

DUAL SEGMENTED AND RECONFIGURABLE APPROXIMATE

MULTIPLIERS FOR ERROR-TOLERANT APPLICATIONS

by

Ling Li

Submitted in partial fulfillment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

June 2021

© Copyright by Ling Li, 2021

ii

Table of Contents

List of Tables .. iv

List of Figures ... v

Abstract ..vii

List of Abbreviations Used .. viii

Acknowledgments .. ix

Chapter 1 Introduction .. 1

1.1 Motivations ... 1

1.2 Contributions .. 3

1.3 Thesis Organization .. 4

Chapter 2 Research Background .. 5

2.1 Rounding Based Approximate Multiplier ... 5

2.2 Using Approximate Compressor in the Partial Product Matrix 7

2.3 Segment-based Approximate Multiplier ... 8

2.3.1 SSM-based Multiplier .. 11

2.3.2 DSM-based Multiplier.. 13

2.3.3 TOSAM ... 15

2.4 A Comparative Evaluation of Approximate Multiplier Designs 17

2.4.1 Error Characteristics ... 17

2.4.2 Circuit Characteristics .. 24

2.5 Conclusion ... 25

iii

Chapter 3 Dual Segmentation Approximate Multiplier 26

3.1 Dual Segmentation Approximate Multiplier Implementation 26

3.2 Simulation and Synthesis Results ... 32

Chapter 4 A Merged Approximate Multiplier with Two Precisions 34

4.1 Proposed Approximate Multiplier Implementation 34

4.2 Simulation and Synthesis Results ... 41

Chapter 5 Conclusion and Future Work ... 43

5.1 Conclusion .. 43

5.2 Future Work .. 44

Bibliography ... 45

Appendix Permission ... 48

iv

 List of Tables

Table 2.1 Circuit’s parameter of 8-bit static and dynamic segment selectors 11

Table 2.2 A comparison of delay, power and area of the approximate multiplier

designs .. 25

Table 3.1 Circuit’s parameter of unsigned 16-bit exact and approximate

multipliers ... 33

Table 3.2 Circuit’s parameter of unsigned 32-bit exact and approximate

multipliers ... 33

Table 4.1 Circuit’s parameter of 16-bit merged and separated reconfigurable

designs .. 41

v

 List of Figures

Figure 2.1 The schematic of the ROBA multiplier .. 6

Figure 2.2 Partial product matrix reduction of an 8-bit multiplier [6] 8

Figure 2.3 The schematic of segment-based approximate multiplier (𝑚 < 𝑛) 9

Figure 2.4 The n-bit dynamic segment selector ... 10

Figure 2.5 The n-bit static segment selector .. 11

Figure 2.6 A numeric example of the16-bit SSM-based multiplier (n = 16, m = 4)

 .. 13

Figure 2.7 A numeric example of the16-bit DSM-based multiplier (n = 16, m = 4)

 .. 14

Figure 2.8 A numeric example of the16-bit TOSAM (k = 3, m = 7) 16

Figure 2.9 A comparison of (a) MED, (b) MaxED and (c) MinED of the 8-bit

approximate multiplier designs with all possible input operands 19

Figure 2.10 A comparison of (a) MED, (b) MaxED and (c) MinED of the 8-bit

approximate multiplier designs with all possible input operands 21

Figure 2.11 A comparison of (a) MRED, (b) MaxRED and (c) MinRED of the 8-

bit approximate multiplier designs with all possible input operands 22

Figure 2.12 A comparison of (a) MRED, (b) MaxRED and (c) MinRED of the 8-

bit approximate multiplier designs with all possible input operands 24

Figure 3.1 Dual segmentation approximate multiplier architecture 27

Figure 3.2 A general example of the m-bit static segment approximation 28

Figure 3.3 A general example of the m-bit dynamic segment approximation 29

Figure 3.4 A general example of the m-bit dual segment approximation 30

vi

Figure 3.5 Example of 16-bit dual segmentation multiplier (k=8, m=4) 31

Figure 4.1 The sign and magnitude format of the input operands 35

Figure 4.2 The schematic for mode selection .. 35

Figure 4.3 Building an 8-bit multiplier from four 4-bit multipliers 36

Figure 4.4 Building an 8-bit multiplier from 2-bit, 2×6 and 6-bit multipliers 37

Figure 4.5 The 16-bit SSM-based hybrid approximate multiplier for mode [4 and

8] ... 38

Figure 4.6 The 16-bit DSM-based hybrid approximate multiplier for mode [6 and

8] ... 39

Figure 4.7 The 16-bit DSM-based hybrid approximate multiplier for mode [4 and

6] ... 40

vii

 Abstract

Approximate multiplier circuit designs have shown substantial advantages in

improving many operational features, such as power, area and delay, in many error-

resilient applications such as image processing and deep learning applications.

Existing approximate multiplier circuits in this thesis are first reviewed, evaluated,

and compared. The comparison results show that the segment-based multiplier has a

good trade-off between accuracy and performance by adjusting segment size. A dual

segmentation approximate multiplier is then proposed. Compared to the dynamic

segment method (DSM)-based approximate multiplier, the proposed design can reduce

the energy by 37.90% for 32-bit multipliers, and by 16.68% for 16-bit multipliers. The

DSM and proposed multipliers have almost identical accuracy. A merged approximate

multiplier with two configurable precisions is proposed for improving the

multiplication performance in fixed point convolutional neural networks (CNN)

accelerators. Compared with the single-precision approximate multiplier, the merged

approximate multiplier achieves significant performance enhancements with minimal

accuracy loss.

viii

 List of Abbreviations Used

CNN Convolutional Neural Networks

DSM Dynamic Segment Method

SSM Static Segment Method

TOSAM Truncation and Rounding-based Scalable Approximate Multiplier

ROBA Rounding-based Approximate Multiplier

LOD Leading One Detector

MUX Multiplier

ED Error Distance

MED Mean Error Distance

MRED Mean Relative Error Distance

MaxED Maximum Error Distance

MinED Minimum Error Distance

RED Relative Error Distance

ix

 Acknowledgments

I would like to give my deepest gratitude to my supervisor, Dr. Kamal El-Sankary, for

his continuous support and encouragement during my graduate study. This thesis would

not have been finished without his profound knowledge and insightful suggestions.

Furthermore, his motivation and attention to detail impressed me a lot. I would also like

to express my gratitude to my co-supervisor Issam Hammad for his valuable guidance

and insightful feedback which pushed me to sharpen my thinking and brought my work

to a higher level. I also enjoyed the Deep Learning course instructed by him. I would

like to thank Dr. Jason Gu and Dr. William J. Philips for being part of my supervisory

committee.

I am also grateful to our department secretaries Nicole Smith, Tamara Cantrill and

Ola Hamada for their help.

Finally, I would like to express my deepest gratitude to my entire family: my father

Chenwei Li, my mother Hui Zhang, my grandfather Defu Li and my grandmother

Tongfang Ding, for their unconditional love and support.

1

 Chapter 1 Introduction

1.1 Motivations

As the physical dimensions of CMOS circuits are scaled down to a few tens of

nanometers, it has been difficult to improve the circuit performances. Approximate

computing has been considered as a potential alternative for error-resilient applications

to reduce power, area, and delay, however at the cost of certain accuracy loss [1-11].

Multiplication is a fundamental high-energy operation in image processing and

deep learning applications [1-22]. Prior works have explored different techniques to

reduce the cost of multiplication using approximate multipliers. Examples of these

techniques include rounding the multiplicands to the nearest power of two [11], partial

product matrix simplification (e.g., using approximate compressors and sub-multipliers)

[6-7], and segment-based approximate designs (e.g., truncating the operands to

designated bit-width) [8-10]. Segment-based approximate multipliers allow for a trade-

off between accuracy and performance by adjusting segment size m. In [8], a static

segment method (SSM)-based multiplier was presented, which statically split the input

operand into i (m-bit) segments and performed the multiplication utilizing the segment

containing the most significant one. Hashemi et al. [9] extended the idea of leading one

segment to implement the dynamic segment method (DSM) in approximate multiplier

designs. In [10], a truncation and rounding-based scalable approximate multiplier

(TOSAM) was proposed where the multiplicands were truncated with two different

2

lengths and rounded to perform smaller core multiplications. The DSM-based

multiplier can provide notably high accuracy, although it has a larger area and higher

energy consumption than the SSM design. The SSM-based multiplier has lower

accuracy, but it is faster and consumes less energy compared to other segment-based

approximate multipliers [8]. This thesis is focused on the design and analysis of two

such segment-based multipliers, namely, DSM-based multiplier and SSM-based

multiplier.

3

1.2 Contributions

In this thesis, a dual segmentation approximate multiplier and a merged approximate

multiplier with two configurable precisions are presented.

1. A comparative evaluation of existing approximate multipliers is presented in this

thesis. All designs were developed in Verilog and circuit performances are obtained

using Synopsys DC Compiler based on a 65nm process.

2. This thesis contributes to the design of segment-based approximate multiplier by

proposing a novel truncation method. This dual approximate multiplier design uses

the SSM to select an initial multiplication segment. Following that, the DSM is

utilized to further reduce the initial segment size.

3. A merged approximate multiplier with two configurable precisions is first presented.

The idea of this design is to use a 2-to-1 MUX as a mode selector to switch between

low and high precisions. The smaller multiplier is used as a building block to build

the larger multiplier.

4

1.3 Thesis Organization

The Thesis is organized as follows:

1. Chapter 2 reviews the related works in approximate multiplier design. A

comparison of existing approximate multiplier designs is discussed.

2. Chapter 3 presents a dual segmentation approximate multiplier design and its

electrical performance.

3. Chapter 4 presents the hybrid use of a segment-based approximate multiplier with

two precisions.

4. Chapter 5 concludes the thesis and discusses the future work.

5

 Chapter 2 Research Background

This chapter presents a review on existing approximate multiplier designs.

Approximate multiplier designs mainly use three approximation approaches: i)

rounding the multiplicands to the nearest power of two, ii) using approximate

compressors to accumulate the partial products, and iii) segment-based approximate

multipliers.

2.1 Rounding Based Approximate Multiplier

In [11], an approximate multiplier based on a technique named rounding-based

approximate (ROBA) multiplier was proposed, which rounds the input operands to the

nearest power of two. This multiplier design is appliable to both signed and unsigned

multiplications and is constructed by modifying the conventional multiplication method

at the algorithm level.

The schematic of the ROBA multiplier is shown in Figure 2.1, where the inputs and

output are represented in two’s complement format. |𝑿𝒓| and |𝒀𝒓| are the rounded

numbers of the absolute values of the signed inputs. The multiplication of two absolute

inputs can be expressed as:

|𝑿| × |𝒀| = [(|𝑿| − |𝑿𝒓|) + |𝑿𝒓|] × [(|𝒀| − |𝒀𝒓|) + |𝒀𝒓|]

 ≅ |𝑿𝒓| × |𝒀| + |𝒀𝒓| × |𝑿| – |𝑿𝒓| × |𝒀𝒓| (2.1)

6

The ROBA multiplication consists of four steps: 1) the first step is to generate the

absolute values of the signed inputs and to determine the sign of the output 2) the second

step is to extract the nearest value for each input; 3) the third step is to use shift, add,

subtraction operations to calculate the multiplication result; 4) the final step is to

compute the final multiplication result by adding the proper sign to the unsigned result.

Sign Detector

Rounding

X Y

|X| |Y|

Adder

Shifter Shifter Shifter

|Xr| |Yr|

Subtractor

|X|×|Yr| |Xr|×|Y|

|Xr|×|Yr|

Sign Set

n n

2n

Figure 2.1 The schematic of the ROBA multiplier

7

2.2 Using Approximate Compressor in the

Partial Product Matrix

The approximate compressor-based multiplier uses the algorithm to allocate

approximate compressors, exact full adder and half adder in each column of the partial

product matrix to save power while providing small error [6-7]. A novel approximate

4/2 compressor design is presented in [6] and then this compressor is used to build 8-

bit and 16-bit approximate multipliers. In [7], a new family of the approximate

compressor and an algorithm for the allocation of approximate compressors and exact

adders in each column of the partial products matrix are used to build approximate

multipliers. As an example, the reduction of the partial product matrix of an 8-bit

multiplier is shown in Figure 2.2. There are two reduction steps. In the first reduction

step, the proposed approximate compressors are only utilized in the less significant part

of the partial product matrix to minimize the overall approximation error. The higher-

order approximate compressor, 8/4 and 7/4, are composed of smaller approximate sub-

compressor. For example, the approximate 8/4 compressor is composed of two

approximate 4/2 compressors. Also, the approximate 7/4 compressor is composed of an

approximate 4/2 compressor and an approximate 3/2 compressor. The height of the

partial product matrix in the first reduction step is reduced from 8 to 4, and then the

height is reduced to 2 in the second reduction step. The blue dot represents a carry from

the previous adder.

8

X7 X6 X5 X4 X3 X2 X1 X0

x

........Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

..
..............

....
....... ...

.
...

.
....

... ...

.

..

Exact Full Adder
or Half Adder

Approximate
Compressor

h = 8

h = 4

h = 2

Figure 2.2 Partial product matrix reduction of an 8-bit multiplier [6]

2.3 Segment-based Approximate Multiplier

Figure 2.3 shows a simplified schematic of the segment-based approximate multiplier,

where the segment selectors truncate the n-bit operands to the m-bit segments. The

segment size m is smaller than the input operand size n. For example, the n-bit

multiplication can be approximated using an n/2-bit multiplier or even an n/4-bit

multiplier. Because the arithmetic operations are performed on the truncated values, the

calculation core of the segment-based approximate multiplier is small and consumes

less energy compared to that of the exact multiplier. In addition, the precision of the

segmented method is controlled by adjusting the segment size m and is not significantly

affected by the width of the input operands.

9

m

Segment
Selector

X[n-1:0] Y[n-1:0]

m

n n

x

2m

Shifter

2n

Segment
Selector

Figure 2.3 The schematic of segment-based approximate multiplier (𝑚 < 𝑛)

The segment selector can be classified into two categories: dynamic [9-10] and

static [8]. In the dynamic segment selector, the n-bit leading one detector (LOD) is

implemented to locate the most significant one in an n-bit operand. Then an encoder

and a multiplexer (MUX) capture the following m-1 bits and set the least significant bit

of the segment to one, as shown in Figure 2.4. Compared to the static segment selector,

the dynamic segment selector requires utilizing extra complex circuitry. These extra

components lead to significant delay, energy and area overheads that may considerably

decrease the approximation benefits [8]. The LOD is the module with the highest power

consumption and the largest area in the dynamic segment selector [8]. However, the

dynamic segment selector delivers higher accuracy designs than the static segment

selector. The implementation for the static segment selector is presented in Figure 2.5

10

where the n-bit multiplicand is split into i (m-bit) segments. Then using OR gates and

a MUX, the segment which contains the leading one bit is detected. The static segment

selector of the SSM-based approximate multiplier is much faster, smaller and consumes

less energy compared to the dynamic segment selector as illustrated in Table 2.1. The

8-bit static and dynamic segment selectors are implemented in Verilog and their delay,

area and power reports are obtained from Synopsys DC complier based on 15-nm

libraries. As can be seen from Table 2.1, the 8-bit static segment selector consumes

almost 89% less power than the dynamic segment selector. The delay and area of the

8-bit static segment selector are about 67% and 77% than those of the 8-bit dynamic

segment selector.

X[n-1]

nY[n-1]

m

Encoder

MUX

0

1

X[n-2]

0
1

X[1]

0
1

X[0]

LOD

Y[n-2] Y[1] Y[0]

n

...

X[n-1:0]

Figure 2.4 The n-bit dynamic segment selector

11

MUX

X[n-1:n-m]

X[n-m-1:n-2m]

X[m-1:0]

..
.

m

m

...

m

m

m

m

m

Figure 2.5 The n-bit static segment selector

Table 2.1 Circuit’s parameter of 8-bit static and dynamic segment selectors

8-bit Segment Selector Delay (ps) Power (nW) Area (𝝁𝒎𝟐)

Static 30.84 267.68 3.88

Dynamic 92.83 2543.08 17.15

2.3.1 SSM-based Multiplier

The pseudo-code of Algorithm 1 details the SSM applied to select a 4-bit segment from

a 16-bit operand. First, the 16-bit operand is statically divided into four 4-bit segments.

If the first segment (X15X14X13X12) starting from the most significant bit contains the

leading-one-bit, the 16-bit operand is then truncated to the first segment. If there is no

leading-one-bit in the first segment, the algorithm checks whether the leading-one-bit

is in the following three 4-bit segments. If the upper i-1 segments are all zeros, the

12

lower 4-bit segment is selected for accurate multiplication. Figure 2.6 illustrates an

example using the SSM to approximate a 16-bit multiplicand with i=4 and m=4. The

two 4-bit segments containing the leading one bit of each input operand are forwarded

to the inputs of a 4-bit accurate multiplier. The result of this multiplication is shifted

according to the starting bit positions of the 4-bit segments to generate the final

approximate result.

Algorithm 1: 4-bit Static Segment Selection

INPUT: (i) n-bit operand, given by XnXn-1…X0; (ii) i possible m-bit segments

OUPUT: the selected m-bit segment, given by S

BEGIN

1. for n = 16; m = 4; i = 4

2. if X[15] || X[14] || X[13] || X[12] = 1

3. S = X[15]X[14]X[13]X[12];

4. else if X[11] || X[10] || X[9] || X[8] = 1

5. S = X[11]X[10]X[9]X[8];

6. else if X[7] || X[6] || X[5] || X[4] = 1

7. S = X[7]X[6]X[5]X[4];

8. else

9. S = X[3]X[2]X[1]X[0];

10. end if;

11. end for;

END

13

 2210

0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0

x

11291

shifter

m=4

8

m=4x

0 0 0 1 0 0 0 0

m=4 m=4

m=4 m=4

4 4

32

0 0 0 0 0 0 0 1 0
approximate output: 16777216

0 0 0

m=4 m=4

m=4 m=4

0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0
exact output: 24953110

Figure 2.6 A numeric example of the16-bit SSM-based multiplier (n = 16, m = 4)

2.3.2 DSM-based Multiplier

The pseudo-code of Algorithm 2 details the DSM applied to select a 4-bit segment from

a 16-bit operand. The DSM operates by detecting the leading one in the 16-bit number

then extracting the following 4 bits and setting the least significant bit of the truncated

values to one. Figure 2.7 shows a numerical example of a 16-bit DSM-based multiplier

with the same inputs as implemented in the SSM-based multiplier. The truncated values

are multiplied and shifted to the left to generate the final output. The DSM-based

multiplier provides higher precision compared to the SSM-based multiplier as shown

14

in Figure 2.7.

Algorithm 2: 4-bit Dynamic Segment Selection

INPUT: (i) n-bit operand, given by XnXn-1…X0

OUPUT: the selected 4-bit segment, given by S

BEGIN

1. for i = 1; i < n; i++

2. if ((X [i] = 1) && (i >= 3))

3. S = X [i]X[i-1]X[i-2]1;

4. else if ((X [i] = 1) && (i < 3))

5. S = X[3]X[2]X[1]0;

6. end if;

7. end for;

END

11291

 2210

shifter

0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0

4

8

4x

0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
approximate output: 25952256

0 0 0

1 0 1 1 1 0 0 1

x

m=4

m=4

0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0
exact output: 24953110

Figure 2.7 A numeric example of the16-bit DSM-based multiplier (n = 16, m = 4)

15

2.3.3 TOSAM

TOSAM [11] is the most recent segment-based approximate multiplier and it will be

compared with the proposed dual approximate multiplier in Chapter 4. The input

operands of TOSAM were truncated to two different sizes based on their leading-one-

bit positions and rounded to perform smaller core multiplication and addition

operations. TOSAM is appliable to both signed and unsigned multiplications. The

following expression is used to perform the unsigned multiplication:

𝑿 × 𝒀 ≅ 𝟐𝒌𝑨+𝒌𝑩 × (𝑿𝒓 × 𝒀𝒓 + 𝟏 + 𝑿𝒎=𝟕 + 𝒀𝒎=𝟕) (2.2)

where 𝒌𝑨 and 𝒌𝑩 denote the leading-one-bit position of each operand. 𝑿𝒓 and 𝒀𝒓

are 𝒌+1 bits segments and are generated by dynamic segment selectors. 𝑿𝒎=𝟕 and

𝒀𝒎=𝟕 are the 7-bit truncated values of 𝑿 and 𝒀.

Figure 2.8 shows an example of an unsigned 16-bit TOSAM using k=3 and m=7.

The 16-bit TOSAM is estimated using two 16-bit dynamic segment selectors, a 4-bit

accurate multiplier, adders and a shifter. As expected, the TOSAM is more complicated

and costly compared to the SSM-based multiplier.

16

11291

 2210

shifter

0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0

4

8

4x

0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
approximate output: 22609920

0 0 0

0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0
exact output: 24953110

0 1 0 1 0 0 0 1

x
k=3

k=3

m=7

m=7

 1

0 1 0 0 0 0 0

0 0 0 1 0 1 0+

0 1 0 1 1 0 0 1 10

Integer Part Fraction Part

Figure 2.8 A numeric example of the16-bit TOSAM (k = 3, m = 7)

17

2.4 A Comparative Evaluation of Approximate

Multiplier Designs

2.4.1 Error Characteristics

For establishing the error characteristics, approximate multipliers with the same n value

generate the same output for the same inputs. The error distance (ED), mean error

distance (MED), maximum error distance (MaxED), minimum error distance (MinED),

mean relative error distance (MRED), maximum relative error distance (MaxRED) and

minimum relative error distance (MinRED) are used as metrics to assess the error

characteristics of approximate multipliers. For an n-bit approximate multiplier, the ED

is defined as the absolute value of the difference between the accurate product (𝑷) and

the approximate product (𝑷𝒂𝒑𝒑), i.e.,

 ED = |𝑷𝒂𝒑𝒑 − 𝑷|, (2.2)

The MED is the average of EDs for a set of outputs obtained by applying a set of inputs.

The MaxED and MinED are defined as the maximum and minimum of the ED values

among all possible inputs and outputs. The relative error distance (RED) is the ratio of

ED over the accurate output, i.e.,

RED =
|𝑷𝒂𝒑𝒑−𝑷|

𝑷
 =

𝑬𝑫

𝑷
, (2.3)

Similarly, the MRED, MaxRED and MinRED can be obtained.

 The 8-bit approximate multipliers are simulated by MATLAB with all possible

combinations of operands and the MED, MaxED, MinED are obtained, as shown in

18

Figure 2.3. According to Figures 2.3.a and 2.3.b, the segment-based approximate

multiplier has a relatively low MED and MaxED for large input operands. The segment-

based multiplier also shows a stable MED and MaxED distribution with all possible

approximate products. The approximate compressor-based multiplier has the largest

MED and MaxED, as shown in Figure 2.3. and Figure 2.4., However, ROBA and the

approximate compressor-based multiplier have a low MED and MaxED for small

operands. As shown in Figure 2.5.a and Figure 2.6.a, ROBA has a relatively low MRED

and MaxRED (up to 6% and 12%).

In summary, ROBA has the highest accuracy for small operands multiplication and

segment-based approximate multiplier shows low MRED for large operands

multiplication. The approximate compressor-based multiplier is not very accurate in

terms of these metrics.

(a) MED

19

(b) MaxED

(c) MinED

Figure 2.9 A comparison of (a) MED, (b) MaxED and (c) MinED of the 8-bit

approximate multiplier designs with all possible input operands

20

(a) MED

(b)MaxED

21

(c)MinED

Figure 2.10 A comparison of (a) MED, (b) MaxED and (c) MinED of the 8-bit

approximate multiplier designs with all possible input operands

(a) MRED

22

(b) MaxRED

(c) MinRED

Figure 2.11 A comparison of (a) MRED, (b) MaxRED and (c) MinRED of the 8-bit

approximate multiplier designs with all possible input operands

23

(a) MRED

(b) MaxRED

24

(c) MinRED

Figure 2.12 A comparison of (a) MRED, (b) MaxRED and (c) MinRED of the 8-bit

approximate multiplier designs with all possible input operands

2.4.2 Circuit Characteristics

The considered 8-bit approximate multipliers and exact multiplier are implemented in

Verilog HDL and synthesized using the Synopsys DC complier based on a CMOS

TSMC 65 nm process. For a fair comparison, each multiplier is used to design an 8-bit

multiplier.

As can be seen in Table 2.1, there are significant improvements in all considered

approximate multiplier designs. For example, the segment-based approximate

multiplier improves delay, power and area by up to 30%, 42% and 42.3%, respectively,

compared to an exact booth multiplier. Simulation has shown that the new approximate

compressor-based multiplier has the shortest critical path delay, the smallest area and

25

significantly lower power consumption compared to ROBA and the segment-based

multiplier.

Table 2.2 A comparison of delay, power and area of the approximate multiplier designs

Design

n=8

Delay (ns) Power (𝝁W) Area (𝝁𝒎𝟐)

Exact 2.4 73.3 942.5

ROBA 2.1 32.8 712.8

DSM-based (m=6) 1.7 42.4 543.6

Approximate

Compressor-based

1.5

25.1

486.7

2.5 Conclusion

Among the considered approximate multipliers, the approximate compressor-based

multiplier has small values for delay, area and power dissipation. However, it has large

MED and MRED. The ROBA has a poor accuracy for some input operands (i.e., [17,

29], [37, 57], [72, 112] and [-113, -78]) and moderate hardware consumption. The

segment-based shows a low accuracy for small input operands (i.e., [-33, 0]), but a

relatively low circuit overhead. Also, only the segment-based approximate multiplier

allows for a trade-off between accuracy and performance by adjusting segment size m.

26

Chapter 3

Dual Segmentation Approximate

Multiplier

This chapter presented a new design for a dual segmentation approximate multiplier

[12]. The proposed multiplier relies on using static segmentation initially followed by

a dynamic segmentation. Using only the dynamic segment selector leads to reduced

performance gains. Therefore, the proposed multiplier uses a mixture of the SSM and

DSM approaches. The static segment selector truncates the n-bit input operands to n/2-

bit segments or even n/4-bit segments, which can efficiently reduce the hardware

overhead of the LODs. The efficiencies of the proposed multipliers as 16-bit and 32-bit

designs were evaluated and compared against an exact multiplier and previously

proposed segment-based approximate multipliers. The proposed design achieves a

better performance-accuracy trade-off compared to previously proposed segment-based

approximate multipliers.

3.1 Dual Segmentation Approximate

Multiplier Implementation

 In the proposed design, dual segmentation design, the static segment selector

truncates the n-bit inputs to the k-bit segments as shown in Figure 3.1. Using this design,

the dynamic segment selector of the DSM-based multiplier only needs to identify the

27

leading one bit from the k-bit segment instead of the n-bit operand. After selecting the

m-bit segments that contain the leading one bit of each k-bit segment, the chosen

segments are applied to an m×m multiplier. The result of this multiplication is shifted

according to the positions of the leading one bit of each n-bit operand to generate the

final output. The main benefit of the dual segmentation logic is that the size of the most

power-consuming components, LODs, is from n-bit down to k-bit for dynamic segment

selectors.

k

X[n-1:0] Y[n-1:0]

k

n n

Dynamic
Segment Selector

x

m m

2m

Shifter

2n

DSM-based
Multiplier

Dynamic
Segment Selector

Static
Segment Selector

Static
Segment Selector

Figure 3.1 Dual segmentation approximate multiplier architecture

Figure 3.2 shows a general example of the m-bit static segment approximation. The

n-bit number is split into three m-bit segments. The first m-bit segment starting from

28

the most significant bit are all zeros, then the second m-bit segment which contains the

leading one bit is chosen.

0 ... 0 0 1 x ... x x ... x

n

m-bit Segment

m-bit m-bitm-bit

Static
Segment Selector

m

0 1 x ... x

Leading one bit

Figure 3.2 A general example of the m-bit static segment approximation

As can be seen in Figure 3.3.a and Figure 3.4.a, the dynamic segment selector

captures m-2 bits segment in a number starting from the leading one bit and sets the

least significant bit of the segment to one when the leading one bit is not in the least

significant m-bit. In the case where the leading one bit is within the least significant m-

bit of a number, then the most significant bit and the least significant bit of the m-bit

segment are set as ‘1’, and the bits between them are approximated by zeros (see Figure

3.3.b and Figure 3.4.b). Thus, the m-bit segment of the proposed selector and the

dynamic segment selector always have the same most and least significant bits. Also,

the dynamic segment selector and the proposed selector can produce the same m-bit

segment when the leading one bit is not within the least m-bit of the k-bit segment. As

expected, the proposed multiplier has similar accuracy as the DSM-based multiplier.

29

0 ... 0 1 x ... x ... x

Dynamic
Segment Selector

n

m

m-bit Segment

Leading One Bit

m-1 bits

1 x ... 1

(a)

0 ... x ... x

Dynamic
Segment Selector

n

m

m-bit Segment

Leading One Bit

Least Significant m-bit

1 0 ... 1

0 1

0

x

(b)

Figure 3.3 A general example of the m-bit dynamic segment approximation

(a) The leading one bit is not within the least significant m-bit

(b) The leading one bit is within the least significant m-bit

30

0 ...x1 ... x x ... x

Static
Segment Selector

n

k

Dynamic
Segment Selector

m

1 x ...m-bit Segment

Leading One Bit

k-bit Segment

k-bit k-bit

1

x

0 ...x1 ... xx
m-1 bits

(a)

0 ... 0 1 x x x ... x

Static
Segment Selector

n

k

Dynamic
Segment Selector

m

1 0 ... 0m-bit Segment

Leading One Bit

k-bit Segment

k-bit k-bit

1

...

0 ... 0 1 x x...

Least Significant m-bit

(b)

Figure 3.4 A general example of the m-bit dual segment approximation

(a) The leading one bit is not within the least significant m-bit

(b) The leading one bit is within the least significant m-bit

31

Figure 3.5 shows an example of a 16-bit dual approximate multiplication using k=8

and m=4. As can be seen in the figure, the result of the proposed multiplication is the

same as that of the DSM-based approximate multiplication. This is because the leading

one bit of inputs is not within the least m-bit of the k-bit segment. Thus, the same m-bit

segments are captured in the proposed and DSM-based multipliers.

 2210

0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0

x

11291

shifter

m=4

8

m=4x

0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
proposed approximate output: 25952256

0 0 0

exact output: 24953110

1 0 1 1 1 0 0 1

0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0

k=8 k=8

k=8 k=8

static
segment selector

static
segment selector

16 16

8 8

0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0

dynamic
segment selector

dynamic
segment selector

32

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DSM approximate output: 25952256

0 0 0

0 0 0 0 0 0 0 1 0
SSM approximate output: 16777216

0 0 0

Figure 3.5 Example of 16-bit dual segmentation multiplier (k=8, m=4)

32

3.2 Simulation and Synthesis Results

In this section, the proposed design is compared with an exact multiplier and three

previously proposed segment-based approximate multipliers. All designs were

implemented using Verilog HDL and synthesized using Synopsys DC complier in a

65nm library at the typical process corner. All designs are unsigned multipliers. To

evaluate the impact of changing the multiplier size, each multiplier is exploited to

design 16-bit and 32-bit multipliers, and we fix k=8 and m=4. The accuracy is evaluated

by using the MRE for 16-bit and 32-bit multiplier designs with ten million uniformly

distributed random input pairs.

The results show that the SSM-based multiplier has the lowest delay, energy, area,

energy-delay product (EDP) and power-delay-area (PDA) product, but it has the worst

MRE. The DSM-based multiplier provides the highest accuracy. The proposed

multiplier outperforms the DSM-based multiplier in terms of the delay, area and energy

consumption while having almost the same accuracy level as the DSM-based multiplier.

The delay, energy, and EDP of the 16-bit proposed multiplier are approximately

19%, 17% and 27% lower than those of the DSM-based multiplier. Also, the 16-bit

proposed multiplier has 21% smaller area compared to the DSM-based multiplier. As

can be seen in Table 3.1, the MRE value of the 16-bit proposed multiplier is about 11%

lower than the 16-bit SSM. Compared to the DSM approach, the proposed design can

reduce the energy by 37.90% for 32-bit multipliers. The 32-bit proposed multiplier

improves the speed, area, and energy up to 58%, 92%, and 98% compared to the exact

multiplier as can be seen in Table 3.2. Additionally, the MRE value of the 32-bit

33

proposed design is 18% lower than that of the 32-bit SSM-based multiplier. The

TOSAM has the worst performance among all approximate multipliers.

Table 3.1 Circuit’s parameter of unsigned 16-bit exact and approximate multipliers

Design

k=8

m=4

Delay

(ns)

Power

(𝝁W)

Area

(𝝁m2)

Energy

(fJ)

EDP

(ns×fJ)

PDA

(fJ× 𝝁m2)

MRE

(%)

Exact 2.0 256.7 2626 518.6 1047.5 1361776 -

Proposed 1.3 34.6 676 48.1 66.9 32558 5.8

DSM 1.6 36.6 854 57.8 91.3 49358 5.7

SSM 0.9 15.9 395 14.3 12.9 5652 16.9

TOSAM

(2,4)
1.6 37.9 854 60.7 97.1 51800 11.4

Table 3.2 Circuit’s parameter of unsigned 32-bit exact and approximate multipliers

Design

k=8

m=4

Delay

(ns)

Power

(𝝁W)

Area

(𝝁m2)

Energy

(fJ)

EDP

(ns×fJ)

PDA

(fJ× 𝝁m2)

MRE

(%)

Exact 3.8 1343.1 10652 5036.8 18887.9 53651727 -

Proposed 1.5 38.3 894 60.1 94.5 53813 6.8

DSM 2.2 44.9 1519 96.9 209.4 147220 6.7

SSM 1.0 17.9 629 17.6 17.2 11040 24.5

TOSAM

(2,4)
2.3 45.7 1487 103.8 235.7 154394 12.3

34

Chapter 4

A Merged Approximate Multiplier with

Two Precisions

This chapter presents the design of a merged approximate multiplier with two

precisions. Compared to the single-precise design, the proposed design has a longer

delay. However, it can achieve better performance in terms of area and power. This

design can be used in a system that has multiple approximate multipliers-based CNN

accelerators with different precisions, or in a single CNN accelerator built with

precision reconfigurable approximate multipliers. This hybrid approximate multiplier

can achieve a better performance-accuracy trade-off compared to the single-precision

multiplier. The results of this chapter have been published in [14].

4.1 Proposed Approximate Multiplier

Implementation

In this section, the design of a segment-based hybrid approximate multiplier is

presented. The input operands are represented in sign and magnitude format, as

illustrated in Figure 4.1. The most significant bit (MSB), Xn-1, is used as the sign bit

and the remaining bits in the number are used to represent the magnitude of the binary

number in the usual unsigned binary number format way.

35

Xn-1 Xn-2 ... X0

Sign Bit

Magnitude Bits

Figure 4.1 The sign and magnitude format of the input operands

In the proposed design, a 2-to-1 MUX is used as a mode selector to switch between

the low precision multiplier (m=4) and high precision multiplier (m=8) (see Figure 4.2).

When Sel is 0, the low precision mode (m=4) is activated. When Sel is 1, the multiplier

is in the high precision mode (m=8). Using this design either the high or the low

precision approximate multiplier will be power on or off based on the controller signal

‘CN’.

2 : 1 MUX

X[n-2:0] Y[n-2:0]

Sel

OUT [2n-1:0]

2n-2

2n-2 2n-2

x

m=4

x

m=8
 __

VDD X CN

VDD X CN

X[n-1] Y[n-1]

Figure 4.2 The schematic for mode selection

36

The larger core accurate multiplier is efficiently built from the smaller accurate

multiplier. Figure 4.3 shows an example of an 8-bit accurate multiplier is built by four

4-bit accurate multipliers, where 𝑿𝑯, 𝒀𝑯, 𝑿𝑳 and 𝒀𝑳 are the upper and lower 4-bit

segments of the inputs. Each row with eight dots represents the 8-bit product of the two

4-bit segments. Then the exact compressors are used in the partial product matrix to

calculate the final result of the 8-bit accurate multiplier.

X7 X6 X5 X4 X3 X2 X1 X0

x
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

XH XL

YH YL

XL × YL

XH × YL

XL × YH

XH × YH

Exact Full Adder
or Half Adder

Figure 4.3 Building an 8-bit multiplier from four 4-bit multipliers

As can be seen from Figure 4.5, the 16-bit SSM-based hybrid approximate

multiplier in mode (4 & 8) only has four 4-bit accurate multipliers and the three of them

will be turned off when the low precision mode (m=4) is activated. The area is expected

to be reduced. The two 2-to-1 MUXs are used to select the 4-bit segment for each 4-bit

accurate multiplier. When Sel 1 = Sel 2 =0, the low precision mode (m=4) is activated

and the MUXs select the 4-bit segment (A’ and B’) truncated from the low-precision

37

static segment selector. When Sel 1 = Sel 2 =1, the high precision mode (m=8) is

activated and the two MUXs select the upper 4-bit of the inputs (𝑨𝑯 , 𝑩𝑯) while

feeding them to one of the 4-bit accurate multipliers. The three other multipliers are

used to calculate 𝑨𝑳 × 𝑩𝑳 , 𝑨𝑯 × 𝑩𝑳 and 𝑨𝑳 × 𝑩𝑯 . Finally, using the method

described in Figure 4.3 to accumulate the partial products to generate the final product

of the 8-bit multiplier.

Figure 4.6 shows the mode (6 & 8) of the 16-bit DSM-based hybrid approximate

multiplier. The 8-bit accurate multiplier is built by one 2-bit multiplier, two 2×6

multipliers and one 6-bit multiplier, as illustrated in Figure 4.4. The 2-bit multiplier and

two 2×6 multipliers will be turned off when the low precision mode (m=6) is activated.

Similarly, Figure 4.7 shows that the 16-bit DSM-based hybrid approximate multiplier

in mode (4 & 6) is built by one 2-bit multiplier, two 2×4 multipliers and one 4-bit

multiplier.

X7 X6 X5 X4 X3 X2 X1 X0

x
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

XH XL

YH YL

XL × YL

XH × YL

XL × YH

XH × YH

Exact Full Adder
or Half Adder

........

Figure 4.4 Building an 8-bit multiplier from 2-bit, 2×6 and 6-bit multipliers

38

2 : 1 M
U

X

+

4 : 1 M
U

X

x

A
’

4 : 1 M
U

X

B’

2 : 1 M
U

X

A
H

A
L

B
H

B
L

2 : 1 M
U

X
2 : 1 M

U
X

x
A
’/A

H
B’/B

H

x
x

9 : 1 M
U

X

{z, {22'b0}}
{{4'b0}, z, {18'b0} }

{{8'b0}, z, {14'b0} }
{{7'b0}, z, {15'b0} }

{{11'b0}, z, {11'b0} }
{{15'b0}, z, {7'b0} }

{{18'b0}, z, {4'b0} }
{{14'b0}, z, {8'b0} }

{{22'b0}, z }

3 : 1 M
U

X

{u, {14'b0}}
{{7'b0}, u, {7'b0} }

{{14'b0}, u }

A
ddition Stage

A
L B

L

A
H B

L

A
H B

H

A
L B

H

K=4
K=8

A
[14:11]

A
[10:7]

A
[7:4]

A
[14:11]A

[10:7]A
[7:4]

A
[3:0]

B[14:11]
B[10:7]

B[7:4]
B[14:11]

B[10:7]B[7:4]
B[3:0]

4
4

4
4

4
4

8

8
8

8

30

4
4

4
4

4
4

4
4

8
8

8
8

8
8

A
[14:7]

A
[14:7]

A
[7:0]

B[14:7]
B[14:7]

B[7:0]

{C,S}

S0
S1

S2
S5

S4
S3

{1,x,x,1,x,x}
{1,x,x,0,1,x}
{0,1,x,1,x,x}

{0,1,x,0,1,x}
{1,x,x,0,0,1}
{0,0,1,1,x,x}

{1,x,x,0,0,0}
{0,0,0,1,x,x}
{0,1,x,0,0,1}
{0,0,1,0,1,x}

{0,1,x,0,0,0}
{0,0,0,0,1,x}

{0,0,1,0,0,0}
{0,0,0,0,0,1}

{0,0,1,0,0,1}
{0,0,0,0,0,0}

{1,0}
{0,1}

{0,0}

30

z[7:0]

u[15:0]

A
[15]

B[15]

Sign
D

etector

16

4

4

4
4

4
4

4

4

Sel 1
Sel 2

O
U

T [30:0]

O
U

T [30:0]

Figure 4.5 The 16-bit SSM-based hybrid approximate multiplier for mode [4 and 8]

39

LO
D

LO
D

E
n

co
d

e
r

E
n

co
d

e
r

MUX
(k=6)

MUX
(k=6)

1
5

1
5

1
5

1
5

+

B
a

rre
l S

h
ifte

r
(k

=
6

)

x

lo
g

n
lo

g
n

2
:1

 M
U

X

MUX
(k=8)

MUX
(k=8)

2
:1

 M
U

X

6
6

8

6
2

A
H

A
L

8

B
H

B
L

x
x

x

A
[1

4
:0

]
B

[1
4

:0
]

A
’

B
’

A
’/A

H 6
6

B
’/B

H

1
2

3
0

A
d

d
itio

n
 S

ta
g

e

A
L B

L

A
H

 B
L

A
H

 B
H

A
L B

H

8
8

4

1
6

B
a

rre
l S

h
ifte

r
(k

=
8

)3
0

S
e

l 1
S

e
l 2

A
[1

5
]

B
[1

5
]

O
U

T
 [3

0
:0

]

O
U

T
 [3

0
:0

]

6
2

S
ig

n

D
e

te
cto

r

Figure 4.6 The 16-bit DSM-based hybrid approximate multiplier for mode [6 and 8]

40

L
O

D
L
O

D

E
n

c
o

d
e

r
E

n
c
o

d
e

r

MUX
(k=4)

MUX
(k=4)

1
5

1
5

1
5

1
5

+

B
a

rre
l S

h
ifte

r
(k

=
4

)

x

lo
g

n
lo

g
n

2
:1

 M
U

X

MUX
(k=6)

MUX
(k=6)

2
:1

 M
U

X

4
4

6

4
2

A
H

A
L

4
2

B
H

B
L

x
x

x

A
[1

4
:0

]
B

[1
4

:0
]

A
’

B
’

A
’/A

H 4
4

B
’/B

H

8

3
0

A
d

d
itio

n
 S

ta
g

e

A
L B

L

A
H

 B
L

A
H

 B
H

A
L B

H

6
6

4

1
2

B
a

rre
l S

h
ifte

r
(k

=
6

)3
0

S
e

l 1
S

e
l 2

A
[1

5
]

B
[1

5
]

O
U

T
 [3

0
:0

]

O
U

T
 [3

0
:0

]

6

Figure 4.7 The 16-bit DSM-based hybrid approximate multiplier for mode [4 and 6]

41

4.2 Simulation and Synthesis Results

In this section, the proposed designs are compared with separated reconfigurable

designs. The power consumption, critical path delay and design area of each design are

shown in Table 4.1. All designs were implemented using Verilog HDL and synthesized

using Synopsys DC complier in a 15nm library at the typical process corner.

Table 4.1 Circuit’s parameter of 16-bit merged and separated reconfigurable designs

Design

(4 & 8)

Segment

Type

Delay

(ps)

Power

(𝝁W)

Area

(𝝁𝒎𝟐)

Speed

Increase

vs.

Exact

Power

Reduction

vs.

Exact

Area

Reduction

vs.

Exact

Separated SSM 378.9 22.3 157.4 33.1% 82.0% 69.8%

Merged SSM 416.1 23.4 145.8 26.5% 81.1% 72.1%

Separated DSM 448.8 51.9 216.9 20.7% 58.1% 58.4%

Merged DSM 486.1 53.1 161.8 14.1% 57.1% 68.9%

The mode (4 & 8) of 16-bit SSM-based hybrid approximate multiplier achieves a

26.5% speed increase, an 81.1% power reduction, and a 72.1% area reduction compared

to the 16-bit exact multiplier. In addition, the mode (4 & 8) of 16-bit DSM-based hybrid

approximate multiplier design achieves a 14.1% speed increase, a 57.1% power

reduction, and a 68.9% area reduction compared to the 16-bit exact multiplier. The

merged reconfigurable design has a smaller area compared to a single-precision design.

Overall, the improved area efficiency comes at the cost of slightly longer delay and

42

larger power dissipation. However, the proposed design demonstrates good flexibility

for trading power and delay for the smaller area.

43

Chapter 5

Conclusion and Future Work

5.1 Conclusion

1. A comprehensive comparison of the existing approximate multipliers has been

performed on 8-bit designs. The segment-based multipliers are very competitive in

terms of both power and area, while the other designs have at least one major

shortcoming in accuracy, delay or power. The segment-based design allows for a

trade-off between accuracy and performance by adjusting segment size m.

2. The dual segmentation approximate multiplier achieves better performance in terms

of the delay, area and energy compared to the DSM-based multiplier while having

almost the same accuracy level as the DSM-based multiplier.

3. The merged approximate multiplier with two precisions can achieve significant

performance gains compared to the exact multipliers. Also, it can achieve a

significantly better performance-accuracy trade-off compared to the single-

precision approximate multipliers.

44

5.2 Future Work

1. The merged approximate multiplier can be further improved to have a lower delay

and power consumption. Since the area savings are realized with longer critical path

delay and higher power consumption compared to the separated designs.

2. To evaluate the feasibility of the proposed multipliers in error-tolerant applications

such as image processing applications.

45

 Bibliography

[1] J. Han and M. Orshansky, "Approximate computing: An emerging paradigm for

energy-efficient design," 2013 18th IEEE European Test Symposium (ETS),

Avignon, France, 2013, pp. 1-6, doi: 10.1109/ETS.2013.6569370.

[2] Q. Xu, T. Mytkowicz and N. S. Kim, "Approximate Computing: A Survey," in

IEEE Design & Test, vol. 33, no. 1, pp. 8-22, Feb. 2016, doi:

10.1109/MDAT.2015.2505723.

[3] V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, "Analysis and

characterization of inherent application resilience for approximate computing,"

2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX,

USA, 2013, pp. 1-9, doi: 10.1145/2463209.2488873.

[4] S. Venkatachalam and S. Ko, "Design of Power and Area Efficient Approximate

Multipliers," in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 25, no. 5, pp. 1782-1786, May 2017, doi:

10.1109/TVLSI.2016.2643639.

[5] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris and K. Pekmestzi, "Design-

Efficient Approximate Multiplication Circuits Through Partial Product

Perforation," in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 24, no. 10, pp. 3105-3117, Oct. 2016, doi:

10.1109/TVLSI.2016.2535398.

[6] G. M. Strollo, E. Napoli, D. D. Caro, N. Petra and G. D. Meo, "Comparison and

Extension of Approximate 4-2 Compressors for Low-Power Approximate

Multipliers", Circuits and Systems I: Regular Papers IEEE Transactions on, vol.

67, no. 9, pp. 3021-3034, 2020.

[7] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra, “Approximate

multipliers based on new approximate compressors,” IEEE Trans. Circuits Syst.

I, Reg. Papers, vol. 65, no. 12, pp. 4169–4182, Dec. 2018.

[8] S. Narayanamoorthy, H. Moghaddam, Z. Liu, T. Park, and N. S. Kim, “Energy-

efficient approximate multiplication for digital signal processing and

classification applications,” IEEE Transactions on Very Large Scale Integration

Systems, vol. 23, no. 6, pp. 1180–1184, 2015.

46

[9] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range unbiased

multiplier for approximate applications,” in Proc. IEEE/ACM Int. Conf. Comput.-

Aided Design, Nov. 2015, pp. 418–425.

[10] S. Vahdat, M. Kamal, A. Afzali-Kusha and M. Pedram, "TOSAM: An Energy-

Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier," in

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no.

5, pp. 1161-1173, May 2019.

[11] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram, “RoBa

multiplier: A rounding-based approximate multiplier for high-speed yet energy-

efficient digital signal processing,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 25, no. 2, pp. 393–401, Feb. 2017.

[12] L.Li, I.Hammad, and K. El-Sankary, “Dual segmentation approximate multiplier,”

in Electronics Letters, doi: 10.1049/ell2.12243, 2021.

[13] M. S. Kim, A. A. Del Barrio Garcia, H. Kim and N. Bagherzadeh, “The Effects

of Approximate Multiplication on Convolutional Neural Networks,” in IEEE

Transactions on Emerging Topics in Computing, doi:

10.1109/TETC.2021.3050989.

[14] I. Hammad, L. Li, K. El-Sankary and W. M. Snelgrove, “CNN Inference Using a

Preprocessing Precision Controller and Approximate Multipliers With Various

Precisions,” in IEEE Access, vol. 9, pp. 7220-7232, 2021, doi:

10.1109/ACCESS.2021.3049299.

[15] I. Hammad and K. El-Sankary, "Impact of Approximate Multipliers on VGG

Deep Learning Network," in IEEE Access, vol. 6, pp. 60438-60444, 2018, doi:

10.1109/ACCESS.2018.2875376.

[16] I. Hammad, K. El-Sankary and J. Gu, "Deep Learning Training with Simulated

Approximate Multipliers," 2019 IEEE International Conference on Robotics and

Biomimetics (ROBIO), Dali, China, 2019, pp. 47-51, doi:

10.1109/ROBIO49542.2019.8961780.

[17] Z. Liu, A. Yazdanbakhsh, T. Park, H. Esmaeilzadeh and N. S. Kim, "SiMul: An

Algorithm-Driven Approximate Multiplier Design for Machine Learning," in

IEEE Micro, vol. 38, no. 4, pp. 50-59, Jul./Aug. 2018, doi:

10.1109/MM.2018.043191125.

47

[18] Y. Chen, T. Krishna, J. S. Emer and V. Sze, "Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks," in IEEE

Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, Jan. 2017, doi:

10.1109/JSSC.2016.2616357.

[19] S. Yin and J. Seo, "A 2.6 TOPS/W 16-Bit Fixed-Point Convolutional Neural

Network Learning Processor in 65-nm CMOS," in IEEE Solid-State Circuits

Letters, vol. 3, pp. 13-16, 2020, doi: 10.1109/LSSC.2019.2954780.

[20] Z. Yuan et al., "STICKER: An Energy-Efficient Multi-Sparsity Compatible

Accelerator for Convolutional Neural Networks in 65-nm CMOS," in IEEE

Journal of Solid-State Circuits, vol. 55, no. 2, pp. 465-477, Feb. 2020, doi:

10.1109/JSSC.2019.2946771.

[21] Xuechao Wei et al., "Automated systolic array architecture synthesis for high

throughput CNN inference on FPGAs," 2017 54th ACM/EDAC/IEEE Design

Automation Conference (DAC), 2017, pp. 1-6, doi: 10.1145/3061639.3062207.

[22] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou and Lingli Wang, "A

high performance FPGA-based accelerator for large-scale convolutional neural

networks," 2016 26th International Conference on Field Programmable Logic

and Applications (FPL), 2016, pp. 1-9, doi: 10.1109/FPL.2016.7577308.

48

 Appendix Permission

This thesis reuses materials from my accepted article. The permission is for Chapter 3.

Chapter 3 was from “[12] L.Li, I.Hammad, and K. El-Sankary, “Dual segmentation

approximate multiplier,” in Electronics Letters, doi: 10.1049/ell2.12243, 2021.” An

editor of Wiley on behalf of the Institution of Engineering and Technology confirmed

that the article could be included in full in the thesis. The email is attached (next page):

49

