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Abstract

Location science is used to determine the optimal geographical placement of primary

care resources with operations research models. In determining the optimal place-

ment, we account for the objectives of both patients and physicians. Patients prefer

to be close to clinics to ensure access and physicians typically prefer to have minimum

panel sizes to ensure consistent appointments. These objectives and the methods used

to address them differ between daytime and after-hours settings. Three approaches

are considered to address both time settings: independent, sequential, and simulta-

neous. The independent approach is based on the p-Median problem, and the other

two approaches use modified forms of the p-Median. The models are generalized and

applied to census data from Nova Scotia. Three case studies are examined using

Canadian census data from Halifax, Cape Breton, and modified data in Cape Breton.

The regular-to-after-hours approach is found to most frequently be the worst, while

the simultaneous approach yields the best results while considering facility-sharing

constraints.
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Chapter 1

Introduction

In most countries, primary healthcare is provided by general practitioners (GPs). Pri-

mary healthcare is the first step of treatment for most non-emergency health issues,

and it is important for patients to be able to easily access primary health services.

Access to health services can be measured in many ways (e.g., geographically, finan-

cially, or timeliness), but when planning health resource locations, distance between

patients and services is a typical measure of access [2]. Normally patients have greater

difficulty accessing health services as distance increases, thus it is valuable to patients

to reduce distance to services. Distance-based access can be optimized by modelling

different objectives, such as minimising the average distance between patients and

services, minimising the maximum distance travelled by any patient, or maximising

the percentage of patients within an acceptable distance from the nearest service. Op-

timised results from models can be used to compare to real-world systems or policies,

or to set goals for system improvement.

It is possible to predict locations where GPs or primary care practices (PCPs)

will most effectively improve patient access based on these measures. In regions

where there is a shortage of GPs, this represents an opportunity to determine where

recruited physicians will be most effective at meeting need for services. It is also a

common problem in many countries that certain types of areas such as rural or urban

hot spots are underserved per capita by primary care services [3]. In these cases,

it is also valuable to determine optimal placement of existing or additional GPs to

promote balanced access.

While meeting demands for patient service is crucial, it is also important to con-

sider physician preferences for practice location, hours of service, and style of practice

and the trade-offs with patient preferences for access [4]. For example, physicians typ-

ically prefer a large panel size to ensure consistent work, but not so large as to be

overwhelming; however, patients may prefer to be in smaller panels so their GPs have

1
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more frequent appointments. GPs may also prefer a collegial environment, which is

obtained by working in PCPs with other physicians rather than independently. This

practice style has the potential to improve access to patients through shared delivery

of services or coverage of after-hours clinics.

In many areas, primary care services are provided differently during daytime and

nighttime hours. Typically, when night services are offered by PCPs, physicians will

pool panels at night to allow them breaks from working while covering for each other

[5, 6]. While this means a greater panel size, fewer physicians, and greater distances

for patients, this is typically acceptable since the expectation of services during night

is lower and fewer patients use them. While there are optimization models for primary

care service locations, none are known which account for dual services such as the

day and night primary care system. Usually, only day services are considered, or day

and night hours are considered separately. By accounting for both service periods

within the same model, trade-offs between patient and provider preferences can be

considered and improvements to patient and physician satisfaction can be obtained.

The overarching research question to be informed by this thesis is “How do we

optimally assign GP location so as to maximally satisfy patient and physician needs

during both day and night services?”. Specifically, this thesis will inform a study of

primary care location considerations in Nova Scotia, Canada. Nova Scotia faces a

shortage of family physicians and needs to recruit more (512 between 2016 and 2025

according to provincial plan) [7, 8]. It is known that some areas are more poorly

served by physicians (such as rural areas, urban hot spots) [3]. Location of health

services such as PCPs has an impact on patients, requiring travel time and expense

and potentially limiting access to services, and it is possible to improve patient access

by planning practice locations. By planning practice location in an optimized fashion,

gains can be made to patient access and related health service outcomes.



Chapter 2

Literature Review

A key reason for reviewing the literature is to inform the methodological approach to

this research, to compare the appropriateness of different approaches, and to reduce

selection bias introduced from favouring certain approaches.

Metrics of importance to Nova Scotians will be considered. These may include

access, average/maximum travel time, coverage, panel size, equity, and population

participation in health services [9]. The literature review will support the identifica-

tion of measurements appropriate for the selected metrics.

The review will be organized in this chapter as follows:

• Search Strategy

• Paper Selection

• Review of highlighted operations research papers

• Review of relevant healthcare literature

• Synthesis of review findings

2.1 Search Strategy

Relevant studies were identified by searching the following online databases: Google

Scholar, Web of Science, and PubMed. Search terms included “primary health

care”, “primary care”, “access to health care”, “primary care location planning”,

and “matching patient physician preferences”. Forward and backward searches from

identified papers were also conducted. Relevant grey literature, including reports or

other documents have been included. A jurisdictional scan was performed by append-

ing “Nova Scotia” to the search terms, as well as searching through provincial health

websites. Studies published in languages other than English were not included. The

3
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timeframe for the search began March 1994, as this corresponds to the publication

of a paper that has been used to broadly define access [10]. Titles and abstracts of

searched papers were reviewed for relevance. Selected full-text papers were retrieved

and reviewed for inclusion.

2.2 Selected Papers

The search yielded approximately 850 titles/abstracts. Of these, 30 were selected

for full-text review and, of these, 14 were determined to be directly relevant to the

purpose of the literature review. The search strategy is shown in the PRISMA flow

diagram in Figure 2.1. This diagram is adapted from the Preferred Reporting Items

for Systematic reviews and Meta-Analyses (PRISMA) method of systematic review

[11], and displays the process by which papers were selected for review. A summary

of included studies by classification is presented in Table 2.1, while the detailed clas-

sifications of the included studies are shown in Table A.1. Studies were classified as

belonging to daytime, after-hours, location science, operations research (OR), and

healthcare settings. The classifications refer to the relevancy of the papers to the

topic. For example, papers classified as daytime are relevant to normal operations

(typically during the day), while after-hours papers refer to papers examining an-

other time setting. Location science papers were related to distance measurement,

geography, or mathematical concepts that could relate to spatial access. Operations

research papers contained OR modelling, and healthcare papers specifically had a

component relating to healthcare services or planning. The full classification of each

paper can be found in Table A.1.

Table 2.1: Brief Summary of Studies

Study Type/Field Location Science Operational Research Healthcare

Daytime 9 9 8

After-hours 1 1 2

Both 1 1 1

From Table 2.1, it appears that few of the selected articles pertain to the after-

hours setting. This suggests a paucity of information in this area. This is not a
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Figure 2.1: PRISMA Flow Diagram [1]



6

surprising result, as it was difficult to find articles on this topic specifically; the only

selected article to address after-hours care from a location science or an operations

research perspective is a working paper which prompted this literature review [12].

2.3 Highlighted Operations Research Papers

The following papers provide key insights into location planning of primary care

practices using OR models and are discussed in greater detail.

Operations research meets need related planning: Approaches for

locating general practitioner’s practices

A similar problem has been tackled in 2019 using a model based on the maximum

covering location problem (MCLP) to determine efficient GP placements in 21 mu-

nicipalities within the state of Baden-Württemberg, Germany [13]. The study used

a model intended to locate primary facilities according to three different objectives:

• Minimise travel time for all patients

• Maximise demand covered

• Minimise the maximum travel time for patients

The initial model was as follows:

max
∑
i∈I

eiyi

Subject to:

yi ≤
∑
j∈Ni

xj ∀i ∈ I

∑
j∈J

xj = n

xj ∈ {0, 1} ∀j ∈ J

xi ∈ {0, 1} ∀i ∈ I
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where ei is the weight of district i (which in this case represents the demand

measured as population), xj is a binary decision variable indicating whether a facility

is located at j, and yi is a binary decision variable representing whether demand at

location i is covered. The objective function maximises demand coverage, and the

constraints ensure that demand can only be covered if a facility is suitably placed

to satisfy it, and that n facilities must be placed. This model locates n practices

and determines the number of regions covered by a maximum driving time (region

coverage indicates that all inhabitants can reach a practice within the maximum

time). Possible facility locations that may cover the demand at node i are included

in the set Ni = {j | rij ≤ rmax}. To determine the closest new practice for each

municipality an additional decision variable, zij, added. zij is a binary variable that

determines if the demand at location i is assigned to facility location j.

Modifications were made to this model to add capacity (by adding decision vari-

ables for doctors per practice and patients per doctor). This second model assumes

that patients spread out among GPs placed within their district (“patients that choose

a different GP more or less equal out over the district”), assumes that all patients

must be covered, and weights the distances traveled by patients. The model also

assumed a complete replacement of any existing practices.

A third version of the model includes existing practices and modeled changing

numbers of inhabitants until 2023 (in the years 2017, 2020, and 2023), and determines

where new practices should be located, if existing practices should be kept open, and

how many GPs are needed.

The first model found results for minimising average travel time, minimising max-

imum travel time, and maximising coverage for varying numbers of health center

locations. The second model predicted the number of GPs needed for each location,

as well as the average panel size and patient travel times. The third model deter-

mines the number of GPs that should be gained in 2017, 2020, 2023 and where to

place them. Additionally, another version of the model limited new GPs to the most

attractive regions, and determined where to best place them within these restrictions.

The study concluded that more information may be needed to predict patient

behaviour for choosing GPs, and how patients travel to their GP (as well as how to

incorporate transportation preferences).



8

Matching patient and physician preferences in designing a primary care

facility network

This 2012 study designed a model for locating family health centres (FHCs) by consid-

ering both patient and physician needs from a planning perspective, then implemented

the model with data from Sakarya, a small Turkish province [4]. The objective was

to maximise geographical access of the population to primary health care, measured

by percentage of population within a maximum travel distance of a facility and av-

erage distance to a facility. The physician preferences considered were income and

workload, equity, and professional support and collegial work. The patient prefer-

ences considered were average distance to facilities, practice size (where smaller is

preferred), nearest assigned facility, and equity.

An integer programming model is used. Parameters of this model were adjusted

to accommodate different scenarios based on compromises in patient and GP pref-

erence metrics. The initial model used parameters chosen by city health officers in

Sakarya and focused on coverage and participation objectives (referred to as base-c

and base-p). Participation is measured through likelihood of a patient visiting a fam-

ily physician, with decreasing probability as distance increases (up to a maximum

distance). The base-c model found that maximum coverage was close to 97%, with

decreasing marginal benefit as the number of facilities increased. Increasing physi-

cians per FHC increased average travel distance and reduced patient participation,

and physician equity was more easily maintained when the number of physicians

increased with the number of facilities. The results also suggested that optimal so-

lutions typically used the same locations, indicating that opening facilities in these

locations and adding new ones as necessary may be a practical approach. The base-p

model found that coverage decreased by around 3% from the base-coverage model,

but expected participation increased by over 9%. It also found that average travel

distance was always lower than the base-c results, almost 15% on average.

The base model was then modified (physician-c/p) to favour physician preferences

by setting the minimum physicians per facility to 2 and increasing the lower bound

on panel size from 2000 to both 2500 and 3000. The physician-p model was found to

have the best results for coverage while satisfying physician preferences, and results of

both models indicated that decreases in accessibility were not substantial compared
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to the base models.

To emphasize patient concerns, the base model was altered (patient-c/p) by reduc-

ing maximum travel distance from 3 km to 2 km and adding a constraint to allocate

patients to the nearest facility. This model found better average patient travel dis-

tances, and a much higher participation rate in the patient-p scenario indicates that

expected participation is a better measure of patient satisfaction. The model also

found that increasing the number of facilities was always beneficial, while raising the

number of physicians may be detrimental.

Finally, a model incorporating both patient and physician preferences (all-c/p)

was implemented by setting the minimum panel size to 3000, minimum physicians

per facility to 2, maximum travel distance to 2 km, and adding the nearest facility

allocation constraint. The base-c model was found to be dominated by all other

scenarios, suggesting the current system could be improved. The best performing

scenarios were found to be base-p, physician-p, all-c, and all-p.

The article concludes that it is important to optimally serve the population while

maintaining physician satisfaction, but there are trade-offs between patient access and

physician satisfaction when resources are constrained. Increasing the number of facil-

ities improved patient coverage, but sometimes also increased the distance travelled

by some patients. Having more physicians increased the difficulty of maintaining

a minimum panel size and decreased access measures. Different directions can be

taken with this study, such as incorporating the effects of distance on visit frequency

or investigating more specific preferences of patients and physicians. The authors

suggest that investigation of the observations made in the study using alternative

participation measures may yield different results.

2.4 Healthcare Literature Scan

The selected healthcare studies are summarised for important findings on the state

of primary care as it pertains to operations research and access.

2.4.1 Healthcare Literature Descriptions

The survey by Ahmadi-Javid et al. [14] identified multi-period models as a key area

for future research for locating primary care facilities. A multi-period model could be
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used similarly to a model that incorporates regular and after-hours care. Additionally,

models that centralize location decisions to share resources were identified as an

important area. These types of decisions could be used to determine how to allocate

after-hours services among primary care facilities.

According to Crighton et al. [6], 62% of Canadian family physicians reported

providing some level of after-hours care. This varied significantly by province, with

Nova Scotia at 77.4%, Quebec at a low of 34.3%, and Alberta at a high of 88.4%.

Provision of after-hours service was not affected by rural/urban setting, physician

satisfaction, or whether physicians operated in group or solo practices.

A model by Graber-Naidich et al [15] is constructed based on regulator needs to

optimize a multi-objective network of different types of primary care facilities. A

location-allocation model is used, where facilities are initially treated as uncapaci-

tated then assigned resources depending on quantity and type-mix allocated to each

facility. The model weights three objectives, overall travel distance, operating costs

of facilities, and non-appropriate-service (NAS). NAS refers to the quality and suit-

ability of the services provided to patients.

A case study of the model in Kingston, Ontario examines model results when

trading off cost and NAS. The model is shown to be capable of evaluating the effects

of different policies, and can be used for planning for future scenarios.

A study by Guagliardo et al. [2] found that the majority of knowledge about the

population health impact of geographic distribution of services is focused on hospitals,

specialty services, and rural health services. Relatively little is known about the

impact of the location of health services in urban settings.

Guagliardo et al. [2] also recognized spatial distance to healthcare providers as

a barrier to healthcare access, and the probability that health services are utilized

decreases with distance between patient and provider. The exact impacts of spa-

tial accessibility on population health have not been measured but quantifying them

would allow for development of policies to improve public health.

Güneş et al. [4] developed a multicriteria optimisation model that is used to

maximise two objectives, coverage of patients within a maximum distance from a care

provider and patient use of health services. This model accommodates patient and

physician preferences, and demonstrates that this multicriteria model can improve
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current policies.

Güneş & Nickel [9] reported that facility location problems (FLPs) are operations

research models where facilities are placed so as to optimise an objective. Typical

objectives in healthcare FLPs are minimal access cost (typically measured in time

or distance), maximal population within a specified distance of health services, and

maximal equity of access to health services. The latter objective is typically difficult

to define or measure.

The P-median problem is commonly used when deciding how to locate healthcare

facilities, and it minimises the total cost of patient access to services at these facilities

(often by minimising the total distance between patient and clinic).

According to Morgan & Graber-Naidich [3], health professionals are dispropor-

tionately concentrated in urban areas in many countries (including Canada), leading

to insufficient health resources. Rural Canadians are older, poorer, sicker, less edu-

cated, and less healthy compared to urban Canadians, resulting in a greater per-capita

demand for care.

There are fewer doctors per patient in rural areas than urban areas in Canada,

causing a care gap between patients in these areas. When the care gap increases, the

attractiveness of rural settings to physicians decreases due to the increased workload

for each rural doctor. This creates a positive reinforcement loop, where rural settings

will tend to have fewer doctors per patient over time.

Government efforts so far have slightly improved the problem, but not fixed it.

Educational policies focused on incentivizing doctors to complete their training in

deficient areas are expected to have the greatest potential for improving care gaps.

According to O’Malley et al. [5], the provision of after-hours care is important for

patient outcomes, primary care physician (PCP) stress, and effective utilization of

health resources. Available after-hours care was positively associated with safe and

timely triage, patient accessibility and satisfaction, quality of care, PCP burnout, and

financial stability.

Five models of after-hours provision for PCPs were considered with increasing

integration into a network of after-hours care, ranging from solo operation (same PCP

during regular and after-hours services) to dedicated referral of after-hours patients

to a third party care centre. Three common factors found to be important to the
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success of after-hours care models were sustainable designs that met local needs,

shared patient health information between after-hours and daytime care providers,

and the implementation of all-hours access as part of a broader initiative to improve

access and continuity of care.

In a paper by Reuter-Oppermann et al. [13], three models were used to optimally

determine potential future locations for GP practices for three objectives: minimal

driving time for all patients, maximal patient demand coverage, and minimal distance

between the furthest patients and their GP. These match the three objectives for

FLPs identified by Güneş and Nickel [9]. The maximum coverage location problem

(MCLP) is used to determine GP practice locations, and modified to also determine

the number of GPs needed at each practice and to determine locations for multiple

time periods.

It was assumed that patients always choose the nearest GP, but more research

is needed to know how patients choose their GP and travel to their GP. This is

particularly important in urban settings, where multiple modes of travel are common.

In Reuter-Oppermann et al (2017) [16], an operations research model and a ge-

ographic information system (GIS) are used together to create a decision support

system for optimally locating GP practices. The integration of these two systems

can allow for great flexibility in the approach and presentation of optimal location

strategies.

Two approaches are proposed by Reuter-Oppermann et al. [12] to use opera-

tions research models to create daytime and nighttime primary care networks. The

methods optimize for a daytime setting then sequentially create a nighttime strategy

and vice-versa. In both methods, it is assumed that physicians have larger panel

sizes and patients may travel greater distances for service at night. Both methods

satisfy patient requirements as constraints of the model before addressing physician

preferences.

2.4.2 Key Healthcare Findings

The findings from this review reveal many important qualities of the state of primary

care, after-hours services, and applications of operations research and location sci-

ence to health services planning in primary care settings. Of particular interest to
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the project that prompted this review, access to primary care services is a critical

component of population health and is directly connected to the geographical barriers

between patients and providers [2]. This concept can be referred to as spatial accessi-

bility, and typical objectives that can be targeted to improve spatial accessibility are

the costs of access (often measured in distance between a patient and provider), the

proportion of patients that have coverage (within a maximum distance or travel time

from a healthcare provider), and equity of access among patients with comparable

need for care [9]. Since these objectives are all important when evaluating strategies

to improve spatial accessibility, multicriteria models that can accommodate all of

them are popular. Multicriteria models also allow for great flexibility in addressing

the sometimes-conflicting interests of the multiple groups of stakeholders that are

inevitably involved in healthcare planning. While further study is needed to quan-

tify the effects that spatial accessibility has on population health [2], it is clear that

operations research and location science methods are well suited to tackling health

services planning with the goal of improving spatial accessibility.

Several studies have implemented different operations research models with the

goal of reducing geographic barriers between patients and healthcare. Many trends

have been identified in these studies, such as the worsening care gap between rural

and urban primary care, the lack of information in this area, and the need to trade off

stakeholder preferences when locating healthcare facilities [3, 15, 4]. A common result

in these studies is that OR models are able to produce primary care networks with

optimal geographic placement of healthcare facilities [9, 14, 15, 4, 13]. Additionally,

location science has been demonstrated to allow for the integration of geospatial

information systems and flexibility of model inputs and presentation [16]. In some

cases, the authors also use case studies of their models applied to real-world healthcare

networks to demonstrate that the models can suggest substantial improvements to

spatial accessibility and support policy changes that may be effective at implementing

these improvements in real healthcare systems [3, 15, 4, 13, 16].

Important gaps in the literature reveal that after-hours services are, to date, an

understudied area. The provision of after-hours primary care is associated with better

patient outcomes and lower costs of care [5]. While most Canadian family physicians

reported providing some level of after-hours care, this was highly dependent on region,
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ranging between 34.3% in Quebec to 88.4% in Alberta [6]. The authors noted that

communities tended to exhibit the same traits in their provision of after-hours care,

and that this may be due to a “herd effect” of physicians practicing in the same

patterns as their colleagues. Despite the importance of after-hours primary care and

the prevalence among Canadian physicians, no studies were found that incorporated

after-hours care into a healthcare facility location problem other than the working

paper associated with this review [12].

2.5 Review Conclusions

Accessible primary care is an essential component of maintaining a healthy popula-

tion. After-hours services are important for providing equitable access to care and

meeting patients’ needs, however, they represent an understudied part of primary

care and are typically not considered in healthcare facility location planning models.

An OR model that optimally locates GP practices in both day and night settings

is an unresearched area that will provide important information for health services

planning.

It may be appropriate to substitute other types of “every day” facilities (e.g.

mechanic shops, grocery stores, etc.) for primary care centres in terms of individual

behaviour when comparing service distribution models. This may allow for models

that have been used in other applications to be adapted for healthcare facility location,

expediting the model development process. Further review to determine if these sorts

of models have been compared to health services models is recommended.

Another recommended area for further research is whether patient behaviour has a

significant impact on these models, and how to incorporate them if so. It is frequently

assumed that patients travel to the nearest primary care centre, but some of the

studies in this review have suggested models of patient behaviour that allow for

differences in GP choice, mode of transportation, or even stochastic demand may be

appropriate [9, 15, 2, 13].

With these considerations, location planning models have much to offer in terms

of planning primary health care services to address a pressing health system problem,

namely, improving access to primary health care in Nova Scotia. The remainder of

this thesis will examine an application of this type of model to locating day and
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after-hours service in primary care.



Chapter 3

Methods

This chapter describes the methodology used to create the models in this thesis.

To address the issue of optimally locating health resources, operations research pro-

vides robust mathematical models which consider different objectives and constraints.

Broadly, the objective is to ensure that patients are as close to primary care as possi-

ble and the main constraint is the number of healthcare facilities available. A model

which reflects these characteristics is the p-median problem.

3.1 p-Median Problem

The p-Median Problem is an operations research model which locates p facilities

among a set of specified locations I so as to minimize the average distance between

demand and the nearest facility [17]. The elements of the p-median problem are

described in Table 3.1, followed by the objective function and constraints in (3.1) -

(3.6). The purpose of these equations are described in Table 3.2.

Table 3.1: p-Median Notation

Sets:
I Set of all nodes where facilities may be placed, indexed by i.
J Set of all nodes where demand is located, indexed by j.

Parameters:
p The number of facilities to locate.
dj The demand at node j.
cij The unit cost of supplying demand at node j from a facility at node i.

Decision Variables:
xij The fraction of demand at node j satisfied by facility i.
yi A binary variable, 1 if a facility is located at site i and 0 otherwise.

16
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Objective function:

min
∑
i∈I

∑
j∈J

djcijxij (3.1)

Subject to:∑
i∈I

xij = 1 ∀j ∈ J (3.2)∑
i∈I

yi = p (3.3)

xij − yi ≤ 0 ∀i ∈ I; j ∈ J (3.4)

yi ∈ {0, 1} ∀i ∈ I (3.5)

xij ≥ 0 ∀i ∈ I; j ∈ J (3.6)

Table 3.2: p-Median Problem Definitions

Objective Function:
3.1 The objective function minimizes the sum of demand at each node dj,

multiplied by the cost of supplying that demand from node i (cij),
multiplied by the proportion of demand allocated from j to i (xij) for
all nodes i and j. Overall, this minimizes the overall cost of supplying
demand with the given facilities.

Constraints:
3.2 Ensure that the demand at each node j is satisfied by located facilities.
3.3 Ensure that exactly p facilities are located.
3.4 Only allow demand to be allocated to nodes with facilities.
3.5 Locations must be binary, either 0 (closed) or 1 (open).
3.6 Demand allocation must be non-negative.

3.2 Multiple Time Setting p-Median Problem

The p-Median problem is typically used in a one-time setting. However, the problem

under consideration covers multiple related time settings, regular and after-hours

primary care. Regular care is typically conducted during the daytime during normal
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working hours. After-hours care is delivered outside of regular hours, usually at night

and very early or late in the day. These time settings are mutually exclusive and

primary care facilities may operate with different properties in each time setting.

Thus, the p-Median problem is altered to address multiple time settings in one OR

model. This allows decisions to be made while considering the costs in both time

settings simultaneously. The notation used for this model is detailed in Table 3.3.

In this modification of the p-Median problem, a primary and secondary set of

facilities are simultaneously located to minimize distance to demand in a primary

and secondary time setting. In this case, the primary facilities are located in the

regular time setting, and the secondary facilities are located in the after-hours time

setting. A constraint added to the standard p-Median problem to create the modified

problem is that the number of secondary facilities must be less than or equal to the

number of primary facilities. This constraint is founded on the assumption that there

are no more primary care practices open during the after-hours time setting than

during the regular time setting.

This limitation also requires a second constraint. Secondary facilities must share

locations with primary facilities. This satisfies the assumption that the same facilities

are used for regular and after-hours care, which is expected to be more cost effective

(and typical of real-world settings) than opening facilities separately for each setting.

Together these constraints ensure that after-hours facilities must share locations with

regular facilities.
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Table 3.3: Multiple Time Setting p-Median Notation

Sets:
I Set of all nodes where facilities may be placed, indexed by i.
J Set of all nodes where demand is located, indexed by j.

Parameters:
p The number of primary facilities to locate.
p′ The number of secondary facilities to locate.
dj The primary demand at node j.
d′j The secondary demand at node j.
cij The unit cost of supplying demand at node j from a facility at node i.
W The discount rate applied to the secondary setting. This can be thought of as

relative cost; for example W = 0.5 suggests that cost incurred in the secondary
setting is considered half as important as cost in the primary setting.

Decision Variables:
xij The fraction of primary demand at node j satisfied by facility i.
x′
ij The fraction of secondary demand at node j satisfied by facility i.
yi A binary variable, 1 if a facility is located at site i and 0 otherwise.
y′i A binary variable, 1 if a secondary facility is located at site i and 0 otherwise.



20

Objective function:

min
∑
i∈I

∑
j∈J

djcijxij + Wd′jcijx
′
ij (3.7)

Subject to:∑
i∈I

xij = 1 ∀j ∈ J (3.8)∑
i∈I

x′
ij = 1 ∀j ∈ J (3.9)∑

i∈I

yi = p (3.10)∑
i∈I

y′i = p′ (3.11)

xij − yi ≤ 0 ∀i ∈ I; j ∈ J (3.12)

x′
ij − y′i ≤ 0 ∀i ∈ I; j ∈ J (3.13)

y′i − yi ≤ 0 ∀i ∈ I (3.14)

p− p′ ≥ 0 (3.15)

yi ∈ {0, 1} ∀i ∈ I (3.16)

y′i ∈ {0, 1} ∀i ∈ I (3.17)

xij ≥ 0 ∀i ∈ I; j ∈ J (3.18)

x′
ij ≥ 0 ∀i ∈ I; j ∈ J (3.19)

In the multiple time setting p-median notation, an apostrophe (’) is used to denote

variables relating to the secondary setting. Note that (3.8), (3.10), (3.12), (3.16), and

(3.18) are identical to (3.2), (3.3), (3.4), (3.5), and (3.6). Additionally, each of these

constraints have been duplicated ((3.9), (3.11), (3.13), (3.17), (3.19) respectively)

to constrain the secondary facilities identically to the primary facilities. (3.14) has

also been added to restrict the sites of secondary facilities to be shared with primary

facilities, and (3.15) has been added so that the number of secondary facilities must

be no greater than the number of primary facilities.

A weight variable, W , has also been added to the after-hours term in the objective

function. This variable allows for a linear discount rate to be applied to adjust the
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relative cost of travel between time settings. For example, if policy dictates that

after-hours travel is half as costly for patients, W = 0.5 incorporates this preference.

If travel in either time setting is considered equally costly, W = 1 assigns equal weight

to travel in both settings. Increasing W is expected to bias facility locations toward

after-hours demand locations if demand differs between the regular and after-hours

settings. This variable is proposed for the purpose of adjusting relative cost between

time settings, but sensitivity analysis of this variable is not within the scope of this

thesis.

3.3 Solution Approaches

To address both the regular and after-hours needs of patients, both time settings

must be considered by the model. Three approaches for addressing both settings

are proposed in this section. The first solves both time settings independently which

gives the best case scenario for each. The second approach solves the time settings

sequentially and locations selected in one setting are then required in the other time

setting. This approach is expected to be more reflective of how the decision is made in

practice. The final approach simultaneously solves both time settings to find the best

compromise solution. This approach is expected to be the best method for optimally

locating facilities in both settings while also considering facility use constraints.

3.3.1 Independent

In this approach, each time setting is considered independently. The standard p-

median problem is used to solve the regular and after-hours time settings with no

shared constraints or resources. This approach is less cost effective because it places

facilities for use in either regular or after-hours care rather than sharing facilities

between settings. However, this approach is expected to provide a lower bound for

each time setting. Since this approach is the least constrained, it should provide the

lowest overall cost.
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3.3.2 Sequential

For this approach, the standard p-Median problem is used to solve for one time

setting, and the solution for that time setting constrains the other time setting. This

is more robust than the independent approach, since the results of one time setting

are used to constrain the other. This is expected to more closely model real-world

use of primary care facilities.

The sequential approach differs depending on which time setting is solved first.

If the regular setting is solved first, the set of regular hour facility locations becomes

the set of possible locations chosen by the p-median model for the after-hours p-

Median problem. For example, consider a situation where three facilities are to be

placed during the regular setting and two are to be located after-hours and the nodes

I ∈ [1, 2, 3, ..., n] are possible facility locations. If the model locates facilities at nodes

1, 2, and 3 in the regular setting then the after-hours setting facilities must be placed

among nodes 1, 2, and 3 only.

The process for the sequential model when the regular setting is solved first (ab-

breviated as ”RtA”) is as follows:

• Solve standard p-median problem for the regular setting.

• Create a set (I ′) of nodes from the solution containing nodes where regular time

setting facilities are located.

• Solve a p-median problem for the after-hours using I ′ instead of I as the set of

possible facility locations.

If the after-hours problem is solved first, the nodes selected for after-hours facilities

must be included in the regular setting solution. For example, consider a situation

where one facility is located for the after-hours setting and three are located in the

regular setting. If the model locates a facility at node 2 in the after-hours setting then

a facility must also be set at node 2 in the regular setting solution. This is enforced

by a constraint (shown by (3.20)) added to the regular hours problem so that regular

hours facilities must be located at nodes where there are after-hours facilities. Note

that this constraint requires that there must be at least as many regular facilities as

after-hours facilities.
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yi − y′i ≥ 0 ∀i ∈ I (3.20)

The process for the sequential model when the after-hours setting is solved first

(abbreviated as ”AtR”) is as follows:

• Solve standard p-median problem for the after-hours setting.

• Solve a p-median problem for the regular setting with additional constraint

(3.20).

3.3.3 Simultaneous

This approach is modelled by the multiple time setting p-Median problem (3.7 - 3.19).

This method considers both time settings simultaneously, rather than one before the

other. It is expected that this will provide a better overall result than the sequential

method, since all possible location choices are considered in one problem rather than

being constrained by a previous problem which is ”blind” to the overall objective.

For example, a desirable solution in one time setting may place facilities away from

demand in the other time setting because the model is unaware of the details of the

other time setting. By considering both time settings at the same time, this issue is

avoided.

3.4 Model Formulation

The model was written in Python 3.7.3 using Jupyter Notebook. The linear program

(LP) was implemented using the PuLP LP modeller, and a Python class was writ-

ten with PuLP to formulate and solve p-Median problems when given the problem

parameters. Once this class was confirmed to solve standard p-Median problems cor-

rectly, additional elements were added to the class to allow it to solve each of the

solution approaches.

The class written to handle p-Median problems, pmed, will be described in this

section. A class is a object-oriented programming template for new objects. In

this case pmed is a template for p-Median problems. The class described in this

section is used to format problem information, formulate a p-Median problem from
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the information, pass the problem to a linear program solver (such as Coin-or branch

and cut (CBC), an open source solver, or Gurobi, a commercial solver), record how

long each process takes, and report the results. This section will proceed through the

functions used in pmed.

The class is initialized by providing a dictionary containing the number of facilities

(p) to be placed and a cost matrix (cij ∀ i, j) specifying the cost of assigning demand

between any pair of nodes. This is the fundamental information required for a p-

Median problem, and is thus included to define a new problem. These two pieces

of information are retained as class attributes when creating a new pmed object as

shown in Listing 3.1.

1 #pmed class definition

2 class pmed:

3

4 def __init__(self , data):

5 self.facilities = data[’p’]

6 self.csts = data[’c’]

Listing 3.1: pmed Instantiation Function (__init__())

The next function in the pmed class is defprob(). This function takes the at-

tributes defined by the instantiation function (p and the cost matrix), and has an op-

tional argument for demand. By default demand is assumed to be 1 at each node, but

an ordered list of demand for each node may be supplied to defprob(). defprob()

uses this information to define the objective function and each constraint for the

problem.

1 def defprob(self , d = None):

2

3 #Start timing the function

4 self.tstart = time.time()

5

6 #Assign names to class attributes

7 p = self.facilities

8 costs = self.csts

9

10 #If demand is unspecified , assign demand = 1 to each node in a

list
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11 if d == None:

12 d = [1 for i in range(len(costs))]

13

14 #Create list of nodes

15 sites = [x for x in range(len(costs))]

16

17 #Create a list of pairs for each pair of nodes

18 Routes = [(i,j) for i in sites for j in sites]

19

20 #Define decision variables x_ij and y_i

21 route_vars = LpVariable.dicts("Route" ,(sites ,sites) ,0,None)

22 site_vars = LpVariable.dicts("Site" ,(sites) ,0,1,LpInteger)

23

24 #Create a minimization linear program

25 self.prob = LpProblem("pmedprob",LpMinimize)

26

27 #Define objective Function

28 self.prob += lpSum ([ costs[i][j]* route_vars[i][j]*d[j] for (i,j)

in Routes ]), "Sum of Costs"

29

30 #Constraints

31 for j in sites:

32 self.prob += lpSum([ route_vars[i][j] for (i) in sites]) == 1

33

34 self.prob += lpSum ([ site_vars[i] for (i) in sites]) == p

35

36 for j in sites:

37 for i in sites:

38 self.prob += route_vars[j][i] - site_vars[j] <= 0

39

40 #Record time to formulate problem

41 self.tdef = time.time() - self.tstart

Listing 3.2: pmed Problem Definition Function (defprob())

Once the problem has been formulated with defprob(), it is ready to be solved.

This is straightforward since PuLP has a built-in function to call linear program

solvers to solve formulated problems. Thus, the solveprob() function of pmed calls

PuLP’s solve() function and specifies which solver to call if one is given, or calls the
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default solver (CBC) if no solver is specified.

1 def solveprob(self , solver = None):

2

3 #Start timing the solution

4 self.tstart = time.time()

5

6 #If no solver is specified , PuLP’s solve () defaults to using CBC

7 if solver == None:

8 self.prob.solve()

9

10 #Other solvers may be called as an argument in PuLP’s solve ()

function

11 else:

12 self.prob.solve(solver)

13

14 #Finish timing the solution

15 self.tsolve = time.time() - self.tstart

Listing 3.3: pmed Solution Function (solveprob())

The remaining functions in pmed are for reporting the total cost of the problem,

the decision variable values, and the times taken to define and solve the problem.

1 def soln(self):

2 #Returns the solution cost

3 return value(self.prob.objective)

4

5 def fullsoln(self):

6 #Prints the optimality status of the problem , followed by every

nonzero decision variable and the solution cost

7 print("Status:", LpStatus[self.prob.status ])

8 for v in self.prob.variables ():

9 if v.varValue != 0:

10 print(v.name , "=", v.varValue)

11 print("Total Cost = ", value(self.prob.objective))

12

13 def times(self):

14 #Returns time to define and solve the problem in seconds

15 return self.tdef , self.tsolve

Listing 3.4: Solution and Timing Report Functions
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Here is a demonstration of using pmed to solve a toy problem. Consider three

nodes located at the vertices of a 3, 4, 5 Pythagorean triangle. These nodes are

assigned demands of 5, 50, and 100, and 2 facilities are placed among these nodes. A

diagram of the problem is shown in Figure 3.1.

Figure 3.1: p-Median Toy Problem

1 #Set the number of facilities to 2

2 p = 2

3

4 #Define the distances between each node

5 # 0 1 2

6 costs = [[0,3,5], #0

7 [3,0,4], #1

8 [5,4,0]] #2

9

10 #Define the demand at each node

11 #0 1 2

12 d = [5 ,50 ,100]

13
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14 #Put the information into a dictionary before creating a new problem

15 info = {’p’:p, ’c’:costs}

16

17 #Specify Gurobi as the solver to be used

18 solver = pulp.GUROBI_CMD ()

19

20 #Create the problem

21 newprob = pmed(info)

22 #Define the problem

23 newprob.defprob(d)

24 #Solve the problem

25 newprob.solveprob(solver)

26

27 #Print the solution cost , problem status , and decision variable

values

28 print("Cost: " + str(newprob.soln()))

29 newprob.fullsoln ()

30

31 #Print the times taken to formulate and solve the problem in seconds

32 t = newprob.times ()

33 print("Formulation time: " +str(t[0]))

34 print("Solution time: " +str(t[1]))

35

36 #The above returns the following when run:

37 Cost: 15.0

38 Status: Optimal

39 Route_1_0 = 1.0

40 Route_1_1 = 1.0

41 Route_2_2 = 1.0

42 Site_1 = 1.0

43 Site_2 = 1.0

44 Total Cost = 15.0

45 Formulation time: 0.0009970664978027344

46 Solution time: 0.22934317588806152

Listing 3.5: pmed Use Example

The output indicates that the optimal cost of the solution is 15 (line 44 of Listing

3.5), that facilities were located at sites 1 and 2 (lines 42 and 43), and that demand

was allocated from node 0 to node 1, from node 1 to node 1, and from node 2 to node
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2 (lines 39, 40, and 41).

3.5 Model Verification

To test this class, a set of previously solved p-Median problems from J. E. Beasley’s

OR-Library were solved using the code and the results were compared to the reference

solutions [18]. There are 40 uncapacitated p-Median problems in the OR-Library with

increasing complexity; the first problem contains 100 nodes with 200 connections and

places 5 facilities, and the last problem contains 900 nodes, 19,200 connections, and

places 90 facilities. The solution to each problem is also available for comparison in

the OR-Library.

The problems are available as text files with the following format: the first line

lists the number of vertices, the number of edges, and the number of facilities to

place (p), and the remaining lines list the vertices for each edge and the cost of the

edge. In the language used to describe p-Median problems in this thesis, vertices

are nodes where facilities may be placed and edges are the costs between each node.

Thus, the problem files may be considered to provide a hypothetical list of possible

facility locations and the distances between locations which are directly connected.

Demand is assumed to share the same set of nodes as possible facility locations, and

demand at each node is 1. A sample of the first problem, found in pmed1.txt on

the OR-Library website, is displayed in Table 3.4. This table shows that problem 1

contains 100 nodes, specifies 200 of the connections between these nodes, and places

five facilities among these nodes. The second row indicates that the cost between

nodes 1 and 2 is 30 (the units of cost are unspecified, but these could be kilometres

for example). The third row indicates that the cost between nodes nodes 2 and 3 is

46. There are 198 more lines with similar information for different nodes.

Table 3.4: OR-Library p-Median Problem 1 Sample

100 200 5
1 2 30
2 3 46
3 4 1
... ... ...
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The information given by the OR-Library files is not enough to formulate a p-

Median problem without some processing. This is because the given data do not

explicitly specify the distance between all nodes, which is required to solve the p-

Median problem. To illustrate, consider an example: a file specifies the distances

between locations A and B and between locations B and C, but not between A and

C. It is possible to travel from A to C through B, but the cost of travelling from

A to C is not explicitly given. Also, if multiple paths exist between A and C it is

not immediately clear which path is the shortest. For the p-Median problem to be

solved it is necessary to know the least possible cost between each pair of nodes.

As Beasley notes, it is necessary to employ Floyd’s algorithm before creating a p-

Median problem from any file. Floyd’s algorithm (also known as the Floyd-Warshall

algorithm) is a process that can take a set of connected nodes, such as given by

the OR-Library problems, and produce a complete matrix of the shortest distance

between any pair of nodes [19]. For problem 1, this algorithm would produce a 100 by

100 symmetrical matrix containing the distances from each node to any other node.

This was implemented using the floyd_warshall function in Python’s scipy.sparse

library. A function written to do this, getdata(), is shown in Listing 3.6.

1 def getdata(filename):

2 prb = []

3 inf = 9999

4

5 #Parse the file into a series of strings

6 with open(filename , ’r’) as f:

7 data = f.read().splitlines ()

8

9 #Create a matrix of integer values from the strings

10 for line in data:

11 prb.append(list(map(int , line.strip().split(’ ’))))

12

13 #Read the number of nodes to expect

14 nodes = prb [0][0]

15

16 #Create a "maximum distance" matrix

17 dist = [[inf for x in range(nodes)] for y in range(nodes)]

18
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19 #Replace maximum values with specified values

20 for edge in prb [1:]:

21 dist[edge [0] - 1][ edge [1] - 1] = edge [2]

22 dist[edge [1] - 1][ edge [0] - 1] = edge [2]

23

24 #Set self -travel distance to 0

25 for i in range(nodes):

26 dist[i][i] = 0

27

28 #Create a matrix of shortest possible distances

29 graph = csr_matrix(dist)

30 dist_matrix = floyd_warshall(csgraph=graph , directed=False)

31

32 #Read the number of facilities to place

33 p = prb [0][2]

34

35 return {’p’:p, ’c’:dist_matrix}

Listing 3.6: Problem Formatting Function (getdata())

The formatting function takes a problem file location, parses the file, and returns

two objects: p, an integer number of facilities to be placed in the problem, and c, a

cost matrix indicating the cost between any two nodes (described in the OR model as

cij ∀ i, j). These outputs were put into the p-Median class and solved for each problem

in the OR-Library. The results using the code described herein exactly matched the

known solutions.

Once the basic pmed class was verified, the changes needed to implement the

sequential and simultaneous approaches were gradually added and reviewed to ensure

they accurately represented the mathematical formulations of the problems. The

model returned similar results with these additions, and simple changes to the model’s

inputs yielded expected results.

3.6 Solver Selection

The linear models were solved using Gurobi, a commercial optimization solver. The

default solver used by PuLP is CBC, an open-source solver which was initially used

to test that the model functioned correctly. However, CBC proved to be too slow to
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solve all of the verification problems so Gurobi was used instead. For comparison,

the first 24 OR-Library problems were solved and timed using each solver. Only the

time taken for each solver to run was included in the comparison, time to format the

data and formulate the problem were excluded. CBC took 52.6 minutes in total, and

Gurobi took 4.3 minutes. The time taken for CBC to solve problems grew significantly

as the problem complexity increased, and not all problems could be solved within a

day of running when tested. Thus, the problems solved within an hour were deemed to

be an acceptable cutoff for testing the difference in speed since Gurobi outperformed

CBC by an order of magnitude.



Chapter 4

Results

To test how the models perform with real-world data, three case studies were com-

pleted using 2011 Canadian census data in the province of Nova Scotia [20]. The

models were tested in the most densely populated region of Nova Scotia, Halifax, as

well as a more rural area, Cape Breton. Lastly, the models were tested on a hypo-

thetical setting where Cape Breton data were altered to create a discrepancy between

regular and after-hours demand.

4.1 Data

The parameters for nodes, unit supply costs between nodes, and demand at each

node were derived from the census data. Census dissemination areas (DAs) were

used as the nodes of the model. Dissemination areas are the smallest geographical

unit published by Statistics Canada. They are stable geographical areas typically

populated by 400 to 700 people. The centroid of each DA was computed and used for

possible facility locations. The population of each DA was used as the demand at each

node for both time settings (except for the modified case study). The travel distance

between nodes was considered the cost between nodes. The distance between nodes

was the shortest distance between every pair of nodes in the Nova Scotia road network.

Distance calculations between each DA are provided by McNamara [21]. Note that

this method assumes travel distance within one node to be zero; for example, if a

primary care practice is located at node i, patients within node i are assumed to

travel a distance of 0 to this practice.

The dissemination areas selected to represent Halifax and Cape Breton were those

contained within the Halifax Census Metropolitan Area (CMA), and the Cape Breton

Census Agglomeration (CA). CMAs and CAs are geographical regions used by the

census to indicate which DAs belong to a larger community. They are defined by

regions where one or more adjacent municipalities are centred on a population core.

33
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For a CA this means a core consisting of at least 10,000 people. A CMA must have a

total population of more than 100,000 with at least 50,000 living within the core. For

example, a CMA could have a core of 75,000 residents with 30,000 people living in

surrounding municipalities. Images of these dissemination areas within Nova Scotia

have been created using ArcMap, shown in Figure 4.1.

Figure 4.1: Nova Scotia with Halifax (center) and Cape Breton (upper-right) Dis-
semination Areas Highlighted

By using population to model demand in both settings, demand is considered to

be identical during both the day and after-hours. To test the effect of geographical

differences in demand between regular and after-hours settings, a hypothetical setting

and data set were created by modifying the census data. This data set was used

to simulate a scenario where a large portion of people moved from urban areas to

rural areas after-hours. This may mimic a large population’s commute to urban

areas from rural areas for work. A cluster of DAs around Sydney (the most densely

populated part of Cape Breton) was chosen to represent an urban area, and 25% of

the population in these DAs was distributed proportionally among the remaining DAs

in the after-hours to create the hypothetical setting. This was done by rounding the

population in urban DAs to 75%, then increasing each remaining DA proportionately

so that the total number of people remained the same.
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4.2 Nova Scotia Case Studies

For each geographical test setting, the four solution approaches were run for differing

numbers of regular and after-hours facilities. The total cost of each scenario (which

can be expressed as the sum of all distance between each person and their primary

care in kilometres) was recorded, along with the individual costs of the regular and

after-hours settings. Note that

4.2.1 Halifax

In the Halifax setting, there are 594 DAs and a total demand of 390,096 people.

Figure 4.2 displays the geography of the included DAs.

Figure 4.2: Halifax Dissemination Areas

Tests were run for increments of 5, 20, 40, 60, and 200 regular facilities with

after-hours facilities increased in fifths. For example, the 60 regular facilities scenario

was considered with 12, 24, 36, 48, and 60 after-hours facilities. In total, 5 × 5 = 25

facility placement scenarios were tested for each solution approach.

Table 4.1 contains results for each solution approach (independent, sequential,

and simultaneous), and time periods for one scenario in the Halifax setting. There

are two rows for the sequential approach, since this approach differs between regular

to after-hours (AtR) and after-hours to regular (RtA). In the scenario used for this

example, sixty facilities are located for the regular setting and twelve are located for

the after-hours setting.
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Table 4.1: Halifax Total Cost (km)

p = 60, p′ = 12

Approach Day-Time After-Hours Total

Independent 327,904 475,128 803,032

Sequential (RtA) 327,904 482,107 810,011

Sequential (AtR) 328,352 475,128 803,480

Simultaneous 803,277

By dividing the results in Table 4.1 by the total demand the average distance

travelled by each person is calculated, as shown in Table 4.2.

Table 4.2: Halifax Average Cost Per Person (km)

p = 60, p′ = 12

Approach Regular After-Hours Total

Independent 0.8365 1.2121 2.0486

Sequential (RtA) 0.8365 1.2299 2.0664

Sequential (AtR) 0.8376 1.2121 2.0497

Simultaneous 2.0492

The lower the results are, the better the solution is. This is because a lower

overall cost means that the demand (people in this case) need to travel less distance

on average. Note that these results are based on the assumption that distance is the

main metric of consideration, and economic costs are not a factor in the model outside

of constraints that cause facilities to be shared across time settings. It is expected

that as p and p′ increase the cost will go down. This is because locating more facilities

allows facilities to be more spread out and closer to demand on average. This can

be easily seen if we plot the cost in the independent setting against the number of

facilities, shown in Figure 4.3. This applies to both settings and each approach. If

facilities are added the cost is expected to decrease.
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Figure 4.3: Halifax Regular Setting Independent Approach Cost by number of Facil-
ities

In many cases, multiple approaches result in the same overall cost. When there

are differences in cost they tend to be relatively small. However, the approaches

tend to perform relative to each other as would be expected by how constrained they

are. The least constrained approach, independent, has the lowest costs, while the

sequential approaches have higher costs than the simultaneous approach. A sample

is shown in Table 4.3, where the independent approach is treated as the base case to

calculate the difference in other cases.

Table 4.3: Halifax Total Cost (km per person)

p = 60, p′ = 36

Approach Total Difference Percent Difference

Independent 705,368 0 0%

Sequential (RtA) 706,736 1,367 0.19%

Sequential (AtR) 705,633 265 0.04%

Simultaneous 705,578 210 0.03%
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These results suggest that the approaches perform as expected relative to the

degree to which they are each constrained.

Approach Results

The total costs of the independent approach for different values of p′ and p are shown

in Figure 4.4. Each series on the chart represent the ratio of after-hours facilities p′ to

the quantity of regular facilities p. For example, each point of the blue series labelled

0.2 represents a scenario where one fifth of the regular facilities are placed during the

after-hours.

Figure 4.4: Minimum cost of p facilities for different ratios of p′ (specified in legend).
Independent approach in the Halifax setting is shown.

It is expected that the total cost is reduced as facilities are added. This is be-

cause greater numbers of facilities allow for solutions that reduce the average distance

between demand and facilities, and this is demonstrated in Figure 4.4. It is also ev-

ident that increasing the ratio of p′ to p decreases total cost. In the case of the

independent approach, this simply means adding more facilities to the after-hours

p-median problem, so a reduced cost is expected. Finally, it appears from the graph
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that the addition of more facilities has a decreasing marginal reduction in cost. That

is, the benefit from each new facility decreases as the number of facilities being placed

increases.

The trends of decreasing cost and decreasing marginal improvement in cost are

apparent for each approach, and plotting the results from each approach produces

very similar graphs to Figure 4.4. This indicates that these effects tend to be present

for any of the tested approaches when locating facilities.

Approaches Comparison

Each approach broadly exhibits similar behaviour as the number of facilities to be

located increases, but it is also appropriate to compare how each approach performs

relative to each other. In most scenarios, the independent approach has the lowest

cost, and the simultaneous approach a lower bound for the sequential approaches.

This is an expected result, as approaches that are more constrained tend to have

higher costs. This can be seen in Figure 4.5, where each series shows the percent

increase in costs compared to the independent approach for five different scenarios.

This is calculated with the formula (approach cost - independent cost) / independent

cost.
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Figure 4.5: Percent cost increase of each approach compared to independent (p = 60)

One trend that is apparent in Figure 4.5 is that each approach converges to the

same cost as the number of after-hours facilities approaches the number of regular

facilities. This makes sense when considering the data used for this case study. The

demand at each node is considered to be the same during both the regular and after-

hours time settings, so the differentiating factor between problems in each setting

is the number of facilities being placed. If the number of facilities being placed is

identical, then the problems being solved will be identical for this case data. This is

not a phenomenon that would be expected if demand differs between time periods,

and this is not expected to be observed in the third case study.

The phenomena of the independent approach providing the best cost followed by

the simultaneous approach is consistent across each scenario. In some cases the RtA

approach yields lower costs than the AtR, but in most cases the AtR approach is

better. However, both are consistently worse than the simultaneous approach.

Some of the same trends are apparent when plotting the number of facilities on

the X axis for static ratios of p′ to p. In Figure 4.6 it is apparent that the simultaneous

approach provides a lower bound to the sequential approaches.
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(a) p′/p = 0.2 (b) p′/p = 0.4

(c) p′/p = 0.6 (d) p′/p = 0.8

Figure 4.6: Percent cost increase of Halifax approaches compared to independent

These charts also display the discretized nature of the problem, where the solution

for any approach can jump sharply between points. While solution approaches always

follow the pattern of independent-simultaneous-sequential in terms of the lowest cost,

whether the RtA or AtR solution is better depends on the scenario. It can be seen

that for many scenarios the RtA sequential approach provides a worse solution than

the AtR approach, but this is not always the case.

It is possible to explain some of the trends that cause differences between sequen-

tial approaches. As more nighttime facilities are added, the AtR solution becomes

more constrained (since each after-hours facility becomes a constraint for the regular

solution). This is easy to see for p′/p = 0.4 in Figure 4.6b (see full size in Figure C.2)

by following the increasing grey line. Conversely, the RtA solution (shown by the

orange line) improves as more facilities are added since every regular facility in this

approach provides more possible solutions for the after-hours problem. Looking at

the right side, the case seems to be that AtR tends to get worse and RtA gets better

after the middle. This is logical since they are respectively becoming more and less
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constrained.

On the left side, it is sometimes the case that the AtR is the worse sequential

approach. It may be the case that when there are enough daytime facilities located

they also tend to include the best nodes for after-hours facilities as well (since the

”best” nodes for demand satisfaction are the same in each setting for this test).

However, picking very few after-hours facilities may constrain the regular problem to

a bad solution. This can be seen for p = 20 when p′/p = 0.4, 0.6 (Figures 4.6b, 4.6c,

see full size in Figures C.2, C.3). Though this is not always the case as is shown by

the other charts in Figure 4.6, in which the AtR approach yields the same solution

as the simultaneous approach. This is likely due to a discretization effect. Since the

solutions involve discrete parameters and decision variables (the number of facilities,

p, and the locations of those facilities, yi), the solution costs are discontinuous. Since

the differences in cost are relatively small between approaches and this effect is not

present when there are many and few after-hours facilities, it is likely that the small

number of facilities causes the solutions to ”jump” in cost.

Initial condition scenarios (p = 5) include difficult behaviour to analyze, and have

been excluded. The differences between approaches for p = 5 are quite significant,

and they are difficult to categorize into trends. This is likely due to a pronounced

discretization effect, which becomes more prominent as the number of facilities being

placed is reduced. Since solutions are likely to differ greatly for adjacent, small values

of p and p′, attempts to analyze solution differences would not likely produce more

meaningful results. If p and p′ were tested in smaller iterations (e.g. for each integer

less than 20), this may provide results with more apparent phenomena.

4.2.2 Cape Breton

Cape Breton is a less densely populated area of Nova Scotia than Halifax. The Cape

Breton census agglomeration contains 101,619 people in 197 DAs, which are shown

in Figure 4.7.
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Figure 4.7: Cape Breton Dissemination Areas

Tests were run for increments of 5, 20, 40, 60, and 100 regular facilities with

after-hours facilities increased in fifths.

Similar results to the Halifax tests are observed in the Cape Breton setting. This

can be seen in Figure 4.8, which displays the same trends as Figure 4.4. Locating

more facilities results in reduced costs, and the solution approaches differ in the same

magnitude. The absolute solution costs are lower when the same number of facilities

are placed, but this is expected with fewer people in the Cape Breton region.
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Figure 4.8: Minimum cost of p facilities for different ratios of p′ (specified in legend).
Independent approach in the Cape Breton setting is shown.

Approaches Comparison

Comparing the different solution approaches for Cape Breton, many similarities to the

Halifax tests can be observed in Figure 4.9. The same order of solution effectiveness

matches the degree to which solutions are constrained (that is, the independent solu-

tion approach produces the lowest-cost solution, the sequential approaches produces

the highest solution cost, and the simultaneous approach is in between the others).
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(a) p′/p = 0.2 (b) p′/p = 0.4

(c) p′/p = 0.6 (d) p′/p = 0.8

Figure 4.9: Percent cost increase of Cape Breton approaches compared to independent

The RtA solution approach most frequently has the highest cost, although there

are cases where the AtR produces a higher-cost solution. This suggests that the RtA

is typically the worst approach, which is consistent with the results of the Halifax

tests. Another similarity to the Halifax tests is that all approaches produced the

same solution for p′/p = 1. This is not surprising, since these tests also do not have

different demand between time settings.

There is also a discretization effect that causes discontinuities between tests. For

example, for each series there is a notable increase for p = 40; this may be due to the

constrained approaches being restricted to a relatively poor solution for this particular

number of facilities when compared to the independent approach. This result may

be due to the geographical distribution of demand in these tests which increases the

cost of facility-sharing constraints when p = 40.
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4.2.3 Cape Breton Modified

In the modified Cape Breton setting there are still 101,619 people, and 197 DAs with

the same geography. However, a set of urban DAs shown in Figure 4.10 have reduced

after-hours demand by 25% , and other DAs have proportionally increased after-hours

demand.

Figure 4.10: Cape Breton Urban Dissemination Areas

Plotting the test results for the independent solution approach (Figure 4.11) pro-

duces a very similar graph to the other geographical settings. However, the solution

costs are lower than in the unmodified Cape Breton tests (between 4% and 15% per

test, 7% on average).
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Figure 4.11: Minimum cost of p facilities for different ratios of p(specified in legend).
Independent approach in the Cape Breton Modified setting is shown.

Two possible explanations for the discrepancy in solution cost are apparent. The

first is that this population distribution allows for solutions with lower distances

travelled on average. The second reason is that dissemination areas are defined to have

a specific population range, and the model assumes that patients travel no distance to

a facility within their DA. By creating DAs with differing numbers of people facilities

located in higher population DAs will effectively consider more people to travel 0

distance, and DAs with fewer people will be left to travel. These two effects could

account for the lower costs of the modified Cape Breton setting.

Approaches Comparison

As with the other geographical settings, the different solution approaches may be

compared within the modified Cape Breton setting. The test results are shown in

Figure 4.12.
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(a) p′/p = 0.2 (b) p′/p = 0.4

(c) p′/p = 0.6 (d) p′/p = 0.8

Figure 4.12: Percent cost increase of Cape Breton Modified approaches compared to
independent

An expected result is that the solution approaches remain bounded by order of con-

straint. That is, the independent solution approach provides a lower bound, and the

simultaneous approach remains between the sequential and simultaneous approaches.

The same ”hump” as observed in the unmodified Cape Breton tests for p = 40 is

also present in these results, which suggests that this effect is due to a feature of the

geography.

A different phenomenon in these graphs is that the sequential approaches seem to

have a relationship with the number of facilities placed. It appears that for p < 60,

as p′ increases the cost of the RtA approach decreases and the AtR cost increases.

This suggests that for the modified scenario, as the number of after-hours facilities

increases relative to the number of regular facilities, it is more effective to consider

the regular setting first. This is particularly noticeable for p′/p = 0.6, 0.8, as shown in

Figures 4.12c, 4.12d (see full size in Figures C.11, C.12). This effect may be due to the

increased demand in the rural DAs in the after-hours setting. With a large number of
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after-hours facilities placed first, the model likely places many of them away from the

more densely-populated urban area, which then constrains the secondary problem in

the regular time setting to keep many facilities away from the area with the most

demand in that time setting. At p ≥ 60, it is possible that there are enough facilities

to overcome this effect. For example, 60 facilities may be enough to achieve sufficient

spread across the area in the regular time setting even if 80% of those facilities have

already been located according to the after-hours.

Another important point for comparison is when p′/p = 1, which is when the

number of facilities placed is the same in the regular and after-hours settings. The

results for this condition are shown in Figure 4.13.

Figure 4.13: Cape Breton Modified percent cost increase of each approach compared
to independent (p′/p = 1)

In the Halifax and unmodified Cape Breton tests, there was no difference between

solution approaches when p′/p = 1. This was expected since demand did not differ

between the regular and after-hours time settings, and thus the facility-sharing con-

straints would have no effect when the same number of facilities are placed in both

time settings. However, Figure 4.13 demonstrates that differing demand between time
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settings affects the effectiveness of each solution approach.

An interesting result is that the non-independent solutions become relatively less

effective as the number of facilities increases. This suggests that the constraints that

cause facilities to be shared across time settings become more constraining as the

number of facilities increases. While the actual solution cost decreases as the number

of facilities increases, this effect may contribute to the decreasing marginal efficiency

of additional facilities.
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Discussion

In this thesis, multiple approaches to optimally locating primary care practices were

tested in three case studies. The results of these tests reinforce the position that some

methods produce better results than others.

5.1 Key Findings

In both the Halifax and Cape Breton settings, the absolute distance travelled differed

little (less than 1% difference) between solution approaches when using the same

number of facilities. In terms of distance travelled per person, the largest difference

in cost was in the magnitude of tens of meters, which may be considered marginal

when looking at a population of hundreds of thousands of people.

However, this result is unsurprising when considering certain details of the study.

Foremost, the demand assigned at each node was considered to be the same for both

the day and after-hours. The difference between settings is the number of facilities

located, and the difference between models are the constraints used to restrict facility

location. When most of the model parameters are homogeneous across the time

setting, it is logical that each approach results in a similar cost.

It is also necessary to consider that the region of study contains urban and rural

areas with very different population densities. While the total solution cost may

not have changed much on average per person between approaches, this is likely not

distributed equally among demand. If a large portion of this cost discrepancy was

due to lower distance travelled by people in rural areas, this could mean a much larger

difference for those people since there are fewer of them than the urban population.

This could mean that the model has a more pronounced effect for the rural population

than is apparent when considering urban demand in the average denominator. It is

also worth noting that the large portion of people who live in the dense, urban part of

Halifax will never be more than a kilometer or two away from a PCP, and optimising

51
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for geospatial access is likely best applied to rural demand where the population

density is lower and services are farther away.

Another important result is that each solution approach performs relatively as

expected. The independent approach represents a naive scenario where both the

day and after-hours facility locations can be treated independently with no cost, and

this approach always had the lowest total cost. Conversely, the more constrained

approaches had higher costs, with the most constrained approaches (the sequential

RtA and AtR approaches) resulting in higher cost solutions. While this was expected,

an interesting result was that which sequential approach was better depended on

the test conditions. The regular-to-after-hours approach yielded worse results in

most cases, which is noteworthy since this is the most likely real-world method for

determining facility locations.

For the Halifax and Cape Breton tests, each solution approach provided the same

result when the number of regular and after-hours facilities were the same. Since the

demand in these tests was identically located across both time settings, it makes sense

since the same solution would be identical for both settings. However, in the modified

Cape Breton setting this was not the case. Since the demand differed between time

settings in these tests, a difference could be observed in the efficacy of each approach

(seen in Figure 4.13).

5.2 Limitations

There are some limitations of the data used in the case study that could be improved

upon for more accurate modelling of primary care needs in Nova Scotia. One problem

is how the cost parameter cij assumes that travel distance is an equal measure of access

for all patients under all circumstances. The values of cij are based on minimum road

distance from one DA centroid to another, but the time and location are factors that

may change how accessible this distance really is for a patient. For example, travelling

across a dense city during rush hour is likely to take much longer than travelling the

same distance in a rural setting late in the evening. A measure of time travelled may

be a better metric for measuring access, including the time taken for different forms

of available transport in the area.

Another issue with the cij values is that demand assigned to the same node is
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assumed to travel no distance. That is, cii = 0 ∀i ∈ I. This assumption may be

robust in the case of very small DAs where the distance from the centroid to any edge

is negligible. However, as DA size increases the distance that a patient might have

to travel within the DA also increases. A possible improvement may be to calculate

the average distance within a DA from the centroid to each other point and use this

value as the intranodal travel distance for each node. While the number of facilities

to be placed is fixed in the p-median formulations used in this study, this would be

particularly important to address in a model that considers the number of facilities as

a decision variable. Since every additional facility allows demand at the same node to

travel no distance when cii = 0, this may unrealistically incentivize adding facilities

to reduce distance.

Finally, analysis for p = 5 was excluded from the Halifax case study. This is

because the results for these tests were highly variable. It is likely that this is a dis-

cretization effect and that the low number of facilities yielded very different adjacent

solutions. Sampling more cases may improve the interpretability of the results, but it

is possible that this effect is unavoidable for low values of p. Testing this was excluded

from the scope of this thesis.

5.3 Future Research

The case study indicates that the simultaneous approach is an effective method of

addressing both the regular and after-hours time settings when considering practical

facility location constraints. However, there are other considerations when addressing

this problem that should be considered in future work. These points are outside of the

scope of this research, but may be important to consider in the context of developing

real-world policy for primary care resource allocation.

Firstly, the p-median problem was determined to be an appropriate OR model for

demonstrating the merits of considering multiple time settings simultaneously. Par-

ticularly since the case studies cover populations with varying densities, the objective

of the p-median to minimize all distance travelled is desirable when compared to other

models that were considered. In other contexts, the p-center problem, the location

set covering problem (LSCP), or the maximum covering location problem (MCLP)

may be more appropriate [22, 23, 24]. Respectively the objectives of these models
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are to minimize the greatest distance travelled by any customer, to minimize the

number of facilities needed to cover a population (coverage meaning ensuring none of

the population are further than a specified distance), and to maximise the number of

customers within a specific distance of a facility. These models are compatible with

the simultaneous approach to treating the regular and after-hours settings, and there

may be scenarios where these are more appropriate than the p-median problem. It

may also be of interest to use different models in different time settings for unique

objectives. For example, the p-median could be more appropriate during regular

hours when there are more facilities available, but if there are only a small number of

after-hours facilities the LSCP might be better able to maximise the number of people

who have access to a facility if they need it. This would provide a solution where

regular facilities provide an optimal solution for the average patient, and the number

of people who are far from after-hours facilities would be minimized. The p-center

problem may be of particular interest for improving accessibility in rural areas since

it provides an equitable solution by reducing the greatest distances travelled.

Another potential adjustment to the models used for primary care facility location

is to incorporate capacitated facilities. Many GPs prefer to work in practices with

several other physicians, and realistically this is the case for many PCPs. Rather than

placing individual facilities with no regard for capacity, a model that places facilities

with multiple GPs that can handle a specified panel size would more accurately reflect

the needs of physicians and patients.

It may also be appropriate to relax facility location constraints and instead add

facility costs to control the number of facilities opened. While it is clear that adding

more facilities will always allow for solutions with lower distances between demand

and facilities, this does not account for the economic costs of additional facilities. A

multicriteria decision analysis may help determine the cost-effectiveness of the number

of facilities available. Since the marginal improvement in patient distance travelled

decreases as the number of facilities increases, this suggests that there is a point

where the gains in accessibility are outweighed by the additional facility costs. A

model which replaces facility location constraints with facility costs may also provide

more effective solutions for both the regular and after-hours. It is intuitive to assume

that it is cost-effective for after-hours care to use the same facilities as regular care,
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but there may be cases where this is not the best solution. By allowing for these

facilities to be separated at a higher cost, a model could potentially provide a better

result than if it were constrained to sharing facilities between time settings. It may

also be appropriate to examine the effects of the weighting variable, N , on the model.

By decreasing or increasing N , solutions that respectively decrease distances during

regular service or the after-hours should be favoured.

While census population data was used to model demand for primary care ser-

vices in the case studies, this information does not necessarily provide an accurate

representation of demand in different areas. Of particular importance the census

data do not capture the disparity across individuals in demand for healthcare, nor

is the geographical shift in population between time settings measured well by the

census. Given that this information may not be easily obtained, a possible approach

to testing how these factors could affect results with the available data may be to

make adjustments to demand in different areas using demography. For example, an

area’s average demand may be increased or decreased by a factor derived from the

deviation from median age or income. For demand differences across time settings,

further changes could be made such as was done for the modified Cape Breton case

study.

The case studies are a greenfield approach, but it may be of interest to compare

solutions to real-world conditions. The difference between optimal facility locations

suggested by the model and actual PCPs may reveal factors that have been unac-

counted for. Alternatively, discrepancy could demonstrate the utility of this work in

planning health services.

To conclude, more research is needed on after-hours primary care, but it is pos-

sible to improve patient access to care by considering regular and after-hours care

simultaneously in facility location problems. In particular, this research is expected

to benefit rural Canadians at significant distance from primary care providers. By

improving the spatial accessibility of health services, use of these services and health

outcomes are likely to improve.
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Appendix A

Full Selection of Papers for Review

Table A.1 details the categorization of the texts selected for review, and whether

each study was included for analysis. The categories in this table are study type,

Day (relevant to regular operations), AH (relevant to after-hours operations), LS

(location science), OR (operations research), HC (healthcare), and Selected (whether

the reviewed text was included for further analysis or not).
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Table A.1: Papers Selected For Review

Study ID (Author) Year Type Day AH LS OR HC Selected

Ahmadi-Javid et al. [14] 2017 Survey of studies • • • • •
Arnolds, I., & Nickel, S. [25] 2015 Book Chapter • • •
Asada, Y., & Kephart, G. [26] 2007 Journal Article •
Bruno, G., & Giannikos, I. [27] 2015 Book Chapter • • • •
Burkey, M. L., Bhadury, J., & Eiselt, H. A. [28] 2011 Book Chapter •
Canadian Institute for Health Information [29] 2016 Government report •
Church, R. L. [30] 2002 Journal Article • •
Crighton, E. J. et al. [6] 2005 Journal Article • •
Doctors Nova Scotia [8] 2017 Report •
Doctors Nova Scotia [31] 2019 Report •
Farahani, R. Z., SteadieSeifi, M., & Asgari, N. [32] 2010 Survey of Studies • • •
Graber-Naidich, A. et al.[15] 2015 Journal Article • • • • •
Graber-Naidich, A. et al. [33] 2017 Journal Article • • • •
Guagliardo, M. F. [2] 2004 Journal Article • • •
Güneş, E. D. et al. [4] 2014 Journal Article • • • • •
Güneş, E. D., & Nickel, S. [9] 2015 Book Chapter • • • • •
Kephart, G., & Asada, Y. [34] 2009 Journal Article •
Khan, A. A., & Bhardwaj, S. M. [10] 1994 Journal Article • •
Marchildon, G. P., & Hutchison, B. [35] 2016 Journal Article • • •
Marianov, V. [36] 2017 Journal Article • • • •
Mcnamara, L., et al. [21] 2018 Working Paper • • • •
Morgan, J. S., & Graber-Naidich, A. [3] 2019 Journal Article • • •
Nova Scotia Department of Health and Wellness [7] 2016 Report •
O’Malley, A. S. et al. [5] 2012 Journal Article • • •
Reuter-Oppermann, M. et al. [13] 2019 Journal article • • • • •
Reuter-Oppermann, M. et al. [16] 2017 Book Chapter • • • • •
Reuter-Oppermann, M. et al. [12] n.d. Working Paper • • • • • •
Sridharan, R. [37] 1995 Journal Article • • • •
Terashima, M. et al. [38] 2016 Report • •
Tomblin Murphy, G. et al. [39] 2009 Journal Article •



Appendix B

p-Median Problem Class Code

This section contains the full pmed class code that was used.

1 class pmed:

2 def __init__(self , data):

3 self.facilities = data[’p’]

4 self.csts = data[’c’]

5

6 def defprob(self , d = None):

7 self.tstart = time.time()

8 p = self.facilities

9 costs = self.csts

10

11 if d == None:

12 d = [1 for i in range(len(costs))]

13

14 #Create list of nodes

15 sites = [x for x in range(len(costs))]

16

17 Routes = [(i,j) for i in sites for j in sites]

18

19 route_vars = LpVariable.dicts("Route" ,(sites ,sites) ,0,None)

20 site_vars = LpVariable.dicts("Site" ,(sites) ,0,1,LpInteger)

21

22 self.prob = LpProblem("pmedprob",LpMinimize)

23

24 #Objective Function

25 self.prob += lpSum([ costs[i][j]* route_vars[i][j] for (i,j)

in Routes ]), "Sum of Costs"

26

27 #Constraints

28 for j in sites:

62



63

29 self.prob += lpSum([ route_vars[i][j] for (i) in sites])

== 1, "Sum of Demand"

30

31 self.prob += lpSum([ site_vars[i] for (i) in sites]) == p

32

33 for j in sites:

34 for i in sites:

35 self.prob += route_vars[j][i] - site_vars[j] <= 0

36

37 self.tdef = time.time() - self.tstart

38

39 def solveprob(self , solver = None , solvepath = None):

40

41 self.tstart = time.time()

42

43 if solver == None:

44 self.prob.solve()

45

46 else:

47 self.prob.solve(solver)

48

49 self.tsolve = time.time() - self.tstart

50

51 def soln(self):

52 return value(self.prob.objective)

53

54 def fullsoln(self):

55 print("Status:", LpStatus[prob.status ])

56 for v in prob.variables ():

57 if v.varValue != 0:

58 print(v.name , "=", v.varValue)

59 print("Total Cost = ", value(prob.objective))

60

61 def times(self):

62 return self.tdef , self.tsolve

Listing B.1: pmed Code



Appendix C

Images Used in Subfigures

This section contains figures that were placed in subfigures. They are included in

larger size here.

C.1 Figure 4.6 (Halifax Approaches Comparison)

Figure C.1: Percent cost increase of each approach compared to independent (p′/p =
0.2)
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Figure C.2: Percent cost increase of each approach compared to independent (p′/p =
0.4)
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Figure C.3: Percent cost increase of each approach compared to independent (p′/p =
0.6)
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Figure C.4: Percent cost increase of each approach compared to independent (p′/p =
0.8)
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C.2 Figure 4.9 (Cape Breton Approaches Comparison)

Figure C.5: Percent cost increase of each approach compared to independent (p′/p =
0.2)
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Figure C.6: Percent cost increase of each approach compared to independent (p′/p =
0.4)
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Figure C.7: Percent cost increase of each approach compared to independent (p′/p =
0.6)
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Figure C.8: Percent cost increase of each approach compared to independent (p′/p =
0.8)
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C.3 Figure 4.12 (Cape Breton Modified Approaches Comparison)

Figure C.9: Percent cost increase of each approach compared to independent (p′/p =
0.2)
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Figure C.10: Percent cost increase of each approach compared to independent (p′/p
= 0.4)
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Figure C.11: Percent cost increase of each approach compared to independent (p′/p
= 0.6)
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Figure C.12: Percent cost increase of each approach compared to independent (p′/p
= 0.8)


