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Abstract 

 

Gaming tools gained significant interest among transportation modellers for mobility 

analysis, visualization and scenario testing. Commercial simulation software programs 

were used for running traffic microsimulations for years. They serve as traditional tools 

for both macroscopic and microscopic analyses. However, they lack flexibility when 

testing new methods or scenarios. This thesis presents a framework to create an open-

ended 3D traffic microsimulation tool. It is achieved by incorporating a virtual 3D 

environment and integrating mobility behaviour models of vehicles and pedestrians into a 

game engine, thus creating a robust simulation tool. The tool is tested by simulating 

pedestrian scenarios before and after pandemic situations to analyze the percentage of 

violations with the help of a social force model. The tool’s flexibility is then tested by 

using it to evaluate performance differences in various kinds of traffic consisting of 

autonomous and human-driven vehicles. 
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Chapter 1: Introduction 

 

Since the advent of video games in the early 1950s, they have evolved into a cultural 

phenomenon (History.com, 2019). Today, nearly two-thirds of American homes have 

household members who frequently play video games, making up a 100-billion-dollar 

global industry.  

 

Virtual environments/games are also being used for scientific and analytical purposes. 

There are many studies showing games as a learning tool to help people get educated in 

various disciplines. Such games are referred to as serious games, and their primary 

purpose is to create an impact on the audience beyond entertainment (Francesco Bellotti 

et al., 2013). Research shows that serious games could be helpful in cognitive training 

applications (Greitzer et al., 2007). Such platforms can also train adolescents for 

adherence to treatments for various diseases (Kato et al., 2008). It is also important to 

point out how games can improve learning efficiency by motivating players to master the 

game compared to conventional classrooms (Gee, 2003).  

 

Games/virtual environments can be developed using a game engine; a set of software 

tools that helps in optimizing or creating a video game (Gamescrye, 2016). Game engines 

contain unique physics engines to help simulate physics in virtual environments. To 

facilitate the proper functioning of the virtual environments, game engines use various 

scripts designed to establish the mechanics of the virtual environment. This allows game 

engines to be used flexibly in scientific research to visualize a user’s research or project 
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(Lewis & Jacobson, 2002). Game engines enable us to create virtual environments, 

buildings, streets, and cities. They are highly versatile and could be used to integrate with 

other applications such as CAD (Shiratuddin & Thabet, 2002). This allows researchers to 

create scripted tasks or even better, let users directly interact with the virtual 

environments to observe and evaluate various tasks and performances. 

 

Another utilization of these platforms is in the field of planning and design. As we can 

create virtual environments, users can create unique models to put their ideas to the test. 

Urban planning, evacuation planning, and construction management are some of such 

examples which benefit from developing virtual environments and analytical platforms 

(Jorge et al., 2007; Li et al., 2015; Lopes & Lindström, 2012; Mól et al., 2008). 

 

A study by Kourounioti et al. (2018) used simulation gaming to understand the 

stakeholders’ behaviour and decision making when asked to tackle a freight transport 

innovation called Synchromodality. The authors developed five games to help the 

stakeholders familiarize themselves with the problems and opportunities of synchromodal 

transport. The results stated that simulation games involving both digital and board 

games proved helpful in educating the stakeholders about the innovation and helped them 

gain a positive attitude towards synchromodality.  

 

          This thesis develops a framework in which an open-ended 3D traffic 

microsimulation tool is created by incorporating a 3D model built in a 3D modelling 

computer program and integrating mobility behaviour models for vehicles & pedestrians 
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into a game engine, creating a robust virtual environment for analysis. Using a game 

engine allows a new way of analyzing traffic operations without the need for bridging 

multiple software to evaluate new hypothetical scenarios. This benefits transportation 

researchers and also planners by utilizing this tool to create and present immersive 

environments for planning purposes. The research extends with further usage of this tool 

by testing human and vehicular traffic operations. The tool contributes to the analysis of 

COVID-19 scenarios by testing mobility restrictions on pedestrians with the help of a 

social force model. In a later chapter, the tool is used to test the benefits and 

characteristics of autonomous vehicles in conjunction with human-driven vehicles in 

roadways.  

 

1.1 Research Objective 

This research aims to develop a framework for using a game engine in the fields of traffic 

engineering and transportation planning. The secondary goal of this study is to build a 3D 

microsimulation tool that can be later expanded/modified to encompass the city of 

Halifax. The technical objectives of the thesis include: 

1. Develop a 3D microsimulation tool that incorporates realistic city infrastructure with 

vehicle and pedestrian behaviours in the network. 

2. To assess the implications pedestrian walking behaviours reflecting social distancing 

measures due to COVID-19 pandemic. 

3. To analyze the performance of autonomous and human-driven vehicles on the 

network within the game engine for traffic microsimulation. 
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1.2 Outline of Thesis 

This thesis comprises of six chapters. The second chapter reviews the existing literature 

on gaming and visualizations used in the fields of planning and transportation. The third 

chapter details the framework of the 3D microsimulation tool. Chapter 4 shows the 

application of the developed game engine tool to analyze the impact of social distancing 

regulations for pedestrians on social distancing violations with the help of a social force 

model. Chapter 5 showcases the application of the developed tool in evaluating 

performance of autonomous and human-driven vehicles in varying traffic conditions. 

Chapter 6 concludes the thesis by summarizing the analyses and discussing the flexibility 

of using game engines for transportation engineering and planning. 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Chapter 2: Literature Review 

 

In this chapter, existing literature on the use of visualizations and game engines in 

planning and transportation is discussed. The flexibility of using game engines can be 

pronounced in numerous aspects. One such aspect is the scale of the project. A study 

used a game engine to create an interactive planning system by incorporating a virtual 

environment with a problem-solving mechanism (Calderon and Cavazza, 2001). The 

created application allows a user to solve a constraint-driven task which is to allocate a 

machine in a bank hall accommodated with spatial/resource limitations. The authors state 

that game engines are suitable to be used as an interface for planning systems as the tasks 

are to be completed in a 3-dimensional environment. 

 

          In urban design, people use computer-aided design applications to design 

infrastructure. These designs serve as an initial proposal for future projects. Some authors 

improved the interaction capability with such software by creating a system called 

ArchSplit, which allows the automatic generation of exploded views for any architectural 

design (Mike Houston, Chris Niederauer, and Maneesh Agrawala, 2004). To make the 

visuals more appealing and immersive, people have started using game engines to create 

virtual environments. One such research used a game engine to evaluate the usefulness of 

a game engine in urban design (Indraprastha and Shinozaki, 2009). The author tested the 

compatibility of Unity3D (a game engine) with software related to architecture such as 

ArcGIS and CAD and found that Unity3D was capable of simulating scenarios involving 

such software.  
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          Similar virtual environments were created and tested to see the cognitive 

differences in spatial knowledge between two groups: one with a map view/bird’s eye 

view and the other with a navigational computer simulation (Michael Tlauka et al., 1996). 

Mean pointing errors were used as data for the research. The results indicated that similar 

kinds of spatial knowledge existed in both groups. One study designed web games for 

teaching transportation engineering to students (Wang and Abbas, 2018). Five games 

were developed to educate students about the key concepts in the course. Games included 

traffic planning, signal control, traffic safety, highway design, and pavement design. For 

example, the game used for highway design had control variables like curve design and 

budget, which the students need to get familiarized. Results were achieved by comparing 

before and after quizzes scores which showed an improvement in scores after playing the 

games. 

 

          Virtual environments were also used for testing different scenarios. Rossetti et al. 

(2013)  suggest a conceptual framework for using serious games in artificial 

transportation systems (ATS). The authors achieve this by incorporating behaviour 

elicitation with peer-designed agents, which would allow users to project their behaviour 

into the system. The authors propose tools related to pedestrians where walking patterns 

and interactions can be obtained for planners and vehicle driving where computer 

interactions and safety aspects can be examined. Some studies tested how virtual 

environments could be used for evacuation planning. One study tested the capability of a 

virtual environment to simulate a real-world evacuation experience (Jorge et al., 2007). 

The authors created a 3D model of a building considering its physical dimensions and 
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timed the participant’s exit from the building. The times were later compared to a real-

world evacuation, and it was found that the game engine was able to simulate the real-

world environment adequately. Another study used Unity3D to create an evacuation 

scenario where participants were asked to play the simulation in which they had to 

evacuate an island due to a tsunami (Doirado et al., 2012). After all the participants have 

played the simulation, they were asked to give feedback on their level of engagement 

with the simulation. The authors found that they met their design goals, but there was still 

room for improvement. A similar study used a serious game as an evacuation simulator to 

improve fire drills and examine evacuation dynamics (Ribeiro et al., 2009). The study 

used 3D models built in Blender and imported into Unity 3D to build a virtual 

environment for participants to play the evacuation scenario. The research found that 

most of the participants missed the emergency exit and followed a longer path to exit the 

building. 

 

          Many pedestrian simulators have been built in the past to study pedestrian 

behaviours during road interactions. A study was conducted in Versailles, France, to 

study the short-term and long-term effects of simulator-based training on older 

pedestrians (Dommes and Cavallo, 2009). This helped them carry out gap-acceptance 

studies and test navigational aids for older people. Two groups of older pedestrians were 

used in which one group was trained with the help of a crossing simulation, and the other 

was trained with the help of the internet. Both groups were tested before, immediately 

and six months after the training. Results indicated a significant improvement in the 

overall safety of the older pedestrians while street crossing due to the simulation-based 
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training. A similar study was conducted in which the authors analyzed the impact of 

simulation-based training on older pedestrians (Dommes and Cavallo, 2011). The authors 

observed that behavioural improvements noticed in older pedestrians could be attributed 

to two reasons. The first reason is that the participants in the simulation-based training 

group took advantage of the feedback and education given to them during training. The 

other reason was that these people had undergone the repetition of crossing trials. 

 

          Moloney and Harvey (2004) developed a collaborative virtual environment to serve 

as an educational tool in which people could collaborate in real-time with the help of a 

server that lets them draw and speak. Virtual environments are also being used in real 

projects. One such project is the Personal Rapid Transit system in the city of Uppsala, 

Sweden (Lopes and Lindström, 2012). It involved developing a virtual reality simulation 

of parts of the city that would later turn out to be a critical factor in increasing the 

engagement with the project. 

 

          Microsimulations can also be simulated in game engines. One study has integrated 

traffic microsimulation and procedural 3D modelling with a game engine to showcase the 

potential use of virtual environments and virtual reality (Erath et al., 2017). The 

developed framework uses an exported file from Vissim (a traffic microsimulation 

software) to render the visuals using a game engine. This means that the flow of data is 

one-directional. Their work aims to establish a loop that would exchange data back and 

forth conveniently. However, this could pose many complications as researchers would 

be forced to rely on both parties (Vissim and the game engine) to support their project. 
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          Miao et al. (2011) introduced a game-engine-based computing platform for ATSs. 

The authors used Delta3D for the game engine and created a virtual 3D environment. 

Pedestrians and vehicles were generated using data of the Chinese population at both 

macroscopic and microscopic levels. At the macroscopic level, the population travelling 

direction flows are defined, and at the microscopic level, the population’s behaviour 

attributes like walking and relaxing were defined. The simulation platform was tested by 

analyzing the vehicular traffic average speed and noted that the average speed of vehicles 

dropped with the increase in population. This study serves as a starting point for the 

usage of game engines in traffic simulations but lacks the characterization of pedestrian 

and vehicular movement behaviour. 

 

          This thesis provides a framework that acts as a solution to show how a game 

engine can be used to perform traffic microsimulations with the help of mobility 

behaviour models for pedestrians and vehicles. A framework is proposed to build a 

virtual 3D environment that can simulate new situations of traffic microsimulations 

within the game engine with the help of object-oriented programming. Such framework 

allows the ability to modify and analyze theoretical transportation scenarios and at the 

same time allows users to visualize their ideas. This thesis advocates a game engine-

based platform as a decision support tool that can be used flexibly to visualize and 

analyze scenarios for transportation and planning purposes. 
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Chapter 3: Conceptual Framework 

 

3.1 Study Area  

This research is focused on Spring Garden Road in Halifax, Canada. It is located in the 

heart of the city’s downtown area, known for its eateries and shopping stores. Therefore, 

the location attracts many people and therefore contributes to more pedestrian and 

vehicular traffic and therefore is considered appropriate for this research.   

  

 

Figure 0-1 Aerial View of Spring Garden Rd 
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3.2 Methodology 

The methodology of this thesis is based upon a systematic approach to developing a 

dynamic virtual environment. First, the 3D model of the street is created in a modelling 

program which is then imported to a game engine. Later the dynamics of the environment 

are designed with the help of coding to achieve the required functionality. The dynamics 

include pedestrian and vehicle behaviours, pedestrian and vehicle movements, and traffic 

signal systems. The framework of implementation is represented in the flow chart below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0-2 Framework of the Models Developed in this Study 

 

Vehicle Asset Pedestrian Asset 

Pedestrian 

Behaviour Script 

Vehicle Behaviour 

Script 

Additional Scripts 

(Object Spawning, etc.) 

Game Engine 

Infrastructure 3D model 

 

Data Output Visual Output 
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          To begin integrating the 3D virtual environment in Unity, a 3D model needs to be 

created first. For this task, Sketchup (3D modelling computer program) was chosen as it 

is a free software which facilitates the creation of a highly detailed environment. It also 

outputs compatible files that can be used in a game engine. The 3D street network was 

developed based map data retrieved from CADmapper (an application used for accessing 

street map data). After retrieving the map data, the 3D model was designed in a virtual 

space using height, length, and width measurements, and Google street view for colours 

and textures. The same 3D model could be created in a game engine, but it would not be 

as flexible as Sketchup in creating a static environment (Habib and Holmes, 2019). 

 

 

Figure 0-3 Sketchup Model used in the Study 
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          The created model was then placed in Unity, a cross-platform game engine used for 

developing real-time 3D content. A simple drag and drop into Unity imports the 3D 

model. Problems were faced while importing the 3D model, which resulted in a loss of 

model materials. However, most of the model was usable, and Unity lets users apply 

materials to the imported models. Figures 3-4 and 3-5 show the before and after 

visualization of the virtual 3D environment. 

 

 

Figure 0-4 Initial Stage of the Imported 3D Model 
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Figure 0-5 Imported 3D model after Applying Materials and Textures 

 

          After importing the static model into Unity, the next step is to create dynamic 

pedestrian and vehicular traffic. This requires 3D models for vehicles and pedestrians and 

needs coding of scripts that enable these assets to move accordingly. Assets are any file 

or item that can be used in Unity. Examples of such assets are audio files, 3D models and 

basically any item that Unity supports. Finding 3D models for vehicles and pedestrians is 

easy. Unity has a built-in asset store where anyone can download packages and assets. 
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Figure 0-6 Car Asset in Unity Store 

 

Most of the assets downloaded from the store do not have embedded animations that 

animates the objects according to their movement. Designing these animations also 

requires scripts. Unity supports many programming languages, but the most commonly 

used language is C#. Variables and properties like box colliders and mesh renderers must 

be added/modified according to our usage for each asset.  

 

Every animation that is supposed to happen in the simulation must be scripted—for 

example, rotation and turning of vehicle wheels and walking movement of pedestrians. 

Apart from the moving models, static models like signal poles are also scripted according 

to the requirement. Other visuals like trees and roadblocks are also used to make the 

virtual environment look more appealing, making it feel closer to the real world. 
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GameObjects and their Properties 

All objects or items present inside the simulation/game in Unity are called as 

GameObjects. Any GameObject imported into the scene can have various properties. 

These properties can be added or modified using the inspector window. 

 

 

Figure 0-7 Inspector Window Showing the Properties of a GameObject 

 

There are three essential components that are commonly used for each GameObject in 

this thesis: 

 

Transform – Every GameObject has the Transform component attached to it. It is not 

possible to have a GameObject without this component. The Transform component is 
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used to store a GameObject’s position, rotation, and the size of the object in all three 

axes. 

 

 

Figure 0-8 Transform Component of a GameObject 

 

Rigidbody – The Rigidbody component can be attached to any GameObject which needs 

to be under the control of Unity’s physics. This component lets us access properties like 

mass and, gravity which is essential for GameObjects like vehicles and pedestrians. For 

example, the mass of a car is defined as 1000 kilograms, and the mass of a pedestrian is 

defined as 60 kilograms. All pedestrians and vehicles also use gravity. 

 

Figure 0-9 Rigidbody Component of a Pedestrian GameObject 
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Box Collider – The box collider component is used for detecting collisions. It is basically 

a cuboid that can be manipulated to define the perimeter of the GameObjects. One of the 

critical properties of this component is isTrigger. This property allows the execution of 

user-defined tasks when the GameObject comes in contact with another GameObject. 

 

 

Figure 0-10 Box Collider Component of a GameObject 

 

 

Figure 0-11 Box Collider of a Car 
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Apart from these three components, there are many more components that can be used to 

define a GameObject. One such component is called Animator, which helps with the 

animation of a GameObject. This is mainly used for all human GameObjects in the 

simulations. Scripts coded by users can also be added as a component to a GameObject, 

providing additional functionality. 

 

 

Figure 0-12 Animator Component of a Pedestrian GameObject 

 

Pedestrian Representation 

Pedestrians in this thesis are represented by a 3D model imported from the Unity asset 

store. The human asset is integrated with a prebuilt animator component that adds the 

animation of walking and standing still for pedestrians. Every pedestrian has an origin 

and a destination, which are predefined by the user with the help of scripts.  

 

The spawning of pedestrians is facilitated by an empty GameObject embedded with a 

spawning script. This spawning GameObject can spawn multiple GameObjects at random 

times or by the time defined by the user. To add randomness and realism to the 
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simulation, some pedestrians are randomly assigned their destination at the beginning of 

their spawn. 

 

 

Figure 0-13 Pedestrian GameObject 

 

An essential component of pedestrian GameObjects is NavMeshAgent. NavMeshAgent 

component lets a GameObject recognize another GameObject on the NavMesh. This 

helps with the avoidance of collisions while the pedestrians move towards their goal. 

NavMesh is a navigation mesh that defines the walkable/movable areas of the 

game/simulation. NavMesh lets users bake a user-defined area on the map, allowing 

GameObjects to avoid unwanted areas that are not defined for movement. Such unwanted 

areas include rooftops, chairs, or any other GameObject which is not designed as a 

walkable area. The NavMesh can be edited according to the user’s preference. The 
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NavMesh baking properties can be accessed in the Navigation window. The user can 

define properties like Agent’s radius and height, maximum slope and step height an Agent 

can access.  

 

Pedestrain GameObjects are also integrated with various scripts to add more behaviour. 

AiCharacterControl and ThirdPersonCharacter are two scripts that are embedded into the 

imported human 3D model. Apart from these, other scripts for data collection and social 

force model are added to the pedestrian GameObject, which is discussed in detail in 

Chapter 4. 

 

 

Figure 0-14 Example NavMesh Component Properties 
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Figure 0-15 NavMesh Baking Settings Example 

 

 

Figure 0-16 Baked NavMesh Indicated by the Highlighted Blue Area 
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Vehicle Representation  

Vehicles are more complicated than human assets. After importing 3D models from the 

Unity store, properties of the wheels should be defined as the movement of a vehicle 

relies on its wheels. This is done using the Wheel Collider component. Defining the 

Wheel Collider properties is done by a trial-and-error method. Figure 3-17 shows the 

settings used for this thesis. Like the pedestrian GameObjects, vehicles also have their 

origin and destination points. 

 

          Vehicles were not integrated with NavMesh, unlike their pedestrian counterparts 

but were designed to rely on the physical properties of the environment. They are also 

required to start and stop according to the object in front of them. This is achieved using 

the Raycast system in Unity.  

 

          In Unity, the Raycast system throws a ray at a given distance in a given direction 

for a given length. If the ray hits a collider of a GameObject, it retrieves the information 

of the GameObject and can be scripted to do the required processes. For a vehicle, two 

sets of Raycast systems are used: one for detecting pedestrians and the other for detecting 

vehicles in front. When a pedestrian is detected, the vehicle is designed to come to a stop 

and let the pedestrians pass through. When a vehicle is detected, the asset has two 

options. If the vehicle in front is standing still, then it comes to a stop based on the 

standstill distance assigned to it. If a moving vehicle is detected, it tries to achieve the 

speed according to the defined circumstance.  
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Figure 0-17 Wheel Collider Properties of a Wheel 

 

 

Figure 0-18 A Ray Thrown at the Vehicle in Front 
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Figure 0-19 Vehicle Detecting Pedestrian with the help of Raycast System 

 

          The basic moving behaviour of a vehicle in this thesis is based on the desired 

safety distance of a vehicle which is calculated by the below formula (PTV, 2018). This 

formula is embedded into the Raycast system to detect the GameObjects in front: 

 

 𝑑𝑠 = 𝑎𝑥 + 𝑏𝑥 (1) 

 

Where, 

ds = safety distance; 

ax = standstill distance; 

bx = time adjusting requirement values; bx is calculated as follows: 
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 𝑏𝑥 = (𝑏𝑥𝑎𝑑𝑑 + 𝑏𝑥𝑚𝑢𝑙𝑡 ∗ 𝑧) ∗ √𝑣 (2) 

 

Where, 

v is vehicle speed in m/s;  

z is a value of range [0, 1], which is normally distributed around 0.5 with a standard 

deviation of 0.15. 

 

          The length of the ray thrown is equal to the safety distance calculated, which 

depends upon the speed of the vehicle and the given standstill distance. A single is 

thrown from the center of each vehicle to detect a vehicle in front. To detect pedestrians, 

rays are projected for each degree to a total coverage of thirty degrees on both left and 

right sides of the vehicles. A pictorial representation of this system is shown in Figure 3-

20. Therefore, if the vehicle is moving at a high velocity, it will have a higher length of 

ray, and if it is moving slowly, it will have a smaller length of ray. This kind of setup is 

designed to discard unwanted detections. This model is used for detecting both 

pedestrians and vehicles; however, the system for vehicles can be altered to change the 

behaviour of the vehicles, which is discussed later in Chapter 5. 

 



27 
 

 

Figure 0-20 Pictorial Representation for Pedestrian Sensor System 

 

Intersections 

          The virtual environment is modelled for two main intersections to observe different 

aspects of the traffic simulation model. The first intersection represents the intersection at 

Spring Garden Rd and Dresden Row and is represented as intersection ‘A’. This virtual 

intersection is designed with traffic signals that lets vehicles and pedestrians cross 

appropriately. This is achieved using a script, which is embedded into the 3D model. The 

vehicles and pedestrians are therefore controlled by using different GameObjects. For 

example, a transparent GameObject was used to communicate with vehicles whether they 

must stop or proceed. This transparent GameObject is activated when the traffic signal is 

red or yellow and deactivated when the signal is green. When a vehicle comes in contact 

with this GameObject, the vehicle is asked to slow down and then start moving again 
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once this transparent GameObject is deactivated. This kind of mechanism helps collect 

data related to variables like saturation headway.  

 

          Pedestrian GameObjects are also controlled using other GameObjects. When the 

signal is green for the vehicles, pedestrians are blocked to let vehicles pass through the 

intersection and vice versa. 

 

 

Figure 0-21 Signal Pole Showing Green Signal 

 

          Figure 3-22 represents the designed signal cycle for this thesis. The cycle can be 

modified according to necessity. Pedestrians and vehicles are designed to stop in 

coherence with the traffic signal cycle.  
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Figure 0-22 Reference Signal Cycle in Seconds 

 

 

 

Figure 0-23 Intersection ‘A’ with Traffic Signals 
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Figure 0-24 Pedestrians Crossing the Road 

 

 

Figure 0-25 Pedestrians Blocked to Allow Vehicles to Pass 
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          The second intersection is modelled after the intersection at Spring Garden Rd and 

Birmingham St and is represented as intersection ‘B’. The virtual model is designed 

without a traffic signal which allows the pedestrians to cross freely. This forces the 

vehicles to stop and move in relation to the presence of the pedestrians nearby. The 

stoppage of vehicles is built using the Raycast system available in Unity.  

 

3.3 Discussion and Conclusion 

The virtual environment was initially established by importing 3D models into Unity. 

This presented a static 3D virtual environment. Scripts were introduced to add movement 

to vehicle and pedestrian GameObjects making the environment dynamic. Additional 3D 

visual props like trees and roadblocks were also used to add realism to the virtual 

environment. The virtual environment was finally tested to see the simulation in action. 

The pilot simulation was let run for more than two hours to notice bugs and other errors. 

 

          The animation of pedestrian GameObjects was smooth. The animation of vehicles 

was also fluent, but the lack of character for each car made the simulation look robotic. 

This is rectified in Chapter 5, where more behavioural elements for vehicles are added. 

The intersection ‘A’ with signals was able to perform its task adequately by stopping and 

letting vehicles and pedestrians pass through appropriately. The intersections ‘B’ without 

the traffic signals was also observed to have no failures.  

 

          Vehicles were successfully able to recognize the GameObjects in front of them 

with the help of the Raycast system. They were also able to behave according to 
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the GameObjects in front. No vehicle was observed to collide with another vehicle or 

pedestrian GameObjects. The initial stage of building a dynamic virtual environment is 

therefore completed. This environment is further used in Chapters 4 and 5 to test the 

flexibility of a game engine to perform various simulations.  
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Chapter 4: Application of Game Engines in COVID-19 Simulations 

 

4.1 Introduction 

In December 2019, there was an outbreak of a deadly virus, which is now known as 

COVID-19 (Warren & Skillman, 2020). The virus soon started penetrating other 

countries across the globe. As of 22nd February 2021, the number of confirmed cases of 

COVID-19 infected people surpassed 111 million people globally, taking the lives of 

more than two million people (WHO APA, 2021).  

 

          To contain this virus, many countries across the world started implementing drastic 

measures in the hopes of decreasing the transmission rates (Ghader et al., 2020). Among 

those measures, social distancing measures are the most effective non-medical initiatives 

taken up by countries across the globe. Despite these measures, many people are 

choosing not to socially distance themselves from others. A Stanford-led study revealed 

that 39.8 percent of the total respondents stated that they were not complying with the 

social distancing measures (Stanford, 2020). Regardless of the various reasons prompted 

by the respondents, people are being encouraged to get fully vaccinated. However, with 

the constant evolution of COVID-19 variants, it is also possible that these vaccines might 

not work against certain variants (CDC, 2021). 

 

          Social distancing is considered an important measure to limit the spread of 

COVID-19 (WHO, 2021). One article established pedestrian density limits for urban and 

architectonic spaces with the help of laboratory experiments. (Echeverría-Huarte et al., 
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2021). The impacts of variables like pedestrian density, pedestrian speed, and 

recommended safety distance on interpersonal distances between people in dense crowds 

were studied. 

 

          This research focuses on showing the application of the developed game engine 

tool in simulating and testing for pandemic scenarios. As game engines offer great 

flexibility in modifying or creating any scenario, it is used as a tool to analyze pedestrian 

traffic operations. With the help of a pedestrian social force model, pedestrians in this 

study replicate three different scenarios. The first scenario represents a standard day-to-

day pedestrian walking behaviour, and the second scenario represents socially distanced 

pedestrian walking behaviour with mobility restrictions. The third scenario represents the 

reopening stage once the lockdowns are ended. The results for all three models is 

discussed, and conclusions were drawn to assess their impact on social distancing 

violations. Additional measures are proposed to tackle the issue of violations. 

 

4.2 Literature Review 

Literature on the interactions of COVID-19 and public spaces, specifically urban streets 

is limited. The following literature review discusses various studies about pandemic 

scenarios and social distancing. 

 

          Min W. Fong et al. (2020) conducted a systematic review on the effectiveness of 

various measures taken during pandemics. Isolating the ill, quarantining exposed persons, 

dismissing schools, contact tracing, workplace measures, and avoiding crowding were the 
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six measures taken into consideration. The evidence of the effectiveness was primarily 

taken from observational studies and simulation studies. The review concluded that these 

measures showed that such measures help reduce the transmission and alleviate the 

impact of influenza pandemics. Bouchnita & Jebrane (2020) used a hybrid multiscale 

model to assess the potential of non-pharmaceutical measures using COVID-19 

transmission dynamics. It uses a social force model for the individuals in which everyone 

is either susceptible, infected, quarantined, immunized or deceased. The study reveals 

that pre-symptomatic transmission accelerates the inception of the exponential growth of 

COVID-19 cases. The research shows that restricting the movement of individuals 

flattens the epidemic curve of the number of cases.  

 

          From a slightly different perspective, a study shows the effects of social distancing 

on the economy, public health, and environment. The integrated epidemiological-

economic model built by the authors (Newbold et al., 2020) suggests that deployment of 

physical distancing policy with optimum timing and intensity could save millions of lives 

along with generating significant net benefits in terms of the economy when compared to 

a scenario without the existence of a physical distancing policy. The authors also created 

a model that could estimate the number of deaths averted by the decrease in air pollution 

caused due to social distancing. The authors pointed that air pollution could cause 

respiratory diseases that could worsen the condition of people affected with COVID-19. 

Another research driven by economics analyses states that the optimal control during a 

pandemic could be achieved by one of the two extremities: to let the epidemic run its 

course or exercising a highly cautious control (Maharaj & Kleczkowski, 2012). The 
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authors showed that the worst possible economic outcome could emerge when control is 

attempted but not cautiously enough. 

 

          There is also research demonstrating the effect of social distancing indoors. A 

systematic review of existing literature suggests that following physical distancing in 

non-healthcare workplaces would produce a notable reduction in an influenza attack rate 

(Ahmed et al., 2018). Another indoor modelling study using a pedestrian-based epidemic 

spreading model found that restricting peoples travelling frequency inherently increases 

the time they spend in grocery stores (Xiao et al., 2020). The study involves a before-and-

after travel demand analysis which suggests entry limitations to such stores that would 

decrease the risky contacts, meanwhile mentioning the likely increase of waiting queues 

outside stores. Another study focuses on the design of pedestrian queues to reduce 

infectious disease transmission (Derjany et al., 2020). With the help of a multiscale 

model which combines pedestrian dynamics with stochastic infection spread models, the 

authors show that using wall separators instead of rope separators helps in reducing the 

number of unwanted contacts and disease spread.    

 

          A study was conducted using a simulation-based estimation to predict the actual 

cases of COVID-19 in Iran, which were later compared to the official confirmed cases of 

COVID-19. The integration of data from various sources suggests that the actual numbers 

are at the least an order of magnitude higher than the official numbers (Ghaffarzadegan & 

Rahmandad, 2020). Another large-scale study involving the integration of aggregated 

smartphone location big data with geographic information systems (GIS) looked at how 
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people reacted in different states and counties of the United States to social distancing 

guidelines. The authors observed an excellent adherence to the guidelines when they 

were first announced and how the mobility patterns were affected following certain 

significant events, which then later was associated with increasing COVID-19 cases (Gao 

et al., 2020).   

 

          A recent study involving a microsimulation model which aimed to understand the 

impacts of social distancing on pedestrian environments shows the impacts by comparing 

a number of social distancing violation in a pandemic scenario which comprises of 

widening of sidewalks, revised walking behaviours, and reduced pedestrian traffic with a 

business-as-usual (pre-pandemic) scenario (Alam et al., 2020). The results showed a 

significant decrease in social distancing violations in the pandemic scenario against the 

business-as-usual case for Spring Garden Road. 

 

          This chapter shows how walking behaviours and social isolation impact the 

number of social distancing violations. It essentially showcases the application of a game 

engine in COVID-19/pandemic simulations. To do so, pedestrians are generated 

accordingly to replicate pre-pandemic, pandemic, and post-pandemic scenarios. The 

pedestrian movements are produced with the help of a social force model that helps 

reproduce scenario-based walking behaviours. Later, the results from different scenarios 

are compared to and additional measures be proposed.   
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4.3 Methodology 

The 3D virtual game engine-based tool developed in Chapter 3 is used to test multiple 

scenarios of pedestrian simulation during COVID-19. Pedestrian movement is an 

essential aspect of social distancing. Therefore, a social force model is used to generate 

pedestrian movements. The simulation consists of fundamental pedestrian flow concepts 

where the human assets travel in opposite directions to reach their destinations.  

 

          This study consists of three scenarios. The first scenario depicts the motions of 

pedestrians before COVID-19, where pedestrians would not mind the gap between each 

other. The second scenario depicts the motions of pedestrians but with social distancing 

measures in place along with mobility restrictions representing lockdowns. The third 

scenario would have the same pedestrian behaviour as the second scenario, but the 

pedestrian traffic intensity would be the same as the first scenario. 

 

          To assess the performances of each scenario, the number of social distancing 

violations are compared. In this study, social distancing violations are defined as when 

the distance between two pedestrians is less than or equal to two meters. They are also 

visually represented during the simulation with green lines. Other data is also considered. 

The amount of time travelled by each pedestrian to reach their destination and the 

pedestrian density of the testing area are considered. Equation 3 is used to calculate 

pedestrian density. This kind of data is retrieved using various scripts. Figure 4-1 shows a 

screenshot of the simulation. For this thesis, pedestrian density is calculated by the below 

equation. 
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Figure 0-1 Business-As-Usual Scenario 

 

 

Figure 0-2 After Pandemic with fewer pedestrians 

 
𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠

𝐴𝑟𝑒𝑎
 

(3) 
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Figure 0-3 Social Distancing Violation Indicated by Green Lines 

 

 

Social Force Model 

To replicate the natural movement of pedestrians, Helbing introduced an empirical model 

called the social force model (Helbing and Molnár, 1995). This study uses the improvised 

version of Helbing’s model put forth by Mehdi Moussaïd. The social force model can be 

represented as follows (Moussaïd et al., 2009): 

         

 

 

  

 
𝑓𝑣(𝑑, 𝜃) =  −𝐴𝑒𝑥𝑝(−

𝑑

𝐵
− (𝑛′𝐵𝜃)2) 

(4) 

 
𝑓𝜃(𝑑, 𝜃) =  −𝐴𝐾𝑒𝑥𝑝(−

𝑑

𝐵
− (𝑛𝐵𝜃)2) 

(5) 
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Where, fθ and fv are directional change and deceleration forces respectively; A, B, n, and 

n’ are model parameters; K = θ/| θ | is the sign of angle θ; d is the distance between the 

pedestrians. 

 

          A study to optimize these parameters found that increasing the values of B and 

decreasing the value of A would diminish the social force repulsion between pedestrians 

(Sticco et al., 2020). As this chapter focuses on distancing the pedestrians, multiple sets 

of parameter assumptions were made and observed to see the optimum parameter values. 

To find the optimal value, a simulation-based observation was conducted to note the 

number of violations caused by a change in parameter A while keeping the other model 

parameters B, n, and n’ constant. A bidirectional high-intensity pedestrian flow was 

established in the simulations to note these violations.   

 

 

Figure 0-4 Change in violations with change in parameter ‘A’ 
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          From Figure 4-4, we can see that as the force/value of A increases, the violations 

decrease. However, the curve for the number of violations flattens as the value is 

increased from 15 to 20. Therefore, for parameter A, a value of 15 is considered optimal 

to reproduce the scenario with social distancing measures.  

 

4.4 Discussion of Results 

Three scenarios were tested. The first scenario is the business-as-usual (BAU) scenario in 

which pedestrians are represented without social distancing measures. This scenario is 

produced by changing the value of parameter A to 4.5. This change in parameter A helps 

reduce the repulsion forces between the pedestrians, therefore, simulating pedestrian 

movements that indicate pedestrian movements before the deployment of social 

distancing measures. The second scenario was produced considering mobility restrictions 

in place along with social distancing measures and is referred to as CMR (COVID-19 

scenario with Mobility Restrictions). The value of parameter A is now changed to 15 to 

increase the repulsive forces between pedestrians replicating social distancing by 

pedestrians and the pedestrian traffic is decreased by half of the first scenario. The last 

scenario represents the reopening stage when the mobility restrictions are lifted but with 

social distancing measures still in place. This scenario is referred to as Reopening 

scenario. The value of parameter A is same as the second scenario, but the pedestrian 

traffic is increased to that of BAU. One-hour simulations were run for all three scenarios.  

 

          Figure 4-5 represents an average pedestrian density graph. It can be seen that for 

BAU and Reopening scenarios, the pedestrian density is higher, which translates to the 
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pedestrian traffic being unchanged. For ‘CMR’, the pedestrian density is significantly 

decreased. It should also be noted that the pedestrian density for Reopening is slightly 

greater than BAU, which is expected as pedestrians take more time while travelling 

trying to avoid other pedestrians, which inherently increases the pedestrian density as the 

pedestrians stay longer in a given area. 

 

 

Figure 0-5 Average Pedestrian Density and its Standard Deviation 
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Figure 0-6 Box plot of average pedestrian travel time (s) 

 

          Figure 4.6 represents a box plot graph for average pedestrian travel time in which 

the minimum, maximum, and the mean of the travel times are indicated. The minimum 

travel times for all three scenarios are equal, which indicates that these pedestrians did 

not have to avoid other pedestrians. The Reopening scenario shows the highest average 

and maximum travel times of all three scenarios. This indicates that pedestrians in the 

Reopening scenario spent more time trying to avoid other pedestrians, thus taking longer 

than usual to reach their destinations. The CMR scenario also has higher average and 

max travel times than BAU despite having half the number of pedestrians in the same 

area.  
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Scenarios 
Number of 
Violations 

% Reduction in 
Violations 

Compared to BAU 

BAU 914 n/a 

CMR 205 77.57 

Reopening 804 12.04 

 

Table 0-1 Average time travelled and number of Violations 

 

          Finally, the number of violations in the sidewalk is considered, as seen in Table 4-

1. BAU scenario is observed to have the greatest number of violations as no forces were 

driving the pedestrians apart. With a 77.57% reduction in violations than BAU, the 

highest decrease in the number of violations was noted in CMR scenario. Although the 

percentage reduction in violations is significant in the Reopening scenario, it pales in 

comparison to the CMR scenario. This could be caused due to the limited availability of 

space for pedestrians to move in the sidewalk. The Reopening scenario has the second-

highest number of violations. The decrease in the number of violations in the Reopening 

scenario compared to BAU is noted to be 12.04%. This can be attributed to the increased 

repulsive forces between pedestrians trying to follow the social distancing measures. This 

shows how pedestrians contribute to decreased violations with mobility restrictions in 

place and could contribute to increased violations after the end of lockdowns. Measures 

should be taken not only to monitor these violations but also decrease these violations. 

Possible options for such measures is discussed in the next section. 
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4.5 Conclusion 

This chapter examines the application of a game engine to simulate pedestrian traffic 

interactions in pandemic scenarios. Three scenarios were established to show and 

evaluate the impact of social distancing measures on pedestrian interactions. BAU 

scenario depicts a regular pedestrian flow which represents the case before COVID-19. 

CMR scenario illustrates social distancing in place with reduced pedestrian traffic 

representing mobility restrictions on pedestrians. The Reopening scenario represents a 

stage after the end of lockdowns which involves physical social distancing.  

          

          Various attributes were considered while evaluating the performance of all three 

scenarios. The Reopening scenario exhibited the highest pedestrian density indicating 

that pedestrian density increases as people stay longer on the sidewalk trying to avoid 

other pedestrians. The average time travelled is also considered. Maximum travel times 

were noted in the Reopening scenario as pedestrians spend more time trying to avoid 

other pedestrians. Although the CMR scenario has reduced pedestrian traffic, it showed 

higher travel times than BAU as pedestrians try to maintain physical social distancing. 

Finally, the number of violations is observed to reduce with social distancing measures in 

place. CMR scenario showed the greatest impact on the percentage in reducing social 

distancing violations which were promoted by physical social distancing combined with 

reduced pedestrian traffic caused by the existence of mobility restrictions. 

 

          When the pandemic comes to an end, there is a great chance of increased social 

distancing violations. This is a great cause of concern as reports state there is still a 
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chance for people to get infected even after taking vaccines. Therefore, measures should 

be taken to direct and monitor the pedestrian flows. For example, crosswalks wide 

enough to accommodate social distancing could be incorporated with visual cues to help 

pedestrians organize and redirect their walking behaviour. Such visual can include 

markings on pavements and crosswalks. Monitoring sensors/devices can also be placed to 

alert pedestrians when they violate social distancing. 

          

          This study shows how a game engine can be used to depict and simulate 

pedestrian-related simulations. This kind of methodology can be used to simulate other 

kinds of simulations such as evacuation planning in buildings/airports and virtual tours 

for new infrastructures. This proves that game engines provide great flexibility in 

designing the desired virtual environments for various projects/research. The developed 

game tool is also superior to other commercially available software as this tool provides 

excellent flexibility and can be enhanced further by integrating infectious disease spread 

models to analyze and visualize various solutions. 
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Chapter 5: Application of Game Engines in Analyses of Autonomous 

Vehicular Operations 

 

5.1 Introduction 

Self-driving autonomous technology in cars is on the horizon to begin new mobility 

possibilities of the future. Although the first attempt on AVs was attempted back in the 

early 1920s, it was in the year 2009 when Google launched its self-driving car project 

called Waymo (Ronan Glon & Stephen Edelstein, 2020). By the 2010s, major car 

manufacturing companies like BMW and Ford started working on their self-driving 

technology. Although the future is promising, autonomous vehicles are generally 

interpreted as vehicles that drive themselves or have complete control. To mitigate the 

confusion, AVs were defined/classified by the Society of Automotive Engineers (SAE) 

International, a U.S.-based professional association, in the following ways as described in 

Table 5.1.  

 

          Significant benefits emerge from using autonomous self-driving technology. These 

include reduced parking needs, increased vehicle sharing, increased road capacity, 

alleviating stress from drivers, increased mobility for non-drivers, and most importantly, 

increased safety (Lee, 2020). Apart from the potential to improve safety, a study states 

that autonomous technology will have tangible and quantifiable benefits (Fagnant & 

Kockelman, 2015). An economic analysis conducted by the authors states that AVs have 

the potential to save roughly 27 billion and 450 billion USD annually at 10 percent and 
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90 percent penetration rate, respectively, in the U.S. economy alone. Benefits like safety 

impacts, congestion benefits, and parking costs were considered for the analysis. 

 

Level 1 Level 2 Level 3 Level 4 Level 5 

Driver 
Assistance 

Partial 
Automation 

Conditional 
Automation 

High 
Automation 

Full 
Automation 

Controlled 
by the 

driver with 
some assist 

features 
included in 

vehicle 
design 

Vehicles has 
combined 

automated 
functions, like 
steering and 

acceleration, but 
driver must be 
engaged and 
monitor the 

environment.  

Driver must be 
ready to take 

control but not 
necessarily be 

engaged. 

Driver has the 
option to 

control but 
usually the 
vehicle is in 

control under 
limited 

conditions. 

Vehicle is in 
full control 
under all 

conditions 
but driver 

has option to 
take control. 

 

Table 0-1 Levels of Driving Automation (SAE J3016 2018) 

 

          In recent years, fully autonomous vehicles are being tested for their implementation 

in the real world. In 2019, Waymo started testing their autonomous self-driving cars on 

public roads without a driver in the driver’s seat (Waymo, 2019). Experts believe that 

fifteen percent of the new cars sold in 2030 could be fully autonomous (Automotive 

revolution, 2016). While the transitioning to fully autonomous vehicles seem to have a 

positive impact, the transition itself could take years or possibly decades. 

 

          During the transition, the traffic will include various levels of vehicle automation. 

Testing these various vehicle combinations in the real world will take an enormous 
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amount of time. In such a situation, game engine-based tools help run virtual simulations 

necessary to test these theoretical traffic scenarios. Many studies were conducted to 

understand the impact of these traffic scenarios. However, this chapter observes and 

evaluates the differences between each of these scenarios by using a game engine for the 

first time. This provides superior flexibility in designing both the environment and the 

behaviour of pedestrians and vehicles. It also lets us examine the performance differences 

of networks containing human-driven and autonomous vehicles. 

 

5.2 Literature Review 

AV technology is gradually penetrating the global markets, but it might take decades for 

AVs to overtake existing vehicles and new vehicle purchases. However, studies show the 

impact of autonomous vehicles at different penetration rates. One such study analyzed the 

impact of connected autonomous vehicles (CAVs) on traffic safety under varying 

penetration rates (Ye and Yamamoto, 2019). Values like time to collision and frequency 

of dangerous situations were considered while assessing the safety impact. Results show 

that traffic safety is significantly increased with the increase in CAV penetration rates. 

The study also showed other positive impacts of increased CAVs on traffic flow, like 

increased smooth driving and decreased velocity differences between vehicles. 

  

          According to a survey based in the United States, human errors are responsible for 

ninety-four percent of the vehicle (National Highway Traffic Safety Administration, 

2015). Such human errors could be avoided by introducing autonomous technologies. A 

study was conducted by Detwiller and Gabler (2017) on vehicle-pedestrian crashes, 
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which could have been avoided with the use of AVs. A total of 523 real crashes obtained 

from the National Highway Traffic Safety Administration (NHTSA) were studied. Two 

sets of code containing rule sets were coded by which the AVs would abide. The first set 

makes the AV abide by the traffic rules, and the second set asks the AV to drive 

cautiously whenever there is a possibility of a pedestrian conflict. The study concluded 

that upon using the first set of code, forty percent of crashes would have been avoided, 

and all but 27 out of 523 crashes would have been avoided by using the second set of 

code.  

 

          A 2013 study investigated near-miss situations with the help of drive recorders 

installed in passenger cars (Matsui, Hitosugi, Takahashi, et al., 2013). It was found that 

the average time to collision (TTC) for pedestrians without using a crosswalk was less 

than the ones who were using a crosswalk. The research showed that the average TTC for 

pedestrians emerging from obstructions was lesser than those who were not obstructed by 

objects such as buildings. Further research showed that when pedestrians emerge from 

obstructions, the TTC for vehicles and pedestrians was not significantly different 

(Matsui, Hitosugi, Doi, et al., 2013). As a result, it indicated a high risk of collision if the 

driver and the pedestrian were not paying attention. 

 

          A study by Combs et al. (2019) indicated that AVs with varying technologies could 

detect pedestrians in advance of fatal collisions. The study was conducted by involving 

three activities. First, the study established the functional range of advanced, up-to-date 

pedestrian sensor technologies. Second, they collected data from the Fatality Analysis 
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Reporting System for each state in the U.S. and the district of Columbia. Lastly, they 

assessed the maximum number of fatalities involving pedestrians that could have been 

avoided had the vehicles been replaced with the autonomous versions.  

 

          Will there be any difference in the pedestrian’s behaviour given that the future 

technology will be self-aware and be better at risk assessing? Millard-Ball, A. (2018) 

used a game theory to analyze the interactions between pedestrians and autonomous 

vehicles. Game theory is used to analyze situations involved with people interactions in 

which the actors participating in the analysis are influenced by the result of their 

interactions. The author interpolates the pedestrians crossing at a crosswalk to a game of 

chicken. The author introduces a new model that formalizes the game “crosswalk 

chicken” between the pedestrians and the autonomous vehicles. The author suggests that 

as the autonomous vehicles are more risk-aware, the pedestrians cross with impunity 

giving them an edge over autonomous technology. This in turn, decreases the efficiency 

of autonomous traffic flow, making human driving more desirable as they tend to have 

the upper hand in the game and can approach their destination much faster. The author 

finally emphasizes that besides the technological progress, legal and urban planning 

response would have a massive impact on autonomous vehicles.  

 

          Nevertheless, does implementing autonomous technology improve the overall 

network performance? A micro perspective-based study on mixed traffic systems 

indicates that even having a low ratio of HVs in the network would cause a considerable 

negative impact on the network performance (Chen et al., 2020). A 2016 study states that 
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there is a potential for reducing network performance considering user preference 

(Atkins, 2016). However, the research also states that AVs would be beneficial in 

congested networks as the vehicle driving behaviour influences the network density. 

Another study shows that by implementing simulation-based surrogate safety measures 

and high penetration rates, there was a significant reduction in the number of conflicts 

between vehicles despite the modelling for shorter headways (Morando et al., 2018). One 

study suggests an infrastructure for the coexistence of HVs and AVs where AVs will be 

given exclusive lanes (Santana et al., 2021). The resultant was reduced average travel 

time and space. The research uses mesoscopic traffic simulation to assess the system in 

realistic scenarios.  

 

          Research on autonomous vehicles is expected to increase drastically. This can only 

be done by simulating autonomous vehicles because testing autonomous vehicles in the 

real world will take an enormous amount of time and resources. One study challenges the 

practicality of testing the safety aspect of autonomous vehicles in the real world (Kalra & 

Paddock, 2016). The authors calculated the number of years it would take to test 

autonomous vehicles and found that it would take hundreds of millions of miles to 

billions of miles. This is certainly not possible, and therefore simulations should be 

carried out for testing various aspects of AVs. Although there are commercially available 

software programs that can fulfil this requirement, they do not match the flexibility of a 

game engine. For example, users can use a newly developed vehicle model embedded 

with virtual sensors in a simulation that take advantage of a virtual environment. This 

chapter demonstrates the flexibility of using a game engine in autonomous vehicles 
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research by simulating scenarios with different traffic conditions involving AVs, HVs, 

and mixed traffic and evaluates their performance and differences.  

 

5.3 Modelling Approach 

The same virtual environment used in the previous chapters is used in this chapter. 

However, different vehicular and pedestrian inputs are used in different scenarios. 

Additional behaviour characteristics are added to vehicles to differentiate between AVs 

and HVs. Pedestrians are designed with a simple origin-to-destination system. As the 

chapter focuses on traffic safety, simulations were run to capture pedestrians crossing the 

road as it is the most vulnerable time during pedestrian and vehicle interactions. 

Therefore, pedestrian forces between the pedestrians were removed during road 

crossings. Three separate scenes were created in Unity for three scenarios. The first 

scenario evaluates the performance of the network containing only AV traffic. The next 

two scenarios contain HV traffic and mixed traffic, respectively. Different scripts were 

also used to retrieve results. 

 

Vehicle Behaviour Parameters 

Vehicle behaviour parameters let users characterize the movement of vehicles. By 

changing vehicle behaviour parameters, we can model the driving behaviour of vehicles 

to AVs or HVs. The longitudinal behaviour of the vehicles can be modelled by using the 

parameters shown in5-2 (Atkins, 2016). 
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Parameters Description 

Standstill distance 
The desired distance between stopped 

vehicles 

Headway time 
The gap that a vehicle keeps in 

seconds 

Following variation 

The additional distance to the allowed 

safety distance that is permissible 

before the vehicle comes closer to the 

preceding vehicle 

Negative following threshold and 

Positive following threshold 

Control speed differences during car 

following 

Speed dependency of oscillation 
Influence of distance on speed 

oscillation 

Oscillation acceleration 
Influence of vehicle acceleration 

during car following oscillation 

Standstill acceleration 
Desired acceleration when starting 

from standstill 

Acceleration at 80km/h 
Desired acceleration from a speed of 

80km/h 

Smooth closeup behaviour 
Vehicles slow down more evenly 

when approaching a standing obstacle 

 

Table 0-2 Vehicle Behaviour Parameters 
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For this study, the below four parameters were used. They are: 

• Standstill Distance 

• Headway Time 

• Following Variation 

• Speed dependency of oscillation 

 

Standstill Distance: 

          This is the desired distance maintained between two vehicles when they are in a 

queue, for example, at a signal intersection during the red light. Given that the AVs are 

much more responsive and sensitive, they can have a smaller standstill distance than 

human-driven vehicles. For this simulation, we considered a standstill distance of 1m and 

1.5m for AVs and HVs, respectively. To produce this difference in the vehicle 

simulation, the value for standstill distance in equation (1) was changed respectively for 

AVs and HVs. 

 

Headway Time: 

          Headway time is the distance in seconds a vehicle maintains with the vehicle in 

front while moving to avoid a rear-end collision. Again, as AVs are more responsive their 

headway can be shortened compared to HVs. For our simulation, we assigned a headway 

time of 0.9s for HVs and 0.5s for AVs.  

 

          For this thesis, the below equation is created to calculate the acceleration of each 

vehicle. The equation uses the values of established headway times to determine the 
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acceleration of the wheels of the vehicle which helps to propel the vehicles forward. The 

formula is as follows: 

 

 
𝑎 =

(𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑 − 𝑢)

𝑡𝑚
 

(3) 

 

Where, 

a = acceleration in m/s2  

maxspeed = desired vehicle speed in m/s;  

u = the vehicle’s current speed in m/s; 

tm = headway time in seconds. 

 

Following Variation: 

          Following variation is the distance that is maintained in addition to the safety 

distance. This value is modelled after human-driven vehicles. For AVs, this value is equal 

to zero as they are more efficient compared to HVs. HVs were given a value of 4m. In the 

simulation, a random value between 0m to 4m is assigned to every vehicle. To 

incorporate this parameter into the Raycast system, a variable ad is added to equation (1) 

which produces the below formula: 

 

 𝑑𝑠  =  𝑎𝑥 +  𝑏𝑥 +  𝑎𝑑 (4) 

 

Where, 

ds = safety distance; 
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ax = standstill distance; 

bx = time adjusting requirement values; 

ad = following variation value in m. 

 

Speed dependency of oscillation: 

          Speed dependency of oscillation is the influence of distance on speed. It is the 

variation of speed for the vehicle around the desired speed. This value oscillates between 

0 to the maximum given value depending upon the distance of the vehicle with the 

vehicle in front. The closer the vehicle to the preceding vehicles, the lesser the variation 

and vice versa. For this simulation, we assigned a variation of 1m/s for HVs. As AVs are 

more precise in assessing the distance between vehicles, the speed dependency of 

oscillation would be zero. This parameter is incorporated by adding it to the maximum 

allowed speed limit of the given network which produces the below equation: 

 

 𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑 =  𝑚𝑠𝑣 +  𝑠𝑜𝑣 (5) 

 

Where, 

maxspeed = desired vehicle speed in m/s;  

msv = maximum speed allowed in m/s; 

sov = speed dependency of oscillation in m/s. The formula of sov is as follows: 

 

 

𝑠𝑜𝑣 =  
𝑉𝑎𝑙 ∗  

(𝑟𝑒𝑓𝑣𝑎𝑙 − 𝑑)
(16 − 𝑟𝑒𝑓𝑣𝑎𝑙)

(𝑟𝑒𝑓𝑣𝑎𝑙 − 𝑑)
(16 − 𝑟𝑒𝑓𝑣𝑎𝑙)

+  1
 

(6) 
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Where, 

sov = speed dependency of oscillation in m/s ; 

d = safety distance in m; 

refval = The vehicle’s distance from the preceding vehicle in m; 

Val = The maximum value for speed variation in m/s. 

 

5.4 Saturation Flow 

Saturation flow is an essential indicator for the performance of a network. Saturation flow 

is the number of vehicles that pass through the intersection during the green time of the 

intersection per hour. To evaluate the performance of our network, we used virtual 

saturation flow sensors that record the time the rare axle of a vehicle crosses the stop line. 

This is achieved using an invisible GameObject to represent the centre of a vehicle’s rear 

axle, as shown in Figure 5-2. From the retrieved data, the saturation flow rate of the 

network is calculated. There are two sensors for each lane that would note the vehicle and 

the time when the vehicle passes by the sensor. 
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Figure 0-1 Saturation Flow Sensor Recording a Car Crossing the Intersection ‘A’ 

 

 

Figure 0-2 Invisible GameObject Representing the Location of Vehicle’s Rear Axle 
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The formula for saturation flow is as follows (Bester and Meyers, 2007): 

 

 
𝑠 =  

3600

ℎ𝑠
 

(7) 

 

Where,  

s = saturation flow rate in vphgl;  

3600 = number of seconds per hour;  

hs = saturation headway in s. 

The formula for saturation headway is as follows: 

 

ℎ𝑠 =  

∑ ℎ𝑗

𝑙

𝑗=𝑛𝑞

(𝑙 + 1 − 𝑛𝑞)
 

(8) 

Where, 

hs = saturation headway in s;  

l = last queued vehicle position;  

hj = headway of jth queued vehicle in s;  

nq = position of queued vehicle from where saturation flow region started. 

 

5.5 Near Misses 

          To evaluate and compare the safety aspect of HVs and AVs, we simulated 

scenarios where the vehicles interact with the pedestrians crossing the road. The vehicles 

avoid these humans with the help of their Raycast sensor system. However, there might 

be cases when the cars come too close to the pedestrians. To detect these situations, an 



62 
 

additional sensor system is created. When a car comes one meter or closer to a 

pedestrian, the incident is detected, and the distance at which the near-miss incident is 

detected is recorded. This incident is called a near-miss incident. Figure 5-3 shows the 

detection of a pedestrian during a near-miss incident.   

 

 

Figure 0-3 Vehicle Detecting a Near Miss Incident at Intersection ‘B’ 

 

          These incidents involving near misses are then identified and stored in an excel 

sheet for later evaluation. To identify these incidents, the vehicles are modelled to have 

sensors that detect the humans in front. For this study, the sensors detect any humans at 

the intersection ‘B’ that come close to 1m of the front of the car. A representation of this 

can be seen in Figure 5-4.  

 



63 
 

Following the detection, data is entered into an excel sheet with the below information: 

• Time of incident in seconds 

• Name of the pedestrian 

• Name/type of the vehicle 

 

 

Figure 0-4 Representation of vehicles’ Virtual Near Miss Detection Sensor System 
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5.6 Level of Service 

Lane capacity can be assessed in terms of level of service (LOS) at signalized 

intersections. LOS is a qualitative measure used to describe operational conditions within 

a traffic stream (Council & TRB, 2000). Although parameters like speed and travel time 

can be used to calculate LOS, average delay of a vehicle at intersections can also be used. 

For this thesis, control delay is used to measure LOS for a lane at intersection A 

(intersection at Spring Garden Road and Dresden Row). The control delay d is divided 

into three parts: uniform delay d1, incremental delay d2, and initial queue delay d3 

(Council & TRB, 2000). Below are the formulae for calculating control delay: 

 𝑑 =  𝑑1(𝑃𝐹) + 𝑑2 +  𝑑3 (9) 

 

𝑑1 =  
0.5𝐶 (1 −  

𝑔
𝐶)

2

1 − [min(1, X)
𝑔
𝐶]

 

(10) 

 

𝑑2 = 900𝑇 [(𝑋 − 1) +  √(𝑋 − 1)2 +  
8𝑘𝐼𝑋

𝑐𝑇
] 

(11) 

Where, 

d1 = uniform delay d1 in s; 

d2 = incremental delay accounting for effect of random and oversaturation in s;  

d3 = initial queue delay in s/veh; 

X = volume to capacity ratio (v/c);  

c = capacity in veh/h;  

g = green time in s; 

C = cycle length in s; 
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T = duration of the analysis period in h;  

I = upstream filtering adjustment factor;  

k = incremental delay factor varying in value from 0.04 to 0.50, For fix-timed signals k = 

0.5 for M/D/1 queuing system as an approximation of queuing system at signalized 

intersections. 

PF = progression adjustment factor which is calculated by the below formula: 

 
𝑃𝐹 =

1 − 𝑃

1 −  
𝑔
𝐶

 
(12) 

Where, 

P = proportion of vehicles arriving on green volume-to-capacity ratio; 

g = green time in s; 

C = cycle length in s; 

 

          When a queue from a previous signal cycle is present at the start of the analysis, 

newly arriving vehicles will experience a delay which is called as the initial queue delay 

and is represented as d3. If there is no initial queue d3 will be equal to zero. Once the 

average control delay is achieved it can be compared with the table from Table 5-3 

(Highway Capacity Manual, 2010). 
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LOS 

Control Delay per 

vehicle (seconds per 

vehicle) 

A ≤ 10 

B > 10-20 

C > 20-35 

D > 35-55 

E > 55-80 

F > 80 

 

Table 0-3 Level of Service Standards for Signalized intersections 

 

5.7 Discussion of Results 

Two sets of scenarios are tested. For the first set, real-world traffic counts were retrieved 

from Halifax Regional Municipality and DalTRAC to test traffic performance of various 

kinds of traffic in present conditions. The data includes pedestrian and vehicle counts for 

morning and evening peak times. The selected peak times denote the busiest times of the 

day during the morning and evening hours at Spring Garden Road. These busiest times 

are the result of the location of schools, offices, restaurants, and other attractions at 

Spring Garden Road. The selected times include 8 am to 9 am for the morning hours and 

5:30 pm to 6:30 pm during the evening hours. This kind of testing would bring insight 

into the present traffic conditions when the traffic is replaced entirely or partially by 

autonomous vehicles. The types of traffic used for these scenarios are AV, HV, and 

Mixed (equal mix of HVs and AVs). HV traffic resembles the current situation where the 

traffic does not consist of fully autonomous vehicles, and AV traffic resembles traffic 
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consisting of only fully automated vehicles. For mixed traffic, the traffic consists of half 

AVs and half HVs. This traffic resembles the traffic condition when half of the vehicular 

fleet is occupied by AVs which is believed to happen by the year 2060 (Lee, 2020).  

 

          One-hour simulations were run to assess the performance of the network. Basic 

data like max allowed speed for the network, vehicle and pedestrian counts, and signal 

cycle timing were set according to the scenarios to achieve and observe results like 

average speeds of the vehicles, vehicle travel times, saturation flows, and near misses. 

Figure 5-5 shows the average speed and their standard deviation of vehicles recorded 

during each simulation. The data was retrieved by recording the average speed of each 

vehicle during its time in the simulation. The time of the vehicle spent in the simulation is 

defined as the time taken by a vehicle to reach its destination from the second it was 

spawned. The average speed is calculated by dividing the total distance travelled by the 

vehicle by the amount of time taken to travel the distance. 

      

          It can be seen that during the morning peak time, AVs have the lowest average 

speed and HVs have the highest average speed. This is because humans do not precisely 

calculate the required acceleration; they tend to cross the maximum speed limit allowed 

in the given area. The speed dependency of oscillation helps show this difference. The 

value sov helps mimic the behaviour of human drivers, which therefore resulted in a 

higher average speed. The average speed standard deviation is also higher for HVs due to 

the difference in maximum achieved speed for each vehicle. For mixed traffic, the 

average speed and its standard deviation are lower than AVs but higher than HVs. This is 
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caused due to the combined traffic of HVs and AVs. The results recorded for evening 

peak time are similar to that of the morning peak time but with lower average speeds 

contributed by a higher traffic volume. Traffic with only HVs and mixed traffic scenarios 

were observed to have a considerable decrease in average speeds compared to traffic with 

only AVs, which is contributed by the following variation character present in HVs. 

 

 

Figure 0-5 Averages of Vehicle Speed and their Standard Deviation Classified by 

Vehicle Types and Time of the Day 

          Figure 5-6 shows the travel time averages of AVs, HVs, and mixed traffic 

scenarios classified by morning and evening peak times. The graph indicates that AVs 

take longer to complete their trip compared to HVs and mixed traffic. This is caused by 

the strong abidance of AVs’ speed to the maximum allowed speed limit of the network, 

resulting in more extended trips. HVs show the least amount of travel time caused by 
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higher velocities achieved when compared to AVs. Although this is beneficial in 

completing the trip faster, it is not suggested to surpass the speed limits of a given area. 

Mixed traffic shows the highest travel time standard deviation for both peak times, which 

could be attributed to the difference in speeds achieved by AVs and HVs. 

 

 

Figure 0-6 Averages of Travel Times and their Standard Deviation Classified by 

Vehicle Types and Time of the Day 

          Table 5-3 shows the average distance of the pedestrian from a vehicle when a 

pedestrian comes close to a car within one meter or less. The closest distance of this 

interaction is noted and exported. During morning peak time, HVs are observed to have a 

higher average distance at which a near miss is detected. This is because HVs have a 

higher velocity on which the length of the Ray is calculated. This helps in detecting the 
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pedestrians sooner and helps the vehicle to stop earlier when compared to AVs. For 

evening peak times, the traffic flow is noted to increase. Under these conditions, at lower 

speed, the Raycast system built to detect pedestrians are blocked by the vehicles in front. 

These allow lower velocity vehicles (AVs) to stop faster and higher velocity vehicles 

(HVs) to stop slower, therefore, decreasing the distance between the vehicle and the 

pedestrian. Mixed traffic vehicles have the lowest average distance in both morning and 

evening peak times. It should also be noted that these distances are perpendicular 

distances between vehicles and pedestrians. 

 

Peak Times 
Vehicle 

Type 

Near 

Misses 

Average 

Distance 

(m) 

Near Misses 

Distance 

Standard 

Deviation 

(m) 

Morning 

AV 0.955354 0.032196837 

HV 0.96762 0.010890927 

Mixed 0.938191 0.035260388 

Evening 

AV 0.951437 0.037216654 

HV 0.944928 0.035673447 

Mixed 0.941832 0.039118874 

 

Table 0-4 Near Miss Incidents Detection Distance for Peak Times 

          The second set of scenarios were tested to evaluate the performance of the 

designed network at various intensities of pedestrian traffic flow. Three different 

pedestrian flow intensities were tested, which are referred to as mild, moderate, and 

intense. This would test the capabilities of modelled vehicles in mild to intense crossing 

scenarios. For mild, moderate, and intense scenarios, a pedestrian flow of 300, 500, and 
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700 pedestrians per hour are chosen respectively to cross the intersection ‘B’. Figure 5-7 

shows the average speeds of vehicles at different intensities of pedestrian crossings. It is 

observed that the average speed of vehicles decreases with the increase in pedestrian 

flow. This is because the Raycast system used for pedestrian detection can detect more 

than one pedestrian. As the pedestrian intensity increases, there is a greater chance for the 

vehicles to let multiple pedestrians cross the road at once. It can be seen that the mild and 

moderate scenarios are similar but with overall reduced average speeds. Both scenarios 

state that HVs have the highest average speed and AVs have the lowest, which is 

contributed by the vehicle behaviour parameters like speed dependency of oscillation. For 

the intense scenario, AVs are observed to have a slightly higher average speed. This is 

due to the decreased length of ray cast for pedestrian detection, which would let the 

vehicle move swiftly between pedestrian crossings.   

 

 

Figure 0-7 Averages of Speeds and their Standard Deviation Classified by Vehicle 

Type and Pedestrian Flow 
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          Figure 5-8 shows the average travel times of vehicles at different intensities of 

pedestrian crossings. Again, the mild and moderate scenarios are similar but with an 

increased average travel time for the moderate scenario. AVs are noted to have the 

highest travel times for both scenarios, and HVs have the lowest travel time. This is 

caused by the lower speeds for AVs and higher speeds for HVs. For the third scenario, 

travel times are noted to increase significantly when compared to the mild scenario. This 

can be explained by the increased waiting times at the intersection ‘B’. As stated before, 

AVs have lower ray length that would help move the vehicle swiftly between crossings. 

Mixed traffic performance takes second place in all three scenarios.   

  

Figure 0-8 Averages of Travel Times and their Standard Deviation Classified by 

Vehicle Type and Pedestrian Flow 

 

          Table 5-4 shows the saturation flow for the network at intersection ‘A’. The results 

are calculated by assuming the lane is green for the hour. The saturation flow for AVs is 
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higher than HVs, which indicates that a network having only AVs is more efficient than 

having HVs. This efficiency is caused by the reduced following distance and standstill 

distance of AVs. The saturation flow of mixed traffic is higher than HVs and lower than 

AVs, which can be interpreted as the result of having both HVs and AVs in the network. 

  

Vehicle 

Type 
Hs (s) 

Saturation 

Flow Rate 

(vphgl) 

AV 2.12 1698.11 

HV 2.45 1469.39 

Mixed 2.24 1607.14 

 

Table 0-5 Saturation Flow Calculated for the Network for Each Vehicle Type 

 

Table 5-5 shows the average distances of pedestrian detection from a vehicle at various 

intensities of pedestrian crossings. AV and HV traffic showed similar average distances, 

while mixed traffic showed the greatest average distance in the mild scenario. This is 

attributed by the change in vehicle compositions where the randomly assigned sov values 

could be higher for HVs. For the moderate scenario, HV traffic has a higher average 

distance which could be possible due to an increase in sensor length caused by the 

increased values of ad. For the intense scenario, HV traffic scored the lowest average 

distance by the higher number of vehicles queueing at intersection ‘B’, causing 

their Raycast system sensors to be blocked by the vehicles in front. 
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Pedestrian 

Intensity 

Scenario 

Vehicle 

Type 

Near 

Misses 

Average 

(m) 

Near 

Misses 

Standard 

Deviation 

(m) 

Mild 

AV 0.894241 0.119371 

HV 0.89325 0.122478 

Mixed 0.921881 0.088999 

Moderate 

AV 0.875034 0.168599 

HV 0.914163 0.099726 

Mixed 0.940626 0.059992 

Intense 

AV 0.913232 0.126601 

HV 0.854776 0.161284 

Mixed 0.931037 0.090967 

 

Table 0-6 Near Miss Incidents Detection Distance for various Pedestrian flows 

 

          Table 5-5 shows the average distances of pedestrian detection from a vehicle at 

various intensities of pedestrian crossings. AV and HV traffic showed similar average 

distances, while mixed traffic showed the greatest average distance in the mild scenario. 

This is attributed by the change in vehicle compositions where the randomly 

assigned sov values could be higher for HVs. For the moderate scenario, HV traffic has a 

higher average distance which could be possible due to an increase in sensor length 

caused by the increased values of ad. For the intense scenario, HV traffic scored the 

lowest average distance by the higher number of vehicles queueing at intersection ‘B’, 

causing their Raycast system sensors to be blocked by the vehicles in front. 
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          Table 5-6 shows the delays calculated to estimate LOS at intersection A. For all 

three traffic types, the initial queue delay d3 is noted to be zero as they were no vehicles 

queueing in the beginning of the analysis. For AV traffic the uniform delay is noted to be the 

lowest given their shortened sensor length produced by the vehicles’ lower speed. HV traffic has 

the highest uniform delay due to its higher speed. The incremental delay is highest for the HV 

traffic followed by mixed traffic. This is caused due to HV traffic’s lower saturation flow rate as 

their increased ray length would cause human driven vehicles to arrive slowly at the stop lines 

compared to autonomous vehicles despite their higher speed. Finally, the control delay is noted 

to be the highest for HV traffic which would score an LOS level of ‘C’ after comparing the results 

with Table 5-3. For AV and mixed traffic, the LOS is noted to achieve a level of ‘B’. 

 

Traffic Type 
Uniform Delay 

d1 (s) 

Incremental 

Delay d2 (s) 

Initial Queue 

Delay d3 (s) 

Control 

Delay d (s) 
LOS 

AV 10.63 4.95 0 15.58 B 

HV 11.39 10.42 0 21.81 C 

Mixed 10.89 6.6 0 17.49 B 

 

Table 0-7 Delays Calculated to Estimate Level of Service 

 

5.8 Conclusion 

This chapter examines the performance of the network under various kinds of traffic 

using a game engine. The kinds of traffic include AVs, HVs, and mixed traffic containing 

equal units of both HVs and AVs. Two sets of scenarios were tested. The first scenario 

tests network traffic performance during morning and evening peak times, and the second 
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set of scenarios tests the performance of the network traffic under mild to intense 

pedestrian flow conditions. 

 

          In the first set of scenarios, AVs were observed to have the lowest average speeds 

and highest average travel times. HVs were observed to have the highest average speeds 

and lowest average travel times. These results were contributed by the designed vehicle 

behaviour parameters for AVs and HVs. The vehicle parameters included headway time, 

standstill distance, following variation, and speed dependency of oscillation. The average 

distances at which the near misses were detected were also noted. The length and angle of 

the sensor ray played a vital role in the results as HVs were observed to have higher 

average distance during low vehicular traffic and lower average distance during higher 

vehicular traffic. 

          

          In the second set of scenarios, the average speeds of the vehicle for mild and 

moderate pedestrian flow scenarios show that AVs were able to maintain a lower speed 

than HVs, indicating that as humans do not precisely calculate the required acceleration, 

they have the tendency to cross the maximum speed limit allowed in the given area. The 

speed dependency of oscillation helped show this difference. In all scenarios, the average 

speed of vehicles in mixed traffic always stayed in between the range of traffic with only 

HVs and only AVs. For the intense pedestrian flow scenario, the average speeds of all 

three traffic types were noted to be less than the former two scenarios. This could be 

attributed to the fact that as more pedestrians were crossing the road, the vehicles had to 

stop for a more extended amount of time. AVs showed a greater average travel time than 
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HVs and mixed traffic for mild and moderate pedestrian flows. As AVs continuously 

operated at speed below the maximum allowed speed of the given network, they took 

more time to complete their journey. Saturation flow results show that networks with 

only AVs are more efficient as they help produce higher saturation flow rates than HVs 

and mixed traffic. The near-miss incident results showed lower values for HV traffic in 

an intense scenario, which was caused by a higher number of queued vehicles at the 

unsignalized intersection. The mixed traffic showed the highest average distances of 

near-miss incidents for all three scenarios, which is caused due to the varied speed 

differences between vehicles. LOS was calculated at signalized intersection ‘A’ using the 

saturation flow rates and control delay times for all three traffic types. HV traffic scored a 

worse LOS with a level of C. This can be explained by its greater incremental delay 

compared to AV and mixed traffic. Mixed traffic achieved an LOS of ‘B’ which is the 

same as AV traffic, but it is worth noting that the control delay time was higher for mixed 

traffic indicating that more time was lost at the intersection due to the presence of HVs in 

the composition.  

 

          Therefore, the application of a game engine in evaluating the performance of 

networks with different types of traffic is proved to be valid. The virtual 3D network can 

be expanded to multiple intersections and lanes to test and solve complex traffic 

microsimulation problems. Different types of data required can also be retrieved by using 

various scripts. The virtual models of AVs can be further improved by designing virtual 

technology in the 3D environment. Virtual infrastructure like charging stations or battery 

swap stations can also be incorporated to support the penetration of AVs into global 
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markets. The scope of expansion for such improvisations is unlimited, and it is only 

possible with the help of game engines. 
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Chapter 6: Conclusion 

 

This thesis presents a framework to develop a game engine-based tool that uses a 3D 

virtual environment for traffic analysis purposes. The developed game engine-based tool 

is used as used for analyzing traffic microsimulations. To achieve this, first, a 3D model 

is built using Sketchup, a 3D modelling computer program. The 3D model built 

representing the Spring Garden Road in Downtown, Halifax, is then imported into Unity, 

and therefore the 3D environment is established. The established static 3D environment 

then needs to be enhanced to a dynamic animated environment. This was achieved by 

adding scripts to GameObjects. The scripts add various functionality to 

each GameObject. The GameObjects include 3D models like cars, trees, and humans 

imported from the Unity asset store. The 3D models were modified accordingly by 

attaching various components that aid the GameObjects by providing visual 

characteristics and providing them with the ability to interact with the virtual 

environment. These components include Rigidbody, Mesh Renderer, Box Collider, Wheel 

Collider, NavMesh Agent, and Animator. Various scripts are then added to the 

required GameObjects as components. Example functionalities of the scripts include 

signal systems, vehicle behaviours, pedestrian behaviours, spawning, destinations, 

destroying GameObjects, wheel rotation, and data retrieval. The movement of cars is 

designed with the help of Unity physics, and the movement of pedestrians is designed 

with the help of NavMesh, a mesh generated in Unity to build walkable areas in the 

virtual environment. The 3D virtual environment is then tested by running the simulation 
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and then checking standstill distances between vehicles, signal operations, vehicle and 

pedestrian movements, and exported data.  

 

          After testing the built environment, the 3D platform is then used for various 

applications. The capability of using a game engine in pandemic-related pedestrian 

studies is tested. This is done by simulating three scenarios in which the movements of 

pedestrians are produced with the help of a social force model. The first scenario, BAU, 

depicts the movement of pedestrians on a sidewalk before COVID-19. The second 

scenario depicts the pedestrian movements trying to socially distance between each other 

by maintaining a two-meter gap with other pedestrians while waking. The second 

scenario also has mobility restrictions which is achieved in the simulation by decreasing 

pedestrian traffic. The third scenario depicts the same pedestrian movements as the 

second scenario, but the pedestrian traffic is again increased to the same as BAU. This 

scenario represents a reopening phase where mobility restrictions are lifted. All three 

scenarios are analyzed to observe the number of violations in social distancing. Data like 

average travel time of pedestrians and pedestrian density were analyzed to understand the 

outcome. It is noticed that with the increase in social forces like repulsion between 

pedestrians increases travel time. This study shows the possible violations in pre-

pandemic, pandemic, and post-pandemic scenarios. It was noticed that post-pandemic, 

the number of violations are still significant even with social distancing forces. To control 

these violations measures should be taken to help people organize their walking 

behaviour. Such measures include visual cues and violation monitoring devices. The 
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game engine tool was therefore proved useful to study pedestrian interactions and hence 

can be used to perform pedestrian microsimulations. 

          

          Another significant contribution from this thesis is evaluating the performance of 

AV, HV, and mixed traffic. Vehicle behaviour characteristics were added to the vehicles 

by modifying scripts. The modified scripts included additional vehicle behaviour 

parameters like standstill distance, headway time, following variation, and speed 

dependency of oscillation. These parameters helped in differentiating HVs from AVs. 

The performance evaluation for all three traffic types is analyzed with the help of two 

sets of scenarios. The first set of scenarios were modelled after the morning and evening 

peak time traffic counts of Spring Garden Road. It was noticed that AV traffic had the 

lowest average speeds and HV traffic had the highest average speeds, which were 

contributed by the speed dependency of oscillation parameter. 

 

          As a result, AV traffic took longer to complete their trips, and HV traffic took the 

lowest time. Average near-miss distances were also calculated, and it was observed that 

AV traffic recorded the lowest average near miss distance during the morning peak time 

and the highest average near miss distance during the evening peak time. It was noticed 

that the change in vehicular traffic intensity has contributed to these results. The second 

set of scenarios constituted three scenarios; mild, moderate, and intense, which depicted 

low to high-intensity pedestrian flow scenarios. These scenarios were tested to evaluate 

the three types of vehicular traffic in various pedestrian flow situations. For all vehicular 

traffic types, mild and moderate scenarios showed similar results but lower average 
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speeds and higher travel times with increased pedestrian traffic. AV traffic had the lowest 

average speeds and highest travel times, while HV had the highest average speeds and 

lowest travel times. Mixed traffic always produced result values between AV and HV 

traffic. For the intense scenario, AV recorded the highest average speeds and lowest 

travel times due to their shortened sensor ray lengths which were contributed by the null 

values of the following variation parameter. The network's saturation flows for different 

vehicular traffic are calculated and found that AVs have the highest saturation flow rate, 

and HVs have the lowest saturation flow rate. Finally, LOS was calculated for all three 

traffic types. HV traffic received a lower LOS when compared to AV and mixed traffic 

which was caused due to lower saturation flow rates. 

 

          Although this thesis proves that game engines are helpful in developing new virtual 

tools for research, they do have certain limitations. Computer hardware that constitutes 

the graphical power or processing power is one of the critical limitations for using this 

kind of framework. This thesis is enclosed to the simulation of one street, but large-scale 

projects involving multiple streets or cities might require an initial investment in 

powerful computer hardware. The second limitation of using a game engine-based tool is 

the reliability of its physics engine. Establishing wheel physics for this thesis took 

multiple trial and error sets. However, this can be fixed with future software updates.  

          

          This thesis proves that game engines can be used in transportation research. It can 

also be used in transportation planning, where planners can visualize their models to put 

forth their ideas. Unlike commercially available microsimulation software programs, a 
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game engine can provide great flexibility in terms of visualization and virtual 

environment interactions. This thesis could be further enhanced exponentially. For 

example, infectious disease models can be integrated with pedestrian microsimulations 

which therefore would help in visualizing the accurate outspread of diseases. More lanes 

and roads can be added to build 3D models of cities. Other kinds of traffic like buses, 

trains, and airplanes can be added to represent a diverse transport network. Simulators 

involving user participation like car driving simulators, cycling simulators, and walking 

simulators can be added to the current network to study the behavioural patterns of 

participants. The scope of enhancement for the framework this thesis presents is 

exponentially more when compared to commercially available software programs where 

users must rely on the development of the program or the addition of new modules. Such 

software programs can improve their flexibility by integrating a game engine style 

module which would allow users to manipulate various aspects of microsimulations such 

as the surrounding virtual environments or unique behavioural and visual characteristics 

of vehicles. These kinds of changes might also require the addition of physics engines 

that would bring the simulations much closer to the real world. 
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Appendix 

 

A: Sample Scripts 

 

1. Sample Code for Spawning Pedestrians 

 

public class PedestrianSpawner : MonoBehaviour 
{ 

    public GameObject pedesstrianPrefab; 

    public int pedestriansToSpawn; 
    public List<GameObject> pedestrians; 
 

    void Start() 
    { 

        StartCoroutine(Spawn()); 

    } 

 

    IEnumerator Spawn() 

    { 

        int count = 0; 
        while(count < pedestriansToSpawn) 

        { 

            GameObject obj = Instantiate(pedesstrianPrefab); 

Transform child = transform.GetChild(UnityEngine.Random.Range(0, 

transform.childCount - 1)); 

            obj.GetComponent<WaypointNavigator>().currentWaypoint =  

child.GetComponent<Waypoint>(); 

            obj.transform.position = child.position; 

            yield return new WaitForEndOfFrame(); 
            count++; 

        } 

    } 

    

} 
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2. Sample Code for Recording Saturation Flow Rate 

 

currentTime = Time.time.ToString("f6"); 
RaycastHit hit; 

Vector3 stpt1 = transform.position; 

stpt1 += transform.forward * fsrp1.z; 

stpt1 += transform.up * fsrp1.y; 

stpt1 += transform.right * fssrp1; 

 

if (Physics.Raycast(stpt1, Quaternion.AngleAxis(180, transform.up)  
* transform.forward, out hit, 4f)) 
            { 

                if (hit.collider.CompareTag("CB1")) 
                { 

                    if (hit.transform.name != nm) 
                    { 

                        Debug.DrawLine(stpt1, hit.point, Color.green); 

AddRecord(currentTime, hit.transform.name, "Sensor1",       

"Saturation_Flow.csv"); 

                        nm = hit.transform.name; 

                    } 

                } 

            } 

        } 

 

        public static void AddRecord(string tt, string name, string cat, string  

 filepath) 
        { 

            try 
            { 

using (System.IO.StreamWriter file = new  

System.IO.StreamWriter(@filepath, true)) 
                 { 

                      file.WriteLine(tt + "," + name + "," + cat); 
                   } 

            } 

            catch (Exception ex) 
            { 

                throw new ApplicationException("Something went wrong :", ex); 
            } 

        } 
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3. Sample Code for Signal System 

if (t == 8) 

        { 

            Sig1.gameObject.SetActive(true); 

            Sig2.gameObject.SetActive(true); 

        } 

if (t == 12) //13s 

        { 

            R1.SetActive(false); 

            R2.SetActive(false); 

            G1.SetActive(true); 

            G2.SetActive(true); 

            cSig1.gameObject.SetActive(false); 

            cSig2.gameObject.SetActive(false); 

 

        } 

if (t == 25) //3s 

        { 

            G1.SetActive(false); 

            G2.SetActive(false); 

            Y1.SetActive(true); 

            Y2.SetActive(true); 

            cSig1.gameObject.SetActive(true); 

            cSig2.gameObject.SetActive(true); 

        } 

if (t == 28) //2s 

        { 

             

            Y1.SetActive(false); 

            Y2.SetActive(false); 

            R1.SetActive(true); 

            R2.SetActive(true); 

        } 

if (t == 30) 

        { 

            rectime += n; 

        } 

if (t == 0) 
        { 

            Sig1.gameObject.SetActive(false); 

            Sig2.gameObject.SetActive(false); 

        } 

    } 

} 
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4. Sample Code for Recording Average Speed and Time Travelled by a Vehicle 

 

private void Awake() 

    { 

        a = (float)Time.time; 

    } 

 

void Update() 

    { 

        speed = (float)rb.velocity.magnitude; 

        speeds.Add(speed); 

        t = (float)Time.time - a; 

    } 

 

void OnTriggerEnter(Collider other) 

    { 

        if (other.CompareTag("Finish")) 

        { 

            float averageTotal; 

            for (int i = 0; i < speeds.Count; i++) 

            { 

                finalTotal += speeds[i]; 

            } 

            averageTotal = finalTotal / speeds.Count; 

            AddRecord(this.name, t, averageTotal, "SpeedTime.csv"); 

        } 

    } 

public static void AddRecord(string cat, float tt, float avgsp, string   filepath) 

    { 

        try 

        { 

using (System.IO.StreamWriter file = new System.IO.StreamWriter(@filepath, true)) 

            { 

                file.WriteLine(cat + "," + tt + "," + avgsp); 

            } 

        } 

        catch (Exception ex) 

        { 

            throw new ApplicationException("Something went wrong :", ex); 

        } 

    } 

} 
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5. Sample Code for Vehicle Movement 

private void Drive() 
    { 

        currentSpeed = (float)rb.velocity.magnitude; 
        bx = (bxadd + (bxmul * z)) * (Mathf.Sqrt(currentSpeed)); 

        D = ax + bx + ad; 

        if (refval > D) 
        { 

sov = (val * ((refval - D) / (16 - refval))) / (((refval - D) /  

(16 - refval)) + 1 ); 

        } 

        else 
        { 

            sov = 0; 

        } 

        maxSpeed = msv + sov; 

        if (!avoiding) 

        { 

            if (fol != 0f) 
            { 

                if (D <= fol) 
                { 

                    u = (float)rb.velocity.magnitude; 
                    a = (maxSpeed - u) / tm; 

                    Force = 1000f * a; 

                    Torque = 0.3f * Force; 

                    wheelFL.motorTorque = Torque; 

                    wheelFR.motorTorque = Torque; 

                    wheelFL.brakeTorque = 0; 

                    wheelFR.brakeTorque = 0; 

                } 

                else 
                { 

                    a = 0; 

                    Force = 1000f * a; 

                    Torque = 0.3f * Force; 

                    wheelFL.motorTorque = Torque; 

                    wheelFR.motorTorque = Torque; 

                    wheelFL.brakeTorque = maxBrakeTorque; 

                    wheelFR.brakeTorque = maxBrakeTorque; 

                } 

            } 
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6. Sample Code for Vehicle Path  

 

void OnDrawGizmosSelected()  

    { 

        Gizmos.color = Color.yellow; 

 

        Transform[] path = GetComponentsInChildren<Transform>(); 

        nd = new List<Transform>(); 

 

        for(int i = 0; i < path.Length; i++)  

     { 

            if(path[i] != transform)  

  { 

                nd.Add(path[i]); 

                } 

            } 

 

        for(int i = 0; i < nd.Count; i++) { 

            Vector3 cn = nd[i].position; 

            Vector3 pn = Vector3.zero; 

 

            if (i > 0)  

  { 

                pn = nd[i - 1].position; 

                }  

     else if(i == 0 && nd.Count > 1)  

         { 

                pn = nd[nd.Count - 1].position; 

                } 

 

            Gizmos.DrawLine(pn, cn); 

            Gizmos.DrawWireSphere(cn, 0.3f); 

        } 

    } 
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B: Sample Data for COVID-19 Application 

 

1. Travel Time Data for BAU scenario 

 

Pedestrian 

Name 

Travel 

Time (s) 

SFC2_1 5.618999 

SFC1_1 5.607123 

SFC1_2 5.618898 

SFC2_2 5.638484 

SFC1_3 5.63641 

SFC2_3 5.638397 

SFC1_4 5.612287 

SFC2_4 5.620705 

SFC1_5 5.612818 

SFC1_6 5.58828 

SFC2_5 5.659752 

SFC1_7 5.617393 

SFC2_6 5.626469 

SFC1_8 5.609224 

SFC1_9 5.61919 

SFC2_7 5.627308 

SFC1_10 5.615734 

SFC2_8 5.616875 

SFC1_11 5.570717 

SFC2_9 5.637741 

SFC1_12 5.616055 

SFC1_13 5.591923 

SFC2_10 5.616653 

SFC1_14 5.636787 

SFC2_11 5.635143 

SFC1_15 5.586124 

SFC1_16 5.614525 

SFC2_12 5.630562 

SFC1_17 5.59761 

SFC2_13 5.623306 

SFC1_18 5.593079 

SFC2_14 5.627975 

SFC1_19 5.598358 

SFC1_20 5.618698 

SFC2_15 5.609322 
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2. Pedestrian Density Data for BAU Scenario 

 

Pedestrian 

Density 

(p/sqm) 

Time 

(s) 

0.0639713 0 

0.0639713 1 

0.0639713 2 

0.095957 3 

0.095957 4 

0.1279427 5 

0.1279427 6 

0.1599284 7 

0.1599284 8 

0.1599284 9 

0.2238997 10 

0.191914 11 

0.1599284 12 

0.1599284 13 

0.191914 14 

0.191914 15 

0.1599284 16 

0.1599284 17 

0.1599284 18 

0.1599284 19 

0.191914 20 

0.191914 21 

0.1599284 22 

0.1599284 23 

0.1599284 24 

0.191914 25 

0.1599284 26 

0.1599284 27 

0.191914 28 

0.1599284 29 

0.191914 30 

0.1599284 31 

0.191914 32 

0.1599284 33 

0.1599284 34 

0.191914 35 

0.1599284 36 
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3. Violation Notes for BAU Scenario 

 

Time of 

Violation 

(s) 

Pedestrian 

Name 1 

Pedestrian 

Name 2 

5.54 SFC2_1 SFC1_1 

5.56 SFC1_1 SFC2_1 

7.28 SFC2_1 SFC1_2 

7.3 SFC1_2 SFC2_1 

8 SFC1_1 SFC2_2 

8.02 SFC2_2 SFC1_1 

9.08 SFC2_1 SFC1_3 

9.12 SFC1_3 SFC2_1 

9.7 SFC1_2 SFC2_2 

9.719999 SFC2_2 SFC1_2 

10.52 SFC1_1 SFC2_3 

10.56 SFC2_3 SFC1_1 

10.84 SFC2_1 SFC1_4 

10.88 SFC1_4 SFC2_1 

11.5 SFC1_3 SFC2_2 

11.5 SFC2_2 SFC1_3 

12.56 SFC2_3 SFC1_2 

13.32 SFC2_2 SFC1_4 

13.34 SFC1_4 SFC2_2 

14 SFC1_3 SFC2_3 

14.02 SFC2_3 SFC1_3 

15.16 SFC2_2 SFC1_5 

15.2 SFC1_5 SFC2_2 

15.8 SFC1_4 SFC2_3 

15.82 SFC2_3 SFC1_4 

16.54 SFC1_3 SFC2_4 

16.58 SFC2_4 SFC1_3 

17.84 SFC1_5 SFC2_3 

17.86 SFC2_3 SFC1_5 

18.32 SFC1_4 SFC2_4 

18.34 SFC2_4 SFC1_4 

19.44 SFC2_3 SFC1_6 

19.48 SFC1_6 SFC2_3 

20.12 SFC1_5 SFC2_4 

20.14 SFC2_4 SFC1_5 

20.86 SFC1_4 SFC2_5 

20.9 SFC2_5 SFC1_4 
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4. Saturation Flow Rate Sensor 

 

Time of 

Detection 

(s) 

Vehicle Name 
Sensor 

Name 

44.08 Tocus (2)_1 Sensor2 

44.1 Tocus (1)_1 Sensor1 

46.3 Tocus (2)_2 Sensor2 

46.44 Tocus (1)_2 Sensor1 

48.74 Tocus (2)_3 Sensor2 

48.84 Tocus (1)_3 Sensor1 

51.06 Tocus (1)_4 Sensor1 

51.1 Tocus (2)_4 Sensor2 

73.86 Tocus (2)_5 Sensor2 

74.06 Tocus (1)_5 Sensor1 

76.2 Tocus (2)_6 Sensor2 

76.38 Tocus (1)_6 Sensor1 

78.6 Tocus (2)_7 Sensor2 

78.66 Tocus (1)_7 Sensor1 

81.02 Tocus (2)_8 Sensor2 

81.1 Tocus (1)_8 Sensor1 

85.84 Tocus (2)_9 Sensor2 

104.04 Tocus (1)_9 Sensor1 

104.18 Tocus (2)_10 Sensor2 

106.44 Tocus (1)_10 Sensor1 

106.6 Tocus (2)_11 Sensor2 

108.68 Tocus (1)_11 Sensor1 

108.94 Tocus (2)_12 Sensor2 

111.04 Tocus (1)_12 Sensor1 

113.76 Tocus (2)_13 Sensor2 

133.74 Tocus (1)_13 Sensor1 

134.16 Tocus (2)_14 Sensor2 

136.06 Tocus (1)_14 Sensor1 

136.36 Tocus (2)_15 Sensor2 

138.52 Tocus (1)_15 Sensor1 

138.7 Tocus (2)_16 Sensor2 

140.92 Tocus (1)_16 Sensor1 

144.72 Tocus (2)_17 Sensor2 

145.08 Tocus (1)_17 Sensor1 

164.02 Tocus (1)_18 Sensor1 

164.14 Tocus (2)_18 Sensor2 

 


