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Abstract

With the unprecedented increase in global senior population and the accompanying

debilitating neurological diseases, there is a growing and unmet demand for physical

rehabilitation. Additionally, the drastic reduction of in-person care and the increased

physical and cerebrovascular injuries during the current pandemic is not only inter-

rupting the essential continuum of physiotherapy, but also causing the divergence

between the demand and the supply of the service to grow even more.

Telerehabilitation with robotic exoskeletons is an emerging, and compelling comple-

mentary rehabilitation modality which could help address the widening gap between

the demand and the supply of physiotherapeutic services. Some of the prevailing

challenges for the robot controllers are to overcome the effects of dynamic model-

ing uncertainties and ensure good tracking performance, stability, safe and compliant

motion, and a high degree of telepresence between the two remotely-separated human-

robot systems in the presence of nonlinearities, human torques, and communication

constraints such as time delays.

To address these challenges, two control methods are further developed, implemented,

and validated for telerehabilitation with upper-limb robotic exoskeletons: Adaptive

Robust Integral Impedance model (ARII) control and Adaptive Robust Integral Ra-

dial Basis Function Neural Networks-based Impedance model (RBFNN-I) control.

Both implementations have been extended to provide compliant behaviour using an

adjustable impedance model controller and revealed desirable performance for the

conditions used in this research. A salient contribution of this research is the creation

and implementation of a novel human torque regulator (HTR) which was shown to

provide higher fidelity telepresence for the therapist compared to existing methods

to enhance the safety and perception of the closed-loop physical interaction. Exper-

iments were performed using single-joint robots while simulations were carried out

using two-degrees-of-freedom (2-DOF) exoskeletons models to validate the proposed

controllers and advance the state-of-the-art control for telerehabilitation with upper-

limb robotic exoskeletons.
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Chapter 1

Introduction

The unprecedented growth in the worldwide senior population − which is expected

to more than double by 2050 [1, 2] − and the surging survival rate with disabilities

[3, 4, 5], is creating an escalating and unmet demand for physical rehabilitation [6].

Stroke in particular is the largest cause of disability in the USA [7, 8] and one of the

leading causes of long-term disability worldwide [9, 10, 11, 12]. Before the pandemic,

the demand for physical rehabilitation in the USA was estimated to be approximately

17% greater than what could be provided [13], and is expected to grow to 36% by

2030 [14]. Currently, about 1 billion people worldwide live with some sort of disability

and the predictions indicate that 2.4 billion people will require physical rehabilitation

in 2030 [2].

The COVID-19 pandemic has had a horrendous effect on the delivery of phys-

iotherapy, thus far. Newly-discovered correlations between the mildly-symptomatic

COVID-19 patients and incidence of major stroke [15, 16], as well increased physical

injuries due to increased sedentariness, ‘bad home-office setups’, excessive exercising,

or unsafe exercising [17] further escalate the demand for the service. Additionally, due

to the surge in critically-ill COVID-19 patients requiring hospitalization, there is a

scarcity of available hospital beds for patients suffering from other illnesses, including

stroke. For example, at one point during the pandemic, hospitals in New York City

discharged patients and stopped accepting new ones in their acute inpatient rehabil-

itation units [18]. Furthermore, there are many places around the world where insuf-

ficient safety precautions such as inadequate Personal Protective Equipment (PPE),

reused PPE, and the lack of PPE for the physiotherapist put them at unacceptable

risk while performing their jobs [19, 20]. Due to the concern of spreading or contract-

ing the disease, especially if aerosol-generating procedures are required, many who

need physiotherapy cancel or avoid in-person sessions potentially resulting in deteri-

orating health [21]. As a result, even though the need for physiotherapy continues to
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escalate, the delivery of physiotherapy is reduced due to the effects of the pandemic.

This reduction in physiotherapy can be seen in Fig. 1.1 which is from the “Impact

of COVID-19 on the Physical Therapy Profession” report published in August 2020

by The American Physical Therapy Association. This figure shows the significant

percentage of physiotherapists working in different environments whose July 2020

work hours were lower than before the pandemic. Furthermore, due to closure re-

strictions in different parts of the world, many clinics are left with providing support

and instructions to their patients via a telephone helpline or video-consultations [22].

However, as one of the commentators on the article remarked: “What’s the value of

physical therapy without physical contact?” [22]. Many physiotherapists were also

reassigned to COVID-19-related duties on the front line, or were layed off due to

clinics closing − further reducing access to physiotherapy to many sufferers. It is

abundantly clear that the COVID-19 pandemic is further exacerbating the demand

[23] and preventing the delivery of physical rehabilitation in a safe, timely, uninter-

rupted, sufficient, and effective manner and can have a severe impact on the health

and lives of millions of people.

Professor Christopher Murray, Director of the Institute for Health Metrics and

Evaluation at the University of Washington, USA, has stated that: “as disability

becomes an increasingly large share of the global disease burden and a larger com-

ponent of health expenditure, there is an urgent and compelling need to identify

new, more effective interventions” [10]. Clearly, alternatives are urgently needed to

address this escalating issue. The physical rehabilitation of upper limbs, in particu-

lar, is paramount [24] to improve the quality of life and lessen personal and societal

burdens incurred by neuromuscular dysfunctions.

This thesis presents research carried out on upper-limb robotic exoskeleton telere-

habilitation control methods which builds on the state-of-the-art to hopefully enable

the delivery of physiotherapy to more people in the future.

In this chapter, human arm movement and common muscle impairments are first

presented. Next, upper-limb conventional rehabilitation and rehabilitation robotic

devices are introduced. The thesis motivation, objective, and contributions are then

presented followed by the organization of this thesis.
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Figure 1.1: Percentage of physiotherapists whose July 2020 work hours were lower
than before the pandemic [21]

1.1 Background on Rehabilitation

1.1.1 Human Arm Movement and Upper-Limb Muscle Function

Impairments

Human Arm Movement

The research presented in this thesis focused on two of the distal osteokinematic

movements: the extension and flexion of the elbow joint shown in Figs. 1.2(a) and

1.2 (b), and the extension and flexion of the wrist joint shown in Figs. 1.2(c) and

1.2(d). The general angular range of a non-affected elbow is 150◦ while that of a

normally-functional wrist is 160◦ [25].

Upper-limb (UL) Muscle Function Impairment

Mobility-affecting damage to the central nervous system can be caused by a variety

of neurological diseases such as Multiple Sclerosis, Parkinson’s disease, and Cerebral
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(a) Elbow extension (b) Elbow flexion

(c) Wrist extension (d) Wrist flexion

Figure 1.2: Top view of osteokinematic elbow and wrist extension/flexion movements

palsy, and neuromuscular disorders such as Muscular Dystrophy [26], Guillain-Barré,

and Amyotrophic Lateral Sclerosis. Additionally, traumatic brain and spinal cord in-

juries, orthopedic dysfunctions, and accidents can also cause upper-limb muscle dys-

function and their diminished functionality. One of the common physical impairments

due to cerebrovascular diseases such as stroke is hemiparesis (weakness on one side of

the body). The most prominent and persistent disability in stroke patients, however,

is upper-limb impairment, which is reported in 70% of patients upon admission to the

hospital [27]. The disabilities can include reduced range of motion, less accurate and

reduced smoothness of movements [28], impaired somatosensation (decreased ability

to sense the movement of body parts) [29], and excessive muscle contractions (spas-

ticity) [30], which is also called tone and can feel as resistance to passive movement

of a limb. Some of the secondary impairments include muscular atrophy, the short-

ening and stiffening of soft tissue due to disuse, and a decreasing passive range of

motion [29]. As a result, sufferers can experience reduced independence, persistent
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frustration, anxiety, depression, and withdrawal [31] due to diminished ability to per-

form activities of daily living (ADL) such as eating, grooming, dressing, housework,

exercising, dancing, cooking, driving, interacting with other people, using computers,

and operating machinery.

1.1.2 Upper-Limb Conventional Rehabilitation and Rehabilitation with

Robotic Devices

A. Conventional Rehabilitation

Physical therapists are crucial medical professionals that specialize in the assessment

of functional impairment and the delivery of physical rehabilitation to restore func-

tion. On one hand, mobilization, stretching, and actively moving the affected joint

as mandated by a physiotherapist or guided by a physiotherapist can greatly improve

and fully restore function and range of motion. On the other hand, failed therapy

or the lack of physical therapy can leave many sufferers with life-long compromised

mobility, reduced quality of life, further complications [32], and can cause those with

a nonfunctional arm wishing that it would be amputated [31].

A potential solution to help mitigate the surging and unmet demand for physical

rehabilitation therapy is the use of rehabilitation robotic devices. As Buerger et al.

has stated in “Rehabilitation Robotics: Adapting Robot Behavior to Suit Patient

Needs and Abilities” [33], these devices “must closely cooperate with various human

subjects; they also must be designed so as to facilitate motor recovery over time.

The latter challenge is made particularly difficult by the fact that the mechanisms of

motor recovery are not yet fully understood. Therapy robots offer potential help in

unraveling this mystery.”

Marchal-Crespo et al. [34] outlined a number of motivations and rationals for

robotic-assisted rehabilitation with active assist exercises. Though not extensively

verified in scientific studies at the time their paper was written in 2009, it is interesting

to consider the potential benefits and pathways in which rehabilitation robots may

aid in mobility recovery. Rehabilitation robots may:

� assist in preventing stiffening of soft tissue and decrease spasticity by stretching

the muscles and connective tissue;
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� assist to create novel somatosensory stimulation which could help stimulate

neuroplasticity by moving the limb in ways not possible voluntarily;

� help the patient learn a movement by demonstration;

� assist the patient’s locomotor system in reestablishing the normal pattern of

motor output by creating a normative pattern of sensory input;

� make possible higher intensity training by enabling higher number of repetitions;

� make possible higher intensity training by allowing the performance of tasks in

a safe manner;

� enable progress in task performance by providing less assistance over time, sim-

ilar to how a toddler needs progressively less assistance in standing and walking

on their own as they learn to balance;

� help improve patients’ motivation and their connection of ‘intention-to-action’

by aiding them in achieving desired movements.

Rehabilitation robots can deliver task-oriented, repetitive, customized, high-intensity,

and variable-intensity training enabling improved mobility recovery through func-

tional neuroplasticity [7, 35, 36, 37, 38, 39]. These devices can provide quantified, ac-

curate, and objective measurements related to the patient’s range of motion, strength,

and functional ability. This rich and customized feedback has been found to enhance

therapy by providing extra motivation and encouragement to the patient to continue

with the physiotherapy program and empower the therapist with insightful diagnostics

allowing for more effective analysis and improved assessment of the patient’s progress

[40]. As adjuvents, these devices have been proven to result in a ‘remarkable differ-

ence . . . between pre− and post-treatment’ [41]. Furthermore, they could be used

in telerehabilitation when patients cannot receive the therapy in-person, and can be

programmed to adapt to different users and patients’ changing abilities. The use of

these devices can help in improving a patient’s quality of life, performance of ADL,

and their contribution to society. Additionally, these rehabilitation robotic devices

can help relieve therapists from repetitive and physically laborious work, and can help

increase the throughput of service delivery. As a result, the addition of rehabilitation
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robotic devices is becoming increasingly accepted by patients and physiotherapists

alike, and is becoming progressively popular in clinics and hospitals around the world

[42].

Daniel Daarte, a physiotherapist, has said that: “being (a) therapist means know-

ing how to put the heart in your hands, science in your movements and hope in your

eyes”. Having been in physical therapy for a multitude of injuries, the present au-

thor can personally attest to being the beneficiary of physical therapists’ invaluable

emotional support effective even through video-consultations during the current pan-

demic. Without a physiotherapist’s physical intervention, however, my injury persists,

and further motivates the current research to enable rehabilitation robotic devices to

assist physical therapist in the delivery of “movements guided by science” to more

people who are in dire need. To do so, this thesis strives to improve the control meth-

ods to make upper-limb robotic telerehabilitation a viable coadjutant in reducing the

exorbitant unmet demand for physiotherapy.

B. Upper-Limb Rehabilitation Robotic Devices: Mechanical Configuration

There are four main mechanical configurations of upper-limb rehabilitation robotic

devices. They are shown in Fig. 1.3 and described in the following sections.

Sling suspension systems employ the use of cables for gravity compensation

so that the patient can exercise their upper limb without having to bear its weight

or the weight of any equipment. Fig. 1.3(a) depicts the structural concept of a sling

suspension system, while Fig. 1.4(a) shows an example of a commercial system called

the Armeo Boom from Hocoma. Sling suspension systems are akin to controlling a

puppet by strings. A notable advantage of using sling suspension systems is that less

fatigue is experienced by both the patient and the physiotherapist since the majority

of the weight of the patient’s arm is supported by the cable mechanism. Furthermore,

since the cable-based actuators can be located away from the joint, the components

that are fastened to the patient’s arm can be smaller and streamlined, allowing the

patient’s arm to be closer to the body. One of the drawbacks of sling suspension

systems is that the exercises do not necessarily mimic ADL-like movements. Also,

the cable systems do not isolate individual joints, so it is possible that incorrect

compensatory movement of joints could be learned by the patient while attempting

to perform an exercise.
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End-Effector type robots are robotic manipulators that typically guide the

patient’s hand through an end effector such as a joystick or a handle. Fig. 1.3(b) shows

the basic concept of an end-effector type rehabilitation robot, while Fig. 1.4(b) shows

the Haptic Master from Motek which is a commercial end-effector type rehabilitation

robot. In these scenarios, typically the end effector is the sole point of contact where

assistive forces are applied to the patient [43] since it is not attached to other sections

of the patient’s arm to control specific joints [40]. This setup allows for only multi-

joint gross movements of the afflicted arm [44].

One of the main advantages of using end-effector type devices is that typically

they are simpler to design and build than exoskeletons. Additionally, end-effector

type devices are easier to interface with the patient considering the single-point of

contact. Therefore, they are the more popular type of rehabilitation robotic devices

[45]. A disadvantage of end-effector type devices is that it only allows for limited

movements due to the ‘uncontrolled load transfer between the limb’s joints’ [46]. An-

other disadvantage of end-effector type devices is that it is not possible to assess the

function of the patient’s individual joints since it is only the motion and forces at the

contact point that can be measured. Furthermore, using an end-effector type robotic

device allows for a combination of joint movements to take place at the same time,

making it hard to distinguish which section of the arm is being rehabilitated [46]. The

biggest disadvantage of end-effector type rehabilitation robots is that the movement

of the patient’s joints cannot be independently controlled nor assisted, and thus the

patient can actually recruit the use of other unaffected and stronger muscles in the

body or move their arm in unnatural ways to complete a task, deeming the exercise

counterproductive or even resulting in injury [47]. For example, it is not uncommon

for patients to use their torso to perform a manipulation task when using end-effector

type rehabilitation robotic devices to compensate for the dysfunction in the affected

arm muscles [48, 49]. Some devices incorporate specialized seats with seat belts and

straps to constrain different body parts to help isolate the training to specific seg-

ments − increasing the complexity and the cost of the system substantially. These

devices have an increasing presence in rehabilitation centers and have had good re-

sults in improving muscle function in affected patients [50].
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Exoskeleton type devices are anthropomorphic robotic manipulators fastened

in parallel to the human arm, with the capability of providing targeted assistive mo-

tion to each joint of the human’s arm. Fig. 1.3(c) shows the concept of a grounded

upper-limb (elbow-wrist) robotic exoskeleton, while Fig. 1.4(c) shows a commercially-

available grounded wrist exoskeleton called the Motus Hand from Motus Nova which

is ‘clinically proven to provide equivalent outcomes to traditional modes of rehabilita-

tion’ [51], is FDA approved in the USA, and in 2019 was already in use in twenty-five

hospitals [52]. Fig. 1.3(d) depicts the concept of a portable elbow-wrist robotic ex-

oskeleton, while Fig. 1.4(d) shows MyoPro from Myomo, an elbow portable exoskele-

ton which was developed at MIT with Harvard Medical School, and is commercially-

available.

The main advantage of exoskeleton devices is that they can provide isolated ther-

apy at the joint level, which is highly beneficial, and they can prevent undesirable,

unnatural, and potentially unsafe compensatory maneuvers that can occur when reha-

bilitating with end-effector rehabilitation robotic devices [41, 53, 47, 54]. Additionally,

valuable and insightful position and force data can be provided independently for each

joint of the human’s arm. Furthermore, exoskeletons can provide a larger range of

motion for each joint compared to end-effector type devices. The main disadvantages

of exoskeleton systems are that they are generally more complex in architecture, can

be more expensive, and require substantial additional safety considerations since they

are attached to the human limb. As a result, the clinical trials are arduous obstacles

in bringing these types of devices to market [55].

Currently there are numerous robotic rehabilitative devices on the market and

many more at the research stage. The main advantage of rehabilitation with robotic

devices is that they help narrow the growing gap between rehabilitation service de-

mand and supply. These devices can also be used to augment the therapy regiment

by providing precise and objective measurements of the patient’s performance and

changes in range of motion, strength, and the quality of motion. Ideally the controllers

would adapt to different patients and also to patients’ changing mobility abilities.

End-effector type devices are the most popular commercial rehabilitation robotic

devices, with suspension-type devices being next in popularity; however, exoskeleton-

type devices are gaining growing interest due to their distinct therapeutic advantages
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(a) Sling suspension (b) End effector

(c) Grounded exoskeleton (d) Portable exoskeleton

Figure 1.3: Upper-limb rehabilitation robotic devices

due to their kinematic compatibility to the human limb.
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(a) Hocoma Armeo Boom [56] (b) Motek Haptic Master [57]

(c) Motus Nova Motus Hand [52] (d) Myomo Elbow MyoPro [58]

Figure 1.4: Commercial upper-limb rehabilitation robotic devices
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1.2 Research Motivation and Objective

Given the escalating unmet demand for physical rehabilitation due to the growing

global aging population and the added strain on the medical system due to the

COVID-19 pandemic, robotic telerehabilitation is an emerging, timely, and crucial

technology which could aid in improving access to care. The majority of the research

in robotic telerehabilitation for upper limbs has been performed with end-effector type

assistive robots (for example [59, 60, 61, 62, 63]), and very little research has been

found in the literature that studies bilateral telerehabilitation control with upper-

limb robotic exoskeletons [64, 65]. Considering that the use of robotic exoskeletons

has significant and distinct benefits [53, 47, 54], telerehabilitation with upper-limb

robotic exoskeletons should be further investigated.

One important aspect of bilateral telerehabilitation training with upper-limb robotic

exoskeletons which should be given significantly more consideration is telepresence −
which refers to how well the therapist senses the patient’s level of effort while trying

to assist. Telepresence is influenced by the synthesis of the patient’s and therapist’s

joint torques. For example, Sharifi et al. [60] and Lanini et al. [65] added thera-

pist’s assistive torques which were scaled to reduce therapist fatigue, but produced

diminished telepresence. As a result the motivation of this research is to devise a

method that can provide improved telepresence in upper-limb robotic exoskeleton

telerehabilitation.

Since upper-limb robotic exoskeletons are subject to sensor noise, human torque

input, communication time delays and inherently contain nonlinear dynamics due

to their complex architecture, further research is required that explores both model-

based and model-free control methodologies which could address all these control chal-

lenges while providing stability and good tracking. Furthermore, modalities should

be investigated which allow for adjustable compliance which provide safe motion and

enable customization for different patients, and patient’s changing mobility abilities.

Objective: The objective of this research is to build on the state-of-the-art control

methodologies for bilateral telerehabilitation with upper-limb robotic exoskeletons to

aid in the delivery of physiotherapy to those who direly need it.
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1.3 Contributions

The main contributions of this research are as follows:

1. A novel Human Torque Regulator (HTR) with high-fidelity telep-

resence for bilateral telerehabilitation: In bilateral telerehabilitation, the

therapist applies assistive joint torques on the slave robot to assist the pa-

tient in following a trajectory with the robot on the master side. The existing

methods found in the literature of combining the torques from the patient and

the therapist to be applied to the master robot are 1) using a direct-addition

strategy [60] and 2) using a torque-scaling strategy [60, 65]. Both of these

strategies require the therapist to only exert additives torque. Although these

methods have the advantage of potentially reducing fatigue for the therapist,

they provide diminished therapist’s haptic awareness of the torques exerted by

the patient. Both of these strategies were implemented and studied in this

research in Chapters 5 and 6 and, as a result, a novel Human Torque Regula-

tor (HTR) was created. The proposed HTR produces the desired high-fidelity

telepresence for the therapist as shown in Chapters 5 through 7, and written

in G. Bauer and Y.J. Pan, “Telerehabilitation with Exoskeletons using Adap-

tive Robust Integral RBF-Neural-Network Impedance Control under Variable

Time Delays,” Accepted to 2021 IEEE International Symposium on Industrial

Electronics (ISIE), Japan, Kyoto, Conference Date: June 2021 [66]. Therein,

the therapist has a clearer perception of the amount of effort that the patient

is applying through the training resulting in better evaluation and therefore

greater efficacy of the therapy.

2. Integration of impedance model control: In applications which require

humans to be in direct physical contact with moving robots − as is the case in

rehabilitation with upper-limb robotic exoskeletons − it is adamant to accom-

modate for the variability in the patient’s mobility abilities, generate compliant

motion, enhance safety, and provide system stability. One method of creating

compliance found in the literature is to implemented a series of elastic elements

[67, 68], while another method is to implementing an impedance model con-

troller. The latter method regulates the patient-exoskeleton interaction torques
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based on its inertial, stiffness, and damping parameters, and thereby adjusts the

reference trajectory. This strategy was implemented in [60] with end-effector

type robots and in [69] with a single-system upper-limb robotic exoskeleton with

promising results; however, its use has not been documented in the literature for

telerehabilitation with upper-limb robotic exoskeletons. Given its merits, the

implementation of impedance model control was integrated in this research and

is described in detail in Chapter 5, while its effects are shown in simulation-

based and experimental tests in Chapters 5, 6, and 7. By incorporating a

designed impedance model controller into the upper-limb robotic exoskeleton

control methods proposed in this thesis, the allowance is made for customiza-

tion based on the patient’s changing mobility abilities, adjustable compliance,

safe motion, and enhanced stability. The implementation of impedance control

was documented by the author in [66, 70].

3. Adaptive Robust Integration Impedance Control (ARII): To address

the unknown dynamic modeling parameters, nonlinearities, sensor noise, and

human torque input while providing good tracking, safe, stable, and adjustable

compliant motion which builds on the state-of-the-art, adaptive control, an

Adaptive Robust Integration Impedance Controller (ARII) was developed, im-

plemented, and validated. Using adaptive impedance control is similar to [62]

which was implemented for end-effector type robots, and [71] where it was used

for a finger exoskeleton, but in the research presented in this thesis robust and

integral control elements were also implemented. Unlike [72] which uses adap-

tive impedance control for a simulated single-joint upper-limb exoskeleton and

regards the robot and the human arm as one system, this research addresses

the coupling dynamics between the robotic exoskeleton and the human arm −
as described in Chapter 4. Chapter 5 reveals the design of the proposed ARII

method and shows detailed Lyapunov-based stability and convergence analy-

sis. Simulated and experimental results for a single-system Quanser QUBE

testbed are provided in Chapter 5. Experimental telerehabilitation results us-

ing a Quanser QUBE testbed and simulated 2-degrees-of-freedom (2-DOF) ex-

oskeleton testbed telerehabilitation results are shown in Chapters 5 and 7, which
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reveal the desired tracking performance and stability. The results of an ear-

lier version of this method have been published in: G. Bauer, Y.J. Pan, and

H.H. Shen, “Adaptive Impedance Control in Bilateral Telerehabilitation with

Robotic Exoskeletons,” 2020 IEEE International Conference on Systems, Man,

and Cybernetics, Oct 2020 (pp. 719-725) [70].

4. Adaptive Robust Integral Radial Basis Function Neural Network

Impedance Control (RBFNN-I): To address the unknown dynamic mod-

eling parameters, nonlinearities, sensor noise, and human torque input while

providing good tracking, safe, stable, and adjustable compliant motion using a

model-free strategy, a second control method for upper-limb robotic exoskele-

tons, RBFNN-I, was developed, implemented, and validated. Like [73], this con-

troller incorporates robust, integral, and adaptive control to adjust the weights

of an RBF neural networks. Unlike [73] where an adaptive robust RBF neural

network controller was used to control a simulated 2-DOF robotic manipula-

tor, RBFNN-I is applied in simulation and experimental tests to single-joint

robots, and in simulation to 2-DOF upper-limb robotic exoskeletons in bilateral

telerehabilitation. Additionally, the proposed RBFNN-I controller incorporates

an impedance model controller to provide adjustable compliance, stability, and

safety to the human in the loop. Chapter 6 presents the design of the method

and detailed Lyapunov-based stability and convergence analysis. Simulation

and experimental results for a single-system Quanser QUBE testbed, and sim-

ulation results for a 2-DOF exoskeleton testbed are provided in Chapter 6. The

results of an earlier version of the proposed RBFNN-I control method have been

summarized in [66].

5. Extensive Validation and Performance Comparison of ARII and Adap-

tive Robust Integral RBFNN-I: A comparison was performed between the

two proposed control methods, ARII and RBFNN-I, for a single-system, and

unilateral and bilateral telerehabilitation tests, as shown in Chapter 6 for both

simulations and experiments. Furthermore, Chapter 7 presents a comparison

between the two methods through experimental case studies using single-joint

Quanser QUBE robots with human intervention and simulation case studies
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using a 2-DOF exoskeleton testbed. Additionally experimental tests where per-

formed with the RBFNN-I method to explore the range of operation for key

parameters.

Additionally, a conceptual design of a novel grounded horizontally-planar 2-DOF

upper-limb robotic exoskeleton was developed as shown in Chapter 4 and utilized for

simulation-based validation of the proposed control methods in Chapters 5 through 7.

Moreover, a first-in-its-field extensive literature review of control methods for upper-

limb telerehabilitation with robotic exoskeletons was performed. The results were

published in: G. Bauer and Y.-J. Pan, “Review of Control Methods for upper-limb

Telerehabilitation with Robotic Exoskeletons,” IEEE Access, Nov 2020 [74].

1.4 Thesis Organization

This thesis is focused on the development and implementation of control methods

for telerehabilitation with upper-limb robotic exoskeletons. The organization of this

thesis is constructed as follows: Chapter 1 presented the validity of robotic-assisted

physical rehabilitation, research motivation, thesis objectives, contributions, and nov-

elties. Chapter 2 presents the literature review of the state-of-the-art control methods

and key aspects of telerehabilitation for upper-limb robotic exoskeletons. Chapter 3

provides fundamental robotics and system stability concepts. The problem formu-

lation and the system models are presented in Chapter 4. Chapter 5 reveals the

first proposed control method, ARII, including its further development, implemen-

tation, and validation through simulation and experimental results. Chapter 5 also

explains and implements the current human torque syntheses methods present in the

literature and introduces the proposed HTR. Chapter 6 reveals the second proposed

control method, RBFNN-I, including its development, implementation, and validation

through simulation and experimental results. Chapter 6 also provides a comparison

between the two methods for single-system and telerehabilitation simulation-based

and experimental tests. Chapter 7 describes telerehabilitation simulation and ex-

perimental case studies. Chapter 7 also includes experimental tests performed with

the RBFNN-I control method to explore the range of operation of key parameters.

Chapter 8 draws conclusions and makes recommendations.



Chapter 2

Literature Review

Over the years, there has been extensive research carried out in the field of robotic-

assisted rehabilitation [5, 7, 26, 34, 39, 45, 75, 76, 77, 78, 79] as they have been “proven

successful in speeding recovery for recent stroke victims” [33], produce “remarkable”

improvement [41], and reduce impairment and pain in chronic sufferers [33]. Given

the current, urgent interest in exploring alternatives for physiotherapy delivery [4,

23, 74] and especially remotely-administered physiotherapy [29, 45, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89], robot-assisted telerehabilitation is increasingly being investigated

[70, 87, 90, 91]. The majority of the research in robotic telerehabilitation for upper

limbs has been performed with end-effector type assistive robots [38, 59, 60, 61, 62,

63, 92, 93], but the use of robotic exoskeletons is gaining interest due to significant

and distinct benefits [41, 47, 53, 54, 94]. The robotic exoskeleton market across all

fields (e.g.: rehabilitation, ADL assistance, transportation, healthcare, augmentation,

space, defence) is predicted to exponentially grow (Fig. 2.1) from $68M in 2015

to $1.9B by 2025, which attests to the validity of robotic exoskeleton technology.

Furthermore, the forecast compound annual growth is between 40% [42] and 50%

[95] − with lower-limb rehabilitation robotic exoskeletons currently leading the way.

As an emerging technology, there are not many studies in the literature on bilateral

telerehabilitation control with upper-limb robotic exoskeletons [64, 65]; therefore, this

chapter provides an overview of the state-of-the-art control methods pertaining to

telerehabilitation with upper-limb robotic exoskeletons. The sections of this chapter

present model-based and model-free control methods, modality for safe motion and

adjustable compliance, and telerehabilitation-specific topics including: telepresence

and communication time delays. Additionally, each section concludes with remarks

on the relevance of the presented work to this thesis.

17
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Figure 2.1: Market forecast for robotic exoskeletons in all fields [96]

2.1 Upper-limb Robotic Exoskeleton Control Methods

One of the main reasons for physical rehabilitation is to provoke functional neuroplas-

ticity [35, 7, 36, 37, 38, 39] for mobility recovery. During the acute stage (the first few

weeks right after a stroke has taken place), the patient’s affected arm could be unable

to move voluntarily on its own and typically there is tightness in the arm causing the

hand to rest near the chest wall [97]. The objective of exoskeleton robot-assisted phys-

iotherapy is to assist the patient in reducing impairment by delivering, for example,

task-oriented, repetitive, customized, high-intensity, and variable-intensity training.

Fig. 2.2 shows a block diagram of an upper-limb rehabilitation robotic exoskeleton

control system. The desired reference motion on the left side of the diagram is speci-

fied by the therapist through routines stored in the computer. This reference motion

information is compared to the actual motion measured by sensors on the robotic

exoskeleton attached to the patient. The error between the desired and the actual

variables is used by the controller to calculate the robotic exoskeleton’s motors out-

put. The objective of upper-limb robotic exoskeleton control methods is to enable

safe, stable, and compliant motion while attaining converging tracking error in the

presence of external disturbances, such as sensor noise, human torque input, and

nonlinearities such as friction. Furthermore, one of the biggest control challenges for

these systems is handling nonlinear dynamics [69]. The following sections present

control methods which attempt to address these challenges.
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Figure 2.2: Block diagram of a closed-loop control system

2.1.1 Model-based Control Methods

Since robotic exoskeletons are inherently complex nonlinear systems, it is virtually

impossible to create perfect mathematical models of them. As a result, any model-

based control method implemented has to compensate for the unavoidable discrep-

ancies between the model and the physical plant. Although there are other advanced

nonlinear methodologies present in the literature, adaptive control and sliding mode

control approaches are introduced in the following sections.

Adaptive Control

Adaptive controllers can perform well with systems that have a fully-known struc-

ture, but uncertain dynamic model parameters [98]. Implementing adaptive control

requires the rearrangement of the non-linear dynamic equations so that they become

linear in the unknown dynamic parameters via a regressor matrix which is multiplied

by the vector of unknown parameters. Since this vector contains all the uncertain

parameters, the initial values are estimated and converge with time [99]. Fig. 2.3

shows how the unknown system parameters are adjusted in real time based on the

difference between the measured sensor values y from the system and those from a

reference model yref . The linear parameterization process can be time-intensive and

grows in complexity and time-demand as the number of degrees of freedom increase

[100]. An example of an upper-limb rehabilitation robotic exoskeleton system that

uses adaptive control is ARMin V [101]. Adaptive controllers do not require a pri-

ori information about the limits of the uncertain or changing parameters as robust

methods do. Adaptive methods, however, are not well-suited for systems that exhibit

fast-changing parameters or systems that are exposed to external unmeasured distur-

bances [98]. Researchers have proposed to addressed the latter problem by combining
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adaptive controllers with other types of controllers including robust control methods

to handle bounded external disturbances. Adaptive robust control was used in [69]

and [102].

Figure 2.3: Schematic diagram of an adaptive controller for exoskeleton devices

Sliding Mode Control (SMC)

Sliding Mode Control is a nonlinear robust method used to address bounded external

disturbances [103] and parametric uncertainties. A switching controller is designed

which forces the system state trajectories to converge onto a sliding surface in the

state space in a finite amount of time. By limiting the system to be in the neigh-

borhood of the switching function, the system becomes stable, linear, time-invariant,

and insensitive to parametric uncertainties and external disturbances [104] under a

nominal controller. These nominal and switching controllers are shown in Fig. 2.4,

with their computed torques usw and unom, respectively. The two torques are then

added to produce the commanded torque sent to the robot [105]. One of the disad-

vantages of SMC is that the high-frequency switching action could cause chattering

in the commanded output resulting in wear or damage of the mechanical system,

energy loss in the electrical system, heating, and vibrations [106]. To help mitigate

this problem, mathematical smoothing methods have been implemented [107]. SMC

controllers are robust in the presence of disturbances and parameter variations, and

can converge faster than adaptive controllers. Additionally, they work well on non-

linear systems that are hard to model since they do not need an exact model [98].
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Some upper-limb robotic exoskeleton systems that use SMC are described in Yun et

al. [108], Brahmi et al. [109], and Lo et al. [105].

Figure 2.4: Schematic diagram of an SMC controller for exoskeletons

2.1.2 Model-free Control Methods

Proportional Integral Derivative (PID) Control

Some upper-limb robotic exoskeletons are controlled using PID control. This control

approach does not require system modeling [54] and is relatively straightforward to

implement. The PID control law is shown in Eq.(2.1) where u(t) denotes the control

input (motor torque in this case), error e(t) represents the difference between the

actual and desired position of joints, and ė(t) is its derivative with respect to time.

The proportional gain KP operates on the position error. The integral gain KI

operates on the accumulated position error and the derivative gain KD operates on

the velocity error. Fig. 2.5 shows each component of the PID control law in a control

block diagram.

u(t) = KP e(t)︸ ︷︷ ︸
Proportional

+KI

∫ t

0

e(τ)dτ︸ ︷︷ ︸
Integral

+KDė(t)︸ ︷︷ ︸
Derivative

. (2.1)

While model-free control leads to simplicity in its implementation, a disadvan-

tage of using this method is that repetitive experimentation is typically required for

gain-tuning [110] − a process regarded by some as an art form. Additionally, tuning

the gains can be difficult in the presence of time-varying parameters, nonlinear arti-

facts, and human-machine interactions [110]. Controllers can be created which use
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Figure 2.5: PID controller

a subset of the PID controller, such as P, PD, or PI. For example, the upper-limb

robotic exoskeleton ARMin III [47] uses a PD controller while EXO-UL7 [111] uses

a PID controller. Furthermore, many single-system upper-limb rehabilitation robotic

exoskeleton researchers combine elements of the PID controller with advanced con-

trol methods such as Robust Control and Adaptive Control, and intelligent control

methods such as Neural Networks and Fuzzy Logic. For example, [112] combines PID

Control with Robust Control and Fuzzy Logic based Control. In the telerehabilitation

studies presented in the literature, Lanini et al. [65] and Buongiorno et al. [64] used

PD controllers on the slave robots.

Radial Basis Function Neural Networks (RBFNN) Control

Roboticists have also implemented Artificial Intelligence (AI) control methods, such

as radial basis function neural networks (RBFNN), to approximate the complex non-

linearities and uncertainties in the system [113, 73, 114, 115]. In contrast to adaptive

and robust control methods, RBFNN-based controllers have the advantage of not

requiring a lot of information about the robot dynamic model a priori [116]. Fur-

thermore, RBFNN-based controllers have been shown to successfully learn the neural

network values even with large uncertainty of the system [93], which other model-free

control methods like PD cannot do. Since upper-limb robotic exoskeleton telerehabil-

itation applications have inherent dynamic model parameter uncertainties as well as

nonlinearities, control methods which can provide options for addressing these issues

such as RBFNN should be explored. Other model-free control methods are presented

in the literature, such as Reinforcement Learning [117] and Fuzzy Logic [118].
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Figure 2.6: RBFNN controller, based on [73]

2.2 Modality for Safe Motion and Adjustable Compliance

In applications where human operators are in direct contact with robotic devices,

impedance control is often implemented to enable compliance and safety [62] [119].

Impedance control enables adjustable compliance, meaning that it makes adjustments

to the robot’s commanded desired trajectory based on the human interaction forces

instead of rigidly following a given trajectory [120]. Thus, it is a desirable control

modality for rehabilitation where the patient’s varying abilities need to be considered

in real time. Impedance controllers have been implemented in research with upper-

limb rehabilitation robotic exoskeletons for the L-Exos [48], SUEFUL-7 [121], and the

ETS-MARSE [109]. In telerehabilitation applications, it has been used by [59, 60]

with end-effector type robots. A series of elastic elements was used instead in [67, 68].

The research presented in this thesis implements elements from all of the control

methods described in this chapter as follows:

1) a model-based adaptive controller was implemented to overcome the unknown

dynamic modeling parameters, a robust control term with a smoothing function was

incorporated to help deal with external disturbances, and an integral control term

was added to handle any sustained offsets [70]. Moreover, the adaptive controller was

extended to include an impedance model to enable adjustable compliance and safe

motion, similar to [61, 62, 60] where it was utilized with end-effector type robots and

[69] where it was utilized with an upper-limb robotic exoskeleton.

2) a model-free RBFNN-based control method was implement which learned the

weights of the neural networks with the addition of an adaptive law. A robust con-

trol term was added to handle external disturbances, along with an integral term
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to address any accumulated error offsets. Building on the strength of RBF neural

networks methods presented by Liu [73], where the plant was a theoretical 2-DOF

robotic manipulator, the RBFNN-I control method proposed in this thesis was applied

to upper-limb robotic exoskeletons applications for telerehabilitation. Furthermore,

the RBFNN was extended to also incorporate an impedance model to allow for cu-

tomizable compliance and safe motion to be applicable for human-machine interface

applications [66].

Although the majority of the telerehabilitation with upper-limb robotic exoskele-

tons control studies in the literature utilized multi-degree of freedom robotic exoskele-

tons which are equipped with force sensors along the robotic limb, they often did not

control the robots in joint space mode, and instead used the exoskeletons in task-space

− effectively reducing them to end-effector type robots. Further research is needed

to apply exoskeletons in joint space and take advantage of the force sensors along

the robotic limb, and explore joint-specific therapies. In this thesis, experimental

tests were performed with single-joint robots, and simulations with 2-DOF robotic

exoskeletons controlled in joint space.

2.3 Telerehabilitation

When access to physiotherapy services is not possible, telerehabilitation could be the

answer. There is an increased interest in telerehabilitation as a promising modal-

ity which could help administer therapy to patients who are living in remote ar-

eas, are housebound due to their disabilities [80, 81, 90], or are house bound due

to the present pandemic-related additional challenges [89, 122, 123] − present au-

thor included. Although telerehabilitation can mean phone-consultations, video-

consultations, verbally-guided physical therapy, speech therapy, virtual reality-assisted,

and robotic-assisted training [123], in this thesis telerehabilitation is strictly referring

to robot-assisted telerehabilitation training, as depicted in Fig. 2.7. In this scenario,

the patient is connected to a robot at a local site, and the therapist is connected to

another robot at the remote side. The patient’s arm that requires therapy is moved

by the master robot according to a desired trajectory. The measured motion infor-

mation is sent across the communication channel to the slave side, where the slave

robot will move the therapist’s arm through matching motion. This strategy allows
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the therapist to observe and gauge the patient’s mobility capabilities. When there

are no therapist torques sent back to the master side, the telerehabilitation is called

unilateral. If the therapist desires to intervene − and the system has the capability −
the assistive torques applied by the therapist to the slave robot are transmitted and

combined with those of the patient on the master side. This type of telerehabilitation

is called bilateral.

Figure 2.7: Telerehabilitation system

2.3.1 Telepresence

In bilateral telerobotics, “the master robot not only measures motions but also dis-

plays forces to the user” [124] − simultaneously affecting the environment (or human)

at the remote site while also perceiving the reflected force from that interaction [125].

Sheridan [126] describes the phenomenon of telepresence as what ‘enables the human

to feel present at the remote location even though not really there’. The goal is for

the interaction to be so immersive and natural that the ‘human operator is fooled

into forgetting about the medium itself’ [124]. As Buerger et al. [33] explained in

‘Rehabilitation robotics: adapting robot behavior to suit patient needs and abilities’

and Carignan and Krebs [90] restated in ‘Telerehabilitation robotics: Bright lights,

big future?’, ‘the performance of a rehabilitation robot is defined not in terms of its

capability to follow a trajectory, but instead by its capability to provide a desired

‘feel’...’.

Providing higher telepresence fidelity means increased perceived quality of kines-

thetic forces and results in an increased sense of immersion and engagement [127].

In telerehabilitation, high-fidelity telepresence allows the therapist to perceive the

torques that the patient is experiencing with maximum clarity which helps the ther-

apist in gauging the patient’s current mobility abilities, enhances safety, and im-

proves the efficacy of the therapy. Although studies have been found in the literature
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[64, 65] which presented control methods for telerehabilitation training with upper-

limb robotic exoskeletons, it is evident that the field is only emerging as none of the

cases addressed the topic of telepresence. A tele-assessment clinical trials study [128]

which utilized an elbow exoskeleton and an actuated haptic device with a manikin

arm as a therapist interface, demonstrated the benefits of telepresence while assessing

the condition of four patients. Their results proved very similar to in-person assess-

ment. Another tele-assessment clinical trials study which evaluated the telepresence

aspect of a telerehabilitation setup [28] using two exoskeletons reported very positive

outcomes as well. This study involved fifteen professional physical therapists who

were asked to assess the condition of four subjects. The therapists rated the strategy

as a very useful medium (mode: 4 points out of 5 on the Likert Scale) for evaluating a

patient’s progress over time. The paper concluded that it was a promising approach

to complement robot-assisted movement training.

In telerehabilitation with upper-limb end-effector type robots, there are exam-

ples found in the literature where the combination of the human torques from the

patient and the therapist were added directly together [60], or amplified versions of

the therapist’s torques were added to the patient’s to minimize the therapist’s effort

[60]. Although useful in reducing therapist fatigue, these human torque syntheses

strategies do not give the therapist a very good sense for the amount of effort that

the patient is experiencing. These two strategies were implemented in this research,

along with the creation and implementation of a new method which provides the

therapist with high-fidelity telepresence while assisting the patience was created [66].

2.3.2 Communication Time Delays

Orchestrating the safe and effective reflection of the motion and torques between the

two sites is a major undertaking which requires an overall control system that can

address all the previously-mentioned issues, and do so in the presence of communi-

cation time delays as well. Time delays can cause the stability of the system to be

compromised when forces are fed back from slave side to the master side resulting

in undesirable and, even more critically, unsafe consequences for the humans in the

loop − if not properly addressed [114]. Over the last sixty years, there have been
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increasingly more telerobotics applications in various fields such as space [129], under-

water control [130], hazardous environments [131], forest fire detection [132], military

[133], mobile robots [134], tele-driving [135], telemedicine such as telesurgery [136]

and telerehabilitation [64]. As a result, researchers have created and implemented

many methods to address the effects of delays across communication channel when

operating robots remotely [136, 137, 138, 139, 140, 141, 142, 143].

Some of the most common and successful methods are passivity-based, where

the energy entering the system is greater than the energy leaving the system [136,

137]. Stability is ensured by limiting the system energy, introducing boundedness of

system variables [125], or injecting damping agents [144] to remove the excess energy.

A major advantage of using passivity-based methods is that the dynamic models

of both the master and the slave systems are not required to be known [145]. As

a result, passivity-based methods are ideal for systems with large uncertainties or

multi-degrees of freedom systems which contain nonlinearities and complexities that

are hard to model − like upper-limb rehabilitation robotic exoskeletons. However,

implementing certain passivity strategies such as boundedness and overdamping are

not always desirable since, although they can deal with delays which may cause

instability, they cannot ensure a desired synchronization or telepresence performance.

In such cases, non-passivity based control methods could be the answer. Non-passivity

based controllers are model-based though [137] and, as such, have the added challenge

of requiring perfect knowledge of the plant model. Since it is impossible to attain

perfect physical system plant models, many researchers have implemented adaptive

[146] and robust [147] control elements to enhance their performance.

Of all the telerehabilitation with upper-limb robotic exoskeleton control studies

surveyed in the literature, only one incorporated measures to overcome communi-

cation time delays by developing and implementing a time-domain passivity-based

controller [64], which has been applied in general bilateral teleoperation systems and

haptic interfaces [145, 148, 149]. Another study [65] did not incorporate time delays

in their experiments, but discussed how they might be addressed theoretically. Zhang

et al. [67] measured a time lag having a maximum of 15 ms in the communication

channel of their experiments but did not deliberately compensated for them. The

patient did not feel any obvious discomforts, and the motion of the exoskeleton was
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observed to be smooth.

As time delays and other communication channel artifacts are inevitable in telere-

habilitation applications, more research should be carried out which explores counter-

active modalities. The research presented in this thesis enhanced stability across the

communication channels by implementing the passivity-based strategies of bound-

edness of the relayed signals and implementing an overdamped impedance model

system.



Chapter 3

Background Theories

This chapter introduces fundamental robotics concepts and terminologies used through-

out the thesis, as well as system stability.

3.1 Fundamental Robotics Concepts

Robots are electro-mechanical devices designed to perform specific tasks that mimic or

surpass human capabilities related to speed, force, torque, endurance, and accuracy,

and they can be designed to operate in hostile or remote sites. Robots consist of

actuators, sensors, and a physical structure. One of the most common configurations

is a serial robot. A diagram of a 2-DOF serial planar robot is shown in Fig. 3.1. The

robot typically extends from a grounded base and consists of a series of structural

links that are chained together by motors (similar to a human’s arm) with the purpose

of performing a task at its end effector (analogous to a human’s hand). A control

system uses feedback information collected by the sensors to appropriately actuate the

motors to move the links and the end effector to perform a specific task. To control

the robot accurately, sufficient information must be known about the kinematic and

dynamic properties of the system, and an appropriate control methodology must be

utilized.

3.1.1 Kinematics

Kinematic parameters refer to a robot’s most fundamental characteristics: its geo-

metrical parameters which are used in the design, analysis, simulation and control

of an application. The kinematic parameters of a system can be used to calculate

the robot’s motion (displacement, velocity, and acceleration) including the position

and the orientation of each joint and the end effector (pose). Kinematics do not

include information about the causes of the motion, such as forces, torques, weights,

29
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Figure 3.1: Top view diagram of a 2-DOF horizontally-planar robot

or weight–distributions of the components [150]. The dimensions of the robot’s com-

ponents and the range of motion of its joints define the reachable points in space by

the end effector which is known as the workspace.

Forward Kinematics

The forward kinematics equations use the joint and link parameters of a robot to

determine the end effector’s position or pose (position and orientation) relative to the

base of the robot [99]. The forward kinematic equations are formulated by properly

selecting coordinate frames and fixing them to each robot joint and then constructing

the relationship between these frames. Homogeneous transformations that incorpo-

rate the translation and rotation between each two successive frames can be used

to build up the complete relation of the kinematic chain from the base of the robot

to the end effector. The Denavit-Hartenberg notation is a popular method used in

robotics to compose the kinematic model of a robotic manipulator which describes the

kinematic relationship between the frames. By using a common normal between two

consecutive joint axes, the Denavit-Hartenberg convention simplifies the calculations

to a minimal representation [99].
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Referring to Fig. 3.1, coordinate frames 0 and 1 are co-located at joint 1 where frame

0 is the base inertial reference frame and frame 1 is attached to link 1 of length l1.

Similarly, frame 2 is attached to link 2 having length l2. Link 1 has a mass m1 and a

center of mass (COM) located at lc1 measured from joint 1, while link 2 has a mass

m2 and a COM located at lc2 measured from joint 2. The angular position of joints

1 and 2 are angles qe1 and qe2, respectively. Furthermore, it can be determined that

the forward kinematic equations are

x = l1 cos(qe1) + l2 cos(qe1 + qe2), (3.1)

y = l1 sin(qe1) + l2 sin(qe1 + qe2). (3.2)

As can be seen from Eqs. (3.1) and (3.2), the forward kinematics equations for a

serial robot are nonlinear.

3.1.2 Dynamics

A robotic manipulator’s dynamic equations describe the motion of the robot in re-

sponse to forces and torques. These dynamic equations include mass and inertia

properties as well as kinematic parameters which can be used to calculate the associ-

ated forces and torques to control the motion of a serial robot.

To formulate the equation of motion describing the dynamic response of a robot

to input torques, Lagrangian mechanics are utilized in this research. The Lagrangian

function L ∈ � is the difference between the system’s kinetic energy KE ∈ � and

potential energy PE ∈ �

L(qe, q̇e) = KE(qe, q̇e)− PE(qe), (3.3)

where qe ∈ �n is the vector of joint angular positions and q̇e ∈ �n is the vector of

joint angular velocities. The equation of motion for an n−link serial robot can be

derived as follows
d

dt

(
∂L(qe, q̇e)

∂q̇e

)
− ∂L(qe, q̇e)

∂qe

= u, (3.4)

where u ∈ �n is the vector of applied joint torques. For the present case, the potential

energy PE of the system is zero since the robot is horizontally-planar (in the human’s

transverse plane) with gravity acting perpendicular to the plane of operation. The
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kinetic energy KE is the sum of the linear and rotational kinetic energy of the two

links which can be expressed as

KE =
1

2

[
(m1v

2
c1
+ I1q̇

2
e1) + (m2v

2
c2
+ I2q̇

2
e2)

]
, (3.5)

where vci is the linear velocity of link i ’s COM, q̇ei is the angular velocity of joint i,

and Ii is the inertia of link i about link i’s COM. Using the derivatives of the forward

kinematics equations (3.1) and (3.2) to obtain vci , the resulting equation of motion

from (3.4) can be written as [99][
M11 M12

M21 M22

]
︸ ︷︷ ︸

M

[
q̈e1

q̈e2

]
+

[
−hq̇e2 −hq̇e1 − hq̇e2

hq̇e1 0

]
︸ ︷︷ ︸

C

[
q̇e1

q̇e2

]
=

[
u1

u2

]
, (3.6)

where

M11 = m1lc1
2 + I1 +m2[l1

2 + lc2
2 + 2l1lc2 cos(qe2)]+ I2, (3.7)

M22 = m2l
2
c2
+ I2, (3.8)

M12 = M21 = m2l1lc2 cos(qe2) +m2lc2
2 + I2, (3.9)

h = m2l1lc2 sin(qe2). (3.10)

Therefore, an n-link horizontally-planar rigid robot’s equation of motion can be

generally represented by the Euler-Lagrange equation [99] as follows

M(qe)q̈e + C(qe, q̇e)q̇e = u, (3.11)

where M(qe) ∈ �n×n is the inertia matrix calculated from the mass and geometry of

the robot, q̈e ∈ �n is the joint angular acceleration vector, and C(qe, q̇e) ∈ �n×n is

the matrix containing the Coriolis effects and centrifugal torques.

3.2 System Stability Analysis

It is important to know if a control system is stable in order to justify its usefulness

and to alleviate hazardous behaviour. A common and powerful tool for studying a

nonlinear and non-autonomous (time-varying) system’s stability is using Lyapunov’s

Stability Theory [151, 152, 153].
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3.2.1 Lyapunov’s Direct Method

In order to gain knowledge about the stability of a nonlinear and non-autonomous

(time-variant) dynamic system, Lyapunov’s Direct Method can be utilized. It is based

on the “fundamental physical observation: if the total energy of a mechanical (or

electrical) system is continuously dissipated, then the system, . . ., must eventually

settle down to an equilibrium point” [153]. This method, therefore, employs the

formulation of a scalar function, the Lyapunov function V , formulated in the phase

space and resembling an energy function. This function determines the stability

properties of a nonlinear and non-autonomous system by analysing how the function

changes over time. There is no general approach to define the Lyapunov function for

a system, thus trial-and-error, intuition, and experience is used to find an appropriate

candidate. The properties for V are:

1. It is positive definite: V (x) > 0 ∀ x �= 0;

2. V (0) = 0;

3. V (x) → ∞ when ||x|| → ∞;

4. It is radial unbounded with respect to variable x.

For the stability of a nonlinear and non-autonomous systems, the derivative of the

candidate Lyapunov function is required to be negative semi-definite, meaning that

its energy decreases:

V̇ (x) ≤ 0. (3.12)

One of the most significant advantages of using the Lyapunov function for non-

linear systems is that, in doing so, it is possible to characterize the stability behaviour

of the system without having to solve the more complicated nonlinear differential

equation of the system.

3.2.2 Barbălat’s Lemma

A function being negative semidefinite, or having a finite limit, or having its deriva-

tive converge to 0, however, is not sufficient to guarantee asymptotic stability. To

ensure convergence, Barbălat’s Lemma [153] requires that V̇ be uniformly continuous
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(smooth). A convenient way to check this condition is by invoking the second deriva-

tive of the Lyapunov function V̈ and verifying that it exists and is bounded. Thus, if

the scalar Lyapunov candidate function V (x) satisfies the following conditions:

� V (x) is lower bounded

� V̇ (x) is negative semi-definite and

� V̈ (x) exists and is bounded (proving that V̇ (x) is uniformly continuous in time)

then

V̇ (x) → 0 as t → ∞ (3.13)

A new variation on Barbălat’s Lemma [154] stated that it is sufficient for a function

to be square-integrable and have a bounded derivative to converge asymptotically to

zero.

Lyapunov stability analysis was used in this thesis to prove the stability of the

proposed ARII and RBFNN-I controllers.



Chapter 4

Problem Formulation

4.1 Problem Scope

There are many control challenges in successfully enabling a therapist to use an upper-

limb robotic exoskeleton at one location to physically assist a patient using an upper-

limb robotic exoskeleton at another location. One important control challenge is

estimating the unknown nonlinear dynamic model parameters of the system in order

to compensate for them. Furthermore, varying dynamic parameters, disturbances

to the system such as friction, noise, and inevitable realities such as quantization,

sampling of the sensor data, and time delays should be addressed as well. The physical

human-robot connection also has an effect in the transference of torques. Additionally,

the comfort and safety of the humans in the control loop is essential. Moreover, it is

highly beneficial to have a high-fidelity telepresence sensation for the therapist. High-

fidelity telepresence can elevate the quality of the therapy delivered to the patient by

increasing its effectiveness and safety for the patient as well as by providing the

therapist with more meaningful and insightful awareness of the patient’s physical

efforts and abilities.

4.2 System Overview

The overall system diagram for bilateral telerehabilitation with upper-limb robotic

exoskeletons is shown in Fig. 4.1. In this system, the patient’s arm is secured to the

master robot exoskeleton, while the therapist’s arm is attached to the slave robot

exoskeleton. A desired motion trajectory specified in terms of joint angular position,

velocity, and acceleration is sent to both the master side (qd, q̇d, and q̈d) and the

slave side (qdesL and q̇desL). The net human torque τ net between the patient and

the therapist is calculated and sent to the master controller along with the desired

motion trajectory and the actual joint angular positions and velocities of the master

35
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system (qm and q̇m). The master robot controller then produces the necessary torque

output command um to the robotic exoskeleton to move the exoskeleton as desired.

The resulting joint angular position and velocity of the master system (qm and q̇m)

are conveyed across the communication channel to the slave side (qsd and q̇sd). The

slave controller uses this information in conjunction with the actual position and

velocity of the slave robotic exoskeleton to generate a torque signal us that moves

the slave robot (qs and q̇s) to track the motion of the master robot. As a result,

the therapist can experience the master robot’s motion on the slave side. In bilateral

telerehabilitation, the therapist can choose to apply torques τ t which are transmitted

to the master side as τ refl so that the patient can receive assistance from the therapist

to reach the desired target position.

Figure 4.1: Overview of a telerehabilitation system showing the patient on the master
side and the therapist on the slave side

4.3 System Models

To develop and implement the control methods covered in this research it was neces-

sary to first develop models of the key components of the system.
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4.3.1 Robotic Exoskeleton

Chapter 3 presented the development of the fundamental forward kinematic and

dynamic equations of a horizontally-planar robot. By additionally considering the

torques applied on each robot joint by the patient (τ p ∈ �n) on the master side and

the therapist (τ t ∈ �n) on the slave side, as well as the influences from joint friction

and other external disturbances (τ d ∈ �n), the dynamic model for the master and

slave robotic exoskeletons can be expressed as

Mm(qe)q̈e + Cm(qe, q̇e)q̇e + τ d = um − τ p, (4.1)

and

Ms(qe)q̈e + Cs(qe, q̇e)q̇e + τ d = us − τ t, (4.2)

where subscripts m and s correspond to master and slave, respectively. Furthermore

the equations of motion have the following fundamental properties

Property 1 Positive Definite Symmetric Inertia Matrix: M(q) = M(q)T>0.

Property 2 Skew-symmetry of Ṁ(q)−2C(q, q̇) = 0.

4.3.2 Patient Dynamic Model

The Kelvin-Voigt viscoelastic model is commonly used in human-robot systems to de-

scribe the mechanical behaviour of muscle tissue and activation [155]. It is comprised

of a Newtonian damper (D) and Hookean elastic spring (K) connected in parallel as

shown in Fig. 4.2.

Figure 4.2: Kelvin-Voigt viscoelastic model

This model was incorporated in the current work for the patient model as follows

Mp(qp)q̈p + Cp(qp, q̇p)q̇p +Kp(qp − qo) +Dpq̇p = τ p, (4.3)
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where Mp(qp) ∈ �n×n is the inertia matrix of the patient’s arm and Cp(qp, q̇p) ∈
�n×n is the Coriolis effects and centrifugal torques of the patient’s arm. Kp is a

diagonal positive definite matrix containing the stiffness of the patient’s elbow and

wrist joints, while Dp is a diagonal positive definite matrix containing the damping

of the patient’s elbow and wrist joints. qo is the patient’s resting reference joint

angular position vector, qp and q̇p are the patient’s actual joint angular position

and velocity vectors, respectively, and τ p has the opposite sign to (4.1) because,

considering Newton’s third law, it is the torque that the exoskeleton applies on the

patient which is equal but opposite to the torque τ p shown in (4.1).

4.3.3 Physical Human-Machine Interaction (pHMI)

Being physically connected to − and moving in concert with − a robotic exoskeleton

is akin to the backyard game called the three-legged race (Fig. 4.3). In this game, two

people have one of their legs tied together and hold their upper bodies together so that

they can move as one coordinated unit. Similarly, upper-limb robotic exoskeletons

involve the physical coupling of two parallel, independent dynamic systems (the robot

and the human) and, as a result, it is important to address the transmission of forces

between them. The connections along the limbs should be comfortable but snug

enough to minimize ‘play’ and transfer the desired forces appropriately. In [156], it is

stated that the mechanical properties of this connection can depend on many factors

including the placement of the actuators on the robot in relation to the patient’s

joints. An exaggerated analogy to a poorly-matched structurally-parallel dynamic

system would be when the two partners in the three-legged race are of significantly

different height and/or have significantly-different upper or lower leg link lengths −
such as when pairing an adult with a child. Additionally, the contact surfaces and

the firmness of the patient’s arm − which can vary with age, sex, weight, and overall

physical condition − can affect the physical connection and transference of the forces

applied. Figs. 4.4 and 4.5 show how the exoskeleton and the human arm have different

joint angular positions qei and qpi , respectively, due to the dynamics of the physical

human-exoskeleton interaction (pHMI). The connection between the patient arm and

the robot exoskeleton occurs at the two force sensors where, as shown in Fig. 4.4, the

patient applies forces F1 and F2 on the exoskeleton and, as shown in Fig. 4.5, the
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Figure 4.3: Three-legged race: two participants having their legs bound together and
holding on to each other to move as one

exoskeleton applies equal but opposite forces on the patient. The dynamics of the

connection between the patient arm and the robot exoskeleton arm can be modeled as

a viscoelastic spring-damper mechanism [157]. Therefore, in this thesis the following

exoskeleton pHMI modeling approach is developed assuming that the resulting force

sensor readings F1 and F2 on link 1 and link 2 are

F1 = k1Δs1 + d1Δṡ1, (4.4)

F2 = k2Δs2 + d2Δṡ2. (4.5)

Figure 4.4: Exoskeleton diagram

where i=1 or 2 for the joint or link number, ki is the stiffness, and di is the viscous

damping of the viscoelastic robot-patient connection for joint i which act on Δsi and
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Figure 4.5: Human arm diagram

Δṡi corresponding to the arm position and rate differences between the exoskeleton

and the patient’s arm at the location of force sensor i. These position and rate

differences can be calculated as

Δsi = lsi(qei − qpi), (4.6)

Δṡi = lsi(q̇ei − q̇pi), (4.7)

where qei and q̇ei are the exoskeleton angular position and velocity of joint i, while

qpi and q̇pi are the patient angular position and velocity of joint i. lsi is the location

along link i of force sensor i from joint i. The position vector lsi along link i from

joint i to sensor i can be defined in terms of the exoskeleton joint angles using forward

kinematics (3.1) and (3.2) as follows

ls1 =

[
ls1 cos qe1

ls1 sin qe1

]
, (4.8)

ls2 =

[
ls2 cos(qe1 + qe2)

ls2 sin(qe1 + qe2)

]
, (4.9)

where subscripts 1 and 2 refer to the link number.

Having used the viscoelastic model to determine the size of the force sensor read-

ings F1 and F2, their directions − which are perpendicular to ls1 and ls2 − can be
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calculated from (4.8) and (4.9) so that the corresponding unit vectors
−→
F 1 and

−→
F 2

in the direction of these forces are

−→
F 1 =

[
ls1 sin qe1

−ls1 cos qe1

]
∣∣∣∣∣
∣∣∣∣∣
[

ls1 sin qe1

−ls1 cos qe1

]∣∣∣∣∣
∣∣∣∣∣
, (4.10)

−→
F 2 =

[
ls2 sin(qe1 + qe2)

−ls2 cos(qe1 + qe2)

]
∣∣∣∣∣
∣∣∣∣∣
[

ls2 sin(qe1 + qe2)

−ls2 cos(qe1 + qe2)

]∣∣∣∣∣
∣∣∣∣∣
. (4.11)

The resulting interaction force vectors become F 1 = F1

−→
F 1 and F 2 = F2

−→
F 2. Using

F 1 and F 2, the corresponding patient torque τ p can then be determined using the

Jacobian matrices J1 and J2. To derive the Jacobian matrices, the following steps

are taken using the chain rule. Given the (x, y) position of a point on a 2-DOF robot

where x(q1(t), q2(t)) and y(q1(t), q2(t))

vx =
dx

dt
=

∂x

∂q1

dq1
dt

+
∂x

∂q2

dq2
dt

=
∂x

∂q1
q̇1 +

∂x

∂q2
q̇2, (4.12)

vy =
dy

dt
=

∂y

∂q1

dq1
dt

+
∂y

∂q2

dq2
dt

=
∂y

∂q1
q̇1 +

∂y

∂q2
q̇2. (4.13)

Combining (4.12) and (4.13) as a vector-matrix expression produces

v =

[
vx

vy

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x

∂q1

∂x

∂q2

∂y

∂q1

∂y

∂q2

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
J

[
q̇1

q̇2

]
︸︷︷︸

q̇

= J q̇, (4.14)

where J is the Jacobian matrix. In addition to relating velocity at a point on the

robot to joint angular velocities, the Jacobian can be used to relate the force F at a

point on the robot to joint torques τ [158] as

τ = JTF . (4.15)



42

For the current case of a 2-DOF robot, to attain the Jacobian matrices, the partial

differentials of the forward kinematic equations (3.1) and (3.2) for x and y are taken

at the force sensor location ls1 and ls2 resulting in

J1 =

[
−ls1 sin q1 0

ls1 cos q1 0

]
, (4.16)

and

J2 =

[
−l1 sin q1 − ls2 sin(q1 + q2) −ls2 sin(q1 + q2)

l1 cos q1 + ls2 cos(q1 + q2) ls2 cos(q1 + q2)

]
, (4.17)

so that

τ p = JT
1 F 1 + JT

2 F 2. (4.18)

4.3.4 Therapist Dynamic Model

On the slave side, the therapist is modeled as an integral controller so that the

therapist acts on the cumulative position error to assist the patient as needed [159].

A diagonal positive gain matrix Kt was incorporated to represent the therapist’s

urgency to assist the patient as follows

τ t = Kt

∫
(qdesL − qs), (4.19)

where τ t is the calculated therapist’s assistive torque, qdesL is the reflected desired

joint angular position vector, and qs is the actual joint angular position of the slave

robot. The higher the gain Kt, the ‘quicker’ the therapist tries to help the patient.

4.4 Robotic Setup and Models for Validation

The proposed control methods developed in this research were first validated in

single-system scenarios on a 1-DOF Quanser QUBE simulation testbed and a 1-DOF

Quanser QUBE experimental testbed. Then, the control methods were validated for a

higher-degrees-of-freedom system using a 2-DOF simulated exoskeleton testbed. Fur-

thermore, the methods were validated and explored using telerehabilitation scenarios

featuring two experimental Quanser QUBES with a 1-DOF Driving Force driving

wheel for real-time human intervention emulating the therapist’s torque. Finally,

to validate the control methods for telerehabilitation using multi-degrees-of-freedom
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systems, the methods were implemented on 2-DOF simulated upper-limb robotic ex-

oskeleton systems.

4.4.1 1-DOF Quanser QUBE for Experimental Validation

To prevent damage to the equipment during experimental testing, a simulated model

of the Quanser QUBE 1-DOF robot was first created. This model was developed in

MATLAB/Simulink and, after validating and tuning the controllers on the Quanser

QUBE simulator, the control methods were experimentally validated on the actual

Quanser QUBE experimental testbed.

Apparatus, Model and Experimental Setup

The Quanser QUBE shown in Fig. 4.6 is a fully-integrated 1-DOF Robotic platform

used in labs around the world for control and mechatronics experiments. The exper-

imental testbed consists of a direct-drive brushed DC motor, an optical encoder, an

inertial disk attached to the motor shaft, an internal data acquisition system, and an

amplifier [160]. Real-time sensor data and control commands were relayed between

MATLAB/Simulink and the Quanser QUBE through the Quanser QUARC modules.

The devices were physically connected to the PC through USB.

Figure 4.6: The Quanser QUBE setup

In order to create a model of the Quanser QUBE, an experimental system iden-

tification and validation process was carried out using MATLAB/Simulink. A series

of different closed-loop step responses were created to generate experimental input-

output data for model identification. Fig. 4.7 a) shows the input voltage and Fig. 4.7

b) shows the corresponding output angular position as a function of time.
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Figure 4.7: Quanser QUBE model identification (a) experimental input: voltage, and
(b) experimental output: angular position

The system identification approach updated the model parameters by applying the

Nelder-Mead Simplex nonlinear optimization algorithm [161] to a cost function which

minimized the 2-norm of the difference between the experimental and the simulated

data. The initial model was assumed to be a second-order transfer function which

relates the output angular position q to the input motor voltage u as follows

q

u
=

c1
c2s2 + s

, (4.20)

where c1 and c2 are constants characterizing the mass, inertia, and viscous friction in

the system. Written as a second-order differential equation, (4.20) becomes

u =
c2
c1
q̈ +

1

c1
q̇. (4.21)

It was found, however, that a more complex viscous-Coulomb friction model pro-

vided better agreement between the identified model and the experimental apparatus.

This model incorporates an asymmetric Coulomb friction coefficient c3 which has dif-

ferent values depending on the direction of rotation. The corresponding differential

equation is written as

u =
c2
c1
q̈ +

1

c1
q̇ + c3 sgn(q̇), (4.22)
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where c3 has both clockwise (c3cw) and counter-clockwise (c3ccw) values that were

identified.

Fig. 4.8 shows a comparison between the experimental results and the simulated

identified model results using the same experimental input data shown in Fig. 4.7(a).

As can be seen in Fig. 4.8, the identified model closely agrees with the experimental

results.
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Figure 4.8: Experimental versus simulated output data used to identify the model of
the Quanser QUBE

The identified model was subsequently validated on different closed-loop experi-

mental data as shown in Fig. 4.9 using the proposed RBFNN-I method in Chapter

6. Figs. 4.9(a) and (b) clearly show a good level of agreement with an RMSE value

between the simulated model and the experimental results of 0.63◦, which attests to

the accuracy of the identified model. This model identification process was executed

in order to identify the specific parameters for both the master and the slave Quanser

QUBE 1-DOF robots utilized throughout this thesis.
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Figure 4.9: Model validation showing (a) control input and (b) position output of the
simulated versus experimental closed-loop system using the RBFNN-I control method

Optoforce Force Sensor

For the scope of this work, it was desired to include noise on the patient and therapist

torque signals in order to validate the robustness of the controllers. Thus, experiments

were carried out with the OptoForce sensor [162] shown in Figs. 4.10 to characterize

the sensor noise. Fig. 4.11(a) shows the measured force output signal as a function of

time when the sensor was stationary. The standard deviation from the experiments

was calculated to be 0.0076 N, with a mean of 0.0129 N, and a quantization interval

of 0.012 N/count. For the scope of the work in this thesis, it was assumed that this

noise could be modeled as a normally-distributed Gaussian noise signal with similar

mean, standard deviation, and quantization values. Fig. 4.11(b) shows the resulting

simulated sensor noise used in all the Quanser QUBE simulations and experiments

in this thesis.
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Figure 4.10: OptoForce force sensor
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(a) Experimental force sensor data (mean = 0.0125 N, std = 0.0075 N, var = 0.000057 N2)
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(b) Simulated force sensor data (mean = 0.0129 N, std = 0.0076 N, var = 0.000058 N2)

Figure 4.11: Experimental and simulated force sensor data

4.4.2 2-DOF Upper-Limb Robotic Exoskeleton

The control methodologies developed in this thesis were ultimately validated on a

2-DOF upper-limb horizontally-planar rehabilitation robotic exoskeleton simulation

testbed. The exoskeleton model used in the simulator was designed in SolidWorks

and is shown in Fig. 4.12. Referring to the nomenclature used in Fig. 4.4, the robot

link lengths (l1 and l2) were adjusted to match those of the author’s arm dimensions.

The COM locations for each robot link (lc1 , lc2), masses (m1, m2), and moments of

inertia about the COM (I1, I2) of each robot link were attained from SolidWorks and

are summarized in Table 4.1.

The human’s forearm was mathematically modeled as a right conical frustum while

the hand was modeled as an orthogonal slab similar to [163]. The dimensions of these
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Figure 4.12: 2-DOF elbow-wrist robotic exoskeleton conceptual design used in simu-
lations

human body-part models were based on the author’s physical dimensions. The mass

of the human’s forearm and hand were attained using body mass percentages as

prescribed in [164]. Fig. 4.5 illustrates the parameters pertaining to the human arm

which are also summarized in Table 4.1.

The exoskeleton elbow (joint 1) has a value of 0◦ when the elbow is flexed towards

the operator’s chest wall and 90◦ when the arm is extended away from the operator.

The exoskeleton wrist (joint 2) has a value of −45◦ when the hand is flexed towards

the operator’s chest wall, and 45◦ when it is extended away from the body.

The same exoskeleton design and human operator model is used on both the

master and the slave sides, thus the masses, lengths, and inertias used in the simulator

are the same on both sides.



49

Table 4.1: Simulation Parameters

Parameter Value Parameter Value
Exoskeleton: Patient:

l1 0.270 m lp1 0.270 m
l2 0.144 m lp2 0.150 m
lc1 0.206 m lcp1 0.092 m
lc2 0.064 m lcp2 0.075 m
m1 1.883 kg mp1 0.903 kg
m2 0.690 kg mp2 0.367 kg
I1 0.011 kgm2 Ip1 0.005 kgm2

I2 0.001 kgm2 I2 0.001 kgm2

Optoforce Force Sensor

The Optoforce noise data was also used in all the simulations using the 2-DOF Robotic

Exoskeletons. Fig. 4.13 shows the conceptual design of the hand sub-assembly with

the Optoforce force sensor mounted between a bracket fasten to the exoskeleton and

the hand sub-assembly which is mounted on a linear bearing so that the force between

the exoskeleton and the human occurs in only one dimension. The force sensors in

the 2-DOF exoskeleton design are located at ls1 along link 1 and ls2 along link 2 to

measure the elbow and wrist human torque input applied to the exoskeleton and are

used in all the 2-DOF exoskeleton simulations in this thesis.

Figure 4.13: OptoForce force sensor (yellow) in the hand sub-assembly
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It is important to note that when a patient’s arm is in contact with a robot, safety

and comfort is crucial. Hard stops should be implemented to limit the range of motion,

adjustable torque overload couplings should be placed on the motor shafts, and an

emergency stop button should be located within reach. Furthermore, software limits

should be placed on the robot’s motion as well as motor control torques and reflected

torques. This research implements the model of the 2-DOF Robotic Exoskeleton in

simulation, and thus has the safety limits implemented in software. Furthermore, to

minimize feelings of entrapment and allow for quick removal of the human’s arm out

of the device in case of an emergency, the current robotic exoskeleton was cleverly

designed to not only be widely adjustable for different shapes and sizes of the patient’s

forearm and hand, but to also allow the patient’s arm to be extracted vertically

without compromising the normal operation of therapeutic exercise.

4.5 Telerehabilitation

Equations (4.1) and (4.2) showed the nonlinear robotic exoskeleton dynamics equa-

tions for the n-DOF horizontal planar exoskeleton models on the master and the slave

side (Fig. 4.1). The telerehabilitation simulations and experiments in this work are

focused on the initial rehabilitation stage where the patient cannot yet initiate mo-

tion, and any patient-generated torques are due to the involuntary toning (tightness)

in the patient’s elbow and wrist, which is common in hemiplegia stroke patients at

the acute stage of their injury [97]. The toning causes both joints to rest near the

patient’s chest wall. There are two modes of teleoperation described in the following

sections: unilateral (open-loop) and bilateral (with force feedback).

4.5.1 Unilateral Teleoperation

Unilateral teleoperation takes place when the motion of the master side robot is

transmitted to the system on the slave side, but there are no torques transmitted

from the slave side to the master side. This unilateral teleoperation is referred to

as passive-mode telerehabilitation. During this stage, the therapist on the slave side

observes and assesses the patient’s range of motion and level of toning in the joints

while the master system aims to track the prescribed motion trajectories. Since

there is no force feedback in this scenario, any delays present in the communication
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channels merely present the master side motion to the therapist later in time with no

detrimental consequences to the stability of the system.

4.5.2 Bilateral Teleoperation

Bilateral telerehabilitation enables the therapist on the slave side to provide assistive

torques to the patient on the master side. In bilateral teleoperation, delays in the

communication channel can have an adverse effect on the system if measures are not

taken to ensure stability.

4.6 Performance Metrics of the Control Methods

To quantitatively compare the performance of the proposed control methods, both

tracking performance metrics and telepresence fidelity metrics were applied. Telep-

resence refers to how well the operator feels like they are in the remote environment.

In the context of virtual reality video games, Basdogan et al. [165] points out that

telepresence improves the sense of ‘togetherness’ between players and makes the ex-

perience more meaningful than just visual quantitative information being provided

to the user. Thus, in telerehabilitation, for perfect telepresence, the therapist would

have to apply the same joint torque as the patient to experience the same amount of

effort as the patient.

4.6.1 Tracking Performance

Metrics for joint tracking were implemented to gauge the performance of the proposed

control methods. Good tracking performance is attained when ξ̃i, the difference

between the desired impedance angular position and the actual robot angular position

of the ith joint, is minimal and converging towards zero. The average ξ̃i can be

quantified using the root mean squared error (RMSE) as follows

ξ̃i,RMSE �

√√√√ 1

N

N∑
n=1

(ξ̃i(n))2, (4.23)

whereN is the number of data points considered. Additionally, to discover the bounds

on ξ̃i, its maximum value is calculated for the ith joint as follows

ξ̃i,max � max|ξ̃i(n)|. (4.24)
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4.6.2 Telepresence Fidelity

The quantitative comparison of the achieved telepresence in the bilateral telereha-

bilitation system is performed by looking at the root mean square of the difference

between the patient and the therapist torques as follows

TPRMSE �

√√√√ 1

N

N∑
n=1

(τpi(n) + τrefli(n))
2, (4.25)

where N is the number of data points considered, τpi is the patient torque, and τrefli

is the reflected therapist’s torque for joint i. Furthermore, the maximum value of the

telepresence is calculated as follows

TPmax � max
∣∣τpi(n) + τrefli(n)

∣∣ , (4.26)

with zero being the ideal value. The telepresence metrics are calculated from the time

that the master robot begins to move due to the therapist’s assistive torques.

4.7 Control Objectives

This work endeavors to improve upon the state-of-the-art of upper-limb

robotic exoskeleton control for bilateral telerehabilitation with a focused

scope of providing higher-fidelity telepresence for the therapist while en-

suring good tracking performance.

First, the state-of-the-art upper-limb robotic exoskeleton control method, called

adaptive control, is extended to include robust, integral, and impedance control com-

ponents. The author coined the term Adaptive Robust Integral Impedance (ARII)

to describe this controller. Then a second, RBF neural networks based controller

is further developed to include adaptive, robust, integral, and impedance elements.

The author refers to this proposed controller as Adaptive Robust Integral Radial Ba-

sis Function Neural Networks Impedance (RBFNN-I). Simulation and experimental

tests are performed and results are compared and discussed for single robotic systems

and telerehabilitation scenarios using the Quanser QUBE testbed and the simulated

2-DOF upper-limb robotic exoskeleton testbed.

The overall goal of the proposed controllers is to properly reflect the motion and

torques across the communication system between the human-robot systems with
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high-fidelity telepresence and converging tracking errors. At the same time, the mo-

tions and torques must be safe and stable for the two human operators that are

connected to the robotic exoskeletons.

The following lists the control system objectives:

1. Provide higher-fidelity telepresence for the therapist than current robotic tel-

erehabilitation systems found in the literature;

2. Provide good, converging tracking performance;

3. Provide a stable and safe controller with adjustable compliance for telerehabil-

itation with upper-limb robotic exoskeletons.

The scope of the problem has the following constraints:

1. The communication time-varying delays are bounded;

2. The simulated patient and therapist dynamics are continuous and have limited

bandwidth;

3. The forces, position, velocity, and acceleration ranges of the robotic exoskeletons

are bounded;

4. All bounded limits are set in software to protect the humans and the hardware;

5. Experimental force sensor data was collected and the corresponding bias and

noise signature was simulated for all tests in this work.



Chapter 5

Adaptive Robust Impedance Integral (ARII) Controller-

Design, Simulations, and Experiments

5.1 Adaptive Control

The joint-space dynamics of an n-link rigid horizontally-planar robotic exoskeleton

with human torque disturbance τ p are given by (4.1) which is reproduced here for

convenience (with the subscript e and m notation dropped for brevity)

M(q)q̈ + C(q, q̇)q̇ + τ d = u− τ p. (5.1)

Due to realities such as measurement inaccuracies, material deformation, as well

as thermal, manufacturing, and system assembly variation, the actual kinematic and

dynamic parameters of a robotic exoskeleton cannot be precisely known in practice.

Adaptive control can be used to adjust and adapt these unknown model parameters

provided that one has a priori knowledge of the underlying detailed dynamics model

that describes how these unknown model parameters are related to the joint angular

position, velocity, and acceleration variables. As a result, the following equation is

used to model the dynamics

Ma(q)q̈ + Ca(q, q̇)q̇ + τ d = u− τ p, (5.2)

where Ma(q) and Ca(q, q̇) are the best approximations of the actual master robotic

exoskeleton (M(q) and C(q, q̇) in (5.1)) that an adaptive control law can achieve

with this model structure. Thus

M = Ma + EM , (5.3)

C = Ca + EC , (5.4)

where EM and EC are the inevitable modeling errors that occur when using a model

to represent an actual system.

54
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5.2 Impedance Control

It is desired to make the motion compliant and accommodating to the patient’s

changing abilities; therefore, impedance control is utilized. A dynamic impedance

model [62] can be described as

(Jds
2 +Bds+Kd)q̃τnet = τ net, (5.5)

where Jd, Bd, and Kd ∈ �n×n are diagonal, positive definite inertia, damping, and

stiffness matrices, respectively. These impedance matrices are designed to give a

desired stable dynamic response and can be adjusted based on the patient’s varying

capabilities throughout the course of the therapy journey. In this equation, q̃τnet

is the designed desired impedance joint angular position tracking error in response

to the net external torques τ net applied on the master robot by the humans in the

system, and s is the Laplace differential operator. Letting Jd = diag[j1, j2, ..., jn],

Bd = diag[b1, b2, ..., bn], and Kd = diag[k1, k2, ..., kn], the corresponding single-input

single-output ith impedance model transfer function is given by [166]

q̃τnet,i
τnet,i

=
1

jis2 + bi + ki
=

1

ji

s2 +
bi
ji
s+

ki
ji

. (5.6)

Comparing the denominator of the transfer function with the characteristic equa-

tion of a second-order system s2 + 2ζωns+ ω2
n [166] yields 2ζωn = bi

ji
and ki

ji
= ω2

n,

resulting in

bi = 2ζji

√
ki
ji

=
√
4ζ2jiki. (5.7)

To ensure that the impedance model does not exhibit any oscillations in the presence

of τ net, the impedance model should be critically damped (ζ = 1) or over damped

(ζ > 1). Fig. 5.1 shows an example of a desired impedance response to a 1 Nm step

input command with the ii, bi, and ki values set to 0.013 kgm2, 0.667 Nms, and 2.67

Nm, respectively. These values yield a damping ratio of ζ = 1.77, which is greater

than 1 and thus over damped as desired. Note, if it is desired to tune the response

further, a parameter optimization process could be implemented.

The net torque τ net applied by the humans onto the master robotic exoskeleton is

used by the impedance model to dictate the impedance desired joint angular position,
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Figure 5.1: Designed impedance response to a 1 Nm step input

velocity, and acceleration trajectory: qd,imp, q̇d,imp, and q̈d,imp. Fig. 5.2 plots the

joint angular position and corresponding tracking errors to illustrate the relationships

between the desired, actual, and impedance joint positions where:

qd(t) is the original desired joint angular position trajectory;

qd,imp(t) is the new desired joint angular position trajectory considering the

impedance response from an applied net human torque disturbance τ net;

q(t) is the actual joint angular position trajectory;

q̃τnet(t) is the designed desired impedance joint angular position tracking error

due to the applied net human torque disturbance τ net;

q̃(t) is the actual joint angular position tracking error from the original desired

joint angular position trajectory;

ξ̃(t) is the joint angular position impedance error, which corresponds to the

difference between the actual joint angular position tracking error and the de-

signed desired impedance joint angular position tracking error (and is desired

to converge towards zero).
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Figure 5.2: Joint angular position and tracking errors

Written out in equation form, we have the following relationships for the angular

position and angular velocity tracking errors

q̃(t) � q(t)− qd(t), (5.8)

˙̃q(t) � q̇(t)− q̇d(t). (5.9)

The following equations show the relationships between the desired, actual and the

designed motion tracking error due to the external human torques

q̃τnet(t) � qd,imp(t)− qd(t), (5.10)

˙̃qτnet(t) � q̇d,imp(t)− q̇d(t), (5.11)

¨̃qτnet(t) � q̈d,imp(t)− q̈d(t). (5.12)

An impedance model controller (IC) tries to ensure that the tracking errors q̃(t) and

˙̃q(t) match the desired dynamic response q̃τnet(t) and ˙̃qτnet(t) when external torques

from the humans τ net(t) are applied to the system. The impedance angular position

error ξ̃(t) can then be defined as

ξ̃(t) � q̃(t)− q̃τnet(t), (5.13)

and the impedance angular velocity error ˙̃ξ can be defined as

˙̃ξ(t) � ˙̃q(t)− ˙̃qτnet(t). (5.14)

The objective of the controller is to properly adjust the motor torques u in (5.2) so

that

lim
t→∞

ξ̃(t) = 0, lim
t→∞

˙̃ξ(t) = 0. (5.15)

If there are no external torques from the human operator, then q̃τnet(t) and ˙̃qτnet(t)

are zero and the impedance errors ξ̃(t) and ˙̃ξ(t) in (5.13) and (5.14) effectively become
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the tracking errors q̃(t) and ˙̃q(t) in (5.8) and (5.9). Using IC results in less accurate

tracking but a more compliant and safe-to-use system when humans are physically

interacting with the robots.

In telerehabilitation applications, IC enables the therapist, based on their profes-

sional judgment, to customize how far the patient’s joints are extended based on the

patient’s current abilities, and control the level of assistance provided to the patient

by the robot while tracking desired trajectories.

5.3 ARII Controller Design

It is desired to design the ARII controller to activate the robotic exoskeleton’s motors

according to the prescribed impedance model under real-time human torque input in

the presence of unknown dynamic modeling parameters and external disturbances.

Fig. 5.3 shows the corresponding control system diagram when the ARII controller

uses the desired and actual joint motion in combination with measured human torques

applied to the robotic exoskeleton to generate the control signal u.

Figure 5.3: ARII control system diagram

Let the proposed ARII control law be

u � M̂a(q)v̇ + Ĉa(q, q̇)v + M̂a(q) ¨̃qτnet + Ĉa(q, q̇) ˙̃qτnet

−Kpr −Ki

∫
rdt− τ r + τ p,meas, (5.16)

where M̂a(q) ∈ �n×n and Ĉa(q, q̇) ∈ �n×n are estimates of the inertia matrix Ma(q)

and the Coriolis and centripetal torques matrix Ca(q, q̇), respectively. Kp ∈ �n×n

and Ki ∈ �n×n are diagonal, positive definite proportional and integral gain matrices,
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τ r ∈ �n is the robust control term, and τ p,meas ∈ �n is the measured human distur-

bance torque. This adaptive control law is based on [167] for robotic manipulators

with the addition of an integral control term and a robust control term to address

the uncertainty in the measured torque. Furthermore, the adaptive control law is

extended to incorporate the impedance control by defining virtual reference velocity

and acceleration vectors v ∈ �n and v̇ ∈ �n in (5.16) as

v � q̇d − Λξ̃, (5.17)

v̇ � q̈d − Λ ˙̃ξ, (5.18)

where q̈d ∈ �n is the original desired joint angular acceleration trajectory and Λ ∈
�n×n is a diagonal positive definite gain matrix. The sliding mode error r is then

given by

r � q̇ − ˙̃qτnet − v = ˙̃ξ + Λξ̃. (5.19)

Note that from (5.19) as r → 0, ξ̃ → 0 and ˙̃ξ → 0. Similarly

ṙ � q̈ − ¨̃qτnet − v̇ = ¨̃ξ + Λ ˙̃ξ. (5.20)

5.3.1 ARII Controller Theoretical Development

This section develops the relationships needed to ultimately prove that, using the

proposed ARII control law, as t → ∞, ξ̃(t) → 0 as desired. Substituting the proposed

control law given by (5.16) into the robotic exoskeleton equation of motion given by

(5.2), and dropping the (q) and (q, q̇) notation for brevity gives the following equality

M q̈ + Cq̇ + τ d = M̂av̇ + Ĉav + M̂a
¨̃qτnet + Ĉa

˙̃qτnet

−Kpr −Ki

∫
rdt− τ r + τ p,meas − τ p. (5.21)

Observing (5.19) and (5.20), the following equalities are true

q̇ = r + v + ˙̃qτnet, (5.22)

q̈ = ṙ + v̇ + ¨̃qτnet. (5.23)
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Substituting (5.22) and (5.23) into (5.21),

M(ṙ + v̇ + ¨̃qτnet) + C(r + v + ˙̃qτnet) = M̂av̇ + Ĉav + M̂a
¨̃qτnet + Ĉa

˙̃qτnet

−Kpr −Ki

∫
rdt− τ r − τ d

+ τ p,meas − τ p. (5.24)

Further grouping all of the M and C terms gives the following equation

M ṙ + Cr +Ki

∫
rdt = (M̂a −M)(v̇ + ¨̃qτnet) + (Ĉa − C)(v + ˙̃qτnet)

−Kpr − τ r − τ d + τ p,meas − τ p. (5.25)

Substituting (5.3) and (5.4) into (5.25) gives

M ṙ + Cr +Ki

∫
rdt = (M̂a −Ma − EM)(v̇ + ¨̃qτnet)

+ (Ĉa − Ca − EC)(v + ˙̃qτnet)

−Kpr − τ r − τ d + τ p,meas − τ p. (5.26)

Letting M̃ = M̂a −Ma and C̃ = Ĉa − Ca and substituting M̃ and C̃ into (5.26) yields

M ṙ + Cr +Ki

∫
rdt = M̃(v̇ + ¨̃qτnet) + C̃(v + ˙̃qτnet)

− EM(v̇ + ¨̃qτnet)− EC(v + ˙̃qτnet)

−Kpr − τ r − τ d + τ p,meas − τ p

= M̃(v̇ + ¨̃qτnet) + C̃(v + ˙̃qτnet)

−Kpr + E + Ed + Ep − τ r, (5.27)

where

E � − EM(v̇ + ¨̃qτnet)− EC(v + ˙̃qτnet),

Ed � − τ d,

Ep � τ p,meas − τ p.

Provided that we have detailed knowledge of the underlying dynamic model of the

robotic exoskeleton, then we can express M̃(v̇ + ¨̃qτnet) + C̃(v + ˙̃qτnet) so that it is

linear in the unknown dynamic model parameters as

M̃(v̇ + ¨̃qτnet) + C̃(v + ˙̃qτnet) = Y (q, q̇,v, v̇, ˙̃qτnet, ¨̃qτnet)p̃, (5.28)
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where

p̃ = p̂− pa, (5.29)

such that p ∈ �m is the vector of m model parameters, p̂ ∈ �m is the vector of m

adaptive control law estimated parameters, and Y ∈ �n×m is the dynamic regressor

matrix which describes how the known and calculated motion vectors q, q̇,v, v̇, ˙̃qτnet,

and ¨̃qτnet are related to the unknown model parameters. Let these unknown dynamic

model parameters pa = [a1, a2, a3]
T be as in [61]

a1 = I1 + I2 +m1l
2
c1 +m2l

2
1 +m2l

2
c2,

a2 = m2l1lc2,

a3 = I2 +m2l
2
c2,

where li is the length of link i, lci is the distance along link i to its center of mass,

mi is the mass of link i and, Ii is the moment of inertia of link i about its center

of mass. Then we can use our detailed knowledge of the equation of motion of the

robotic exoskeleton given by (3.6) to write the M̂ and Ĉ matrices in terms of the

unknown dynamic parameters a1, a2, and a3 as follows

M̂ =

[
a1 + 2a2cos(q2) a3 + a2cos(q2)

a3 + a2cos(q2) a3

]
, (5.30)

and

Ĉ =

[
−a2sin(q2)q̇2 −a2sin(q2)(q̇1 + q̇2)

a2sin(q2)q̇1 0

]
. (5.31)

Substituting these expressions for M̂ and Ĉ into (5.28) along with the unknown

dynamic parameters pa = [a1, a2, a3]
T yields the following expression for the dynamic

regressor matrix Y (q, q̇,v, v̇, ˙̃qτnet, ¨̃qτnet) in (5.28),

Y =

[
Y11 Y12 Y13

Y21 Y22 Y23

]
, (5.32)
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where

Y11 = v̇1 + ¨̃qτnet,1,

Y12 = (2(v̇1 + ¨̃qτnet,1) + v̇2 + ¨̃qτnet,2) cos(q2)

+ (q̇1 ˙̃qτnet,2 − q̇2 ˙̃qτnet,1 − q̇2 ˙̃qτnet,2

− q̇1v2 − q̇2v1 − q̇2v2) sin(q2),

Y13 = v̇2 + ¨̃qτnet,2,

Y21 = 0,

Y22 = (v̇1 + ¨̃qτnet,1) cos(q2) + q̇1(v1 + ˙̃qτnet,1) sin(q2),

Y23 = v̇1 + ¨̃qτnet,1 + v̇2 + ¨̃qτnet,2.

Substituting (5.28) in (5.27) gives

M ṙ + Cr +Ki

∫
rdt = Y p̃−Kpr + E + Ed + Ep − τ r. (5.33)

For reasons which will become clear in the next section, let the robust term τ r be

defined as

τr � (K +Kd +Kτp)sgn(r), (5.34)

where K=diag(kii), kii ≥ |Ei|, i = 1 . . . n, Kd=diag(kd,ii), kd,ii ≥ |Ed|, and Kτp =

diag(kτp,ii), kτp,ii ≥ |Ep|. In other words, the gains K,Kd, and Kτp include the upper

bounds of Ei, Ed, and Ep respectively. Then

M ṙ +Cr +Ki

∫
rdt = Y p̃−Kpr +E +Ed +Ep − (K +Kd +Kτp)sgn(r). (5.35)

To avoid unwanted chatter associated with the sgn(r) terms, the following smooth-

ing function was utilized instead: r
(|r|+ε)

. The τr terms were optimized through manual

systematic selection for all the tests in this research. Alternatively, optimization al-

gorithms could have been implemented.

5.3.2 Stability Proof

To prove the stability of the proposed ARII control law, consider the Lyapunov can-

didate function

V =
1

2
rTMr +

1

2
(

∫
rdt)TKi(

∫
rdt) +

1

2
p̃TΓp̃, (5.36)
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where Γ ∈ �m×m is a symmetric positive definite matrix. Taking the time derivative

of V yields

V̇ =
1

2
ṙTMr +

1

2
rTṀr +

1

2
rTM ṙ +

1

2
rTKi(

∫
rdt)

+
1

2
(

∫
rdt)T K̇i(

∫
rdt) +

1

2
(

∫
rdt)TKir

+
1

2
˙̃p
T
Γp̃+

1

2
p̃T Γ̇p̃+

1

2
p̃T ˙̃p.

(5.37)

Recognizing that K̇i and Γ̇ are zero and further reducing the terms results in

V̇ = ṙTMr +
1

2
rTṀr + rTKi(

∫
rdt) + p̃TΓ ˙̃p. (5.38)

Note that the skew-symmetric property of manipulator dynamics (Property 2 in

�4.3.1) gives
1

2
rT (Ṁ − 2C)r = 0. (5.39)

Substituting (5.39) into (5.38) results in

V̇ = rTM ṙ + rTCr + rTKi(

∫
rdt) + p̃TΓ ˙̃p

= rT (M ṙ + Cr +Ki

∫
rdt) + p̃TΓ ˙̃p. (5.40)

Substituting (5.35) into (5.40) yields

V̇ = rT (Y p̃−Kpr + E + Ed + Ep − (K +Kd +Kτp)sgn(r)) + p̃TΓ ˙̃p

=− rTKpr − rT (K +Kd +Kτp)sgn(r)

+ rTE + rTEd + rTEp + rTY p̃+ p̃TΓ ˙̃p. (5.41)

Note that

rTY p̃+ p̃TΓ ˙̃p = p̃TY Tr + p̃TΓ ˙̃p = p̃T (Y Tr + Γ ˙̃p), (5.42)

since rTY p̃ is a scalar. Taking the derivative of (5.29) yields

˙̃p = ˙̂p− ṗa, (5.43)

and noting that ṗa=0 since pa is constant, then the adaptive law was designed as

˙̂p = −Γ−1Y Tr, (5.44)
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where Γ can be used to control the speed of the adaptation of the parameters. There-

fore (5.41) becomes

V̇ =− rTKpr + (−rTKsgn(r) + rTE) + (−rTKdsgn(r) + rTEd)

+ (−rTKτp)sgn(r) + rTEp)

=− rTKpr + (−
n∑

k=1

Kk|rk|+
n∑

k=1

Ekrk)

+ (−
n∑

k=1

Kd,k|rk|+
n∑

k=1

Ed,krk)

+ (−
n∑

k=1

Kτp,k|rk|+
n∑

k=1

Ep,krk). (5.45)

Since −rTKpr ≤0 and
n∑

k=1

Kk|rk| ≥
n∑

k=1

Ekrk,

n∑
k=1

Kd,k|rk| ≥
n∑

k=1

Ed,krk,

n∑
k=1

Kτp,k|rk| ≥
n∑

k=1

Ep,krk.

then

V̇ ≤ 0. (5.46)

This condition implies stability which means that the system will stay in the vicinity of

equilibrium. This condition on its own, however, does not imply asymptotic stability,

where the system returns to equilibrium. Since V is in a quadratic form (meaning

its terms are of the form 1
2
rTMr), then V is positive definite since M,Ki and Γ are

positive definite. Also V is non-increasing since V̇ ≤ 0. Therefore r(t) is bounded

(r ∈ Ln
∞) and r(t) is a square integrable function (r ∈ Ln

2 ) satisfying√√√√∫
t

||r(t)||2dt < ∞. (5.47)

Since r ∈ L2 ∩ L∞ and r = ˙̃ξ + Λξ̃ from (5.19), then ξ̃ and ˙̃ξ ∈ Ln
2 ∩ Ln

∞. According

to Barbălat’s Lemma [73]

if ξ̃ ∈ Ln
2 ∩ Ln

∞ and ˙̃ξ ∈ Ln

then limt→∞ ξ̃(t) = 0,
(5.48)
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as desired, which completes the proof.

5.4 ARII Method Validation with the Single-System 1-DOF Quanser

QUBE Robot Testbed

The proposed ARII control method was implemented in MATLAB/Simulink and

was first validated using the Quanser QUBE simulation testbed using the identified

model of the plant from the previous chapter. The control method was then validated

experimentally using the Quanser QUBE experimental testbed.

5.4.1 Simulations Validation with the Quanser QUBE Robot

To validate the proposed ARII control method, a series of motion trajectories were

commanded. Initially, harmonic motion, which mimics passively moving the patient’s

arm as done in physiotherapy exercises, was implemented as shown in Fig. 5.4(a) with

the following desired trajectory (red line)

qd = A sin(wt− π/2) + 45π/180, (5.49)

where the amplitude A and frequency w were set to π/4 rad and π/4 rad/s, respec-

tively. The initial patient resting position qo was set to 0◦, which is to demonstrate

a stroke patient with high arm muscle tone and having the arm folded towards the

chest wall [97]. This oscillatory motion, shown in region A in Fig. 5.4, continues for 48

seconds during which time the adaptive control law is allowed to adjust the model pa-

rameters. Referring to Fig. 5.4(a), after 48 seconds the robot was commanded to hold

a position of 0◦ for 4 seconds (region B) and then progressively increase the position

by 22.5◦ (region C) and hold stationary at 90◦ until the end of the test at 150 seconds

(region D). For convenience, Table 5.1 summarizes the regions used throughout the

single-system tests with the Quanser QUBE testbeds. Furthermore, Table 5.2 sum-

marizes the ARII Quanser QUBE simulation parameters. The impedance parameters

were selected so that the maximum torque applied to the patient by the robot was

effectively limited to 1 Nm as shown in Fig. 5.1. The patient stiffness parameter was

scaled from [168] so that the patient model could be used with the Quanser QUBE.

To select the controller parameters shown in Table 5.2 a systematic and extensive

manual tuning process was carried out to produce desirable and converging tracking
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errors. Saturation blocks on the control signal were applied to match the motor lim-

its of the Quanser QUBE, and to enhance system stability by implementing the time

domain passivity based strategy of boundedness.

Table 5.1: Simulations and Experiments Regions for Single-System Quanser QUBE

Region Time Range Operation

A 0-48 s oscillate between 0◦ and 90◦, adaptation period

B 48-60 s hold still at 0◦

C 60-94 s progressively increase the position by 22.5◦ up to 90◦

D 94-150 s hold still at 90◦

Fig. 5.4 shows the results of utilizing the ARII controller with the Quanser QUBE

simulator testbed. Fig. 5.4(a) plots the desired joint angular position, the impedance

desired joint angular position, and the actual joint angular position as a function of

time. The effects of using impedance control are apparent since, rather than following

the robot desired angular position trajectory that has a maximum value of 90◦ (red),

in response to the applied patient’s torque shown in Fig. 5.4(c) the robot (magenta)

follows the impedance designed desired trajectory (green) which has a maximum

value of 68.2◦. Fig. 5.4(b) shows the corresponding impedance joint angular position

tracking error ξ̃ plotted as a function of time which decreases with time as the adaptive

control law adjusts the dynamic model parameters. Fig. 5.5 plots the adaptation of

the dynamic model parameter terms for the Quanser QUBE ARII simulation as a

function of time which are convergent and held constant after the adaptation period

of 48 seconds. The performance metrics for this benchmark simulation validation test

are listed in Table 5.3. The maximum ξ̃ was recorded as 2.4◦ while the ξ̃RMSE had a

value of 0.7◦.
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Table 5.2: ARII QUBE Simulation Parameters

Impedance: J 0.013 Kgm2

B 0.667 Nms
K 2.667 Nm

Patient: Kp 0.848 Nm/rad
Dp 0.2 Nms/rad

Controller: Γ diag([2,2])
Λ 4.0
Kd 1.0
Ki 0.1
Kr 0.01
ε 0.08
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Figure 5.4: ARII single-system simulation with Quanser QUBE: (a) position trajec-
tory, (b) tracking error, and (c) torque
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Figure 5.5: Estimated parameters using the ARII control method with the Quanser
QUBE single-system simulator

Table 5.3: Performance Metrics for ARII Single-System Simulation with Quanser
QUBE

Testbed Metrics ARII

QUBE simulation ξ̃max 2.4◦

ξ̃RMSE 0.7◦
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5.4.2 Experimental Validation with the Quanser QUBE Robot

Having successfully implemented the proposed ARII control approach on the Quanser

QUBE simulator testbed, the same desired trajectory and controller parameters were

used for experimental tests with the Quanser QUBE apparatus. Fig. 5.6 shows the

resulting experimental results using the ARII controller with the Quanser QUBE

hardware. Similar to Fig. 5.4, Fig. 5.6(a) plots the desired joint angular position, the

impedance desired joint angular position, and the actual joint angular position, as

functions of time. Fig. 5.6(b) shows the impedance joint angular position tracking

error ξ̃, while Fig. 5.6(c) shows the patient torques applied during the test. Fig. 5.7

show the adaptation terms for the Quanser QUBE ARII experimental test which,

after the 48 seconds adaptation period, were set to their convergent values for the

remainder of the test. The performance metrics for this experiment are listed in Ta-

ble 5.4. The maximum ξ̃ was recorded as 2.8◦, and the ξ̃RMSE had a value of 1.0◦.
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Figure 5.6: ARII single-system experiment with Quanser QUBE: (a) position trajec-
tory, (b) tracking error, and (c) torque

The experimental impedance tracking error ξ̃ results were superimposed on the
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Figure 5.7: Estimated parameters using the ARII control method with the Quanser
QUBE single-system apparatus

Table 5.4: Performance Metrics for ARII Single-System Experiment with Quanser
QUBE

Testbed Metrics ARII

QUBE experimental setup ξ̃max 2.8◦

ξ̃RMSE 1.0◦

simulation ξ̃ results and shown in Fig. 5.8. Furthermore the performance metrics

for the simulated and the experimental tests are listed side-by-side in Table 5.5, for

comparison purposes. As can be seen in Fig. 5.8 and Table 5.5, the experimental

results are remarkably similar to the simulator results in terms of bound (with only

0.2◦ difference in the initial phase) and as well as in the oscillatory motion region

and, therefore, effectively validate the simulation results.
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-2

0

2
Simulation
Experiment

Figure 5.8: The profile of ξ̃ for ARII Quanser QUBE simulation and experiment
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Table 5.5: Performance Metrics for ARII Single-System Simulation versus Experiment
with Quanser QUBE

Metrics Simulation Experiment

ξ̃max 2.4◦ 2.8◦

ξ̃RMSE 0.7◦ 1.0◦

5.5 ARII Method Validation with the Single-System 2-DOF Robotic

Exoskeleton Simulations

Having validated the simulation results experimentally on a 1-DOF robotic system,

the simulator was extended to a 2-DOF robotic exoskeleton involving both elbow and

wrist joints to validate the proposed ARII control methodology on a higher-degree-

of-freedom system. The desired trajectory for the exoskeleton elbow joint was the

same as that used in the 1-DOF simulation and experiment

qd1 = A sin(wt− π/2) + 45π/180, (5.50)

where the amplitude A and frequency w were set to π/4 rad and π/4 rad/s, respec-

tively, so that the trajectory oscillates between between 0◦ and 90◦. The desired

trajectory for the exoskeleton’s wrist joint was characterized by

qd2 = A sin(wt− π/2), (5.51)

where the amplitude A and frequency w were set to π/4 rad and π/4 rad/s, respec-

tively, so that the trajectory oscillates between between −45◦ and 45◦ at the same

frequency as joint 1. The initial patient resting position for joint 1 (elbow) was set

to 0◦, while the initial patient resting position for joint 2 (wrist) was set to −45◦

which is demonstrative of a stroke patient with high arm muscle tone and having the

arm and wrist folded towards the chest wall [97]. For joint 1, this oscillatory motion,

shown in region A in Fig. 5.9, continues for 48 seconds during which time the adaptive

control law is allowed to adjust the model parameters. Fig. 5.9(a) shows how after 48

seconds the robot joint 1 was then commanded to hold a position of 0◦ for 4 seconds

(region B) and then progressively increase the position by 22.5◦ (region C) and hold

stationary at 90◦ until the end of the test at 150 seconds (region D). For joint 2,
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Table 5.6: Regions Definition for Single-System 2-DOF Exoskeleton Simulations

Region Time Range Operation

Joint 1

A 0-48 s oscillate between 0◦ and 90◦, adaptation period

B 48-60 s hold still at 0◦

C 60-94 s progressively increase the position by 22.5◦ up to 90◦

D 94-150 s hold still at 90◦

Joint 2

A 0-48 s oscillate between -45◦ and 45◦, adaptation period

B 48-120 s hold still at -45◦

C 120-124 s go to 45◦

D 124-150 s hold still at 45◦

Fig. 5.10(a) shows how after 48 seconds of oscillatory motion the robot joint 2 was

commanded to hold a position of −45◦ (region B) and then at 120 seconds (region C)

increase the position to 45◦ and hold at 45◦ from 124 seconds until the end of the test

at 150 seconds (region D). For convenience, Table 5.6 summarizes the regions used

throughout the single-system tests with the 2-DOF exoskeleton testbed.

Furthermore, Table 5.7 summarizes the ARII 2-DOF Exoskeleton simulation pa-

rameters. Note that the notation diag([a, b]) refers to a diagonal matrix with diagonal

elements a and b corresponding to joint 1 and joint 2, respectively. The impedance

parameters were set as shown in Table 5.7 to adjust the patient’s motion so that

the maximum torque applied to the patient by the robotic exoskeleton was effec-

tively limited to 1 Nm for the elbow joint (similar to the Quanser QUBE simulations

and experiments) and 0.6 Nm for the wrist joint without therapist assistance. The

impedance, therefore, ensures the patient’s safety while working with the robot. The

patient stiffness parameter was scaled from [168] so that the patient model could be

used with the simulated 2-DOF robotic exoskeleton. To select the controller parame-

ters shown in Table 5.7 a systematic and extensive manual tuning process was carried

out similar to the Quanser QUBE simulations and experiments to produce desirable

and converging tracking errors. Saturation blocks on the control signal were applied

to match the motor limits of the conceptualized 2-DOF exoskeleton system, and to

enhance system stability by implementing the time domain passivity based strategy
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of boundedness.

Table 5.7: ARII Single-System Simulation with 2-DOF Exoskeleton: Simulation Pa-
rameters

Impedance: J diag([0.013, 0.013]) Kgm2

B diag([0.667, 0.667]) Nms
K diag([2.667, 2.667]) Nm

Patient: Kp diag([.848,.424])
Dp diag([.2,.05])

pHMI: KpHMI diag([800, 266.667])N/rad
DpHMI diag([10, 2.5])Ns/rad

Controller: Γ diag([.02,1,1])
Λ diag([1,4])
Kd diag([8,2])
Ki diag([.1,.1])
Kr diag([.01,.01])
ε [0.08,0.08]T

Figs. 5.9 to 5.11 show the resulting performance of the ARII controller. Figs. 5.9(a)

and 5.10(a) show the desired joint angular position, the impedance desired joint angu-

lar position, and the actual joint angular position of joint 1 and joint 2, respectively,

plotted as a function of time. Note how, similar to the Quanser QUBE results, the

patient’s motion is adjusted by the impedance controller in response to the patient’s

elbow input torque shown in Fig. 5.9(c) to limit motion to between 0◦ and 68.5◦ when

the exoskeleton is commanded to move between 0◦ to 90◦ for joint 1. Similarly, the

motion is attenuated to a range between −45◦ and 33.1◦ instead of from −45◦ to

45◦ for joint 2 given the patient’s wrist input torque shown in Fig. 5.10(c). Plots

(b) on both Figs. 5.9 and 5.10 show the resulting impedance joint angular position

tracking error ξ̃ for joints 1 and 2. Fig. 5.11 shows the adaptation of the dynamic

parameter terms, and how, with the selected adaptive law Γ parameters, the adaptive

terms quickly move towards and oscillate close to their steady state values within the

first six seconds. The corresponding performance metrics for this test are listed in

Table 5.8. For joint 1, the maximum ξ̃ was recorded as 0.5◦, and the ξ̃RMSE had a

value of 0.1◦. For joint 2, the maximum ξ̃ was recorded as 0.1◦, while the ξ̃RMSE had

a value of 0.0◦.
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Figure 5.9: ARII single-system simulation with 2-DOF exoskeleton: (a) position
trajectory, (b) tracking error, and (c) patient torque for joint 1
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trajectory, (b) tracking error, and (c) patient torque for joint 2
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Figure 5.11: Estimated parameters using the ARII control method with the 2-DOF
exoskeleton simulator

Table 5.8: Performance Metrics for ARII Single-System Simulation with the 2-DOF
Exoskeleton

Testbed Metrics ARII

2-DOF Exo Sim (Joint 1) ξ̃max 0.5◦

ξ̃RMSE 0.1◦

(Joint 2) ξ̃max 0.1◦

ξ̃RMSE 0.0◦

5.6 Telerehabilitation Human Torque Synthesis Experiments with the

Quanser QUBEs Testbed

Having validated the proposed ARII control approach on single systems in both sim-

ulation and experiment, experimental tests were carried out with two Quanser QUBE

experimental testbeds to validate the performance of the ARII method in telerehabil-

itation scenarios and to examine the tracking performance and telepresence fidelity.

The Logitech driving wheel hardware was used to emulate human real-time assistive

intervention from the therapist on the slave side. As shown in Table 5.9 and Fig. 5.12,

the first 100 seconds of the tests (corresponding to regions A-D in the figure and ex-

plained in the previous sections) are unilateral, where the robot follows the same

oscillation patterns and incremental step trajectories as carried out in the previous

single-system tests. Then, after the 100 seconds mark, the human therapist is allowed

to assist the patient-master robotic exoskeleton system to move towards the desired

steady-state trajectory position of 90◦.

The point at which the therapist begins applying assistive torques defines the start

of region E as shown in Fig. 5.12. Bilateral telerehabilitation (referred to as region
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Table 5.9: Regions Definition for Quanser QUBE Telerehabilitation Experiments

Region Time Range Operation

A 0-48 s oscillate between 0◦ and 90◦, adaptation period

B 48-60 s hold still at 0◦

C 60-94 s increase position in increments of 22.5◦, up to 90◦

D 94-150 s hold still at 90◦

E 100-150 s bilateral telerehabilitation is possible

F start � 100-150 s therapist’s torque assists patient

� = between

F) officially starts when the robot on the master side begins to move in response to

the therapist’s assistive torque τ refl. This bilateral telerehabilitation portion of the

test is shown as a blue region in all the bilateral position and torque plots in this

research. Note that, for the scenario studied in Fig. 5.12, regions E and F overlap.

This overlap occurs because for this scenario, as soon as the therapist begins to try

to apply assisting torques, the robot on the master side begins to move in response to

these torques. During bilateral teleoperation, the net torque τ net (shown in Fig. 4.1)

on the master side is composed of torques from both the patient τ p and the reflected

torque τ refl from the therapist on the slave side. The remainder of this chapter

carries out telerehabilitation experiments to examine the effects of different strategies

of combining the human torques to calculate τ net on the resulting trajectories and

telepresence.

5.6.1 Direct τ refl Addition

A common method of combining the reflected assistive therapist torque to the system

on the master side is to simply add it to the patient’s torque [65, 60, 59] as follows

τ net = τ p + ατ refl, (5.52)

where α ∈ �n×n is the identity matrix. Fig. 5.12(a) plots the corresponding exper-

imental position signals as functions of time, while 5.12(b) shows the experimental

impedance angular position tracking error ξ when τnet is calculated using (5.52).

Fig. 5.12(c) plots the patient torque τp in fuchsia and the therapist torque τrefl in

black. Fig. 5.12(c) also plots the negative value of the therapist torque (−τrefl) as a
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dashed black line for comparison, and the net human torque τrefl is shown in green.

It can be seen in 5.12(b) that the impedance angular position tracking error improves

during region A when the model parameters are adapting. Fig. 5.13 shows how the

parameters adapt and converge over time during region A, after which the parameters

are held constant for the remainder of the test.

To better visualize the level of telepresence in this experiment, Fig. 5.14 focuses

on regions E and F and plots the patient torque τp and therapist torque τrefl in

Fig. 5.14(a) as well as the sum of the two human torques (τp+τrefl) in Fig. 5.14(b).

Note that, with the sign convention used in this research for the definitions of τp and

τrefl, the highest possible telepresence fidelity is achieved when the therapist’s torque

τrefl is equal to the negative of the patient’s torque τp so that, when added together,

the ideal telepresence would be zero. For reference, the ideal telepresence is shown as a

green line in Fig. 5.14(b) and the area between this line and the achieved telepresence

(τp + τrefl) is shown in yellow. This plotting convention is shown in Fig. 5.14(b) as

well as in all future bilateral telerehabilitation plots to better display the difference

between the achieved and ideal telepresence.
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Figure 5.12: ARII telerehabilitation experiment with Quanser QUBEs with α = 1:
(a) position trajectory, (b) tracking error, and (c) torques
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Figure 5.13: Estimated parameters for the ARII telerehabilitation experiment with
the Quanser QUBEs with α = 1
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Figure 5.14: Torques for the ARII telerehabilitation experiment with Quanser QUBEs
with α = 1 during the bilateral phase

It is important to note that using the current direct addition human torque syn-

thesis strategy characterized by (5.52), the initial telepresence fidelity is low since the

master robot starts to move as soon as the therapist starts to provide small assistive

torques. This initially poor telepresence can be seen in Fig. 5.14(b) as the yellow area

at the beginning of region E and F. The therapist’s torque then gradually ramps up

over the course of about six seconds, and ultimately becomes close to the patient’s

torque as desired so that (τp + τrefl) is close to the ideal value of zero. The position

tracking and telepresence performance metrics for this α = 1 experiment are listed in

Table 5.10.
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5.6.2 Scaled τ refl Addition

Another strategy presented in the literature [65] [60] for combining the human torques

is to scale the therapist’s torques as follows

τ net = τ p + ατ refl, (5.53)

where α ∈ �n×n is a positive symmetric diagonal matrix containing the scaling factors

applied to the τ refl vector. When the elements of α are greater than one, the therapist

applies small assistive torques which get amplified by the α factor on the master side.

This strategy was implemented on the Quanser QUBE testbeds with the ARII

control methodology and the experimental results are shown in Figs. 5.15 to 5.17

when the scaling factors in α are equal to three, as in [60]. Similar to the direct

τ refl-addition synthesis method described in the previous section, Fig. 5.15(a) plots

the corresponding experimental angular position signals as functions of time, while

Fig. 5.15(b) shows the experimental impedance angular position tracking error ξ when

τnet is calculated using (5.53). Fig. 5.15(c) plots the patient torque τp in fuchsia and

the therapist torque τrefl in black. Fig. 5.15(c) also plots the negative value of the

therapist torque (−τrefl) in dashed black lines for comparison and the net human

torque τrefl in green. Fig. 5.16 shows the dynamic parameters adapting as a function

of time and then being held constant from 48 seconds to the end of the test. Similar to

Fig. 5.14, Fig. 5.17 focuses on the torques in the bilateral telerehabilitation-related re-

gions E and F. As can be seen in Fig. 5.17(b), the achieved telepresence hovers around

−1 Nm when using the scaled therapist’s torque, which is worse than the case of di-

rect addition of the therapist’s torque. The relatively large yellow area in Fig. 5.17(b)

highlights the poor telepresence achieved when using the α = 3 scaled τrefl strategy

governed by (5.53), rendering the telepresence virtually non-existent with this strat-

egy. The corresponding position tracking and telepresence performance metrics for

this α = 3 experiment are listed in Table 5.10.

Using this scaled-τrefl strategy is a double-edge sword: On one side the scaling

is beneficial because the therapist is able to apply reduced torques and, therefore,

experience less fatigue throughout the day as the therapist assists other patients [60].
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Figure 5.15: ARII telerehabilitation experiment with Quanser QUBEs with α = 3:
(a) position trajectory, (b) tracking error, and (c) torques
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Figure 5.16: Estimated parameters for the ARII telerehabilitation experiment with
the Quanser QUBEs with α = 3

On the other side, however, by having the therapist apply scaled-down torques which

are amplified by α on the master side, there is a disparity between the magnitude of

the therapist’s and the patient’s torques, which destroys any chance for the therapist

to appreciate the amount of assistive torque that the patient is actually experiencing.

As a result, poor telepresence fidelity occurs in this case. For example, while per-

forming these experimental tests when α = 3, the present author did not experience a

proportional and comprehensive perceptive awareness of the effort experienced by the

patient modeled, which could result in a potential safety hazard and underestimation

of the patient’s level of inability. Furthermore, a sensation of disjointed kinesthetic
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Figure 5.17: Torques for the ARII telerehabilitation experiment with Quanser QUBEs
with α = 3 during the bilateral phase

feedback was felt by the present author, similar to the feeling of ‘slipping on the ice’,

or using the mouse on a gamer’s computer − where the the cursor speed is typically

set to a much higher value than for typical word-processing or coding-computer us-

age. Additionally, there is a learning curve that requires practice to get used to the

amplification effects since very small efforts on the therapist’s side have large effects

on the master side − similar to using a large wrench on a small bolt where one needs

to tone down their torque input to prevent any damage.

5.6.3 Human Torque Regulator

While performing extensive experimental tests implementing the two previously-

mentioned human torque synthesis strategies on the Quanser QUBE testbeds with

the Driving Force wheel for human-input, the present author aspired to improve the

telepresence perception for the therapist in bilateral telerehabilitation scenarios be-

yond what is currently found in the literature. It was desired that the therapist should

apply an equal amount of torque on the slave robot as the patient is applying on the

master side before the robot’s position on the master side is affected by the thera-

pist’s torques. Only when the therapist’s torque matches the patient’s torque should
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the therapist’s torque start assisting on the master side, with matched intensity as

the patient. This strategy would enhance the therapist’s telepresence, allowing the

therapist to gauge the patient’s effort on the master side. Furthermore, applying the

same torque as the patient, instead of a torque that could be amplified several times,

increases the safety of the telerehabilitation program. It is safer for the patient if the

therapist is exerting the same torque as the patient so that the therapist can bet-

ter sense what the patient is experiencing. To achieve this desired telepresence, the

present author proposed and developed the following novel human torque regulator

(HTR) approach to calculate τ net

τ net =

⎧⎨
⎩τ net + ψ(τ refl + τ p), if τ refl ≥ τ p,

τ p, if τ refl < τ p.
(5.54)

As shown in this proposed approach, when τ refl is equal to or surpasses τ p in

magnitude, the value of τ net is adjusted depending on the value of τ refl and τ p.

When τ refl is smaller than τ p in magnitude, τ net is equated to τ p. Furthermore, ψ

∈ �n×n in (5.54) is a positive definite diagonal matrix of proportional control gains

which acts to reduce the error between τ p and τ refl. The effect of this proposed

formulation is that the net torque consists of a switching region and a linear region

of operation with the goal of allowing for customizable speed of operation for the

therapist-induced assistive efforts as well as enabling high-fidelity telepresence for the

therapist.

Similar to the direct and scaled τ refl-addition synthesis methods, Fig. 5.18(a)

plots the corresponding experimental angular position signals as functions of time,

while Fig. 5.18(b) shows the experiment impedance angular position tracking error

ξ when τnet is calculated using the new HTR shown in (5.54). Figs. 5.18(c) plots

the patient torque τp in fuchsia and the therapist torque τrefl in black. Fig. 5.18(c)

also plots the negative value of the therapist torque (−τrefl) in dashed black lines for

comparison and the net human torque τrefl in green.

Fig. 5.19 shows the convergent adaptive parameters and their terminal, constant

values from 48 seconds to the end of the test. Fig. 5.20 focuses on the regions D, E,

and F shown in Fig. 5.18(c). It can be seen in Fig. 5.20(a) that, unlike the previous

α = 1 and α = 3 strategies, the start of region E is different from the start of region
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Figure 5.18: ARII telerehabilitation experiment with Quanser QUBEs with HTR: (a)
position trajectory, (b) tracking error, and (c) torques
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Figure 5.19: Estimated parameters for the ARII telerehabilitation experiment with
the Quanser QUBEs with HTR

F. The start of region E corresponds to when the therapist begins to apply torque to

try to assist the patient. In the previous α = 1 and α = 3 strategies, the moment the

therapist began applying even small amounts of assistive torque, the patient began

to move in response to the therapist’s torque − initiating bilateral telerehabilitation

defined by region F. Using the proposed HTR approach, however, when the therapist

begins to apply torques to try to assist the patient, the patient does not begin to

move right away. The therapist has to continue to increase the assistive torque they

are applying until the therapist’s torque matches that of the patient. Only when the

therapist is applying the same torque felt by the patient do the patient’s arm and
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master robotic exoskeleton begin to respond to the therapist’s assistance. Region E

in Fig. 5.20(a) corresponds to this build up of the therapist’s torque to match the

patient’s torque, while region F begins only when the therapist and patient torques

match and the exoskeletons begin to move to commence the bilateral telerehabilitation

stage. Fig. 5.20(b) illustrates the excellent telepresence achieved in the bilateral

telerehabilitation region F using the proposed HTR strategy. The proposed HTR

approach, therefore, not only allows the therapist to accurately gauge what the patient

is feeling by the end of region E (before any bilateral telerehabilitation occurs) but also

provides the therapist with excellent telepresence during bilateral telerehabilitation

(region F) by ensuring that both sides work together in synergy − with the therapist

having a heightened awareness of the magnitude of the patient’s torque. The position

tracking and telepresence performance metrics for this experiment are listed in Table

5.10. It can be seen in this table that the improved telepresence achieved with the

new HTR technique is captured by the zero (displayed to one decimal place) TPmax

and TPRMSE metrics compared to the non-zero metrics attained using the α = 1 and

α = 3 strategies.
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Figure 5.20: Torques for the ARII telerehabilitation experiment with Quanser QUBEs
with HTR during the bilateral phase
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Table 5.10: Performance Metrics for ARII Telerehabilitation Experiments with
Quanser QUBEs

Metrics α = 1 α = 3 HTR

ξ̃max 2.8◦ 2.7◦ 2.8◦

ξ̃RMSE 1.1◦ 1.0◦ 1.1◦

TPmax 1.0Nm 1.0Nm 0.0Nm

TPRMSE 0.2Nm 0.9Nm 0.0Nm

5.7 Telerehabilitation Human Torque Combination Simulations with

2-DOF Robotic Exoskeleton Model

Having validated the proposed ARII control approach on single DOF bilateral telere-

habilitation experiments, the ARII method is now validated in telerehabilitation sce-

narios on multi-DOF systems by using the designed 2-DOF robotic exoskeleton simu-

lation testbed and applying the three different net human torque synthesis strategies

presented in the previous sections. Table 5.11 summarizes the regions used through-

out the 2-DOF exoskeleton telerehabilitation simulations.

Table 5.11: Regions Definition for Single-System 2-DOF Exoskeleton Simulations

Region Time Range Operation

Joint 1

A 0-48 s oscillate between 0◦ and 90◦, adaptation period

B 48-60 s hold still at 0◦

C 60-94 s increase position in 22.5◦ increments, up to 90◦

D 94-150 s hold still at 90◦

E 100-150 s bilateral telerehabilitation is possible

F start � 100-150 s therapist’s torque assists patient

Joint 2

A 0-48 s oscillate between -45◦ and 45◦, adaptation period

B 48-120 s hold still at -45◦

C 120-124 s go to 45◦

D 124-150 s hold still at 45◦

E 126-150 s bilateral telerehabilitation is possible

F start � 126-150 s therapist’s torque assists patient
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5.7.1 Direct τ refl Addition

Figs. 5.21 to 5.24 show the results of the simulation when the reflected assistive

therapist torque is directly added to the patient’s torque using (5.52). Similar to the

experiments with the Quanser QUBE experimental testbeds, Figs. 5.21(a) and 5.23(a)

plot the experimental angular position signals as functions of time for joint 1 (elbow)

and joint 2 (wrist), respectively. Figs. 5.21(b) and 5.23(b) show the impedance angu-

lar position tracking error ξ for each joint. Figs. 5.21(c) and 5.22(a) plot the patient

torque τp in fuchsia and the therapist torque τrefl in black for joint 1, while 5.23(c)

and 5.24(a) plot the respective torque signals for joint 2. Figs. 5.21(c) and 5.23(c)

also plot the negative value of the therapist torque (−τrefl) in dashed black lines

for size comparison, and the net human torque τrefl is shown in green for the entire

simulation on both plots.
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Figure 5.21: Joint 1 ARII 2-DOF telerehabilitation simulation with α = 1: (a) posi-
tion trajectory, (b) tracking error, and (c) torques
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Figure 5.22: Joint 1 torques for the ARII 2-DOF telerehabilitation simulation with
α = 1 during the bilateral phase

As can be seen in Figs. 5.22(b) and 5.24(b) in regions E and F, the telepresence

slowly converges towards the ideal value of zero under the direct addition of the

therapist’s torque to the patient’s torque. Similar to the previous section, the yellow

area highlights the relatively large difference between the achieved telepresence and

the ideal telepresence. The position tracking and telepresence performance metrics

for this α = 1 simulation test are summarized in Table 5.12.
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Figure 5.23: Joint 2 ARII 2-DOF telerehabilitation simulation with α = 1: (a) posi-
tion trajectory, (b) tracking error, and (c) torques
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Figure 5.24: Joint 2 torques for the ARII 2-DOF telerehabilitation simulation with
α = 1 during the bilateral phase
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5.7.2 Scaled τ refl Addition

Figs. 5.25 to 5.28 show the 2-DOF exoskeleton simulation results from the tests using

the α = 3 scaled-τ refl addition strategy given by (5.53). These figures follow a similar

format to Figs. 5.21 to 5.24. As can be seen in Figs. 5.26(b) and 5.28(b) in regions E

and F, the telepresence values converge to just under −1 Nm and −0.5 Nm, for joints

1 and 2, respectively. The low-fidelity telepresence is evident by the large yellow areas

in the telepresence plot between the ideal telepresence green line and the telepresence

achieved for this test. Comparing 5.26(b) with 5.22(b), it is evident that when α = 3

the results exhibit even worse telepresence behaviour for the therapist than when

α = 1. The position tracking and telepresence performance metrics for this α = 3

simulation are listed in Table 5.12 where the worse performance of α = 3 compared

to α = 1 can clearly be seen in the TPmax and TPRMSE telepresence metrics.
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Figure 5.25: Joint 1 ARII 2-DOF telerehabilitation simulation with α = 3: (a) posi-
tion trajectory, (b) tracking error, and (c) torques
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Figure 5.26: Joint 1 torques for the ARII 2-DOF telerehabilitation simulation with
α = 3 during the bilateral phase
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Figure 5.27: Joint 2 ARII 2-DOF telerehabilitation simulation with α = 3: (a) posi-
tion trajectory, (b) tracking error, and (c) torques
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Figure 5.28: Joint 2 torques for the ARII 2-DOF telerehabilitation simulation with
α = 3 during the bilateral phase

5.7.3 Human Torque Regulator

Figs. 5.29 to 5.32 show the simulation results for multi-degrees of freedom imple-

mentation of the new HTR strategy introduced in this research in (5.54). These

figures again follow a similar format to Figs. 5.21 to 5.24 and Figs. 5.25 to 5.28 in

the previous sections. As can be seen in Figs. 5.30(b) and 5.32(b), once the thera-

pist’s torque builds up to the patient’s toque in region E, it becomes equal to the

patient’s torque and bilateral telerehabilitation begins (corresponding to region F).

During this bilateral telerehabilitation region, even with 2-DOF, the new HTR strat-

egy provides excellent telepresence. This high-fidelity telepresence is evident by the

lack of yellow areas in the telepresence plots of Figs. 5.30 and 5.32 for joints 1 and

2, respectively. The position tracking and telepresence performance metrics for this

experiment are listed in Table 5.12. Similar to the telerehabilitation experiment with

the Quanser QUBEs, it can be seen in this table that the proposed HTR approach

provides superior telepresence compared with the α = 1 and α = 3 approaches since

the telepresence metrics TPmax and TPRMSE are zero Nm for both joint 1 and joint

2 as desired.
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Figure 5.29: Joint 1 ARII 2-DOF telerehabilitation simulation with HTR: (a) position
trajectory, (b) tracking error, and (c) torques
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Figure 5.30: Joint 1 torques for the ARII 2-DOF telerehabilitation simulation with
HTR during the bilateral phase
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Figure 5.31: Joint 2 ARII 2-DOF telerehabilitation simulation with HTR: (a) position
trajectory, (b) tracking error, and (c) torques
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Figure 5.32: Joint 2 torques for the ARII 2-DOF telerehabilitation simulation with
HTR during the bilateral phase
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Table 5.12: Performance Metrics for ARII Telerehabilitation Simulations with 2-DOF
Exoskeleton

Actuator Metrics α = 1 α = 3 HTR

Joint 1 ξ̃max 0.5◦ 0.4◦ 0.5◦

ξ̃RMSE 0.1◦ 0.1◦ 0.1◦

TPmax 1.0Nm 1.0Nm 0.0Nm

TPRMSE 0.4Nm 0.9Nm 0.0Nm

Joint 2 ξ̃max 0.1◦ 0.1◦ 0.1◦

ξ̃RMSE 0.0◦ 0.0◦ 0.0◦

TPmax 0.6Nm 0.6Nm 0.0Nm

TPRMSE 0.3Nm 0.5Nm 0.0Nm

5.8 Discussions

As can be seen from the experimental and simulation tests presented in this chapter,

the ARII method is stable and robust in both single-system, unilateral, and bilateral

telerehabilitation for both 1-DOF and 2-DOF systems. The method has been shown

to be robust in the presence of sensor noise, friction and human interactions, and

adapted well to the unknown dynamic parameters.

5.9 Contributions

The ARII control method presented in this chapter has several contributions:

1. The adaptive control method was augmented to include an impedance model as

well as an integral control term and a robust control term. The present author

coined the term Adaptive Robust Integral Impedance (ARII) to refer to this

proposed control approach.

2. The theoretical proof of the proposed ARII method for n-DOF system was

developed.

3. The proposed ARII method was validated in simulation on the 1-DOF Quanser

QUBE testbeds and 2-DOF robotic exoskeleton models.

4. The ARII method was experimentally validated using the 1-DOF Quanser
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QUBE testbeds and the Logitech driving wheel to provide assistive human-

input.

5. The results of an earlier version of the proposed adaptive impedance control

method were published in: G. Bauer, Y.J. Pan, and H.H. Shen, “Adaptive

Impedance Control in Bilateral Telerehabilitation with Robotic Exoskeletons,”

In Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics, October 2020, Toronto, Canada, pp.719-725 [70].



Chapter 6

Adaptive Robust Integral Radial Basis Function Neural

Networks Impedance (RBFNN-I) Controller - Design,

Simulations, Experiments, and Comparison

This chapter presents the development and implementation of an RBFNN-I control

methodology and compares the results with the proposed ARII control method.

6.1 Radial Basis Function Neural Networks Control

In the previous chapter, the proposed ARII controller was successfully implemented

and tested on three different testbeds. It is important to note, however, that although

the ARII control method has the ability to adapt the values of the unknown dynamic

model parameters, the method requires a priori detailed knowledge of the underly-

ing dynamic equations that govern the behaviour of the plant being controlled. It

was desired to design and test a different control method that requires less a priori

information about the plant dynamics. Neural network-based controllers have the

advantage of not requiring a lot of prior information about the structure and pa-

rameters of the plant to be controlled [169]. Radial Basis function Neural Network

(RBFNN)-based controllers have the ability to solve highly-nonlinear problems and

have been shown to be able to successfully adapt the neural network weights even

with large uncertainty of the system [73]. An RBFNN has three layers, as shown in

Fig. 6.1, consisting of an input layer, a nonlinear hidden layer, and an output layer.

Each neuron in the input layer corresponds to an input variable. In the hidden layer,

each neuron is activated by a radial basis function such as a Gaussian function, cen-

tered around a vector cj with the same dimension g as the input variables x. The

nonlinear activation function used in this work is the Gaussian kernel φj(t) as follows

φj(t) = exp

(
− ‖x(t)− cj(t)‖2

σ2

)
, j = 1, ...,m, (6.1)

96
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where σ is the width of the Gaussian function cj and m is the number of neurons in

the hidden layer. This activation function provides a nonlinear mapping that enables

the solution of highly nonlinear control problems which traditional control approaches

cannot practically solve [73]. The network output layer is f , which is the sum of the

weighted outputs from the hidden layer as follows

fi(t) =
m∑
j=1

wjiφj(t), i = 1, ..., d, (6.2)

where wji are the synaptic weights connecting the hidden layer to output neurons, fi

are the elements of the vector f , and d is the number of output variables.

xg

Output
Layer

Input
Layer

Hidden
Layer

x1
1

j

m

w11

fi

w1i
f1

fd

w1d

wm1
wmi

wmd

wj1

wjiwjd

Figure 6.1: Radial basis function neural network structure

6.2 Adaptive Robust Integral Radial Basis Function Neural Networks

with Impedance (RBFNN-I) Controller Design

Recall that the joint-space dynamics of an n-link rigid horizontally-planar robotic

exoskeleton with human torque disturbance τ p are given by (4.1) which is reproduced

here for convenience (with the subscript e and m notation dropped for brevity)

M(q)q̈ + C(q, q̇)q̇ + τ d = u− τ p. (6.3)

In practice, the actual dynamics parameters of the robotic exoskeleton, M(q) and

C(q, q̇) cannot be precisely known due to, for example, measurement inaccuracies,
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material deformation, as well as thermal, manufacturing, and system assembly vari-

ation. While the proposed ARII control method in the previous chapter used Ma(q)

and Ca(q, q̇) to model M(q) and C(q, q̇), the RBFNN-I method uses MNN(q) and

CNN(q, q̇) as follows

MNN(q)q̈ + CNN(q, q̇)q̇ + τ d = u− τ p, (6.4)

Note that

M = MNN + EM , (6.5)

C = CNN + EC , (6.6)

where EM and EC are the inherent modeling errors that arise when a model is used

to represent a real system.

The RBFNN-based control method presented in [73] for robotic manipulators

was further developed by adding impedance control to explore its use with robotic

exoskeletons. The resulting proposed method, Adaptive Robust Integral Radial Ba-

sis Function Neural Network with Impedance (RBFNN-I), is desired to activate the

robotic exoskeleton’s motors according to a prescribed impedance model under real-

time human torque input in the presence of unknown dynamic modeling parameters

and external disturbances. Fig. 6.2 shows the corresponding control system diagram

when the RBFNN-I controller uses the desired and actual joint motion in combina-

tion with measured human torques applied to the robotic exoskeleton to generate the

control signal u.

Figure 6.2: RBFNN-I control system diagram
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Let the proposed RBFNN-I control law be

u � M̂NN(q)v̇ + ĈNN(q, q̇)v + M̂NN(q) ¨̃qτnet + ĈNN(q, q̇) ˙̃qτnet︸ ︷︷ ︸
model-estimate term accounting for impedance

−Kpr︸︷︷︸
PD

−Ki

∫
rdt︸ ︷︷ ︸

integral

− τ r︸︷︷︸
robust

+ τ p,meas︸ ︷︷ ︸
patient

, (6.7)

where M̂NN(q) ∈ �n×n and ĈNN(q, q̇) ∈ �n×n are the RBFNN-I learned estimates

of MNN(q) and CNN(q, q̇) in (6.4). In the proposed control law given by (6.7) Kp

∈ �n×n and Ki ∈ �n×n are diagonal, positive definite proportional and integral gain

matrices, τ r ∈ �n is the robust control term, and τ p,meas ∈ �n is the measured

human disturbance torque. Recall from �5.3 that, to incorporate impedance control,

the virtual reference velocity and acceleration vectors v ∈ �n and v̇ ∈ �n in (6.7)

were defined as

v � q̇d − Λξ̃, (6.8)

v̇ � q̈d − Λ ˙̃ξ, (6.9)

where q̈d ∈ �n is the original desired joint angular acceleration trajectory and Λ ∈
�n×n is a diagonal positive definite gain matrix. The sliding mode error r is then

given by

r � q̇ − ˙̃qτnet − v = ˙̃ξ + Λξ̃. (6.10)

Note that from (6.10) as r → 0, ξ̃ → 0 and ˙̃ξ → 0. Similarly

ṙ � q̈ − ¨̃qτnet − v̇ = ¨̃ξ + Λ ˙̃ξ. (6.11)

6.2.1 RBFNN-I Controller Theoretical Development

This section develops the relationships needed to ultimately prove that, using the

proposed RBFNN-I control law, as t → ∞, ξ̃(t) → 0 as desired. Substituting the

proposed control law given by (6.7) into the robotic exoskeleton equation of motion

given by (6.4), yields

M q̈ + Cq̇ + τ d = M̂NN v̇ + ĈNNv + M̂NN
¨̃qτnet + ĈNN

˙̃qτnet

−Kpr −Ki

∫
rdt− τ r + τ p,meas − τ p. (6.12)
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Observing (6.10) and (6.11), the following equalities are true

q̇ = r + v + ˙̃qτnet, (6.13)

q̈ = ṙ + v̇ + ¨̃qτnet. (6.14)

Substituting (6.13) and (6.14) into (6.12),

M(ṙ + v̇ + ¨̃qτnet) + C(r + v + ˙̃qτnet) =M̂NN v̇ + ĈNNv + M̂NN
¨̃qτnet + ĈNN

˙̃qτnet

−Kpr −Ki

∫
rdt− τ r − τ d

+ τ p,meas − τ p. (6.15)

Further grouping all of the M and C terms on the right side of the equation gives the

following equation

M ṙ + Cr +Ki

∫
rdt = (M̂NN −M)(v̇ + ¨̃qτnet) + (ĈNN − C)(v + ˙̃qτnet)

−Kpr − τ r − τ d + τ p,meas − τ p. (6.16)

Substituting (6.5) and (6.6) into (6.16) gives

M ṙ + Cr +Ki

∫
rdt = (M̂NN −MNN − EM)(v̇ + ¨̃qτnet)

+ (ĈNN − CNN − EC)(v + ˙̃qτnet)

−Kpr − τ r − τ d + τ p,meas − τ p. (6.17)

Letting M̃ = M̂NN −MNN and C̃ = ĈNN − CNN and substituting M̃ and C̃ into

(6.17) yields

M ṙ + Cr +Ki

∫
rdt = M̃(v̇ + ¨̃qτnet) + C̃(v + ˙̃qτnet)

− EM(v̇ + ¨̃qτnet)− EC(v + ˙̃qτnet)

−Kpr − τ r − τ d + τ p,meas − τ p

= M̃(v̇ + ¨̃qτnet) + C̃(v + ˙̃qτnet)

−Kpr + E + Ed + Ep − τ r, (6.18)

where
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E � − EM(v̇ + ¨̃qτnet)− EC(v + ˙̃qτnet),

Ed � − τ d,

Ep � τ p,meas − τ p.

Next, RBF neural networks are used to calculate the values of M̃ and C̃ as follows [73]

M̃ =
[{

WM

}T{
ΦM(q)

}]− [{
ŴM

}T{
ΦM(q)

}]
=
[{

W̃M

}T{
ΦM(q)

}]
, (6.19)

and

C̃ =
[{

WC

}T{
ΦC(z)

}]− [{
ŴC

}T{
ΦC(z)

}]
=
[{

W̃C

}T{
ΦC(z)

}]
, (6.20)

where WM , and WC are the ideal RBFNN weight matrices, composed of the wji

terms in (6.2), and ŴM and ŴC are estimates of WM and WC . ΦM and ΦC are

the output vectors of the hidden layers in the RBFNN (6.1) of dimension m, and

z=[qT , q̇T ]T . Incorporating the RBFNN parameters into (6.18), the control law be-

comes

M ṙ + Cr +Ki

∫
rdt =

[{
W̃M

}T{
ΦM(q)

}]
(v̇ + ¨̃qτnet)

+
[{

W̃C

}T{
ΦC(z)

}]
(v + ˙̃qτnet)

−Kpr + E + Ed + Ep − τ r. (6.21)

Let the robust term τ r be defined as

τr � (K +Kd +Kτp)sgn(r), (6.22)

where K=diag(kii), kii ≥ |Ei|, i = 1 . . . n, Kd=diag(kd,ii), kd,ii ≥ |Ed|, and Kτp =

diag(kτp,ii), kτp,ii ≥ |Ep|. In other words, the gains K,Kd, and Kτp include the upper

bounds of Ei, Ed, and Ep respectively. Thus

M ṙ + Cr +Ki

∫
rdt =

[{
W̃M

}T{
ΦM(q)

}]
(v̇ + ¨̃qτnet)

+
[{

W̃C

}T{
ΦC(z)

}]
(v + ˙̃qτnet)

−Kpr + E + Ed + Ep

− (K +Kd +Kτp)sgn(r). (6.23)
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To avoid unwanted chatter associated with the sgn(r) term, the following smoothing

function was utilized instead: r
(|r|+ε)

.

6.2.2 Stability Proof

This RBFNN-I stability proof follows a similar Lyapunov function approach as that

used for ARII in �5.3.2 and extends the proof described in [73] to incorporate impedance

control. Let an integration-type Lyapunov function be defined as

V =
1

2
rTMr +

1

2
(

∫
rdt)TKi(

∫
rdt)

+
1

2

n∑
k=1

{
W̃Mk

}T
Γ−1
Mk

{
W̃Mk

}
+

1

2

n∑
k=1

{
W̃Ck

}T
Γ−1
Ck

{
W̃Ck

}
, (6.24)

where Ki, ΓMk, and ΓCk are symmetric positive definite constant matrices which can

control the speed of adaptation of the weight parameters. Taking the time derivative

of V results in

V̇ =
1

2
ṙTMr +

1

2
rTṀr +

1

2
rTM ṙ

+
1

2
rTKi(

∫
rdt) +

1

2
(

∫
rdt)TKir

+
1

2

n∑
k=1

{ ˙̃WMk

}T
Γ−1
Mk

{
W̃Mk

}
+

1

2

n∑
k=1

{
W̃Mk

}T
Γ−1
Mk

{ ˙̃WMk

}
+
1

2

n∑
k=1

{ ˙̃WCk

}T
Γ−1
Ck

{
W̃Ck

}
+

1

2

n∑
k=1

{
W̃Ck

}T
Γ−1
Ck

{ ˙̃WCk

}
. (6.25)

Furthermore, since M , W̃Mk, and W̃Ck are symmetric, (6.25) can be reduced so that

V̇ = rTM ṙ +
1

2
rTṀr + rTKi(

∫
rdt)

+
n∑

k=1

{
W̃Mk

}T
Γ−1
Mk

{ ˙̃WMk

}
+

n∑
k=1

{
W̃Ck

}T
Γ−1
Ck

{ ˙̃WCk

}
. (6.26)

Note that the skew-symmetric property of manipulator dynamics (Property 2 in

�4.3.1) gives

1

2
rT (Ṁ − 2C)r = 0. (6.27)
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Substituting (6.27) in (6.26) results in

V̇ = rTM ṙ + rTCr + rTKi(

∫
rdt)

+
n∑

k=1

{
W̃Mk

}T
Γ−1
Mk

{ ˙̃WMk

}
+

n∑
k=1

{
W̃Ck

}T
Γ−1
Ck

{ ˙̃WCk

}
= rT (M ṙ + Cr +Ki

∫
rdt)

+
n∑

k=1

{
W̃Mk

}T
Γ−1
Mk

{ ˙̃WMk

}
+

n∑
k=1

{
W̃Ck

}T
Γ−1
Ck

{ ˙̃WCk

}
. (6.28)

Substituting (6.23) into (6.28) yields

V̇ = rT

([{
W̃M

}T{
ΦM(q)

}]
(v̇ + ¨̃qτnet) +

[{
W̃C

}T{
ΦC(z)

}]
(v + ˙̃qτnet)

−Kpr + E + Ed + Ep − (K +Kd +Kτp)sgn(r)

)

+
n∑

k=1

{
W̃Mk

}T
Γ−1
Mk

{ ˙̃WMk

}
+

n∑
k=1

{
W̃Ck

}T
Γ−1
Ck

{ ˙̃WCk

}
. (6.29)

Note that

rT
[{

W̃M

}T{
ΦM(q)

}]
(v̇ + ¨̃qτnet) =

n∑
k=1

W̃ T
Mk

{
φMk(q)

}
(v̇ + ¨̃qτnet)rk, (6.30)

and

rT
[{

W̃C

}T{
ΦC(z)

}]
(v + ˙̃qτnet) =

n∑
k=1

W̃Ck

{
φCk(z)

}
(v + ˙̃qτnet)rk. (6.31)

Substitute (6.30) and (6.31) into (6.29) and make the following equalities

n∑
k=1

W̃ T
Mk

{
φMk(q)

}
(v̇ + ¨̃qτnet)rk � −

n∑
k=1

W̃ T
MkΓ

−1
Mk

˙̃WMk, (6.32)

and
n∑

k=1

W̃ T
Ck

{
φCk(z)

}
(v + ˙̃qτnet)rk � −

n∑
k=1

W̃ T
CkΓ

−1
Ck

˙̃WCk. (6.33)

Then

˙̃WMk = − ΓMk(W̃
T
Mk)

−1W̃ T
Mk

{
φMk(q)

}
(v̇ + ¨̃qτnet)rk

= − ΓMk

{
φMk(q)

}
(v̇ + ¨̃qτnet)rk, (6.34)
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with ˙̃WMk = ẆMk − ˙̂
WMk and ẆMk equal to the zero vector, then

˙̂
WMk = ΓMk

{
φMk(q)

}
(v̇ + ¨̃qτnet)rk, (6.35)

and similarly
˙̂
WCk = ΓCk

{
φCk(z)

}
(v + ˙̃qτnet)rk, (6.36)

where (6.35) and (6.36) are used to adjust the RBFNN-I weights and ΓMk and ΓCk

can be used to control the speed at which the weights are adjusted. With (6.32) and

(6.33), (6.29) becomes

V̇ =− rTKpr + (−rTKsgn(r) + rTE) + (−rTKdsgn(r) + rTEd)

+ (−rTKτpsgn(r) + rTEp)

=− rTKpr + (−
n∑

k=1

Kk|rk|+
n∑

k=1

Ekrk) + (−
n∑

k=1

Kd,k|rk|+
n∑

k=1

Ed,krk)

+ (−
n∑

k=1

Kτp,k|rk|+
n∑

k=1

Ep,krk). (6.37)

Since −rTKpr ≤0 and
n∑

k=1

Kk|rk| ≥
n∑

k=1

Ekrk,

n∑
k=1

Kd,k|rk| ≥
n∑

k=1

Ed,krk,

n∑
k=1

Kτp,k|rk| ≥
n∑

k=1

Ep,krk.

the derivative of V is then,

V̇ = −rTKpr ≤ 0. (6.38)

Since r ∈ L2 ∩ L∞ and r = ˙̃ξ + Λξ̃ from (6.10), then ξ̃ and ˙̃ξ ∈ Ln
2 ∩ Ln

∞. According

to Barbălat’s Lemma as done in �5.3.2

if ξ̃ ∈ Ln
2 ∩ Ln

∞ and ˙̃ξ ∈ Ln,

then limt→∞ ξ̃(t) = 0,
(6.39)

as desired, which completes the proof.
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6.3 RBFNN-I Method Validation with the Single-System 1-DOF

Quanser QUBE Robot Testbed

Following a similar validation approach as the ARII control method, the RBFNN-I

control method was first validated on a single 1-DOF system in simulation on the

identified model of the Quanser QUBE described in �4.4.1. The RBFNN-I control

method was then validated experimentally using the Quanser QUBE experimental

testbed. The ability of the RBFNN-I method to control a multi-DOF system was

then explored using a 2-DOF robotic exoskeleton simulator, after which RBFNN-I

telerehabilitation simulations and experiments were studied.

6.3.1 Simulations Validation with the Quanser QUBE Robot

The same desired trajectory used to validate the ARII method was used to validate

the RBFNN-I method on the Quanser QUBE single-system 1-DOF simulator. The

simulator had the same initial conditions, impedance model, patient-related param-

eters, and motor and torque saturation blocks as those used for the ARII method

in �5.4.1, which enhance system stability by implementing the time domain passiv-

ity based strategy of boundedness. Table 6.1 summarizes the impedance model and

patient parameters as well as the RBFNN-I controller parameters which were deter-

mined using a systematic and extensive manual tuning process that was carried out

to achieve desirable and converging tracking errors.

The results of utilizing the RBFNN-I controller with the single-system Quanser

QUBE simulator testbed are shown in Fig. 6.3. Fig. 6.3(a) plots the desired joint

angular position, the impedance desired joint angular position, and the actual joint

angular position as a function of time.

Fig. 6.3(b) shows the corresponding impedance joint angular position tracking

error ξ̃ plotted as a function of time which decreases with time as the neural network

adjust its weights.

Fig. 6.3(c) plots the patient torque as a function of time, while Fig. 6.4 depicts how

theMNN and CNN terms in the RBFNN-I method change with time and are held con-

stant after the learning period of 48 seconds. The corresponding performance metrics

for the RBFNN-I simulation validation test are listed in Table 6.2. The maximum ξ̃
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Table 6.1: RBFNN-I QUBE Simulation Parameters

Impedance: J 0.013 Kgm2

B 0.667 Nms/rad
K 2.67 Nm/rad

Patient: Kp 0.848 Nm/rad
Dp 0.2 Nms/rad

Controller: Λ 5.0
Kp 1.0
Ki 0.1
Kr 0.01
ε 0.08
nodes 5
Gaussian width 20
ΓM diag(0.05,0.05,0.05,0.05,0.05)
ΓC diag(0.06,0.06,0.06,0.06,0.06)
M Gaussian function [-1.0 -0.5 0.0 0.5 1.0]
C Gaussian function [-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0]

was recorded as 2.1◦ while the ξ̃RMSE had a value of 0.7◦. For reference, Table 6.2 lists

the performance metrics for the ARII controller from �5.4.1 when this method was

tested on the same simulator. Furthermore, the ARII simulation impedance tracking

error ξ̃ results were superimposed on the RBFNN-I simulation ξ̃ results as shown in

Fig. 6.5. It can be seen in Table 6.2 and Fig. 6.5 that the RBFNN-I performance

is very similar to that of the ARII method when applied to the single-system the

Quanser QUBE simulator testbed.
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Figure 6.3: RBFNN-I single-system simulation with Quanser QUBE: (a) position
trajectory, (b) tracking error, and (c) patient torque
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Figure 6.4: Estimated parameters using the RBFNN-I control method with the
Quanser QUBE single-system simulator

Table 6.2: Performance Metrics for ARII and RBFNN-I Single-System Simulation
with Quanser QUBE

Testbed Metrics ARII RBFNN-I

QUBE simulation ξ̃max 2.4◦ 2.1◦

ξ̃RMSE 0.7◦ 0.7◦
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Figure 6.5: The profile of ξ̃ for ARII versus RBFNN-I Quanser QUBE simulation

6.3.2 Experimental Validation with the Quanser QUBE Robot

Having validated the RBFNN-I control approach on a single 1-DOF Quanser QUBE

simulator, the RBFNN-I method was then validated on the single-system experimen-

tal Quanser QUBE apparatus, following a similar validation approach as ARII. The

same desired trajectory and controller parameters used in the previous RBFNN-I

simulation test was used for experimental tests with the Quanser QUBE apparatus.

Fig. 6.6 shows the resulting experimental results using the RBFNN-I controller with

the single-system Quanser QUBE hardware. Similar to Fig. 6.3, Fig. 6.6(a) plots the

desired joint angular position, the impedance desired joint angular position, and the

actual joint angular position, as functions of time.

Fig. 6.6(b) shows the impedance joint angular position tracking error ξ̃, while

Fig. 6.6(c) shows the patient torques applied during the test. Fig. 6.7 shows the neural

network terms for the Quanser QUBE RBFNN-I experimental test which, after the 48

seconds learning period, were set to their convergent values for the remainder of the

test. The RBFNN-I performance metrics for this experiment are listed in Table 6.3.

The maximum ξ̃ was recorded as 2.5◦, and the ξ̃RMSE had a value of 0.8◦.

For comparison purposes, Table 6.3 also lists the performance metrics for the

ARII controller from 5.4.2 when this method was experimentally tested on the same

Quanser QUBE apparatus. Additionally, the ARII experimental impedance tracking

error ξ̃ results were superimposed on the RBFNN-I experimental ξ̃ results as shown

in Fig. 6.8. It can be seen in Table 6.3 and Fig. 6.8 that the RBFNN-I performance is

very similar to that of the ARII method when applied to the single-system Quanser

QUBE experimental testbed.
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Figure 6.6: RBFNN-I single-system experiment with Quanser QUBE: (a) position
trajectory, (b) tracking error, and (c) patient torque
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Figure 6.7: Estimated parameters using the RBFNN-I control method with the
Quanser QUBE single-system apparatus

Table 6.3: Performance Metrics for ARII and RBFNN-I Single-System Experiment
with Quanser QUBE

Testbed Metrics ARII RBFNN-I

QUBE experimental setup ξ̃max 2.8◦ 2.5◦

ξ̃RMSE 1.0◦ 0.8◦
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Figure 6.8: The profile of ξ̃ for the ARII and the RBFNN-I Quanser QUBE experi-
ments

Furthermore, the RBFNN-I experimental impedance tracking error ξ̃ results were

superimposed on the RBFNN-I simulation ξ̃ results from the previous section as

shown in Fig. 6.9. The corresponding performance metrics for the simulated and the

experimental tests are listed side-by-side in Table 6.4, for comparison purposes. As

can be seen in Fig. 6.9 and Table 6.4, the experiment results are very similar to the

simulator results in terms of bound, performance during the oscillatory motion, as

well as final holding position and, therefore, effectively validate the simulation results.
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0

2
Simulation
Experiment

Figure 6.9: The profile of ξ̃ for the RBFNN-I Quanser QUBE simulation and experi-
ment
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Table 6.4: Performance Metrics for RBFNN-I Single-System Simulation versus Ex-
periment with Quanser QUBE

Metrics Simulation Experiment

ξ̃max 2.1◦ 2.5◦

ξ̃RMSE 0.7◦ 0.8◦

6.3.3 RBFNN-I Method Validation with 2-DOF Robotic Exoskeleton

Simulations

Having validated the RBFNN-I simulation results experimentally on a single-system

1-DOF robotic system, the simulator was extended to a single-system 2-DOF robotic

exoskeleton involving both elbow and wrist joints to validate the proposed RBFNN-I

control methodology on a higher-degree-of-freedom system − similar to the validation

approach carried out in �5.5 for the ARII control method. The desired trajectory and

the initial positions for the exoskeleton elbow and wrist joints were the same as for

the 2-DOF simulations with the ARII proposed control method.

Table 6.5 summarizes the RBFNN-I 2-DOF Exoskeleton simulation parameters,

as well as the patient- and impedance-related parameters. The controller parame-

ters were determined through a systematic and extensive manual tuning process to

produce desirable and converging tracking errors. Saturation blocks on the control

signal were applied to match the motor limits of the conceptualized 2-DOF exoskele-

ton system described in �5.5, which enhance system stability by implementing the

time domain passivity based strategy of boundedness. Figs. 6.10 to Fig. 6.12 show

the resulting performance of the RBFNN-I controller on the single-system 2-DOF

exoskeleton simulator. Plots on Figs. 6.10 and 6.11 show the desired joint angular

position, the impedance desired joint angular position, and the actual joint angular

position of joint 1 and joint 2, respectively, plotted as a function of time. Plots (b) on

both figures show the impedance joint angular position error ξ̃, while Fig. 6.10(c) and

Fig. 6.11(c) reveal the patient torque applied during the tests. Fig. 6.12 shows the

adaptation of the MNN and CNN neural network terms, and how, with the selected

adaptive law Γ parameters, the neural network terms move towards and oscillate close

to their steady state values which are set after the 48 seconds learning period. The

corresponding RBFNN-I performance metrics for this test are listed in Table 6.6. For
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Table 6.5: RBFNN-I Single-System Simulation with 2-DOF Exoskeleton: Simulation
Parameters

Impedance: J diag([0.013, 0.013]) Kgm2

B diag([0.667, 0.667]) Nms
K diag([2.667, 2.667]) Nm

Patient: Kp diag([.848,.424])
Dp diag([0.2,.05])

pHMI: KpHMI diag([800, 266.667])N/rad
DpHMI diag([10, 2.5])Ns/rad

Controller: Λ diag([1.0,5.0])
Kp diag([12.0,1.0])
Ki diag([0.1,0.1])
Kr diag([0.01,0.01])
ε [0.08,0.08]T

nodes 5
Gaussian width 20.0
ΓM diag(1.0,1.0,1.0,1.0,1.0)
ΓC diag(0.4,0.4,0.4,0.4,0.4,)
M Gaussian function [-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0]
C Gaussian function [-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0
-1.0 -0.5 0.0 0.5 1.0
-1.0 -0.5 0.0 0.5 1.0]
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joint 1, the maximum ξ̃ was recorded as 0.3◦, and the ξ̃RMSE had a value of 0.1◦. For

joint 2, the maximum ξ̃ was recorded as 0.1◦, while the ξ̃RMSE had a value of 0.0◦.
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Figure 6.10: RBFNN-I single-system 2-DOF Simulation: (a) position trajectory, (b)
tracking error, and (c) patient torque for joint 1

Table 6.6: Performance Metrics for ARII and RBFNN-I 2-DOF Exoskeleton Single-
System Simulation

Actuator Metrics ARII RBFNN-I

Joint 1 ξ̃max 0.5◦ 0.3◦

ξ̃RMSE 0.1◦ 0.1◦

Joint 2 ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0.0◦ 0.0◦

For comparison purposes, Table 6.6 additionally lists the performance metrics

for the ARII controller from 5.5 when this method was tested on the same 2-DOF

robotic exoskeleton single-system testbed. The ARII simulation impedance tracking

error ξ̃ results were also superimposed on the RBFNN-I simulation ξ̃ results as shown

in Figs. 6.13 and 6.14, respectively. The performance of the two controllers were very
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Figure 6.11: RBFNN-I single-system 2-DOF simulation: (a) position trajectory, (b)
tracking error, and (c) patient torque for joint 2
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Figure 6.12: Estimated parameters for the RBFNN-I single-system 2-DOF exoskele-
ton aimulation

similar, with the RBFNN-I performing slightly better with a difference of 0.2◦ for

joint 1 in ξ̃max and a difference within 0.1◦ for joint 2 in ξ̃max, when applied to the

single-system 2-DOF simulator testbed.
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Figure 6.13: The profile of ξ̃ for the ARII and the RBFNN-I 2-DOF exoskeleton
simulation joint 1
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Figure 6.14: The profile of ξ̃ for the ARII and the RBFNN-I 2-DOF exoskeleton
simulation Joint 2

6.4 Telerehabilitation Human Torque Synthesis Experiments with

Quanser QUBEs

Having validated the proposed RBFNN-I control approach on single systems in both

simulation and experiment, experimental tests were carried out with two Quanser

QUBE experimental testbeds to validate the performance of the proposed RBFNN-

I method in telerehabilitation scenarios and to examine the tracking performance

and telepresence fidelity. Similar to the experimental tests performed to validate the

proposed ARII control method, the Logitech driving wheel hardware was used to

emulate human real-time assistive intervention from the therapist on the slave side.

The same motion trajectories were used as with the ARII method to examine the

effects of different strategies of combining the human torques (to calculate τ net) on

the resulting trajectories and telepresence.
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6.4.1 Direct τ refl Addition

Similar to the experiments performed with the proposed ARII control method, Fig.

6.15(a) plots the RBFNN-I experimental position signals as functions of time, while

Fig. 6.15(b) shows the RBFNN-I experimental impedance angular position track-

ing error ξ when τnet is directly added τp to calculate τnet as described in (5.52).

Fig. 6.15(c) plots the patient torque τp in fuchsia and the therapist torque τrefl in

black. Fig. 6.15(c) also plots the negative value of the therapist torque (−τrefl) as a

dashed black line for comparison, and the net human torque τrefl is shown in green.

It can be seen in 6.15(b) that the impedance angular position tracking error improves

during the RBFNN-I learning period corresponding to region A. Fig. 6.16 shows how

the neural network parameters adapt and converge over time during region A, after

which the parameters are held constant for the remainder of the test. Fig. 6.17 fo-

cuses on regions E and F and plots the patient torque τp and therapist torque τrefl in

Fig. 6.17(a) as well as the sum of the two human torques (τp+τrefl) in Fig. 6.17(b).
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Figure 6.15: RBFNN-I telerehabilitation experiment with Quanser QUBEs with
α = 1: (a) position trajectory, (b) tracking error, and (c) torques

Note that with the direct addition human torque synthesis strategy, the initial telep-

resence fidelity is low since the master robot starts to move as soon as the therapist
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Figure 6.16: Estimated parameters for the RBFNN-I telerehabilitation experiment
with Quanser QUBEs with α = 1
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Figure 6.17: Torques for the RBFNN-I telerehabilitation experiment with Quanser
QUBEs with α = 1 during the bilateral phase

starts to provide small assistive torques, similar to what was observed with the ARII

method. This initially poor telepresence can be seen in Fig. 6.17(b) as the relatively

large yellow area at the beginning of regions E and F. The therapist’s torque then

gradually ramps up over the course of about six seconds, and ultimately becomes

close to the patient’s torque as desired so that (τp + τrefl) is close to the ideal value of

zero. The RBFNN-I position tracking and telepresence performance metrics for this

α = 1 experiment are listed in Table 6.7.
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6.4.2 Scaled τ refl Addition

The scaled τ refl addition strategy was experimentally implemented with the proposed

RBFNN-I proposed control method, similar to how it was applied with the ARII con-

trol method using (5.53) in 5.6.2. The results are shown in Figs. 6.18 to 6.20 when

the scaling factors in α are equal to three. Similar to the direct τ refl-addition syn-

thesis method described in the previous section, Fig. 6.18 follows a similar format to

Fig. 6.15, while Fig. 6.19 shows the neural network parameters learning as a function

of time and then being held constant from 48 seconds to the end of the test. Similar

to Fig. 6.17, Fig. 6.20 focuses on the torques in the bilateral telerehabilitation-related

regions E and F. As can be seen in Fig. 6.20(b), the achieved telepresence hovers

around slightly less than −1 Nm when using the scaled therapist’s torque, which is

consistent with the poor telepresence observed when this scaled τrefl was used with

ARII.
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Figure 6.18: RBFNN-I telerehabilitation experiment with Quanser QUBEs with
α = 3: (a) position trajectory, (b) tracking error, and (c) torques
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The relatively large yellow area in Fig. 6.20(b) highlights the poor telepresence

achieved when using the α = 3 scaled τrefl strategy governed by (5.53), rendering the

telepresence virtually non-existent with this strategy. The corresponding RBFNN-I

position tracking and telepresence performance metrics for this α = 3 experiment are

listed in Table 6.7.
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Figure 6.19: Estimated parameters for the RBFNN-I telerehabilitation experiment
with Quanser QUBEs with α = 3

100 105 110 115 120 125 130 135 140 145 150
-2

-1

0

1

2

3

To
rq

ue
 (N

m
)

(a) Patient and Therapist Torque

D E and F

refl

p

100 105 110 115 120 125 130 135 140 145 150
Time (s)

-1

-0.5

0

To
rq

ue
 (N

m
)

(b) Telepresence

D E and F

ideal
( p+ refl)

Figure 6.20: Torques for the RBFNN-I telerehabilitation experiment with Quanser
QUBEs with α = 3 during the bilateral phase
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6.4.3 Human Torque Regulator

Figure 6.21 plots the experimental RBFNN-I results when τnet is calculated using the

novel Human Torque Regulator (HTR) governed by (5.54) which was proposed in

5.6.3. Fig. 6.21 follows a similar format as Fig. 6.15 and Fig. 6.18, while Fig. 6.23

follows the format shown in Fig. 6.17 and Fig. 6.20. Figure 6.22 shows the convergent

neural network parameters and their terminal, constant values from 48 seconds to

the end of the test. The trends observed in Figs. 6.21 to 6.23 are similar to those

observed when using this proposed HTR approach with ARII in Figs. 5.18 to 5.20.

Table 6.8 additionally lists the performance metrics for the ARII controller from

5.6 when this method was experimentally tested on the same Quanser QUBE testbeds.

It can be seen that the RBFNN-I performance is very similar to that of the ARII

method.
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Figure 6.21: RBFNN-I telerehabilitation experiment with Quanser QUBEs with
HTR: (a) position trajectory, (b) tracking error, and (c) torques
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Figure 6.22: Estimated parameters for the RBFNN-I telerehabilitation experiment
with Quanser QUBEs with HTR
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Figure 6.23: Torques for the RBFNN-I telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase

Table 6.7: Performance Metrics for RBFNN-I Telerehabilitation Experiments with
Quanser QUBEs

Metrics α = 1 α = 3 HTR

ξ̃max 2.4◦ 2.4◦ 2.4◦

ξ̃RMSE 0.8◦ 0.9◦ 1.0◦

TPmax 1.0 Nm 1.0 Nm 0.0 Nm

TPRMSE 0.2 Nm 0.9 Nm 0.0 Nm
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Table 6.8: Performance Metrics for ARII and RBFNN-I Quanser QUBEs Telereha-
bilitation Experiments, with α=1, α=3, and HTR

τnet calcs. Metrics ARII RBFNN-I

α = 1

ξ̃max 2.8◦ 2.4◦

ξ̃RMSE 1.1◦ 0.8◦

TPmax 1.0 Nm 1.0 Nm

TPRMSE 0.2 Nm 0.2 Nm

α = 3

ξ̃max 2.7◦ 2.4◦

ξ̃RMSE 1.0◦ 0.9◦

TPmax 1.0 Nm 1.0 Nm

TPRMSE 0.9 Nm 0.9 Nm

HTR

ξ̃max 2.8◦ 2.4◦

ξ̃RMSE 1.1◦ 0.9◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm
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6.5 Telerehabilitation Human Torque Combination Simulations with

2-DOF Robotic Exoskeleton Model

Having validated the proposed RBFNN-I control approach on single DOF bilateral

telerehabilitation experiments, the RBFNN-I method is now validated in telereha-

bilitation scenarios on multi-DOF systems by using the designed 2-DOF robotic ex-

oskeleton simulation testbed from �4.4 and applying the three different net human

torque synthesis strategies.

6.5.1 Direct τ refl Addition

Figs. 6.24 to 6.27 show the results of the simulation when the reflected assistive ther-

apist torque is directly added to the patient’s torque using (5.52). Similar to the

2-DOF simulations with the ARII control method in �5.7.1, Fig. 6.24 to Fig. 6.27

follow a similar format as Fig. 5.21 to Fig. 5.24, presenting the 2-DOF robotic ex-

oskeleton simulator’s joint 1 and joint 2 angular position, the impedance angular

position tracking error, and the torques in the simulation.

As can be seen in Figs. 6.25 and 6.27(b) in regions E and F, the telepresence

slowly converges towards the ideal value of zero under the direct addition of the

therapist’s torque to the patient’s torque. Similar to the previous section, the yellow

area highlights the relatively large difference between the achieved telepresence and

the ideal telepresence. The position tracking and telepresence performance metrics

for this α = 1 simulation test are summarized in Table 6.9.
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Figure 6.24: Joint 1 RBFNN-I 2-DOF telerehabilitation simulation with α = 1: (a)
position trajectory, (b) tracking error, and (c) torques
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Figure 6.25: Joint 1 torques for the RBFNN-I 2-DOF telerehabilitation simulation
with α = 1 during the bilateral phase
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Figure 6.26: Joint 2 RBFNN-I 2-DOF telerehabilitation simulation with α = 1: (a)
position trajectory, (b) tracking error, and (c) torques
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Figure 6.27: Joint 2 torques for the RBFNN-I 2-DOF telerehabilitation simulation
with α = 1 during the bilateral phase
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6.5.2 Scaled τ refl Addition

Figs. 6.28 to 6.31 show the 2-DOF exoskeleton simulation results from the tests using

the α = 3 scaled-τ refl addition strategy given by (5.53). These figures follow a similar

format as Figs. 6.24 to 6.27.

As can be seen in Figs. 6.29(b) and 6.31(b) in regions E and F, the telepresence

values converge to just under −1 Nm and just under −0.5 Nm, for joint 1 and 2,

respectively. The low-fidelity telepresence is evident by the large yellow areas in

the telepresence plot between the ideal telepresence green line and the telepresence

achieved for this test. Comparing Figs. 6.29(b) with 6.25(b), it is evident that when

α = 3 the results exhibit worse telepresence behaviour for the therapist than when

α = 1.

The RBFNN-I position tracking and telepresence performance metrics for this

α = 3 simulation are listed in Table 6.9 where the worse performance of α = 3 com-

pared to α = 1 can clearly be seen in the TPmax and TPRMSE telepresence metrics.
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Figure 6.28: Joint 1 RBFNN-I 2-DOF telerehabilitation simulation with α = 3: (a)
position trajectory, (b) tracking error, and (c) torques
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Figure 6.29: Joint 1 torques for the RBFNN-I 2-DOF telerehabilitation simulation
with α = 3 during the bilateral phase
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Figure 6.30: Joint 2 RBFNN-I 2-DOF telerehabilitation simulation with α = 3: (a)
position trajectory, (b) tracking error, and (c) torques
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Figure 6.31: Joint 2 torques for the RBFNN-I 2-DOF telerehabilitation simulation
with α = 3 during the bilateral phase

6.5.3 Human Torque Regulator

Figs. 6.32 to 6.35 show the RBFNN-I simulation results for multi-degrees of freedom

implementation of the new HTR strategy introduced in this research in (5.54). These

figures again follow a similar format to Figs. 6.24 to 6.27 and Figs. 6.28 to 6.31 in the

previous sections.

As can be seen in Figs. 6.33(b) and 6.35(b), once the therapist’s torque builds

up to the patient’s toque in region E, it becomes equal to the patient’s torque and

bilateral telerehabilitation begins (corresponding to region F). During this bilateral

telerehabilitation region, even with 2-DOF the new HTR strategy provides excellent

telepresence. This high-fidelity telepresence is evident by the lack of yellow areas in

the telepresence plots of Figs. 6.33 and 6.35 for joints 1 and 2, respectively. The

position tracking and telepresence performance metrics for this experiment are listed

in Table 6.9. It can be seen in this table that the proposed HTR approach using

RBFNN-I provides superior telepresence compared with the α = 1 and α = 3 ap-

proaches since the telepresence metrics TPmax and TPRMSE are zero Nm for both

joint 1 and joint 2 as desired.
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Table 6.10 additionally lists the performance metrics for the ARII controller from

5.7 when this control method was tested on the same 2-DOF robotic exoskeleton

testbed. It can be seen that the RBFNN-I performance is very similar to that of the

ARII method when applied for the 2-DOF simulator testbed.
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Figure 6.32: Joint 1 RBFNN-I 2-DOF telerehabilitation simulation with HTR: (a)
position trajectory, (b) tracking error, and (c) torques
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Figure 6.33: Joint 1 torques for the RBFNN-I 2-DOF telerehabilitation simulation
with HTR during the bilateral phase

Table 6.9: Performance Metrics for RBFNN-I Telerehabilitation Simulations with
2-DOF Exoskeleton

Actuator Metrics α = 1 α = 3 HTR

Joint 1 ξ̃max 0.3◦ 0.3◦ 0.3◦

ξ̃RMSE 0.1◦ 0.1◦ 0.1◦

TPmax 1.0 Nm 1.0 Nm 0.0 Nm

TPRMSE 0.4 Nm 0.9 Nm 0.0 Nm

Joint 2 ξ̃max 0.1◦ 0.1◦ 0.1◦

ξ̃RMSE 0.0◦ 0.0◦ 0.0◦

TPmax 0.6 Nm 0.6 Nm 0.0 Nm

TPRMSE 0.3 Nm 0.5 Nm 0.0 Nm
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Figure 6.34: Joint 2 RBFNN-I 2-DOF telerehabilitation simulation with HTR: (a)
position trajectory, (b) tracking error, and (c) torques
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Figure 6.35: Joint 2 torques for the RBFNN-I 2-DOF telerehabilitation simulation
with HTR during the bilateral phase
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Table 6.10: 2-DOF Exoskeleton Telerehabilitation Simulations, with α=1, α=3, and
HTR

τnet Actuator Metrics ARII RBFNN-I

α = 1 Joint 1 ξ̃max 0.5◦ 0.3◦

ξ̃RMSE 0.1◦ 0.1◦

TPmax 1 Nm 1 Nm

TPRMSE 0.4 Nm 0.4 Nm

Joint 2 ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0.0◦ 0.0 ◦

TPmax 0.6 Nm 0.6 Nm

TPRMSE 0.3 Nm 0.3 Nm

α = 3 Joint 1 ξ̃max 0.4◦ 0.3◦

ξ̃RMSE 0.1◦ 0.1◦

TPmax 1.0 Nm 1.0 Nm

TPRMSE 0.9 Nm 0.9 Nm

Joint 2 ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0◦ 0◦

TPmax 0.6 Nm 0.6 Nm

TPRMSE 0.5 Nm 0.5 Nm

HTR Joint 1 ξ̃max 0.5◦ 0.3◦

ξ̃RMSE 0.1◦ 0.1◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

Joint 2 ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0.0◦ 0.0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm
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6.6 Discussion

As can be seen from the experimental and simulation tests presented in this chap-

ter, the RBFNN-I method is stable and robust in both single-system, unilateral, and

bilateral telerehabilitation for both 1-DOF and 2-DOF systems. The method demon-

strated robustness in the presence of sensor noise, friction and human interactions,

and adapted well to the unknown dynamic parameters. RBFNN-I has the advantage

that it is model-free and, as a result, RBFNN-I requires less information and less a

priori knowledge of the system being controlled than ARII.

6.7 Contributions

The RBFNN-I control method presented in this chapter has several contributions:

1. The RBF neural networks-based control method was modified to be used on the

robotic exoskeleton by augmenting it to include an impedance model feature.

The present author coined the term RBF Neural Network Adaptive Robust

Integral Impedance (RBFNN-I) to refer to this proposed control approach.

2. The theoretical proof of the proposed RBFNN-I method for n-DOF system was

developed.

3. The proposed RBFNN-I method was validated in simulation on the 1-DOF

Quanser QUBE testbeds and 2-DOF robotic exoskeleton models.

4. The RBFNN-I method was experimentally validated using the 1-DOF Quanser

QUBE testbeds and the Logitech driving wheel to provide assistive human-

input.

5. The results of an earlier version of the proposed RBFNN-I control method

were written in: G. Bauer and Y.J. Pan, “Telerehabilitation with Exoskeletons

using Adaptive Robust Integral RBF-Neural-Network Impedance Control under

Variable Time Delays,” Accepted in ISIE 2021, Japan, Kyoto, Conference Date:

June 2021. [66]



Chapter 7

ARII and RBFNN-I Telerehabilitation Case Studies and

Comparison

This chapter explores the application of the proposed ARII and RBFNN-I control

methods to five different telerehabilitation cases using the experimental Quanser

QUBE and the simulated 2-DOF exoskeleton telerehabilitation testbeds. The HTR

tests previously shown for both the ARII and RBFNN-I controllers are used as a

baseline for comparison.

7.1 Quanser QUBE Experimental Case Studies and Comparison

The following five different case studies were explored: different patient profile, dif-

ferent impedance model, double the frequency of the harmonic motion during the

unilateral portion of the test, triple the delays, and double the noise variance (Figs.

7.1-7.6). The human torque synthesis method utilized for all these tests was the

novel HTR approach developed in this research. Table 7.1 presents the patient pro-

file, impedance model, harmonic motion frequency, communication time delays, and

sensor-noise experimental parameters used for the baseline tests with the HTR along

with the parameters that were changed for each of the five case studies being ex-

plored. The table entry was left blank where the parameters were kept the same as

the baseline test.

Fig. 7.1 shows how for the first case study, a patient profile exhibiting less toning

results in an impedance-based desired trajectory that is closer to the ideal desired tra-

jectory. For the second case study, Fig. 7.2 compares the designed desired impedance

joint angular position tracking error q̃τnet(t) response to a 1 Nm torque using the base-

line and the Case 2 impedance model. With these two different impedance models,

Fig. 7.3 plots the corresponding baseline impedance-based desired trajectory and the

Case 1 impedance-based desired trajectory, along with the original desired trajectory.

Note how a smaller q̃τnet(t) results in an impedance-based trajectory that is closer to

134
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Table 7.1: Quanser QUBE Telerehabilitation Experiments Case Study: Parameters

Case Study Patient Impedance Frequency Delays Noise
Model

Baseline K=0.848Nm J=0.0133kgm2 w=π
4 rad/s T1=0.1s var =

D=0.2Nms B=0.6665Nms T2=0.1s 0.000058N2

K = 2.666Nm
mean =
0.0129N

1) Patient K=0.5Nm
Profile D=0.1Nms

2) Impedance J=0.0066kgm2

Model: B=0.6665Nms
lower inertia, K=5.3320Nm
higher
stiffness

3) Higher w=π
2 rad/s

frequency

4) Longer T1=0.3s
delays T2=0.3s

5) Noise with var=
higher 0.000116N2

variance
mean=
0.0129N

the desired angular position trajectory. Fig. 7.4 shows the the desired and impedance-

based desired tracking positions for the baseline harmonic motion frequency of π/4

rad/s and the higher frequency of π/2 rad/s used for the third case study. Fig. 7.5

shows the master and the slave position curves when the system experiences a 0.1

s delay across the communication channel in each direction as used in the baseline

test and compares this delay with the master and slave position when the delay was

increased to 0.3 s in each direction as used in the fourth case study. Fig. 7.6 compares

the baseline force sensor noise with the sensor noise used in Case 5 where the variance

of the noise was double in size.

Table 7.2 shows the resulting performance metrics observed for the baseline ex-

perimental tests as well as for the five experimental case studies carried out with the

experimental Quanser QUBE telerehabilitation testbed. The results show that the

highest impedance angular position tracking error ξ̃max was 4.2◦ which was attained
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Figure 7.1: Baseline and case 1 position tracking
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Figure 7.2: Designed impedance responses to a 1 Nm step input

using the ARII method when the harmonic motion frequency was doubled (Case 3).

This tracking error corresponds to only a 1.4◦ difference from the baseline test, which

is reasonable considering the higher frequencies used in this case. This test also had

the highest ξ̃RMSE (1.4◦). All other cases tested exhibited very similar performance

as the baseline test. These observations suggest that for the controller parameters

used in this research, the results are generally not very sensitive to different patient

profiles, impedance models, motion frequencies, time delays, and sensor-noise levels

used in the case studies.

The baseline controller parameters were selected based on an extensive and sys-

tematic manual parameter tuning process which was carried out independently with

each of the ARII and the RBFNN-I control methods. Using these tuned controller
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Figure 7.3: Baseline and case 2 position tracking
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Figure 7.4: Baseline and case 3 position tracking

parameters, it can be observed in Table 7.2 that, for the conditions used in this re-

search, the performances of the two controllers are very similar in all case studies

tested. Moreover, note how the TPmax and TPRMSE have values of 0.0 Nm in all

cases attesting to the ability of the new HTR method to achieve high telepresence

fidelity over a wide range of test conditions. The corresponding position and torque

plots for these experimental case studies can be found in Appendix A.
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Figure 7.5: Baseline and case 4 position tracking
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Table 7.2: Quanser QUBE Telerehabilitation Experiments Case Study: Performance
Metrics using ARII and RBFNN-I

Case Study Metrics ARII RBFNN-I

Baseline Figs. 5.18 and 5.20 Figs. 6.21 and 6.23

ξ̃max 2.8◦ 2.4◦

ξ̃RMSE 1.1◦ 0.9◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

1) Patient Profile Figs. A.1 and A.2 Figs. A.11 and A.12

ξ̃max 3.1◦ 2.7◦

ξ̃RMSE 1.2◦ 1.0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

2) Impedance Model Figs. A.3 and A.4 Figs. A.13 and A.14

ξ̃max 3.2◦ 2.5◦

ξ̃RMSE 1.2◦ 1.0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

3) Frequency Figs. A.5 and A.6 Figs. A.15 and A.16

ξ̃max 4.2◦ 3.9◦

ξ̃RMSE 1.4◦ 1.1◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

4) Delays Figs. A.7 and A.8 Figs. A.17 and A.18

ξ̃max 3◦ 2.5◦

ξ̃RMSE 1.1◦ 1.0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

5) Noise Figs. A.9 and A.10 Figs. A.19 and A.20

ξ̃max 3◦ 2.4◦

ξ̃RMSE 1.1◦ 1.0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm
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7.2 2-DOF Exoskeleton Simulation Case Studies and Comparison

To explore the performance of ARII and RBFNN-I on higher-DOF systems, similar

case studies were carried out with the HTR human torque synthesis method using

the 2-DOF exoskeleton telerehabilitation simulator. Table 7.3 presents the parameters

used in the baseline test with the HTR as well as the parameters for each of the five

case studies explored. Similar to the Quanser QUBE tests, the table entry was left

blank where the parameters were kept the same as the baseline.

Similar to the experimental Quanser QUBE telerehabilitation case studies, the

performance metrics for the baseline and the five telerehabilitation case studies tested

with the 2-DOF exoskeleton simulator are summarized in Tables 7.4 and 7.5 for joint

1 and joint 2, respectively. The results show that the highest ξ̃max was found to be

1.8◦ and 0.3◦ for joints 1 and 2, respectively, when using the ARII method for the

case where the frequency was doubled (Case 3). This result is 1.3◦ larger than the

baseline test which is reasonable for this higher-frequency case.

For all other case studies, the performance of the ARII and RBFNN-I controllers

was similar to their performance in the baseline test. These observations again suggest

that, for the tuned controller parameters used in this research, the results are not very

sensitive to the parameter changes being explored in these case studies. It can also be

seen in Tables 7.4 and 7.5 that the performance of ARII and RBFNN-I is generally

similar for all case studies tested. The corresponding position and torque plots for

these 2-DOF telerehabilitation simulation case studies can be found in Appendix A.
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Table 7.3: 2-DOF Exoskeleton Telerehabilitation Simulation Case Study: Parameters

Case Patient Impedance Frequency Delays Noise
Model

Baseline K1 = 0.848Nm J1 = 0.013 kgm2 w1 =
π
4 rad/s T1=0.1s var =

D1 = 0.2 Nms B1 = 0.665 Nms T2=0.1s 0.000058N2

K2 = 0.424 m K1 = 2.666Nm w2 =
π
4 rad/s

D2 = 0.05Nms J2 = 0.013kgm2 mean =
B2 = 0.665Nms 0.0129N
K2 = 2.666Nm

1) Patient K1 = 0.424Nm
Profile D1 = 0.1Nms

K1 = 0.212Nm
D2 = 0.025Nms

2) Imp. J1 = 0.0067kgm2

Model: B1 = 0.665Nms
lower K1 = 5.332Nm
inertia, J2 = 0.0067kgm2

higher B2 = 0.665Nms
stiffness K2 = 5.332Nm

3) Higher w1 =
π
2 rad/s

freq. w2 =
π
2 rad/s

4) Longer T1=0.3s
delays T2=0.3s

5) Noise var =
with 0.000116N2

higher
variance mean =

0.0129N
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Table 7.4: 2-DOF Exoskeleton Telerehabilitation Simulations Case Study: Perfor-
mance Metrics for Joint 1 using ARII and RBFNN-I

Case Study Metrics ARII RBFNN-I

Baseline Figs. 5.29 and 5.30 Figs. 6.32 and 6.33

ξ̃max 0.5◦ 0.3◦

ξ̃RMSE 0.1◦ 0.1◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

1) Patient Profile Figs. A.21 and A.22 Figs. A.41 and A.42

ξ̃max 0.5◦ 0.3◦

ξ̃RMSE 0.2◦ 0.1◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

2) Impedance Model Figs. A.25 and A.26 Figs. A.45 and A.46

ξ̃max 0.6◦ 0.3◦

ξ̃RMSE 0.2◦ 0.1◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

3) Frequency Figs. A.29 and A.30 Figs. A.49 and A.50

ξ̃max 1.8◦ 0.4◦

ξ̃RMSE 0.2◦ 0.1◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

4) Delays Figs. A.33 and A.34 Figs. A.53 and A.54

ξ̃max 0.5◦ 0.3◦

ξ̃RMSE 0.1◦ 0.1◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

5) Noise Figs. A.37 and A.38 Figs. A.57 and A.58

ξ̃max 0.5◦ 0.3◦

ξ̃RMSE 0.1◦ 0.1◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm



143

Table 7.5: 2-DOF Exoskeleton Telerehabilitation Simulations Case Study: Perfor-
mance Metrics for Joint 2 using ARII and RBFNN-I

Case Study Metrics ARII RBFNN-I

Baseline Figs. 5.31 and 5.32 Figs. 6.34 and 6.35

ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0◦ 0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

1) Patient Profile Figs. A.23 and A.24 Figs. A.43 and A.44

ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0◦ 0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

2) Impedance Model Figs. A.27 and A.28 Figs. A.47 and A.48

ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0◦ 0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

3) Frequency Figs. A.31 and A.32 Figs. A.51 and A.52

ξ̃max 0.3◦ 0.1◦

ξ̃RMSE 0.1◦ 0◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

4) Delays Figs. A.35 and A.36 Figs. A.55 and A.56

ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0◦ 0 ◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm

5) Noise Figs. A.39 and A.40 Figs. A.59 and A.60

ξ̃max 0.1◦ 0.1◦

ξ̃RMSE 0◦ 0 ◦

TPmax 0.0 Nm 0.0 Nm

TPRMSE 0.0 Nm 0.0 Nm
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7.3 RBFNN-I Experimental Range of Operation Exploration

There are a multitude of parameters in the system that were tuned to perform the

previously-presented tests. It was desired to carry out additional experimental tests

to explore the range of operation of the RBFNN-I control method using the Quanser

QUBE telerehabilitation testbed. Although there are myriad combinations of pa-

rameter variations possible, for these tests the baseline parameter values shown in

Table 7.1 were used while exploring the range of the following key parameters which

influence the operation of the system: delays, motion frequency, noise, and the HTR

telepresence gain ψ.

It was discovered that the system is stable with delays up to 1.1 s in each direction

of the communication channel, for a total of 2.2 s delay. The delays were asymmetric

and variable. For the conditions used in this research, delays higher than 2.2 s tended

to destabilize the system.

Using the asymmetric and variable total time delay of 0.6 s, as in the baseline

test, the range of operation for the motion frequency w was found to be up to 5π/8

rad/sec. The tracking error increased with motion frequency, as shown in Fig. 7.7

when compared to the baseline (Fig. 6.21) and case study (Fig. A.15) experimental

tests shown in Table 7.6. For the conditions used in this research, increasing the

motion frequency beyond 5π/8 rad/sec risked unstable behaviour.

Table 7.6: Quanser QUBE Telerehabilitation Experiments with Different Motion Fre-
quencies using RBFNN-I: Tracking Error Metrics

Frequency w Metrics RBFNN-I

Baseline: π/4 ξ̃max 2.4◦

ξ̃RMSE 0.9◦

Case Study: π/2 ξ̃max 3.9◦

ξ̃RMSE 1.1◦

Max: 5π/8 ξ̃max 5.5◦

ξ̃RMSE 1.4◦

The sensor noise variance and mean was amplified by a factor of four and the

system was still stable and operational. Noise beyond these levels were not tested.
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Figure 7.7: Range of operation experimental test with Quanser QUBES, RBFNN-I
controller, and w=5π/8

The range of values for the HTR telepresence gain ψ was also explored and, for the

conditions used in this research, it was observed that the system was stable for values

between 0.001 and 0.04. The telepresence fidelity started to diminish slightly when

using a value of 0.01, and worsened as the value of ψ was reduced. The telepresence

performance metrics still revealed relatively high-fidelity, with a TPmax value of 0.4Nm

and a TPRMSE value of 0.1Nm for a ψ value of 0.001, which can be observed in Fig. 7.8.

For values of 0.05 and higher, the system became overreactive and unstable.
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Figure 7.8: Range of operation experimental test with Quanser QUBES, RBFNN-I
controller, and ψ=0.001

7.4 Discussion

As can be seen from the different experimental and simulation telerehabilitation case

studies presented in this chapter, both ARII and RBFNN-I performed remarkably

similar for both the single-joint and the 2-DOF testbeds, with the RBFNN-I controller

performing slightly better. The fact that the telepresence values for all the case tests

were zero up to the first decimal place, and the tracking errors were minimal, attests

to the effectiveness of the HTR strategy and robustness of the system with the tuned

parameters.



Chapter 8

Conclusions and Future Work

This chapter summarizes the contributions of the research presented in this thesis

and suggests future work in the field of bilateral telerehabilitation with upper-limb

robotic exoskeletons.

8.1 Conclusions

The Adaptive Robust Integral Impedance (ARII) controller − a model-based method

− was further developed, implemented, and validated to address the unknown dy-

namic modeling parameters, nonlinearities, sensor noise, and human torque input

while providing good tracking, safe, stable, and adjustable compliant motion in the

presence of time delays. ARII builds on the state-of-the-art adaptive controllers for

upper-limb robotic exoskeletons.

The development, implementation, and validation of a model-free control method

called Radial Basis Function Neural Network Integral Impedance (RBFNN-I) was

also explored to address the same challenges.

An impedance model controller was incorporated into both proposed control meth-

ods to create adjustable compliance, customization for different and changing pa-

tients’ abilities, and safe motion to accommodate the patient and the therapist in

the closed loop system. The impedance model parameters were selected to create an

overdamped system and thus enhance stability.

The design and detailed Lyapunov-based stability and convergence analysis of the

methods were presented. The time-domain passivity-based strategy of boundedness

was utilized to strengthen system stability. Simulated and experimental tests were

performed with a single-system single-joint Quanser QUBE testbed. A conceptual

design of a novel grounded horizontally-planar 2-DOF upper-limb robotic exoskeleton

was developed and simulated to validate the proposed control methods with multi-

degree robotic exoskeleton systems. For the conditions used in this research, the

147
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results from the tests performed with both testbeds revealed the desired tracking

performance and stability.

For bilateral telerehabilitation, a novel human torque synthesis strategy, called

Human Torque Regulator (HTR), was developed which produces high-fidelity telep-

resence for the therapist while assisting the patient. The current methodologies found

in the literature utilized direct or scaled-down values of the reflected therapist torques

to be added to the patient-exoskeleton master system, which could be a benefit in

cases where therapist fatigue reduction is prioritized; however, they present dimin-

ished haptic awareness of the torques experienced by the patient. Three human torque

synthesis strategies were implemented using the two proposed control methods, ARII

and RBFNN-I, in bilateral telerehabilitation in experiment and simulation using the

single-joint Quanser QUBE testbed, and in simulation using the 2-DOF robotic ex-

oskeleton testbed. The bilateral telerehabilitation tests revealed the HTR approach

as superior. The HTR method was also implemented in a set of test cases with the

two proposed control methods under five different conditions with both the single-

joint Quanser QUBE testbed and the simulated 2-DOF robotic exoskeleton testbed,

and consistently displayed high-fidelity telepresence.

The proposed methodologies were successfully implemented to demonstrate stable

performance with superior telepresence and great tracking performance while under

variable asymmetric communication time delays.

8.2 Future Work

The research presented in this thesis contributed to the field of bilateral telerehabilita-

tion with upper-limb robotic exoskeletons by developing a novel human torque synthe-

sis strategy called the human torque regulator (HTR), which improves telepresence.

Additionally, two upper limb robotic exoskeleton control methods were developed

which build on the existing state-of-the-art to help further the body of knowledge

which may aid in the delivery of physiotherapy to those who direly need it.

HTR proved to work very well with the presented upper-limb robotic exoskeletons

setup. For future work, it could also be implemented as a high-fidelity telepresence

method for systems using end-effector type robots, and lower limb assistive robots.

The presented work showed that the model-based and model-free robot control
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methods developed, implemented, and validated work well with the simulated 2-DOF

robotic exoskeleton testbed. For future work, it is recommended that they be imple-

mented in experiment with two or higher DOF upper-limb exoskeletons. Furthermore

these methods could be further developed and implented in a multitude of appli-

cations involving human-machine interface which require human-like, customizable,

compliant, and safe motion.

The big-picture recommendations are for rehabilitation robotic devices to be ac-

tively integrated into physiotherapy clinics and hospitals around the world so that

therapists and patients can benefit from their proven effectiveness. Their integra-

tion and acceptance as in-person and remote physiotherapy tools will greatly increase

access to care and help mitigate the worldwide exorbitant demand for physical reha-

bilitation services.
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a robotic platform for upper limb rehabilitation in patients with neuro-
motor disability,” Advances in Mechanical Engineering, vol. 8, no. 8, p.
1687814016659050, 2016.

[25] J. Medlej, “Human anatomy fundamentals: Flexibility
and joint limitations,” https://design.tutsplus.com/articles/
human-anatomy-fundamentals-flexibility-and-joint-limitations--vector-25401,
viewed 3rd May, 2017, created 2015.

[26] H. I. Krebs, L. Dipietro, S. Levy-Tzedek, S. E. Fasoli, A. Rykman-Berland,
J. Zipse, J. A. Fawcett, J. Stein, H. Poizner, A. C. Lo et al., “A paradigm
shift for rehabilitation robotics,” IEEE engineering in medicine and biology
magazine, vol. 27, no. 4, pp. 61–70, 2008.

[27] M. Longhi, A. Merlo, P. Prati, M. Giacobbi, and D. Mazzoli, “Instrumental in-
dices for upper limb function assessment in stroke patients: a validation study,”
Journal of neuroengineering and rehabilitation, vol. 13, no. 1, pp. 1–11, 2016.

[28] K. Baur, N. Rohrbach, J. Hermsdörfer, R. Riener, and V. Klamroth-Marganska,
“The beam-me-in strategy–remote haptic therapist-patient interaction with two
exoskeletons for stroke therapy,” Journal of neuroengineering and rehabilitation,
vol. 16, no. 1, p. 85, 2019.

[29] H. M. Van der Loos, D. J. Reinkensmeyer, and E. Guglielmelli, “Rehabilitation
and health care robotics,” in Springer handbook of robotics. Springer, 2016,
pp. 1685–1728.

[30] C. J. Mottram, N. L. Suresh, C. Heckman, M. A. Gorassini, and W. Z. Rymer,
“Origins of abnormal excitability in biceps brachii motoneurons of spastic-
paretic stroke survivors,” Journal of neurophysiology, vol. 102, no. 4, pp. 2026–
2038, 2009.



153

[31] R. Balliet, B. Levy, and K. Blood, “Upper extremity sensory feedback therapy
in chronic cerebrovascular accident patients with impaired expressive aphasia
and auditory comprehension,” Arch Phys Med Rehabil., vol. 67(5), pp. 304–310,
1986 May.

[32] W. van Niekerk, T. van der Stockt, K. Jackson, and N. O’Reilly. Rehabilitation
during a pandemic in people with specific rehabilitation needs. [Online]. Avail-
able: https://physio-pedia.com/Rehabilitation During a Pandemic in People
with Specific Rehabilitation Needs?utm source=physiopedia&utm medium=
related articles&utm campaign=ongoing internal

[33] S. P. Buerger, J. J. Palazzolo, H. I. Krebs, and N. Hogan, “Rehabilitation
robotics: adapting robot behavior to suit patient needs and abilities,” in Pro-
ceedings of the 2004 American Control Conference, vol. 4. IEEE, 2004, pp.
3239–3244.

[34] L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control strategies for
robotic movement training after neurologic injury,” Journal of neuroengineering
and rehabilitation, vol. 6, no. 1, pp. 1–15, 2009.

[35] R. Calabro, M. Russo, A. Naro, D. Milardi, T. Balletta, A. Leo,
S. Filoni, and P. Bramanti, “Who may benefit from armeo power treatment
- a neurophysiological approach to predict neurorehabilitation outcomes,”
PMandR, vol. 8, no. 10, pp. 971 – 978, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1934148216000745

[36] B. B. Johansson, “Brain plasticity and stroke rehabilitation: the willis lecture,”
Stroke, vol. 31, no. 1, pp. 223–230, 2000.

[37] Y. Hara, “Brain plasticity and rehabilitation in stroke patients,” Journal of
Nippon Medical School, vol. 82, no. 1, pp. 4–13, 2015.

[38] S. E. Fasoli, H. I. Krebs, and N. Hogan, “Robotic technology and stroke reha-
bilitation: translating research into practice,” Topics in stroke Rehabilitation,
vol. 11, no. 4, pp. 11–19, 2004.

[39] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leon-
hardt, “A survey on robotic devices for upper limb rehabilitation,” Journal of
NeuroEngineering and Rehabilitation, vol. 11, no. 1, p. 3, 2014.

[40] R. Gopura, D. Bandara, K. Kiguchi, and G. K. Mann, “Developments in hard-
ware systems of active upper-limb exoskeleton robots: A review,” Robotics and
Autonomous Systems, vol. 75, pp. 203–220, 2016.

[41] E. Palermo, D. R. Hayes, E. F. Russo, R. S. Calabrò, A. Pacilli, and S. Filoni,
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Appendix A

ARII and RBFNN-I Case Studies Plots

A.1 Quanser QUBE Experimental Case Studies

A.1.1 Quanser QUBE Experimental Case Studies with ARII Control

Methods
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Figure A.1: Case 1 ARII telerehabilitation experiment with Quanser QUBEs using
HTR: (a) position trajectory, (b) tracking error
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Figure A.2: Torques for case 1 ARII telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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Figure A.3: Case 2 ARII telerehabilitation experiment with Quanser QUBEs using
HTR: (a) position trajectory, (b) tracking error
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Figure A.4: Torques for case 2 ARII telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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Figure A.5: Case 3 ARII telerehabilitation experiment with Quanser QUBEs using
HTR: (a) position trajectory, (b) tracking error
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Figure A.6: Torques for case 3 ARII telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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Figure A.7: Case 4 ARII telerehabilitation experiment with Quanser QUBEs using
HTR: (a) position trajectory, (b) tracking error
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Figure A.8: Torques for case 4 ARII telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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Figure A.9: Case 5 ARII telerehabilitation experiment with Quanser QUBEs using
HTR: (a) position trajectory, (b) tracking error
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Figure A.10: Torques for case 5 ARII telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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A.1.2 Quanser QUBE Experimental Tests Case Studies with RBFNN-I

Control Methods
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Figure A.11: Case 1 RBFNN-I telerehabilitation experiment with Quanser QUBEs
using HTR: (a) position trajectory, (b) tracking error
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Figure A.12: Torques for case 1 RBFNN-I telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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Figure A.13: Case 2 RBFNN-I telerehabilitation experiment with Quanser QUBEs
using HTR: (a) position trajectory, (b) tracking error
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Figure A.14: Torques for case 2 RBFNN-I telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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Figure A.15: Case 3 RBFNN-I telerehabilitation experiment with Quanser QUBEs
using HTR: (a) position trajectory, (b) tracking error
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Figure A.16: Torques for case 3 RBFNN-I telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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Figure A.17: Case 4 RBFNN-I telerehabilitation experiment with Quanser QUBEs
using HTR: (a) position trajectory, (b) tracking error
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Figure A.18: Torques for case 4 RBFNN-I telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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Figure A.19: Case 5 RBFNN-I telerehabilitation experiment with Quanser QUBEs
using HTR: (a) position trajectory, (b) tracking error
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Figure A.20: Torques for case 5 RBFNN-I telerehabilitation experiment with Quanser
QUBEs with HTR during the bilateral phase
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A.2 2-DOF Exoskeleton Simulation Case Studies

A.2.1 2-DOF Exoskeleton Simulation Case Studies with ARII Control

Methods
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Figure A.21: Joint 1, Case 1 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.22: Joint 1 torques for case 1 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.23: Joint 2, Case 1 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.24: Joint 2 torques for case 1 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.25: Joint 1, Case 2 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.26: Joint 1 torques for case 2 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.27: Joint 2, Case 2 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.28: Joint 2 torques for case 2 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.29: Joint 1, Case 3 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.30: Joint 1 torques for case 3 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.31: Joint 2, Case 3 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.32: Joint 2 torques for case 3 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.33: Joint 1, Case 4 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.34: Joint 1 torques for case 4 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.35: Joint 2, Case 4 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.36: Joint 2 torques for case 4 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase



183

0 50 100 150

0

50

100

Po
si

tio
n 

(d
eg

)

(a) Position

Unilateral Bilateral

Robot Desired
Master
Slave
Imp Des

0 50 100 150
-10

-5

0

5

10
(b) Impedance Angular Position Tracking Error

0 50 100 150
Time (s)

-2

0

2

To
rq

ue
 (N

m
)

(c) Patient, Therapist, and Net Torque

A B C D E and FFFFF

Bilateral

net

refl
( - refl)

p

Figure A.37: Joint 1, Case 5 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.38: Joint 1 torques for case 5 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.39: Joint 2, Case 5 ARII telerehabilitation experiment with 2-DOF Ex-
oskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.40: Joint 2 torques for case 5 ARII telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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A.2.2 2-DOF Exoskeleton Simulation Case Studies with RBFNN-I

Control Methods
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Figure A.41: Joint 1, Case 1 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.42: Joint 1 torques for case 1 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.43: Joint 2, Case 1 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.44: Joint 2 torques for case 1 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.45: Joint 1, Case 2 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error

100 105 110 115 120 125 130 135 140 145 150
-2

-1

0

1

To
rq

ue
 (N

m
)

(a) Patient and Therapist Torque

Bilateral p
(- refl)

100 105 110 115 120 125 130 135 140 145 150
Time (s)

-1

-0.5

0

To
rq

ue
 (N

m
)

(b) Telepresence

( p+ refl)
ideal

Figure A.46: Joint 1 torques for case 2 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.47: Joint 2, Case 2 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.48: Joint 2 torques for case 2 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.49: Joint 1, Case 3 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.50: Joint 1 torques for case 3 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase



190

0 50 100 150

0

50

Po
si

tio
n 

(d
eg

)

(a) Position

Unilateral Bilateral

Robot Desired
Master
Slave
Imp Des

0 50 100 150
-10

-5

0

5

10
(b) Impedance Angular Position Tracking Error

0 50 100 150
Time (s)

-2

0

2

To
rq

ue
 (N

m
)

(c) Joint 2 Patient, Therapist, and Net Torque

A B C D E FF

Bilateral

net

refl
( - refl)

p

Figure A.51: Joint 2, Case 3 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.52: Joint 2 torques for case 3 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.53: Joint 1, Case 4 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.54: Joint 1 torques for case 4 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.55: Joint 2, Case 4 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.56: Joint 2 torques for case 4 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.57: Joint 1, Case 5 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.58: Joint 1 torques for case 5 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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Figure A.59: Joint 2, Case 5 RBFNN-I telerehabilitation experiment with 2-DOF
Exoskeletons using HTR: (a) position trajectory, (b) tracking error
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Figure A.60: Joint 2 torques for case 5 RBFNN-I telerehabilitation 2-DOF simulation
with HTR during the bilateral phase
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