
 

 

 

 

 

 

 

 

 

DUAL SEGMENTED AND RECONFIGURABLE APPROXIMATE 

MULTIPLIERS FOR ERROR-TOLERANT APPLICATIONS 

 

 

 

 

by 

 

 

 

 

Ling Li 

 

 

 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Applied Science 

 

 

at 

 

 

Dalhousie University 

Halifax, Nova Scotia 

June 2021 

 

 

 

 

 

 

 

© Copyright by Ling Li, 2021 

 



 

ii 
 

Table of Contents 

List of Tables .................................................................................................................... iv 

List of Figures ................................................................................................................... v 

Abstract ............................................................................................................................vii 

List of Abbreviations Used .......................................................................................... viii 

Acknowledgments ............................................................................................................ ix 

Chapter 1  Introduction ................................................................................................ 1 

1.1  Motivations ..................................................................................................... 1 

1.2  Contributions .................................................................................................. 3 

1.3  Thesis Organization ........................................................................................ 4 

Chapter 2  Research Background ................................................................................ 5 

2.1  Rounding Based Approximate Multiplier ....................................................... 5 

2.2  Using Approximate Compressor in the Partial Product Matrix ...................... 7 

2.3  Segment-based Approximate Multiplier ......................................................... 8 

2.3.1  SSM-based Multiplier .................................................................................. 11 

2.3.2  DSM-based Multiplier.................................................................................. 13 

2.3.3  TOSAM ........................................................................................................... 15 

2.4  A Comparative Evaluation of Approximate Multiplier Designs .................. 17 

2.4.1  Error Characteristics ..................................................................................... 17 

2.4.2  Circuit Characteristics .................................................................................. 24 

2.5  Conclusion ......................................................................................................... 25 



 

iii 
 

Chapter 3  Dual Segmentation Approximate Multiplier ....................................... 26 

3.1  Dual Segmentation Approximate Multiplier Implementation ...................... 26 

3.2  Simulation and Synthesis Results ................................................................. 32 

Chapter 4  A Merged Approximate Multiplier with Two Precisions ................... 34 

4.1  Proposed Approximate Multiplier Implementation ...................................... 34 

4.2  Simulation and Synthesis Results ................................................................. 41 

Chapter 5  Conclusion and Future Work ................................................................. 43 

5.1  Conclusion .................................................................................................... 43 

5.2  Future Work .................................................................................................. 44 

Bibliography ................................................................................................................... 45 

Appendix  Permission ................................................................................................. 48 

 

 

 

 

 

 

 

 

 



 

iv 
 

 List of Tables 

Table 2.1  Circuit’s parameter of 8-bit static and dynamic segment selectors ........ 11 

Table 2.2  A comparison of delay, power and area of the approximate multiplier 

designs ...................................................................................................................... 25 

 

Table 3.1  Circuit’s parameter of unsigned 16-bit exact and approximate 

multipliers ................................................................................................................. 33 

Table 3.2  Circuit’s parameter of unsigned 32-bit exact and approximate 

multipliers ................................................................................................................. 33 

 

Table 4.1  Circuit’s parameter of 16-bit merged and separated reconfigurable 

designs ...................................................................................................................... 41 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

 List of Figures 

Figure 2.1  The schematic of the ROBA multiplier .................................................. 6 

Figure 2.2  Partial product matrix reduction of an 8-bit multiplier [6] ..................... 8 

Figure 2.3  The schematic of segment-based approximate multiplier (𝑚 < 𝑛) ....... 9 

Figure 2.4  The n-bit dynamic segment selector ..................................................... 10 

Figure 2.5  The n-bit static segment selector .......................................................... 11 

Figure 2.6  A numeric example of the16-bit SSM-based multiplier (n = 16, m = 4)

 .................................................................................................................................. 13 

Figure 2.7  A numeric example of the16-bit DSM-based multiplier (n = 16, m = 4)

 .................................................................................................................................. 14 

Figure 2.8  A numeric example of the16-bit TOSAM (k = 3, m = 7) ...................... 16 

Figure 2.9  A comparison of (a) MED, (b) MaxED and (c) MinED of the 8-bit 

approximate multiplier designs with all possible input operands ............................ 19 

Figure 2.10 A comparison of (a) MED, (b) MaxED and (c) MinED of the 8-bit 

approximate multiplier designs with all possible input operands ............................ 21 

Figure 2.11 A comparison of (a) MRED, (b) MaxRED and (c) MinRED of the 8-

bit approximate multiplier designs with all possible input operands ....................... 22 

Figure 2.12 A comparison of (a) MRED, (b) MaxRED and (c) MinRED of the 8-

bit approximate multiplier designs with all possible input operands ....................... 24 

 

Figure 3.1  Dual segmentation approximate multiplier architecture ....................... 27 

Figure 3.2  A general example of the m-bit static segment approximation ............ 28 

Figure 3.3  A general example of the m-bit dynamic segment approximation ....... 29 

Figure 3.4  A general example of the m-bit dual segment approximation .............. 30 



 

vi 
 

Figure 3.5  Example of 16-bit dual segmentation multiplier (k=8, m=4) ............... 31 

 

Figure 4.1  The sign and magnitude format of the input operands ......................... 35 

Figure 4.2  The schematic for mode selection ........................................................ 35 

Figure 4.3  Building an 8-bit multiplier from four 4-bit multipliers ....................... 36 

Figure 4.4  Building an 8-bit multiplier from 2-bit, 2×6 and 6-bit multipliers ...... 37 

Figure 4.5  The 16-bit SSM-based hybrid approximate multiplier for mode [4 and 

8] ............................................................................................................................... 38 

Figure 4.6  The 16-bit DSM-based hybrid approximate multiplier for mode [6 and 

8] ............................................................................................................................... 39 

Figure 4.7  The 16-bit DSM-based hybrid approximate multiplier for mode [4 and 

6] ............................................................................................................................... 40 

 

 

 

 

 

 

 



 

vii 
 

 Abstract 

Approximate multiplier circuit designs have shown substantial advantages in 

improving many operational features, such as power, area and delay, in many error-

resilient applications such as image processing and deep learning applications. 

Existing approximate multiplier circuits in this thesis are first reviewed, evaluated, 

and compared. The comparison results show that the segment-based multiplier has a 

good trade-off between accuracy and performance by adjusting segment size. A dual 

segmentation approximate multiplier is then proposed. Compared to the dynamic 

segment method (DSM)-based approximate multiplier, the proposed design can reduce 

the energy by 37.90% for 32-bit multipliers, and by 16.68% for 16-bit multipliers. The 

DSM and proposed multipliers have almost identical accuracy. A merged approximate 

multiplier with two configurable precisions is proposed for improving the 

multiplication performance in fixed point convolutional neural networks (CNN) 

accelerators. Compared with the single-precision approximate multiplier, the merged 

approximate multiplier achieves significant performance enhancements with minimal 

accuracy loss.  
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 Chapter 1  Introduction 

1.1  Motivations 

As the physical dimensions of CMOS circuits are scaled down to a few tens of 

nanometers, it has been difficult to improve the circuit performances. Approximate 

computing has been considered as a potential alternative for error-resilient applications 

to reduce power, area, and delay, however at the cost of certain accuracy loss [1-11].  

Multiplication is a fundamental high-energy operation in image processing and 

deep learning applications [1-22]. Prior works have explored different techniques to 

reduce the cost of multiplication using approximate multipliers. Examples of these 

techniques include rounding the multiplicands to the nearest power of two [11], partial 

product matrix simplification (e.g., using approximate compressors and sub-multipliers) 

[6-7], and segment-based approximate designs (e.g., truncating the operands to 

designated bit-width) [8-10]. Segment-based approximate multipliers allow for a trade-

off between accuracy and performance by adjusting segment size m. In [8], a static 

segment method (SSM)-based multiplier was presented, which statically split the input 

operand into i (m-bit) segments and performed the multiplication utilizing the segment 

containing the most significant one. Hashemi et al. [9] extended the idea of leading one 

segment to implement the dynamic segment method (DSM) in approximate multiplier 

designs. In [10], a truncation and rounding-based scalable approximate multiplier 

(TOSAM) was proposed where the multiplicands were truncated with two different 
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lengths and rounded to perform smaller core multiplications. The DSM-based 

multiplier can provide notably high accuracy, although it has a larger area and higher 

energy consumption than the SSM design. The SSM-based multiplier has lower 

accuracy, but it is faster and consumes less energy compared to other segment-based 

approximate multipliers [8]. This thesis is focused on the design and analysis of two 

such segment-based multipliers, namely, DSM-based multiplier and SSM-based 

multiplier.  
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1.2  Contributions 

In this thesis, a dual segmentation approximate multiplier and a merged approximate 

multiplier with two configurable precisions are presented. 

1. A comparative evaluation of existing approximate multipliers is presented in this 

thesis. All designs were developed in Verilog and circuit performances are obtained 

using Synopsys DC Compiler based on a 65nm process.  

2. This thesis contributes to the design of segment-based approximate multiplier by 

proposing a novel truncation method. This dual approximate multiplier design uses 

the SSM to select an initial multiplication segment. Following that, the DSM is 

utilized to further reduce the initial segment size.  

3. A merged approximate multiplier with two configurable precisions is first presented. 

The idea of this design is to use a 2-to-1 MUX as a mode selector to switch between 

low and high precisions. The smaller multiplier is used as a building block to build 

the larger multiplier.  
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1.3  Thesis Organization 

The Thesis is organized as follows: 

1. Chapter 2 reviews the related works in approximate multiplier design. A 

comparison of existing approximate multiplier designs is discussed. 

2. Chapter 3 presents a dual segmentation approximate multiplier design and its 

electrical performance. 

3. Chapter 4 presents the hybrid use of a segment-based approximate multiplier with 

two precisions. 

4. Chapter 5 concludes the thesis and discusses the future work. 
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 Chapter 2  Research Background 

This chapter presents a review on existing approximate multiplier designs. 

Approximate multiplier designs mainly use three approximation approaches: i) 

rounding the multiplicands to the nearest power of two, ii) using approximate 

compressors to accumulate the partial products, and iii) segment-based approximate 

multipliers. 

 

2.1  Rounding Based Approximate Multiplier 

In [11], an approximate multiplier based on a technique named rounding-based 

approximate (ROBA) multiplier was proposed, which rounds the input operands to the 

nearest power of two. This multiplier design is appliable to both signed and unsigned 

multiplications and is constructed by modifying the conventional multiplication method 

at the algorithm level.  

The schematic of the ROBA multiplier is shown in Figure 2.1, where the inputs and 

output are represented in two’s complement format. |𝑿𝒓| and |𝒀𝒓| are the rounded 

numbers of the absolute values of the signed inputs. The multiplication of two absolute 

inputs can be expressed as: 

|𝑿| × |𝒀| = [(|𝑿| − |𝑿𝒓|) +  |𝑿𝒓|] × [(|𝒀| − |𝒀𝒓|) + |𝒀𝒓|] 

                     ≅   |𝑿𝒓| × |𝒀|  + |𝒀𝒓|  × |𝑿| – |𝑿𝒓|  × |𝒀𝒓|        (2.1) 
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The ROBA multiplication consists of four steps: 1) the first step is to generate the 

absolute values of the signed inputs and to determine the sign of the output 2) the second 

step is to extract the nearest value for each input; 3) the third step is to use shift, add, 

subtraction operations to calculate the multiplication result; 4) the final step is to 

compute the final multiplication result by adding the proper sign to the unsigned result.  

Sign Detector

Rounding

X Y

|X| |Y|

Adder

Shifter Shifter Shifter

|Xr| |Yr|

Subtractor

|X|×|Yr| |Xr|×|Y|

|Xr|×|Yr|

Sign Set

n n

2n

 

Figure 2.1 The schematic of the ROBA multiplier 
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2.2  Using Approximate Compressor in the 

Partial Product Matrix 

The approximate compressor-based multiplier uses the algorithm to allocate 

approximate compressors, exact full adder and half adder in each column of the partial 

product matrix to save power while providing small error [6-7]. A novel approximate 

4/2 compressor design is presented in [6] and then this compressor is used to build 8-

bit and 16-bit approximate multipliers. In [7], a new family of the approximate 

compressor and an algorithm for the allocation of approximate compressors and exact 

adders in each column of the partial products matrix are used to build approximate 

multipliers. As an example, the reduction of the partial product matrix of an 8-bit 

multiplier is shown in Figure 2.2. There are two reduction steps. In the first reduction 

step, the proposed approximate compressors are only utilized in the less significant part 

of the partial product matrix to minimize the overall approximation error. The higher-

order approximate compressor, 8/4 and 7/4, are composed of smaller approximate sub-

compressor. For example, the approximate 8/4 compressor is composed of two 

approximate 4/2 compressors. Also, the approximate 7/4 compressor is composed of an 

approximate 4/2 compressor and an approximate 3/2 compressor. The height of the 

partial product matrix in the first reduction step is reduced from 8 to 4, and then the 

height is reduced to 2 in the second reduction step. The blue dot represents a carry from 

the previous adder.  
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Figure 2.2 Partial product matrix reduction of an 8-bit multiplier [6] 

 

2.3  Segment-based Approximate Multiplier 

Figure 2.3 shows a simplified schematic of the segment-based approximate multiplier, 

where the segment selectors truncate the n-bit operands to the m-bit segments. The 

segment size m is smaller than the input operand size n. For example, the n-bit 

multiplication can be approximated using an n/2-bit multiplier or even an n/4-bit 

multiplier. Because the arithmetic operations are performed on the truncated values, the 

calculation core of the segment-based approximate multiplier is small and consumes 

less energy compared to that of the exact multiplier. In addition, the precision of the 

segmented method is controlled by adjusting the segment size m and is not significantly 

affected by the width of the input operands.  
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Figure 2.3 The schematic of segment-based approximate multiplier (𝑚 < 𝑛) 

 

The segment selector can be classified into two categories: dynamic [9-10] and 

static [8]. In the dynamic segment selector, the n-bit leading one detector (LOD) is 

implemented to locate the most significant one in an n-bit operand. Then an encoder 

and a multiplexer (MUX) capture the following m-1 bits and set the least significant bit 

of the segment to one, as shown in Figure 2.4. Compared to the static segment selector, 

the dynamic segment selector requires utilizing extra complex circuitry. These extra 

components lead to significant delay, energy and area overheads that may considerably 

decrease the approximation benefits [8]. The LOD is the module with the highest power 

consumption and the largest area in the dynamic segment selector [8]. However, the 

dynamic segment selector delivers higher accuracy designs than the static segment 

selector. The implementation for the static segment selector is presented in Figure 2.5 
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where the n-bit multiplicand is split into i (m-bit) segments. Then using OR gates and 

a MUX, the segment which contains the leading one bit is detected. The static segment 

selector of the SSM-based approximate multiplier is much faster, smaller and consumes 

less energy compared to the dynamic segment selector as illustrated in Table 2.1. The 

8-bit static and dynamic segment selectors are implemented in Verilog and their delay, 

area and power reports are obtained from Synopsys DC complier based on 15-nm 

libraries. As can be seen from Table 2.1, the 8-bit static segment selector consumes 

almost 89% less power than the dynamic segment selector. The delay and area of the 

8-bit static segment selector are about 67% and 77% than those of the 8-bit dynamic 

segment selector.  
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Figure 2.4 The n-bit dynamic segment selector 
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Figure 2.5 The n-bit static segment selector 

 

Table 2.1 Circuit’s parameter of 8-bit static and dynamic segment selectors 

8-bit Segment Selector Delay (ps) Power (nW) Area (𝝁𝒎𝟐) 

Static 30.84 267.68 3.88 

Dynamic 92.83 2543.08 17.15 

 

2.3.1  SSM-based Multiplier 

The pseudo-code of Algorithm 1 details the SSM applied to select a 4-bit segment from 

a 16-bit operand. First, the 16-bit operand is statically divided into four 4-bit segments. 

If the first segment (X15X14X13X12) starting from the most significant bit contains the 

leading-one-bit, the 16-bit operand is then truncated to the first segment. If there is no 

leading-one-bit in the first segment, the algorithm checks whether the leading-one-bit 

is in the following three 4-bit segments. If the upper i-1 segments are all zeros, the 
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lower 4-bit segment is selected for accurate multiplication. Figure 2.6 illustrates an 

example using the SSM to approximate a 16-bit multiplicand with i=4 and m=4. The 

two 4-bit segments containing the leading one bit of each input operand are forwarded 

to the inputs of a 4-bit accurate multiplier. The result of this multiplication is shifted 

according to the starting bit positions of the 4-bit segments to generate the final 

approximate result. 

Algorithm 1: 4-bit Static Segment Selection 

INPUT: (i) n-bit operand, given by XnXn-1…X0; (ii) i possible m-bit segments 

OUPUT: the selected m-bit segment, given by S  

BEGIN 

1. for n = 16; m = 4; i = 4 

2.   if X[15] || X[14] || X[13] || X[12] = 1  

3.              S = X[15]X[14]X[13]X[12]; 

4.   else if X[11] || X[10] || X[9] || X[8] = 1 

5.               S = X[11]X[10]X[9]X[8]; 

6.   else if X[7] || X[6] || X[5] || X[4] = 1 

7.                S = X[7]X[6]X[5]X[4]; 

8.   else  

9.                S = X[3]X[2]X[1]X[0]; 

10.   end if; 

11.  end for; 

END   
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Figure 2.6 A numeric example of the16-bit SSM-based multiplier (n = 16, m = 4) 

 

2.3.2  DSM-based Multiplier 

The pseudo-code of Algorithm 2 details the DSM applied to select a 4-bit segment from 

a 16-bit operand. The DSM operates by detecting the leading one in the 16-bit number 

then extracting the following 4 bits and setting the least significant bit of the truncated 

values to one. Figure 2.7 shows a numerical example of a 16-bit DSM-based multiplier 

with the same inputs as implemented in the SSM-based multiplier. The truncated values 

are multiplied and shifted to the left to generate the final output. The DSM-based 

multiplier provides higher precision compared to the SSM-based multiplier as shown 
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in Figure 2.7. 

Algorithm 2: 4-bit Dynamic Segment Selection 

INPUT: (i) n-bit operand, given by XnXn-1…X0 

OUPUT: the selected 4-bit segment, given by S  

BEGIN 

1. for i = 1; i < n; i++   

2.   if ( (X [i] = 1) && (i >= 3) ) 

3.              S = X [i]X[i-1]X[i-2]1; 

4.   else if ( (X [i] = 1) && (i < 3) ) 

5.              S = X[3]X[2]X[1]0; 

6.   end if; 

7.  end for; 

END   

11291
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approximate output: 25952256

0 0 0
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x

m=4

m=4

0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0
exact output: 24953110  

  

Figure 2.7 A numeric example of the16-bit DSM-based multiplier (n = 16, m = 4) 



15 
 

 

 

2.3.3  TOSAM 

TOSAM [11] is the most recent segment-based approximate multiplier and it will be 

compared with the proposed dual approximate multiplier in Chapter 4. The input 

operands of TOSAM were truncated to two different sizes based on their leading-one-

bit positions and rounded to perform smaller core multiplication and addition 

operations. TOSAM is appliable to both signed and unsigned multiplications. The 

following expression is used to perform the unsigned multiplication: 

𝑿 ×  𝒀 ≅  𝟐𝒌𝑨+𝒌𝑩  × (𝑿𝒓  ×   𝒀𝒓 + 𝟏 +   𝑿𝒎=𝟕 +  𝒀𝒎=𝟕)     (2.2) 

where 𝒌𝑨 and 𝒌𝑩  denote the leading-one-bit position of each operand. 𝑿𝒓 and  𝒀𝒓 

are 𝒌+1 bits segments and are generated by dynamic segment selectors. 𝑿𝒎=𝟕 and 

𝒀𝒎=𝟕 are the 7-bit truncated values of 𝑿 and 𝒀. 

Figure 2.8 shows an example of an unsigned 16-bit TOSAM using k=3 and m=7. 

The 16-bit TOSAM is estimated using two 16-bit dynamic segment selectors, a 4-bit 

accurate multiplier, adders and a shifter. As expected, the TOSAM is more complicated 

and costly compared to the SSM-based multiplier.  
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Figure 2.8 A numeric example of the16-bit TOSAM (k = 3, m = 7) 
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2.4  A Comparative Evaluation of Approximate 

Multiplier Designs 

2.4.1  Error Characteristics 

For establishing the error characteristics, approximate multipliers with the same n value 

generate the same output for the same inputs. The error distance (ED), mean error 

distance (MED), maximum error distance (MaxED), minimum error distance (MinED), 

mean relative error distance (MRED), maximum relative error distance (MaxRED) and 

minimum relative error distance (MinRED) are used as metrics to assess the error 

characteristics of approximate multipliers. For an n-bit approximate multiplier, the ED 

is defined as the absolute value of the difference between the accurate product (𝑷) and 

the approximate product (𝑷𝒂𝒑𝒑), i.e., 

                 ED = |𝑷𝒂𝒑𝒑 − 𝑷|,                         (2.2) 

The MED is the average of EDs for a set of outputs obtained by applying a set of inputs. 

The MaxED and MinED are defined as the maximum and minimum of the ED values 

among all possible inputs and outputs. The relative error distance (RED) is the ratio of 

ED over the accurate output, i.e.,  

RED = 
|𝑷𝒂𝒑𝒑−𝑷|

𝑷
 = 

𝑬𝑫

𝑷
,                        (2.3) 

Similarly, the MRED, MaxRED and MinRED can be obtained. 

   The 8-bit approximate multipliers are simulated by MATLAB with all possible 

combinations of operands and the MED, MaxED, MinED are obtained, as shown in 
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Figure 2.3. According to Figures 2.3.a and 2.3.b, the segment-based approximate 

multiplier has a relatively low MED and MaxED for large input operands. The segment-

based multiplier also shows a stable MED and MaxED distribution with all possible 

approximate products. The approximate compressor-based multiplier has the largest 

MED and MaxED, as shown in Figure 2.3. and Figure 2.4., However, ROBA and the 

approximate compressor-based multiplier have a low MED and MaxED for small 

operands. As shown in Figure 2.5.a and Figure 2.6.a, ROBA has a relatively low MRED 

and MaxRED (up to 6% and 12%).  

In summary, ROBA has the highest accuracy for small operands multiplication and 

segment-based approximate multiplier shows low MRED for large operands 

multiplication. The approximate compressor-based multiplier is not very accurate in 

terms of these metrics. 

 

 

(a) MED 
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(b) MaxED 

 

 

(c) MinED 

Figure 2.9 A comparison of (a) MED, (b) MaxED and (c) MinED of the 8-bit 

approximate multiplier designs with all possible input operands 
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(a) MED 

 

 

 

(b)MaxED 
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(c)MinED 

Figure 2.10 A comparison of (a) MED, (b) MaxED and (c) MinED of the 8-bit 

approximate multiplier designs with all possible input operands 

 

 

(a) MRED 
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(b) MaxRED 

 

 

(c) MinRED 

Figure 2.11 A comparison of (a) MRED, (b) MaxRED and (c) MinRED of the 8-bit 

approximate multiplier designs with all possible input operands 
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(b) MaxRED 
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(c) MinRED 

Figure 2.12 A comparison of (a) MRED, (b) MaxRED and (c) MinRED of the 8-bit 

approximate multiplier designs with all possible input operands 

 

2.4.2  Circuit Characteristics 

The considered 8-bit approximate multipliers and exact multiplier are implemented in 

Verilog HDL and synthesized using the Synopsys DC complier based on a CMOS 

TSMC 65 nm process. For a fair comparison, each multiplier is used to design an 8-bit 

multiplier. 

As can be seen in Table 2.1, there are significant improvements in all considered 

approximate multiplier designs. For example, the segment-based approximate 

multiplier improves delay, power and area by up to 30%, 42% and 42.3%, respectively, 

compared to an exact booth multiplier. Simulation has shown that the new approximate 

compressor-based multiplier has the shortest critical path delay, the smallest area and 
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significantly lower power consumption compared to ROBA and the segment-based 

multiplier. 

Table 2.2 A comparison of delay, power and area of the approximate multiplier designs 

Design 

n=8 

Delay (ns) Power (𝝁W) Area (𝝁𝒎𝟐) 

Exact  2.4 73.3 942.5 

ROBA 2.1 32.8 712.8 

DSM-based (m=6) 1.7 42.4 543.6 

Approximate 

Compressor-based  

 

1.5 

 

25.1 

 

486.7 

 

2.5  Conclusion 

Among the considered approximate multipliers, the approximate compressor-based 

multiplier has small values for delay, area and power dissipation. However, it has large 

MED and MRED. The ROBA has a poor accuracy for some input operands (i.e., [17, 

29], [37, 57], [72, 112] and [-113, -78]) and moderate hardware consumption. The 

segment-based shows a low accuracy for small input operands (i.e., [-33, 0]), but a 

relatively low circuit overhead. Also, only the segment-based approximate multiplier 

allows for a trade-off between accuracy and performance by adjusting segment size m. 
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Chapter 3                      

Dual Segmentation Approximate 

Multiplier 

This chapter presented a new design for a dual segmentation approximate multiplier 

[12]. The proposed multiplier relies on using static segmentation initially followed by 

a dynamic segmentation. Using only the dynamic segment selector leads to reduced 

performance gains. Therefore, the proposed multiplier uses a mixture of the SSM and 

DSM approaches. The static segment selector truncates the n-bit input operands to n/2-

bit segments or even n/4-bit segments, which can efficiently reduce the hardware 

overhead of the LODs. The efficiencies of the proposed multipliers as 16-bit and 32-bit 

designs were evaluated and compared against an exact multiplier and previously 

proposed segment-based approximate multipliers. The proposed design achieves a 

better performance-accuracy trade-off compared to previously proposed segment-based 

approximate multipliers. 

 

3.1  Dual Segmentation Approximate 

Multiplier Implementation 

   In the proposed design, dual segmentation design, the static segment selector 

truncates the n-bit inputs to the k-bit segments as shown in Figure 3.1. Using this design, 

the dynamic segment selector of the DSM-based multiplier only needs to identify the 
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leading one bit from the k-bit segment instead of the n-bit operand. After selecting the 

m-bit segments that contain the leading one bit of each k-bit segment, the chosen 

segments are applied to an m×m multiplier. The result of this multiplication is shifted 

according to the positions of the leading one bit of each n-bit operand to generate the 

final output. The main benefit of the dual segmentation logic is that the size of the most 

power-consuming components, LODs, is from n-bit down to k-bit for dynamic segment 

selectors. 

k

X[n-1:0] Y[n-1:0]

k

n n

Dynamic 
Segment Selector

x

m m

2m

Shifter

2n

DSM-based 
Multiplier

Dynamic 
Segment Selector

Static 
Segment Selector

Static 
Segment Selector

 

Figure 3.1 Dual segmentation approximate multiplier architecture 

Figure 3.2 shows a general example of the m-bit static segment approximation. The 

n-bit number is split into three m-bit segments. The first m-bit segment starting from 
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the most significant bit are all zeros, then the second m-bit segment which contains the 

leading one bit is chosen.  

0 ... 0 0 1 x ... x x ... x

n

m-bit Segment

m-bit m-bitm-bit

Static 
Segment Selector

m

0 1 x ... x

Leading one bit

 

Figure 3.2 A general example of the m-bit static segment approximation 

As can be seen in Figure 3.3.a and Figure 3.4.a, the dynamic segment selector 

captures m-2 bits segment in a number starting from the leading one bit and sets the 

least significant bit of the segment to one when the leading one bit is not in the least 

significant m-bit. In the case where the leading one bit is within the least significant m-

bit of a number, then the most significant bit and the least significant bit of the m-bit 

segment are set as ‘1’, and the bits between them are approximated by zeros (see Figure 

3.3.b and Figure 3.4.b). Thus, the m-bit segment of the proposed selector and the 

dynamic segment selector always have the same most and least significant bits. Also, 

the dynamic segment selector and the proposed selector can produce the same m-bit 

segment when the leading one bit is not within the least m-bit of the k-bit segment. As 

expected, the proposed multiplier has similar accuracy as the DSM-based multiplier. 
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0 ... 0 1 x ... x ... x

Dynamic 
Segment Selector

n

m

m-bit Segment

Leading One Bit

m-1 bits

1 x ... 1
 

(a) 

 

0 ... x ... x

Dynamic 
Segment Selector

n

m

m-bit Segment

Leading One Bit

Least Significant m-bit

1 0 ... 1

0 1

0

x

 

(b) 

Figure 3.3 A general example of the m-bit dynamic segment approximation  

(a) The leading one bit is not within the least significant m-bit  

(b) The leading one bit is within the least significant m-bit 
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Leading One Bit
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1

x

0 ...x1 ... xx
m-1 bits

 

(a) 

 

0 ... 0 1 x x x ... x

Static 
Segment Selector

n

k

Dynamic 
Segment Selector

m

1 0 ... 0m-bit Segment

Leading One Bit

k-bit Segment

k-bit k-bit 

1

...

0 ... 0 1 x x...

Least Significant m-bit

 

(b) 

Figure 3.4 A general example of the m-bit dual segment approximation  

(a) The leading one bit is not within the least significant m-bit  

(b) The leading one bit is within the least significant m-bit 
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Figure 3.5 shows an example of a 16-bit dual approximate multiplication using k=8 

and m=4. As can be seen in the figure, the result of the proposed multiplication is the 

same as that of the DSM-based approximate multiplication. This is because the leading 

one bit of inputs is not within the least m-bit of the k-bit segment. Thus, the same m-bit 

segments are captured in the proposed and DSM-based multipliers.  

 2210

0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0

x

11291

shifter

m=4

8

m=4x

0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
proposed approximate output: 25952256

0 0 0

exact output: 24953110  

1 0 1 1 1 0 0 1

0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0

k=8 k=8

k=8 k=8

static 
segment selector

static 
segment selector

16 16

8 8

0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0

dynamic 
segment selector

dynamic 
segment selector

32

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DSM approximate output: 25952256

0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SSM approximate output: 16777216 

0 0 0

 
Figure 3.5 Example of 16-bit dual segmentation multiplier (k=8, m=4) 
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3.2  Simulation and Synthesis Results 

In this section, the proposed design is compared with an exact multiplier and three 

previously proposed segment-based approximate multipliers. All designs were 

implemented using Verilog HDL and synthesized using Synopsys DC complier in a 

65nm library at the typical process corner. All designs are unsigned multipliers. To 

evaluate the impact of changing the multiplier size, each multiplier is exploited to 

design 16-bit and 32-bit multipliers, and we fix k=8 and m=4. The accuracy is evaluated 

by using the MRE for 16-bit and 32-bit multiplier designs with ten million uniformly 

distributed random input pairs. 

The results show that the SSM-based multiplier has the lowest delay, energy, area, 

energy-delay product (EDP) and power-delay-area (PDA) product, but it has the worst 

MRE. The DSM-based multiplier provides the highest accuracy. The proposed 

multiplier outperforms the DSM-based multiplier in terms of the delay, area and energy 

consumption while having almost the same accuracy level as the DSM-based multiplier. 

The delay, energy, and EDP of the 16-bit proposed multiplier are approximately 

19%, 17% and 27% lower than those of the DSM-based multiplier. Also, the 16-bit 

proposed multiplier has 21% smaller area compared to the DSM-based multiplier. As 

can be seen in Table 3.1, the MRE value of the 16-bit proposed multiplier is about 11% 

lower than the 16-bit SSM. Compared to the DSM approach, the proposed design can 

reduce the energy by 37.90% for 32-bit multipliers. The 32-bit proposed multiplier 

improves the speed, area, and energy up to 58%, 92%, and 98% compared to the exact 

multiplier as can be seen in Table 3.2. Additionally, the MRE value of the 32-bit 
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proposed design is 18% lower than that of the 32-bit SSM-based multiplier. The 

TOSAM has the worst performance among all approximate multipliers. 

 

Table 3.1 Circuit’s parameter of unsigned 16-bit exact and approximate multipliers 

Design 

k=8 

m=4 

Delay 

(ns) 

Power 

(𝝁W) 

Area 

(𝝁m2) 

Energy 

(fJ) 

EDP 

(ns×fJ) 

PDA 

(fJ× 𝝁m2) 

MRE 

(%) 

Exact 2.0 256.7 2626 518.6 1047.5 1361776 - 

Proposed 1.3 34.6 676 48.1 66.9 32558 5.8 

DSM 1.6 36.6 854 57.8 91.3 49358 5.7 

SSM 0.9 15.9 395 14.3 12.9 5652 16.9 

TOSAM 

(2,4) 
1.6 37.9 854 60.7 97.1 51800 11.4 

 

 

Table 3.2 Circuit’s parameter of unsigned 32-bit exact and approximate multipliers 

Design 

k=8 

m=4 

Delay 

(ns) 

Power 

(𝝁W) 

Area 

(𝝁m2) 

Energy 

(fJ) 

EDP 

(ns×fJ) 

PDA 

(fJ× 𝝁m2) 

MRE 

(%) 

Exact 3.8 1343.1 10652 5036.8 18887.9 53651727 - 

Proposed 1.5 38.3 894 60.1 94.5 53813 6.8 

DSM 2.2 44.9 1519 96.9 209.4 147220 6.7 

SSM 1.0 17.9 629 17.6 17.2 11040 24.5 

TOSAM 

(2,4) 
2.3 45.7 1487 103.8 235.7 154394 12.3 
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Chapter 4                         

A Merged Approximate Multiplier with 

Two Precisions 

This chapter presents the design of a merged approximate multiplier with two 

precisions. Compared to the single-precise design, the proposed design has a longer 

delay. However, it can achieve better performance in terms of area and power. This 

design can be used in a system that has multiple approximate multipliers-based CNN 

accelerators with different precisions, or in a single CNN accelerator built with 

precision reconfigurable approximate multipliers. This hybrid approximate multiplier 

can achieve a better performance-accuracy trade-off compared to the single-precision 

multiplier. The results of this chapter have been published in [14]. 

 

4.1  Proposed Approximate Multiplier 

Implementation 

In this section, the design of a segment-based hybrid approximate multiplier is 

presented. The input operands are represented in sign and magnitude format, as 

illustrated in Figure 4.1. The most significant bit (MSB), Xn-1, is used as the sign bit 

and the remaining bits in the number are used to represent the magnitude of the binary 

number in the usual unsigned binary number format way.  
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Xn-1 Xn-2 ... X0

Sign Bit

Magnitude Bits

 

Figure 4.1 The sign and magnitude format of the input operands 

In the proposed design, a 2-to-1 MUX is used as a mode selector to switch between 

the low precision multiplier (m=4) and high precision multiplier (m=8) (see Figure 4.2).  

When Sel is 0, the low precision mode (m=4) is activated. When Sel is 1, the multiplier 

is in the high precision mode (m=8). Using this design either the high or the low 

precision approximate multiplier will be power on or off based on the controller signal 

‘CN’.  

2 : 1 MUX

X[n-2:0] Y[n-2:0]

Sel

OUT [2n-1:0]

2n-2

2n-2 2n-2

x

m=4

x

m=8
    __

VDD X CN 
    

VDD X CN

X[n-1] Y[n-1]

 

Figure 4.2 The schematic for mode selection 
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The larger core accurate multiplier is efficiently built from the smaller accurate 

multiplier. Figure 4.3 shows an example of an 8-bit accurate multiplier is built by four 

4-bit accurate multipliers, where 𝑿𝑯, 𝒀𝑯, 𝑿𝑳 and 𝒀𝑳 are the upper and lower 4-bit 

segments of the inputs. Each row with eight dots represents the 8-bit product of the two 

4-bit segments. Then the exact compressors are used in the partial product matrix to 

calculate the final result of the 8-bit accurate multiplier.  

X7 X6 X5 X4 X3 X2 X1 X0

x
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

XH XL

YH YL

XL × YL

XH × YL

XL × YH

XH × YH ......... ....... .. ... ... ........ ........................ ..........................

Exact Full Adder 
or Half Adder

 

Figure 4.3 Building an 8-bit multiplier from four 4-bit multipliers 

 

As can be seen from Figure 4.5, the 16-bit SSM-based hybrid approximate 

multiplier in mode (4 & 8) only has four 4-bit accurate multipliers and the three of them 

will be turned off when the low precision mode (m=4) is activated. The area is expected 

to be reduced. The two 2-to-1 MUXs are used to select the 4-bit segment for each 4-bit 

accurate multiplier. When Sel 1 = Sel 2 =0, the low precision mode (m=4) is activated 

and the MUXs select the 4-bit segment (A’ and B’) truncated from the low-precision 
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static segment selector. When Sel 1 = Sel 2 =1, the high precision mode (m=8) is 

activated and the two MUXs select the upper 4-bit of the inputs (𝑨𝑯 , 𝑩𝑯) while 

feeding them to one of the 4-bit accurate multipliers. The three other multipliers are 

used to calculate 𝑨𝑳  ×  𝑩𝑳 , 𝑨𝑯  ×  𝑩𝑳  and  𝑨𝑳  ×  𝑩𝑯 . Finally, using the method 

described in Figure 4.3 to accumulate the partial products to generate the final product 

of the 8-bit multiplier.  

Figure 4.6 shows the mode (6 & 8) of the 16-bit DSM-based hybrid approximate 

multiplier. The 8-bit accurate multiplier is built by one 2-bit multiplier, two 2×6 

multipliers and one 6-bit multiplier, as illustrated in Figure 4.4. The 2-bit multiplier and 

two 2×6 multipliers will be turned off when the low precision mode (m=6) is activated. 

Similarly, Figure 4.7 shows that the 16-bit DSM-based hybrid approximate multiplier 

in mode (4 & 6) is built by one 2-bit multiplier, two 2×4 multipliers and one 4-bit 

multiplier. 

X7 X6 X5 X4 X3 X2 X1 X0

x
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

XH XL

YH YL

XL × YL

XH × YL

XL × YH

XH × YH ............ ..... .. ......... ...................... ..........................

Exact Full Adder 
or Half Adder

........
 

Figure 4.4 Building an 8-bit multiplier from 2-bit, 2×6 and 6-bit multipliers 



38 
 

 

 

2 : 1 M
U

X

+

4 : 1 M
U

X

x

A
’

4 : 1 M
U

X

B’

2 : 1 M
U

X

A
H

A
L

B
H

B
L

2 : 1 M
U

X
2 : 1 M

U
X

x
A
’/A

H
B’/B

H

x
x

9 : 1 M
U

X

{z, {22'b0}}
{{4'b0}, z, {18'b0} }

{{8'b0}, z, {14'b0} }
{{7'b0}, z, {15'b0} }

{{11'b0}, z, {11'b0} }
{{15'b0}, z, {7'b0} }

{{18'b0}, z, {4'b0} }
{{14'b0}, z, {8'b0} }

{{22'b0}, z }

3 : 1 M
U

X

{u, {14'b0}}
{{7'b0}, u, {7'b0} }

{{14'b0}, u }

A
ddition Stage

A
L B

L

A
H B

L

A
H B

H

A
L B

H

K=4
K=8

A
[14:11]

A
[10:7]

A
[7:4]

A
[14:11]A

[10:7]A
[7:4]

A
[3:0]

B[14:11]
B[10:7]

B[7:4]
B[14:11]

B[10:7]B[7:4]
B[3:0]

4
4

4
4

4
4

8

8
8

8

30

4
4

4
4

4
4

4
4

8
8

8
8

8
8

A
[14:7]

A
[14:7]

A
[7:0]

B[14:7]
B[14:7]

B[7:0]

{C,S}

S0
S1

S2
S5

S4
S3

{1,x,x,1,x,x}
{1,x,x,0,1,x}
{0,1,x,1,x,x}

{0,1,x,0,1,x}
{1,x,x,0,0,1}
{0,0,1,1,x,x}

{1,x,x,0,0,0}
{0,0,0,1,x,x}
{0,1,x,0,0,1}
{0,0,1,0,1,x}

{0,1,x,0,0,0}
{0,0,0,0,1,x}

{0,0,1,0,0,0}
{0,0,0,0,0,1}

{0,0,1,0,0,1}
{0,0,0,0,0,0}

{1,0}
{0,1}

{0,0}

30

z[7:0]

u[15:0]

A
[15]

B[15]

Sign 
D

etector

16

4

4

4
4

4
4

4

4

Sel 1
Sel 2

O
U

T [30:0]

O
U

T [30:0]

 

Figure 4.5 The 16-bit SSM-based hybrid approximate multiplier for mode [4 and 8] 
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Figure 4.6 The 16-bit DSM-based hybrid approximate multiplier for mode [6 and 8] 
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Figure 4.7 The 16-bit DSM-based hybrid approximate multiplier for mode [4 and 6] 
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4.2  Simulation and Synthesis Results 

In this section, the proposed designs are compared with separated reconfigurable 

designs. The power consumption, critical path delay and design area of each design are 

shown in Table 4.1. All designs were implemented using Verilog HDL and synthesized 

using Synopsys DC complier in a 15nm library at the typical process corner.  

Table 4.1 Circuit’s parameter of 16-bit merged and separated reconfigurable designs 

Design 

(4 & 8) 

Segment 

Type 

Delay 

(ps) 

Power 

(𝝁W) 

Area 

(𝝁𝒎𝟐) 

Speed 

Increase 

vs. 

Exact 

Power 

Reduction 

vs. 

Exact 

Area 

Reduction 

vs. 

Exact 

Separated SSM 378.9 22.3 157.4 33.1% 82.0% 69.8% 

Merged SSM 416.1 23.4 145.8 26.5% 81.1% 72.1% 

Separated DSM 448.8 51.9 216.9 20.7% 58.1% 58.4% 

Merged DSM 486.1 53.1 161.8 14.1% 57.1% 68.9% 

The mode (4 & 8) of 16-bit SSM-based hybrid approximate multiplier achieves a 

26.5% speed increase, an 81.1% power reduction, and a 72.1% area reduction compared 

to the 16-bit exact multiplier. In addition, the mode (4 & 8) of 16-bit DSM-based hybrid 

approximate multiplier design achieves a 14.1% speed increase, a 57.1% power 

reduction, and a 68.9% area reduction compared to the 16-bit exact multiplier. The 

merged reconfigurable design has a smaller area compared to a single-precision design. 

Overall, the improved area efficiency comes at the cost of slightly longer delay and 



42 
 

 

 

larger power dissipation. However, the proposed design demonstrates good flexibility 

for trading power and delay for the smaller area.   
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Chapter 5                 

Conclusion and Future Work 

5.1  Conclusion 

1. A comprehensive comparison of the existing approximate multipliers has been 

performed on 8-bit designs. The segment-based multipliers are very competitive in 

terms of both power and area, while the other designs have at least one major 

shortcoming in accuracy, delay or power. The segment-based design allows for a 

trade-off between accuracy and performance by adjusting segment size m. 

2. The dual segmentation approximate multiplier achieves better performance in terms 

of the delay, area and energy compared to the DSM-based multiplier while having 

almost the same accuracy level as the DSM-based multiplier. 

3. The merged approximate multiplier with two precisions can achieve significant 

performance gains compared to the exact multipliers. Also, it can achieve a 

significantly better performance-accuracy trade-off compared to the single-

precision approximate multipliers.  
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5.2  Future Work 

1. The merged approximate multiplier can be further improved to have a lower delay 

and power consumption. Since the area savings are realized with longer critical path 

delay and higher power consumption compared to the separated designs. 

2. To evaluate the feasibility of the proposed multipliers in error-tolerant applications 

such as image processing applications. 
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