than others. Second, before performing the actual

analysis, consideration should be given to the experimental design.

In this chapter, three commonly used methods for estimating narrow-sense her-

itabilities are introduced, the parent-offspring regression method, sib analysis with

the analysis of variance method, and the linear mixed model with maximum like-

lihood/restricted maximum likelihood estimation. All of these techniques have the

requirement of pairs of individuals of known relatedness, or full pedigree structure.

At the end of this chapter, we show estimates of heritability for the abalone data from

fitting a linear mixed model using restricted maximum likelihood (REML) method.

These results can be used as the benchmark to evaluate the performance of our pro-

posed model in chapter 4.

41
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2.1 Parent-Offspring Regression

In some sense, the simplest and most commonly used design for estimating heritabil-

ity is the regression of offspring phenotypes on those of their parents because the

desire to obtain a heritability estimate comes from a specific interest in the resem-

blance between parent and offspring phenotypes. The regression approach has many

advantages. First, the association of parent and offspring is the most easily identified

relationship for many species. Second, the statistical inferences are well developed

since the computations are based on least-squares regression. Third, the genetic co-

variance of parent-offspring relationship is not influenced by dominance and epistatic

effects. Fourth, parent-offspring regression is the only simple method for heritabil-

ity estimation that is not biased by the selection of parents (Lynch and Walsh (1998)).

2.1.1 Estimation Procedures with Balanced Data

For ease of presentation, we will consider the rather exceptional situation when all

families have the same number of offspring, and to simplify discussion further, we

will start with the assumption that only a single offspring and a single parent are

observed in each family. The appropriate linear model for such a design is

Yoi = α + βopYpi + ei (2.1)
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where Yoi and Ypi represent the offspring and parent phenotypes for the ith family,

α is the intercept, βop is the regression coefficient, and ei is the residual deviation

from the regression. For this simple linear regression model, in statistical terms, the

least-squares regression coefficient, bop = Cov(Yo, Yp)/Var(Yp), provides an estimate

of βop. If there are no environmental causes of resemblance between parents and

offspring, then according to the genetic covariance of (Parent-offspring) relatives that

was shown in chapter 1, the expected regression slope bop is

E(bop) =
σ(Yo, Yp)

σ2(Yp)
' (σ2

A/2) + (σ2
AA/4) + (σ2

AAA/8) + ...

σ2
Y

(2.2)

For a male parent, it is generally expected that the covariance between parent and

offspring environmental values is zero. This is not necessarily the case for a female

parent, for whom environmental effects may be shared with the offspring through

the non-genetic content of the egg. Thus, single parent-offspring regression usually

involves the father, although if the regression slopes for father-offspring and mother-

offspring are the same, then shared mother-offspring environmental values can be

ruled out. Therefore, under the stated assumptions, a simple (possibly upperwardly

biased) estimate of h2 = σ2
A/σ

2
Y is twice the (single) parent-offspring regression, 2bop.

The bias is upward as all terms in equation 2.2 are positive.

When both parents can be measured, we can regress offspring phenotypes on the

average phenotypes of their parents (midparent value Ymp) to possibly achieve greater

precision. The linear model is slightly changed to
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Yoi = α + βop̄

(Ymi + Yfi
2

)
+ ei (2.3)

where Ymi and Yfi represent the phenotypes of mother and father for the ith family.

The least-squares slope of the midparent-offspring regression, bop̄, is a direct estimate

of the heritability h2. To see this, let us assume that the phenotypic variance is the

same in both sexes and in both generations. The resemblance between relatives is

also be assumed independent of their sex. Then,

bop̄ =
Cov[Yo, (Ym + Yf )/2]

Var[(Ym + Yf )/2]

=
[Cov(Yo, Ym) + Cov(Yo, Yf )]/2

[Var(Y ) + Var(Y )]/4

=
2Cov(Yo, Yp)

Var(Y )
= 2bop (2.4)

In order to get this result, we have assumed that there is no assortive mating, mean-

ing that individuals with similar phenotypes do not mate preferentially, whereby

Cov(Ym, Yf ) = 0. Therefore, we see that bop̄ ' σ2
A/σ

2
Y , ignoring terms involving epis-

tasis.

What happens when multiple (n) offspring are measured in each family. The ex-

pected phenotypic covariance of a parent i and the average of its j = 1, ..., n offspring

may be written σ[(
∑n

j=1 Yoij/n), Yp]. Since all n of the covariance terms contained in

this expression have the same expected value, this reduces to nσ(Yo, Yp)/n = σ(Yo, Yp),
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which is the same as the expectation for single offspring. Thus, when family sizes

are the same, the interpretation of a parent-offspring is the same whether individual

offspring data or the progeny means are used in the analysis.

2.1.2 Precision of Estimates

In order to carry out inferences, it is necessary to ascertain the precision of heri-

tability estimates. This is relatively easy to do with parent-offspring analysis. Under

the assumption that x and y are bivariate normally distributed, the variance of the

estimator is approximately

σ2(b) ' σ2(y)(1− ρ2)

nσ2(x)
(2.5)

where ρ = σ(x, y)/[σ(x)σ(y)] is the correlation coefficient. A detailed derivation using

the Delta method is provided in Appendix A. This result is first attributed to Pearson

(1895), although there are very few details provided in that very short paper.

Provided the data have been measured or transformed so that the joint distribution

of parent and offspring phenotypes is bivariate normal, the sampling variance of single

parent-offspring regression estimate of heritability is approximately

Var(bop) '
(1− r2

op)Var(Yo)

NVar(Yp)
(2.6)

where N is the number of parent-offspring pairs and rop represents the correlation

between single offspring and single parents. This expression reduced to (1 − r2)/N
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when the phenotypic variances in the two generations are equal. This result also

applies to regressions involving midparents if Var(Ȳp) = Var(Yp)/2 is substituted for

Var(Yp) and rop̄ for rop.

Since the joint distribution of offspring and parent phenotypes is approximately

bivariate normal, the sampling distribution of a regression coefficient will be approx-

imately normal, and the usual asymptotic confidence interval b ± zα/2 × SE(b) will

be appropriate for sufficiently large N .

For a regression involving single parent, the confidence interval for h2 is twice that

of the interval for the regression coefficient. For a midparent-offspring regression, the

confidence interval for the slope is also the confidence interval for h2.

2.2 Sib Analysis using the Analysis of Variance Method

When we are unable to collect the information from both parent and offspring, the

analysis of contemporary relatives, in particular siblings, provides an alternative to

parent-offspring regression in estimating quantitative-genetic parameters. There are

three types of sib analyses: those employing half-sib families, those employing full-sib

families, and those combining both (nested full-sib, half sib families). The family

structure permits one to partition the total phenotypic variance into within- and

among-family components, both of which can be interpreted in terms of covariance
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between relatives. We will review the case of full-sib families, where individuals in dif-

ferent families are unrelated. One way random effects analysis of variance (ANOVA)

is designed to deal with this kind of data.

2.2.1 Full-Sib Analysis

We focus on the simplest sib design which is to examine N full-sib families, each with

n offspring and show how observed within- and among-family components of variance

can be related to the underlying components of variance discussed before (additive

effect, dominance effect, ...). We assume throughout that parents have been sampled

randomly from the population and randomly mated, so that the simple interpreta-

tions of covariances between sibs given in the previous section on genetic covariances

can be used here.

Under random mating and free recombination, two times the genetic covariance

between full sibs is
[
σ2
A + (σ2

D/2) + (σ2
AA/2) + (σ2

AD/4) + (σ2
DD/8)...

]
. Thus, for the

special situation in which dominance and epistasis are of minor importance, and com-

mon environmental effects don’t contribute to the phenotypic resemblance of full sibs,

2σ(FS) provides an estimate of σ2
A, where σ(FS) denotes the expected phenotypic

covariance between a pair of full sibs.

The traditional approach to analyzing such data is the one-way random effects
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model

Yij = µ+ fi + eij (2.7)

where Yij is the phenotype of the jth offspring of the ith family, fi is the effect

of i’th family, and the residual error eij incoroporates all sources of variance from

segregation, dominance, and environment. Stated another way, eij is the deviation of

the phenotype of the ij’th individual from the expected value for the ith family. The

usual assumptions are that the family effects are i.i.d. N(0, σ2
f ), independent of the

eij, which are i.i.d. N(0, σ2
e).

Under these assumptions, the phenotypic variance is partitioned into the between

family variance and within family variance components.

σ2
Y = σ2

f + σ2
e (2.8)

A second consequence of the model is that the phenotypic covariance between

members of the same family equals to the between family variance. Noting that full

sibs share family effects but have independent residual deviations, it follows that
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σ(FS) = σ(Yij, Yik)

= σ[(µ+ fi + eij), (µ+ fi + eik)]

= σ(fi, fj) + σ(fi, eik) + σ(eij, fi) + σ(eij, eik)

= σ2
f (2.9)

Thus, the covariance between full sibs equals the variance among families effect. This

is a very useful identity because ANOVA provides a simple way to estimate σ2
f . Hence,

for the ideal case in which a character has no dominance and epistatic variance, the

additive variance can be estimated as twice the among-family variance, i.e., σ̂2
A = 2σ̂2

f .

In the following section, we will demonstrate the practical utility of this approach

by showing how ANOVA generates estimates of the within- and among-family com-

ponents of variance from phenotypic data.

2.2.2 One-Way Analysis of Variance

Consider the balanced design in which n individuals are sampled from each of N full

sib families, so that there are a total T = Nn individuals in the study. The total sum

of squares is partitioned into an among- and within-family component in the usual

fashion, as
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SST = n

N∑
i=1

(
Ȳi − ¯̄Y

)2
+

N∑
i=1

n∑
j=1

(
Yij − Ȳi

)2

= SSf + SSe (2.10)

where ¯̄Y denotes the grand mean, and Ȳi represents the observed family mean,

Ȳi =
∑n

j=1 Yij/n. The within-family sum of squares (SSe) is simply the sum of the

squared deviations of individual measures from their observed family means, while

the among-family sum of squares (SSf ) is the sum of the squared deviations of ob-

served family means from the grand mean.

Assuming that the parents are a random sample of the population at large, the

sum of squares can be used to obtain unbiased estimates of the within and among-

family components of variance in the following way. We note first that the expected

within-family sum of squares is

E(SSe) =
N∑
i=1

E
[ n∑
j=1

(Yij − Ȳi)2
]

= N(n− 1)σ2
e (2.11)

This result follows from the fact that
∑n

j=1(Yij− Ȳi)2/(n− 1) is an unbiased estimate

of the variance among sibs in the ith family and from our assumption that the vari-

ance within each family is equal to σ2
e .
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For the among-family sum of squares, similar reasoning leads to

E(SSf ) = nE
[ N∑
i=1

(Ȳi − ¯̄Y )2
]

= n(N − 1)σ2(Ȳi) (2.12)

where σ2(Ȳi) is the expected variance of the observed family means, here (with a

balanced design) assumed to be the same for all families. The variance of observed

family means is a function of the variance of the true family means, (µ+ fi), as well

as of their sampling error, ēi = Ȳi − (µ+ fi). Thus, assuming that the measurement

error is independent of the family mean, we get

σ2(Ȳi) = σ2(µ+ fi) + σ2(ēi) (2.13)

The first term is the among-family variance since µ is constant. The second is the

expected sampling variance of the mean, σ2
e/n, leading to the final expression for

E(SSf ) as

E(SSf ) = (N − 1)(σ2
e + nσ2

f ) (2.14)

Finally, the variance components can be expressed in terms of the expected sums of

squares,

σ2
f =

1

n

[E(SSf )

N − 1
− E(SSe)

N(n− 1)

]
(2.15)

σ2
e =

E(SSe)

N(n− 1)
(2.16)
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Writing the mean squares as the sums of squares divided by the corresponding

degrees of freedom, MSf = SSf/(N−1) and MSe = SSe/(N(n−1)), and substituting

the observed mean squares for their expectations in equations 2.15 and 2.16, leads to

the following unbiased method of moment estimators of σ2
f , σ

2
e and σ2

Y ,

σ̂2
f =

MSf −MSe
n

(2.17)

σ̂2
e = MSe (2.18)

σ̂2
Y = σ̂2

f + σ̂2
e (2.19)

The calculations are organized into the usual one-way ANOVA table (Table 2.1),

which also includes the expected mean squares. This general procedure of estimating

variance components from observed mean squares is an example of the method of

moments, as the unknown variances can be expressed in terms of observable moments

Table 2.1: Summary of a one-way ANOVA involving N independent families, the
ith of which contains ni individuals. The total sample size is T =

∑N
i=1 ni, and

n0 = [T − (
∑
n2
i /T )]/(N − 1), which reduces to n with equal family sizes.

Factor df SS MS E(MS)

Among-families N − 1 SSf =
∑N

i=1 ni(Ȳi − ¯̄Y )2 SSf/(N − 1) σ2
e + n0σ

2
f

within-families T −N SSe =
∑N

i=1

∑ni

j=1(Yij − Ȳi)2 SSe/(T −N) σ2
e

Total T − 1 SST =
∑N

i=1

∑ni

j=1(Yij − ¯̄Y )2 SST/(T − 1) σ2
Y
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The quantity

ICC =
Var(f)

Var(Y )
(2.20)

is the intraclass correlation (Fisher (1919); Fisher et al. (1934)). It provides an es-

timate of the fraction of the phenotypic variance attributable to differences among

families. Recalling from above that σ2
f = σ(FS) ' σ2

A/2, the full-sib ANOVA esti-

mator of the heritability is

ĥ2 ' 2ICC (2.21)

This expression again assumes that contributions from epistatic genetic variance are

small and that there is no dominance variance.

A difficulty with method of moments based estimates of variance components is

that the estimate of σ2
f can be negative due to the sampling error. In such cases the

estimates are typically not reported, or the model is deemed to be inappropriate.

When we assume that there are no dominance effects and no common environ-

mental effects, the analysis of variance for full-sib families provides an estimate of the

heritability, which is equal to twice the interclass correlation coefficient. However,

since the significance of the dominance and environmental components of variance

are generally unknown, it is best to avoid the exclusive use of full sibs to estimate
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heritability. The analysis of variance for half sibs also can be used to estimate heri-

tability in the same fashion as for full-sibs. The common environmental effects (ma-

ternal effects) can be eliminated by using a paternal half-sib mathing design. Analysis

of variance for a nested full-sib half-sib mating design is more robust method which

provides information on the relative significance of the components of variance asso-

ciated with dominance and common environmental effects. The detailed explanation

can be found in Lynch and Walsh (1998).

2.3 Linear Mixed Model with Restricted Maximum Likelihood Method

ANOVA estimators estimate variance components by equating observed mean squares

to expressions describing their expected values, these being functions of the variance

components. ANOVA provides the unbiased estimators for the variance components

regardless of whether the data are normally distributed, but it has limitations. Firstly,

the variety of relatives that could be observed can often not be analyzed jointly with

ANOVA. Secondly, a balanced sample size is generally required in the process of

estimation using ANOVA. While ANOVA sums of squares have been proposed to ac-

count for unbalanced data (Searle et al. (2009)), their sampling properties are poorly

understood.
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2.3.1 Maximum Likelihood and Restricted Maximum Likelihood

Estimates

Maximum likelihood (ML) and restricted maximum likelihood (REML) estimators

are ideal for the unbalanced designs that arise in quantitative genetics, since they

don’t need any special demands on design or balance of data. ML/REML methods

provide a powerful approach to estimate variance components in populations with

complex but known pedigrees.

Consider a column vector y containing the phenotypic observations for a trait

measured in n individuals. We assume that these observations are described ade-

quately by a linear model with a p× 1 vector of fixed effects (β) and a q× 1 vector of

random effects (u). The elements of the vector u of random effects can be considered

as genetic effects. In the matrix form,

y = Xβ + Zu + e (2.22)

where X and Z are respectively n timesp and n× q incidence matrices, and e is the

n × 1 column vector of residual deviations assumed to be distributed independently

of the random genetic effects. The distributions of the random effects u and e are al-

most always assumed to be independent multivariate normal with mean vectors 0 and

diagonal covariance matrices. The maximum likelihood method estimates parameters

by maximizing the likelihood of the observed data. All the fixed effects are assumed

to be known without error in the usual maximum likelihood approach, although this
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is rarely true in practice. Therefore, ML estimators tend to yield biased estimates of

variance components. The estimates of the residual variance tend to be downwardly

biased because the observed deviations of individual phenotypic values from an es-

timated population mean tend to be smaller than their deviations from the true mean.

Contrary to the behaviour of ML estimators, restricted maximum likelihood (REML)

estimators maximize only the portion of the likelihood that doesn’t depend on the

fixed effects. In this sense, REML is a restricted version of ML. REML doesn’t always

eliminate all of the bias in parameter estimation, since many methods for obtaining

REML estimates can’t give negative estimates of a variance component. However,

this source of bias also happens with ML, so REML is generally thought to be the

better method for analyzing data sets with complex structure. For the completely

balanced design, REML method provides identical results to the classical ANOVA.

Foulley (1993) introduced a useful pedagogical connection between ML and REML,

beginning from a very simple application, the estimation of the mean and variance of

a set of independent observations. We use this example to show how ML and REML

procedures can be used to estimate variance components, and to illustrate that the

two estimators can differ.

The mixed model can be written as

y = 1µ+ e (2.23)
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where µ is the population mean (the only fixed effect), 1 is an n × 1 column vector

of ones (equivalent to the design matrix X), and the covariance matrix of residuals

about the mean is assumed to be R = σ2I.

Assuming the phenotypes are independent of each other and normally distributed,

the log-likelihood function of the observed data y is given by

l(µ, σ2|y) ∝ −n
2

[
ln(2π) + ln(σ2) +

1

nσ2

n∑
i=1

(yi − µ)2

]
(2.24)

The log-likelihood is proportional to the joint density of the observations given the

parameters, although the likelihood is considered as a function of the parameters

conditioned on the observed data yi, i = 1, 2, . . . , n. Maximum likelihood estimators

estimate parameters as those values which maximize the log-likelihood. Equivalently,

the ML method estimates estimate parameters as those values which maximize the

probability (the joint density) of the observed data.

Letting ȳ = 1
n

∑n
i=1 yi and V = 1

n

∑n
i=1(yi − ȳ)2, we have

n∑
i=1

(yi − µ̄)2 =
n∑
i=1

(yi − ȳ + ȳ − µ)2

=
n∑
i=1

(yi − ȳ)2 +
n∑
i=1

(ȳ − µ)2 + 2(ȳ − µ)
n∑
i=1

(yi − ȳ)

= n[V + (ȳ − µ)2] (2.25)
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Substituting this into equation 2.24, the log-likelihood can be expressed as

l(µ, σ2|y) ∝ −n
2

[
ln(2π) + ln(σ2) +

V + (ȳ − µ)2

σ2

]
(2.26)

Setting partial derivatives with respect to µ and σ2 equal to 0 gives the likelihood

equations

∂l(µ, σ2|y)

∂µ
=
n(ȳ − µ)

σ2
(2.27)

∂l(µ, σ2|y)

∂σ2
= − n

2σ2

[
1− V + (ȳ − µ)2

σ2

]
(2.28)

By setting the partial derivative equations equal to zero and solving these equa-

tions gives the MLE’s for the population mean and variance that maximize the likeli-

hood function given the observed data y. We obtain an estimator for the mean that

is completely independent of the variance,

µ̂ = ȳ (2.29)

which shows that the sample mean is the ML estimate of the parametric value. How-

ever, the solution to equation 2.28,

σ̂2 = V + (ȳ − µ)2 (2.30)

is not independent with the estimated mean, ȳ, unless the estimated mean happens
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to coincide perfectly with the true mean µ. The maximum likelihood estimator of σ2,

is obtained by assuming that the mean is estimated without error, resulting in

σ̂2 = V (2.31)

This result gives a downwardly biased estimate of the true variance σ2, the bias being

negative since the term ignored in equation 2.30 is necessarily non-negative.

REML removes this bias by accounting for the error in the estimation of µ. From

equation 2.30, the expected amount by which σ̂2 underestimates σ2 is the expected

value of (ȳ−µ)2, which is simply the sampling variance of the mean, σ2/n. Thus, an

improved estimator is

σ̂2 = V + E[(ȳ − µ)2] = V +
σ2

n
(2.32)

We don’t know exactly what this bias is because we don’t know true value of σ2

with certainty. However, the bias is estimable because we have a preliminary estimate

of σ2, the maximum likelihood estimate V . Then, starting with an initial estimate of

σ̂2(0) = V , a second improved estimate of variance is

σ̂2(1) = V +
σ̂2(0)

n
= V +

V

n

Just as this changes the estimate of the variance, it also changes the estimate of
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(ȳ − µ)2. Hence, a third estimate of σ2 would be

σ̂2(2) = V +
σ̂2(1)

n
= V +

V + (V/n)

n

This sequence suggests an iterative approach to estimate the variance σ2

σ̂2(t+ 1) = V +
σ̂2(t)

n
(2.33)

The final (fixed point) solution to this equation, σ̂2, is obtained by setting σ̂2(t+1) =

σ̂2(t), yielding

σ̂2 =
n

n− 1
V =

∑n
i=1(yi − ȳ)2

n− 1
(2.34)

which is the unbiased estimator of the variance (sample variance) that we normally

use. This fixed point solution assumes a limit, which is guaranteed by noting the

Maclauren series for 1
1−1/n

=
∑∞

k=0
1
nk .

With models containing multiple fixed effects, closed solutions are not usually

possible to obtain, particularly in complex pedigree analyses involving unbalanced

data. However, iterative procedures can still yield solutions that are asymptotically

unbiased.
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2.3.2 ML Estimates of Variance Components in Linear Mixed Model

Let’s reconsider the general linear mixed model, y = Xβ + Zu + e, and assume

that u ∼ MVN(0,G) independent of e ∼ MVN(0,R). Under this model, y is also

multivariate normal, with mean Xβ and variance-covariance matrix V = ZGZT +R.

The log-likelihood of β and V given the observed data (X,y) is

l(β,V|X,y) ∝ −1

2
ln(2π)− 1

2
ln|V| − 1

2
(y−Xβ)TV−1(y−Xβ) (2.35)

Now, we consider u = a to be the vector of additive genetic values. The variance

components that we wish to estimate are embedded with G and R. We assume that

G = σ2
AA, where A is the additive genetic relationship matrix, and R = σ2

EI.

A potential computational difficulty in carrying out maximum likelihood estima-

tion is the need to invert and find the determinant of V. However, V has a particular

patterned form and if R and G are of substantially lower dimension than V, then

the patterned structure provides a computationally efficient means of calculating the

inverse and determinant of V. This special structure will be utilized in chapter 4.

This setup can be extended to estimate additional variance components by using

more generalized model

y = Xβ +
m∑
i=1

Ziui + e (2.36)
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where the m vectors of random effects (ui) are assumed to be uncorrelated, with ui ∼

MVN(0, σ2
iBi) and Bi being a matrix of known constants. This more general model

can incorporate estimates of dominance and other nonadditive variances, maternal

environmental effects, etc. The log-likelihood is still given by equation 2.35, but now

the covariance matrix V is

V =
m∑
i=1

σ2
iZiBiZ

T
i + σ2

EI (2.37)

We start with the partial derivatives of the log-likelihood with respect to the vector

of fixed effects, β. This derivative involves only the last term of equation 2.35. Using

a general result for matrix derivatives (Morrison et al. (1976); Graham (2018)), we

get

∂[(y−Xβ)TV−1(y−Xβ)]

∂β
= −2XTV−1(y−Xβ) (2.38)

which yields

∂l(β,V|X,y)

∂β
= XTV−1(y−Xβ) (2.39)

Now we consider derivatives with respect to the variance components. We first

assume the simple case of only two unknown variances, σ2
A and σ2

E. Writing V in

terms of these two components, we have V = σ2
AZAZT + σ2

EI. Using the notation of

σ2
i to denote the variance component being estimated, we have
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∂V

∂σ2
i

= Vi =


I when σ2

i = σ2
E

ZAZT when σ2
i = σ2

A

(2.40)

Obtaining the partial derivatives with respect to the variance σ2
A and σ2

E involves use

of two general results from matrix theory (Searle and Khuri (2017)). Specifically, if

M is a square matrix whose elements are functions of a scalar variable x, then

∂ln|M|
∂x

= tr

(
M−1∂M

∂x

)
(2.41)

∂M−1

∂x
= −M−1∂M

∂x
M−1 (2.42)

where tr, the trace, denotes the sum of the diagonal elements of a square matrix.

The general partial derivative equation can be expressed as

∂l(β,V|X,y)

∂σ2
i

= −1

2
tr(V−1Vi) +

1

2
(y−Xβ̂)TV−1ViV

−1(y−Xβ̂)

+
1

2
(β̂ − β)TXTV−1ViV

−1X(β̂ − β) (2.43)

where Vi is given by equation 2.40. Equations 2.39 and 2.43 are directly analogous

to equations 2.27 and 2.28 derived before. Note that Vi is a fixed matrix of known

constants, whereas V = σ2
AZAZT + σ2

EI is a function of the variance-component

estimates. More generally, with m random effects plus a residual error, equation 2.43
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holds for each of the m+ 1 variance components with

∂V

∂σ2
i

= Vi =


I when σ2

i = σ2
E

ZiBiZ
T
i otherwise

(2.44)

The maximum likelihood (ML) estimators are obtained by setting equations 2.39

and 2.43 equal to zero and solving. Using equation 2.39, the ML estimate of the

vector of fixed effects is

β̂ = (XT V̂ −1X)−1XT V̂ −1y (2.45)

This is the best (minimum variance) linear unbiased estimator (BLUE), of β. The

ML estimators for the variance components are obtained by setting β = β̂ in equation

2.43, which makes the last term equal to zero. Rearranging, we have

tr(V̂
−1

Vi) = (y−Xβ̂)T V̂
−1

ViV̂
−1

(y−Xβ̂) (2.46)

We can simplify equation 2.46 by defining a new matrix P (Lynch and Walsh (1998))

as

P = V−1 −V−1X(XTV−1X)−1XTV−1 (2.47)

It follows that

Py = V−1y−V−1X(XTV−1X)−1XTV−1y = V−1(y−Xβ̂) (2.48)
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Using this identity, equation 2.46 can be more compactly written as

tr(V̂
−1

Vi) = yT P̂ViP̂y (2.49)

where we use P̂ to indicate that P is a function of V, it depends on the variance

components that we are trying to estimate. Even though it may not be immediately

apparent, equation 2.49 can be considered as a generalized version of equation 2.31.

In summary, the ML estimates solve the equation 2.45 (for fixed effects) and a

set of equations for variance components (equation 2.49). In general, with m random

effects plus a residual, the set of m + 1 ML equations for the variances of random

effects are

tr(V̂
−1

) = yT P̂P̂y for σ2
E (2.50)

tr(V̂
−1

ZiBiZ
T
i ) = yT P̂ZiBiZ

T
i P̂y for σ2

i , i = 1 ... m (2.51)

where P̂ uses

V̂ =
m∑
i=1

σ̂2
iZiBiZ

T
i + σ̂2

EI (2.52)

These solutions have two troublesome properties. First, the ML vector of fixed
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effects β̂ is a function of the variance-covariance matrix V̂, which contains the vari-

ance components that we wish to estimate. Second, because the solutions involve the

inverse of V̂, they are nonlinear functions of the variance components. Therefore,

there is no simple one-step solution. ML estimation of β, σ2
A and σ2

E requires an

iterative procedure.

2.3.3 Restricted Maximum Likelihood (REML)

An extensive discussion of the estimation of random effects, including restricted max-

imum likelihood, is provided by Robinson et al. (1991). REML is based on a linear

transformation of the observation vector y that removes the fixed effects from the

model. We can use a transformation matrix K associated with the design matrix X

for the model under consideration such that

KX = 0 (2.53)

Applying this transformation matrix to the mixed model yields

y∗ = Ky = K(Xβ + Za + e)

= KZa + Ke (2.54)

The y∗ can be viewed as the residual deviations from the estimated fixed effect. REML
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estimates of variance components are equivalent to ML estimates of the transformed

variables. Thus, we can use ML solutions outlined above by making the following

substitutions:

Ky for y, KX = 0 for X, KZ for Z, KVZT for V (2.55)

The REML equations can actually be expressed directly in terms of V, y, and P,

without finding the matrix K. This result follows from an identity, proven in Searle

et al. (2009), that K satisfies

P = KT (KVKT )−1K (2.56)

Noting that

(y∗)T (V∗)−1y∗ = (yTKT )(KVKT )−1(Ky) = yTPy (2.57)

and substituting the expressions given as 2.55 into equation 2.46, after some rear-

rangement, the ML equations yield the REML estimators,

tr(P̂) = yT P̂P̂y for σ2
E (2.58)

tr(P̂ZAZT ) = yT P̂ZAZT P̂y for σ2
A (2.59)

Note that the REML does not give estimates of β, since the fixed effects are removed

from the model by setting β∗ = 0.
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Equation 2.36 can expend to the general case with m uncorrelated random effects

since the transformation y∗ = Ky satisfying equation 2.53 only depends on the design

matrix.

y∗ =
m∑
i=1

KZiui + Ke (2.60)

and the REML equations for the m+ 1 variance components become

tr(P̂) = yT P̂P̂y for σ2
E (2.61)

tr(P̂ZiBiZ
T
i ) = yT P̂ZiBiZ

T
i P̂y for σ2

i , i = 1 ... m (2.62)

where P̂ is now a function of V̂ =
∑m

i=1 σ̂
2
iZiBiZ

T
i + σ̂2

EI.

2.3.4 Solving the ML/REML Equations

The closed analytical solutions for the ML/REML equations are only available in very

special cases (e.g., certain completely balanced designs). In principle, the solutions

can be derived by performing an exhaustive grid search - computing the log-likelihood

of the data at each point on a grid covering the entire range of parameter space, and

letting the solution be defined by the point on the grid giving the largest log-likelihood.

However, this procedure is impractical, as if β contains more than a few elements,
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each element adds to the dimensionality of the search. Under REML, the dimen-

sionality of parameter space can be greatly reduced, but the likelihood function is

considerably more complicated to compute.

A variety of iterative techniques for solving ML/REML equations have been devel-

oped based on different modifications of two basic approaches: the Newton-Raphson

algorithm and the Expectation-maximization algorithm. Both methods start with

preliminary estimates of the parameters, and using information on the slope of the

likelihood surface, estimates are then moved in a direction that increases the log-

likelihood of the data. The updated estimates are subsequently modified in an itera-

tive fashion, until a satisfactory degree of convergence on a final set of estimates has

been obtained. The search for ML/REML solutions avoids spending huge amounts

of computational time in regions of low likelihood. However, these methods are not

guaranteed to reach a global maximum of the likelihood function, but issues with

multi-modality can be explored through the use of different starting value. All of the

methods are very computationally intensive when large pedigrees are involved, since

they usually require the inversion of large matrices at each step. Detailed reviews can

be found in Searle et al. (2009).

The lme4 package (Bates et al. (2014)) for R provides functions to fit and analyze

linear mixed models, generalized linear mixed models and nonlinear mixed models.

The model is described in an lmer using formula which in this case includes both
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fixed and random effects terms. The formula and data together determine a nu-

merical representation of the model from which the profiled deviance or the profiled

REML criterion can be evaluated as a function of some of the model parameters. The

lmer estimates of variance components for our transformed abalone data (using the

logarithm function to get closer to a normal distribution) are presenting in Table 2.2.

In calculating these estimates, the true pedigree structure was used and so the esti-

mated heritabilities can be used as the benchmark to evaluate our proposed method

in a later chapter. We used the location of the tank in which each full-sib family was

held for the first 14 months of life, and the densities in which each families were held

during this period, as two fixed effects. The R results indicated that neither of these

fixed effect covariates are significant in the model. The heritabilities might be over

estimated because we have assumed that the family effect is dominated by additive

genetic effect, with nonadditive and epistatic effects having been ignored.

Table 2.2: Estimates of variance components and heritability by using linear mixed
model with REML method. Wgt represents the measurment of weight.

Time point Variance of family effect Variance of residual Heritability
Wgt1 272.7080 1413.9953 0.3234
Wgt2 353.7641 1691.4958 0.3459
Wgt3 640.3033 1565.8135 0.5805
Wgt4 535.5469 1427.7274 0.5456



Chapter 3

Estimation of Heritability with Unknown Pedigree Structure

One of the greatest technical limitations of all methods of estimating genetic variance

components that were introduced in the previous chapter is their requirement for

knowledge of the relationships among the individuals recorded. In natural popula-

tions, detailed information of pedigree is absent in all but the most carefully studied

populations. Only in special cases can pedigrees be determined from observation of

mating activities (Garant et al. (2004)), but this usually requires long-term intensive

observation and still may not be entirely reliable.

In this chapter, we provide some possible solutions to estimate genetic variance

components when pedigree structure is completely unknown. First, in case that only

phenotypic observations are available, finite mixture models shed some light on the

problem at hand. This can be considered as a worst-case scenario as it uses only

the minimum of information to estimate heritability. Second, when molecular genetic

marker data are available, we introduce two commonly used approaches to estimate

quantitative genetic characteristics, including the heritability.

71



72

3.1 Gaussian Finite Mixture Models

Finite mixture models have been successfully applied in many fields which include

agriculture, astronomy, bioinformatics, biology, economics, genetics and so on. This

is because finite mixtures of distributions can be used to provide computationally

convenient representations for modeling complex distributions of data arising from

random phenomena. Finite mixture models made their first recorded appearance in

the modern statistical literature in the nineteenth century in a paper by Newcomb

(1886). He suggested an iterative reweighting scheme to compute the common mean

of a mixture with known proportions from a finite number of univariate normal distri-

butions with known variances. A few years later, Pearson (1894) fitted a mixture of

two normal probability density functions with different means µ1 and µ2 and different

variances σ2
1 and σ2

2 to some crab data. Another early reference on mixtures is Holmes

(1892), who brought in the concept of mixtures of populations in his suggestion that

an average alone was inadequate in consideration of wealth disparity.

The use of maximum likelihood for fitting mixture models received little attention

until the 1960s. Dempster et al. (1977) formalized an iterative estimation scheme

in a general context through their expectation-maximization (EM) algorithm, which

provided theoretical convergence properties of maximum likelihood estimation for the

mixture problem. The EM algorithm proved to be a timely catalyst for further re-

search into the applications of finite mixture models.
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Assume we observe Y1, ..., Yn and that each Yi is sampled from one of K mixture

component distributions. Associated with each random variable Yi is a label Zi ∈

{1, ..., K} which indicates which component Yi belongs to. We don’t observe Zi,

which are referred to as latent variables. In the case of discrete random variables, the

marginal probability of Yi can be expressed as

P (Yi = y) =
K∑
k=1

P (Zi = k)P (Yi = y|Zi = k) =
K∑
k=1

πkP (Yi = y|Zi = k) (3.1)

where the πk are referred to as mixing proportions or mixture weights, and πk

represents the probability that Yi follows the k’th mixture component distribution

P (Yi|Zi = k). The mixing proportions are nonnegative and sum to one,
∑K

k=1 πk = 1,

and the P (Yi|Zi = k) are distinct probability distributions for k = 1, . . . , K. The

latent variables Zi are random variables taking values on the integers 1, 2, . . . K, with

P (Zi = k) = πk, for k = 1, 2, . . . , K.

3.1.1 A connection between the Gaussian Mixture Model and

Heritability

Now assume we have a Gaussian mixture model, where the k’th component distribu-

tion is N(µk, σ
2
k), with k’th mixting proportion πk. In this scenario, the conditional

distribution of Yi given that Zi = k is N(µk, σ
2
k), so that the marginal density of Yi is
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fYi(y) =
K∑
k=1

P (Zi = k)fYi(y|Zi = k) =
K∑
k=1

πk
1

σk
φ
(y − µk

σk

)
(3.2)

where fYi(y|Zi = k) denotes the conditional density of Yi given Zi = k and φ() is the

standard normal density function.

When the variances of the component distribution are assumed to be same, σ2
1 =

σ2
2 = . . . = σ2

K = σ2, an estimate of heritability is suggested by the usual decomposi-

tion of variance

Var(Y ) = E(Var(Y |Z)) + Var(E(Y |Z)) (3.3)

Under the constant variance assumption, Var(Y |Z = k) = σ2 and E(Y |Z = k) =

µk. In the mixture model the means are fixed constants. However, the variance

decomposition formula suggests to replace Var(E(Y |Z)) by the variance of the K

means µ1, µ2, ..., µK , using the discrete distribution P (µ = µk) = πk, k = 1, 2, . . . , K.

If estimates of µk and σ2 are available through the EM or some other algorithm,

these quantities can be estimated using Ê(Var(Y |Z)) = σ̂2, and with V̂ar(E(Y |Z)) as

the empirical variance of µ̂1, µ̂2, ...µ̂K .

Motivated by the variance decomposition formula, a definition for heritability in

the mixture model is suggested by consideration of the one way fixed effects ANOVA

model, which is the analogue of the finite mixture model when component (family)

memberships are known.



75

In the previous chapter, we discussed how to estimate variance components by

using the ANOVA method for the random effect model. The mean squares of among-

family and the mean squares of within-family were used to estimate the intraclass

correlation, as follows:

σ̂2
f =

MSf −MSe
no

(3.4)

σ̂2
e = MSe (3.5)

ÎCC =
σ̂2
f

σ̂2
f + σ̂2

e

(3.6)

When the component variances are equal, the Gaussian finite mixture model is a one

way fixed effects ANOVA model, but with unknown component membership. The

ANOVA method can be used for the fixed effect model as well as for the random

effects model. The total sum of squares for the fixed effects model is decomposed into

between and within sum of squares as for the random effects model.

The sum squares of between treatment groups is

SSTR =
K∑
k=1

nk(Ȳk − ¯̄Y )2 =
K∑
k=1

nkȲ
2
k − nT ¯̄Y 2 (3.7)

where nk and Ȳk are the sample size and sample mean in k’th group, ¯̄Y is the sample

mean for all observations in the K groups, and nT is the total number of observations.

Therefore, the expectation of SSTR is:
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E(SSTR) = E
[ K∑
k=1

nkȲ
2
k − nT ¯̄Y 2

]
=
[ K∑
k=1

nkE(Ȳ 2
k )
]
− nTE( ¯̄Y 2) (3.8)

In general, we know E(Y 2) = Var(Y ) + (E(Y ))2, and also

E(Ȳk) = µk (3.9)

Var(Ȳk) =
σ2

nk
(3.10)

E( ¯̄Y ) =
1

nT

K∑
k=1

nk∑
j=1

E(Ykj) =
1

nT

K∑
k=1

nk∑
j=1

µk =
1

nT

K∑
k=1

nkµk = µ̄ (3.11)

Var( ¯̄Y ) =
σ2

nT
(3.12)

where σ2 is the population variance, µk is the k’th population mean, and µ̄ is the

mean of the K population means. Now, we can substitute equations 3.9 - 3.12 into

equation 3.8, which simplifies to:

E(SSTR) =
[ K∑
k=1

nk

(σ2

nk
+ µ2

k

)]
− nT

[ σ2

nT
+ µ̄2

]
(3.13)

Simplifying, we get:

E(SSTR) =
[ K∑
k=1

σ2
]

+
[ K∑
k=1

nkµ
2
k

]
− σ2 − nT µ̄2

= σ2(K − 1) +
[ K∑
k=1

nk(µk − µ̄)2
]

(3.14)
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Therefore

E(MSTR) = E
[SSTR
K − 1

]
= σ2 +

[∑K
k=1 nk(µk − µ̄)2

]
K − 1

(3.15)

With the balanced data, n1 = n2 = ... = nK = no, the expectation of the mean

square due to treatment is:

E(MSTR) = E
[SSTR
K − 1

]
= σ2 +

no
∑K

k=1(µk − µ̄)2

K − 1
(3.16)

In order to find the expected value of the within treatment group mean square,

we recall two theorems regarding χ2 disributions.

Theorem 1. If Y1, . . . , Yn are independently and identically distributed normal

random variables with mean µ and variance of σ2, then

(n− 1)S2

σ2
(3.17)

follows a χ2 distribution with n−1 degrees of freedom, where S2 =
∑n

i=1(Yi−Ȳ )2/(n−

1) represents the sample variance.

Theorem 2. The sum of independently distributed χ2 random variables is dis-

tributed as χ2, with the degrees of freedom equal to the sum of the degrees of freedom

of the individual variables.
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Recall the error sum of squares:

SSE =
K∑
k=1

nk∑
j=1

(Ykj − Ȳk)2 =
K∑
k=1

(nk − 1)S2
k (3.18)

where Sk is the sample standard deviation of k’th group. Then

SSE

σ2
=

∑K
k=1(nk − 1)S2

k

σ2
=

K∑
k=1

(nk − 1)S2
k

σ2
(3.19)

follows a chi-square distribution with (n1 − 1) + (n2 − 1) + ... + (nK − 1) = nT −K

degrees of freedom. As we know, the expected value of a χ2 random variable is its

degrees of freedom, so

E
(SSE
σ2

)
= nT −K (3.20)

Finally,

E(MSE) = E
[ SSE

nT −K

]
= E

[ σ2

nT −K
· SSE
σ2

]
=

σ2

nT −K
(nT −K)

= σ2 (3.21)

Combining this with Equation (3.16), in the balanced design case, (MSTR - MSE)/no

provides an estimate of the variance of the population means
∑K

k=1(µk−µ̄)2

K−1
.

Considering the correspondence between the fixed and random effects models, this

suggests the following as an analogue to the ICC for the fixed effects model.
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∑K
k=1(µ̂k− ˆ̄µ)2

K−1∑K
k=1(µ̂k− ˆ̄µ)2

K−1
+ σ̂2

(3.22)

This is akin to the ICC for the random effects model, but with an empirical

variance of the means µi replacing σ̂2
f . An estimate of heritability with the fixed effects

model can be computed by multiplying Equation 3.22 by the appropriate coefficients

according to the sibship relationship in the family, for example, multiplication by 2

in the full-sib design.

When the component variances assumed to be all same, the Gaussian mixture

model can be viewed as fixed effect model. The distinction is that in the one way

fixed effects ANOVA model, family memberships are known, whereas in the Gaussian

mixture, family (component) memberships are unknown. This means that parameter

estimation will be much more difficult in the mixture model setting, but suggests that

the same estimate of heritability might be used.

3.1.2 Expectation-Maximization (EM) Algorithm

Suppose we have n observations Y1, ..., Yn from Gaussian mixture model distribu-

tion with unknown parameters θ = {π1, ..., πk, µ1, ..., µk, σ
2
1, ..., σ

2
k}]. The likelihood

function is

L(θ|y1, .., yn) ∝
n∏
i=1

K∑
k=1

πkN(yi;µk, σ
2
k) (3.23)

where, for notational convenience, we use N(yi;µk, σ
2
k) to denote the normal density
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with mean µk and variance σ2
k, evaluated at yi. The log-likelihood function is

l(θ) ∝
n∑
i=1

log
( K∑
k=1

πkN(yi;µk, σ
2
k)
)

(3.24)

Setting the derivative with respect to µk equal to zero, the associated likelihood

equation is
n∑
i=1

1∑K
k=1 πkN(yi;µk, σ2

k)
πkN(yi;µk, σ

2
k)

(yi − µk)
σ2
k

= 0 (3.25)

This can’t be solved analytically for µk. However, if we knew the latent variables Zi,

then we could simply gather all the observations yi such that Zi = k, and then solve

for µk.

Intuitively, the latent variables Zi should help us find the MLEs. First, we compute

the posterior distribution of Zi given the observations:

P (Zi = k|yi) =
P (yi|Zi = k)P (Zi = k)

P (yi)
=

πkN(yi;µk, σk)∑K
k=1 πkN(yi;µk, σ2

k)
= γZi

(k) (3.26)

Now we rewrite Equation 3.25, the derivative of the log-likelihood with respect to µk,

as follows

n∑
i=1

γzi(k)
(yi − µk)

σ2
k

= 0 (3.27)

Even though γZi
(k) depends on µk, we pretend for now that it doesn’t. We can solve
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for µk in this equation to get

µ̂k =

∑n
i=1 γZi

(k)yi∑n
i=1 γZi

(k)
=

1

Nk

n∑
i=1

γZi
(k)yi (3.28)

where we set Nk =
∑n

i=1 γZi
(k). Nk can be considered as the effective number of

points assigned to component k. Therefore, µ̂k is a weighted average of the data with

weights γZi
(k). We can apply the similar method to find σ̂2

k and π̂k.

σ̂2
k =

1

Nk

n∑
i=1

γZi
(k)(yi − µk)2 (3.29)

π̂k =
Nk

n
(3.30)

Again, these equations are not closed-form expressions since γzi(k) depends on the

unknown parameters. If we knew the parameters, we could compute the posterior

probabilities γZi
(k), and if we knew the posteriors, we could easily compute the

parameters. This looks like a vicious circle. The EM algorithm was motivated by this

situation, and proceeds as follows:

1. Initialize the πk, µk and σ2
k and evaluate the log-likelihood with these parame-

ters.

2. E-step: Evaluate the posterior probabilities γZi
(k) using the current values of

parameters in Equation 3.26.

3. M-step: Estimate new parameters µ̂k, σ̂
2
k and π̂k with the current value of γZi

(k)
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using Equation 3.28, 3.29 and 3.30.

4. Evaluate the log-likelihood with the new parameter estimates. If the log-

likelihood has changed by less than some small value, stop. Otherwise, go

back to step 2.

The EM algorithm is sensitive to the initial values of the parameters, so care must be

taken in the first step. However, assuming the initial values are valid, one property

of the EM algorithm is that the log-likelihood increases at every step.

The EM algorithm can be generally applied to find maximum likelihood estimates

for models with latent variables. Let Y be the entire set of observed variables and Z

be the entire set of latent variables. The log-likelihood is therefore

l(θ|Y ) ∝ log(P (Y |θ)) = log
(∑

Z

P (Y, Z|θ)
)

(3.31)

where we have marginalized Z out of the joint distribution. We typically don’t know

Z, but the information we do have about Z is contained in the posterior P (Z|Y, θ).

Since we don’t know the complete data log-likelihood, we consider its expectation un-

der the posterior distribution of the latent variables. This corresponds to the E-step

above. In the M-step, we maximize the expectation to find a new estimate for the

parameters.

In the E-step, we use the current value of the parameter θ0 to find the posterior
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distribution of the latent variables given by P (Z|Y, θ0). This corresponds to γZi
(k)

in equation 3.26. Then, we use this to find the expectation of the complete data

log-likelihood, with respect to this posterior, evaluated at an arbitrary θ0. This

expectation is denoted by Q(θ, θ0) and it equals

Q(θ, θ0) = EZ|Y,θ0 [logP (Y, Z|θ)] =
∑
Z

P (Z|Y, θ0)logP (Y, Z|θ) (3.32)

In the M-step, we determine the new parameter θ̂ by maximizing Q

θ̂ = argmaxθQ(θ, θ0) (3.33)

3.1.3 EM for Gaussian Mixture Models

The complete data likelihood for Gaussian mixture models takes the form

L(µ, σ, π|y, Z) ∝
n∏
i=1

K∏
k=1

π
I(Zi=k)
k N(yi|µk, σ2

k)
I(Zi=k) (3.34)

with complete data log-likelihood

l(µ, σ, π|y, Z) ∝
n∑
i=1

K∑
k=1

I(Zi = k)(log(πk) + log(N(yi|µk, σ2
k))) (3.35)

where I is the indicator function, i, e. I(Zi = k) = 1 if Zi = k, and I(Zi = k) = 0

otherwise.
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Note that for the complete data log-likelihood, the logarithm acts directly on the

normal density, leading to a simplified solution for the MLE. However, in practice,

we don’t observe the latent variables, so we consider the expectation of the complete

data log-likelihood with respect to the posterior distribution of the latent variables.

EZ|y[log(P (y, Z|µ, σ2, π))] (3.36)

= EZ|y

[
n∑
i=1

K∑
k=1

I(Zi = k)(log(πk) + log(N(yi|µk, σ2
k)))

]

=
n∑
i=1

K∑
k=1

EZ|y

[
I(Zi = k)

]
(log(πk) + log(N(yi|µk, σ2

k)))

Since EZ|y[I(Zi = k)] = P (Zi = k|y), we see that this is simply γZi
(k). Hence, we

have

EZ|y[l(µ, σ2, π|y, Z)] =
n∑
i=1

K∑
k=1

γzi(k)(log(πk) + log(N(yi|µk, σ2
k))) (3.37)

EM proceeds as follows: first choose initial values for µ, σ2, π and use these in the

E-step to evaluate the γZi
(k). Then, with γZi

(k) fixed, maximize the expected com-

plete log-likelihood above with respect to µk, σ
2
k and πk.
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3.1.4 Estimation Results with Phenotypic Observations Only

We have investigated the Gaussian mixture model as the worst possible case sce-

nario for estimating heritability, when none of the family memberships are known.

In addition, the absence of knowledge of the number of families makes the estima-

tion considerably more difficult (Chen and Khalili (2008); Kasahara and Shimotsu

(2015)). In the simpler situation where the number of families is assumed be known,

the EM algorithm estimates parameters by maximizing the mixture likelihood and

has the benefit that it provides the estimated probabilities of family membership.

This is an indication that the phenotypic observations carry some information about

pedigree structure, and it motivates us to include them in the model to reconstruct

the pedigrees.

In contrast to estimating a heritability like object directly from fitting a Gaussian

mixture model, the pedigree reconstruction problem can be considered as the regular

clustering analysis problem.

For example, individuals can be grouped into different families by using K-means

clusting algorithm, and conditional on the grouping provided by K-means, an esti-

mate of heritability can be obtained by fitting a linear mixed model. This two-step

method was applied with our hybrid data (phenotypic observations at the first time

point only). First, we select the optimal number of families according to the elbow

method, which is one of the most popular methods to determine the optimal K value.
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Figure 3.1: The Elbow method to determine the optimal number of families
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The eblow method consists of plotting the explained variation as a function of the

number of clusters, and picking the elbow of the curve as the number of clusters to

use. From the Figure 3.1, we think 4 or 5 would be most reasonable values for the

number of families.

Then, we estimate the pedigree structures with 4 full-sib families and 5 full-sib

families using K-means algorithm. For comparison purpose, we estimate the family

membership with 12 (true number of families) full-sib families as well. At the end, we

use lmer function in R to fit the linear mixed model and the estimates of heritabilities

are 1.908158, 1.939498 and 1.9800465, respectively.

We also estimate of heritablity like object directly from fitting a Guassian mix-

ture model with 4, 5 and 12 families by using normalmixEM function in ”mixtools”

package (Benaglia et al. (2009)), which is an R package for analyzing finite mixture

models. The estimation results are 1.572833, 1.492110 and 1.815661. It is not sur-

prising that the estimations are disappointing no matter which procedure is used, as

there is a lot of observation overlap among the families in our data. Estimating the

pedigree structure or heritability by phenotypic observations only will be extremely

challenging in such situations.

It is not surprising that the estimations are disappointing no matter which proce-

dure is used, as there is a lot of observation overlap among the families in our data.
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Estimating the pedigree structure or heritability by phenotypic observations only will

be extremely challenging in such situations.

3.2 Estimation Procedure with Marker Data

In recent years, the extensive development and application of highly polymorphic

molecular markers (especially microsatellites) has proven highly useful, particularly

in the fields of population and conservation genetics (Frankham et al. (2002)). Differ-

ent types of markers, particularly codominant microsatellites, have been developed to

estimate pairwise coancestries. The estimated coancestry from molecular information

then can be used to obtain estimates of heritability (Ritland (1996); Wang (2004)).

Another approach involves an explicit reconstruction of groups of a certain coancestry,

which can be used as pedigree information in a standard quantitative genetic analysis.

This method is performed using Markov chain Monte Carlo (MCMC) procedures to

reconstruct sibships within a single generation (Thomas and Hill (2000); Smith et al.

(2001)). The reconstructed sibships are then used to estimate variance components

and heritability by using the ANOVA method or fitting linear mixed model.

3.2.1 Pairwise techniques with Marker Information

Several methods have been suggested for the estimation of pairwise values of the coef-

ficients of coancestry (Θij) and fraternity (∆ij) from information on shared alleles at

codominant marker loci. These methods may be grouped into two categories: method
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of moments estimators, which are used to estimate relatedness as a continuous mea-

sure, on the basis of shared alleles at marker loci (Lynch and Ritland (1999)) and

likelihood techniques, used to determine the likelihood of a pair falling into particular

relationship classes given the observed marker information (Mousseau et al. (1998);

Thomas and Hill (2000)).

These estimators are not necessarily very efficient unless large numbers of poly-

morphic loci are assayed, but most of them do provide unbiased estimates. Ritland

(1996) made the clever leap of showing how estimates of pairwise relatedness can be

combined with estimates of pairwise phenotypic similarity to generate estimates of

variance components in natural populations.

Recall that the basic premise underlying all conventional methods for estimating

the additive genetic variance of a trait is the fact that, for a character with a purely

additive genetic effect, the phenotypic covariance between relatives i and j has ex-

pected value 2Θijσ
2
A (Equation 1.45). The phenotypic similarity of two individuals

with phenotypes Yi and Yj can be defined as

sij = (Yi − Ȳ )(Yj − Ȳ ) (3.38)

where Ȳ is the mean phenotype in the population. Since this expression is in the form

of a phenotypic covariance, under the purely additive model, the expected value of sij

is simply 2Θijσ
2
A. Therefore, with a collection of individuals, the observed phenotypic
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similarity can be written in the form of a linear model

sij = 2Θ̂ijσ
2
A + eij (3.39)

where Θ̂ij is the estimated value of Θij for the two individuals, and eij is the residual

deviation of the observed similarity from its expectation.

Equation 3.38 suggests that an estimate of the narrow-sense heritability, σ2
A/σ

2
Y ,

can be obtained by regressing pairwise measures of phenotypic similarity on estimates

of the coefficient of coancestry (with half the slope providing the estimate of σ2
A, and

with the observed phenotypic variance in the population, Var(Y ), providing the esti-

mate of σ2
Y ).

Since the Θ̂ij are only estimates, a conventional least-squares analysis would lead

to downwardly biased estimates of σ2
A as a consequence of the inflated estimate of the

variance of relatedness. Ritland (1996) outlines a method that provides an estimate of

σ2
Θ, the actual variance of relatedness, which excludes the sampling variance resulting

from the use of a finite number of marker loci. Letting Var(Θ) be the estimated actual

variance of relatedness and Cov(s, Θ̂) be the covariance of phenotypic similarity and

estimated relatedness, the heritability can be estimated by

ĥ2 =
Cov(s, Θ̂)

2Var(Θ)Var(Y )
(3.40)
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under the assumptions of the ideal additive model (assuming random mating and no

shared environmental effects).

Pairwise methods have some limitations. First, pairwise techniques may lose valu-

able information in the form of higher-order relationships. Additionally, the weight

placed on information from a single family depends on the number of pairs of individ-

uals that can be chosen from that family. It is dependent only upon family size and

not information content. Therefore, pairwise methods do not provide the most effi-

cient estimates for parameters and are prone to larger standard errors than restricted

maximum likelihood methods (Thomas and Hill (2000)). Second, obtaining estimates

of the allele frequencies at the marker loci is also a problem. Allele frequencies have

traditionally been assumed known or have been estimated from the sample. They are

subject to further random error, since there are relatives within the sample, which

might bias subsequent estimates of pairwise relationships. Finally, there is a question

as to how to include other factors such as sex or age in the model. Since pairwise

methods operate on a pairwise level, other factors must also be investigated on a

pairwise level and as a result, an optimal estimate may not be achieved.

3.2.2 A two-Step estimation procedure with marker information

A two-step procedure is a very popular method to estimate the variance components

and heritability. In the first step, family memberships are reconstructed using marker
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information. In the second step, the reconstructed pedigree structure is used to form

a relationship matrix suitable for use in an animal model, with a linear mixed model

used to estimate variance components, as in section 2.3. This approach allows tradi-

tional and efficient methods for parameter estimation to be used and hence simplifies

the inclusion of additional factors or the use of multivariate analysis if data have been

collected from several traits. Of course, parameter estimates are conditional on the

pedigree estimated in the first step.

Smith et al. (2001) introduced two Markov chain Monte Carlo algorithms that

allow the partitioning of individuals into full-sib groups using single-locus genetic

marker data when parental information is not available. They developed a moving

algorithm that can search through the sibship configuration space with the aim of

locating the configuration that maximizes a criterion - either the full joint likelihood

of the proposed family structure, or a score based on the pairwise likelihood ratios of

being full-sib or unrelated.

3.2.2.1 The Total Number of Full sibship Configurations

A full sibship configuration of N individuals is a partition of the individuals into

different full-sib families. If a particular configuration has K full-sib families, the

partition is denoted as c1, ..., cK , where cj is the collection of individuals in the j’th

family. The space of all possible data configurations consisting of only full-sibs or
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unrelated individuals is denoted by C . In combinatorial mathematics, the size of C

is given by the so-called Bell number, which counts the number of possible partitions

of a set. These numbers have been studied by mathematicians since the 19th century

and are named after Eric Temple Bell, who wrote about them in the 1930s. Starting

with B0 = B1 = 1, the first few Bell numbers are:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115875, 678570, 4213597, . . .

The nth of these numbers, Bn, describes the number of different ways to partition

a set that has exactly n elements, or equivalently, the number of equivalence relations

on it. For example, B3 = 5 because the 3-element set {a, b, c}can be partitioned in 5

distinct ways: [
a, b, c

]
;
[
a, bc

]
;
[
b, ac

]
;
[
c, ab

]
;
[
abc
]

The configuration (the full sib structure) is the parameter to be estimated. The

parameter space is non-Euclidean, so usual methods of optimization, such as gradi-

ent based methods, cannot be used. The enormous size of the configuration space

C for even a moderate value of N precludes the method of direct enumeration to

maximize the probability of the configuration (the family structure) given observed

alleles, conditional on the population allelic frequencies. In such cases, methods such

as simulated annealing Kirkpatrick et al. (1983) can be used to explore the space of

configurations.
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3.2.2.2 The Markov Chain Monte Carlo Method and the

Metropolis-Hasting Algorithm

Monte Carlo methods are a subset of computational algorithms that use the process

of repeated random sampling to make numerical estimations of unknown parameters.

The underlying concept is to use randomness to solve the deterministic problems.

Monte Carlo methods are commonly used in three problem classes: optimization, nu-

merical integration, and generating samples from probability distributions. In prin-

ciple, any problem with a probabilistic interpretation can be solved by Monte Carlo

methods. For example, the law of large numbers states that the expected value of

some random variable can be approximated by taking the empirical mean of indepen-

dent samples of the variable. Markov chain Monte Carlo (MCMC) samplers are often

used when the probability distribution of the variable is parameterised. The main

idea is to design a judicious Markov chain with stationary distribution being the dis-

tribution of interest. If this can be done then in the limit, the samples generated from

the Markov chain will be samples from the desired distribution. The ergodic theorem

states that the empirical measure of the random states of the MCMC sampler is an

approximation to the stationary distribution, and one consequence of ergodicity is

that ensemble averages equal time averages.

Metropolis et al. (1953)’s paper on the statistical mechanics of particles intro-

duced the method of Markov chain Monte Carlo (MCMC) to the world of physics.

Hammersley et al. (1965) described the method in a more rigorous statistical frame-

work in term of Markov chains. In 1970, Hastings (1970) provided a generalization of
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the original Metropolis algorithm to allow for non-symmetric proposal distributions.

Geman and Geman (1984) used the Gibbs sampler on the Bayesian image restoration

problem, and Gelfand and Smith (1990) showed how the Gibbs sampler could be

applied to help Bayesians solve a much wider class of problems. Robert and Casella

(2005) gives a general definition of Markov chain Monte Carlo algorithms: A Markov

chain Monte Carlo method for the simulation of a distribution f is any method pro-

ducing an ergodic Markov chain (Xt) whose stationary distribution is f .

The Metropolis-Hastings algorithm is one of the most important MCMC meth-

ods for obtaining a sequence of random samples from a probability distribution from

which direct sampling is difficult. This sequence of random samples can be used to

approximate the distribution of interest. In order to generate a collection of states

according to a desired distribution P (x), the Metropolis-Hastings algorithm uses a

Markov process which asymptotically reaches a unique stationary distribution π(x)

such that π(x) = P (x).

A Markov process is uniquely defined by its transition probabilities P (x′|x), the

probability of moving from any given state x to any other given state x′. When the

following two conditions are satisfied, it has a unique stationary distribution π(x):

� There must exist a stationary distribution π(x). A sufficient but not necessary

condition for this is detailed balance, which requires that each transition x→ x′

is reversible for each pair of states (x, x′). That is, the probability of being in
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state x and transitioning to state x′ must be equal to the probability of being

state x′ and transitioning to state x, π(x)P (x′|x) = π(x′)P (x|x′).

� The stationary distribution π(x) must be unique. This condition is guaranteed

by ergodicity of the Markov process, which requires that every state must be

aperiodic and positive recurrent.

The Metropolis-Hasting algorithm involves designing a Markov process that satisfies

the two above conditions by constructing the appropriate transition probabilities,

such that the process has stationary distribution π(x) equal to P (x). The detailed

balance condition can be re-written as

P (x′|x)

P (x|x′)
=
P (x′)

P (x)
(3.41)

The transition probabilities can be divided into two sub-steps: the proposal step and

the acceptance-rejection step. The proposal distribution q(x′|x) is the conditional

probability of proposing a state x′ given x, and the acceptance ratio r(x′, x) is the

probability to accept the proposed state x′. The transition probability is the product

of the proposal and acceptance probabilities, P (x′|x) = q(x′|x)r(x′, x). Now, equation

(3.41) can be written as

r(x′, x)

r(x, x′)
=
P (x′)

P (x)

q(x|x′)
q(x′|x)

(3.42)

One common choice for an acceptance ratio that fulfills the condition above is the

Metropolis choice:

r(x′, x) = min
(

1,
P (x′)

P (x)

q(x|x′)
q(x′|x)

)
(3.43)
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The Metropolis-Hastings algorithm proceeds in the following manner:

� 1. Initialise

– 1. Start with an initial state x0

– 2. Set t = 0

� 2. Iterate

– 1. Generate a random candidate state x′ according to proposal distribution

q(x′|xt).

– 2. Compute the acceptance probability r(x′, xt) = min
(

1, P (x′)
P (xt)

q(xt|x′)
q(x′|xt)

)
– 3. Accept or reject

* 1. Generate a uniform random number u ∈ [0, 1].

* 2. If u ≤ r(x′, xt), then accept the candidate state and set xt+1 = x′.

* 3. If u > r(x′, xt), then reject the candidate state, and keep the old

state forward xt+1 = xt

* 4. Increment, set t = t+ 1

As shown by Hastings (1970), given that the specified conditions are satisfied, the

empirical distribution of the states x0, x1, ..., xT will approach P (x). The number of

iterations T required to effectively estimate P (x) depends on number of factors, in-

cluding the relationship between P (x) and the proposal distribution and the desired

accuracy of estimation (Raftery and Lewis (1991)).
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3.2.2.3 Pedigree Reconstruction Procedure

The Metropolis-Hastings algorithm is a general tool to sample from a state space,

in our case C . Let us define a Markov chain having a stationary distribution on

C , denoted by P (C), where C ∈ C . Ct denotes the tth configuration generated,

and the algorithm proceeds by simulating a proposal C ′ from a proposal probability

q(C ′|Ct). At the next step, Ct+1 is randomly assigned to be either the proposal C ′

with acceptance probability r(C ′, Ct), or Ct with probability 1− r(C ′, Ct), where

r(C ′, Ct) = min
(

1,
P (C ′)q(Ct|C ′)
P (Ct)q(C ′|Ct)

)
(3.44)

For appropriate choices of q, as described in Hastings (1970), this algorithm is guar-

anteed to generate samples from the distribution P (C) in the limit as t increases.

The implementation starts by setting the initial configuration C0 to ”all unrelated”

in which there are N families each containing one individual. For the distribution

q(C ′|Ct), we select two individuals I and J independently according to a uniform

distribution on {1, ..., N}. Let cI and cJ represent the full-sib families to which indi-

viduals I and J belong. If cI 6= cJ , then the proposed configuration C ′ is obtained

by moving individual I from group cI to cJ . If cI = cJ , then individual I is removed

from cI to create a new full-sib family of size one. If cI has only one member, then the

number of families is reduced by 1. In this way, the proposal algorithm can sample

configurations with from any number of families between 1 and N . This choice of

q satisfies the necessary conditions under which the algorithm will generate samples
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from the desired distribution P (C). In Smith et al. (2001), the authors stated that

this algorithm also ensures that q(C ′|Ct) = q(Ct|C ′), in which case the Metropolis-

Hastings algorithm is the original Metropolis algorithm (Metropolis et al. (1953)).

However, after careful checking, I have found that when the cardinalities card(cI)

and card(cJ) are not equal, then q(C ′|Ct) 6= q(Ct|C ′), and the acceptance probability

r(C ′, Ct) has been appropriately adjusted.

The distribution used on the space of alleles is the full joint distribution of the

observed alleles given the configuration C, conditional on the allele frequencies. This

approach was extensively investigated by Painter (1997). The single-locus likelihood

for a configuration consisting of K full-sib groups is proportional to the joint proba-

bility of the observed alleles, which can be written as

K∏
j=1

∑
gm(j)

∑
gp(j)

 ∏
i∈c(j)

P (Oi(j))|gm(j), gp(j))

P (gm(j)|p)P (gp(j)|p) (3.45)

where gm(j) and gp(j) are the unobserved maternal and paternal genotypes for the

j’th full-sib group, c(j) is the group of offspring in the j’th full-sib group, Oi(j) is the

observed genotype of the i’th individual in the j’th full-sib group and p denotes the

unknown population allele frequencies. In practice the observed allele frequencies are

used in place of the population frequencies.

For offspring i in full-sib group j, the probability of the observed genotype Oi(j)

at a single locus , conditional on the maternal gm(j) and paternal gp(j) genotypes, is
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Table 3.1: Probabilities of the segregation events at one locus with two alleles

Parent’s genotypes
Offspring genotype xx, xx xx, xy xx, yy xy, xy xy, yy yy, yy

xx 1 1/2 0 1/4 0 0
xy 0 1/2 1 1/2 1/2 0
yy 0 0 0 1/4 1/2 1

Table 3.2: Population Genotype Probabilities for Parents, at one locus with two
alleles as a function of px and py, the population allele frequency for allele x and y

Parent genotype xx xy yy
xx p4

x 2p3
xpy p2

xp
2
y

xy 2p3
xpy 4p2

xp
2
y 2pxp

3
y

yy p2
xp

2
y 2pxp

3
y p4

y

denoted as P (Oi(j))|gm(j), gp(j)). These probabilities are determined by the segre-

gation probabilities during the formation of gametes, and are given in Table 3.1. The

joint probability of the genotypes at several unlinked loci is just the product, over

loci, of the single locus probabilities.

The joint probability of the maternal and paternal genotypes given the population

allele frequencies is P (gm(j)|p)P (gp(j)|p). Assuming Hardy Weinberg equilibrium and

random mating, these probabilities are given in Table 3.2. For example, under the

stated assumptions, the probability of drawing a male with genotype xx and a female

with genotype xy from the population is p2
x× pxpy = p3

xpy, with the same probability

of drawing a female with genotype xx and a male with genotype xy, so the probability

of one parent being xx and the the being xy is 2p3
xpy.
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The single-locus single full-sib family genotype probabilities can be written as ex-

plicit polynomial functions of the allele frequencies under specific genotype configura-

tions, which results in substantial computational saving. The polynomial expressions

were derived Painter (1997), and are given in Table 3.3 for each of the 14 possible

single-locus genotype configurations of a full-sib family. In the most straightforward

case, if a family consists of n individuals of genotype xx and m individuals of genotype

yy, then the parental genotypes must have both been xy, and each of the sums in

Equation 3.45 contains a single term. Combining the results from Tables 3.2 and 3.1,

the probability of the genotypic data (n individuals of genotype xx and m individuals

of genotype yy) is

(
1

4
)n · (1

4
)m · 4p2

xp
2
y =

4

4n+m
p2
xp

2
y (3.46)

For most of the full-sibship genotypes, the sums in Equation 3.45 will contain multi-

ple terms, and the derivation of the sibship likelihood, while straightforward, can be

very tedious.

Using the algorithm described above to propose a new configuration C given the

current configuration Ct, it is very common to propose moves for which the new

configuration C is infeasible in that the alleles of the individuals in C cannot have

arisen by segregation from a pair of parents. For example, suppose a family in the
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Table 3.3: Polynomial Equation for the Likelihood of a Single-locus Full-sibship

Full-sibship genotype Sibship likelihood
xxn 4

4n
p2
x + ( 4

2n
− 8

4n
)p3
x + (1− 4

2n
+ 4

4n
)p4
x

xyn (2− 4
2n

)p2
xp

2
y + ( 4

2n
− 8

4n
)p2
xpy + ( 4

2n
− 8

4n
)pxp

2
y + 8

4n
pxpy

xxnxym 8
4n+mp

2
xpy + ( 4

2n+m − 8
4n+m )p3

xpy + ( 4
4n2m

− 8
4n+m )p2

xp
2
y

xxnyym 4
4n+mp

2
xp

2
y

xxnyzm 4
4n+mp

2
xpypz

xxnxymyyl 4
2l4n+mp

2
xp

2
y

xxnxymxzl 4
4n+m+lp

2
xpypz

xxnxymyzl 4
4n+m+lp

2
xpypz

xxnxymxzlyzk 4
4n+m+l+k p

2
xpypz

xynxzm 4
2n+mp

2
xpypz + 8

4n+mpxpypz
xynxzmyzl 8

4n+m+l (p
2
xpypz + pxp

2
ypz + pxpyp

2
z)

xynxzmywl 8
4n+m+lpxpypzpw

xynzwm 16
4n+mpxpypzpw

xynxzmywlzwk 8
4n+m+l+w pxpypzpw

current configuration Ct has 4 genotypes represented and the proposal is to move an

individual with a 5’th genotype into that family. As only 4 genotypes can arise from

segregation of alleles from a pair of parents, this proposal is infeasible. There are

other cases where a proposed family has less than 4 genotypes, but is infeasible. For

example, a proposed family with the three genotypes AB, CD, AE at a single locus

is infeasible as the parents have at most 4 distinct alleles between them.

In simulations which will be described later, it was commonly found that 70-80%

of proposed configurations are infeasible, and this happens particularly often when

a current configuration has several large families. When a proposed configuration is

infeasible, no likelihood calculation is carried out, and the proposal is not counted.

That is, we remain at (t, Ct), and generate another proposal.
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A considerable proportion of the computational time in sampling the genotypic

likelihood using the MH algorithms is involved in checking for the feasibility of pro-

posed configurations. We had originally thought to expand the proposal algorithm

to include block moves, whereby whole families would be merged, but because the

feasibility assessment is done after adding a single individual to an existing feasible

group, it was decided that there would be no computational gain to moving several

individuals at a time, and substantial program revision required to implement this,

so block moves have not been considered.

Wang (2004) introduced another likelihood method for pedigree reconstruction

with simple and robust models of typing error incorporated into it. This new method

makes improvement by using more efficient MCMC algorithms for calculating the

full likelihood function and searching for the maximum likelihood configration with

block moves. It can deal with very complex pedigree structure and provides an

very accurate result. Jones and Wang (2010) developed colony, a computer program

implementing Wang (2004)’s method to simultaneously infer sibship and parentage

among individuals using multiloucs genotype data. Colony can be used for both

diploid and haplodiploid species; it can use dominant and codominant markers, and

can accommodate, and estimate, genotyping error at each locus.
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3.2.2.4 Pedigree Reconstruction Error and Heritability Estimation

A statistic that enables measurement of the accuracy of each reconstructed family is

useful for the purposes of comparison. We used three different measures to describe

the fit between true and predicted configurations. The number of moves represents

the minimum number of individuals that need to be relocated from their predicted

full-sib groups to their real full-sib groups to get a perfectly matched configuration.

It is also equal to the number of individuals that must be removed from the true and

predicted configurations to make them identical.

Other statistics which can be used to measure the accuracy are based on the

number of correctly and incorrectly classified pairs. For example, the number or

proportion of full-sib pairs incorrectly classified as unrelated pairs (E1), and the pro-

portion of unrelated pairs incorrectly classified as full-sib pairs (E2). Let us consider

an example of two full-sib groups with 10 individuals each:

True configuration: (A A A A A A A A A A), (B B B B B B B B B B)

Prediction 1: (A A A A A A A A A B), (B B B B B B B A), (A), (B)

Prediction 2: (A A A A A A A A A A), (B B B B B B), (B B B B)

Four moves are needed to get to the correct configuration for both predictions.

There are a total of 190 pairs of individuals for two families with 10 individuals in

each, 90 are full-sib pairs and 100 are unrelated pairs. In prediction 1, 34 full-sib pairs

are incorrectly classified as unrelated and 16 unrelated pairs are incorrectly classified
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as full-sibs. Therefore, the proportion of E1 = 34/90 = 0.378 and E2 = 16/100 = 0.16

for prediction 1. In prediction 2, the proportion of E1 = 24/90 = 0.276 and E2 = 0

since none of the unrelated pairs are incorrectly classified. Even though the number

of moves criterion is the same for the two predicted configurations, prediction 2 would

seem to provide the more accurate result, assuming some weight is given to unrelated

incorrectly classified as full-sibs. The simulations below will show that misclassifying

unrelated individuals as full-sibs is the more serious error in terms of biasing the

estimate of heritability.

In the two-step estimation procedure, the reconstructed pedigree is used to es-

timate variance components for a quantitative trait. Errors of genuinely unrelated

individuals who are classified as related lead to a large bias in estimates, particularly

within family variance and heritability, as compared to the errors of genuinely re-

lated individuals who are classed as unrelated. In the previous example, prediction

2 should give more accurate estimation of variance components. The results from a

small simulation study confirm this conclusion.

We generate phenotypic observations with different heritability values (0.2, 0.4,

0.6) for 200 individuals belonging to 10 full-sib families. The heritabilities were esti-

mated by fitting a linear mixed model with the REML method. First of all, we fit the

model with the true family structure. Then, we incrementally increased the error rates

of full-sib pairs incorrectly classified as unrelated (E1), and unrelated pairs incorrectly
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Figure 3.2: Estimated heritability vs misclassification error rates. True heritability
= 0.2

classified as full-sib pairs (E2). The boxplots of estimated heritability (Figures 3.2

- 3.4) clearly indicate that when E2 increased, the estimate of heritability becomes

poorer. The variable on the horizontal axis represents the average number of individ-

ual misclassified in each family plus 1, for example, if 2 individuals are misclassified

in each family on average, the value on X axis would be 3.
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Figure 3.3: Estimated heritability vs misclassification error rates. True heritability
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Figure 3.4: Estimated heritability vs misclassification error rates. True heritability
= 0.6
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Table 3.4: Two-step estimation results for hybrid data set (after log-transformation)

Accuracy of Pedigree Reconstruction Heritability Estimation

Number of Loci Number of Moves E1 E2 ĥ2
1 ĥ2

2 ĥ2
3 ĥ2

4

4 7 203 5 0.3167 0.3249 0.5990 0.5583
2 203 3213 1997 0.1705 0.1891 0.2941 0.3326

3.2.2.5 Two-step Estimation Result of Hybrid Data

We used the two-step estimation method for our hybrid data (after log-transformation).

Using MCMC method that was introduced by Smith et al. (2001), the pedigree was

reconstructed with different levels of genetic marker information (2 loci, and 4 loci).

The sample size was 318, and the number of alleles per locus were 11, 14, 10 and 8.

The loci with 11 and 14 alleles were used for reconstructions with 2 loci.

The accuracy of the pedigree reconstructions using the marker data, and the asso-

ciated two step estimates of heritability at each time point are included in Table 3.4.

It is clear that with the more accurately estimated pedigree structure, the estimated

heritabilities are closer to the results in Table 2.2, where the true pedigree is used.

With an inaccurately estimated pedigree (when 2 loci were used for reconstruction),

the estimated heritabilities are about half of the estimates with true pedigree. As we

discussed in section 3.2.2.4, E2 (unrelated pairs incorrectly classified as full-sib pairs)

gives more damage on estimation results.



Chapter 4

Heritability Estimation Using MCMC Procedure with

Marker Data and Phenotypic Observation

As we discussed in chapter 3, fitting a Gaussian mixture model or carrying out an-

other clustering analysis indicates that there is information on the family membership

contained in the phenotypic observations, while the two-step method fitting a linear

mixed model conditional on an estimated pedigree shows some promises if marker

data is sufficiently informative to provide a reasonably precise pedigree reconstruc-

tion. In this chapter, we will introduce a hybrid Markov chain Monte Carlo approach,

where marker information (X) and phenotypic observation (Y ) can be used jointly

and simultaneously to estimate both pedigree structure and heritability of the quan-

titative trait. In the case with insufficient marker information, our proposed method

is able to provides more accurate results compare with two-step method, regardless

the estimation of pedigree or parameter of quantitative trait.

110
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4.1 The General Procedure

The full joint distribution of the observed phenotypic values and the marker alleles

given the quantitative trait parameters Θ and pedigree configuration Π is denoted by

P (Y,X|Θ,Π). In general the pedigree of a group of individuals of unknown related-

ness will include different relationships, such as parent-offspring, full-sibs, half-sibs,

cousins, etc. In this thesis, Π is assumed to belong to the space of all possible data

configurations consisting only of full-sibs or unrelated individuals.

The loci of microsatellite marker data used are assumed to be from non-coding

regions of the genome, or to be otherwise unlinked with the genes associated with the

phenotypic trait. In this case P (Y,X|Θ,Π) = P (Y|Θ,Π)P (X|Θ,Π). Furthermore,

the distribution of the marker data is assumed to not depend on the parameters of the

phenotypic trait distribution, so P (X|Θ,Π) = P (X|Π). The distribution of alleles

P (X|Π) will depend on the population allele frequencies Ψ. This notation has been

suppressed throughout for convenience, and in addition, we have followed the usual

practice of replacing Ψ by an empirical estimate.

In the Bayesian context, when a joint prior distribution P (Θ,Π) is specified, the

full joint posterior is

P (Θ,Π|X,Y) ∝ P (Y,X|Θ,Π)P (Θ,Π)
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Under the stated assumptions, and additionally assuming independent prior distri-

butions for Θ and Π, the joint posterior is

P (Θ,Π|X,Y) ∝ P (Y|Θ,Π)P (X|Π)P (Θ)P (Π) (4.1)

Restricting to full-sib or unrelated relationships, the conditional distribution of the

phenotypic data Y given the pedigree, P (Y|Θ,Π) follows by specification of a specific

model, such as the random effects model or general mixed model considered in chap-

ter 2. It will be discussed in detail in following sections. The polynomial equations

developed by Painter (1997), and set down in Table 3.3, provide the details for the cal-

culation of P (X|Π). Prior distributions for Θ and Π are discussed in the section 4.1.2.

As a side note, the general form of the posterior distribution (Equation 4.1) in-

cludes various models considered in previous chapters, depending on the forms of in-

formation available. For example, with known pedigree, the terms P (X|Π) and P (Π)

drop out and we estimate the parameter of quantitative trait using phenotypic obser-

vations, possibly also including prior distribution, so that P (Θ|Y) ∝ P (Y|Θ)P (Θ).

This is the case that was covered in Chapter 2. With unknown pedigree and with-

out the marker data, P (Θ,Π|Y ) ∝ P (Y |Θ,Π)P (Π). Summing over Π this gives a

finite mixture model similar to that considered in Equation 3.1. When the estimated

pedigree structure can be obtained from marker data, we replace the unknown Π by

Π̂ which maximizes P (X|Π)P (Π) (step 1) and then estimate quantitative genetic
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parameters by maximizing P (Y|Θ, Π̂)P (Θ) (step 2). This is the basis of logical

structure for two-step estimation method introduced in section 3.2.2.

The original objective of the thesis was to estimate heritability. In the more

general context discussed here, the goal of inference is to evaluate the full joint pos-

terior distribution P (Θ,Π|X,Y) or the joint likelihood P (Y,X|Θ,Π), depending on

the philosophical viewpoint taken. These will be evaluated by sampling, using the

Metropolis-Hastings algorithm.

Samples from the marginal distribution P (Θ|X,Y) will then be obtained by

marginalizing, and the associated sampled values of Θ will be used to generate in-

direct sample of heritability. For example, if Θ = (µ, σ2
f , σ

2
e), and the t’th sampled

value is Θ(t) = (µt, σ
2
f,t, σ

2
e,t). Then for the oneway random effects model, the t’th in-

directly sampled value of the intraclass correlation is
σ2
f,t

σ2
f,t+σ

2
e,t

, which when multiplied

by 2 gives the t’th sampled value of heritability, h2 for the full-sib model.

4.1.1 A Hybrid Proposal Algorithm

Let (Θ,Π)(t) be the state at iteration t. We propose the candidate state (Θ,Π)′ from

the proposal distribution q((Θ,Π)′|(Θ,Π)(t)). We assume that the parameters of the

trait are independent of the pedigree configuration and choose independent proposals,

using q((Θ,Π)′|(Θ,Π)(t)) = q(Θ′|Θ(t))q(Π′|Π(t)). At the acceptance/rejection step,
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(Θ,Π)(t+1) is assigned to be either (Θ,Π)′ with acceptance probability ρ, or (Θ,Π)(t)

with probability 1− ρ, where the acceptance probability ρ is given by

ρ = min
(

1,
P (Θ,Π|X,Y)q((Θ,Π)′|(Θ,Π)(t))

P ((Θ,Π)(t)|X, Y )q((Θ,Π)(t)|(Θ,Π)′

)
(4.2)

The Metropolis-Hastings algorithm guarantees that as t → ∞, the marginal distri-

bution of (Θ,Π)(t) will converge to the stationary distribution P (Θ,Π|X,Y).

We observed that when using informative marker distributions, after running the

chain a moderately large number of iterations, whereby the estimate of Π is close to

the true configuration, most proposals Π differing from Π(t) will be rejected because

small changes to the configuration can lead to large differences in the genetic and/or

phenotypic contributions to the likelihood or posterior. After noting this we modi-

fied the proposal distribution such that instead of updating both Θ and Π at each

iteration, a hybrid moving algorithm is used with three different options to propose

the candidate state (Θ,Π)′. In one case we update the parameters of trait Θ only, in

a second case we update the pedigree configuration Π only, and in the third case we

update both Θ and Π. At each iteration we choose from among these three options

with preset probabilities p1, p2 and p3, where
∑3

i=1 pi = 1. This moving algorithm

gives greater efficiency in searching the parameter space by increasing the acceptance

probability ρ. A few selected simulation results are shown below to illustrate the

difference between the two proposal strategies.
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4.1.2 Choice of Prior Distribution

Specification of an appropriate prior distribution is the most substantial aspect of a

Bayesian analysis which differentiates it from a classical analysis. In Equation 4.1,

P (Π) represents the prior distribution on the pedigree configuration. As was men-

tioned in chapter 3, we don’t know the total number of elements in the configuration

space apart from this being given by a finite Bell number. Without knowing the

support, it is not clear what family of distributions on the configuration space might

provide a reasonable prior. We do know one valid distribution - the uniform distri-

bution with all configurations being equally likely. Even in that case, because the

cardinality of the configuration space is unknown, we can only specify the uniform

distribution up to an unknown constant of proportionality. However, looking at Equa-

tion 4.1 and Equation 4.2, it is clear that the unknown constant of proportionality

disappears from both numerator and denominator when we calculate the acceptance

probability ρ. This lack of requirement to know the normalizing constant is responsi-

ble for much of the applicability of the Metropolis-Hastings algorithm in general, and

in Bayesian statistics in particular, as was a motivating factor in the original work of

Metropolis et al. (1953).

The choice of prior distribution P (Θ) for parameters of the phenotypic distribu-

tion P (Y,X|Θ,Π) will depend on the parameters present in the model that we try
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to fit. In the next section we consider the choice of priors when using the one way

random effects model with parameters µ, σ2
f , σ

2
e .

4.2 Implementation of Linear Mixed Model for Single Observation

Recall the one-way random effects model that we used in section 2.2 for the analysis

of the full-sib model with known family memberships,

Yij = µ+ fi + eij

where Yij is the phenotype of the j’th offspring of the i’th family. We assume the fam-

ily effects are i.i.d N(0, σ2
f ), independent of the residual errors eij which are assumed

to be i.i.d. N(0, σ2
e).

4.2.1 Conditional Log-Likelihood Function

Let us start with a single family. Where ni is the number of offspring in the i’th fam-

ily, the phenotypic observations for that family are YT
i = (Yi1, Yi2, ..., Yini

). Under

the assumptions on the model, YT
i has multivariate normal distribution with mean

vector µ1 and covariance matrix Σ = σ2
eI + σ2

fJ, where J = 11T . Σ, and I and J are

all ni × ni matrices.

The patterned structure of Σ allows its inverse and determinant to be written

explicitly as
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Σ−1 =
1

σ2
e

(
I−

σ2
f

σ2
e + niσ2

f

J
)

(4.3)

|Σ| = (σ2
e)
ni−1(σ2

e + niσ
2
f ) (4.4)

This result is quite well known to applied statisticians. Details are provided, for

example, in Searle et al. (1966). The determinant is found by using elementary row

operations to reduce Σ to row echelon form, and then taking the product of the

diagonal entries. The form of the inverse can be verified by showing that ΣΣ−1 = I,

which is a straightforward calculation. Given these results, the contribution to the

overall log-likelihood l(Θ|Y) from the data Yi of the i’th family, conditional on the

configuration, is

li(Θ|Yi) = lnP (yi|µ, σ2
f , σ

2
e) ∝ −

1

2
ln(|Σ|)− 1

2
(yi − µ1)TΣ−1(yi − µ1)

= − 1

2

(
(ni − 1)ln(σ2

e) + ln(σ2
e + niσ

2
f )
)
− 1

2

(∑ni
j=1(yij − µ)2

σ2
e

−
σ2
fn

2
i

σ2
e(σ

2
e + niσ2

f )
(ȳi − µ)2

)
(4.5)

where Θ = (µ, σ2
f , σ

2
e) and ȳi is the sample mean of the observations from family i.

The assumptions of the random effects model imply that, conditional on the con-

figuration, observations from different families are independent, whereby the overall

log-likelihood, conditional on the family configuration, is
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l(Θ|Y) =
I∑
i=1

li(Θi|Yi)

Fixed effects are easily accommodated. Conditional on the family membership, a

mixed model for family i can be written as:

Yi = Xiβ + fi1 + ei

where Xi is a matrix of covariates for family i, and β is a fixed parameter to be

estimated, and 1 is a vector of 1’s of length ni. Assumptions on the random effects

fi and ei are as before.

All that is required to incorporate the fixed effects terms is to replace (yi − µ1)

by (yi − Xiβ) in the first line of Equation 4.5, with the associated adjustments to

yij − µ and ȳi − µ in the second and third lines of that equation.

The model can be extended to the general linear mixed model and expressed in

matrix form as Y = Xβ + Zu + e where β represents a vector of fixed effects and u

represents a vector of random effects. The first element of the vector β is typically

the population mean with the first column of X being a column of 1’s. We assume

that u ∼ MVN(0, G) and e ∼ MVN(0, R). Under this model, Y is also multivariate

normal, with mean Xβ and variance-covariance matrix V = ZGZT +R. In this case,

the log likelihood for the data from family i was given by Equation 2.35 in section

2.3.2 as
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l(β,V|X,Z,Y) ∝ −1

2
ln(2π)− 1

2
ln|V| − 1

2
(yi −Xiβ)TV−1(yi −Xiβ)

For this more general model, the variance-covariance matrix V again has a pat-

terned structure which aids in efficient computation of the inverse and determinant

of V.(Searle et al. (1966))). However, this entails evaluating the inverse and deter-

minants of G and R, and so unless these matrices are of dimension 3 or less, the

underlying calculations need to be done using Gaussian elimination. This precludes

using any but the simplest one way random effects model in the MCMC scheme which

is used below, that is, fitting a full-sib model.

4.2.2 Prior Distribution of Θ

In the one way random effects model, the parameters of the phenotypic distribution

are Θ = (µ, σ2
f , σ

2
e). We have assumed that the components of the prior are indepen-

dent, so that P (Θ) = P (µ)P (σ2
f )P (σ2

e).

The prior distribution for µ has been taken to be a normal distribution N(µo,σ
2
o),

which is from the conjugate family. In many situations when choosing the prior for

a normal mean, one might take σ2
o large, in which case the prior approaches a non-

uniform, albeit improper prior. However, with the one way random effects model

without additional covariates, the overall sample mean ¯̄y =
∑

i

∑
j yij/

∑
i ni will be

a consistent estimator of µ, and so an informative normal prior centred at ¯̄y and with
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small variance seems justified.

Various non-informative prior distributions for variance components have been

suggested in the Bayesian literature and software, including an improper uniform

density (Gelman et al. (2013)), proper distributions such as an inverse gamma (0.001,

0.001)(Spiegelhalter et al. (1996)), and distributions that depend on the data-level

variance (Box and Tiao (1973)). Gelman et al. (2006) explored and made recom-

mendations for prior distributions for variance components. They illustrated that the

choice of non-informative prior distribution can have a big effect on inferences, espe-

cially for problems where the number of groups is small or the group-level variance σ2
f

is close to zero. Furthermore, in those works the family configuration structure was

assumed known, in which case good estimates of the sample and family variances are

available using ANOVA or linear mixed model type estimators as in chapter 2. More

generally, the Bernstein-von Mises theorem (Bickel and Doksum (2006)) indicates

that a reasonable choice of joint prior is given by a multivariate normal, centred at

the MLE, and with covariance equal to the inverse Fisher information.

Without knowledge of the configuration structure, there does not appear to be

a good data based informative prior for the variance components, and in this the-

sis we have used independent non-informative priors for σ2
f and σ2

e , in the form of

independent inverse gamma distributions. We have explored several choices of prior

parameter, in one case using α = 2.001 and β = 2.0, in which case the mean and
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variance of the prior are β
α−1
≈ 2 and β2

(α−1)2(α−2)
≈ 4000. Another choice, recom-

mended by Spiegelhalter et al. (1996) is α = 0.001 and β = 0.001, in which case the

inverse gamma distribution is close to the Jeffrey’s prior, which is proportional to σ−2.

One sees that this is very informative in favour of small variances. In simulations we

found that using either of these inverse gamma parameterizations did not work well

when the initial value for one of the model variances was close to 0, in which case the

sampling algorithm described below often got stuck with a variance in the vicinity of

0.

4.2.3 Moving algorithm for Θ and Π

As we mentioned before, we use independent proposals for the quantitative trait pa-

rameter Θ and pedigree configuration Π. We use the algorithm in Smith et al. (2001)

to propose a new full-sib family configuration given the current configuration. The

method guarantees that each configuration in the total space of all possible config-

urations is accessible with non-zero probability, and that the next state of Π′ only

depends on the current state Π(t). Independent random walk algorithms are used

to propose the new candidate for the trait parameter Θ′ =
[
µ′, (σ2

f )
′, (σ2

e)
′], using a

Gaussian random walk proposal for µ, and a lognormal proposal for variances, where

the logarithm of the variance follows a Gaussian random walk, which ensures that

the proposed variances take non-negative values.
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4.2.4 Simulation Results

We generated phenotypic observations with different heritabilities (0.2, 0.4 and 0.8)

for 759 salmon from 12 full-sib families, with family size varying from 8 to 140, based

on the one way random effects model. In most of the simulations, only two loci were

used, with 11 and 14 alleles respectively. We created 100 batches with population

mean of 1500, variance of family effect of 40000, and residual variances of 360000,

160000, and 60000 according to the true heritability values. We estimated the pedi-

gree structure and parameter of trait (heritability) with the two-step method, and by

sampling the likelihood and posterior. The three estimation methods were applied to

each of the 100 simulation batches for each choice of parameters. The prior distribu-

tion used for mean is normal centered at the sample mean, with a standard deviation

of 10, and non-informative prior distribution have been used for variance components.

We use more basic moving algorithm to propose the new candidate state where both

Θ and Π are changed at each step.

The box plots (Figure 4.1 - 4.6) show the distribution of estimated heritability and

E2, a measure of pedigree accuracy. E2 is the number of unrelated pairs misclassified

as full-sibs in the estimated pedigree. As was shown in chapter 3, this type of error

is much more important than the number of full-sibs classified as unrelated, in terms

of the effect on the estimate of heritability.

The plots show that there is not much difference between the Maximum Likelihood
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Estimate (MLE) and Bayes estimates with the choice of prior used, but that both

are superior to the two-step approach, regardless the pedigree reconstruction or heri-

tability estimation. The plots indicate that the proposed method for simultaneously

estimating pedigree and variance components works quite well, especially when the

true heritability is high. In the case with low heritability h2 = 0.2, corresponding to

an intraclass correlation of only 0.1, the simultaneous MLE or Bayes estimates show

less bias than the two step estimate, but are considerably more variable and prone to

some very small estimates. At higher heritabilities, the variabilities of the two step

and simultaneous estimates are more similar, but the simultaneous estimates show

considerably less bias. In terms of pedigree errors, at least of the important type E2,

the simultaneous estimates of pedigree are superior.

Each simulation batch was run for 106 Monte-Carlo iterations. For these marker

data, pedigree estimates tend to be fairly stable once the pedigree reaches a size of

20-30 families. If on average the number of families at an MCMC iteration is 20, then

on average 20 matrix inverses and determinants are required to evaluate the likelihood

for each of the 106 proposals for each simulation batch. For a full-sib pedigree, there

is no need for numerical inversion or determinant calculation, and the calculations

are straight forward. For any other pedigree structure, extensive simulation would be

impractical.

Some simulations were also carried out using all four available marker loci, to see
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Figure 4.1: Performance of pedigree reconstruction with 2 loci when h2=0.2

Figure 4.2: Heritability estimation with 2 loci when h2=0.2. The variations of MLE
and Bayes methods are larger than two-step, but the mean and median of estimated
values are closer to the true heritability.
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Figure 4.3: Performance of pedigree reconstruction with 2 loci when h2=0.4

Figure 4.4: Heritability estimation with 2 loci when h2=0.4
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Figure 4.5: Performance of pedigree reconstruction with 2 loci when h2=0.8. A
significant improvement has been made by using MLE or Bayes method when the
true heritability is large.The E2 values are significantly reduced. The phenotypic
variances among families provides lot of information on pedigree reconstruction.

Figure 4.6: Heritability estimation with 2 loci when h2=0.8. The estimation results
are better when we use MLE or Bayes method. The median or mean of estimated
values are much closer to the true value.
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Figure 4.7: Performance of pedigree reconstruction with 4 loci when h2=0.4.

the effect of having a very good estimated pedigree on the estimate of heritability.

Figure 4.7- 4.8 show the results with true heritability equal to 0.4, and is representative

of results with other heritability values. With the 4 informative markers used, in

repeated runs, the estimated pedigree using genotypic data only, has only 7 or 8 out of

756 individuals incorrectly classified. This means that when carrying out the two-step

procedure, the pedigree used is very close to the true pedigree. The two step procedure

estimates the phenotypic parameters using a method which should be close to optimal

- the one way random effects model with REML - when the pedigree is known. It

is remarkable that the estimates from the simultaneous methods which randomly

explore the parameter space should be so close to those from the two-step model.

The two-step procedure gives just slightly less variable estimates than the sampled

likelihood, with the mean and median of the estimates being essentially identical.

The simultaneous estimators maximizing the posterior are a bit more variable.
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Figure 4.8: Heritability estimation with 4 loci when h2=0.4. The estimation results
are quite similar with all three methods when 4 loci used.

4.2.5 Real Data Analysis Results

We ran the proposed Markov chain Monte Carlo (MCMC) method for 3 × 106 iter-

ations with different levels of genetic marker information (two loci, and four loci).

Each run began at the all-unrelated configuration having 318 full-sib groups of size 1.

We used the sample mean and the half of the sample variance as the starting points

of the sub-parameters (µ, σ2
f , σ

2
e) for the quantitative trait. The proposal distribu-

tions for the three parameters were as in the simulations described in section 4.2.3.

We estimated the pedigree structure and heritability by sampling the likelihood and

posterior. The prior distribution used for µ is normal centered at the sample mean,

with a variance of 100. This informative prior is justified by the law of large numbers

which says that the overall sample mean will converge to the common population
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mean µ. We explored several choices for the prior distributions of the variance com-

ponents (σ2
f , and σ2

e). We used independent priors for the variance components in all

cases. We explored the use of improper priors, inverse gamma with both parameters

equal to 0.001, which was recommended by Spiegelhalter et al. (1996) and for which

neither the mean nor the variance is finite, and inverse gamma with α = 2.00001 and

β = 2.0, for which the mean and variance are finite. Then, we obtained the sampled

intraclass correlation values from sampled variance components, and generated the

sampled heritabilities by multiplying ICC by 2, as required for a full-sib model.

We note that when independent inverse gamma priors with identical parameters

are used for the variance components, then a transformation of variables shows that

the prior for the ICC has a beta distribution with mode at 1/2, which is an informative

prior. Although the IG(0.001, 0.001) has been proposed by Spiegelhalter et al. (1996)

as non-informative for variance components, in reality, that distribution favours small

variance components.

A few results are summarized in Table 4.1. This shows the maximum likeli-

hood estimates (MLE) and maximum a posteriori estimates (MAP), which are the

heritability estimates where the likelihood or posterior for variance components are

maximized over the 3 × 106 iterations. We also include the estimated heritability

after fitting a linear mixed model with known pedigree, and the estimate from the

two-step procedure, where pedigree is first estimated using marker data only, after
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Table 4.1: Estimation of heritability from different methods

Mixed Model With 4 Loci With 2 Loci
Time With Known Proposed Method Proposed Method
Point Pedigree Two-Step MLE MAP Two-Step MLE MAP

1 0.3234 0.3167 0.4620 0.3454 0.1705 0.3460 0.2126
2 0.3459 0.3249 0.3320 0.3317 0.1891 0.3459 0.3008
3 0.5805 0.5990 0.5116 0.5602 0.2941 0.5650 0.3750
4 0.5456 0.5583 0.5996 0.4640 0.3326 0.5250 0.5222

which a mixed model is fit conditional on the estimated pedigree. These two methods

are included for comparative purposes.

The two-step method provides a reliable estimation of heritability when we have

enough marker information to accurately estimate the pedigree, as it estimates the

variance components conditional on the reconstructed pedigree, which is close to the

true pedigree with four informative markers. Our proposed MCMC method is de-

signed to sample from the joint likelihood or posterior distribution using both marker

data and phenotypic observations, and estimate the pedigree and variance compo-

nents simultaneously. Even when using just two loci, when the genetic marker data is

insufficient to provide a very accurate pedigree estimate, the sampling method is still

able to provide a reasonable estimate of heritability, which is in line with the sim-

ulation results of section 4.2.4. The Bayesian estimates in Table 4.1 used IG(0.001,

0.001) priors for the variance components.

As opposed to the MAP which is presented in Table 4.1, and which is the ana-

logue of the MLE but with prior included, most Bayesian analyses focus instead on
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the posterior mean or median, with the posterior mean being the Bayes estimator un-

der squared error loss, and a Bayesian analysis often also reports a credible interval.

Additionally, unlike the MLE, the MAP estimate is not invariant under reparameter-

ization - the MAP estimate of heritability can’t be computed from the MAP estimate

of the variance components. We are not able to find the MAP estimate, posterior

mean or median of heritability directly, since we don’t generate a Markov chain from

the posterior distribution of heritability. In this situation, we think that the plugged-

in MAP value provides a reasonable estimation of heritability.

In an attempt to construct a sample of independent values of heritability, every

1000’th value of the variance components were selected from 2 × 106 iterates, after

removing an initial transient of 106 iterates, and the heritability was calculated using

the sampled variance components. The mean and median of posterior distributions

are listed in the Table 4.2, again using IG (0.001, 0.001) priors for variance compo-

nents.

In general, the proposed method with simultaneous estimation of variance compo-

nents and pedigree provides a reasonably accurate estimate of heritability even when

only two loci are used, regardless of whether the MLE or MAP are reported.
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Table 4.2: Mean and median of posterior distribution of heritability

With 4 Loci With 2 Loci
Time point Mean Median Mean Median

1 0.2876 0.2676 0.1607 0.1454
2 0.2748 0.2558 0.2499 0.2307
3 0.4102 0.3894 0.2689 0.2478
4 0.4338 0.4142 0.3379 0.3164

4.2.6 Assessing Convergence When Using a Single Chain or Multiple

Chains

Establishing convergence of Markov chain Monte Carlo (MCMC) is one of the most

important steps of the Bayesian analysis. In the thesis we have generally made cal-

culations based on single long samples from a likelihood or posterior distribution.

We used standard convergence diagnostics - trace plots and sample autocorrelation

function - to assess the convergence of the sampler, and only used runs for which the

diagnostics suggest convergence and independence. Multiple chains (with dispersed

starting points) can be used for estimation as well. However, we didn’t find a signifi-

cant difference between these two methods.

When we use multiple chains, we use an ANOVA type procedure to assess conver-

gence, which is similar to the Gelman-Rubin diagnostic (Gelman and Rubin (1992)),

but we modify the procedure slightly in order to select a set of chains on which to

carry out inference.

The following is a representative analysis using phenotypic observations at time
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point 4, and genotypes at 4 loci. The goal is to draw independent samples from the

posterior distribution of ICC, which is the half of heritability in the full-sibs family

structure. An informative prior N(X̄, 10) was used for µ, and IG(0.001, 0.001) priors

for each of the variance components.

To assess stability with respect to the starting point, 10 sets of starting iterates for

the variance components were generated by drawing two variance components inde-

pendently from an uniform distribution on (0, V ), where V was the sample phenotypic

variance. For each of the 10 replicates, the MCMC posterior sampling algorithm was

run for 3 × 106 iterations, and these were subsampled to get 200 points, after drop-

ping an initial transient. Figure 4.9 shows the resulting 2000 sampled values of ICC,

together with the sample partial autocorrelation function, and a histogram.

It is clear that sampler was stuck in two of the 10 replicates, and no formal as-

sessment is needed to conclude that these combined 10× 200 points do not represent

a sample of 2000 points from a stationary distribution. However, it is instructive to

consider a one way anova with run number (1 through 10) as a factor. The logarithm

of ICC was used as the outcome in the ANOVA, after looking at normal QQ plots of

residuals for untransformed ICC, and log, logit and square root transforms.

The ANOVA output in Table 4.3 suggests that after removing runs 3 and 6, the
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Figure 4.9: ICC with 10 replicates started at random points. top: sampled ICC;
middle: estimated partial autocorrelation function; bottom: estimated posterior dis-
tribution
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Estimate Std. Error t p-value
Intercept -1.58 0.06 -25.0 <.001
run 2 -0.04 0.08 -0.4 0.63
run 3 1.08 0.08 12.1 <.001
run 4 -0.03 0.08 -0.4 0.67
run 5 -0.11 0.08 -1.2 0.21
run 6 1.47 0.08 16.5 <.001
run 7 -0.04 0.08 -0.5 0.61
run 8 0.03 0.08 0.4 0.66
run 9 -0.08 0.08 -0.9 0.34
run 10 -0.05 0.08 -0.6 0.55

Table 4.3: ANOVA of log(ICC) on run number 1-10

remaining ICC’s will be from a stationary distribution. However, the variance is in-

flated by runs 3 and 6, and a second anova (not shown) after removing those two

runs indicates that samples from run 5 are significantly different from the remaining

7 runs. A third analysis, after removing runs 3, 5 and 6 is summarized in Figure 4.10

and Table 4.4. There is no discernible pattern in the 1400 sampled values of ICC. The

partial autocorrelation function supports a conclusion of independent observations,

and the ANOVA of log(ICC) on run shows no evidence of run to run variation, with

an overall F-test p-value equal to .066. The median and mean of these 1400 sampled

ICCs are .205 and .214, respectively.

As we mentioned, all the results presented in previous section are calculated based

on single long samples from a posterior distribution or likelihood. Figure 4.11 is in-

structive of the case where a single long sample is used, and shows the trace, PACF

and histogram using 30,000 observations sub-sampled from run 10 alone.
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Estimate Std. Error t p-value
Intercept -1.58 0.03 -55.36 < 0.001
run 2 -0.04 0.04 -1.05 0.29
run 4 -0.03 0.04 -0.93 0.35
run 7 -0.04 0.04 -1.12 0.26
run 8 0.03 0.04 0.96 0.33
run 9 -0.08 0.04 -2.11 0.03
run 10 -0.05 0.04 -1.32 0.18

Table 4.4: ANOVA of log(ICC) on run number 1, 2, 4, 7, 8, 9, 10

0 5000 10000 15000 20000 25000 30000

0.
0

0.
2

0.
4

0.
6

IC
C

2 4 6 8 10 12 14

0.
00

0.
04

Lag

P
ar

tia
l A

C
F

ICC

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
20

00
60

00

Figure 4.11: 30,000 sampled values of ICC from run 10.
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The trace plot visually shows no evidence of non-stationarity. However, the es-

timated PACF shows a lag 1 value substantially greater than 0, indicating non-

independence, and compatible with an AR(1) process. After further sub-sampling

by taking every 10’th of the last 20,000 observations, we arrive at Figure 4.12, which

is compatible with a random sample of 2000 points from a stationary distribution.

The median and mean of these ICC values are .193 and .205, respectively.

In this case, as seen in 4.13, there are minimal differences among the posterior dis-

tributions regardless of sampling scheme - multiple samples, one long sample showing

some dependence, or a single sample after further sub-sampling. The median esti-

mates of ICC, for example, are .205 using multiple chains, and .193 for a single long

chain with or without sub-sampling to ensure independence. The additional sub-

sampling is an attempt to ensure the nominal level of credible interval. In this case

the empirical 95% credible intervals for ICC are similar for all methods - (.079,.393) for

the single chain without sub-sampling, (.079, .404) for single chain with sub-sampling,

and (.083, .397) using multiple chains.

4.3 Extension to Multiple Observations

The model developed for a single time point can be extended to include observations

at multiple time points. For computational purposes, it is essential to maintain a

covariance structure for which the covariance matrix has explicit inverse and deter-

minant. One approach is to define a simple model that assumes the observations at

different times are conditionally independent given the pedigree.
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Take the example of observations at two time points. Let Yijk be the observation

on subject j in family i at time k ∈ (1, 2), the model can be expressed as

Yij1 = µ1 + fi1 + eij1 (4.6)

Yij2 = µ2 + fi2 + eij2 (4.7)

We also assume that all random terms at times 1 and 2 are independent, and that

the family effects and additive error terms are independent at each time point.

Fixed effect terms are easily accommodated. The population means µ1 and µ2 can

be replaced by terms such as Xβ1 and Xβ2. We allow for different model parameters

at times 1 and 2, and the model can be generalized to several time points.

The observations at times 1 and 2 are conditionally independent given the pedi-

gree. However, they are dependent when integrated over the pedigree. This means

that in the Metropolis-Hastings (MH) sampling algorithm, when a configuration is

proposed, the joint conditional likelihood, conditioned on the proposed pedigree, is

calculated using observations at times 1 and 2. This uses the same proposed con-

figuration at each time point, rather than running two independent runs of the MH

algorithm, one for the time 1 observations, and one for the time 2 observations.
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This model was fit to the observations at times 1 and 2 of our merged data, using

four marker loci, and sampling from the likelihood. The MLE of heritabilities for the

joint likelihood at times 1 and 2 are 0.3076 and 0.3901. The traces and ACF’s for

both times didn’t show any patterns to suggest lack of convergence, or dependence of

the sampled observations. However, in comparing with the estimates from running

independent chain at each time point (Table 4.1), the joint estimation doesn’t offer

any improvements.

An alternative approach to maintain the covariance matrix in a special structure

admitting explicit calculations of inverse and determinant is to use a one way mixed

effect model conditioning an observation at a time point on observations for the same

individual at one or more previous times. We still use the first two time points for

illustration.

Let Yijk be the observation on subject j in family i at time k ∈ (1, 2). A model

with independent increments, but with measurement at the second time point being

measurement at time 1 plus an increment is as follows:

Yij1 = µ1 + fi1 + eij1 (4.8)

Yij2 = βYij1 + µ2 + fi2 + eij2 (4.9)
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We assume that all random terms at times 1 and 2 are independent, and that

the family effects and additive error terms are independent at each time point. At

the second time point, conditional on the observation at the first time point, that is

Yij1 = yij1, the model at time 2 has the same block diagonal covariance structure as

the model at time 1. This model uses a regression approach, regressing the observa-

tion at time 2 on time 1.

Using this model and sampling with likelihood, the MLE of heritability at first

times 1 and 2 are 0.2773 and 0.2093, respectively, where the estimate of heritability

at time 2 can be expressed as

ĥ2
2 = 2× ÎCC = 2×

( β̂2σ̂2
f1

+ σ̂2
f2

β̂2σ̂2
f1

+ σ̂2
f2

+ β̂2σ̂2
e1

+ σ̂2
e2

)
(4.10)

The smaller estimate at the second point reflects that the time two increment has

estimated family variance σ̂2
f2

which is essentially 0. This is not a bad estimation of

σ2
f2

. The box plots (Figure 4.14) of residuals from the regression of time 2 on time 1

observations, by family, show that the residuals do not retain much variation between

the different families.

The estimated regression coefficient (β̂) from fitting the model with regression of

Yij2 on Yij1 is 1.5096. This is the estimated value of β where the overall likelihood, now

a function of 4 parameters (β, µ2, σ2
f2

and σ2
e2

) plus the configuration, is maximized.

Therefore, the estimated population mean at the second time point can be computed
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Figure 4.14: The box plots of residuals for each family

as

Ê(Y2) = 1.5096× Ê(Y1) + Ê(µ2) (4.11)

Using this equation, the estimated population mean at the second time point is

1828.72. This turns out to be a reasonably good estimate, as the sample mean of phe-

notypic observations at time 2 is 1837.242. Our estimate from the regression model

is within 10 of the sample mean of Y2.



Chapter 5

Conclusions and Further Suggestions

5.1 Conclusions

Estimates of the genetic variance of quantitative traits in a population are important

because they inform us about its potential ability to evolve in response to novel selec-

tive challenges. This corresponds to one of Brookfield’s definitions of the evolvability

of a population:“a description of its current standing crop of genetic variability, and

the consequence of the extent and nature of this variation for the population’s ability

to respond to current selective pressures” (Brookfield (2009)). The analysis of a series

of relationships between relatives provides the basis for partitioning the phenotypic

variance into its elementary components. In practice, we are often confronted with

difficulties. Some of the variance is essentially beyond reach in a statistical sense,

such as the variance caused by higher-order epistatic interactions. Nevertheless, with

appropriate experimental designs, most of the fundamental sources of variance (ad-

ditive and dominance genetic variance, and environmental variance due to common

maternal environments) can be estimated to a good degree. Most practical appli-

cations of quantitative genetics have been concerned with only the additive genetic

component of the phenotypic variance, other components are treated as noise. The

145
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ratio σ2
A/σ

2
Y has come to be known as the narrow-sense heritability of a trait.

The parent-offspring regression method is commonly used for estimating heritabil-

ity since the desire to obtain a heritability estimate stems from a particular interest

in the resemblance between parent and offspring phenotypes, so it is natural that this

resemblance should be measured directly. However, in the situation where the infor-

mation of both parent and offspring generations are not available, the analysis of sibs

provides an alternative to estimate quantitative genetic parameters. The analysis of

variance (ANOVA) is designed to deal with these kinds of data. The total phenotypic

variance can be partitioned into within family and among family components, both

of which can be interpreted in terms of genetic covariances between relatives.

In section 2.2, we introduced a procedure for the estimation of heritability with a

full-sib family design which is appropriate for our our hybrid data set that includes

only full-sib or unrelated relationships. When the natural population presents the

investigator with highly unbalanced family sizes and fragmentary data from numer-

ous kinds of relationships, maximum likelihood and restricted maximum likelihood

estimators with a general mixed model are preferred, since they don’t place any spe-

cial demands on the design or balance of data and they can be obtained readily for

any arbitrary pedigree of individuals. We illustrated how ML and REML procedures

can be used to estimate variance components and how these estimates differ, using

a simple example in section 2.3. We then introduced the ML and REML equations

for variance component estimation under the general mixed model. At the end of
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chapter 2, we presented the estimates of heritability for measurements at each time

point in the hybrid data set. These can be considered as the best estimation results,

and they can be used as the bench mark for evaluating other estimation procedures.

All traditional techniques for estimating variance components that were intro-

duced in chapter 2 require knowledge of the relationships among the individuals

recorded. Except in humans, some animals in zoological parks, and some domesti-

cated species, relationships of free-ranging individuals are generally unknown, and

even in the best situations, paternity is often uncertain. In chapter 3, we showed

how to estimate variance components in the the absence of direct observations on

relationships. Motivated by the variance decomposition formula, we defined a heri-

tability like object in the mixture model by consideration of the one way fixed effects

ANOVA model, which is the analogue of the Gaussian mixture model when com-

ponent memberships are known. The expectation-maximization algorithm can be

used to estimate the parameters in the Gaussian mixture model. However, when

the number of families is completely unknown and the distributions of phenotypic

observation of each family are indistinguishable, this method doesn’t provide a good

estimation of heritability. We also used the classic clustering method K-means to

group the individuals first, and then fitted random effects model to estimate the vari-

ance components conditional on the estimated family memberships. The associated

grouping into full-sib families was not accurate, leading to poor estimates of variance

components. Estimating heritability with unknown pedigree is very challenging, but
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we still believe that phenotypic observations carry some information on the pedigree

structure, and that they should be incorporated in the estimation procedure.

With the development of highly polymorphic molecular markers (especially mi-

crosatellies), molecular-based tools for inferring genetic relationships have become

popular. In section 3.2, we explained a detailed two-step procedure for estimating

variance components: first, families of sibs are reconstructed using a Markov chain

Monte Carlo (MCMC) based method to maximize the configuration likelihood using

marker data, and second, the reconstructed sibships are used to estimate variance

components by fitting the mixed model. Using the MCMC method that was devel-

oped by Smith et al. (2001), the pedigree was reconstructed with different levels of

genetic marker information (two loci, and four loci). The estimation results clearly

indicate that with a more accurately estimated pedigree, the two step estimated her-

itabilities are closer to the best estimation results using a mixed model with known

pedigree. We noted that unrelated pairs incorrectly classified as full-sib pairs are more

detrimental to the two-step estimation procedure than are full-sib pairs incorrectly

classified as unrelated. In particular, a large true full-sib group split into two moderate

sized but different full-sib groups, has very little impact on the estimate of heritability.

The performance of two-step method heavily depends on the reconstructed pedi-

gree. With insufficient marker information, the accuracy of estimation is not guaran-

teed. Therefore, we developed a hybrid Markov chain Monto Carlo procedure, where
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marker information (X) and phenotypic observations (Y) can be used jointly and si-

multaneously to estimate both the pedigree and heritability. We started with develop-

ment of the joint posterior distribution P (Θ,Π|X,Y) ∝ P (Y|Θ,Π)P (X|Π)P (Θ)P (Π)

and used the Metroplis-Hastings algorithm to generate values of (Θ,Π), where Θ rep-

resents the parameter of the quantitative trait and Π is the pedigree configuration.

The associated sampled values of Θ from the marginal distribution P (Θ|X,Y) were

used to create indirect samples of heritability.

Restricting to full-sib or unrelated pedigrees, the random effects model and gen-

eral linear mixed model were considered, providing the conditional distribution of

P (Y|Θ,Π). In section 4.2, we discussed the details of this implementation. The pat-

terned structure of covariance matrix of Y allows us to find the inverse and determi-

nant explicitly. Given this result, we were able to write the conditional log-likelihood

function of l(Θ|Y). We could develop a robust method to deal with non-Gaussian

family effects or errors, especially long tailed distributions. We could substitute a

multivariate t-distribution for the multivariate normal, and this accommodates the

same pattern in the covariance matrix. Therefore, we are still able to compute the

likelihood. For a Bayesian analysis of the random effects model we applied indepen-

dent prior distributions for each of the sub-parameters (population mean, variance of

family effects and variance of errors) in the Θ. An informative normal distribution

was selected as the prior distribution of µ, centered at overall sample mean of the

observations with small variance. Various prior distributions for variance components
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(σ2
f , and σ2

e) were discussed, and we explored the use of non-informative/improper

uniform and inverse gamma (0.001, 0.001) priors to fit the model.

Box plots for the simulation study showed that the MLE or Bayes estimates were

superior to the two-step approach in the situation where insufficient marker informa-

tion was used. The proposed simultaneous estimation procedure worked quite well,

especially when the true heritability was high. From the analysis for the real hybrid

data, when only two marker loci were used, compared with the two-step method,

the MLE and MAP with the simultaneous estimation procedure were closer to the

estimate of heritability from fitting a mixed model with true pedigree. Since the

MAP estimate is not invariant under reparameterization, the MAP of heritability

can’t be obtained directly from MAP of variance components, and so we examined

the mean and median of samples from the posterior distribution. When four loci were

used and independent inverse gamma (0.001, 0.001) prior distributions were chosen

for variance components, the sampling algorithm behaved well in terms of the con-

vergence diagnostics, and there were no substantial differences from estimates using

non-informative priors.

We have extended our method for multiple observations. First, we assumed the

observations at different times are conditionally independent given the pedigree, and

this setup promoses the covariance matrix has explicit inverse and determinant. We

used the first two time points as the example and estimated the heritabilities at times
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1 and 2 simultaneously by maximized the joint likelihood of both observations. An-

other approach to maintain the covariance matrix has explicit inverse and determinant

was to regress the observation at time 2 to time 1 with an independent increment.

However, the results of joint estimation method or regression approach with multiple

observations didn’t indicate any significant improvements compared with estimation

independently for each time point.

5.2 Further Suggestions

There are a number of areas for further exploration. The proposal used had inde-

pendent random walks on the log scale for variance components. The speed at which

the parameter space is explored is dependent on the variance of the innovation in

the random walk. A more extensive investigation of the influence of the variance is

needed. There were related issues which arose when a variance component came close

to zero, after which the sampler was not able to escape from such a local point. We

plan to explore the use of so-called independence chains for proposals, to see if as

sampler can be developed which is not so prone to being stuck near local optima.

In the Bayesian context there are a number of questions related to the choice of

prior. If there is a supposition as to the value of the underlying heritability, say in the

form of an informative beta prior, what are the informative joint priors on variance
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components which are compatible with the prior on heritability. Also, we used inde-

pendent priors on the pedigree. Suppose that there is information on the pedigree -

for example a fixed number of sires and dams being used in a mating experiment, but

with parentage unknown, such as might happen in a fisheries context. More generally,

suppose that there is a prior on the number of families. How does a prior distribu-

tion on family memberships follow, keeping in mind that feasible configurations must

satisfy genetic constraints on alleles?

The concept of heritability was developed in the context of a scalar quantity. Are

there related concepts which are appropriate to multivariate traits? In the one-way

random effects model, the ICC, which is the ratio of the family variance to the total

variance, could be generalized by replacing variance by the generalized variance - the

determinant of the covariance matrix. In this way there is an analogue of the wide

sense heritability in the multivariate case, at least in a statistical sense, but does it

have biological relevance.

Often when serial measurements on a characteristic are made, a growth curve

model is fit, such as a four or five parameter logistic model. Can such models be

developed which allow for between and within family variation? This might be ac-

complished through some form of hierarchical model whereby the parameters of the

growth curve represent a level in the hierarchy that incorporates family effects. Con-

ditional on the parameters, time series of observations for individuals could then be
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based on a growth curve model. With unknown pedigree, sampling from a likelihood

or posterior would be very challenging computationally.



Appendix A

Expectiations, Variances and Covariances of Compound

Variables

A.1 The Delta Method

Consider an arbitrary expression f , which is a function of x. Performing a Taylor

series expansion around an arbitrary constant c,

f = f(c) + (x− c)∂f(c)

∂x
+ (x− c)2∂

2f(c)

2∂x2
+ (x− c)3 ∂

3f(c)

3 · 2∂x3
+ ... (A.1)

where f(c) refers to the function evaluated at x = c, and the partial derivatives are

first evaluated with respect to x, after which c is substituted for x.

Consider the case where x is a random variable and we wish to determine the

expected value of the function f averaged over all x. Generally speaking, the mean

value of a function is only equal to the function evaluated at the mean of x in the

special cases in which the function is linear in x or x is a constant. Hence, we cannot

just directly substitute the sample mean when trying to evaluate the mean of some
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function of the data. However, we can get around this problem by expanding f about

the mean of x, using Equation 1 with c = µx, and then take the expectation,

E(f) = E
[
f(µx) + (x− µx)

∂f(µx)

∂x
+ (x− µx)2∂

2f(µx)

2∂x2
+ ...

]
= f(µx) + E(x− µx)

∂f(µx)

∂x
+ E(x− µx)2∂

2f(µx)

2∂x2
+ ... (A.2)

By the definition of a mean, E(x− µx) = 0, and E(x− µx)2 is the expected variance

of x, σ2(x). Thus, ignoring third and higher-order terms,

E(f) ' f(µx) + σ2(x)
∂2f(µx)

2∂x2
(A.3)

A.1.1 Expectation and Variance of Complex Variables

The same approach can be used to derive expressions for the expectations of func-

tions that depend on more than a single variable. In this case, f must be expanded

around the means of each of component variables. With two componenet variables,

for example, an expansion around µx and µy leads to
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E(f) = f(µx, µy) + σ2(x)
∂2f(µx, µy)

2∂x2

+ σ(x, y)
∂2f(µx, µy)

∂x∂y
+ σ2(y)

∂2f(µx, µy)

2∂y2
+ ... (A.4)

The similar approach can be used to obtain an expression for the variance of a

function. Again expanding around c = µx, and substituting for f from Equation 7.1

σ2
f = E{[f − E(f)]2}

= E

{[(
f(µx) + (x− µx)

∂f(µx)

∂x
+ ...

)
−
(
f(µx) + σ2(x)

∂2f(µx)

2∂x2
+ ...

)]2
}

= E

{[
(x− µx)

∂f(µx)

∂x
+ [(x− µx)2 − σ2(x)]

∂2f(µx)

2∂x2
+ ...

]2
}

(A.5)

Ignoring all but the two lowest-order terms, and noting that E(x− µx) = 0,
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σ2
f ' E[(x− µx)2]

[∂f(µx)

∂x

]2

+ 2E
[
(x− µx)3

][∂f(µx)

∂x

][∂2f(µx)

2∂x2

]
− 2E(x− µx)σ2(x)

[∂f(µx)

∂x

][∂2f(µx)

2∂x2

]
+ E

[
(x− µx)4

][∂2f(µx)

2∂x2

]2

− 2E
[
(x− µx)2

]
σ2(x)

[∂2f(µx)

2∂x2

]2

+ σ4(x)
[∂2f(µx)

2∂x2

]2

= σ2(x)
[∂f(µx)

∂x

]2

+ 2µ3x

[∂f(µx)

∂x

][∂2f(µx)

2∂x2

]
+
[
µ4x − σ4(x)

][∂2f(µx)

2∂x2

]2

(A.6)

where µ3x = E[(x− µx)3] and µ4x = E[(x− µx)4] are the third and fourth moments

about the mean of x.

When f is a function of two variables, an approximation often used in place of

Equation 7.6 is obtained by ignoring all but the first-order terms. Then, if f is a

function of n variables,

σ2
f '

n∑
i=1

n∑
j=1

σ(xi, xj)
( ∂f
∂xi

)( ∂f
∂xj

)
(A.7)

where σ(xi, xj) is a variance when i = j and a covariance otherwise, and the partial

derivatives are evaluated at the expectations for all underlying variables.
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A.1.2 Expectations and Variances of Ratios

Letting f = u/v, and ∂f/∂u = v−1, ∂f/∂v = −u/v2, giving ∂2f/∂u2 = 0, ∂2f/∂v2 =

2u/v3, and ∂2f/∂u∂v = ∂2f/∂v∂u = −1/v2. Evaluating these second-order partials

at µu and µv (the expected values of u and v), Euqation 7.4 gives

E(
u

v
) ' µu

µv

(
1 +

σ2(v)

µ2
v

− σ(u, v)

µuµv

)
(A.8)

Likewise, from Equation 7.7,

σ2(u/v) ' σ2(u)
( 1

µv

)2

+ σ2(v)
(µu
µ2
v

)2

− 2σ(u, v)
( 1

µv

)(
− µu
µ2
v

)
=
(µu
µv

)2(σ2(u)

µ2
u

− 2σ(u, v)

µuµv
+
σ2(v)

µ2
v

)
(A.9)

Both Equation 7.8 and 7.9 are approximations since ∂3f/∂v3 6= 0.

A.2 Sample Mean and Variances of Regression Coefficients

The least-squares regression coefficient is given by b = u/v, where u = Cov(x, y) and

v = Var(x). Since Var(x) and Cov(x, y) are unbiased estimators of the variance and

covariance, µu = σ(x, y) and µv = σ2(x). Under the assumption that x and y are

bivariate normally distributed, we can also obtain the variances and covariance of u

and v:



159

σ2(u) =
σ2(x)σ2(y) + [σ(x, y)]2

n
(A.10)

σ2(v) =
2σ4(x)

n
(A.11)

σ(u, v) =
2σ2(x)σ(x, y)

n
(A.12)

(A.13)

Expression for the variances and covariances of moments about the origin and ex-

pression for the variances and covariances of other bivariate moment can be found in

Stuart et al. (1963).

Subsituting these equations into Equation 7.8, we get

E(b) = E(
u

v
) ' µu

µv

(
1 +

σ2(v)

µ2
v

− σ(u, v)

µuµv

)
=
σ(x, y)

σ2(x)

[
1 +

2σ4(x)/n

(σ2(x))2
− 2σ2(x)σ(x, y)/n

σ(x, y)σ2(x)

]
=
σ(x, y)

σ2(x)
(A.14)

In the similar way, substituting these equations into Equation 7.9, we obtain,

σ2(b) = σ2(
u

v
) '

(µu
µv

)2(σ2(u)

µ2
u

− 2σ(u, v)

µuµv
+
σ2(v)

µ2
v

)
=
σ2(y)(1− ρ2)

nσ2(x)
(A.15)
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where ρ = σ(x, y)/[σ(x)σ(y)] is the correlation coefficient.



Bibliography
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