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Abstract

The emotional neural network (ENN) is a new field in artificial intelligence systems
(AISs). Although ENN was proven in control applications and successfully solved sev-
eral control problems, it still suffers severe technical issues concerning prediction. This
study aims to design a new model for an intelligent forecasting technique constructed
by unified Adaptive Decayed Brain Emotional Learning (ADBEL) combined with a
Neo-Fuzzy Neuron (NFN) network. In the literature, the ADBEL network is used to
predict time series in online mode. Unlike other popular learning networks such as ar-
tificial neural networks (ANNs), the ADBEL network offers lower computational time,
less complexity, and fast learning, making it ideal for time series prediction in online
applications. This thesis aims to further enhance the ADBEL network’s forecasting
accuracy through three significant modifications in design. The first modification is its
integration with a neo-fuzzy network in the orbitofrontal cortex section. The result is
the Neo-Fuzzy integrated Adaptive Decayed Brain Emotional Learning (NF-ADBEL)
network. The second modification is the integration with a neo-fuzzy network in two
sections: the orbitofrontal cortex section and partially in the amygdala section. This
modification leads to a new design: the Expanded Neo-Fuzzy integrated Adaptive
Decayed Brain Emotional Learning (ENF-ADBEL) network. The third modification
is to design a fuzzy logic-based parameter adjustment model for the ADBEL network,
resulting in the F-ADBEL model. The F-ADBEL model can set the learning param-
eters (namely, alpha, beta, and gamma) of the online mode’s ADBEL network. Root
mean squared error and correlation coefficient criteria are used to evaluate the mod-
els. The chaotic time series, namely the Mackey-Glass, Lorenz, Rossler, Disturbance
Storm Time Index, and the Narendra dynamic plant identification problem, were used
for applications and validation. Stochastic series such as wind speed and wind power
series are applied to validate the designed models mentioned above. Furthermore, we
conducted a comparison between the developed models and the ADBEL and other
models. The created models were tested in a MATLAB programming environment
and showed superior performance compared to other state-of-the-art predictors.
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Chapter 1

INTRODUCTION

Chaotic time series theories share some general characteristics, such as sensitive de-

pendency on initial conditions and non-cyclical and bounded variations. However,

the dependency characteristic of time series theories often renders the long-term pre-

diction capacity of chaotic time series nearly impossible. To resolve this issue, if the

predictor (model) can identify the chaotic behaviour, then short-term prediction is

possible to some extent [1].

Many different techniques were applied to the chaotic times series prediction prob-

lem with varying degrees of success. The Artificial Neural Network (ANN) is probably

the technique most often used. However, due to its structure and back-propagation

training algorithm, there is no guarantee that the training processes will not land

in a local minima position. Furthermore, there is an increase in time computational

complexity because there is no optimal structure for the number of neurons, number

of layers, or activation function suitable for the objective function. These drawbacks

affect the reliability and accuracy of the prediction.

Brain Emotional Learning Neural Network (BELNN) has recently emerged as an

alternative to classical artificial neural networks for approximating nonlinear func-

tions. BELNN is inspired by both feed-forward neural networks and fast learning

and has been applied for time series prediction techniques [2],[3],[4],[5].

1.1 Contributions

The thesis addresses the design of different ADBEL network models based on the

integration of neo-fuzzy networks. Summarized below are the contributions which

will be further elaborated in the subsequent chapters:

1. The design of a neo-fuzzy integrated adaptive decayed brain emotional learning

(NF-ADBEL) neural network is proposed, and its applicability is demonstrated

1
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for online time series prediction problems and other forecasting applications

such as wind speed and wind power generation.

2. The design of an Expanded neo-fuzzy integrated adaptive decayed brain emo-

tional learning (ENF-ADBEL) neural network is proposed, and its applicability

is demonstrated for online time series prediction problems and other forecasting

applications, such as wind speed and wind power generation.

3. A fuzzy-logic-based parameter-adjustment model design to use with the adap-

tive decayed brain emotional learning (F-ADBEL) network is proposed, and

its applicability is demonstrated for online time series prediction problems and

other forecasting applications such as wind speed and wind power generation.

4. A comparison is conducted between the designed proposed NF-ADBEL, ENF-

ADBEL, F-ADBEL, and ADBEL models and other state-of-the-art models.

In addition to the above, other contributions include:

• Redesigning an ADBEL network for use as a benchmark to compare the pro-

posed models’ outcomes.

• Programming and simulating all the proposed models in MATLAB.

• Generating a comparison program in MATLAB to compare the results of the

proposed models.

• Identifying time series data for Mackey-Glass, Lorenz, Rossler and Narendra

identification plant in MATLAB programming and filing it in the attached

Appendix of this thesis to aid the work of future researchers.

1.2 Thesis Outline

The thesis is organized into five main chapters. The current chapter presents an

overview of chaotic time series prediction problems and Brain Emotional Learning

networks, as well as the study’s contributions. The remainder of the thesis is ordered

as follows:
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Chapter 2: Literature Review

This chapter briefly provides a literature review of Brain Emotional Learning

models and various techniques to predict time series.

Chapter 3: Proposed Models

This chapter presents Brain Emotional Learning’s proposed models to predict

time series data and other nonlinear systems.

Chapter 4: Results and Discussions

This chapter presents the results of the proposed models and discusses their

performance in comparison to other state-of-the-art predictors.

Chapter 5: Conclusions and Future Work

This chapter presents the conclusions of the thesis and makes suggestions for

future work.



Chapter 2

LITERATURE REVIEW

2.1 Review of Brain Emotional Learning-inspired Models (BELiMs)

Brain emotional learning-inspired models (BELiMS) are computational models adapted

to mimic the human brain. From the application’s perspective, it can be categorized

into three groups, as follows: Brain emotional learning-based prediction models, Brain

emotional learning-based control models, and Brain emotional learning-based pattern

recognizer models.

1. Brain emotion learning-based controller models

B. Damas, in [6], presented an Emotionally Motivated Artificial Intelligence

(EMAI) model that was applied to an artificial soccer team. This model was

based on artificial intelligence (AI). EMAI is considered a first attempt to de-

velop a decision-making agent using emotional features that incorporate emo-

tional responses with rational responses. The results were reasonable.

D. Juan, in [7], showed how emotions and behaviours can be integrated into

an adaptive agent structure, using some emotion mechanisms to gain memo-

ries from experiences that act as bias mechanisms during decision-making. In

terms of their ability to overcome the uncertainty and complexity that most

control systems suffer, the Brain Emotional Learning-Based Intelligent Con-

troller (BELBIC) is considered one of the most successful and superior control

models [8] of all time. BELBIC has ben applied to different control systems,

such as heating and air conditioning [9], Aerospace Launch Vehicle Control [10],

Intelligent Modelling and Control of Washing Machines [11], and stepper mo-

tor trajectory tracking [12]. Further, BELBIC outperforms several existing

controllers by its unique characteristics of simplicity, reliability, and stability.

A BELBIC integrated with a neuro-fuzzy network controller was applied to

track and control the output temperature in an electrically heated micro-heat

4
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exchanger plant. The proposed model outcomes in [13] were compared with a

PID controller, with the novel model showing a more remarkable ability to sta-

bilize faster than the PID performance controller and with only minor distortion

occurrence.

2. Brain emotionalal learning-based pattern classification models

A pattern classifier refers to a system that uses classification algorithms to clas-

sify new observations. These algorithms use either supervised or unsupervised

techniques to achieve the task of classification. In supervised mode, the train-

ing data set is used to create a map between the characteristics in the data

set and classes. Afterwards, the learning function is then validated using the

test data set. In unsupervised cases, the data entered is aggregated, and new

categories are created automatically based on the distance measurement. Nu-

merous categorization algorithms exist, but not all algorithms perform well for

all classification problems. Many algorithms and theories have been used in the

literature to solve classification problems such as pattern classification [14], Pat-

tern Recognition and Machine Learning [15], Deep Neural Networks for wireless

localization in indoor and outdoor environments [16], visual-tactile fusion for

object recognition [17], and optimizing classifier performance for Parkinson’s

disease detection [18].

It is generally well-known in the field that neural networks (NNs) developed

on a biological basis have been widely used for solving problems of pattern

recognition in traditional networks, such as MLP [19], chart pattern recogni-

tion [20], self-organizing spiking neural network [21], and deep neural networks.

Although these networks are based on neuronal activity in mammals, they rep-

resent a small-scale model of the cerebral cortex. However, the recent trend

of using models in deeper neuronal activity in the mammalian cerebral cortex

for solving pattern recognition problems has been garnering increasing interest.

Among these studies are: brain emotional learning-based pattern recognizer

(BELPR) [22], gene expression microarray classification using PCA-BEL [23],

supervised brain emotional learning [24], neural basis computational model of
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the emotional brain for online visual object recognition [25], practical and emo-

tional neural networks for pattern recognition problems [26], and neo-fuzzy-

supported brain emotional learning-based pattern recognizer (NFBELPR) [27].

3. Brain emotional learning-based prediction models

A brain emotional learning-based predictor is an intelligent digital prediction

method characterized by easy learning, fast computation, lack of complexity,

and fast response to system inputs and accurate prediction outcomes.

Mahboobeh, in [2], proposed a new version of a brain emotional learning-

based inspired model called the brain emotional learning-based prediction model

(BELPM). The structure of the model is depicted in Figure 2.1. BELPM is

based on different adaptive networks implemented in various regions of brain

emotional learning (BEL), as shown in Figure 2.2, where the learning algorithms

used are the steepest descent (SD) and least square estimator (LSE). The goal

of this model is to enhance the prediction accuracy of the chaotic behaviour

of nonlinear systems and to predict the disturbance storm time (Dst) index.

The authors compared their model results to those of the adaptive neuro-fuzzy

inference system (ANFIS), with the results indicating that BELPM provides

better performance than ANFIS.

2.2 Motivations

Both adaptive decayed brain emotional learning (ADBEL) and neo-fuzzy neurons

(NFN) share some characteristics and features. The main ones are listed in the next

subsections.

2.2.1 ADBEL Features

1. Less computational time

2. Fast learning

3. Decreased spatial complexity

4. High accuracy
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Figure 2.1: Structure of BELPM [2].
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Figure 2.2: Assigning Adaptive Networks to Different Parts of BELPM [2].
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2.2.2 Neo-fuzzy Features

1. Simplicity

2. Transparency

3. Accuracy

4. Low computational complexity

The neo-fuzzy-supported adaptive decayed brain emotional learning-based prediction

model preserves the features of both networks, while simultaneously improving the

performance of the proposed model (NF-ADBEL).

2.3 Review of the Concept of Emotion

Over the centuries, countless interdisciplinary scientists, whether medical scientists,

neuroscientists, psychologists or philosophers, have sought to understand the mystery

of emotions. They explored the effects of emotion on the human brain in terms of re-

action and decision-making, developing argumentative hypotheses based on different

grounds and mostly according to their own scientific field of study [28].

Exclusively noteworthy here are cognitive neuroscientists who have endeavoured to

sketch and describe the emotional system and its processing mechanisms of operation.

One of the earliest neuroscientists who inspired and studied the brain’s emotional

system in detail is James Papez. In 1937, Papez was able to sketch an explanatory

and approximate diagram of the brain connection regions that are now known as

the Papez circuit. Papez was eager to learn and study the human brain, and he

found his object in [29], which considered the basis for understanding the mystery of

the human mind. In 1907 and 1908, the neuroscientist Jacob discovered the visceral

brain [29], which interpreted and understood the system of the inner brain. The

system structure was based on a study conducted on degenerative diseases in apes,

dogs and humans, a phenomenon known as the disease of deterioration and decay of

the nerves. Degeneration is aggressive behaviour.

In 1937, Papez conducted a laboratory study on a disease that affects dogs called

rabies or frenzy. This disease is characterized by particularly aggressive behaviour.
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Papez noticed that this disease is directly related to the presence of deterioration

and deformity of the hippocampus. He logically correlated that the deficiency of the

hippocampus creates aggressive behaviour, and thus the hippocampus is thought to

express emotions, as it is connected automatically to the nervous system.

However, Papez also noticed that, in other cases, stimuli such as the senses of

smell, taste and pain are not solely related to the hippocampus. Rather, there are

other parts of the brain working together as a center of control for emotions. Ac-

cordingly, Papez found the Papez circuit, naming this circuit as the cortical control

of emotions.

In 1937, Paul D. MacLean was excited to learn about Papez’s circuit and expanded

his study to include research on Broca’s area. Pierre Paul Broca was an anatomist

who studied the problem of the inability to speak, or ”aphasia.” Broca found that

it was caused by lesions in the left frontal cortex. His study is considered the first

anatomy of the localization of brain function and has been named after him [30].

Broca’s research discovered that the limbic lobe surrounding the posterior brain (the

brainstem) was a common structure that occurred in all mammals. Papez’s circuit

linked the hypothalamus and the limbic lobe. In 1952, MacLean developed a new

version of Papez’s circuit that included not only the hippocampus and hypothalamus,

but also the amygdala and septum [31].

The inclusion of the hippocampus, amygdala, and septum led to the labelling of

the ”visceral brain.” Thus, the limbic lobe and visceral brain represent what is known

today as the limbic system. MacLean was certain that the presence of the visceral

brain in the limbic system gives a logical explanation for the process of emotion in

the knowledge of external stimuli such as olfactory, visual, and audio [31], and that

the visceral brain is therefore responsible for the senses and transposes the external

stimuli to the limbic lobe.

From the above, it can be concluded that the limbic lobe works as a memory,

while the visceral brain acts as a carrier of the external stimuli to the visceral lobe.

Both of them then work together as an emotional control center. However, neurosci-

entists have rejected the philosophy of the limbic system, replacing the theory with

the notions of fear and rewards, while preserving the structure of the Papez circuit.

Neuroscientists have proposed that different parts of the brain are responsible for
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different emotional behaviours [32]. Furthermore, fear is a common and instinctual

emotional behaviour that excites both humans and animals. Fear conditioning is

defined as learning fearful stimuli to avoid and/or predict penalties.

2.4 Description of Structure, Functions and Learning Algorithms of the

Brain Emotional Learning Based-Prediction Model (BELPM)

2.4.1 BELM External Structure

The amygdala-orbitofrontal model is a relatively simple structure [33] and thus serves

as the foundation model from which other models have been derived [2], [3], [34].

Although the external structure is almost the same as shown in Figure 2.1, there are

some interior design variations. According to the goal, the interior design depends

on whether the purpose is to predict, control, or recognize[35],[36],[37],[38]. Hence,

the internal differences which we see in the existing models are based on training and

learning rules as well as different theoretical theories and methods [39],[26], [24], [40],

[41]. The target is to achieve a universal model that applies to multi-objectives, but

this achievement has remained elusive.

2.4.2 BELM Internal Structure

In the literature, numerous proposal models have been derived from the amygdala

orbitofrontal model. Including models as the Brain Emotional Learning-based Fuzzy

Inference System (BELFIS) [5], the Brain Emotional Learning-based Recurrent Fuzzy

System (BELRFS) [42], and the Emotional Learning-inspired Ensemble Classifier

(ELiEC) [43], the latter for prediction and classification purposes.

2.4.3 BELM Terms

Several studies have been conducted to expose the ”mystery” of learning feelings,

including anatomical and behavioural aspects. Numerous studies [33],[44],[45] have

concluded that, in terms of fear conditioning, the limbic system is primarily respon-

sible for the process of learning emotions. Below, we will define the general concepts

of the limbic system’s names and other parts of the brain that may have some form

of relationship with the main parts of the limbic system.
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1. Thalamus (TH)

The thalamus (TH) is a sensor for seeing, touching, and tasting. It is considered

a relay station that directs these stimuli to the cortex’s appropriate area in other

regions of the brain. As emotions are very contingent on this area of the brain,

the thalamus is considered a gateway to the limbic system and is responsible

for providing the limbic system with all the available and received information

in the form of emotional stimuli [33], and [46]. The thalamus sends the received

data along a short path to the amygdala and then directly to the sensory cortex.

2. Sensory Cortex (SC)

This region is responsible for receiving the information sent to it by the thala-

mus. The role of the sensory cortex is to forward the received information to

the amygdala and orbitofrontal cortex [33], [47].

3. Amygdala (AMY)

From a medical perspective, the amygdala is sometimes called the aggregation

center. Experimentally, it has been shown that, when stimulated, the amygdala

can produce feelings of anger, violence, fear, and anxiety. We can thus propose

here that anger leads to violence and fear leads to anxiety. This part of the

amygdala is sometimes presented by a plus sign. On the other hand, if the

amygdala is destroyed, it is represented by a negative sign, whereby it can cause

a very mellowing effect. This mellowing effect was noticed by the psychologist

Dr. Kluver and the neurosurgeon Dr. Bucy, who subsequently termed it the

Kluver-Bucy syndrome [48].

The Kluver-Bucy syndrome appears when there is bilateral destruction of the

amygdala. Symptoms of the syndrome include hyperorality, hyper-sexuality,

and increased disinhibited behaviour that results in dismissing risk and thus

engaging in dangerous and reckless pursuits. In the Kluver-Bucy syndrome,

both sides (bilateral) of the amygdala are destroyed. On the other hand, if

the amygdala is stimulated and produces fear and anxiety based on the type

of stimuli, the result is anxiety disorders or an anxiety attack. Medication

such as Benzodiazepine (benzos) is generally prescribed for extreme disorders.
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Pharmacologically, benzos function similarly to alcohol. As is generally well-

known, when people consume too much alcohol, they may experience symptoms

of hyperorality and hyper-sexuality, as well as disinhibited behaviour.

It is worth mentioning that the two parts of the amygdala are connected by a

curving structure around the thalamus, called the hippocampus. The hippocam-

pus comprises the central region and is one of the most important parts of the

limbic system [33], as it has access to other limbic system regions. Further,

the hippocampus is mono-directional with the thalamus and sensory cortex,

whereas it is dual-directional with the orbitofrontal cortex. Part of its multi-

function includes memory that involves saving, storing, and releasing emotional

stimuli [44], [45]. It also plays a key role in analysis and emotional learning

and contributes to decision-making and emotional response, with the help of

the orbitofrontal cortex and other sections, such as the hippocampus and rein-

forcement signals.

One of the most important characteristics of the amygdala’s emotional learning

is that it is permanent and monotonic [49]. Furthermore, the learning parameter

of the amygdala, the so-called (α), is proportional to the strength of input

stimuli and reaches the amygdala along a short path. This stimulus has all

the information (based on the role of the orbitofrontal cortex) to inhibit an

inappropriate response from the amygdala. Although this characteristic may

be useful in solving some problems, such as predicting space weather when

measuring storm intensity is important, this feature may help determine the

level of the solar storm by reading the peaks and valleys.

4. Hippocampus

The hippocampus plays a key role in forming new memories. Specifically, the

hippocampus helps to adapt short-term memory (STM) into long-term mem-

ory (LTM). This is important to the present research because, whether STM

or LTM, memories can evoke emotions as well. On the other hand, if the hip-

pocampus is damaged, there is difficulty forming new memories and whatever

is experienced fades away. Thus, if the hippocampus were destroyed, new mem-

ories cannot form, but the brain still has the old memories intact. In other
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words, the short-term function is still fine, which is why the amygdala has a

monotonic memory.

5. Hypothalamus

”Hypo” means ”below,” so the hypothalamus is positioned below the thala-

mus. The hypothalamus is actually a very tiny structure that makes up less

than 1% of the total volume of the brain. However, despite its small size, the

hypothalamus plays a significant role in regulating numerous functions in the

brain as well as the human body in general. In terms of emotions and limbic

system structure, the hypothalamus regulates the Autonomic Nervous System

(ANS) [50], which controls the ”fight or flight” versus ”rest and digest” im-

pulses. The hypothalamus does this by controlling the endocrine system and

triggering the release of hormones into the bloodstream. Some of the hormones

that are triggered release epinephrine, commonly known as adrenaline. When

adrenaline is pumping through the body’s veins, it is actually being regulated

by the hypothalamus. The hypothalamus is also involved in regulating other

basic drivers, like hunger, thirst, sleep, and sexual desire.

The researchers in [51] investigated the relationship between the orbitofrontal

cortex (OFC) and the hypothalamus. Their results found that the OFC has

heterogeneous activities in the region itself and has a homogeneously dense

connection to the hypothalamus in the two major parts of the lateral and medial,

in terms of controlling autonomic functions. By using the resting-state function

connectively, the researchers in [51] were able to divide the cerebral cortex into

fictitious functional areas. The functional connectivity was examined between

these areas in the OFC and lateral/medial hypothalamus. Specifically, [51]

noticed that the functional double dissociation in the OFC, in that the lateral

OFC was more connected to the lateral hypothalamus and the medial OFC

was more connected to the medial hypothalamus. As well, [51] demonstrated

a fundamental heterogeneous of the OFC region and recommended a potential

neural basis of OFC-hypothalamic functional interaction.

6. OrbitoFrontal Cortex (OFC)

The orbitofrontal cortex OFC is located near the amygdala and is a key part of
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the limbic system. It has a mono-direction connection with the sensory cortex

and a bi-directional connection with the amygdala. Its functions are processing

stimuli, analyzing emotional stimuli, and evaluating reinforcement signals and

emotional learning to prevent an inappropriate response from the amygdala.

7. Cerebral Cortex & Prefrontal Cortex

By observing the structure of the brain, we can see it has front and back parts.

The area of the brain known as the cerebral cortex plays a role in emotion.

However, there are different ways to divide the cerebral cortex and organize

it. In relation to the emotion concept, it is best to view the brain in terms of

hemispheres. Based on this perspective, the brain has two hemispheres: one on

the right side of the brain, and the other on the left side.

Research indicates that the hemispheres are the sites of different functions.

For instance, a positive emotion evokes more electrical activity on the left side

of the brain than on the right side, whereas negative emotions tend to elicit

more activity in the right hemisphere. These results are based on an exper-

iment conducted with a number of participants who watched movies divided

into two categories: those that evoked pleasure and those that evoked disgust.

The researchers videotaped the facial expressions of the participants as well as

recording their brain activities using an electroencephalogram (EEG) record-

ing. The EEG measures the electrical activity of the brain. The research study

found that the pleasurable movies increased activity in the left hemisphere of

the participants’ brains because these movies were associated with positive emo-

tions like happiness, thankfulness, joy, and enthusiasm. On the other hand, the

scary (negative) movies increased activity in the right hemisphere of the par-

ticipants’ brains because scary movies are associated with negative feelings like

fear, isolation, timidity, avoidance, and even depression. Note that activity was

found on both sides of the participants’ brains during both movies, but that the

positive emotions involved more activity on the left side and the negative emo-

tions showed more activity on the right. The researchers also noticed that the

left hemisphere was more active in certain situations, such as social interaction,

whereas the right hemisphere was more active in situations that were defined
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as isolated or lonely.

Another way to look at the cerebral cortex is by dividing it into functional divi-

sions of three parts: front, middle, and back. In this case, the most important

part, in terms of emotions, is the front section, known as the prefrontal cortex.

The prefrontal cortex is the area immediately behind the forehead. This part

of the brain is responsible for many high-order functions, including language,

information processing, and decision-making.

8. Autonomic Nervous System (ANS)

The best example for understanding the ANS is roller coaster-riding, which

typically combines the emotions of fear and excitement. Accompanying the

feelings of fear and excitement are an increase in heart rate and faster breathing.

These physiological changes are not under your conscious control, i.e., you do

not command yourself to start breathing faster, it just happens automatically.

Physiological changes occur automatically through connections in the nervous

system. The branch of the nervous system responsible for these automatic

reactions is the Autonomic Nervous System (ANS). The ANS has two branches:

the sympathetic nervous system and the parasympathetic nervous system, each

of which causes different changes. Some changes may also occur in different

organs and parts of our body.

A number of researchers refer to the sympathetic nervous system as performing

actions involving ”fight or flight,” while others refer to the parasympathetic

nervous system as ”rest and digest.” Therefore, the sympathetic nervous system

causes changes in our body consistent with the feelings and changes that one

might experience when afraid of something (like riding a roller coaster). The

fear response engenders multiple changes in our body automatically through the

involvement of the sympathetic nervous system. The most important organs

related to the ANS in terms of emotional response are the eyes, salivary glands,

heart, lungs, gastrointestinal (GI) tract, liver, and kidneys. The latter organ is

located next to the adrenal gland, which is responsible for releasing hormones

like adrenalin.
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PROPOSED MODELS

3.1 Review of BEL Functions and Learning Algorithms

Brain emotional learning (BEL) networks are computational models that mimic the

method employed by the mammalian brain in processing emotional stimuli, as de-

scribed by LeDoux [52],[53]. According to LeDoux, emotional triggers are processed

faster than non-emotional stimuli due to the existence of shorter paths in the part of

the brain known as the emotional brain, which has a psychological aspect as well [54].

The emotional brain components responsible for processing the emotional stimuli in-

clude the thalamus, the sensory cortex, the amygdala, the orbitofrontal cortex, and

the hippocampus. The process is initiated after the emotional stimulation is received

by the thalamus, which submits imprecise information regarding the amygdala’s stim-

ulus. The stimulus is also propagated to the amygdala through the sensory cortex,

which forms a longer path than the thalamus and amygdala. The sensory cortex

passes the stimulus information onto the orbitofrontal cortex, prompting an emo-

tional response in the amygdala. The amygdala also submits this emotional response

to the orbitofrontal cortex, which evaluates the response and rectifies it with the help

of the hippocampus. This process is depicted in Figure 3.1.

The above emotional process in the mammalian brain forms the basis for the

brain’s computational models. The first such model appeared in [33]. In the model,

the thalamus’s imprecise information to the amygdala represents the maximum value

of the stimulus. The rectifying operation of the orbitofrontal cortex is achieved using

the suppression operator, i.e., the BEL model’s output is the emotional response of

the amygdala minus the production from the orbitofrontal cortex. A reinforcement

signal Ro is also computed for the model to learn, which is given as [4]:

17
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Figure 3.1: Routes of Limbic System.
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(3.1)

otherwise,
∑

ai represents the amygdala output, while
∑

oi is the orbitofrontal cortex

output. This reinforcement signal is used to adjust the weights of the BEL model

to improve its response. Thus, through a history of input rewards and punishment

signals, the model is made to learn the desired response to the emotional stimuli.

However, it is not clear how the value is assigned to signal in the learning process. In

other BEL models [38], [8] this signal is computed as the weighted combination of a

set of reinforcement factors related to a process [4] :

rwe =
∑
j

wjrj (3.2)

The special way of computing the signal, as in Eq (3.2), makes the model less

efficient in learning opposite behaviours, but it works well for a specific problem. The

BEL models with (rew) given by Eq. (3.2) have shown great success in various real-

time applications, including home appliances [11], robotics [55],[56], electrical drives

[57],[34] and other industrial systems [9],[36]. These models have also been used for

time series prediction problems [37],[38] where their performance in predicting the
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peak points is excellent. However, their performance is poor at valley points in the

time series data. To improve the performance of these BEL models, supervised BEL

models are proposed in [24],[4]. These models employ the pattern-target samples in a

supervised way for their learning and assign target values to signal during the learning

process [4]:

rwe = t (3.3)

The benefit of using target-pattern samples is that the model can be adjusted

to follow peak or valley points in the time series data. The shortcoming is that the

model can only yield good results for recent inputs, and the performance is degraded

in instances of distant examples. A decay rate is added to the BEL model to overcome

this weakness, which also has a neurobiological basis [39]. The resulting BEL model is

called ”ADBEL” and has shown good performance for online time series forecasting,

as reported in [24],[4].

3.2 Review of Adaptive Decayed Brain Emotional Learning (ADBEL)

Network

The ADBEL network was proposed in [24],[4] for time series prediction in a supervised

way. It differs from other BEL models in that it can be used online, and no prior

training is required before using the network. The ADBEL network trains itself in

online mode, using an internal reward signal. As opposed to other BEL models, the

ADBEL network utilizes a decay rate that has a neurobiological basis and serves to

improve the network’s performance. It is well-known that other artificial intelligence

techniques, such as ANNs, suffer from the bias dilemma problem, whereby a model

cannot track changes in a non-stationary environment. To do so, the parameters

and structure of the ANNs model must be time-varying. In other words, the ratio

between stability and plasticity must be coordinated by the forgetting factor, ignoring

any knowledge that becomes invalid due to noise or non-stationary media. A decay

rate that solved this problem was added to the BEL model, creating the ADBEL

model. A schematic representation of the network is given in Figure 3.2.
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The ADBEL network has four inputs (pt−4, pt−3, pt−2, pt−1) and one output (p̂t),

as seen in Figure 3.2.

The ADBEL network has four inputs (pt−4, pt−3, pt−2, pt−1) and one output (p̂t),

as seen in Figure 3.2.

In referring to [4], the number of ADBEL network’s inputs, in general, could be

n-inputs where j = 1, 2, ...n,. Therefore, Eq. 3.4, in general, can be formed as:

p̂t = f(pt−n, .........., pt−2, pt−1). However, Lotfi in [4] considered only four inputs fol-

lowing each four sequence samples as a pattern, using the fifth as its target. Therefore,

in the present work, we assessed the same arrangement for a fair comparison of our

designed model to the existing model in [4].

The four inputs are the time series values at the previous four-time instants, while

the output is the predicted value of the time series at the current time instant. This

mapping is given as:

p̂t = f(pt−4, pt−3, pt−2, pt−1) (3.4)

The ADBEL network’s functioning is such that after the inputs are presented

to the network, a maximum value is computed by the thalamus (m), which then

submits it to the amygdala. The inputs are then transferred to the sensory cortex,

which introduces these inputs to the amygdala and orbitofrontal cortex through the

weights vj’s and wj’s, respectively. After receiving the five inputs, the amygdala

produces two outputs, Ea and Éa, as:

Ea = Éa + vth ×m (3.5)

Éa =
4∑

j=1

(vj × pt−j) (3.6)

m = maxj × (pt−j) (3.7)



21

T
h
a
la
m
u
s

p
t−

1

p
t−

2

p
t−

3

p
t−

4

S
e
n
so

ry
C
o
rt
e
x

w
1

w
2

w
3

w
4

∑∑ ∑

O
rb

it
o
-f
ro

n
ta
l
C
o
rt
e
x

∑∑ ∑
p̂
t

p
t

v 1

v 2

v 3

v 4

v t
h

∑∑ ∑∑∑ ∑

A
m
y
g
d
a
la

w
1

w
2

w
3

w
4

E
o

-

v
1

v
2

v
3

v
4

v
th

E
′ a

E
a

E
a

F
ig
u
re

3.
2:

S
ch
em

at
ic

D
ra
w
in
g
of

A
D
B
E
L
N
et
w
or
k
.



22

∀j = 1, 2, ..., 4

Similarly, the orbitofrontal cortex produces an output, Eo as:

Eo =
4∑

j=1

(wj × pt−j) (3.8)

The final output from the ADBEL network, i.e., the predicted value of the time

series at the current timestamp, is found to be:

p̂t = Ea − Eo (3.9)

The steps shown in Eqs. (3.5 - 3.9) are termed as prediction steps in [4]. After the

prediction stage, the ADBEL network is trained with the help of signals Ea, Éa, Eo, pt

and constant parameters α, β, γ . The output from the amygdala Ea, in conjunction

with the current time series value pt and decay rate γ, is used to adjust the amygdala

weights in the following way:

⎧⎨
⎩
vj(t+ 1) = (1− γ)vj(t) + α max(pt − Ea, 0)pt−j

vth(t+ 1) = (1− γ)vth(t) + α max(pt − Ea, 0)m , ∀j = 1, 2, ..., 4
(3.10)

In adjusting the weights of the orbitofrontal cortex, an internal reward signal Ro is

first computed as:

Ro =

⎧⎨
⎩
max(Éa − pt, 0)− Eo , if (pt �= 0)

max(Éa − Eo, 0) , otherwise
(3.11)

Based on this reward signal, the weights of the orbitofrontal cortex are updated

as:

wj(t+ 1) = wj(t) + (β Ro pt−j) (3.12)

∀j = 1, 2, ..., 4

As can be observed from the prediction and learning stages of the ADBEL network,
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the ABDEL approach presents a simple method to time series prediction in an online

mode. Unlike the other popular networks used for forecasting, such as ANN with

a back-error propagation algorithm or ANFIS, neither can predict time series with

shorter update intervals due to their computational complexity. It is also worth noting

that three constant positive parameters (α, β, γ) are used in the network’s learning

stage and need to be tuned for the network’s best performance. The range of these

parameters is reported in [4] as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α ≤ 1,

β ≤ 1,

0 ≤ γ ≤ 0.2

(3.13)

The parameters alpha, beta and gamma were assigned their values as in ref [4]

as initial values. They were then selected after extensive experimentation to yield

the best possible prediction performance in each case. All the network weights were

initialized as zeros instead of being assigned random values. This aids in helping run

the simulations only once; furthermore, in so doing, no averaging of the results is

required, as the networks will yield the same performance every time. In section 3.7,

we present a proposed method for the automatic tuning of these parameters.

3.3 The Proposed Modified Models of Adaptive Decayed Brain

Emotional Learning (ADBEL) Network

This work considers three significant modifications of the Adaptive Decayed Brain

Emotional Learning (ADBEL) network.

First of all, the ADBEL network was built in MATLAB programming using the

same learning parameters as in [4]. Then three significant modifications to the AD-

BEL network were done in this thesis as follows:

The first modification is an integration of a neo-fuzzy network with the ADBEL

network to yield a novel NF-ADBEL network with improved forecasting performance,

as demonstrated in [58].

Both the ADBEL and the neo-fuzzy networks [59],[60] share essential features of
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simplicity, accuracy, and less computational complexity, all of which are desirable

for online forecasting problems. Thus, it is natural to investigate a hybrid-forecasting

model based on these two networks. The proposed NF-ADBEL network [58] simulated

in a MATLAB (R2014a) programming environment to forecast several chaotic time

series in an online mode, including Mackey-Glass, Lorenz, Rossler, Narendra and

the disturbance storm time index, as well as stochastic non-linear systems such as

wind speed and wind power series. Comparing the prediction performance of both

networks in terms of root mean square error and correlation coefficient criteria reveals

the superiority of the proposed NF-ADBEL network in online forecasting problems.

Note that comparisons of the NF-ADBEL network with popular networks such

as ANFIS and LLNF will not be performed in this work, as the ADBEL network

has already shown better performance than these networks [24][4] concerning online

time series forecasting problems. Also, both the ADBEL and the proposed NF-

ADBEL networks do not require prior training to perform predictions. In contrast,

the other networks mentioned above need to be trained before they can be deployed

for prediction purposes.

The second modification is an Expanded integration of a neo-fuzzy network par-

tially in the amygdala section. The NF-ADBEL network yields a novel ENF-ADBEL

network with enhanced forecasting performance, as proposed in [61].

The ENF-ADBEL network [61] simulated in a MATLAB (R2014a) programming

environment can forecast several chaotic time series in an online mode, including

Mackey-Glass, Lorenz, Rossler, Narendra and the disturbance storm time index, as

well as stochastic non-linear systems such as wind speed and wind power series. A

comparison of the prediction performance of both networks (ENF-ADBEL and NF-

ADBEL) in terms of root mean square error and correlation coefficient criteria reveals

the superiority of the proposed ENF-ADBEL network in online forecasting problems.

The third modification of ABDEL in this work is the proposed Fuzzy Logic-Based

Parameter Adjustment Model for the Adaptive Decayed Brain Emotional Learning

network demonstrated in [62], named herein as the F-ADBEL model.

ADBEL is a computationally fast neural network that has shown promising results

for online time series prediction problems. However, it is not clear how to set the

network’s free parameters, namely alpha, beta and gamma. In this study, we modelled
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a fuzzy logic-based model for adjusting these ADBEL network parameters in an online

mode, which will not jeopardize the network’s simplicity or quick response. The

proposed model uses prediction error and reward signals as inputs and produces

network parameters as outputs. Furthermore, the fuzzy logic-based model employs

a small rule base to vary the network parameters to maintain the ADBEL network’s

complexity at a minimum. A few chaotic time series (namely, the Mackey Glass,

Lorenz, Rossler, and the disturbance storm time index) are used to verify the validity

of the fuzzy logic-based parameter adjustment model for the ADBEL network using

a MATLAB programming environment.

3.4 Review of Neo-Fuzzy Network

A neo-fuzzy network is a multi-input, single-output network which employs nonlinear

synapses to generate the mapping between input and output data. An n-input neo-

fuzzy network is depicted in Figure 3.3. The model functions such that each input

presented to the network is fuzzified using (k) triangular membership functions. Each

degree of belongingness thus computed is further weighted, and all such weighted

degrees are summed to generate the output. Mathematically, the process is given by:

ynf =
n∑

i=1

fi(xi) (3.14)

where fi(xi) is the response of the i
th neo-fuzzy neuron in the final network output

and is given as:

fi(xi) =
k∑

j=1

hij(xi)wij (3.15)

where hij(xi) is the degree of membership of ith input over jth membership func-

tion and wij is the corresponding weight which needs to be determined for mapping

input-output data. Please note that the membership functions are fixed, complemen-

tary, and equally spaced to cover the discourse universe. The overlapping parts of
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neighbouring membership functions, therefore, can be described as:

⎧⎨
⎩
hij+1(xi) =

xi−cj
cj+1−cj

, xi ∈ [cj , cj+1]

hij = 1− hij+1 , ∀j = 1, 2, ..., k − 1
(3.16)

where cj is the center of the jth membership function and could be computed using

the knowledge of uniform spacing d between the membership functions as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cj+1 = cj + d , ∀j = 1, 2, ..., k − 1

c1 = xmin , ck = xmax ,

d = ck−c1
k−1

,

(3.17)

It is worth noting that the unknown parameters in the neo-fuzzy network are

the membership degrees’ weights. In contrast, the membership functions are fixed

for all the neurons defining the network compared to a classical neuro-fuzzy system,

where membership functions are adjusted during the learning process. Computing

the adjustable weights by the error function is defined as:

E =
1

2
(ynf − yd)

2 (3.18)

The minimization of this quadratic error function through the gradient descendent

method yields the following parameter adjustment rule:

wij(t+ 1) = wij(t) + β(ynf (t)− yd(t))hij(xi) (3.19)

where β is a positive constant and is defined as the neo-fuzzy network’s learning rate,

the proposed model mimics emotional learning by integrating a neo-fuzzy neuron.

The learning algorithm of the proposed model is based on gradient descent (GD). The

proposed model aims to enhance the prediction accuracy in existing computational

models that use brain emotional learning processing.



28

3.5 Neo-Fuzzy Integrated ADBEL Network

Inspired by the standard features offered by ADBEL and neo-fuzzy networks, this

work considers a hybrid model called NF-ADBEL to improve the forecasting accuracy

of the ADBEL network. Although neo-fuzzy neurons can replace all the neurons

in various sections of the ADBEL network, we have only considered replacing the

neurons in the orbitofrontal cortex section of the ADBEL network with neo-fuzzy

neurons. Therefore, the hybrid network is still used in online mode for time series

prediction. The resulting network is shown in Figure 3.4.

The functioning of the NF-ADBEL network is similar to that of the ADBEL

network in a broad sense. For example, the output response of the NF-ADBEL net-

work represents the difference between the amygdala and orbitofrontal cortex outputs

after the input stimuli are fed to these sections through the thalamus and sensory

cortex. The difference lies in the construction of the orbitofrontal cortex section and

its learning, as can be observed by comparing Figures 3.2 and 3.4 (the dashed lines

in these figures represent the learning of the network). The neo-fuzzy neuron for

the orbitofrontal cortex is realized with three triangular membership functions. The

universe of discourse is selected to be [0, 1] for all inputs, which is, in fact, the normal-

ized limit for the time series data points. Thus, the output of the proposed integrated

NF-ADBEL network is given as:

P̂t =
4∑

j=1

3∑
k=1

(vj × Pt−j − wjk × hjk) + vth ×m (3.20)

The unknown weights of the amygdala and orbitofrontal cortex in Eq. (3.20) are

adjusted in an online manner, using the laws in Eqs. 3.10 and 3.19, respectively.

Please note that the proposed NF-ADBEL network does not have any knowledge

about the time series, as is the case with the ADBEL network. Previous works on

neo-fuzzy networks consider training the network with the time series data and then

deploying the trained network to do future predictions [63],[64]. However, in this

work, no prior training of neo-fuzzy network is assumed
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Figure 3.4: Proposed Neo-Fuzzy Integrated ADBEL Network.
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3.6 Expanded Neo-Fuzzy Integrated ADBEL Network

A neo-fuzzy adaptive decayed brain emotional learning (NF-ADBEL) network is pro-

posed for the online time series predicting problems, as demonstrated in [58]. The

NF-ADBEL network offers required features for online prediction for shorter update

intervals, such as fast learning, accuracy, simplicity, and lower computational com-

plexity. The neo-fuzzy neuron in NF-ADBEL was integrated only in the orbitofrontal

cortex (OFC) portion of the ADBEL network. In this work, we propose a new modi-

fication network that aims to investigate and further enhance the performance of the

NF-ADBEL network by the partial integration of a neo-fuzzy neuron network into

the amygdala section (AMY).

As depicted in Figures 3.2 and 3.4, the amygdala has two outputs. One of its

responses is based on imprecise information received from the thalamus, while the

other output process is treated by neo-fuzzy implementation. The result is the Ex-

panded Nf-amygdala partial integration (ENF-ADBEL), as shown in Figure 3.5. The

modified network is still simple and meets the required features for online prediction

problems. A few of the chaotic and stochastic non-linear systems, namely the Mackey

Glass, Lorenz, Rossler, disturbance storm time index, Narendra dynamic plant iden-

tification problem and wind speed and wind power series, are used to validate and

evaluate the performance of the proposed network in terms of the root mean square

error and correlation coefficient criterions using a MATLAB programming environ-

ment. ENF-ADBEL outcomes reveal the superior performance, fast learning, quick

response, and ability to deploy the proposed model to predict time series applications

in an online mode. The proposed network promises adequate performance in terms

of stochastic problems. Generally speaking, the functioning of the ENF-ADBEL net-

work is similar to that of the NF-ADBEL network.

As in [58], the ADBEL network is structured as four inputs, as given by (3.21) and

one output as given by (3.22). This mapping is given as:

P =
(
p1 p2 · · · pj

)T

(3.21)

∀j = 1, 2, ..., 4

where jth indicates network inputs.
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P̂t = f(P ) (3.22)

After the inputs are presented to the network through the TH, it computes the

maximum values for the given stimulus’s input data and sends them along a short

path to AMY. At the same time, TH dispatches the presented data to SC, which sends

the information to the AMY and OFC sections along the associated weights (V ’s and

W ) belonging to each one, respectively.

V =
(
v1 v2 · · · vj

)
(3.23)

W =
(
w1 w2 · · · wj

)
(3.24)

∀j = 1, 2, ..., 4

AMY produces two outputs, EAMY and Éa, as:

Éa = V × P (3.25)

m = maxj × P (3.26)

EAMY = Éa + Vth ×m (3.27)

Similarly, OFC produces one output, EOFC , as:

EOFC = W × P (3.28)

The output of ADBEL is given by:
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P̂t = EAMY − EOFC (3.29)

The steps shown in ((3.27)-(3.29)) are termed as prediction steps in [58]. Af-

ter the prediction stage, the ADBEL network is trained with the help of signals

EAMY , Éa, EOFC , pt and constant parameters α, β, γ . The output from the AMY Ea

in combination with the current time series value pt = target (Tt) and decay rate γ,

is used to adjust the amygdala weights in the following way:

⎧⎨
⎩
V (t+ 1) = (1− γ)× V (t) + α×max(Tt − EAMY , 0)× P T

Vth(t+ 1) = (1− γ)× Vth(t) + α×max(Tt − EAMY , 0)×m,
(3.30)

To adjust the weights of the OFC, an internal reward signal Ro is first computed

as:

Ro =

⎧⎨
⎩
max(Éa − Tt, 0)− EOFC , if (Tt �= 0)

max(Éa − EOFC , 0) , otherwise
(3.31)

Based on this reward signal, the weights of the OFC are updated as:

W (t+ 1) = W (t) + β ×Ro × P T (3.32)

To study the ENF-ADBEL network’s performance, the working principle of the

proposed network remains the same as that of the ADBEL network. The difference

lies in the definition of weight entries and the application of those entries in the AMY

and OFC sections’ learning rules. OFC outputs in the ENF-ADBEL network are

computed using (3.24) with a different set of neo-fuzzy weights wij and corresponding

degrees of membership functions hij as:

EOFC,enf = Wij ×Hij (3.33)
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Wij =
(
w11 w12 w13 w21 w22 w23 · · · wij

)
(3.34)

Hij =
(
h11 h12 h13 h21 h22 h23 · · · hij

)T

(3.35)

Similarly, AMY outputs in the ENF-ADBEL network are computed using (3.23)

with a different set of neo-fuzzy weights vij and corresponding degrees of membership

functions hij as:

Éa = Vij ×Hij (3.36)

EAMY,enf = Éa + Vth ×m (3.37)

Vij =
(
v11 v12 v13 v21 v22 v23 · · · vij

)
(3.38)

leads to :

ˆPenf = EAMY,enf − EOFC,enf (3.39)

The minimization of the quadratic error function in [58] through the gradient

descendent method yields the new following parameter adjustment rules:

Wij(t+ 1) = Wij(t) + β( ˆPenf (t)− T (t))HT
ij(xi) (3.40)

Vij(t+ 1) = (1− γ)Vij(t) + α max(T (t)− EAMY,enf (t), 0)H
T
ij(xi) (3.41)

Vth(t+ 1) = (1− γ)Vth(t) + α max(T (t)− EAMY,enf (t), 0)m (3.42)
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where α and β and γ are positive constants and are defined as the learning rates

of the neo-fuzzy network, the proposed model mimics the emotional learning by in-

tegrating a neo-fuzzy neuron. The gradient descent (GD) method is employed for

the learning algorithm of the proposed model. The proposed model aims to enhance

the prediction accuracy in existing computational models that use brain emotional

learning processing.

Broadly speaking, the ENF-ADBEL network’s functioning is similar to that of

the NF-ADBEL and ADBEL networks. The neo-fuzzy neurons for the ENF-ADBEL

network are realized with three triangular membership functions, and the universe

of discourse is selected to be [0, 1], as in [58]. Thus, the output of the proposed

integrated ENF-ADBEL network be given as:

P̂t =
4∑

j=1

3∑
k=1

(Vjk ×Hjk − Wjk ×Hjk) + Vth ×m (3.43)

The unknown weights of the amygdala and orbitofrontal cortex in Eq. (3.43) are

adjusted in an online manner: using the laws in Eqs. 3.40, 3.41 and 3.42, respectively.

Please note that the proposed ENF-ADBEL network does not have any knowledge

about the time series, as is the case with the NF-ADBEL and ADBEL networks.

Previous works on neo-fuzzy networks and state-of-the-art consider training the net-

work with the time series data and then deploying the trained network to do future

predictions [65] [66]. However, in this work, no prior training of neo-fuzzy network is

assumed.
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Figure 3.5: Proposed Expanded Neo-Fuzzy Integrated ADBEL Network.
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3.7 Fuzzy Logic-based Parameter Adjuster Model

The target here is to build a model to adjust the free parameters of the ADBEL

network. For this purpose, a simple fuzzy system is designed, as shown in Figure 3.6.

The procedure takes as inputs the prediction error and reward signals and adjusts the

ADBEL network parameters (namely, alpha, beta and gamma) in online mode. Since

the ADBEL network is simple and produces the output quickly, the designed fuzzy

system is also kept simple. The overall network remains straightforward, and the

response of the network is not compromised. The resultant fuzzy integrated ADBEL

network (F-ADBEL) is demonstrated in [62]. Figure 3.7 shows the proposed dia-

gram. This network’s validity is checked through MATLAB (R2014a) simulations for

predicting chaotic time series, such as Mackey Glass, Lorenz, Rossler, the disturbance

storm index, and its behaviour and initial conditions as shown in section 4.2.

System new fuzzy trapezoidal: 2 inputs, 3 outputs, 4 rules

Error 

Reward 

Alpha 

Beta 

Gamma 

New Fuzzy Trapezoidal

(Mamdani)

4 rules

Figure 3.6: Block Diagram of Fuzzy Logic Designer.

Let us now discuss the basis for the design of the fuzzy parameter adjustment
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Figure 3.7: Proposed Fuzzy Integrated ADBEL Network.
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model. In this section, we first define the prediction error as:

et = Pt − P̂t (3.44)

where Pt is the time series value at the current timestamp and P̂t is the predicted

value as determined by Eq. (3.29). As discussed in [4], the time series values Pt for

all indices are normalized in the range [0,1]. Further, the ADBEL network dynamics

are such that they will not produce negative outputs when driven by the normalized

time series values. Thus, both the input and predicted values will remain positive

and will be lower-bounded by zero. However, the prediction error in Eq. (3.44) can

be either positive or negative, depending on whether the predicted value P̂t is less or

greater than the desired value Pt, respectively.

Next, we discuss the case where the prediction error is positive. In this situation,

the network output from Eq. (3.29) (Ea − Eo) has to be increased. This can be

achieved by increasing Ea and/or decreasing Eo. Due to the special structure and

learning of the ADBEL network, Ea will remain positive, whereas Eo can go negative.

Thus, in order to increase Ea, parameter α will need to be increased, while parameter

γ will need to be decreased, as can be inferred from Eqs. (3.27) and (3.10), respectively.

On the other hand, to decrease Eo, the reward signal Ro needs to be considered,

as it can be either positive or negative. Given that the reward signal is positive, the

parameter β needs to be decreased to lower the contribution of the reward signal in

adjusting the orbitofrontal cortex weights, thereby reducing Eo, as can be seen from

Eqs. (3.33) and (3.32), respectively. In this case, if the reward signal Ro is negative,

the parameter β needs to be increased to lower Eo, which can again be followed from

Eqs. (3.10) and (3.32). A similar analysis could be carried out when the prediction

error is negative, which will require Ea to be reduced and Eo to be increased.

Based on this discussion, we select the prediction error et and reward signal Ro as

the fuzzy model’s two inputs. We also select the three ADBEL network parameters

α, β, and γ as the fuzzy model’s output. Since both the prediction error and reward

signal can be either negative or positive, as previously discussed, we adopt two fuzzy

sets, namely ’neg’ and ’pos,’ to describe their states, with the universe of discourse

being the range [-0.1,0.1]. Further, to describe the states of the network parameters

α, β, and γ as they need to be either decreased or increased, we select two fuzzy
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sets, namely ’small’ and ’large.’ Here, the universe of discourse for the parameters α,

and β is taken as [0,1]. In contrast, the parameter γ is set as the range [0, 0.05]. To

describe these fuzzy sets, we define the following membership functions as shown in

Figures 3.8, 3.9, 3.10, 3.11, and 3.12:

μneg(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 , x ≤ −0.05 ,

−10x+ 0.5 , −0.05 < x < 0.05

0 , x ≤ 0.05

(3.45)

μpos(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , x ≤ −0.05 ,

10x+ 0.5 , −0.05 < x < 0.05

1 , x ≥ 0.05

(3.46)

μsmall(y) = −y + 1 (3.47)

μlarge(y) = y (3.48)

μsmall(z) = −20z + 1 (3.49)

μlarge(z) = 20z (3.50)

where variable (x) represents the prediction error et or reward signal Ro, variable

(y) represents the parameters α orβ, and variable(z) represents the parameter γ .

Based on the aforementioned analysis, we now define the following rules using the
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Figure 3.8: Membership Functions for Error Input Variable.

fuzzy sets:

1. R1: IF error is ’neg’ and reward signal is ’neg’ THEN α is ’small’ and β is

’small’ and γ is ’large’.

2. R2: IF error is ’neg’ and reward signal is ’pos’ THEN α is ’small’ and β is

’large’ and γ is ’large’.

3. R3: IF error is ’pos’ and reward signal is ’neg’ THEN α is ’large’ and β is

’large’ and γ is ’small’.

4. R4: IF error is ’pos’ and reward signal is ’pos’ THEN α is ’large’ and β is

’small’ and γ is ’small’.

After defining the fuzzy sets and the rule base, we employ the Mamdani fuzzy

inference mechanism with (min) and (max) as the T-norm and T-conorm operators.

Further, the centre of gravity method is used for defuzzification, which will produce

the crisp values of network parameters from the corresponding aggregated fuzzy sets

as:
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COGg =

∫
g
μAg(g)gdg∫
g
μAg(g)dg

(3.51)

where Ag is the aggregated fuzzy set for the network parameter g(α, β, γ), as deter-

mined by the Mamdani fuzzy inference engine, and COGg is the crisp value (non-

fuzzy) of the network parameter g(α, β, γ). The variation of the network parameters

α, β, γ, as computed by the proposed fuzzy model in response to the error and reward

signals, is depicted in Figures 3.13, 3.14, and 3.15, respectively.
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Figure 3.13: Surface for Fuzzy Integrated ADBEL Network, Alpha Parameter.

It is pertinent to mention here that the proposed fuzzy model for adjusting the

network parameters is not complex. It uses a minimum number of fuzzy sets to

cover the universe of discourse chosen for the parameters, which further results in a

small rule base. Moreover, simple membership functions are employed in this work to
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represent the fuzzy sets to keep the overall network simple. Thus, a fuzzy integrated

ADBEL network still is used for online prediction of time series with sampling times

in the order of a few seconds.

For the sake of completeness, a pseudo-code for the fuzzy integrated ADBEL

network is presented here, where bold capital letters represent matrices, capital italic

letters represent row vectors, small italic letters represent scalars, and n is the number

of samples of time series:

Fuzzy integrated ADBEL online predictor

• Input data: Pin = ( PT
1 PT

2 ... PT
n )

• Output target: Pt = ( pt1 pt2 ... ptn )

• Predicted output: P̂t = ( p̂t1 p̂t2 ... p̂tn )

• Adjustable orbitofrontal cortex weights:W = ( w1 w2 w3 w4 )

• Adjustable amygdala weights:V = ( v1 v2 v3 v4 vth )

Fuzzy-ADBEL (Pin, Pt)

1. for j ← 1 to n

2. � prediction step

3. do m ← max (Pj)

4. Éa ← V .(Pj 0 )T

5. Ea ← V .(Pj m)T

6. Eo ← W .PT
j

7. � compute predicted output

8. P̂tj = Ea − Eo

9. � learning step

10. e ← ptj − p̂tj
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11. Ro ←
⎧⎨
⎩
max(Éa − pt, 0)− Eo , if (pt �= 0)

max(Éa − Eo, 0) , otherwise

12. � compute network parameters

13. α ← Aα.μAαn

14. β ← Aβ.μAβn

15. γ ← Aγ.μAγn

16. � update network weights

17. W ← W + βRoPj

18. V ← (1− γ)V + α max(ptj − Ea, 0)(Pj m)

19. end



Chapter 4

RESULTS AND DISCUSSION

In this chapter, we discuss the performance results of each designed proposed model

in different stages, as follows:

Stage 1: We discuss the performance of each designed proposed model (NF-ADBEL,

ENF-ADBEL and F-ADBEL) and compare these performances to the existing

ADBEL model. Please note that the current ADBEL model was also redesigned

in this work and programmed in a MATLAB simulation for a fair comparison.

Stage 2: We compare the performances of the designed proposed models.

Stage 3: We compare the performances of the proposed models to other state-of-

the-art predictors in the literature.

4.1 Performance of the Proposed Neo-Fuzzy Adaptive Decayed Brain

Emotional Learning (NF-ADBEL) Model

The proposed neo-fuzzy integrated NF-ADBEL network is tested in a MATLAB

(R2014a) programming environment for online forecasting of chaotic time series, in-

cluding Mackey-Glass, Lorenz, Rossler, Narendra, and the disturbance storm time

index.

The NF-ADBEL network’s performance is accessed in terms of root mean squared

error and correlation coefficient criteria. A comparison is also made with the ADBEL

network driven by the near optimal set of parameters, where the percentage improve-

ment index is used as a basis for comparison. These performance indices are defined

as:

RMSEm =

√√√√ 1

ne − ns

ne∑
i=ns

e2mi (4.1)

50
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CORm =

∑ne

i=ns
(P̂mti − P̂mt)(Pti − Pt)√∑ne

i=ns
(P̂mti − P̂mt)2

√∑ne

i=ns
(Pti − P t)2

(4.2)

PI =
PCm1 − PCm2

PCm1

× 100 (4.3)

where RMSEm is the root mean squared error, and subscript m can be either m2

denoting the neo-fuzzy ADBEL network or m1 representing ADBEL network without

a neo-fuzzy neuron, ne is the number of samples, ns indicates the start of steady-state

period, CORm is the correlation coefficient obtained using mth network, ˆPmti is the

predicted value with mth network, P̂mt is the mean of the predicted values with mth

network, Pti is the target value, Pt is the mean of the target samples, PCm is the

performance criterion (which can be either RMSEm or CORm), and index PIi s the

percentage decrease with respect to the ADBEL network, if a low root mean squared

error is achieved by the neo-fuzzy based ADBEL network. In this case, it could be

treated as a percentage improvement concerning the neo-fuzzy integrated ADBEL

network.

The time-series data is first normalized to the range [ 0, 1 ] by running the simula-

tions. The normalized data is then organized in such a way that the first four samples

form the inputs, while the fifth sample presents the output. By following this method,

the size of input data for time series is set as 4×ne while the size of the output data is

set as 1×ne. Note that the number of samples ne can differ for different time series, de-

pending on availability. Also note that the total number of data used in this work can

comply with this formula: Total number data = ne + number of a network inputs.

After running the ADBEL and neo-fuzzy ADBEL algorithms, the predicted time

series data is de-normalized. In this work, all the weights are initialized as zeros

instead of randomly assigning them. This procedure also helps run the simulations

only once; furthermore, no averaging of the results is required, as the networks will

yield the same performance every time. The networks’ learning parameters (namely,

α, β, and γ) are selected after extensive experimentation to yield the best possible
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prediction performance in each case.

4.1.1 Mackey-Glass Time Series Predicted by the Proposed NF-ADBEL

Network

The Mackey-Glass system has been presented as a model of white blood cell pro-

duction [67]. Let us first predict the time series data generated from a time-delayed

Mackey-Glass nonlinear differential equation, which has been used as a benchmark

by the researchers for validating their prediction algorithms [68],[69],[70]. The series

could be defined as:

ẋ(t) =
0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) (4.4)

With the initial conditions as x(t) = 0 , t < 0 ; x(0) = 1.2 and by setting the

time delay as τ = 17, Equation (4.4) is simulated in MATLAB to generate the time

series data, which can be observed to be non-periodic and non-convergent. A total

of ne = 1200 data points, as shown in Appendix A, are generated for testing the

networks.

By setting the learning parameters as α = 0.5, β = 0.2 and γ = 0.03, an NF-

ADBEL network is first deployed to predict this time series. The steady-state result

over a pre-defined time window is depicted in Figures 4.1, 4.2, 4.3, respectively.

The same time series is also predicted with an ADBEL network using the learning

parameters of α = 0.5, β = 0.8, and γ = 0.03. The prediction error is recorded in both

cases, with analysis showing that the transient period remains the same ≤ 5 s. Thus,

the steady-state starting index is set as ≤ 5 s to compute the performance indices

in both cases. The performance of the pre-designed ADBEL network for predicting

Mackey-Glass is shown in Figures 4.4, 4.5, and 4.6, respectively.

Figures 4.8, and 4.10 displayed a portion of Figures-4.7, and 4.9 that show the

zoomed view of the prediction and error prediction in steady-state as yielded by

both the ADBEL and NF-ADBEL networks for predicting the Mackey-Glass time

series. As can be seen, the NF-ADBEL network has performed better than the

ADBEL network, showing lower peaks in the prediction error in the NF-ADBEL

network. Furthermore, the root means squared error and correlation coefficient are
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Figure 4.1: Mackey Glass Time Series as Predicted by NF-ADBEL Network.
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Figure 4.3: Correlation in Predicting Mackey-Glass Time Series by NF-ADBEL Net-
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56

0 200 400 600 800 1000 1200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(sec)

M
a
c
k

e
y
 G

la
ss

 T
im

e
 S

e
r
ie

s

MACKEY G AS PREDICTED BY ADBEL NETWORK

 

 
Target

Predicted

Figure 4.4: Mackey-Glass Time Series as Predicted by ADBEL Network.
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Figure 4.6: Correlation in Predicting Mackey-Glass Time Series by ADBEL Network.
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Figure 4.7: Mackey-Glass Time Series as Predicted by ADBEL and NF-ADBEL
Networks.
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Figure 4.8: Mackey-Glass Time Series as Predicted by ADBEL and NF-ADBEL
Networks ( displayed portion of the Fig. 4.7).
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also determined for both networks using the relations in Eqs. (4.1) and (4.2). The

computed values are shown in Table 4.1.

Table 4.1: RMSE/COR/PI FOR MACKEY-GLASS TIME SERIES PREDICTION
BY ADBEL AND NF-ADBEL NETWORKS

Time Series Prediction Network RMSE COR PI(%)

Mackey-Glass
ADBEL 0.04727 0.98952

NF-ADBEL 0.0180 0.99706 61.92

As can be seen, a lower root mean squared error and higher correlation coefficient

are offered by the NF-ADBEL network for predicting the Mackey-Glass time series

compared to the ADBEL network, as shown in Figures 4.8 and 4.10, 4.3 and 4.6,

respectively. A significant amount of percentage improvement is also obtained, as

expressed in Eq. (4.3) and shown in Table 4.1.

4.1.2 Lorenz Chaotic Time Series Predicted by Proposed NF-ADBEL

Network

The Lorenz system was presented in 1963 by Lorenz in [71]. Neo-fuzzy-integrated

ADBEL is simulated to predict the x-dynamics of the Lorenz chaotic time series. This

series has also been used in various studies to verify the performance of prediction

algorithms [72],[73],[74],[75]. The series is generated by [71] from the following coupled

differential equations with a = 10, b = 28, and c = 8/3:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = a(y(t)− x(t)) ,

ẏ(t) = x(t)(b− z(t))− y(t) ,

ż(t) = x(t)y(t)− cz(t)

(4.5)

For the generated Lorenz time series with ne = 16380 data points (see Appendix

A), we first evaluate the prediction performance of the NF-ADBEL network, as shown

in Figure 4.12, with the learning parameters set as: α = 0.8, β = 0.2 , and γ = 0.01.

Figure 4.12 shows some data points of the Lorenz time series as predicted by

the NF-ADBEL network. It can be observed in Figures 4.12, 4.14 and 4.15 that
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Figure 4.11: Lorenz x-Time Series as Predicted by NF-ADBEL Network .
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Figure 4.12: Lorenz x-Time Series as Predicted by NF-ADBEL Network (displayed
portion of the Fig. 4.11).
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Figure 4.13: Error in Predicting Lorenz x-Time Series by NF-ADBEL Network.
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Figure 4.15: Correlation in Predicting Lorenz x-Time Series by NF-ADBEL Network.
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Figure 4.16: Lorenz x-Time Series as Predicted by ADBEL Network.
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Figure 4.17: Lorenz x-Time Series as Predicted by ADBEL Network (displayed por-
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Figure 4.18: Error in Predicting Lorenz x-Time Series by ADBEL Network.
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Figure 4.20: Correlation in Predicting Lorenz x-Time Series by ADBEL Network.
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Figure 4.21: Lorenz x-Time Series as Predicted by ADBEL and NF-ADBEL Net-
works.
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Figure 4.22: Lorenz x-Time Series as Predicted by ADBEL and NF-ADBEL Networks
(displayed portion of Fig 4.21).
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Figure 4.23: Comparison of Errors in Predicting Lorenz x-Time Series by ADBEL
and NF-ADBEL Networks.
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Figure 4.24: Comparison of Errors in Predicting Lorenz x-Time Series by ADBEL
and NF-ADBEL Networks (displayed portion of Fig 4.23).
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the prediction results of the NF-ADBEL network for the Lorenz time series performs

better compared to results for the Mackey-Glass time series. Specifically, it is difficult

to distinguish the predicted Lorenz time series from the original one.

For comparison purposes, the ADBEL network is also simulated to predict the

Lorenz time series. The best learning parameters for the ADBEL network in predict-

ing the Lorenz time series are the same as those for the NF-ADBEL network (i.e.,

α = 0.8, β = 0.2, and γ = 0.01). By recording and analyzing the prediction error

in both cases, it is found that the transient period is less than 5s, and therefore the

steady-state starting index is taken as ns = 5.

The performance of the prediction results of the ADBEL network for the Lorenz

time series perform are given in Figures 4.17, 4.19 and 4.20. A zoomed view of the

prediction error as returned by both networks in steady-state is shown in Figures 4.22

and 4.24. The figures show that the proposed NF-ADBEL network has a lower error

in predicting the Lorenz time series compared to the existing ADBEL network. The

prediction performance in both cases is also analyzed in terms of root mean squared

error in Eq. (4.1). It is also shown in Figures 4.14 and 4.19. The correlation coefficient

for the Eq. (4.2) criteria is shown in Figures 4.15 and 4.20.

Table 4.2: RMSE/COR/PI FOR LORENZ X-TIME SERIES PREDICTION BY
ADBEL AND NF-ADBEL NETWORKS

Time Series Prediction Network RMSE COR PI(%)

Lorenz
ADBEL 0.55635 0.99827

NF-ADBEL 0.1726 0.99976 68.98

The results for this analysis are included in Table 4.2 and show the superior

performance of the NF-ADBEL network due to the lowered root mean squared error,

higher correlation coefficient, and significant percentage improvement offered by this

network.



79

4.1.3 Rossler Chaotic Time Series Predicted by the Proposed

NF-ADBEL Network

We also used the neo-fuzzy-integrated ADBEL network to predict the Rossler chaotic

time series. It has been used in the literature to evaluate the performance of prediction

algorithms [76],[77]. The time series is generated through the following differential

equations [78], with the constants selected to be a = 0.15, b = 0.2, and c = 10:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = −y(t)− z(t) ,

ẏ(t) = x(t) + ay(t) ,

ż(t) = b+ z(t)(x(t)− c)

(4.6)

A total of ne = 8188 samples are generated for the Rossler time series, as shown in

Appendix A. To simulate the proposed NF-ADBEL network for predicting this time

series, the learning parameters are selected to be α = 0.5, β = 0.5, and γ = 0.08.

The zoomed view of the predicted Rossler time series in steady-state is shown in

Figures 4.26, 4.28 and 4.29.

Table 4.3: RMSE /COR/PI FOR ROSSLER TIME SERIES PREDICTION BY
ADBEL AND NF-ADBEL NETWORKS

Time Series Prediction Network RMSE COR PI(%)

Rossler
ADBEL 1.5014 0.99224

NF-ADBEL 0.2999 0.99929 80.03

The ADBEL network that is driven by the parameters α = 0.8, β = 0.2, and

γ = 0.05 is also simulated to predict the Rossler time series in steady-state. It is

shown in Figures 4.31, 4.33 and 4.34.

A comparison of the two networks in terms of the prediction error is displayed in

Figures 4.36 and 4.38. Note that the prediction error for both networks is shown for

a finite duration in steady-state. The transient period happens to be the same as in

the case of the Mackey-Glass and Lorenz time series, i.e., ns = 5s. Furthermore, it

can be seen that the amplitude of error signal for the NF-ADBEL network is lower
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Figure 4.25: Rossler Time Series as Predicted by NF-ADBEL Network .
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Figure 4.26: Rossler Time Series as Predicted by NF-ADBEL Network (displayed
portion of Fig 4.25).
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Figure 4.27: Error in Predicting Rossler Time Series by NF-ADBEL Network.
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Figure 4.30: Rossler Time Series as Predicted by ADBEL Network.
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Figure 4.31: Rossler Time Series as Predicted by ADBEL Network(displayed a portion
of Fig. 4.30).
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Figure 4.32: Error in Predicting Rossler Time Series by ADBEL Network.
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Figure 4.34: Correlation in Predicting Rossler Time Series by ADBEL Network.
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Figure 4.35: Rossler Time Series as Predicted by ADBEL and NF-ADBEL Networks.



91

100 200 300 400 500 600 700 800
−15

−10

−5

0

5

10

15

20

Time(sec)

R
o

s
s
le

r 
T

im
e
 S

e
ri

e
s
 

 Rossler as predicted by ADBEL and NF−ADBEL

 

 

Target

ADBEL

NF−ADBEL

Figure 4.36: Rossler Time Series as Predicted by ADBEL and NF-ADBEL Networks
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Figure 4.37: Comparison of Errors in Predicting Rossler Time Series by ADBEL and
NF-ADBEL Networks.
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compared to the ADBEL network, as shown in Figures 4.36 and 4.38. The figures

illustrate the better prediction accuracy of the NF-ADBEL network.

Analysis of the predicted results for the Rossler time series in terms of the root

mean squared error and correlation coefficient criteria are shown in Figures 4.29

and 4.34, respectively, and also listed in Table 4.3. As can be seen, they reveal

the superiority of the NF-ADBEL over the ADBEL network. Finally, a reasonable

amount of percentage improvement is yielded by the NF-ADBEL network to predict

the Rossler time series, as shown in Table 4.3.

4.1.4 Disturbance Storm Time Index (Dst) Predicted by the Proposed

NF-ADBEL Network

Precise forecasting of space weather, especially solar storms, has become increasingly

urgent because of the destructive effects these storms can have on infrastructures

such as satellites, telecommunication, and power grids [49]. In 1989, a solar storm

hit North America that caused severe damage to power plants, networks, power sta-

tions, telecommunications, and space-based communications devices. In particular,

the event caused significant damage to Quebec, Canada, by paralyzing and disrupting

the electrical grid. Therefore, we must be aware of the likelihood for these types of

natural disasters to occur again.

Several studies have already predicted solar storms and other space-related terres-

trial disasters. Among these studies, ANN and ANFIS were found to be reasonably

able to predict the occurrence and strength of solar storms [79],[80]. Space weather

forecasting is one of our main incentives for providing a novelty version of a brain

emotional learning model in a standardized and developed version to satisfy the need

for accurate prediction.

The neo-fuzzy integrated ADBEL network is proposed to predict the disturbance

storm time index, which is an hourly indicator of geomagnetic storms. This index’s

negative values are vital, as they indicate the weakening of Earth’s magnetic field.

Such an event can lead to geomagnetic storms, which can disrupt radio communica-

tions, damage satellites, and cause power system outages, all of which were seen in the

Hydro-Qubec transmission grid during the 1989 storm. In March 1989, the province

was plunged into darkness for more than nine hours [81]. Several models based on
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differential equations and neural networks have been proposed in the literature for

predicting the disturbance storm time index [82],[83],[84],[85].

Recently, the ADBEL network also proposed predicting this important index [4],

which has been modified in the present work to yield a new NF-ADBEL network [58].

Here, we simulate the NF-ADBEL network to predict the disturbance storm time

index Dst time series for a few months when considerable geomagnetic activity was

observed. The data for these months, as seen in Appendix A, have been downloaded

from the website World Data Center (WDC) in [86], ”WDC for Geomagnetism,

Kyoto.” With the learning parameters set as α = 0.3, β = 0.3 and γ = 0.01, the NF-

ADBEL network is deployed to predict the Dst index for April 2000, July 2000, March

2001, October 2003, and July 2004. The number of samples is ne = 716 for April

2000 and ne = 740 for all the other months. Please note that the above parameters

(α = 0.3, β = 0.3 and γ = 0.01) are kept the same for the different Dst index data

for the mentioned months.

The predicted results provided by the NF-ADBEL network in all these cases are

shown in the following figures:

• Figures 4.39, 4.40 and 4.41 show the results of the proposed NF-ADBEL net-

works in terms of Dst index data for April 2000.

• Figures 4.47, 4.48 and 4.49 show the results of the proposed NF-ADBEL net-

works in terms of Dst index data for July 2000.

• Figures 4.55, 4.56 and 4.57 show the results of the proposed NF-ADBEL net-

works in terms of Dst index data for March 2001.

• Figures 4.63, 4.64 and 4.65 show the results of the proposed NF-ADBEL net-

works in terms of Dst index data for October 2003.

• Figures 4.71, 4.72 and 4.73 show the results of the proposed NF-ADBEL net-

works in terms of Dst index data for July 2004.

The transient period of the NF-ADBEL network for all the reported cases is found

to be ns = 10 hrs, which then becomes the steady-state starting index. It can be

observed that, despite the high initial transients, the NF-ADBEL network can follow
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the Dst time series in steady-state and the important valley points are also well-

predicted, which points towards the possible occurrence of geomagnetic storms. An

existing ADBEL network is used to predict the Dst time series. For this purpose,

the learning parameters of the ADBEL network are assigned the values of α = 0.8,

β = 0.2, and γ = 0.01. The predicted results provided by the ADBEL network in all

these cases are shown in the following figures:

• Figures 4.42, 4.43 and 4.44 show the results of the ADBEL networks in terms

of Dst index data for April 2000.

• Figures 4.50, 4.51 and 4.52 show the results of the ADBEL networks in terms

of Dst index data for July 2000.

• Figures 4.58, 4.59 and 4.60 show the results of the ADBEL networks in terms

of Dst index data for March 2001.

• Figures 4.66, 4.67 and 4.68 show the results of the ADBEL networks in terms

of Dst index data for October 2003.

• Figures 4.74, 4.75 and 4.76 show the results of the ADBEL networks in terms

of Dst index data for July 2004.

The results of this comparison for all these cases are displayed in figures below:

• Figures 4.45 and 4.46 show the results of the proposed NF-ADBEL networks

compared to ADBEL outcomes in terms of Dst index data for April 2000.

• Figures 4.53 and 4.54 show the results of the proposed NF-ADBEL networks

compared to ADBEL outcomes in terms of Dst index data for July 2000.

• Figures 4.61 and 4.62 show the results of the proposed NF-ADBEL networks

compared to ADBEL outcomes in terms of Dst index data for March, 2001.

• Figures 4.69 and 4.70 show the results of the proposed NF-ADBEL networks

compared to ADBEL outcomes in terms of Dst index data for October 2003.

• Figures 4.77 and 4.78 show the results of the proposed NF-ADBEL networks

compared to ADBEL outcomes in terms of Dst index data for July 2004.



97

It can be observed that the ADBEL network has a long transient period compared

to the NF-ADBEL network, which is found to be 110 hrs and acts as the steady-state

starting index for the ADBEL-based Dst prediction analysis, i.e., ns = 110 hrs.

It can also be seen that the initial transients in the ADBEL network have high

amplitudes compared to the NF- ADBEL network. Further, the response of the NF-

ADBEL network in steady-state is also better than the ADBEL network. This is

supported by the lower root mean squared error and the higher correlation coefficient

obtained by the NF-ADBEL network for predicting the Dst time series.

Table 4.4 lists performance indices for both the ADBEL and NF-ADBEL networks.

As can be seen, a fair amount of percentage improvement can be obtained by deploying

the proposed NF-ADBEL network in predicting the Dst time series.

Table 4.4: RMSE/COR/PI FOR Disturbance Storm Dst Time SERIES PREDIC-
TION BY ADBEL AND NF-ADBEL NETWORKS.

Time Series Prediction Network RMSE COR PI(%)

Dst (Apr 2000)
ADBEL 14.8037 0.94155

NF-ADBEL 9.055 0.9706 38.75

Dst (Jul 2000)
ADBEL 21.20552 0.90623

NF-ADBEL 11.003 0.96731 48.12

Dst (Mar 2001)
ADBEL 21.3536 0.92396

NF-ADBEL 13.0485 0.96437 38.92

Dst (Oct 2003)
ADBEL 26.9453 0.8998

NF-ADBEL 13.98 0.96724 48.10

Dst (Jul 2004)
ADBEL 14.0643 0.95254

NF-ADBEL 7.205 0.9821 48.79
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Figure 4.39: Disturbance Storm Time Index Dst for April 2000 as Predicted by NF-
ADBEL Network.
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Figure 4.40: Error in Predicting Disturbance Storm Time Index Dst for April 2000
by NF-ADBEL Network.
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Figure 4.41: Correlation in Predicting Disturbance Storm Time Index Dst for April
2000 by NF-ADBEL Network.
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Figure 4.42: Disturbance Storm Time Index Dst for April 2000 as Predicted by AD-
BEL Network.
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Figure 4.43: Error in Predicting Disturbance Storm Time Index Dst for April 2000
by ADBEL Network.
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Figure 4.44: Correlation in Predicting Disturbance Storm Time Index Dst for April
2000 by ADBEL Network.
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Figure 4.45: Disturbance Storm Time Index Dst for April 2000 as Predicted by AD-
BEL and NF-ADBEL Networks.
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Figure 4.46: Comparison of Errors in Predicting Disturbance Storm Time Index Dst

for April 2000 by ADBEL and NF-ADBEL Networks.
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Figure 4.47: Disturbance Storm Time Index Dst for July 2000 as Predicted by NF-
ADBEL Network.
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Figure 4.48: Error in Predicting Disturbance Storm Time Index Dst for July 2000 by
NF-ADBEL Network.
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Figure 4.49: Correlation in Predicting Disturbance Storm Time Index Dst for July
2000 by NF-ADBEL Network.
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Figure 4.50: Disturbance Storm Time IndexDst for July 2000 as Predicted by ADBEL
Network.
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Figure 4.51: Error in Predicting Disturbance Storm Time Index Dst for July 2000 by
ADBEL Network.
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Figure 4.52: Correlation in Predicting Disturbance Storm Time Index Dst for July
2000 by ADBEL Network.
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Figure 4.53: Disturbance Storm Time IndexDst for July 2000 as Predicted by ADBEL
and NF-ADBEL Networks.
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Figure 4.54: Comparison of Errors in Predicting Disturbance Storm Time Index Dst

for July 2000 by ADBEL and NF-ADBEL Networks.
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Figure 4.55: Disturbance Storm Time Index Dst for March 2001 as Predicted by
NF-ADBEL Network.
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Figure 4.56: Error in Predicting Disturbance Storm Time Index Dst for March 2001
by NF-ADBEL Network.
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Figure 4.57: Correlation in Predicting Disturbance Storm Time Index Dst for March
2001 by NF-ADBEL Network.
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Figure 4.58: Disturbance Storm Time Index Dst for March 2001 as Predicted by
ADBEL Network.
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Figure 4.59: Error in Predicting Disturbance Storm Time Index Dst for March 2001
by ADBEL Network.
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Figure 4.60: Correlation in Predicting Disturbance Storm Time Index Dst for March
2001 by ADBEL Network.
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Figure 4.61: Disturbance Storm Time Index Dst for March 2001 as Predicted by
ADBEL and NF-ADBEL Networks.
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Figure 4.62: Comparison of Errors in Predicting Disturbance Storm Time Index Dst

for March 2001 by ADBEL and NF-ADBEL Networks.



122

0 100 200 300 400 500 600 700
−400

−350

−300

−250

−200

−150

−100

−50

0

50

Time(hr)

D
s
t,

fo
r 

O
c
to

b
e
r,

2
0

0
3

(n
T

)

Dst,October,2003 Prediction By NF−ADBEL Network(zoomed)

 

 

Target

Predicted

Figure 4.63: Disturbance Storm Time Index Dst for October 2003 as Predicted by
NF-ADBEL Network.
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Figure 4.64: Error in Predicting Disturbance Storm Time Index Dst for October 2003
by NF-ADBEL Network.
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Figure 4.65: Correlation in Predicting Disturbance Storm Time Index Dst for October
2003 by NF-ADBEL Network.
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Figure 4.66: Disturbance Storm Time Index Dst for October 2003 as Predicted by
ADBEL Network.
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Figure 4.67: Error in Predicting Disturbance Storm Time Index Dst for October 2003
by ADBEL Network.
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Figure 4.68: Correlation in Predicting Disturbance Storm Time Index Dst for October
2003 by ADBEL Network.
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Figure 4.69: Disturbance Storm Time Index Dst for October 2003 as Predicted by
ADBEL and NF-ADBEL Networks.



129

100 200 300 400 500 600
−60

−50

−40

−30

−20

−10

0

10

20

30

Time(hr)D
s
t,

O
c
to

b
e
r,

2
0

0
3

 I
n

d
e
x

 o
f 

G
e
o

m
a
g

n
e
ti

c
 A

c
ti

v
it

y
 o

f 
E

a
rt

h
 (

n
T

)

Comparison of Prdiction Error for Dst,October,2003 (zoomed)

 

 

ADBEL

NF−ADBEL

Figure 4.70: Comparison of Errors in Predicting Disturbance Storm Time Index Dst

for October 2003 by ADBEL and NF-ADBEL Networks.
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Figure 4.71: Disturbance Storm Time Index Dst for July 2004 as Predicted by NF-
ADBEL Network.
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Figure 4.72: Error in Predicting Disturbance Storm Time Index Dst for July 2004 by
NF-ADBEL Network.
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Figure 4.73: Correlation in Predicting Disturbance Storm Time Index Dst for July
2004 by NF-ADBEL Network.
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Figure 4.74: Disturbance Storm Time IndexDst for July 2004 as Predicted by ADBEL
Network.
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Figure 4.75: Error in Predicting Disturbance Storm Time Index Dst for July 2004 by
ADBEL Network.
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Figure 4.76: Correlation in Predicting Disturbance Storm Time Index Dst for July
2004 by ADBEL Network.
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Figure 4.77: Disturbance Storm Time IndexDst for July 2004 as Predicted by ADBEL
and NF-ADBEL Networks.
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Figure 4.78: Comparison of Errors in Predicting Disturbance Storm Time Index Dst

for July 2004 by ADBEL and NF-ADBEL Networks.
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4.1.5 Narendra Dynamic Plant Predicted by the Proposed NF-ADBEL

Network

We have also simulated the NF-ADBEL network for the online identification of the

Narendra dynamic plant, which is described by the following discrete equation [87]:

y(t+ 1) =
y(t)

1 + y2(t)
+ f(t) (4.7)

f(t) =

⎧⎨
⎩
sin3( πt

250
) , t ≤ 500

0.8 sin( πt
250

) + 0.2 sin(πt
25
) , t > 500

(4.8)

With an initial condition of y(1) = 0.5, a total of ne = 1996 samples are generated

according to Eqs. (4.7) and (4.8), respectively. The NF-ADBEL network is first

employed to identify the dynamic plant using the learning parameters of α = 0.3 ,

β = 0.5 , and γ = 0.01 .

A zoomed view of the identification result in steady-state is shown in Figure 4.80,

where the steady-state starting index is assumed to be ns = 5sec. As can be seen, the

NF-ADBEL network can identify the dynamic plant, as shown in Figures 4.80, 4.82,

and 4.83, respectively.

The Narendra plant is also identified using the ADBEL network (as depicted in

Figures 4.85, 4.87 and 4.88, respectively) to compare its identification performance

with the NF-ADBEL network. The simulation is run with the learning parameters for

the ADBEL network being set as α = 0.5, β = 0.5, and γ = 0.01. The identification

error is presented in Table 4.5.

The temporary period for the ADBEL network is the same as that for the NF-

ADBEL network. However, the NF-ADBEL network shows better performance than

the ADBEL network, owing to the lesser identification error being offered by this

network during steady-state, as shown in Figures 4.90, and 4.92. A lower root mean

squared error, higher correlation coefficient, and sufficient percentage improvement

as yielded by the NF-ADBEL network validate its superior performance over the

ADBEL network in identifying the Narendra plant, as presented in Table 4.5.
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Figure 4.79: Narendra Plant as Predicted by NF-ADBEL Network.
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Figure 4.80: Narendra Plant as Predicted by NF-ADBEL Network (displayed a por-
tion of Fig. 4.79).
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Figure 4.81: Error in Predicting Narendra Plant by NF-ADBEL Network.
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Figure 4.82: Error in Predicting Narendra Plant by NF-ADBEL Network(displayed
a portion of Fig.4.81).
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Figure 4.83: Correlation in Predicting Narendra Plant by NF-ADBEL Network.
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Figure 4.84: Narendra Plant as Predicted by ADBEL Network.
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Figure 4.85: Narendra Plant as Predicted by ADBEL Network (displayed a portion
of Fig. 4.84).
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Figure 4.86: Error in Predicting Narendra Pant by ADBEL Network.
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Figure 4.87: Error in Predicting Narendra Pant by ADBEL Network (displayed a
portion of Fig. 4.86).
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Figure 4.88: Correlation in Predicting Narendra Plant by ADBEL Network.
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Figure 4.89: Narendra Plant as Predicted by ADBEL and NF-ADBEL Networks.
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Figure 4.90: Narendra Plant as Predicted by ADBEL and NF-ADBEL Net-
works(displayed a portion of Fig. 4.89).
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Figure 4.91: Comparison of Errors in Predicting Narendra Plant by ADBEL and
NF-ADBEL Networks.
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Figure 4.92: Comparison of Errors in Predicting Narendra Plant by ADBEL and
NF-ADBEL Networks(displayed a portion of Fig. 4.91).
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Table 4.5: RMSE /COR/PI For Narendra Dynamic Plant Identification Prediction
by ADBEL and NF-ADBEL Networks

Time Series Prediction Network RMSE COR PI(%)

Narendra Plant
ADBEL 0.07556 0.998

NF-ADBEL 0.0162 0.99989 78.49

4.1.6 Conclusions

The design of a neo-fuzzy integrated ADBEL network (NF-ADBEL) is presented in

this work for the time series prediction in an online mode. The integration of the

neo-fuzzy network is only considered in the orbitofrontal cortex section to retain the

simplicity and quickness of the proposed NF-ADBEL network. The selection of a

few membership functions for implementing the neo-fuzzy neurons further helps keep

the computational complexity of the proposed network at a minimum. Simulations

are carried out in a MATLAB programming environment to predict several chaotic

time series, including Mackey-Glass, Lorenz, Rossler, and disturbance storm time

index. Simulations are also conducted to identify a dynamic Narendra plant model by

deploying the proposed NF-ADBEL network. The proposed NF-ADBEL network’s

performance is evaluated using root mean squared error and correlation coefficient

criteria. Also, the ADBEL network was redesigned and simulated to predict the

exact time-series with near optimal parameters. A percentage improvement index is

defined to compare the performance of both networks. Simulation results show the

superiority of the proposed NF-ADBEL network, with a lower root mean squared error

and higher correlation coefficient being obtained compared to the ADBEL network.

A fair amount of percentage improvement is also observed in all cases when the NF-

ADBEL network is used to predict the time series data.
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4.2 Performance of the Proposed Fuzzy Logic-Based Parameter

Adjuster Model for ADBEL (F-ADBEL) Network

Please note that in this study we are not seeking to improve the accuracy of ADBEL.

Rather, we are trying to demonstrate the capability of the designed F-ADBEL to

adjust the parameters α, β, and γ for different types of prediction applications.

The proposed fuzzy integrated F-ADBEL network is tested in a MATLAB (R2014a)

programming environment for online forecasting of chaotic time series that includes

Mackey-Glass, Lorenz, Rossler and disturbance storm index. The performance of the

proposed F-ADBEL network is accessed in terms of root mean squared error, corre-

lation coefficient and percentage improvement criteria, as defined in Eqs. (4.1), (4.2)

and (4.3), respectively.

The time-series data are first normalized to the range [0,1]. The normalized data

are then arranged such that the first four samples form the inputs, while the fifth

sample presents the output. By following this method, the size of the input data

for all the time series is set as 4 × ne, while the size of the output data is set as

1×ne. After running the ADBEL and proposed F-ADBEL algorithms, the predicted

time series data are de-normalized. Note that in this study, all network weights are

initialized as zeros instead of randomly assigning them. This setting also helps run

the simulations only once, and no averaging of the results is required, as the networks

will yield the same performance every time.

4.2.1 Mackey-Glass Chaotic Time Series Predicted by the Proposed

F-ADBEL Network

Let us first predict the time series data generated from a time-delayed Mackey-Glass

nonlinear differential equation, as defined in Eq. (4.4). This equation is simulated in

MATLAB to create the time series data, which can be observed as non-periodic and

non-convergent. The fuzzy integrated F-ADBEL network is deployed to predict this

time series, as shown in Figures 4.93, 4.94 and 4.95, in terms of root mean squared

error and correlation coefficient, with the results depicted in Table 4.6. The variations

of the amygdala weights and orbitofrontal cortex weights are presented in Figures 4.96

and 4.97, respectively.
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Table 4.6: RMSE /COR/PI for Mackey-Glass Prediction by ADBEL and F-ADBEL
Networks

Time Series Prediction Network RMSE COR PI(%)

Mackey-Glass
ADBEL 0.047 0.9895
F-ADBEL 0.037 0.9918 21.27

Figure 4.97 illustrates that the orbitofrontal cortex weights converge after the

initial transient period. On the other hand, the amygdala weights, as shown in Fig-

ure 4.96, display more significant variation than orbitofrontal cortex weights in steady-

state. This supports the hypothesis that the orbitofrontal cortex is the more stable

portion of the emotional brain and can correct the amygdala’s response, which reacts

quickly to emotional stimuli. Note that the amygdala weights are lower-bounded by

zero, as was discussed during the development of the fuzzy parameter adjuster in

section 3.7.

The variations of the network parameters α, β, and γ produced by the proposed

fuzzy model F-ADBEL are also shown in Figures 4.99, 4.100 and 4.101, respectively.

As can be observed, the variations in parameter β are more stable, which can also

describe the changes in orbitofrontal cortex weights. On the other hand, the fuzzy

model continues adjusting the different network parameters (α, and γ) throughout

the entire horizon, which also explains the variation of the amygdala weights. Figure

4.98 shows the interpretation of the reward signal. It could assume either positive

or negative values and support the concept discussed during the fuzzy parameter

adjuster development in section 3.7.

The same time series is also predicted with the ADBEL network using the learning

parameters of α = 0.5, β = 0.8 and γ = 0.03. As illustrated in Figure 4.102, the

prediction errors are recorded in both cases, with analysis showing that the transient

period remains the same: ≤ 5 s. Thus, the steady-state starting index is set to

compute the performance indices in both cases. The performances of the designed

F-ADBE and ADBEL networks for predicting Mackey-Glass are shown in Table 4.6.
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Figure 4.93: Mackey-Glass as Predicted by the Proposed F-ADBEL Network.
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Figure 4.96: Variations in Amygdala Weights During Mackey-Glass Predictions by
the Proposed F-ADBEL Network
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Figure 4.97: Variations in Orbitofrontal Cortex Weights During Mackey-Glass Pre-
dictions by the Proposed F-ADBEL Network.
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Figure 4.98: Variations in Reward Signal During Mackey-Glass Predictions by the
Proposed F-ADBEL Network.
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Figure 4.99: Variations in Alpha Parameter During Mackey-Glass Predictions by the
Proposed F-ADBEL Network.
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Figure 4.100: Variations in Beta Parameter During Mackey-Glass Prediction by the
Proposed F-ADBEL Network.
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Figure 4.101: Variations in Gamma Parameter During Mackey-Glass Prediction by
the Proposed F-ADBEL Network.
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Figure 4.102: Comparison of Errors in Predicting Mackey-Glass by the ADBEL and
Proposed F-ADBEL Networks.
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4.2.2 Lorenz Chaotic Time Series Predicted by the Proposed F-ADBEL

Network

F-ADBEL is also simulated to predict the x-dynamics of the Lorenz chaotic time

series generated from the coupled differential Eq. (4.5). The proposed F-ADBEL

network is deployed to predict the Lorenz time series, as shown in Figures 4.103,

4.104 and 4.105, in terms of root mean squared error and correlation coefficient. The

results are presented in Table 4.7, and the variations in the amygdala weights and

orbitofrontal cortex weights are presented in Figures 4.106 and 4.107, respectively.

Figure 4.107 illustrates that the orbitofrontal cortex weights converge after the

initial transient period. On the other hand, the amygdala weights, as shown in

Figure 4.106, display more significant variations than the orbitofrontal cortex weights

in steady-state. This supports the hypothesis that the orbitofrontal cortex is the more

stable portion of the emotional brain and can correct the response of the amygdala,

which reacts quickly to emotional stimuli. Note that the amygdala weights are lower-

bounded by zero, as was discussed during the development of the fuzzy parameter

adjuster in section 3.7.

Variations in the network parameters α, β and γ produced by the proposed fuzzy

model F-ADBEL are also shown in Figures 4.109, 4.110 and 4.111, respectively. As

can be seen, the variations in the parameter β are minimal after the first few time-

series samples, which can also be used to describe the changes in orbitofrontal cortex

weights. On the other hand, the fuzzy model continues adjusting the different network

parameters (α and γ) throughout the entire horizon, which also explains the variations

in the amygdala weights.

Figure 4.108 shows the interpretation of the reward signal, which could become

either positive or negative in value and support the concept discussed during the

fuzzy parameter adjuster development in section 3.7. The same time series is also

predicted with the ADBEL network, using the learning parameters: α = 0.8, β = 0.2,

and γ = 0.01. As illustrated in Figure 4.112, the prediction errors are recorded in

both cases, with analysis showing that the transient period remains the same: ≤ 5 s.

Thus, the steady-state starting index is set to compute the performance indices in

both cases.

The performances of the designed F-ADBEL and ADBEL networks for predicting
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Lorenz are shown in Table 4.7. As can be seen, the redesigned ADBEL network

performed better in prediction error in terms of root mean squared error and high

correlation compared to the proposed F-ADBEL network for the Lorenz time series.

This result is likely because adjusting the F-ADBEL network’s parameters is not

optimal. The run-time of the simulation recorded that the ADBEL network performed

in 1 second, while the F-ADBEL performed in 23 seconds.

Table 4.7: RMSE /COR/PI for Lorenz Time Series Prediction by ADBEL and F-
ADBEL Networks

Time Series Prediction Network RMSE COR

Lorenz
ADBEL 0.55 0.9980
F-ADBEL 0.85 0.9978
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Figure 4.103: Lorenz Time Series as Predicted by the Proposed F-ADBEL Network.
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Figure 4.105: Correlation in Predicting Lorenz Time Series by the Proposed F-
ADBEL Network.
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Figure 4.106: Variations in Amygdala Weights During Lorenz Time Series Prediction
by the Proposed F-ADBEL Network.
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Figure 4.107: Variations in Orbitofrontal Cortex Weights During Lorenz Time Series
Prediction by the Proposed F-ADBEL Network.
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Figure 4.108: Variations in Reward Signal During Lorenz Time Series Prediction by
the Proposed F-ADBEL Network.
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Figure 4.109: Variations in Alpha Parameter During Lorenz Time Series Prediction
by the Proposed F-ADBEL Network.
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Figure 4.110: Variations in Beta Parameter During Lorenz Time Series Prediction by
the Proposed F-ADBEL Network.
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Figure 4.111: Variations in Gamma Parameter During Lorenz Time Series Prediction
by the Proposed F-ADBEL Network.
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Figure 4.112: Comparison of Errors in Predicting Lorenz Time Series by ADBEL and
Proposed F-ADBEL Networks.
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4.2.3 Rossler Chaotic Time Series Predicted by the Proposed

F-ADBEL Network

F-ADBEL is also simulated to predict the Rossler chaotic time series. The series is

generated from the coupled differential Eq. (4.6). The proposed F-ADBEL network

is deployed to predict the Rossler time series, as shown in Figures 4.113, 4.114 and

4.115, in terms of root mean squared error and correlation coefficient. The results are

presented in Table 4.8, and thee variations in the amygdala weights and orbitofrontal

cortex weights are presented in the zoomed Figures 4.116 and 4.117, respectively.

Figure 4.117 illustrates that the orbitofrontal cortex weights converge after the

initial transient period. On the other hand, the amygdala weights, as shown in Fig-

ure 4.116, display almost the same variation in orbitofrontal cortex weights in steady-

state. This supports the hypothesis that the orbitofrontal cortex is the more stable

portion of the emotional brain and can correct the amygdala’s response, which reacts

quickly to emotional stimuli. Note that the amygdala weights are lower-bounded by

zero, as was discussed during the development of the fuzzy parameter adjuster in

section 3.7. The variations in the network parameters α, β, and γ produced by the

proposed fuzzy model F-ADBEL are also shown in Figures 4.119, 4.120 and 4.121,

respectively. As can be observed, the variations in the parameter β are minimal after

the first few time-series samples, which can also be used to describe the changes in

orbitofrontal cortex weights.

On the other hand, the fuzzy model continues adjusting the different network

parameters (α and γ) throughout the entire horizon, which also explains the variation

in the amygdala weights. Figure 4.118 shows the interpretation of the reward signal,

which could become positive or negative in value and support the concept discussed

during the fuzzy parameter adjuster development in section 3.7.

The same time series is also predicted with the ADBEL network using the learning

parameters: α = 0.8, β = 0.2, and γ = 0.05. As shown in Figure 4.122, the prediction

errors are recorded in both cases, with analysis indicating that the transient period

remains the same: ≤ 5 s. Thus, the steady-state starting index is set to compute the

performance indices in both cases.

The performances of the designed F-ADBEL and ADBEL networks for predicting

Rossler are presented in Table 4.8. As can be seen, the designed F-ADBEL network
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had a better prediction error in terms of root mean squared error and high correlation

compared to the ADBEL network in the case of the Rossler time series. Moreover,

the simulation’s run-time also recorded that the ADBEL network performed in 0.28

seconds, while F-ADBEL performed in 12 seconds.

Table 4.8: RMSE /COR/PI for Rossler Time Series Prediction by the ADBEL and
F-ADBEL Networks

Time Series Prediction Network RMSE COR PI(%)

Rossler
ADBEL 1.5 0.9922
F-ADBEL 1.24 0.9926 17.33
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Figure 4.113: Rossler Time Series as Predicted by the Proposed F-ADBEL Network.
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Figure 4.114: Error in Predicting Rossler Time Series by the Proposed F-ADBEL
Network.
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ADBEL Network.
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Figure 4.116: Variations in Amygdala Weights During Rossler Time Series Prediction
by the Proposed F-ADBEL Network.
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Figure 4.117: Variations in Orbitofrontal Cortex Weights During Rossler Time Series
Prediction by the Proposed F-ADBEL Network.
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Figure 4.118: Variations in Reward Signal During Rossler Time Series Prediction by
the Proposed F-ADBEL Network.
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Figure 4.119: Variations in Alpha Parameter During Rossler Time Series Prediction
by the Proposed F-ADBEL Network.
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Figure 4.120: Variations in Beta Parameter During Rossler Time Series Prediction
by the Proposed F-ADBEL Network.
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Figure 4.121: Variations in Gamma Parameter During Rossler Time Series Prediction
the Proposed F-ADBEL Network.
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Figure 4.122: Comparison of Errors in Predicting Rossler Time Series by ADBEL
and Proposed F-ADBEL Networks.
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4.2.4 Disturbance Storm Time Index (Dst) Predicted by the Proposed

F-ADBEL Network

The proposed F-ADBEL network is used to predict the disturbance storm (Dst) index,

which is an indicator of solar storms. This time series’s negative values are vital, as

they indicate the weakening of the earth’s magnetic field, leading to solar storms.

In this section, we will apply the proposed F-ADBEL only for one category of (Dst)

index, which is (Dst), July 2000, as an application to test the proposed model.

The proposed F-ADBEL network is deployed to predict (Dst), July 2000, as shown

in Figures 4.123, 4.124 and 4.125, in terms of root mean squared error and correlation

coefficient. The results are presented in Table 4.9, and the variations in the amyg-

dala weights and orbitofrontal cortex weights are presented in zoomed Figures 4.126

and 4.127, respectively.

Figure 4.127 illustrates that the orbitofrontal cortex weights converge after the

initial transient period. On the other hand, the amygdala weights, as shown in Fig-

ure 4.126, display almost the same variations in orbitofrontal cortex weights in steady-

state. This supports the hypothesis that the orbitofrontal cortex is the more stable

portion of the emotional brain and can correct the amygdala’s response, which reacts

quickly to emotional stimuli. Note that the amygdala weights are lower-bounded by

zero, as was discussed during the development of the fuzzy parameter adjuster in

section 3.7.

The variations in the network parameters α, β, and γ produced by the proposed

fuzzy model F-ADBEL are also shown in Figures 4.129, 4.130 and 4.131, respectively.

As can be observed, the variations in the parameter β are minimal after the first few

time-series samples, which can also be used to describe the changes in orbitofrontal

cortex weights. On the other hand, the fuzzy model continues adjusting the different

network parameters (α and γ) throughout the entire horizon, which also explains

the variations in the amygdala weights. Figure 4.128 shows the interpretation of

the reward signal, which could become positive or negative in value and support the

concept discussed during the fuzzy parameter adjuster development in section 3.7.

The same time series is also predicted with the ADBEL network using the learning

parameters: α = 0.8, β = 0.2, and γ = 0.0D. As illustrated in Figure 4.132, the

prediction errors are recorded in both cases, with analysis showing that the short
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period is ≤ 27 hr for F-ADBEL and 110hr for the ADBEL network.

The performances of the designed F-ADBEL and ADBEL networks for predicting

(Dst), July 2000, are given in Table 4.9. As can be seen, the designed F-ADBEL

network performed better in prediction error in terms of root mean squared error

and high correlation compared to the ADBEL network. The simulation’s run-time

also records that the ADBEL network performed in 1.28 seconds, while F-ADBEL

performed in 2.11 seconds.

Table 4.9: RMSE /COR/PI for (Dst) July 2000 Prediction by ADBEL and F-ADBEL
Networks

Time Series Prediction Network RMSE COR PI(%)

(Dst) July 2000
ADBEL 21.2 0.9062
F-ADBEL 15.13 0.9449 28..63
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Figure 4.123: (Dst) July 2000 as Predicted by the Proposed F-ADBEL Network.
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Figure 4.125: Correlation in Predicting (Dst) July 2000 by the Proposed F-ADBEL
Network.
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Figure 4.126: Variations in Amygdala Weights During (Dst) July 2000 Prediction by
the Proposed F-ADBEL Network.
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Figure 4.127: Variations in Orbitofrontal Cortex Weights During (Dst) July 2000
Prediction by the Proposed F-ADBEL Network.
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Figure 4.128: Variations in Reward Signal During (Dst) July 2000 Prediction by the
Proposed F-ADBEL Network.
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Figure 4.129: Variations in Alpha Parameter During (Dst) July 2000 Prediction by
the Proposed F-ADBEL Network.
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Figure 4.130: Variations in Beta Parameter During (Dst) July 2000Prediction by the
Proposed F-ADBEL Network.
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Figure 4.131: Variations in Gamma Parameter During (Dst) July 2000 Prediction by
the Proposed F-ADBEL Network.
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Figure 4.132: Comparison of Errors in Predicting (Dst) July 2000 by ADBEL and
Proposed F-ADBEL Networks.
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4.2.5 Conclusions

In this work, a fuzzy logic-based model is presented to vary the parameters of the

ADBEL network. The proposed model is simple and uses only a few fuzzy sets

and a smaller rule base to adjust the online parameters. Thus, the fuzzy integrated

ADBEL network (F-ADBEL) can be used for the online forecasting of time series, with

shorter update intervals on the order of a few seconds. The resultant fuzzy ADBEL

network F-ADBEL is used to predict some popular chaotic time series, including

Mackey-Glass, Lorenz, Rossler and disturbance storm time. The results indicate that

the proposed fuzzy adjuster is able to adjust the ADBEL network’s parameters. A

comparison to ADBEL is discussed in different applications, demonstrating that the

proposed F-ADBEL has been successfully accomplished in this work.
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4.3 Performance of the Proposed Expanded Neo-Fuzzy Adaptive

Decayed Brain Emotional Learning (ENF-ADBEL) Model

The proposed Expanded neo-fuzzy integrated ADBEL (ENF-ADBEL) network is

tested in a MATLAB (R2014a) programming environment for online forecasting.

Some chaotic time series, including Mackey-Glass, Lorenz, disturbance storm time

index, wind speed and wind power generation, are used to validate the model.

The ENF-ADBEL network’s performance is accessed in terms of root mean squared

error and correlation coefficient criteria. Because we have already demonstrated the

superiority of the proposed NF-ADBEL network compared to the ADBEL network in

section 4.1, the comparisons we make here involve the NF-ADBEL network driven by

near optimal set of parameters. The proposed ENF-ADBEL network’s performance

is evaluated in terms of root mean squared error and correlation coefficient criteria.

Furthermore, because the NF-ADBEL network was deployed and simulated to pre-

dict the exact time-series with near optimal parameters, the percentage improvement

index is used as a basis for comparison.

4.3.1 Mackey-Glass Time Series as Predicted by the Proposed

ENF-ADBEL Network

Let us first predict the time series data generated from a time-delayed Mackey-Glass

nonlinear differential equation, as defined in Eq. (4.4). This equation is simulated in

MATLAB to create the time series data, which can be observed as non-periodic and

non-convergent. The ENF-ADBEL network is deployed to predict the time series.

By setting the learning parameters as α = 0.5, β = 0.5 and γ = 0.07, the ENF-

ADBEL network is first deployed to predict this time series. The steady-state is 5

seconds, resulting in the pre-defined time window depicted in Figure 4.133.

The same time series is also predicted for the NF-ADBEL network, using the

learning parameters as α = 0.5, β = 0.2, and γ = 0.03. The prediction errors are

recorded in both cases, with analysis showing that the transient period remains the

same: ≤ 5 s. Thus, the steady-state starting index is set at 5seconds in both cases

to compute the performance indices.



204

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

X: 5

Y: 0.4071

Time(sec)

M
a
c
k

e
y

 G
la

s
s
 T

im
e
 S

e
ri

e
s

Mackey Glass Prediction By ENF−ADBEL Network

Target

Predicted

Figure 4.133: Mackey-Glass Time Series as Predicted by the ENF-ADBEL Network.
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Figure 4.134: Error in Predicting Mackey-Glass Time Series by the Proposed ENF-
ADBEL Network.
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Figure 4.135: Correlation in Predicting Mackey-Glass Time Series by the Proposed
ENF-ADBEL Network.
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Figure 4.136: Mackey-Glass Time Series as Predicted by the ENF-ADBEL and NF-
ADBEL Networks.
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Figure 4.136 and Figure 4.137 show the prediction and error comparison in steady-

state as yielded by the ENF-ADBEL and NF-ADBEL networks for predicting the

Mackey-Glass time series. The ENF-ADBEL network gives better results than the

NF-ADBEL networks, showing lower peaks in the prediction error in the ENF-

ADBEL network. Further, the root mean squared error and correlation coefficient

are also determined for both networks using the relations in (4.1) and (4.2). The

computed values are presented in Table 4.10.

A lower root mean squared error and a higher correlation coefficient are offered by

the ENF-ADBEL network for predicting the Mackey-Glass time series as compared to

NF-ADBEL networks, as illustrated in Figure 4.133, Figure 4.134 and Figure 4.135,

respectively. A fairly significant amount of percentage improvement is also obtained,

as expressed in (4.3). Please note that the results in Table 4.10 were obtained by the

proposed network where no prior training data is assumed.

Table 4.10: RMSE & R2 for Mackey-Glass Time Series Prediction by the ENF-
ADBEL and NF-ADBEL Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Mackey-Glass
ENF-ADBEL 0.011 99.87

38.88
NF-ADBEL [58] 0.018 99.71

Furthermore, a multilayer perceptron (MLP) neural network is used for the same

Mackey-Glass data points to compare the proposed ENF-ADBEL. According to [88],

MLP is considered the most widely used neural network in time series data forecasting.

In MLP, we structured the network for ten hidden layers, as shown in Figure 4.138.

We used the GD method, with the data divided as follows: 70% as trained data, 15%

as validated data, and 15% as tested data. The results, presented in Table 4.11, show

that ENF-ADBEL performed significantly better and had better outcomes.
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Figure 4.138: Multilayer Perceptron Neural Network (MLP).

Table 4.11: RMSE & R2 for Mackey-Glass Time Series Prediction by the ENF-
ADBEL and MLP Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Mackey-Glass
ENF-ADBEL 0.011 99.89

66.66
MLP 0.033 98.28

4.3.2 Lorenz Time Series as Predicted by the Proposed ENF-ADBEL

Network

For the generated Lorenz time series having ne = 16380 data points using eq (4.5),

we first evaluate the prediction performance of the ENF-ADBEL network, as shown

in fig 4.139, with the learning parameters set as: α = 0.5, β = 0.3 , and γ = 0.04 .

Table 4.12: RMSE & R2 for Lorenz Time Series as Predicted by ENF-ADBEL and
NF-ADBEL Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Lorenz
ENF-ADBEL 0.13054 99.95 24.36

NF-ADBEL [58] 0.1726 99.97

Figure 4.139 shows the Lorenz time series as predicted by the ENF-ADBEL net-

work. It can be observed that the prediction results of the ENF-ADBEL network for

the Lorenz time series perform better when compared to the results for the Mackey-

Glass time series. Specifically, it is difficult to distinguish the predicted Lorenz time

series from the target data. The run-time for the proposed network is 1.42 seconds.
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For the purpose of comparison, the NF-ADBEL network is also simulated to

predict the Lorenz time series. The best learning parameters for the NF-ADBEL

network in predicting the Lorenz time series are found to be α = 0.8, β = 0.2, and

γ = 0.01), with a run-time of 1.54 second. By recording and analyzing the prediction

error in both cases, as shown in Figure 4.142, it was found that the transient period

is less than 5s, so the steady-state starting index is taken as ns = 5.

A zoomed view of the prediction error as returned by both networks in steady-

state is shown in Figure 4.143. From the figure, it is evident that the proposed ENF-

ADBEL network has a lower error in predicting the Lorenz time series compared to

the NF-ADBEL network. The prediction performance is also analyzed in terms of

root mean squared error, as shown in Figure 4.140, and in terms of the correlation

coefficient, as shown in Figure 4.141. The results for this analysis are included in

Table 4.12, showing the superior performance of the ENF-ADBEL network. This

is due to the lowered root mean squared error, higher correlation coefficient, and

significant percentage improvement offered by the proposed network.

Moreover, a multilayer perceptron MLP neural network was applied to the same

Lorenz data that was used to validate the proposed ENF-ADBEL. The comparison

results are depicted in Table 4.13, showing that the ENF-ADBEL network performed

with better accuracy.

Table 4.13: RMSE & R2 for Lorenz Time Series Prediction by ENF-ADBEL and
MLP Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Lorenz
ENF-ADBEL 0.1305 99.98

69.76
MLP 0.43 99.96
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Figure 4.139: Lorenz Time Series as Predicted by the ENF-ADBEL Network.



213

0 100 200 300 400 500 600 700 800
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time(sec)

L
o

re
n

z
 T

im
e
 S

e
ri

e
s

Error with RMSE=0.13054

 

 

Error

Figure 4.140: Error in Predicting Lorenz Time Series by the ENF-ADBEL Network.
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Figure 4.141: Correlation in Predicting Lorenz Time Series by the ENF-ADBEL
Network.
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Figure 4.142: Lorenz Time Series as Predicted by the ENF-ADBEL and NF-ADBEL
Networks.
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Figure 4.143: Error Comparison in Predicting Lorenz Time Series as Predicted by
the ENF-ADBEL and NF-ADBEL Networks.
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4.3.3 Disturbance Storm Time Index as Predicted by the Proposed

ENF-ADBEL Network

The ENF-ADBEL network is proposed here to predict the disturbance storm time

index, which is an hourly indicator of geomagnetic storms. The negative values in this

index are vital, as they indicate the weakening of Earth’s magnetic field. This event

can lead to geomagnetic storms, which can disrupt radio communications, damage

satellites, and cause power system outages, all of which were seen in the Hydro-

Qubec transmission grid during the 1989 storm. In March 1989, the entire province

was plunged into darkness for more than nine hours [81]. A number of models based

on differential equations and neural networks have been proposed in the literature for

predicting the disturbance storm time index [82],[83],[84],[85].

Recently, the ADBEL network also proposed predicting this important index [4],

and NF-ADBEL in [58], which has been modified in the present work to yield a

new ENF-ADBEL network. Here, we simulate the ENF-ADBEL network to predict

the disturbance storm time index Dst time series for April 2000 when considerable

geomagnetic activity was observed. The data for this month have been downloaded

from the website World Data Center (WDC) [86], ”WDC for Geomagnetism, Kyoto.”

With the learning parameters set as α = 0.15, β = 0.38 and γ = 0.25, the ENF-

ADBEL network is deployed to predict the Dst index for April 2000. The number of

samples is ne = 716 for the month.

The predicted results provided by the ENF-ADBEL network are shown in Fig-

ures 4.144, 4.145, and 4.146. The transient period of the ENF-ADBEL network is

found to be ns = 10 hrs, which then becomes the steady-state starting index. It can

be observed that, despite the high initial transients, the ENF-ADBEL network is able

to follow the Dst time series in steady-state. The important valley points are also

well-predicted, which actually points towards the possible occurrence of geomagnetic

storms. The run-time for the proposed ENF-ADBEL network is 1.09 seconds.

In order to draw a comparison, an existing NF-ADBEL network is used to predict

the Dst time series. For this purpose, the learning parameters of the NF-ADBEL

network are assigned the values of α = 0.3, β = 0.3, and γ = 0.01. The results of

this comparison in terms of the prediction error are displayed in Figures 4.147 and

4.148, and the run-time for the proposed ENF-ADBEL network is 1.107 seconds. It
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can be observed that the ENF-ADBEL network gives a better performance than the

NF-ADBEL, as shown in Table 4.14.

Table 4.14: RMSE & R2 for Dst by ENF-ADBEL, NF-ADBEL and F-ADBEL Net-
works

Time Series Prediction Network RMSE R2(%) PI(%)

Dst Apr 2000
ENF-ADBEL 6.86 98.31 24.44

NF-ADBEL [58] 9.08 97.06

for more fair comparison, a MLP used to predict the same data of Dst for April,2000.

The comparison results displayed in Table4.15. Results showed that ENF-ADBEL

network performed better accuracy.

Table 4.15: RMSE & R2 for Dst by ENF-ADBEL and MLP Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Dst Apr 2000
ENF-ADBEL 6.86 98.31

7.5
MLP 7.42 95.32
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Figure 4.144: Dst April 2000 as Predicted by ENF-ADBEL Network.
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Figure 4.145: Error in Predicting Dst April 2000 by ENF-ADBEL Network.
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Figure 4.146: Correlation in Predicting Dst April 2000 by ENF-ADBEL Network.
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Figure 4.147: Dst April 2000 as Predicted by ENF-ADBEL and NF-ADBEL Net-
works.
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Figure 4.148: Error Comparison in Predicting Dst April 2000 as Predicted by ENF-
ADBEL and NF-ADBEL Networks.
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4.3.4 Wind Speed as Predicted by the Proposed ENF-ADBEL Network

The conventional ways of electricity generation are continuously polluting the en-

vironment. Renewable energy resources have the potential of both overcoming the

problem of air pollution as well as meeting the load demand. Amongst various renew-

able energy resources, wind energy offers a viable way to harness electricity owing to

its cost-effectiveness and sustainable nature [89]. The available wind power depends

on the wind speed. Due to the randomly fluctuating characteristics of wind speed,

wind power’s prediction results may change rapidly. Accurate wind speed prediction

can significantly improve power quality, security, supply-demand balancing and, in

general, wind generation management in the smart grid [90]. Therefore, applying

wind speed prediction techniques offering the best forecasting accuracy over time

scales is required [91].

Approaches for wind speed prediction are classified into two categories: physical

methods and statistical methods. Physical methods are referred to as meteorological

forecasting to the wind speed, with physical models consisting of numerical approx-

imation models that define the state of the atmosphere [92]. For physical methods,

the Numerical Weather Prediction (NWP) technique is generally used. In this ap-

proach, meteorological parameters such as temperature, air density, humidity, air

pressure, and surface roughness are taken into consideration. While physical meth-

ods can predict wind speed more accurately [93], physical models are usually unable

to provide reliable wind speed forecasts, especially in complex landscape regions, due

to shortcomings in horizontal resolution, topography parameterizations, and initial

and boundary conditions.

Furthermore, in terms of short-time forecasting, physical methods are not always

suitable because they need a long computational time. To reduce this drawback,

hybridization of physical and statistical models [94] may be used. Physical method

forecasts have been shown to outperform statistical methods after a 3-6h look-ahead

time, while statistical approaches are reliable for short-term prediction, i.e., less than

6h [94]. Based on the time horizons [95], methods for forecasting wind speed can be

divided into four categories: concise (from a few seconds to 30min ahead); short-term

(from 30min to 6h ahead); medium-term (from 6h to 24h ahead); and long-term (from

24h to 1 week or more ahead). Note that there is no absolute limit to these periods.
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The results of the physical models represent the first step towards forecasting wind

speed. Hence, the physical model that predicts wind speed can be considered as an

auxiliary input to the statistical models [96]. Statistical methods make predictions

by finding relationships using historical wind speed data and, sometimes, involving

other variables (e.g., wind direction, air pressure or temperature). The data utilized

in this technique depend on the data available and recorded at a particular site or

other nearby locations.

Statistical models can be divided into two categories: mathematical models and

Artificial Intelligence (AI) approaches. Many mathematical methods have been ap-

plied to this theme, such as the AutoRegressive (AR) model, AutoRegressive Inte-

grated Moving Average (ARIMA) model, and Kalman Filters (KF), etc. The math-

ematical models can be used at any stage in the modelling process and are often

combined with various other methods [97].

The second approach is AI techniques, such as artificial neural networks (ANNs).

In contrast to the mathematical models, the distinctive features of AI methods are

their high learning capability and their ability to handle noisy and incomplete data.

Furthermore, AI methods predict future time series data without any predefined

mathematical models. AI systems have the ability to learn from previous data and

attempt to mimic the behaviour for accurate prediction. However, the techniques

mentioned above mainly rely on complicated mathematics approaches that require

extensive meteorological and topographic data [98],[99],[100].

In this work, a proposed ENF-ADBEL is deployed to forecast wind speed. Hourly

wind speed data for three months (January, February and March 2020) from a Cana-

dian meteorological station located at Lunenburg, Nova Scotia, is used as an appli-

cation of the proposed neural network [101].

The ENF-ADBEL network is first employed using the learning parameters α = 0.3,

β = 0.015, and γ = 0.25. As can be seen, the ENF-ADBEL network can predict wind

speed for one hour ahead, as shown in Figures 4.149, 4.150 and 4.151, when the

steady-state starting index is taken to be ns = 1hr. To compare its identification

performance with the NF-ADBEL network, the simulation is run with the learning

parameters for the NF-ADBEL network set as α = 0.77, β = 0.04, and γ = 0.19.

Figures 4.152, 4.153, and 4.154 show the NF-ADBEL performance. The forecasting
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error and correlation indices for both networks are presented in Table 4.16.

The temporary period for the ENF-ADBEL network is found to be the same as

that of the NF-ADBEL network. However, the ENF-ADBEL network shows better

performance compared to the NF-ADBEL networks, owing to the lesser forecast-

ing error being offered by this network during steady-state, as can be seen from

Figures 4.150, 4.153, and 4.156. In terms of run-time, the proposed ENF-ADBEL

accomplished the performance in 1.17 seconds, while NF-ADBEL took 1.23 seconds.

A lower root mean squared error, higher correlation coefficient and sufficient per-

centage improvement as yielded by the ENF-ADBEL network validates its adequate

performance over the NF-ADBEL network in forecasting wind speed, as shown in

Table 4.16.

Table 4.16: RMSE & R2 for Wind Speed in ENF-ADBEL and NF-ADBEL Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Wind Speed
ENF-ADBEL 5.32 90.18 4.93
NF-ADBEL 5.596 88.68

Further, a multilayer perceptron (MLP) neural network was used for the same

wind speed data to validate the proposed ENF-ADBEL. A comparison of the results

is presented in Table 4.19. As can be seen, the ENF-ADBEL network performed with

better accuracy.

Table 4.17: RMSE & R2 for Wind Speed ENF-ADBEL and MLP Networks

Time Series Prediction Network RMSE R2(%) PI(%)

wind speed
ENF-ADBEL 5.28 89.08

2.76
MLP 5.43 88.81
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Figure 4.149: Wind Speed as Predicted by ENF-ADBEL Network.
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Figure 4.150: Error in Predicting Wind Speed by ENF-ADBEL Network.
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Figure 4.151: Correlation in Predicting Wind Speed by ENF-ADBEL Network.
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Figure 4.152: Wind Speed as Predicted by NF-ADBEL Network.
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Figure 4.153: Error in Predicting Wind Speed by the Proposed NF-ADBEL Network.
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Figure 4.154: Correlation in Predicting Wind Speed by the Proposed NF-ADBEL
Network.
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Figure 4.155: Wind Speed as Predicted by ENF-ADBEL and NF-ADBEL Networks.
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Figure 4.156: Error Comparison in Predicting Wind Speed as Predicted by ENF-
ADBEL and NF-ADBEL Networks.
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4.3.5 Wind Power as Predicted by the Proposed ENF-ADBEL Network

As an alternative source of clean power, wind power plays a crucial role in the secure

management of the power system. However, wind power also has a major disadvan-

tage in that it is dependent on the wind speed. Moreover, because wind speed is a

highly stochastic and intermittent feature of wind energy, accurate forecasting models

are needed that can provide information ahead of time to protect the power stability

and predict the wind energy source’s output before connecting to the grid.

In recent decades, extensive efforts have been made to develop efficient wind

power-forecasting models at multiple scales. Accurate wind power forecasting can

help to arrange generation plans, maintain grid stability, and provide a reliable basis

for grid operation [102]. Different approaches are used for different time scales and

different data sources [103]. For instance, statistical methods and learning methods

are used based on the history of wind power data. Among statistical methods are the

time series method [104], regression analysis method, and Kalman filter method [105].

Learning methods use deep long short-term memory (LSTM) [106],[107] to predict

wind power and compare the results to the support vector machine (SVM) approach.

Backpropagation neural networks (BPNNs) have shown that LSTM has more accu-

rate power prediction.

In [108], seven-day-ahead hourly wind power data are employed as an application

for the proposed ENF-ADBEL network. These wind power data indicate the amount

available to the grid in Alberta, Canada, on a seven-day ahead basis by updating the

energy statistics every six hours. The data indicate three levels of estimation wind

power availability: minimum wind power expectation, most likely available wind

power, and maximum wind power forecast.

Firstly, the proposed ENF-ADBEL network is simulated for predicting this wind

power in terms of minimum wind power data. The learning parameters are selected

as α = 0.47, β = 0.32, and γ = 0.14. Figures 4.157, 4.158, and 4.159 show the

performance of the proposed ENF-ADBEL network.

The NF-ADBEL network, which is driven by the parameters α = 0.4, β = 0.5,

and γ = 0.13, is also simulated to forecast a minimum wind power. Figures 4.160,

4.161, and 4.162 show the performance of the NF-ADBEL network. The results of the
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proposed models in terms of low root mean square error and high correlation are pre-

sented in Table4.18. In terms of run-time, the proposed ENF-ADBEL accomplished

the performance in 0.94 seconds, while NF-ADBEL took one second.

A comparison of both networks’ prediction error performance is illustrated in

Figures 4.163 and 4.164. As can be seen, the amplitude of the error signal for the

ENF-ADBEL network is lower compared to the NF-ADBEL networks, as shown in

Figure 4.164. This indicates that the ENF-ADBEL network offers better prediction

accuracy. Analysis of the predicted results for minimum power forecasting data in

terms of the root mean squared error and correlation coefficient criteria are shown in

Figures 4.158 and 4.159, respectively. Again, the ENF-ADBEL network shows better

performance than the NF-ADBEL. A reasonable amount of percentage improvement

is yielded by the ENF-ADBEL network for predicting the minimum wind power, as

can be seen in Table 4.18.

Table 4.18: RMSE, R2 for Minimum Wind Power Predicted by ENF-ADBEL Net-
works

Time Series Prediction Network RMSE R2(%) PI(%)

Wind power
ENF-ADBEL 16.28 99.70 15.03
NF-ADBEL 19.16 99.59

We also applied the MLP neural network for the same wind power data (minimum

power) used to validate the proposed ENF-ADBEL. The comparison results are given

in Table 4.19. As can be seen, the ENF-ADBEL network performed with better

accuracy.

Table 4.19: RMSE, R2 for Minimum Wind Power Predicted by ENF-ADBEL and
MLP Networks

Time Series Prediction Network RMSE R2(%) PI(%)

min wind power
ENF-ADBEL 16.28 99.7

33.95
MLP 24.65 98.15
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Figure 4.157: Minimum Wind Power as Predicted by ENF-ADBEL Network.
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Figure 4.158: Error in Predicting Minimum Wind Power by ENF-ADBEL Network.
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Figure 4.159: Correlation in Predicting Minimum Wind Power by ENF-ADBEL Net-
work.
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Figure 4.160: Minimum Wind Power as Predicted by NF-ADBEL Network.
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Figure 4.161: Error in Predicting Minimum Wind Power by NF-ADBEL Network.
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Figure 4.162: Correlation in Predicting Minimum Wind Power by NF-ADBEL Net-
work.
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Figure 4.163: Minimum Wind Power as Predicted by ENF-ADBEL and NF-ADBEL
Networks.
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Figure 4.164: Error Comparison in Predicting Minimum Wind Power as Predicted
by ENF-ADBEL and NF-ADBEL Networks.
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Secondly, the proposed ENF-ADBEL network is deployed for predicting the most-

likely wind power data, with the learning parameters selected as α = 0.4, β = 0.44,

and γ = 0.24. Figures 4.165, 4.166, and 4.167 show the performances of the proposed

ENF-ADBEL network. Meanwhile, the NF-ADBEL network, utilizing the parameters

α = 0.43, β = 0.49 and γ = 0.13, is also simulated to forecast a most-likely wind

power. Figures 4.168, 4.169, and 4.170 show the performance of the NF-ADBEL

network. The results in terms of low root mean square error and high correlation are

given in Table 4.20. In terms of run-time, the proposed ENF-ADBEL accomplished

the performance in 2.25 seconds, while the NF-ADBEL took 1 second.

A comparison of both networks for prediction error is displayed in Figures 4.171

and 4.172. As can be seen, the amplitude of the error signal for the ENF-ADBEL

network is lower compared to that of the NF-ADBEL, which shows significant fluctu-

ations (Figure 4.172). Further, the ENF-ADBEL network obtained a lower prediction

error and offered better performance accuracy. Analysis of the predicted results for

most likely power forecasting data in terms of the root mean squared error and cor-

relation coefficient criteria is given in Figures 4.166 and 4.167, respectively, with the

ENF-ADBEL network showing better results than the NF-ADBEL network. Overall,

a fair amount of percentage improvement is yielded by the ENF-ADBEL network for

predicting the most likely wind power, as presented in Table 4.20.

Table 4.20: RMSE, R2 for Most-Likely Wind Power Predicted by ENF-ADBEL, NF-
ADBEL and F-ADBEL Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Wind power
ENF-ADBEL 17.34 99.87 12.82
NF-ADBEL 19.89 99.83

As well, we deployed an MLP neural network for the same wind power data (most-

likely power) to validate the proposed ENF-ADBEL. The comparison results are given

in Table 4.21, showing that the ENF-ADBEL network performed better accuracy.
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Figure 4.165: Most-Likely Wind Power as Predicted by ENF-ADBEL Network.

Table 4.21: RMSE, R2 for Most-Likely Wind Power Predicted by ENF-ADBEL and
MLP Networks

Time Series Prediction Network RMSE R2(%) PI(%)

most wind power
ENF-ADBEL 17.34 99.87

44.51
MLP 31.25 99.79
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Figure 4.166: Error in Predicting Most-Likely Wind Power by Proposed ENF-ADBEL
Network.
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Figure 4.167: Correlation in Predicting Most-Likely Wind Power by ENF-ADBEL
Network.
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Figure 4.168: Most-Likely Wind Power as Predicted by NF-ADBEL Network.



250

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

Time(hr)

W
in

d
 P

o
w

e
r 

(M
W

)

Wind Power prediction error by NF−ADBEL Error with RMSE=19.8941

 

 
Error

Figure 4.169: Error in Predicting Most-Likely Wind Power by NF-ADBEL Network
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Figure 4.170: Correlation in Predicting Most-Likely Wind Power by NF-ADBEL
Network.
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Figure 4.171: Most-Likely Wind Power as Predicted by ENF-ADBEL and NF-
ADBEL Networks.
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Figure 4.172: Error Comparison in Predicting Most-Likely Wind Power as Predicted
by ENF-ADBEL and NF-ADBEL Networks.
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Finally, the proposed ENF-ADBEL network is arranged for predicting data on

maximum wind power, with the learning parameters selected as α = 0.23, β = 0.45,

and γ = 0.09. Figures 4.173, 4.174, and 4.175 show the performances of the proposed

ENF-ADBEL network. Meanwhile, the NF-ADBEL network applied the parameters

α = 0.2, β = 0.5, and γ = 0.18 to simulate the forecast of maximum wind power.

Figures 4.176, 4.177, and 4.178 illustrate the performance of that network. The results

in terms of low root mean square error and high correlation are presented in Table

4.22. In terms of run-time, the proposed ENF-ADBEL accomplished the performance

in 2 seconds, whereas NF-ADBEL took 2.15 seconds.

The prediction error for all networks is displayed in Figures 4.179 and 4.180. As

can be seen, the amplitude of error signal for the ENF-ADBEL network is lower

compared to that of the NF-ADBEL network, as depicted in Figure 4.180. The ENF-

ADBEL network offers slightly better performance accuracy. Analysis of the predicted

results for maximum power forecasting in terms of the root mean squared error and

correlation coefficient criteria is provided in Figures 4.175 and 4.178, respectively.

As can be seen, ENF-ADBEL shows better results than either the NF-ADBEL or

F-ADBEL networks. Overall, a fair amount of percentage improvement is yielded by

the ENF-ADBEL network for predicting the maximum wind power, as can be seen in

Table 4.22. Therefore, the proposed ENF-ADBEL network illustrates the best fitting

ability for multiple wind power series among all the implemented networks.

Table 4.22: RMSE, R2 for Max Wind Power in ENF-ADBEL and NF-ADBEL Net-
works

Time Series Prediction Network RMSE R2(%) PI(%)

Wind power
ENF-ADBEL 29.75 99.78 0.53
NF-ADBEL 29.91 99.78

Addition, we applied an MLP neural network for the same wind power data (max

power) to validate the proposed ENF-ADBEL. The comparison results, as given in

Table 4.23, show that the ENF-ADBEL network performed with better accuracy.
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Figure 4.173: Maximum Wind Power as Predicted by ENF-ADBEL Network.

Table 4.23: RMSE, R2 for Max Wind Power in ENF-ADBEL and MLP Networks

Time Series Prediction Network RMSE R2(%) PI(%)

max wind power
ENF-ADBEL 29.75 99.78

25.13
MLP 39.74 99.25
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Figure 4.174: Error in Predicting Maximum Wind Power by ENF-ADBEL Network.
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Figure 4.175: Correlation in Predicting Maximum Wind Power by ENF-ADBEL
Network.
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Figure 4.176: Maximum Wind Power as Predicted by NF-ADBEL Network.
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Figure 4.177: Error in Predicting Maximum Wind Power by NF-ADBEL Network.
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Figure 4.178: Correlation in Predicting Maximum Wind Power by NF-ADBEL Net-
work.
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Figure 4.179: Maximum Wind Power as Predicted by ENF-ADBEL and NF-ADBEL
Networks.
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Figure 4.180: Error Comparison in Predicting Maximum Wind Power as Predicted
by ENF-ADBEL and NF-ADBEL Networks.



263

4.3.6 Proposed Model’s Performance Compared to State-of-the-Art

Predictors

Thus far, we have achieved the objectives of the proposed models, as follows. First

of all, the proposed NF-ADBEL network aimed to improve the accuracy of the AD-

BEL network. Our results show the superiority of the proposed NF-ADBEL network

over the ADBEL in terms of high accuracy. Secondly, the proposed F-ADBEL model

aimed to adjust the learning parameters α, β, and γ of the ADBEL network. The per-

formance of the proposed F-ADBEL displays the ability to adjust the parameters and

can be deployed for online prediction. Finally, the proposed ENF-ADBEL network

aimed to enhance the accuracy of the NF-ADBEL network, and the ENF-ADBEL

network performed with better accuracy than the NF-ADBEL network.

It should be mentioned that the proposed models are deployed to predict and

forecast different online mode applications with no prior training and no prior knowl-

edge of predicted data. Therefore, in this section, we aim to compare the proposed

model’s performance to other state-of-the-art predictors.

To compare our proposed model to other trained models, we assumed different

factors of data as trained data by adjusting the steady-state depending on the data,

as will be elaborated in this section. Note that the data we used might differ from

the data used in other models in the literature. In each application, we employed the

same steady-state to compare the performance of the proposed model.

4.3.6.1 Mackey-Glass Time Series as Predicted by Trained

ENF-ADBEL Network

By setting the learning parameters as α = 0.5, β = 0.5 and γ = 0.07, we first

deployed the ENF-ADBEL network to predict this time series. The steady-state is 5

seconds, resulting in a pre-defined time window depicted in Figure 4.133. The same

time series is also predicted with the NF-ADBEL and F-ADBEL networks using the

learning parameters of α = 0.5, β = 0.2, and γ = 0.03. In the case of F-ADBEL,

the parameters are varying. The prediction errors are recorded in all the states,

with analysis showing that the transient period remains the same ≤ 5 s. Thus, the

steady-state starting index is set to compute the performance indices in all the cases.

Figures 4.181 and 4.182 show the prediction and error comparisons in steady-state
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as yielded by the F-ADBEL, NF-ADBEL and ENF-ADBEL networks for predicting

the Mackey-Glass time series. As seen, the ENF-ADBEL network performs better

than the F-ADBEL and NF-ADBEL networks, showing lower peaks in the prediction

error in the ENF-ADBEL network. As well, the root mean squared error and cor-

relation coefficient were determined for all the networks, with the computed values

presented in Table 4.24.

Table 4.24: RMSE, R2 for Mackey-Glass Time Series Prediction by ENF-ADBEL,
NF-ADBEL, and F-ADBEL Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Mackey-Glass
ENF-ADBEL 0.011 99.89 improved by
NF-ADBEL 0.018 99.71 38.88
F-ADBEL 0.0336 99.39 67.26

The authors in [109] proposed the short-term prediction of a backpropagation

network (BP), based on a difference method (DMBP). In general, BP is widely used

for prediction. The structure of the BP network is a multilayer feed-forward network,

trained according to error backpropagation. DMBP structures the training layer as

two sub-layers. The change degree layer reflects the absolute value, while the change

trend layer reflects positive and negative data to overcome prediction errors.

The DMBP method was applied to a Mackey-Glass time series and the results

were compared to other methods, such as BP network and support vector regression

(SVR) machine. The autoregressive integrated moving average (ARIMA) in terms

of RMSE was also given. The authors in [28] used 70% of data as training data and

30% of data as test data. The results of DMBP in [109] are shown in Table 4.25.

To compare the proposed ENF-ADBEL network to the methods in [109], we set

the learning parameters as α = 0.54, β = 0.5 and γ = 0.07. Further, the steady-state

is selected as 50 seconds, which reflects 4% of the Mackey-Glass data points. The

results are given in Table 4.25. As can be seen, the proposed ENF-ADBEL network

had superior performance in terms of RMSE, as shown in Figure 4.183, compared to

results in [109]. The run-time of 0.18 seconds reflects the simplicity and fast learning

of the proposed ENF-ADBEL model, demonstrating that it can be deployed for online

prediction.
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Figure 4.181: Mackey-Glass Time Series as Predicted by F-ADBEL, NF-ADBEL and
ENF-ADBEL Networks.

Table 4.25: RMSE, R2 for Mackey-Glass Time Series Prediction by ENF-ADBEL,
BP, SVR, NARIMA, and DMBP Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Mackey-Glass

ENF-ADBEL 0.0094 99.87 improved by
DMBP [109] 0.041 - 77.07
NARIMA [109] 0.05 - 81.20
SVR [109] 0.23 - 95.91
BP [109] 0.291 - 96.76
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by F-ADBEL, NF-ADBEL and ENF-ADBEL Networks.
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4.3.6.2 Lorenz Time Series as Predicted by Trained ENF-ADBEL

Network

We first evaluate the prediction performance of the ENF-ADBEL network, with the

learning parameters set as α = 0.5, β = 0.3 , and γ = 0.04. For comparison, the NF-

ADBEL network is also simulated to predict the Lorenz time series and the F-ADBEL

network. The best learning parameters for the NF-ADBEL network in predicting the

Lorenz time series are found to be α = 0.8, β = 0.2, and γ = 0.01), while for F-

ADBEL the parameters are varying. The run-time is 1.42 seconds and 20.50 seconds,

respectively.

By recording and analyzing the prediction error in all cases, we found that the

transient period is less than 5s, and therefore, the steady-state starting index is

presumed as ns = 5. A zoomed view of the prediction error as returned by all steady-

state networks is shown in Figure 4.185. As can be see, the proposed ENF-ADBEL

network has a lower error in predicting the Lorenz time series than the existing NF-

ADBEL and F-ADBEL networks. The prediction performance in all cases is also

analyzed in terms of root mean squared error and correlation coefficient criteria. The

results for this analysis are included in Table 4.26 and show the superior performance

of the ENF-ADBEL network due to the lowered root mean squared error, higher

correlation coefficient, and significant percentage improvement offered by the network.

Table 4.26: RMSE, R2 for Lorenz Time Series as Predicted by ENF-ADBEL, NF-
ADBEL, and F-ADBEL Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Lorenz
ENF-ADBEL 0.13054 99.98

NF-ADBEL [58] 0.1726 99.97 24.36
F-ADBEL 0.8564 99.78 84.75
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Table 4.27: RMSE, R2 for Lorenz Time Series Prediction by ENF-ADBEL, Naive
LSTM, Multivariate Interpolated LSTM, and LSTM Approach Networks

Time
Series

Prediction Network RMSE R2(%) PI(%)

Lorenz

ENF-ADBEL 0.0217 99.97 improved
by

LSTM approach[66] 0.0282 99.57 23.04
Multivariate Interpolated
LSTM[66]

0.0365 99.06 40.54

Naive LSTM [66] 0.0463 98.89 53.13

The authors in [66] used long short-term memory (LSTM) recurrent neural net-

work to predict the time series. However, the LSTM recurrent network has difficulty

representing temporal and non-temporal inputs simultaneously in multivariate data.

In [66], the authors proposed a hierarchal decomposition of univariate LSTMs and

combined the resulting features in final feed-forward layers. The model selected is

based on early stopping, with 20% validation data of 3,000 data samples and 1000

epochs. The condition was: if the validation performance did not improve within 100

epochs, stop training.

The authors in [66] then applied the proposed LSTM to the Lorenz time series

and compared one-step-ahead prediction error in terms of lowest RMSE and high

correlation coefficient to other approaches, such as Nave LSTM and multivariate

interpolated LSTM. The LSTM approach gave better performance results compared

to the other methods.

For a fair comparison to the ENF-ADBEL network, we used 75% data as a steady-

state and tuned the parameters as α = 0.49, β = 0.42, and γ = .04. The proposed

ENF-ADBEL shows better results in terms of low prediction error and high correla-

tion, as presented in Table 4.27 and Figure 4.186. According to [66], the used LSTM

converged within several hours of training, while the proposed ENF-ADBEL per-

formed convergence within a few seconds (run-time of 1.44 seconds). The proposed

ENF-ADBEL thus gave the best performance and fastest response.
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Figure 4.186: Error predicting Lorenz Time Series for 75% Training Data as Predicted
by ENF-ADBEL Network.
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4.3.6.3 Disturbance Storm Time Index (Dst) as Predicted by Trained

ENF-ADBEL Network

Next, we simulate the ENF-ADBEL network to predict the disturbance storm time

index Dst time series for April 2000, at a time when considerable geomagnetic activity

was observed. The data for this month have been downloaded from the website

World Data Center (WDC) [86], ”WDC for Geomagnetism, Kyoto.” With the learning

parameters set as α = 0.15, β = 0.38 and γ = 0.25, the ENF-ADBEL network

is deployed to predict the Dst index for the month of April 2000. The number of

samples is ne = 716.

The transient period of the ENF-ADBEL network is ns = 10 hrs, which then

becomes the steady-state starting index. It can be observed that, despite the high

initial transients, the ENF-ADBEL network can follow the Dst time series in steady-

state. The important valley points are also well-predicted, which points towards the

possible occurrence of geomagnetic storms.

An existing NF-ADBEL network is used to predict the Dst time series. For this

purpose, the learning parameters of the NF-ADBEL network are assigned the values

of α = 0.3, β = 0.3, and γ = 0.01. The results of this comparison in terms of the

prediction error are displayed in Figures 4.187 and 4.188. As can be seen, the ENF-

ADBEL network gives a better performance than the NF-ADBEL and F-ADBEL

networks, as shown in Table 4.28.

The authors in [65] designed an NFCBEL predictor, which combines the type

of emotional neural network and neo-fuzzy neurons. The NFCBEL is deployed to

predict Dst between the years 2000 and 2006, inclusive. The NFCBEL was trained

offline with 70% of the data in order to predict 30% of the data. The performance of

the RMSE and correlation is presented in Table 4.29.

To compare the proposed model with the model in [65], we deploy the ENF-

ADBEL to predict the Dst for April 2000 for 27% of 716 data points, using ns = 200.

Further, the ENF-ADBEL network is assigned the values of α = 0.1, β = 0.3, and

γ = 0.93. Our results show that the ENF-ADBEL performed excellently in terms of

RMSE and high correlation, as shown in Figure 4.189 and Table 4.29. The run-time

was 0.988 seconds as compared to NFCBEL, which performed its outcomes after 50

iterations. Note that because the length of the data is different, the results in Table
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4.29 reflect the proposed model’s performance based on the available data (in this

case, April 2000). Overall, the results reveal that the ENF-ADBEL network is a good

candidate for online forecasting.

Table 4.28: RMSE, R2for Dst by ENF-ADBEL, NF-ADBEL and F-ADBEL Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Dst Apr 2000
ENF-ADBEL 6.86 98.31

NF-ADBEL [58] 9.08 97.06 24.44
F-ADBEL 13.137 94.36 47.78

Table 4.29: RMSE, R2 for Dst Prediction by Trained ENF-ADBEL Network

Time Series Prediction Network RMSE R2(%) Epochs
Dst Apr 2000 ENF-ADBEL 4.05 98.07 0

Dst [65] NFCBEL 4.7649 98.047 50
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4.3.6.4 Wind Speed as Performance by ENF-ADBEL Network

The ENF-ADBEL network is first employed using the learning parameters α = 0.3,

β = 0.015, and γ = 0.25. As can be seen, the ENF-ADBEL network can predict wind

speed 1h ahead. The steady-state starting index is taken as ns = 1hr. To compare

the model’s performance with the ENF-ADBEL network, a simulation is run with

the learning parameters for the NF-ADBEL network set as α = 0.77, β = 0.04, and

γ = 0.19. The F-ADBEL network has varying parameter values. Forecasting error

and correlation indices are presented in Table 4.30.

Table 4.30: RMSE & R2 for Wind Speed ENF-ADBEL, NF-ADBEL and F-ADBEL
Networks

Time Series Prediction Network RMSE R2(%) PI(%)

Wind Speed
ENF-ADBEL 5.28 89.08
NF-ADBEL 5.53 88.10 4.52
F-ADBEL 6.81 86.01 28.97

The transient period for the NF-ADBEL network is the same as that for the ENF-

ADBEL network. However, the ENF-ADBEL network shows better performance than

the NF-ADBEL and F-ADBEL networks, owing to the lower forecasting error rate

being offered by this network during steady-state, as can be seen from Figures 4.190

and 4.191. In terms of run-time, the proposed ENF-ADBEL accomplished the per-

formance in 1,09 seconds, while the NF-ADBEL took 1.03 seconds and the F-ADBEL

3.7 seconds. The lower root mean squared error, higher correlation coefficient and

sufficient percentage improvement yielded by the ENF-ADBEL network validates its

performance over the NF-ADBEL and F-ADBEL networks in the prediction of wind

speed, as shown in Table 4.30.

The authors in [110] built eight models to predict wind speed, namely BPNN,

GA-BPNN, PSO-BPNN, LSTM, SVR, GA-SVR, Bagging and Boosting. The models

were all supported by GA and PSO to help to find a global optimal. Additionally, the

authors used a dataset from Open EI; the size of the data was 36,295 samples, and

the timeline was from May 13, 2003, to Jan 20, 2004. The data were randomly split

into a training set and a test set, with 70% used for training and 30% for testing.
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We used the correlation coefficient criteria to compare the results from different

models with those from the proposed ENF-ADBEL network. The results are pre-

sented in Table 4.31. as can be seen, the proposed model has high correlation and a

fast processing time, whereas the other methods were trained and accomplished the

performance within 1,000 iterations. Note that the data used in the proposed model

were different in size and location than those used in the other models.

Table 4.31: R2 for Wind Speed Prediction by ENF-ADBEL, BPNN, GA-BPNN,
PSO-BPNN, LSTM, SRV, GA-SVR, Bagging and Adaboost Models

Time Series Prediction Network R2(%)

Wind Speed

ENF-ADBEL 89.08

BPNN [110] 88.76
GA-BPNN [110] 88.47
PSO-BPNN [110] 87.21
LSTM [110] 87.99
SRV [110] 88.35
GA-SRV [110] 88.55
Bgging [110] 88.63
Adaboost [110] 88.55



280

1150 1160 1170 1180 1190 1200
0

10

20

30

40

50

60

70

Time(hr)

W
in

d
 S

p
e
e
d

 (
k

m
/h

)

 Wind Speed as predicted by F−ADBEL, NF−ADBEL and ENF−ADBEL Networks

 

 

Target

F−ADBEL

NF−ADBEL

ENF−ADBEL

Figure 4.190: Wind Speed as Predicted by F-ADBEL, NF-ADBEL and ENF-ADBEL
Networks.



281

1150 1160 1170 1180 1190 1200
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Time(hr)

W
in

d
 S

p
e
e
d

 (
k

m
/h

)

Comparison of Prdiction Error for Wind Speed

 

 

F−ADBEL

NF−ADBEL

ENF−ADBEL

Figure 4.191: Error Comparison in Predicting Wind Speed as Predicted by F-ADBEL,
NF-ADBEL and ENF-ADBEL Networks.



282

4.3.7 CONCLUSIONS

1. Highlight 1: In the proposed ENF-ADBEL model, neo-fuzzy neurons are

applied in the orbitofrontal cortex section and partially in amygdala section

of Adaptive decayed brain emotional learning network. Partial integration is

done purposefully as amygdala section has two outputs, the one which relies

on the imprecise information is set free from neo-fuzzy integration to keep the

computational principle of limbic system.

2. Highlight 2: The integration of neo-fuzzy network in the amygdala section

does not increase the computational complexity of the resulting proposed model

to a noticeable extent.

3. Highlight 3: Learning parameters, α, β, and γ play a crucial rule in the

performance of proposed ENF- ADBEL performance. Currently, an exhaustive

search is done to find the near optimal parameters.

4. Highlight 4: Proposed ENF-ADBEL model has no prior knowledge of the

time-series data which implies that no prior training is required.

5. Highlight 5: Comparison of the proposed predictor with F-ADBEL [62], NF-

ADBEL [58] and others, reveals its superiority for time series prediction prob-

lems with shorter update intervals.

6. Highlight 6: It is known that the size of data can affect the performance of

predictors. The proposed model can also be deployed where size of the data is

considerably large.

In this work, we presented a novel design for a hybrid model of a neo-fuzzy adaptive

decayed brain emotional learning network, intending to enhance the prediction accu-

racy of NF-ADBEL for on-line time series prediction. We called the resulting predic-

tion network the Expanded Neo-Fuzzy Adaptive Decayed Brain Emotional Learning

(ENF-ADBEL) model. The proposed model integrates the neo-fuzzy neurons in the

orbitofrontal cortex (OFC) section while partially implementing the amygdala (AMY)

section. The proposed model combines competitive emotional neural networks with

neo-fuzzy neurons to yield an effective ENF-ADBEL predictor, which offers features
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such as low computational complexity and fast learning. The low complexity results

from fewer membership functions in neo-fuzzy neuron networks, while fast learning

is inherited from employing the mammalian brain’s emotion-processing mechanism.

Furthermore, the proposed ENF-ADBEL network, which is implemented in the

MATLAB programming environment, has been deployed to predict several chaotic

time series, including Mackey-Glass, Lorenz, Rossler and disturbance storm time

index. Simulations have also been conducted in this work to predict stochastic prob-

lems, namely, wind speed and wind power series. To keep computational complexity

at a minimum, we only used three neo-fuzzy neurons membership functions to process

each feature in all OFC and AMY sections of ENF-ADBEL.

The proposed model was deployed for on-line time series prediction with no prior

training. The performance of the model was also evaluated in terms of RMSE and

R2. As well, the NF-ADBEL network and F-ADBEL were simulated to forecast the

same time series with near optimal parameters.

Additionally, a comparison of the proposed ENF-ADBEL with other state-of-the-

art methods was made. A percentage improvement index was defined to compare the

proposed model’s performance with those of the NF-ADBEL and F-ADBEL networks.

Comparing the proposed model with the state-of-the-art predictors NF-ADBEL and

F-ADBEL reveal its superior performance, as the model offers the lowest RMSE and

a higher R2. A substantial amount of percentage improvement is also observed in

wind speed and wind power forecasting. Finally, based on the simulation results, the

proposed model demonstrated the best performance.



Chapter 5

CONCLUSIONS AND FUTURE WORK

This chapter highlights the contributions of the thesis, and also presents suggestions

for possible future work directions.

5.1 Contributions

1. The first contribution of this thesis was the design of a Neo-fuzzy Integrated

Adaptive Decayed Brain Emotional Learning (NF-ADBEL) network. The NF-

ADBEL network demonstrated the ability and capability for online time series

prediction problems and other forecasting applications, such as wind speed and

wind power generation. It also enhanced the ADBEL network accuracy.

2. The work’s second contribution was the design of the Expanded Neo-fuzzy In-

tegrated Adaptive Decayed Brain Emotional Learning (ENF-ADBEL) network.

The ENF-ADBEL network demonstrated the ability and capability for online

time series prediction problems and other forecasting applications, such as wind

speed and wind power generation. It also enhanced the NF-ADBEL network

accuracy.

3. The third contribution of this thesis was the design of the Fuzzy-logic-based

Parameter-adjustment Model to use with the Adaptive Decayed Brain Emo-

tional Learning (F-ADBEL) network. The F-ADBEL demonstrated the ability

and capability to tune the ADBEL parameters in online mode. NF-ADBEL en-

hanced the ADBEL network’s accuracy and can be used for online time series

prediction problems and other forecasting applications such as wind speed and

wind power generation.

4. The fourth contribution of this study was the series of comparisons conducted

between the designed proposed NF-ADBEL, ENF-ADBEL, F-ADBEL, and AD-

BEL models and other state-of-the-art models.

284
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In addition to the above, other contributions, include the following:

• Redesigning/representing the ADBEL network and using it as a benchmark to

compare the proposed models’ outcomes.

• Programming and simulating all the proposed models in MATLAB.

• Generating a comparison program in MATLAB to compare the results between

the proposed models.

• Generating the time series data for Mackey-Glass, Lorenz, Rossler and Narendra

identification plant using MATLAB programming, and filing it in an attached

appendix in this thesis to support future research work.

5.2 Future Work Directions

The design of the proposed fuzzy logic-based parameter adjustment (F-ADBEL)

model, is an alternative way for finding the parameters and may not be optimal.

A possible future direction could be studying the optimality and stability of the pa-

rameter adjustment model.

Similarly, in the design of the proposed neo-fuzzy adaptive decayed brain emo-

tional learning (NF-ADBEL) network, the tuned parameters may not be optimal. A

Possible future direction could be studying the optimal tuned parameters further.

Finally, with regards to the design of the proposed Expanded neo-fuzzy adaptive

decayed brain emotional learning (ENF-ADBEL) network, the tuned parameters may

not be optimal. So, one possible future direction could be studying ways to find and

implement optimal tuned parameters.

As well, more investigation could be conducted on the integration of the neo-fuzzy

network in Thalamus and sensory cortex sections.
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