
DESIGNING AND DEVELOPING INTERACTIVE BIG DATA DECISION
SUPPORT SYSTEMS FOR PERFORMANCE, SCALABILITY, AVAILABILITY AND

CONSISTENCY

by

Neil Burke

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

April 2021

© Copyright by Neil Burke, 2021

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . x

Chapter 1 Introduction . 1

1.1 Interactive Big Data Decision Support Systems . 1

1.2 Performance, Scalability, Availability and Consistency 3

1.3 Contributions of this Thesis . 6
1.3.1 Reinsurance Analytics . 6
1.3.2 Real-Time OLAP . 8

1.4 Thesis Outline . 9

Chapter 2 Background: Reinsurance Analytics . 10

2.1 Portfolio Risk Analysis Using Monte Carlo Simulation 11

2.2 Related Work . 14
2.2.1 Reinsurance Analytics in the Literature . 14
2.2.2 Reinsurance Analytics in the Industry . 15

Chapter 3 A Scalable System for Efficient Location-level Analytics 16

3.1 Related Work: General-Purpose Graph Modeling Frameworks 17

3.2 Graph-Based Model for Reinsurance Analytics . 21

3.3 A Cloud-Based System for Location-Level Risk Analytics 24
3.3.1 System Design . 24
3.3.2 Overview of Optimizations . 24
3.3.3 Occurrence Processor . 26
3.3.4 Graph Optimizer . 32
3.3.5 In-Memory Graph Data Structure . 37
3.3.6 Scalability, Availability and Hiding I/O Cost . 38

3.4 Evaluation . 40
3.4.1 Test Portfolio . 40
3.4.2 Edge-Buffered vs Cutwidth-Based Approach . 41
3.4.3 Graph Optimizer Evaluation . 43

ii

3.4.4 Occurrence Processor Evaluation . 45
3.4.5 Evaluation as a Distributed System . 47
3.4.6 Comparison Against a Commercial System . 48

3.5 Conclusion . 49

Chapter 4 Efficient Caching for Location-level Analytics 51

4.1 Related Work . 52

4.2 Caching for Location-Level Reinsurance Analyses . 54
4.2.1 Selecting Cache Edges . 55

4.3 Efficient Subgraph Loading . 57

4.4 Updates . 60
4.4.1 Periodic Repartitioning into Shards . 62
4.4.2 Realistic Use Cases . 63

4.5 Evaluation . 65
4.5.1 Test Platform and Portfolio . 66
4.5.2 Shard Size vs Number of Cache Edges . 66
4.5.3 Analysis Cost vs Invalidated Edges . 66
4.5.4 Cluster Comparison . 69
4.5.5 Use Case Evaluation . 72

4.6 Conclusion . 73

Chapter 5 Background: Online Analytical Processing and Staleness 76

5.1 Background . 76
5.1.1 Online analytical processing . 76
5.1.2 Distributed Consistency . 78

5.2 Related Work . 81
5.2.1 Staleness in OLAP . 81
5.2.2 Probabilistically bounded staleness in key-value stores 83

Chapter 6 Probabilistically Bounded Staleness in Real-time Online Analytical Pro-
cessing . 87

6.1 Aggregate Probabilistically Bounded Staleness (A-PBS) 88
6.1.1 Data Streams and Queries . 88
6.1.2 (t, c)-staleness . 89
6.1.3 Staleness and Error . 90
6.1.4 Probabilistic Staleness . 92

iii

6.2 Simulation . 92
6.2.1 Aggregate Model . 92
6.2.2 Simulation Parameters . 93
6.2.3 Algorithm . 94

6.3 Case Study . 96

6.4 Conclusion . 100

Chapter 7 Conclusion . 103

7.1 Reinsurance Analytics . 103
7.1.1 Other Applications . 106

7.2 Aggregate Probabilistically Bounded Staleness . 106

7.3 Future Work . 108

Bibliography . 110

iv

List of Tables

2.1 A short sample YELT . 12

6.1 The set of system parameters . 94

v

List of Figures

2.1 A simple overview of the reinsurance modeling process 13

2.2 The typical structure of a location-level reinsurance portfolio. Triangles
correspond to embedded structures within the portfolio, where the size
of the triangle roughly corresponds to the size of the structure. 14

3.1 Processing YELT occurrences through a very simple example graph for
one trial . 23

3.2 System architecture overview. Users upload data through a client to a
distributed data store, and submit jobs to the system through two differ-
ent message queues. Running a portfolio analysis involves submitting
groups of trials to be analyzed to the occurrence processor queue, which
then assigns these groups to available occurrence processors. Output
is written back to the data store, where it can be read by the client. The
efficient execution of the occurrence processors depends on the vertices
of the portfolio graph being arranged in an order that allows them to be
processed using little memory. Whenever the portfolio graph changes
substantially due to the addition of new insured locations, new treaties,
etc. the client can initiate the reoptimization of the graph layout by sub-
mitting a request to the graph optimizer queue. The graph optimizer
then reads the graph from distributed storage, optimizes it, and writes it
back to distributed storage. This graph optimization step is not part of
the portfolio analysis but is an offline process to be run periodically. . . . 25

3.3 A simple graph of four vertices with a buffer on each edge 28

3.4 An example of deadlocking. Buffers wx and xz are full, while buffers wy
and yz are empty. 29

3.5 Illustration of the cutwidths of topological orderings. Both orderings
in (b) and (c) are valid topological orderings of the graph in (a). The
ordering in (b) has cutwidth 3, as indicated by the dashed line, which
is crossed by the edges vy, wy, and xz. The ordering in (c) has cutwidth
only 2, as indicated by the two dashed lines, which are crossed by edges
vx and wx, and xz and yz, respectively. 31

3.6 Introduction of a single vertex of the in-tree of v1 35

vi

3.7 An illustration of the placement of an in-degree reduction vertex v ′i ,1 with
d = 2. The number of edges between v ′i ,1 and the vertex it is placed next
to will always be d −1 edges smaller than the number of edges between
v ′i ,1 and the vertex preceding it. 36

3.8 A caterpillar contributes at most d to the cutwidth at any point between
vi ’s first in-neighbor and vi in the topological ordering. Here, d = 3. . . . 36

3.9 A sample graph and in-memory representation. The predecessor array
is omitted for readability. 38

3.10 Simplified view of the location-level graph used for evaluation of our
system . 42

3.11 A graph representing the portfolio of a primary insurer insuring 5 properties 42

3.12 Number of vertices vs cutwidth in the optimized graph for different
values of the max degree parameter . 44

3.13 Running time for each of the graph optimizer’s steps for different settings
of maximum degree . 45

3.14 Running time for the occurrence processor across different sizes of input
occurrences and graphs of varying degree . 46

4.1 A small directed graph, with cache edges shown as dotted lines. The gray
vertices do not need to be reevaluated to compute the output of the sink. 55

4.2 The example graph from Figure 4.1, grouped into its 2-edge-connected
components by dotted lines. The edges that cross between two compo-
nents are the bridges. 57

4.3 The tree T obtained by contracting the 2-edge-connected components
of the graph in Figure 4.2. Vertex labels represent vertex weights, that
is, the sizes of the 2-edge-connected components represented by the
vertices. The dotted lines represent the partitioning of T into subtrees
with w = 5. 58

4.4 The graph from Figure 4.2 broken into 3 shards, s1 through s3 correspond-
ing to the subtrees in Figure 4.3. The edges between shards are cache
edges. 58

4.5 A graph with cache edges pointed towards different vertices within the
same shard . 59

4.6 The graph from Figure 4.5 with an added edge between the vertices
v2 and v8 in shards s3 and s1. The graph on the right shows the new
partitioning of the same graph that eliminates the cycle in the shard graph. 62

vii

4.7 Number of cache edges generated for different values of the shard size
parameter w . 67

4.8 Running time of an incremental analysis as a function of the number of
invalidated cache edges on a cluster of 350 c5.2xlarge instances. Running
times are averaged across 5 runs. 68

4.9 Zoomed view of Figure 4.8 for up to 18 invalidated cache edges. 70

4.10 Running time of an incremental analysis as a function of the number of
invalidated cache edges across different cluster configurations. Running
times are averaged across 5 runs. 71

4.11 Zoomed view of Figure 4.10 for up to 18 invalidated cache edges. 72

4.12 10,000-trial running time as a function of number of locations added for
the “new business” use case. Running times are averaged across 5 runs. 74

5.1 A simple data cube demonstrating how a cuboid can “contain” other
cuboids. 77

5.2 An example of a read operation using quorum rules. C is the client, while
B1, B2 and B3 are the nodes containing the replicated data relevant to the
query. Solid lines represent to read requests, and dotted lines represent
responses to the client. 80

5.3 The WARS model for Dynamo-style data stores, from [17] with minor
adjustments to notation . 86

6.1 A DATA(3, λ, D) insert stream. The white circles represent the points in
time at which inserts in the stream are sent from the client. The amount
of time between adjacent inserts is determined by sampling from an
exponential distribution with parameter λ. 89

6.2 A query that has (t , c=1)-staleness. The upper bar represents the time of
initiation of a query or insert, the middle bar represents the time at which
each insert has been partially committed and the bottom bar represents
the time at which the corresponding insert is readable, or the cutoff time
at which the query begins to read committed inserts. The last two inserts
in the stream and the query are reordered, so more than c = 1 inserts are
missed. 90

6.3 A query that does not have (t , c=1)-staleness. Since c = 1, the reordering
of the last insert in the stream and the query does not impact (t , c)-
staleness. 90

6.4 Diagram illustrating the node structure of the aggregate model. 94

viii

6.5 Cumulative distribution functions for distributions Tw (I), Tw (B), Tr (I),
Tr (B) and T (M) used in Section 6.3. For legibility, only the first 99 per-
centiles are plotted. 96

6.6 Observed and simulated bounded (t , c=0)-staleness with [N=3, W=0,
R=1] and varying query coverage . 97

6.7 Observed and simulated bounded (t ,ε=0.00001)-staleness with [N=3,
W=0, R=1] and varying measure distributions and aggregation functions 99

6.8 Observed average number of missed inserts (a) and relative error (b)
with [N=3, W=0, R=1] . 100

6.9 Probability of bounded (t , c=0)-staleness with varying read and write
speeds . 101

ix

Abstract

Big data decision support systems are used to interpret meaning from extremely large data

sets. The users of such systems rely on decision support systems to provide short, human-

readable summarizations to aid the user in the decision making process. An interactive big

data decision support system must do all of this within seconds of a user request. This short

response window promotes interactivity between the system and its user, enabling the user to

make several ad hoc or follow-up queries to the system shortly after receiving a response.

In this thesis, we explore the design and development of interactive big data decision sup-

port systems that satisfy four key useful characteristics: performance, scalability, availability

and consistency. We do this within the context of two applications.

We first design and develop a novel interactive reinsurance portfolio analytics system.

Our system runs on a cloud architecture and efficiently distributes work to achieve excellent

scalability, scaling up to thousands of cores. In order for our system to be highly performant,

we design our system to process all data entirely in memory. Our system is made consistent

by a decentralized data storage service that guarantees strong consistency for all input data.

A queuing system that automatically retries failed tasks ensures that the system is highly

available. In a comparison with one of the leading commercial portfolio analytics systems,

our system performed approximately 50 times faster.

Later, we further improve performance by caching intermediate results between portfolio

analyses, allowing extremely complex location-level analytics queries to be processed in only

11 seconds. Without caching, the same queries would have to process hundreds of millions of

transformations over terabytes of data.

Our second application is Online Analytical Processing (OLAP), where we focus solely

on data consistency. We describe a method for quantifying consistency in distributed OLAP

systems and present a corresponding Monte Carlo simulation to approximate the level of

consistency for quorum-replicated OLAP systems, allowing users to explore their system’s

level of consistency under different usage scenarios. In a case study, we validate the accuracy

of our simulation on a real, interactive OLAP system.

x

Chapter 1

Introduction

As the volume of data collected by computer systems grows greater and greater every year,

businesses, governments and organizations are increasingly turning to big data decision

support systems in order to help them interpret meaning from extremely large data sets. We

define a big data decision support system as a computer system that operates on a large,

structured data set to produce an output small enough for human consumption, representing

an aggregate view of the large data set. Examples of a big data decision support system could

be a platform that processes the historical sales data of a large chain of retail stores to aid in

deciding what kinds of product and how much should be ordered at each retail store, or a

system that analyzes stock trends and financial news stories and aggregates them in real-time

into a short, human-readable report to help financial investors to decide which assets to buy

or sell.

1.1 Interactive Big Data Decision Support Systems

Put simply, a decision support system is a computer system that provides a decision maker

(the user of the system) with data to make well-informed decisions [80, 103]. Decision support

systems do not dictate to the user what decision should be made. Rather, they interpret and

aggregate data in ways that would be hard for the user to do otherwise, and produce a high-

level human-readable response. By itself, decision support systems are an extremely broad

topic. Applications can be found in agriculture [50], disease prevention [78], finance [49] and

logistics [96]. In the context of this thesis, big data refers to processing data sets at the terabyte

scale and above. Thus, a big data decision support system is a decision support system that

processes terabytes of data to generate a summarized output to aid in the process of decision

making.

This thesis focuses on the design, development and algorithm engineering of solutions

for problems found within applied interactive big data decision support systems. Interactive

big data decision support systems focus on answering decision support queries in a timely

1

2

manner, such that interactive user workflows can be supported.

An interactive user workflow is a cyclical pattern where the output of a decision support

query is utilized by the user to write the next query. We describe the steps in an interactive

workflow in more detail below:

• The user submits a query to the decision support system, potentially after submitting

new data to the system.

• The system computes and returns the results of the query to the user.

• Using the results computed by the system, the user makes adjustments to the query or

a subset of the data stored on the system and submits a new query, starting the cycle

anew.

A key characteristic to interactive workflows is the immediacy in which the decision support

system computes and returns the result to the user. Delays longer than 10 seconds can inhibit

the user’s focus on the task at hand and can result in them switching to a new task while

they wait for a response [66, 93]. The time in which a response is returned is also critically

important for workflows where a response is needed as soon as possible (e.g., negotiating the

terms of a deal over the phone).

In order for a big data decision support system to be fast enough to support interactive

workflows, it must be scalable and highly performant. To ensure the system is accessible at all

times, it must be highly available; that is, the system must be able to answer queries and ingest

new data without any downtime, especially in the event of network, hardware and software

failure. If a system is highly available, special considerations must be made to make sure the

system is sufficiently consistent, meaning that the system uses the most recent version of the

data ingested by the system when computing the result of a query.

In this thesis we discuss engineering scalable, highly performant, available and consistent

interactive big data decision support systems. We explore these concepts and how they can

be achieved within the context of two different applications of interactive big data decision

support systems. We begin by briefly describing performance, scalability, availability and con-

sistency and how they fit into interactive big data decision support systems before describing

the two applications at the core of this thesis and how they fit into these concepts.

3

1.2 Performance, Scalability, Availability and Consistency

Performance. The performance of any high performance computing system is measured

using two metrics latency and throughput [83]. Latency describes the time taken for a user

to receive a response for a submitted query. Throughput describes the number of queries or

insertions a system can process in a given unit of time.

Latency is a key metric of any decision support system, as it effectively determines how

long a user must wait until they receive a response to a given query. Latency is of particular

importance in applications where the user has a limited amount of time to make a decision.

For example, consider the scenario where a user of a decision support system is negotiating

the terms of a contract over the phone. As the user and the person over the phone negotiate,

the terms of the contract change, and thus new data is introduced. If the decision support

system supports low-latency insertions and queries, the user can insert the new data, submit

a new query, and receive analytics from the system, all in a couple seconds, allowing the user

to factor in the latest results from the system as they negotiate over the phone.

Throughput is also an important metric, particularly for decision support systems that

must ingest a constant stream of data, and for systems that are used by multiple users in

a company. If a system cannot support the throughput required by a company, additional

latency can be introduced to insertions and queries, as the system “catches up” and processes

operations.

For a system to have low latency and high throughput, careful design and engineering

is necessary at both “high” architectural level and the “low” component programming level.

By designing a scalable cloud architecture, a system can make use of additional compute

resources to run multiple insertions or queries concurrently, increasing throughput. In de-

cision support systems where queries are especially complex and require several steps to

compute, latency can also be reduced by splitting up the work of a single query to run on

multiple compute nodes in parallel.

At the lower level, optimizing the running time performance of the individual compo-

nents within the cloud architecture is also necessary to minimize latency and maximize

throughput. This can depend on many factors, including choice of algorithms, data structures,

programming implementation and software stack. In particular, in-memory data structures

can drastically improve performance by minimizing data accesses to high-latency persistent

storage.

4

Scalability. Scalability describes a system’s ability to effectively utilize additional compute

resources to reduce query latency or increase its throughput. For a system to scale well, it

must be able to distribute its work across a large number of compute nodes, with all compute

nodes working in parallel. Although no system can scale arbitrarily, a system that could scale

to an arbitrarily large number of compute nodes could in theory scale to an arbitrarily low

latency, or an arbitrarily high throughput.

For big data decision support systems, scalability is critical as the scale of data that must

be scanned, analyzed or processed to perform an analysis or answer a query is almost always

too large to process on a single compute node. As discussed above, scalability is also extremely

important in achieving high performance in a decision support system.

For a system to be scalable, it must be able to efficiently distribute its workload across many

compute resources. For systems that process small numbers of complex queries that require

processing terabytes of data, individual queries must be split up to be processed in parallel on

multiple compute nodes. Efficient distribution of work is typically not trivial, and is largely

determined by how the queries are processed. In general, overall system utilization across

all workers should be maximized throughout the duration of the query. This can be done

by minimizing communication and synchronization between compute nodes, and evenly

balancing the processing load across all compute nodes.

Availability. Availability refers to a system’s ability to answer queries and ingest new data

without any downtime, especially in the event of network, hardware or software failure. This

is extremely important in cloud-based systems, as system failures and network interruptions

are to be expected in cloud environments, particularly as the system scales to more resources.

In a decision support system, downtime means users can no longer submit new queries or

data for the system to process or ingest until the failure has been addressed. This can result

in loss of new data, and leaves users without analytics to aid their decision making process.

For businesses licensing their decision support system under the software as a service (SaaS)

model, excessive downtime can be especially costly as it may frustrate clients and violate

service level agreements, resulting in expensive rebates or loss of clients.

Systems are made highly available by being resilient to failure. The first steps towards a

high-availability system is to ensure that the system’s cloud architecture has no single point of

failure. This means no individual compute node is necessary for the successful completion of a

5

request, and that all data necessary to complete a request must be replicated and accessible at

multiple different compute nodes. A system’s availability can be further improved by ensuring

no group of any n compute nodes is necessary for completion of a request, and by increasing

the replication factor of all data necessary to complete any request. Availability can also be

improved by hosting data and compute nodes across multiple data centers. This way, in the

rare event that an entire data center goes offline, the data and compute nodes hosted in the

other centers can continue to serve requests.

Consistency. Consistency refers to a system’s ability to use the most recent version of the

data ingested by the system when computing the result of a given query. The problem of

data consistency arises as a direct result of the combination of data replication (to support

availability) and latency. If data is replicated on multiple different compute nodes or servers,

then each data update operation must be sent to all replicas. Because each operation has

latency, and because latency can vary depending on several factors (location, load, etc.), each

replica will be updated at different points in time. Thus, if a query is processed while the

data update is still in-transit on some replicas, the query’s result may be computed from stale,

out-of-date data, at least on some replicas.

In decision support systems, inconsistency means that the result of a query may not factor

in the most recent view of the data. The significance of this depends on the application and

the specifications of the system, and can be difficult to gauge. For applications where the most

recent data is especially important, strong consistency guarantees are critical. Once again,

consider the scenario where a user of a decision support system is negotiating the terms of

a contract over the phone. Say the user inputs the changes to the contract proposed by the

client over the phone and submits a query to aid in deciding if the changes are acceptable.

A system with poor consistency may return query results based on the contract before the

discussed changes, or with only a portion of the changes. Worse yet, if the system has no

guarantees on the level of consistency within the system, even if the query did use the most

recent changes during processing, the user would have no guarantee that the most recent

data was used. This can reduce confidence in the results generated from the decision support

system in general. Conversely, missing the past minute of insertions or updates is likely not

important for decision support systems or queries that are meant to analyze trends over a

much longer period of time.

6

In distributed systems, consistency is very difficult to guarantee without making significant

sacrifices in terms of latency and availability [35]. Consequently, many popular distributed

data stores only guarantee that their writes will eventually be readable after an unspecified

amount of time [17, 27, 54]. In Chapter 5, we give a background of consistency in greater detail,

discussing different types of consistency, how consistency can be guaranteed by sacrificing

latency and throughput, and how consistency can be measured probabilistically for simple

key-value data stores.

1.3 Contributions of this Thesis

1.3.1 Reinsurance Analytics

Chapters 2 to 4 are focused the design, development and algorithm engineering of a novel

interactive decision support system for reinsurance analytics.

Natural disasters, such as earthquakes, floods or hurricanes, can expose an insurance

company to catastrophic losses that result in the company’s bankruptcy or, worse, its inability

to reimburse its clients. Reinsurance companies act as insurers for insurance companies. A

reinsurance contract between an insurance company and a reinsurance company protects

the insurance company against such losses in exchange for a premium to be paid to the

reinsurance company. The reinsurance industry is capitalized at $500 billion per year and has

annual gross written premiums of more than $260 billion.

Reinsurers can significantly reduce the risk of their portfolios by insuring small shares of

insurance treaties all over the world. By diversifying their insurance treaty shares geographi-

cally, reinsurers can minimize their portfolio’s “tail risk” caused by rare catastrophic events

like major earthquakes or hurricanes. Consequently, the portfolio of a single reinsurer may

indirectly insure hundreds of millions of individual properties, each with their own contracts

and terms, across several different countries.

As we describe in greater detail in Chapter 2, reinsurance analytics systems allow users to

model the risk distribution complex reinsurance portfolios. Reinsurance analytics systems

differ from other decision support systems in that they must apply millions of financial trans-

formations to millions of simulated insurance claims generated by a Monte Carlo simulation

to compute a result. Reinsurance analytics systems are critical to the success of reinsurance

7

companies, and the global insurance market as a whole. In particular, the portfolio risk dis-

tributions generated by reinsurance analytics systems are especially important in informing

underwriters of their portfolio’s tail risk. If a portfolio’s tail risk is too high, one or two extreme

catastrophic events can result in the reinsurer going bankrupt and failing to fulfill its financial

obligations to its insurees. With a reinsurance analytics system, underwriters can quantify

their tail risk, and take steps to “de-risk” their portfolio.

Because the amount of data required to compute a portfolio’s risk distribution is very

large, reinsurance analytics systems typically pre-aggregate their simulated insurance claims

by region, county or province. This results in a significant reduction of data and processing

time at the cost of a less accurate portfolio risk distribution. In Chapter 3 of this thesis, we

describe a reinsurance analytics decision support system capable of computing portfolio risk

distributions using the original, non-aggregated simulated insurance claims. Our system uses

an algorithm to find a space-efficient execution plan that depends on the size and structure of

the given portfolio. Because of this, our system is able to compute portfolio risk distributions

entirely in memory, making our system over 50 times faster than one of the leading commercial

reinsurance analytics decision support systems running on roughly equivalent hardware.

Furthermore, through a cloud architecture that splits the work into small pieces that can

be processed independently, our system exhibits excellent scalability. In one experiment,

our system scaled up to 2880 vCPUs to process 4 terabytes of input data in approximately

17 minutes. Our system makes use of stateless workers that load input data from a highly

available distributed storage service to ensure that no single compute node is necessary to

process a request. Since all input to our system is uploaded and stored on a distributed storage

service, our system’s consistency is determined by the level of consistency guaranteed by the

storage service.

In Chapter 4 we augment our reinsurance analytics decision support system with a caching

system that allows us to significantly reduce the running time of subsequent analyses. Our

caching system intelligently selects a small number of intermediate results to cache (from a

pool of hundreds of millions) to strike a balance between cache size and the running time

of subsequent analyses. Our experiments show that the introduction of caching can reduce

the running time of an analysis by factor of 90, bringing total running time for a reinsurance

analytics job down from 17 minutes to approximately 10 seconds, while still maintaining the

original system’s availability, scalability and consistency. With this, our reinsurance analytics

8

system can support interactive workflows, making it a scalable, consistent, highly performant

and highly available interactive big data decision support system.

The core contributions of Chapter 3 were published in the proceedings of the 30th Annual

International Conference on Computer Science and Software Engineering [20]. We plan to

submit the core contributions of Chapter 4 to the 31th Annual International Conference on

Computer Science and Software Engineering for review in the Summer of 2021. The research

in both chapters was conducted with support from AnalyzeRe [12], a reinsurance analytics

software company based in Halifax, and is being used to develop the next generation of its

portfolio analytics platform.

1.3.2 Real-Time OLAP

In Chapters 5 and 6, we explore another application of interactive big data decision processing

systems: real-time online analytical processing (OLAP). As is described in more detail in

Chapter 5, OLAP systems allow users to insert large amounts of numerical measure data

within a multi-dimensional, hierarchical space. Users can query multidimensional subspaces

within the dataset to obtain aggregations of the measure data within the subspaces much

faster than would be possible on a traditional transactional or key-value database.

In Chapter 6 we present Aggregate Probabilistically Bounded Staleness (A-PBS), a model for

describing bounded staleness on OLAP queries. The model, along with a simulation, is used

to estimate the probability that a query will return a result consistent with a stream of recent

write operations. In a case study, we apply our model and simulation to place probabilistic

bounds on OLAP queries for VOLAP [29], a real-time distributed OLAP system. We later verify

these bounds by running queries in VOLAP and observing the actual consistency of the result.

We focus solely on consistency in this chapter; since VOLAP was designed from the ground-up

with scalability, performance and availability (but not consistency) in mind, we refer the reader

to the original VOLAP paper [29] for a discussion of scalability, performance and availability

in real-time OLAP systems.

The core contributions of Chapter 6 were published in the proceedings of the 21st Interna-

tional Database Engineering and Applications Symposium [21].

9

1.4 Thesis Outline

The remaining chapters of this thesis are organized as follows. Chapter 2 gives a brief overview

of the reinsurance industry and related reinsurance analytics systems. In Chapter 3, we

describe a reinsurance analytics decision support system capable of efficiently computing

portfolio risk distributions at location-level resolution. Chapter 4 expands upon the system

described in Chapter 3 by introducing a method wherein a very small percentage of interme-

diate results are cached, resulting in a significant reduction in the running time of subsequent

analyses. Chapter 5 gives an introduction to Online Analytical Processing (OLAP) and stale-

ness in distributed data stores. In Chapter 6 we present Aggregate Probabilistically Bounded

Staleness (A-PBS), a model for describing bounded staleness on OLAP queries. Finally, in

Chapter 7, we offer concluding remarks and present possible directions for future work.

Chapter 2

Background: Reinsurance Analytics

Insurance companies sell insurance to property owners and thereby expose themselves to the

risk of financial losses when the insured files a claim. An insurance contract protects a house

owner from catastrophic losses in the event of a fire, water main break or natural disaster.

If none of these events occurs, the insurance company profits by charging an insurance

premium without having to cover any losses. Natural disasters, such as earthquakes, floods

or hurricanes, can expose an insurance company to catastrophic losses that result in the

company’s bankruptcy or, worse, its inability to reimburse its clients. Reinsurance companies

act as insurers for insurance companies. On the surface, the model is similar to primary

insurance: In case of a catastrophic event, a primary insurer incurs losses by meeting its

insurance obligations to its clients. A reinsurance contract between a primary insurer and

a reinsurance company protects the primary insurer against such losses in exchange for a

premium to be paid to the reinsurance company. Unlike primary insurers, reinsurers can

significantly reduce the risk of their portfolios by insuring small shares of primary insurance

treaties all over the world. By diversifying their primary insurance shares geographically,

reinsurers can minimize their portfolio’s “tail risk” caused by rare catastrophic events like

major earthquakes or hurricanes.

It is because of this diversification that a typical reinsurance portfolio indirectly insures

several million locations all over the world. Another key difference between primary insur-

ance and reinsurance is that reinsurance treaties have much more complex structures, often

covering only a portion of the losses up to a given limit and under very specific conditions.

The reinsurance industry is capitalized at $500 billion per year and has annual gross written

premiums of more than $260 billion.

The relationship between reinsurer and insurer is mutually beneficial. By paying a yearly

premium to reinsurers, the primary insurer is able to remain in business in the event of a

catastrophe, while reinsurers who wisely invest in reinsurance treaties are able to profit from

premiums.

10

11

In essence, insurers and reinsurers both play a game of chance: In case of a catastrophic

event, the reimbursement to be paid to the client far exceeds the premium paid by the client (for

a reinsurance company, the client is a primary insurer), but the probability of this happening is

low. Or at least, this is the hope of the reinsurer: the probability to make a profit from premiums

and no or low claims should be (substantially) higher than the probability of a loss from claims

that exceed the premium. Mathematically, we are dealing with a probability distribution over

a range of possible losses, called the loss distribution throughout the remainder of this thesis.

Each reinsurer holds a portfolio of thousands of complex reinsurance treaties (contracts)

with primary insurance companies, which makes it challenging to determine the reinsurer’s

exposure to risk. Most importantly, the interactions between different reinsurance treaties are

sufficiently complex that a closed-form description of the probability distribution of the com-

bined losses is impossible to derive without simplifying the distribution to an unacceptable

degree. As a result, the reinsurance industry relies on decision support systems to determine if

a particular portfolio is likely to earn or lose money. These decision support systems use Monte

Carlo simulation to obtain a sufficiently accurate estimate of the loss probability distribution.

Since this is a computationally costly process, most reinsurance decision support systems

attempt to reduce the complexity of modeling portfolios by limiting the “granularity” of the

analysis, that is, by aggregating loss information to the level of entire counties or states. This

results in less detailed analyses, but modeling a portfolio at the level of individual insured

properties, called location level in this thesis, on current commercial systems is an involved,

manual process that requires waiting for weeks or months to obtain a result.

2.1 Portfolio Risk Analysis Using Monte Carlo Simulation

In order to make informed decisions about what treaties to invest in, reinsurers determine

the expected losses (payout to primary insurers), worst-case losses, seasonal distributions of

losses, and many more metrics of their portfolios. The interactions between different risks

each insured property is exposed to and between individual reinsurance treaties make it

impossible to derive closed-form expressions describing a portfolio’s loss distribution. As a

result, reinsurers use risk analytics systems based on Monte Carlo simulation [15] to obtain a

discrete approximation of this distribution.

Seismologists, meteorologists, other scientists, and engineers develop catastrophe models

that predict the regional likelihood of different events, their severity, and the resulting type

12

and amount of damage to insured properties. Based on these models, it is possible to sample

a sequence of events throughout a year. Such a sequence is often referred to as a trial. The

sequence of events causes a sequence of losses for each insured property. which are recorded

in a year event loss table (YELT) for the property. Each entry in the YELT is referred to as an

occurrence and describes an instance of a catastrophic event. Each occurrence is represented

by the trial (sometimes referred to as year) in which it happens, the simulated time of year

at which it happens (hereafter referred to as sequence), the type of event the occurrence

represents (for example, earthquake), usually represented as an integer ID, and the monetary

damages (loss) caused by the occurrence. A small sample YELT is shown in Table 2.1.

Trial Sequence Event Loss

1 25.5 100 $543,304
1 362.1 55 $40,104
2 68.9 4000 $68,346

Table 2.1: A short sample YELT

Each input YELT represents only the monetary values of the physical damages to a single

insured property. The insurance contracts between property owners and primary insurers

determine the payouts to be made to property owners and thus the losses of primary insurers.

These losses are then covered through a potentially complex network of reinsurance treaties

that determine the portion of losses the primary insurer recovers from the reinsurer under

these treaties. These payouts from reinsurer to primary insurer constitute the losses of the

reinsurer. The sequence of these payouts from reinsurer to all of its clients throughout a year

is the portfolio YELT for this year. By sampling typically 10,000 trials from the catastrophe

models and computing the portfolio YELT for each, we obtain a discrete sample of portfolio

YELTs drawn from the probability distribution over these YELTs. By aggregating the portfolio

YELTs for all trials, we obtain rather accurate approximations of the different characteristics of

the portfolio’s loss distribution.

In summary, the input of a location-level risk analytics system is the reinsurance portfolio

to be analyzed and a set of trials, each represented as a collection of YELTs, one per insured

location. This is illustrated in Figure 2.1. The structure of a typical location-level portfolio

is illustrated in Figure 2.2. Contracts at the primary insurer and reinsurer level (represented

by triangles) are themselves composed of complex networks of dependent contracts and

13

Risk analytics system

Portfolio loss distribution

Input loss distributions Portfolio of
treaties

Figure 2.1: A simple overview of the reinsurance modeling process

terms. The result is a large dependency graph, where several million source vertices (one for

each location) pass their loss distributions along their edges through a network of primary

insurance contracts and treaties, which in turn pass their output loss distributions into a

network of reinsurance treaties, until everything converges into one loss distribution for the

whole portfolio.

Performing a location-level portfolio analysis is computationally costly. A typical rein-

surance portfolio covers hundreds of millions of insured locations; modeling the resulting

risk exposure requires a model of the reinsurance portfolio that includes the details of the

individual insurance contracts for all locations insured by primary insurers and of the often

complex network of reinsurance treaties between primary insurers and reinsurer. The largest

part of the input is the YELTs for all insured locations, one per trial, which amount to terabytes

of data.

Most commercial risk analytics systems are incapable of performing an analysis of this

scale or would take weeks or months to produce a result. Thus, to reduce the computational

cost, most risk analytics systems use input YELTs pre-aggregated to the county or state level.

This reduces the time to perform a portfolio risk analysis substantially but makes certain types

of analyses difficult or impossible. For example, a treaty may only apply to properties within

10 kilometers of the shoreline. At location level, it is essentially trivial to determine which

locations fall within this range. At the county level, modeling a treaty like this is impossible,

14

.

. . .

Locations

Primary insurer
contracts

Reinsurer contracts

. . .

Figure 2.2: The typical structure of a location-level reinsurance portfolio. Triangles correspond
to embedded structures within the portfolio, where the size of the triangle roughly corresponds
to the size of the structure.

as the losses in each county may be a combination of losses close to and far away from the

coast. Location-level analysis also enables reinsurers to measure the marginal impact of each

individual property, allowing them to more accurately price the return of a primary insurance

treaty. For reinsurance companies that can make binary selections on which properties to

include in their portfolio, location-level analytics allows them to select the properties that

best fit their desired risk profile, and exclude the ones that do not.

2.2 Related Work

Location-level insurance analytics is a mostly unstudied topic. In this section, we focus on the

existing academic literature on reinsurance analytics systems in general, as well as current

commercial systems on the market today.

2.2.1 Reinsurance Analytics in the Literature

For reinsurance analytics at coarser granularities (county, state, province), the academic

research that does exist focuses on a simplified version of the problem.

Work has been done on creating a distributed risk analytics engine using Hadoop [72], but

it assumes the portfolio structure is strictly a tree of depth 3; it is assumed that a portfolio is

composed of a set of “programs”, a program is composed of a set of “layers” (or contracts), and

a layer is composed of a set of input loss distributions. Not only does this assumption make

15

location-level analyses impossible, it also severely restricts the practical use of the system

even for coarser-grained analyses, as actual reinsurance portfolios are very rarely composed

of strictly delineated layers and the interactions between treaties are more complex than what

can be modeled as a tree.

Other works use optimizations on specialized hardware to achieve fast, single-node run-

ning times [22, 28] but make similar simplifications regarding the application of treaty terms.

2.2.2 Reinsurance Analytics in the Industry

There are a number of commercially available products on the market that implement part of

the functionality required to solve the problem of location-level reinsurance analytics.

Catastrophe modeling software from vendors such as AIR [4] and RMS [74] can compute

the loss distributions of a group of locations up to the primary insurer level. However, since

these software packages are primarily meant for primary insurers, the system is designed

for modeling a much smaller number of locations than what would be seen in a reinsurance

portfolio; the number of locations modeled rarely exceeds 2 million. Both AIR’s product

Touchstone, and RMS’s product RiskLink are fundamentally built around Microsoft SQL

Server as both their data storage and computational platform. As such, these applications are

bound to the performance and scalability limitations that come with SQL servers [91].

For analytics on reinsurance portfolios, the solutions on the market today [5, 12, 87] are

only able to consume data at an aggregated geographic level (e.g., county level). The most

flexible of these systems allow the user to “nest” contracts within certain other contracts. This

allows for some flexibility in defining simple dependent relationships between contracts, but

it does not offer the same flexibility and ease of expressing relationships between contracts as

a graph-based portfolio representation.

A third class of commercially available solutions are so-called Dynamic Financial Analysis

(DFA) products (RiskExplorer [88], MetaRisk [40], ReMetrica [13], Tyche [73]). DFA tools allow

for the modeling of complex cash flows and enterprise risk scenarios that go beyond catastro-

phe risk, such as investment risk and operational risk. These tools provide the greatest level

of flexibility in terms of structuring and modeling features. However, they consume data at

a very coarse level of detail, typically just at the trial level or sometimes by country, and are

typically limited to a small number of trials.

Chapter 3

A Scalable System for Efficient Location-level Analytics

In this chapter, we describe a highly performant, highly available, scalable and consistent

decision support system for reinsurance analytics. Unlike other reinsurance systems, our

system has been designed from the ground up for computing the risk exposure of a reinsurance

portfolio at location-level granularity. As discussed in Section 1.3, this is the first step towards

developing an interactive risk analytics system.

This chapter makes two important contributions:

• A simple and natural, yet powerful and flexible representation of reinsurance portfolios

as directed acyclic graphs. This representation is flexible enough to model essentially

arbitrarily complex portfolios and allows reinsurance companies to build highly tailored

and customized reinsurance solutions. In this representation, each vertex represents

an individual term or clause of a contract contained within a portfolio, and each edge

represents the flow of losses from one term or clause to another.

• A scalable cloud-based analysis platform capable of performing a location-level analysis

of a reinsurance portfolio containing 70 million individual locations in approximately

17 minutes (when run on 40 compute instances each with 72 threads). The design uses

stateless processing engines to facilitate availability, consistency and scalability, and

makes extensive use of cloud services to reduce implementation complexity.

While improvements in Chapter 4 further reduce the running time of a location-level

portfolio analysis from 17 minutes to approximately 10 seconds, the system described in this

chapter already outperforms existing commercial analytics system by orders of magnitude—

many of these systems are unable to perform less fine-grained analyses in 17 minutes—and, as

we describe in Section 3.2, is significantly more flexible due to its graph-based representation

of reinsurance portfolios.

As we discuss in detail in Section 3.3, a central technical challenge in designing our analytics

platform was the development of an evaluation engine that inspects the vertices of the portfolio

16

17

graph in an order that limits the amount of intermediate data any thread needs to hold in

memory at any time. This ensures high computational throughput because it enables each

thread on each compute instance to evaluate one trial (one of up to 10,000 portfolio evaluations

as part of the Monte Carlo simulation) completely in memory, without interaction with other

compute nodes and threads and without the need to access external storage during the

evaluation process.

The remainder of this chapter is organized as follows: Section 3.1 discusses related work on

large graph processing systems. Section 3.2 presents our graph-based portfolio representation.

Section 3.3 discusses our implementation of a cloud-based risk analytics system based on

the graph representation discussed in Section 3.2. Section 3.4 discusses experimental results

that demonstrate the performance of our system and presents a comparison against a major

vendor’s commercial system. We offer concluding remarks in Section 3.5.

3.1 Related Work: General-Purpose Graph Modeling Frameworks

The modeling of complex dataflow problems as directed graphs, as we do in our graph-based

portfolio representation in Section 3.2, and the development of distributed systems to evaluate

such graph-based dataflow representations efficiently, as we do in Section 3.3, has been the

focus of many previous works.

The idea of modeling computer programs as directed graphs began to gain popularity

in the early 1970s as an attempt to describe a system that would make parallel computer

programs easy to write while still highly scalable and efficient [30, 82]. Such dataflow systems

would avoid the synchronization and data-race problems found on traditional systems by

describing all instructions in terms of their data dependencies between each other, rather than

by describing a particular order in which each instruction must be executed. In a dataflow

system, each instruction in the program can only be executed if the data from the instructions

it depends on have already been computed and stored. By describing a program in this way,

instructions can be executed across multiple machines or cores in parallel in any order, so long

as their input exists in memory. Conceptually, each instruction forms a vertex in a directed

graph, and each data dependency between any two instructions forms a directed edge.

From this, several works emerged suggesting different computer architectures for dataflow

processing systems [14, 31, 39, 70]. The token-based dataflow architecture presented in [31]

proposes using “tokens” for storing the inputs and outputs for each function. Each token

18

is associated with an edge (i.e. data dependency), and each edge may only have one token

associated with it at any time. An instruction may only execute if a token is available for all of

its incoming edges. When an instruction does execute, it deletes the tokens on its incoming

edges and adds a token containing the result of the instruction on its out edge. Since each edge

can only hold one token at a time, multiple iterations of a single loop cannot be processed in

parallel, significantly reducing parallelism and consequently, performance [82].

The tagged-token dataflow architecture [14, 39] addressed this problem by allowing an

unlimited number of tokens to be stored on each edge. Tokens are also tagged to describe

the iteration the token is associated with. Once an instruction has a token for each edge with

the same tag, it consumes the tokens and writes a token to its outgoing edge, tagged with the

same iteration context.

In practice, tagged-token dataflow systems suffered from poor performance due to the

overhead introduced by matching the tags of tokens at every instruction [82]. As a result, inter-

est began growing in hybrid dataflow systems [43, 45, 67]. Instead of treating each instruction

as an individual task to be scheduled, hybrid dataflow systems bundle mostly sequential series

of instructions into tasks. This way, sequential strings of instructions can be executed effi-

ciently on a von Neumann-like architecture, while the parallel execution and communication

of these tasks can be planned using a dataflow system.

The core ideas of the hybrid dataflow approach can be found in several popular, relatively

recent works regarding dataflow processing [7, 36, 37, 44, 57, 61, 65]. These systems forgo

specialized hardware architectures, instead opting to use software to coordinate tasks in

a dataflow graph across a cluster of commodity compute nodes. Like traditional dataflow

systems, vertices represent computational tasks and edges represent data dependencies.

Vertices are scheduled to run on the next available compute node or thread when all preceding

vertices have been computed. Data is transferred from vertex to vertex through shared memory

and network sockets. Also like traditional dataflow systems, these systems are designed to

simplify writing highly performant parallel code by making parallelism implicit; users only

need to submit a directed graph describing the program they want executed, and the dataflow

software automatically schedules the work on compute nodes in a scalable way.

Dryad [44], one of the first of such systems, focused on improving scalability and availability

over the existing hybrid dataflow model. It relies on the user to describe how individual

instructions should be bundled together in the same vertex.

19

Systems like PowerGraph [36] and Pregel [61] operate on fine-grained directed graphs,

where each vertex represents either a single instruction or a very simple operation. They reduce

communication overhead by partitioning the graph into subgraphs that can be executed in

parallel.

GraphX [37] attempts to bring the dataflow processing model to more general MapReduce-

style systems, thereby retaining the flexibility of general dataflow systems while yielding

performance similar to specialized graph processing systems for graph processing tasks. It

is built as a library for Spark [99], which itself is a popular dataflow framework that expands

upon MapReduce [26] by implementing a distributed data structure that can be cached for

fast subsequent reads.

What all these systems have in common is that they are designed to schedule a single

large computation (expressed as a directed graph) across multiple machines while optimizing

load balancing and the amount of communication between compute nodes. In spite of their

effectiveness for such problems, their focus on sophisticated scheduling and communication

strategies introduces overhead that is unnecessary in the context of portfolio analysis. Since a

portfolio analysis consists of running tens of thousands of trials completely independently,

the reinsurance analytics problem is trivial to parallelize (barring memory constraints; see

Section 3.3).

In response to the communication overhead in distributed graph processing systems, sev-

eral recent works have described graph processing systems that run on a single compute node.

GraphChi [51] is one such system that supports processing graphs with billions of vertices on

a single compute node. It assumes that graphs are too large to fit into memory, and partitions

the graph into multiple shards to be stored on disk. By intelligently ordering the edges within

each partition, GraphChi attempts to minimize the number of non-sequential disk accesses as

it iterates through the vertices of the graph during processing. By eliminating communication

overhead, GraphChi is able to come close to the performance of distributed graph processing

engines on large clusters. Notably, for computing 5 iterations of PageRank [69] on a social

media graph, the authors observed that Spark was only twice as fast running on a 100 CPU

cluster than GraphChi running on 2 CPUs.

Other papers present similar systems on the same premise, fast graph processing on a

single machine with a disk-backed graph representation [42, 76, 81, 102, 104]. In some cases,

these single-machine systems claim to outperform their distributed counterparts [102, 104].

20

These approaches vary primarily in how they handle the high cost of accessing external storage.

TurboGraph [42] uses thread-based parallelism to handle I/O and graph processing at the

same time.

FlashGraph [102] attempts to improve performance by reducing disk I/O. For example,

instead of storing the graph entirely on disk, FlashGraph stores vertex state in memory and

only the graph’s edge lists on disk.

GridGraph [104] reduces I/O by introducing a preprocessing step that partitions the graph

into chunks small enough to be processed entirely in memory.

X-Stream [76] lays out its graph representation so that its edge lists are read with sequential

memory accesses during processing, exploiting the performance benefits of sequential over

random memory access.

Ligra [81] stores its graph entirely in main memory. Unlike the other systems, which are

designed to run on small workstations with limited memory, Ligra is designed to run on more

expensive servers with hundreds of gigabytes of memory.

All of these single-machine graph processing systems are focused on iterative processing,

where the amount of data flowing across each edge of the graph is relatively small (e.g., Page-

Rank). Location-level reinsurance modeling is different in that the data flowing across edges is

much larger and not uniform. This makes memory an even scarcer resource than for general

graph processing systems.

While our system differs significantly from the works above, it incorporates core aspects

from both single-machine and distributed graph processing systems. Like the distributed

graph processing systems discussed above, in order to maximize scalability and parallelism,

our system runs multiple graph processing compute nodes in parallel. Unlike the distributed

graph processing systems, each of our individual compute nodes stores its own complete

copy of the entire graph, and independently processes an instance of the entire graph without

any communication or synchronization with other workers, much like the single-machine

graph processing systems. Because there is no communication between workers, each worker

can compute their result with no idle cycles spent on network I/O or synchronization. This

way, our system reaps the benefits of the distributed graph model (high scalability) and single-

machine model (excellent individual worker performance) without the detriments of either

(poor utilization of individual worker resources and limited parallelism, respectively). This is

possible only because the work of a reinsurance analysis is broken into many Monte Carlo

21

trials, each of which can be computed independently of each other.

3.2 Graph-Based Model for Reinsurance Analytics

As described in Section 2.1, the output of a reinsurance analytics job is a list of portfolio YELTs,

one per trial, that make up the portfolio’s loss distribution. Because trials can be evaluated

independently, the core of the problem is computing the portfolio YELT of a single trial from

the individual location YELTs.

This process can be represented quite naturally as a directed acyclic graph. The sources of

the graph represent the inputs of the computation, that is, there is one source per location

YELT. There is a single sink representing the output of the computation, that is, the computed

portfolio YELT. Internal vertices represent terms and clauses of individual contracts and

treaties. The output of each such vertex v is the sequence of losses incurred under this (part

of a) contract or treaty, once again an YELT. This YELT becomes an input edge of every vertex

that represents another (part of a) contract or treaty that covers the losses incurred under the

treaty represented by v . Essentially, each vertex representing a term, contract or treaty takes a

set of YELTs as input and produces a YELT containing the losses incurred under the contract

for each relevant occurrence as output. This model provides a flexible tool for constructing

complex reinsurance contracts and portfolios from a small number of basic building blocks:

Generator vertices have no input edges and output occurrences for insured locations. These

occurrences are read from storage and are produced outside the analysis framework,

e.g., using catastrophe modeling.

Commutative processing vertices apply a simple transformation to each occurrence, inde-

pendent of the values of past occurrences (e.g., multiply each occurrence’s loss by 0.5 to

indicate that the treaty covers 50% of each incurred loss).

Aggregate processing vertices apply a transformation to each occurrence’s loss dependent

on the losses of past occurrences within the trial (e.g., when the sum of all processed

losses exceeds a set dollar limit, discard the remaining losses.)

Filter vertices output occurrences from the input stream that match a specific condition

(e.g., only output occurrences with sequence > 180—the second half of the year—or

that represent losses due to hurricanes).

22

Merge vertices combine inputs from multiple YELTs and output them as a single YELT.

In practice, there are other, more specialized vertex types that are used infrequently or

situationally. Within the context of this thesis, these offer little additional insight. Therefore,

we ignore them for the sake of simplicity.

For some transformations, the order in which occurrences are processed influences the

transformation (for example, an aggregate deductible may only deduct losses from the first

ten occurrences). Therefore, YELTs must arrive in sorted order (that is, sorted by sequence),

and be output in sorted order in order to be suitable for later transformation. We assume that

the input YELTs of the portfolio are already sorted in this order. Each vertex ensures that its

output YELT is in sorted order by processing each of its input occurrences in order and writing

the resulting occurrences to the output YELT in the order in which they are produced. Merge

vertices need to be more careful, taking occurrences from their input YELTs and merging them

in sequence order. In the event that a merge vertex needs to merge two or more occurrences

with the same sequence and event, they are merged into a single occurrence with their loss

values summed.

Figure 3.1 illustrates a simple example portfolio modeled using our graph framework. The

generator vertices each read a YELT from storage (according a file path assigned to them

during the construction of the portfolio) and send the occurrences across their output edges.

The merge vertices merge occurrences from their in-neighbors. In this example, the middle

merge vertex combines the occurrences with Sequence=2.0 and Event=14 by summing

their losses. The scale vertex scales each occurrence’s loss according to its rate field. The

final vertex in the graph merges everything together, and outputs the portfolio’s final YELT.

While using a directed graph for modeling a reinsurance portfolio is natural, it has not

been done before. As discussed in Section 2.2, previous reinsurance risk analytics systems

have constrained themselves to nested or tiered structures. Many complex portfolios cannot

be modeled using those systems. Directed graphs, on the other hand, allow the modeler

to define arbitrarily complex structures from the elementary vertex types defined above. A

typical financial contract can be modeled using 5–10 vertices.

23

Generator
[path=data1]

Generator
[path=data2]

Generator
[path=data3]

Sequence Event Loss

2.0 14 $400

70.0 45 $300

Sequence Event Loss

1.0 261 $250

2.0 14 $500

Sequence Event Loss

70.0 43 $100

Scale
[rate=0.5]Merge

Sequence Event Loss

70.0 43 $50

Sequence Event Loss

1.0 261 $250

2.0 14 $900

70.0 45 $300

Merge

Sequence Event Loss

1.0 261 $250

2.0 14 $900

70.0 43 $50

70.0 45 $300

Figure 3.1: Processing YELT occurrences through a very simple example graph for one trial

24

3.3 A Cloud-Based System for Location-Level Risk Analytics

3.3.1 System Design

A typical reinsurance portfolio covers tens of millions of insured locations; each such insured

location is represented by one input YELT per trial. These locations are covered by tens

of millions of primary insurance contracts, which in turn are reinsured by thousands of

reinsurance treaties. This is illustrated in Figure 2.2. Representing such a portfolio as a graph

as in Section 3.2 results in a graph with hundreds of millions of vertices. Performing a location-

level analysis of such a portfolio using the Monte Carlo simulation approach discussed in

Section 2.1 requires processing several terabytes of data. Thus, to perform such an analysis

quickly requires significant computational resources.

We chose to implement a cloud-based solution that distributes the computation across

a large number of compute nodes. This provides scalability, elasticity, and availability of

our system. Figure 3.2 gives an overview of the system’s architecture. The client (a frontend

through which the user interacts with the system) uploads the portfolio graph and input

YELTs to a distributed storage system. To initiate an analysis, the client partitions the analysis

into groups of trials to be analyzed and submits each trial group to the occurrence processor

queue. This queue is responsible for assigning each trial group to the next available occurrence

processor. Each occurrence processor runs on its own compute node, independently of other

occurrence processors. This allows them to operate with zero communication between them.

Occurrence processors write their results to distributed storage, from where they can be

retrieved by the client.

We let the distributed storage system handle data consistency. In our implementation of

this platform, we use Amazon S3 [11]. S3 guarantees read-after-write consistency [58] for all

writes or updates to both new and existing objects [10]. Since our system reads all of the data

required for analysis directly from S3, all reads in our implementation are consistent.

3.3.2 Overview of Optimizations

While this system design allows us to perform a portfolio analysis by evaluating individual

trials completely independently on different occurrence processors, processing even a single

trial through a portfolio graph of hundreds of millions of vertices and edges can require more

memory than is available on a commodity compute node if done naïvely. Our solution is to

25

S3 /
Distributed

Storage

Occurrence
processor

︙

Graph optimizer

SQS /
Occurrence
processor

queue

SQS /
Graph

optimizer
queue

Client

Trials
i to j

Trials
11 to 20

Trials
1 to 10

Portfolio trial losses

Occurrence
processor

Occurrence
processor

Graph and
Input losses
trials 1 to 10

Graph and
Input losses
trials 11 to 20

Graph and
Input losses
trials i to j

Analysis request Graph optimization request

Input graph

Optimized graph

Input graph path

Output portfolio
losses

Input losses
and Graph

User

Figure 3.2: System architecture overview. Users upload data through a client to a distributed
data store, and submit jobs to the system through two different message queues. Running
a portfolio analysis involves submitting groups of trials to be analyzed to the occurrence
processor queue, which then assigns these groups to available occurrence processors. Output
is written back to the data store, where it can be read by the client. The efficient execution
of the occurrence processors depends on the vertices of the portfolio graph being arranged
in an order that allows them to be processed using little memory. Whenever the portfolio
graph changes substantially due to the addition of new insured locations, new treaties, etc.
the client can initiate the reoptimization of the graph layout by submitting a request to the
graph optimizer queue. The graph optimizer then reads the graph from distributed storage,
optimizes it, and writes it back to distributed storage. This graph optimization step is not part
of the portfolio analysis but is an offline process to be run periodically.

26

implement a graph optimizer that ensures that vertices in the portfolio graph are evaluated in

an order that minimizes the amount of memory needed for storing the YELTs sent between

vertices. The result is that we can process 8 trials (one per core) entirely in memory on a single

compute node using less than 32 gigabytes of memory.

The graph optimization is performed only periodically whenever the portfolio changes

substantially due to the addition of new insured locations or treaties. Thus, it is an offline

task that is not part of the portfolio analysis itself. Whenever the user wants to reoptimize the

graph, the client submits a request to the graph optimizer through the graph optimizer queue

in Figure 3.2. The graph optimizer then reads the graph from distributed storage, optimizes

its vertex ordering, and writes the resulting rearranged graph back to distributed storage, for

use by future analysis runs.

Since location-level graphs are very large and contain hundreds of millions of vertices and

edges, and because we would like to store our graph entirely in-memory for performance

reasons, we also optimize our memory footprint through careful selection of a space efficient

graph data structure.

We split the discussion in the remainder of this section into four parts: Subsection 3.3.3 dis-

cusses the design of the occurrence processor. Subsection 3.3.4 discusses the implementation

of the graph optimizer. Subsection 3.3.5 discusses our space-efficient graph representation.

Subsection 3.3.6 offers some final remarks concerning the scalability, elasticity, and availability

of our system design.

3.3.3 Occurrence Processor

The occurrence processor is the primary processing engine of the system. It is responsible for

computing the portfolio YELTs of a group of trials from the location YELTs that form the input

of the analysis for these trials. The occurrence processor starts one thread per each assigned

trial to be evaluated. Typically, the number of trials assigned to an occurrence processor is at

least the number of cores on the compute node running the occurrence processor, thereby

allowing each core to run at least one thread.

The occurrence processor starts by loading the representation of the portfolio graph into

memory. Since this representation is static, it can be shared by all threads analyzing individual

trials and concurrent accesses to the graph by different threads do not require locking of the

graph. Once the graph is loaded, each thread begins processing a single trial, traversing the

27

vertices in the portfolio graph and producing the output YELT of each visited node from its

input YELTs based on the vertex type (see Section 3.2).

Occurrence processors are stateless in the sense that their computations are completely

determined by the trial groups they receive from the occurrence processor queue. Nothing is

stored on local disk, so any occurrence processor can be scheduled to work on any group of

trials. This is important from an availability perspective, as it ensures that no single occurrence

processor is required to complete an analysis. Given a trial group, the occurrence processor

reads the input graph and the relevant input YELTs for the trials in this group from distributed

storage and, after completing its computation, writes the computed portfolio YELTs back to

distributed storage.

Since the total amount of input data needed for a typical 10,000 trial location-level portfolio

analysis is on the order of terabytes, and the combined size of intermediate YELTs generated

by such an analysis is on the order of hundreds of terabytes, computing the portfolio’s YELT is

only possible through careful use of memory resources. For example, let us assume a portfolio

graph of 300 million edges, where each edge represents an intermediate YELT with an average

of only 10 occurrences (160 bytes) per trial. Storing all intermediate YELTs for a single trial

would therefore have a memory footprint of 48GB. If we conservatively assume that storing

the portfolio graph in memory consumes another 10GB, then the total memory usage required

to process t trials with t threads would be t ∗48+10 gigabytes. Aggressive deallocation of

intermediate YELT data is therefore required to complete a location-level analysis without

running out of memory. We considered two approaches to this problem, which we discuss

next.

Edge-Buffered Approach

Our first approach avoids allocating space for a full YELT for each edge in the graph. Similar to

using tokens to handle input and output from vertices in traditional dataflow processing [31],

we allocate a small buffer per edge to hold only a portion of the YELT represented by this

edge. The right mental model is that the buffer associated with an edge holds up to the next k

occurrences in this YELT that have not been processed yet, for some small parameter k . To

perform a portfolio analysis using this representation now requires a “pull-based” approach:

To produce the output YELT of the portfolio, we compute each of the occurrences in this YELT

from the corresponding occurrences in the input YELTs of the sink s of the portfolio graph.

28

� �

�

�

�� ��

��

Figure 3.3: A simple graph of four vertices with a buffer on each edge

If the input occurrences necessary to compute the next output occurrence of s are available

in the input buffers of s , we can remove them from the input buffers and compute the output

occurrence from them. Once all occurrences in the YELT corresponding to an edge have

been processed, the edge’s buffer is considered to be exhausted. Since occurrences must

be processed in order, all input buffers to a vertex must have at least one occurrence or be

exhausted in order for the vertex to compute the next output occurrence. If not, at least one

of the input buffers is empty but not exhausted and must be refilled before the vertex can

consume any input occurrences. The input buffer corresponding to each in-edge is an output

buffer of another vertex v in the graph, so we can apply this procedure recursively to v to

produce enough occurrences in its output YELT to fill its output buffer. Once v ’s output buffer

is full or exhausted, we can switch back to s to fill its output buffer. This process of recursively

filling edge buffers on demand, as the next occurrence from a buffer is needed as input to

a different vertex, continues until all of s ’s input buffers have been exhausted, and the final

portfolio YELT has been computed.

Figure 3.3 illustrates a simple graph with a buffer at each edge. To compute the output

occurrences of this portfolio, we pull occurrences from the terminal vertex z . Since z ’s input

edge buffer yz is initially empty, this initiates a pull from vertex y . Vertex y pulls from the

generator vertices w and x to fill its input edge buffers wy and xy. Vertices w and y generate

their occurrences by reading them from disk. Once edge buffers wy and xy are full, vertex y

consumes the occurrences from its input buffers, transforms them, and writes them to its

output buffer yz until this buffer is full. At this point, the pull of vertex y has completed and

29

� �

�

��

�

�� ��

��

Figure 3.4: An example of deadlocking. Buffers wx and xz are full, while buffers wy and yz are
empty.

vertex z can consume the input from buffer yz, transform it and write the output to disk. We

continue to pull from vertex z until the generators are exhausted and all of their occurrences

have passed through the graph.

This method bounds the maximum memory required to process a single trial by the

number of edges multiplied by the buffer size of each edge. With a small enough buffer size,

this method is efficient enough to meet our memory requirements. However, small edge

buffers are likely to introduce deadlocks during processing.

Since occurrences must be processed in the order of their sequence field at each vertex,

a vertex v cannot process occurrences in one input buffer wv if there are no occurrences in

its other input buffer uv (unless the buffer of edge uv is exhausted). This is because v has no

knowledge of the sequence field of the next occurrence in the YELT corresponding to uv and

thus cannot decide whether to process the next occurrence in uv or the next occurrence in

wv first. Thus, a vertex v can process occurrences in its input buffers only as long as none of

these buffers is empty. Once an input buffer of v becomes empty, it has to be filled recursively

before v can continue processing occurrences.

As Figure 3.4 illustrates, this can lead to deadlock. Vertex z cannot consume occurrences

from buffer xz because buffer yz is empty. Buffer yz cannot be filled because buffer wy is empty.

To fill buffer wy with occurrences requires w to produce more occurrences in its output YELT,

but this cannot happen before there is room for more occurrences in buffer wx. Since buffer xz

is full, x cannot remove any occurrences from buffer wx to make room for more occurrences

30

in wx.

This could be addressed by allowing edge buffers to grow when necessary. However,

this introduces performance overhead and weakens the bound on the memory usage of the

occurrence processor guaranteed if all edge buffers have a fixed small size.

Our experiments discussed in Section 3.4.2 demonstrate that this potential deadlock is

not just a hypothetical limitation of the edge-buffered approach. Deadlocking is common for

graphs that contain filter vertices, as filtering occurrences has a tendency to make the number

of occurrences in nearby buffers imbalanced. The edge-buffered approach with buffers small

enough to fit in memory was not able to process our test portfolio graph with filter vertices

due to deadlocking. Our second approach overcomes this limitation.

Low-Cutwidth Ordering

If each edge buffer uv is large enough to hold the entire YELT produced by u , no switching

back and forth between vertices is required; vertices can be processed in topologically sorted

order, which guarantees that the input YELTs of each vertex are available when visiting this

vertex to produce its output YELT, thus making deadlocks impossible.

Once produced, the output YELT of a vertex u needs to be kept in memory until the last

vertex is processed that has this YELT as one of its input YELTs. Thus, a natural strategy to

minimize the memory requirements of the occurrence processor is to allocate space for the

output YELT of u when processing u and to discard the YELT once the last vertex has been

processed that has it as one of its input YELTs.

The effectiveness of this strategy depends on the order in which the vertices of the portfolio

graph are processed. As an example, consider a portfolio graph that is a complete binary tree.

There are many valid topological orderings of this graph. If vertices are visited by decreasing

distance from the sink, then the output YELTs of all source vertices have to be held in memory

simultaneously because they are all evaluated before any of their out-neighbors. Since half

of the vertices in a complete binary tree are source vertices, this means that half of all YELTs

must be in memory simultaneously. On the other hand, if vertices are visited in postorder (all

vertices in each subtree are visited consecutively), only log2 n YELTs need to be in memory at

any point in time, where n is the number of vertices in the graph. This is because at most one

input YELT per ancestor of the currently visited vertex needs to be held in memory.

Formally, if the topological ordering of the graph arranges the vertices in the order v1, . . . , vn ,

31

� �

�

�

�

(a)

� � � ��

(b)

� � � ��

(c)

Figure 3.5: Illustration of the cutwidths of topological orderings. Both orderings in (b) and
(c) are valid topological orderings of the graph in (a). The ordering in (b) has cutwidth 3, as
indicated by the dashed line, which is crossed by the edges vy, wy, and xz. The ordering in (c)
has cutwidth only 2, as indicated by the two dashed lines, which are crossed by edges vx and
wx, and xz and yz, respectively.

then the YELTs that need to be in memory immediately after processing the i th vertex vi are

the ones corresponding to edges v j vk with j ≤ i and k > i . The maximum number of YELTs to

be held in memory at any time over the course of the algorithm is then

max
1≤i<n
|{v j vk ∈ E | j ≤ i < k}|.

We call this the cutwidth of the topological ordering in analogy to the cutwidth of an undirected

graph [48] and say that an edge v j vk with j ≤ i < k “crosses the cut between vi and vi+1.”

Figure 3.5 illustrates that different topological orderings of the same graph may have different

cutwidths.

Our strategy to minimize the memory requirements of evaluating a single trial is to find a

topological ordering of low cutwidth and then process the vertices of the graph in this order.

Finding such a low-cutwidth ordering is the task of the graph optimizer, discussed next.

32

3.3.4 Graph Optimizer

The graph optimizer reads the portfolio graph from distributed storage, computes a low-

cutwidth topological ordering of the graph, modifies the structure of the graph to further

reduce cutwidth (see below), and writes the result back to storage, to be read by the occurrence

processors. Because all of the inputs needed by the graph optimizer are received from the

message queue and distributed storage, the graph optimizer is stateless, which allows the

graph optimizer to be provisioned on-demand, just as the occurrence processors.

Finding a vertex ordering of minimum cutwidth is NP-hard even for undirected graphs [48].

Fixed-parameter algorithms for computing the cutwidth of an undirected graph [34, 86] and

a polynomial-time algorithm to approximate the cutwidth of an undirected graph [56] have

been proposed in the literature. However, the running times of these algorithms are far from

linear. Thus, even if we were able to extend these algorithms to directed graphs, they would

not be efficient enough to apply them to portfolio graphs with hundreds of millions of vertices.

Instead, we use a heuristic approach that exploits the structure of portfolio graphs to compute

low-cutwidth topological orderings for these graphs. This heuristic is not guaranteed to find a

minimum-cutwidth topological ordering of the portfolio graph nor does it give any approxi-

mation guarantee of the cutwidth of the computed topological ordering. It does, however,

find topological orderings of sufficiently low cutwidth to lead to low memory requirements of

the occurrence processor, and it does find them quickly (in linear time).

The heuristic proceeds in two phases: The first phase finds an initial topological order-

ing of the given portfolio graph. The second phase modifies the graph and the topological

ordering computed in the first phase to reduce the cutwidth of the ordering further. The

modifications made to the portfolio graph in the second phase do not alter the portfolio

structure it represents.

The structure of a typical portfolio. A typical location-level portfolio covers tens of millions

of locations, each represented by a YELT containing the losses incurred for this location. Each

of these locations is covered by one of tens of millions of primary insurance contracts. The

losses incurred under these contracts are covered by a complex network of several thousand

reinsurance contracts.

Modeling the connections between insured locations, primary insurance contracts, and

reinsurance treaties results in a very tree-like graph, with a densely connected graph of a few

33

thousand vertices representing reinsurance treaties at the root and large trees of primary

insurance contracts and individual locations attached to it.

Each individual primary insurance contract or reinsurance treaty can be modeled as a

graph of typically 5–10 of the basic vertex building blocks described in Section 3.2. Even if these

graphs are densely connected internally, the resulting portfolio graph remains very tree-like;

it has a large 2-edge-connected component close to the sink, composed of several thousand

vertices, and is otherwise composed of fairly small 2-edge-connected components containing

at most a few dozen vertices. A 2-edge-connected component of a graph is a maximal subgraph

that cannot be disconnected by removing a single edge.

While our hope is that the flexible graph-based representation of reinsurance portfolios

introduced in this thesis will allow users to model more complex and fine-tuned portfolio

structures than are in use in the industry today, we believe that the structure of reinsurance

portfolios will remain largely hierarchical, as discussed above, so portfolios should continue to

be composed of many fairly small 2-edge-connected components and one or very few larger

2-edge-connected components close to the sink. This is the portfolio structure our graph

optimizer exploits.

The initial topological ordering. Recall the example of a low-cutwidth ordering of a com-

plete binary tree in Section 3.3.3. Arranging the vertices in postorder resulted in an ordering

with cutwidth log2 n , a significant improvement over the cutwidth n/2 achieved by the worst-

case ordering (a random ordering will be close to the worst case). Given the tree-like structure

of reinsurance portfolios, this suggests the following simple strategy for computing a low-

cutwidth topological ordering of a portfolio graph: reverse the directions of all edges in the

portfolio graph and perform a depth-first traversal (DFS) of the graph starting at the sink; ar-

range the vertices in postorder of the resulting DFS tree, that is, in the order the DFS backtracks

from them.

The cost of computing a topological ordering in this fashion is linear in the size of the

portfolio graph; indeed, this DFS-based approach to topological ordering is one of the classical

linear-time topological sorting algorithms [25, p. 612–613]. If the tree of 2-edge-connected

components is fairly balanced, which tends to be true for reinsurance portfolios, then the

computed ordering ensures that, for any point in the ordering, there are only logarithmically

many 2-edge-connected components that are “active” (that is, have at least one vertex both

34

prior and subsequent to the current point in the ordering). More precisely, for every vertex vi

in the computed ordering v1, . . . , vn , the set of edges v j vk that satisfy j ≤ i < k are the in-edges

of vertices in only a logarithmic number of 2-edge-connected components. Since almost all

2-edge-connected components are small, this implies that the set of edges v j vk with j ≤ i < k

are the in-edges of roughly a logarithmic number of vertices in the portfolio graph. If these

vertices have low in-degree, the topological ordering thus has low cutwidth. Some vertices,

however, can have very high in-degree. The second phase of the graph optimizer now reduces

the degrees of high-degree vertices without changing the portfolio structure represented by

the graph, in order to obtain the final topological ordering of low cutwidth.

Degree reduction. Since the cutwidth of the DFS-based topological ordering can be signifi-

cantly impacted by the graph’s maximum vertex degree, the degree reduction phase of the

graph optimizer transforms the graph so that its maximum in and out-degree is less than

or equal to some parameter d by adding trees of mergers around high degree vertices. The

optimal choice of d is determined experimentally in Section 3.4. The graph optimizer does

this without changing the semantics of the portfolio; that is, the YELT produced at the sink

from a degree-reduced graph is the same as the YELT produced by a non-degree-reduced

graph.

To see how this can be done, consider a vertex v with high out-degree. A vertex with high

out-degree must create a copy of its output YELT for each of its outdeg(v) successors. However,

instead of immediately creating outdeg(v) copies once v ’s YELT has been constructed, copies

could be made in a tree-like manner, making few copies initially and replicating each copy

further as needed. High in-degree vertices can be reduced in a similar manner. Considering

the vertex types used as building blocks discussed in Section 3.2, the only vertices that can

have high in-degree (or any in-degree greater than 1) are merge vertices. Thus, a single

high-degree merge vertex can be replaced with a tree of d -way merge vertices. In fact, the

efficient implementation of a merge vertex becomes easier if it merges a small number d of

YELTs instead of a potentially large number of YELTs. For this to reduce the cutwidth of the

topological ordering, however, the construction of the merge tree needs to be informed by the

current topological ordering, and the vertices this introduces need to be placed carefully into

this ordering.

For every high-degree vertex vi , we replace its in-edges with an “in-tree” that has some

35

�1

��

︙

��+1

��

︙

�1

�1

��

��+1

��

�
′

1,1︙

︙

�1

Figure 3.6: Introduction of a single vertex of the in-tree of v1

new vertices v ′i ,1, . . . , v ′i ,k as internal vertices. Every in-edge of vi gets connected to a leaf of

this in-tree. At the root of the tree is vi , and every vertex v ′i , j has its parent in the in-tree as its

only out-neighbor. This in-tree can have many different shapes; we discuss our choice of its

shape below, after discussing how we modify the topological ordering of the graph to reflect

the addition of the vertices v ′i ,1, . . . , v ′i ,k .

To update the topological ordering, we can think about the construction of a vertex vi ’s

in-tree as repeatedly taking a group of d in-neighbors u1, . . . , ud of vi and replacing their

out-going edges to vi with out-going edges to a new vertex v ′i , j . The vertex v ′i , j is then given

an out-going edge to vi . See Figure 3.6 for a graphical representation where a single vertex

is added to reduce vi ’s in-degree from k to k − (d − 1). Every time a vertex is added during

degree reduction, it must be placed within the ordering so that the ordering is still topological,

and so that the placement minimizes the cutwidth of the ordering.

To ensure that the ordering is still topological after placement of the new vertex v ′i , j , v ′i , j

must succeed its in-neighbors u1, . . . , ud and precede its out-neighbor vi . If the in-neighbor

that appears last in the topological ordering is ud , then placing v ′i , j anywhere after ud but

before vi maintains the topological ordering. This is illustrated in Figure 3.7.

Next assume that ud is the hth vertex in the topological ordering. Then before adding

v ′i , j to the graph, the edges between u1, . . . , ud and vi cross the cut between vi ′ and vi ′+1 for

all h ≤ i ′ < i . If we add v ′i , j between vk and vk+1, where h ≤ k < i , then the number of edges

crossing the cut between vi ′ and its successor is not changed for h ≤ i ′ ≤ k . For k < i ′ < i , the

d edges between u1, . . . , ud and vi crossing the cut between vi ′ and its successor are replaced

with a single edge between v ′i , j and vi . Thus, the number of edges crossing the cut between vi ′

and its successor is reduced by d −1. This is also illustrated in Figure 3.7. To maximize the

36

First
Successor

�
′

�,1

Valid range

 Last
 predecessor

�� ��

In: 2 Out:1 (delta: -1)

Figure 3.7: An illustration of the placement of an in-degree reduction vertex v ′i ,1 with d = 2.
The number of edges between v ′i ,1 and the vertex it is placed next to will always be d −1 edges
smaller than the number of edges between v ′i ,1 and the vertex preceding it.

�1 �2 �3 �4 �1�5 �6 �7

�1 �2 �3 �4 �1�5 �6 �7�
′

1,1 �
′

1,2

Figure 3.8: A caterpillar contributes at most d to the cutwidth at any point between vi ’s first
in-neighbor and vi in the topological ordering. Here, d = 3.

benefit of adding the vertex v ′i , j , we should therefore add v ′i , j immediately after ud .

With this strategy for updating the topological ordering, the best tree topology is a caterpil-

lar (Figure 3.8): Order the in-neighbors u1, . . . , uk of vi in the order they appear in the current

topological ordering. Then take the first d of them and make them children of a new vertex v ′i ,1,

inserted in the ordering right after ud . Next take v ′i ,1 and the next d −1 vertices ud+1, . . . , u2d−1

and make them children of a new vertex v ′i ,2, inserted right after u2d−1. Continue in this fashion,

making the last vertex v ′i , j and the next d −1 in-neighbors of vi children of the next vertex v ′i , j+1,

until all in-neighbors of vi have been consumed. This guarantees vi ’s in-tree contributes at

most d to the cutwidth at any point in the ordering between the first predecessor of vi and vi

(and zero everywhere else).

37

However, we did not choose a caterpillar in our implementation and decided to make each

vertex’s in-tree a balanced d -ary tree. Observe that the cutwidth of the topological ordering is

only a proxy for estimating the memory requirements of processing the portfolio graph; the

underlying assumption is that all YELTs have roughly the same size or at least that there exists

a modest upper bound on the size of every YELT. When merging many YELTs into one, this

assumption holds true only if many occurrences in the merged YELTs refer to the same event

and thus are combined into a single aggregate occurrence in the output. If this happens, the

caterpillar is the best possible topology for the in-tree of a high-degree vertex. We choose a

balanced d -ary tree as the topology of each in-tree in order to guard against the possibility that

only few occurrences merge during the merge process. In this case, degree reduction does not

help at all to reduce this vertex’s contribution to the memory requirements of processing the

portfolio graph; the final merged YELT uses just as much space as the input YELTs combined,

the same as holding all these input YELTs in memory at the same time. In such a scenario, the

caterpillar topology hurts performance because it does not reduce the memory requirements

but forces most occurrences to participate in a linear number of merge steps (in the in-degree

of vi). A d-ary tree reduces the number of merge steps each occurrence participates in to

logarithmic while at the same time achieving a cutwidth that is by at most a logarithmic factor

in the maximum degree greater than the cutwidth achieved using caterpillars.

3.3.5 In-Memory Graph Data Structure

Since our goal is to run each occurrence processor on a commodity compute node and the

simultaneous processing of multiple trials on an occurrence processor requires substantial

amounts of memory, even using the low-cutwidth topological ordering discussed so far in

this section, we need a highly compact representation of the portfolio graph to allow us to use

most of the available memory for storing intermediate YELT data.

In order to maximize performance of the graph optimizer and occurrence processor, the

data structure used to represent the graph must be entirely in-memory. We use a modified

version of the Compressed Sparse Row (CSR) graph representation [77, p. 84–85]. A CSR graph

representation is essentially a space efficient adjacency list using two contiguous arrays in

memory: an array of vertices and an array of successors. Each element in the successor array

is a reference to a vertex in the vertex array. Each vertex contains a pointer to a position in the

successor array, which indicates the beginning of the vertex’s successor subarray. The vertex’s

38

A

B C

D

Metadata

Vertices

type=A,
args=...

type=B,
args=...

type=C,
args=...

type=D,
args=...

Successors

Figure 3.9: A sample graph and in-memory representation. The predecessor array is omitted
for readability.

successor subarray ends where the following vertex’s successor subarray begins.

In our modified CSR representation, we add a metadata vector, which describes the type

of financial transformation each vertex performs (e.g., scale each incoming occurrence by a

given participation rate), and the parameters needed by this vertex (the participation rate in

this example). The blocks of metadata information associated with all vertices are packed

tightly into this vector and each element in the vertex array points to the start position of the

vertex’s metadata block in this byte vector. Since different vertices store different amounts

of metadata, the size of the metadata byte vector is not known in advance (in contrast to the

sizes of the vertex and successor arrays, which can be computed from the numbers of vertices

and edges in the graph). We allocate a modest amount of space for the metadata byte vector

initially and reallocate it, doubling its capacity, every time we do not have enough space for

the next metadata block.

Since the graph optimizer needs to be able to efficiently traverse edges in both directions,

we also add a predecessor array to our modified CSR graph representation. This results in all

edges being stored twice.

A simplified version of our modified CSR graph data structure is illustrated in Figure 3.9.

In this figure, the predecessor array is omitted for readability.

3.3.6 Scalability, Availability and Hiding I/O Cost

The system design described in this section facilitates scalability and availability. In theory,

we can allocate a number of occurrence processors up to the number of trials we need to

evaluate, having each occurrence processor evaluate only one trial. This provides practically

39

unlimited scalability—in theory.

The implementation of occurrence processors and graph optimizers as stateless processes

without any communication between them supports availability. To respond to changing

system loads, for example when performing more than one portfolio analysis simultaneously,

it is easy to provision additional occurrence processors and graph optimizers and deprovision

them when they are no longer needed. Similarly, by monitoring the time it takes for each

occurrence processor to produce its output after receiving a trial group from the occurrence

processor queue, we can detect unresponsive occurrence processors and resubmit their work

to a different occurrence processor, assuming the unresponsive occurrence processor has

failed. This allows for high-availability without significant implementation effort. In fact,

queuing services like Amazon Simple Queue Service (SQS) provide this as a built-in feature.

The statelessness of the occurrence processors and graph optimizers comes at the cost of

downloading all required input at run time. Each graph optimizer must download the entire

graph, while each occurrence processor must download the graph and all of the relevant input

loss data. This limits the scalability of the system as we discuss next.

Provisioning additional occurrence processors beyond a certain point increases the cost

(charged by the cloud service provider for renting the required compute instances) of running

a portfolio analysis while yielding only a minimal decrease in running time. To process a given

trial, the occurrence processor needs the portfolio graph and the input YELTs of the trial. As we

allocate fewer trials to each individual occurrence processor, the cost of loading the portfolio

graph into memory will become more and more significant relative to the computation cost

necessary to produce the portfolio YELT. Thus, we need to ensure we assign a sufficient

number of trials to each occurrence processor to amortize the cost of loading the portfolio

graph (loaded only once and shared between all threads of the occurrence processor).

The I/O cost of loading the input YELTs for all trials cannot be amortized by increasing

the number of trials evaluated by each occurrence processor because each trial needs its own

set of input YELTs. The total size of these YELTs is far greater than the size of the portfolio

graph, so mitigating the performance impact of loading input YELTs is important. We do

this by assigning more trials than there are cores on a compute node to each occurrence

processor. This allows us to start the first batch of trials after loading the portfolio graph and

their input YELTs. While this first batch of trials is being evaluated, a dedicated I/O thread of

the occurrence processor loads the input YELTs of the next batch of trials into memory. As

40

our experiments in Section 3.4 show, the time it takes to load a trial’s input YELTs is slightly

lower than the time to evaluate a trial. Thus, the input YELTs for the next batch are available

by the time the occurrence processor finishes evaluating the previous batch. With a sufficient

number of batches to be evaluated on each occurrence processor, this allows us to hide most

of the I/O costs incurred by loading trial YELTs.

3.4 Evaluation

In this section, we evaluate the performance of our location-level analysis platform. We

first describe the structure of the portfolio to be used in our experiments in Section 3.4.1.

Section 3.4.2 compares the cutwidth-based processing approach against the edge-buffered

approach, concluding that the cutwidth-based approach is superior in practice. The remaining

experiments focus on choosing optimal parameters for the cutwidth-based approach and

evaluating the performance of the whole system for running a complete location-level portfolio

analysis using 10,000 trials. In Sections 3.4.3 and 3.4.4, we present a series of single-trial tests to

analyze the performance of both the graph optimizer and the occurrence processor depending

on the maximum vertex degree used in the degree reduction step of the graph optimizer. These

tests were run in isolation on a single workstation with an Intel i7-6700K CPU, 64GB of RAM,

and with an SSD as the storage system for input and output. It is reasonable to expect that

the optimal parameters determined in these single-trial tests are also optimal in a full-scale

run on thousands of trials because trials are evaluated completely independently on separate

threads or compute nodes. In Section 3.4.5, we tested the parallel performance of our system

by running a 10,000 trial evaluation using 40 c5.18xlarge compute nodes (each with 72 vCPUs

and 144GB of memory) on Amazon EC2 [9] and S3 as the distributed storage system [11].

Finally, Section 3.4.6 compares the performance of our system against a commercial system

on the market today.

3.4.1 Test Portfolio

Since current commercial systems are unable to perform a full portfolio analysis at the resolu-

tion of individual locations in a reasonable amount of time, there do not exist any real-world

location-level portfolio data to date that could be used in experiments to evaluate our system.

Therefore, we are limited to using synthetic data.

41

We constructed our test data set from the portfolios of primary insurers and from the

portfolio of a reinsurer composed of treaties with primary insurers and insurance contracts

for high-value individual properties.1 This portfolio structure is illustrated in Figure 3.10.

High-value individual properties include bridges or office towers worth hundreds of mil-

lions of dollars. Such properties are insured directly by reinsurance companies. The contract

insuring each such property is modelled using a subgraph of approximately 50 vertices, with

fairly high connectivity near the source and sink of the subgraph. There are 59 such structures

in our test portfolio.

Each primary insurer business unit covers 100,000 insured locations and is composed of

approximately 400,000 vertices. In this structure, the contract for each location is modelled

using a subgraph of 4–5 vertices. Figure 3.11 illustrates this structure (scaled down to only

5 locations in order to fit on the page). The losses from contracts are combined into the

insurer’s loss YELT using a high-degree merge vertex. Our graph models 700 different primary

insurance portfolios, making these structures the bulk of our graph.

The “reinsurer’s contractual terms” structure serves as the sink of the graph and takes

the losses from the primary insurer business units and high-value properties as inputs. This

structure contains approximately 5,000 vertices and models interdependent reinsurance

contractual terms for the entire business of a real reinsurance group. The structure includes

several large merge vertices, one with in-degree over 1,000 and several with in-degree over 100,

making it the most complex component of the graph in terms of connectivity.

Overall, our test graph had approximately 307M vertices and 377M edges. Its structure

reflects the flow of risk from individual insured locations via primary insurance contracts to

reinsurance treaties and thus should be representative of location-level reinsurance portfolios

that we expect to emerge in the real world once systems such as ours make location-level

portfolio analysis feasible.

3.4.2 Edge-Buffered vs Cutwidth-Based Approach

The experimental evaluation of our prototype implementation of the edge-buffered approach

highlighted its practical deficiencies. Deadlocking was common for graphs that contain

filter vertices, as filtering occurrences has the tendency to make the number of occurrences

in nearby buffers imbalanced. The edge-buffered approach was not able to process our

1Due to confidentiality requirements, the specific companies cannot be identified.

42

Primary insurer
business unit
(100,000 locations)

... Primary insurer
business unit
(100,000 locations)

700 structures, approx. 307 million vertices total

Reinsurer's
contractual
terms

Single structure, approx 5000 vertices

High value,
individual
property

High value,
individual
property

59 structures, approx 3000 vertices total

...

Figure 3.10: Simplified view of the location-level graph used for evaluation of our system

Property losses

Contractual term Contractual term

Property losses

Contractual term Contractual term

Property losses

Contractual term Contractual term

Property losses

Contractual term Contractual term

Property losses

Contractual term

Contractual term

Contractual term

Contractual term

Account total

Contractual term

Contractual term

Contractual term

Account total

Contractual term

Contractual term

Contractual term

Account total

Contractual term

Contractual term

Contractual term

Account total

Business unit total

Figure 3.11: A graph representing the portfolio of a primary insurer insuring 5 properties

test portfolio graph with filter vertices present without deadlocking. Deadlocking could be

mitigated or even avoided using larger edge buffers, but because a typical graph in our use

case has hundreds of millions of edges, the amount of memory we were able to devote to each

edge was heavily constrained. This was the case especially during parallel trial processing,

where each thread needed its own unshared set of edge buffers. Deadlocks could also possibly

be resolved by using sophisticated deadlock detection and resolution strategies. However,

such strategies would be highly non-local (i.e., would need to analyze large subgraphs) and

would introduce significant performance overhead.

Deadlocking made it impossible to evaluate a single trial on the full portfolio graph using

the edge-buffered approach. To obtain a running time comparison between the edge-buffered

43

and cutwidth-based approaches, we evaluated both methods on a reduced input graph ob-

tained by reducing the number of locations in each business unit to 10,000, which resulted in

a graph that was about 90% smaller than the full portfolio graph. We also removed some of

the filtering structures that were a contributing cause of the deadlocks. We call the resulting

graph the simplified graph in the following discussion.

It took approximately 6.5 seconds (excluding the time taken to load the graph) to process

a single trial of 1.5 million occurrences through the simplified graph using edge buffers able

to hold up to 4 occurrences. Using an edge buffer size smaller than 4 occurrences resulted in

deadlocking even on the simplified graph. Increasing the edge buffer size to 24 occurrences

had no noticeable impact on performance. For edge buffers larger than 24 occurrences long,

the occurrence processor began to run out of main memory and began to use swap space,

resulting in a sharp increase in running time. Storing a 4-occurrence edge buffer at each of

the 37 million edges in the simplified graph required approximately 2.4 gigabytes of memory.

For comparison, using the cutwidth-based approach and the same simplified input graph,

it took 16 seconds to optimize the graph and find the ordering, and 6.3 seconds to process the

trial. The optimization of the graph needs to be performed only once; all trials use the same

optimized graph. This amortizes the 16 seconds over the total number of trials. The ordering

resulted in a cutwidth of 300 and, correspondingly, only 10 megabytes of memory being used

to store intermediate YELTs during occurrence processing of a single trial.

Since the running times of the two methods were comparable but the cutwidth-based

approach both used significantly less memory and did not suffer from deadlocks, we conclude

that the cutwidth-based approach is the better choice and is worth the initial cost of finding a

low-cutwidth topological ordering of the graph and performing degree reduction.

3.4.3 Graph Optimizer Evaluation

Figure 3.12 illustrates how the choice of the maximum degree d during the degree reduction

step affected the cutwidth and size of the optimized graph. On the x -axis, the maximum

degree d of the output graph is specified. On the y -axis, we plot the size of the output graph

(on the solid line), and the cutwidth of the output graph (on the dotted line). Setting the maxi-

mum degree to infinity tells the graph optimizer to essentially skip the degree reduction step.

This resulted in a cutwidth of 10,000 and increased the amount of memory required during

occurrence processing but left the number of vertices in the graph unchanged. Conversely,

44

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Max degree

310

320

330

340

350

360

370

380

|V
| (

m
illi

on
s)

|V| (millions)
Cutwidth

0

2000

4000

6000

8000

10000

Cu
tw

id
th

Figure 3.12: Number of vertices vs cutwidth in the optimized graph for different values of the
max degree parameter

setting the maximum degree to 2 split all vertices with in or out-degree greater than 2. This

resulted in a very low cutwidth of 157 but also in an added 75 million vertices. This is signifi-

cant because a substantial increase in the number of vertices increases the cost of processing

a trial, as discussed in Section 3.4.4. For this particular graph, setting the maximum degree

to 16 resulted in a cutwidth of approximately 310, thereby achieving a very small memory

footprint while increasing the number of vertices in the graph by only approximately 2%.

In Figure 3.13, we show the breakdown of the running time of the graph optimizer for

different values of d . For all but very large maximum degrees, the reduction time dominated

the running time of the graph optimizer. Setting the maximum degree to 2 resulted in a

significantly larger graph (as shown in Figure 3.12) and in a corresponding noticeable jump in

I/O and degree reduction time. For d ≥ 214, the reduction time dropped to almost zero. It was

at this point that no degree reduction happened at all, and the only contribution of degree

reduction to the total running time was scanning the in and out-degrees of the vertices in

the graph, only to realize that they were all below d . When this happened, reading the initial

graph file, and writing it back out in topological order became the new dominating cost of the

graph optimizer. The process of finding the initial DFS ordering was relatively inexpensive

and, unsurprisingly, remained constant regardless of the maximum degree bound, as the

ordering was computed before degree reduction. I/O time includes the time taken to read

the input graph (approximately 30 seconds), and write the output graph (approximately 20

45

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Max degree

0

50

100

150

200

250

Ru
nn

in
g

tim
e

(s
ec

)

IO time
Reduction time
DFS time

Figure 3.13: Running time for each of the graph optimizer’s steps for different settings of
maximum degree

seconds).

Because this step operates on the entire graph, and not on a single trial, it only needs to be

run once. However, for the same reasons, it cannot be trivially parallelized.

3.4.4 Occurrence Processor Evaluation

Figure 3.14 shows the total running time taken by the occurrence processor to compute

the YELT of a single trial. The running time is plotted against the average number of input

occurrences each location generated for a single trial, and the maximum degree used during

the optimization of the graph. Since individual properties are unlikely to make an insurance

claim every year, the average number of occurrences generated per location in practice is

typically no greater than 0.2. There were approximately 70 million individual locations in our

test portfolio, so 0.2 occurrences per location resulted in 14 million input occurrences.

Running time scaled linearly with the average number of input occurrences per location. As

with the graph optimizer, loading the graph into memory had a fixed cost of approximately 25

seconds, varying slightly depending on the number of vertices added during degree reduction.

In a multi-trial, multi-threaded environment, the cost of loading the graph is amortized across

all trials processed by an individual compute node.

Due to the introduction of several million merge vertices, occurrence processing on a

46

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average occurrences per location

50

100

150

200

250

Ru
nn

in
g

tim
e

(s
ec

)

Max degree = 2
Max degree = 16
Max degree = 128
Max degree =

Figure 3.14: Running time for the occurrence processor across different sizes of input occur-
rences and graphs of varying degree

graph with its maximum degree reduced to 2 incurred a significant performance cost. For a

maximum degree of 16 or 128, occurrence processing was slightly faster than on the unreduced

graph. This was due to two reasons: First, the number of vertices added for d = 16 and d = 128

was negligible in comparison to the size of the original graph, so little overhead was added.

Second, the original graph had a small number of mergers with high in-degree, while the

degree-reduced graph did not. The merging algorithm used in our implementation was not

cache-efficient for high-degree mergers, so the degree-reduced graphs achieved better cache

locality and thus a slightly better running time.

The unreduced graph had a cutwidth of approximately 10,000 while the degree-reduced

graph with d = 16 had a cutwidth of 310 and the degree-reduced graph with d = 128 had a

cutwidth of 820. The amount of memory saved by degree reduction depends on the charac-

teristics of the input occurrences. As mentioned in Section 3.3.4, if none of the occurrences

merge, degree reduction provides no benefit to memory usage. In our experiment, occurrences

merged so that no YELT contained more than 10,000 occurrences. For the degree-reduced

graph with d = 16, 15 megabytes were used in total to store intermediate YELTs during occur-

rence processing of a single trial, the degree-reduced graph with d = 128 used 31 megabytes,

and the unreduced graph used 112 megabytes. Thus, while degree reduction can result in

significant memory savings during occurrence processing (approximately 85% less memory

47

usage for intermediate YELTs in this case), the initial topological ordering found by the graph

optimizer was still good enough to compute trials entirely in-memory, even without degree

reduction. This can be significant in scenarios where few occurrences combine when merging

YELTs.

3.4.5 Evaluation as a Distributed System

In order to evaluate the feasibility of performing, in a reasonable amount of time, a full-scale

location-level portfolio analysis consisting of 10,000 trials, we provisioned 40 c5.18xlarge

compute nodes from Amazon EC2 [9] to serve as our occurrence processors and submitted a

10,000 trial job using our graph reduced to a maximum degree of 16. We used the fairly large

c5.18xlarge nodes for their high network bandwidth and because the high vCPU count (72)

allows us to reduce the number of times the graph has to be loaded into memory. We used

an average of 14 million input occurrences per trial, an aggressively high estimate of what

we would expect from a typical location-level analysis job. Each compute node was issued

250 trials to compute, which was further broken up into 3 to 4 trials for each of the 72 vCPUs

available on an c5.18xlarge instance.

We used Amazon’s Simple Storage System (S3) for our distributed storage system, as it scales

well, is highly available and has high throughput for Amazon compute resources located in

the same availability zone. We used Amazon’s Simple Queue Service (SQS) for the occurrence

processor and graph optimizer queues.

A dedicated I/O thread was run on each compute node to download the graph and input

YELTs from S3 in the background while already loaded trials were being processed by occur-

rence processor threads. The input YELTs totalled 4TB in size. Since each trial requires the

graph to be loaded before processing, the occurrence processor threads were able to start

processing trials only after the graph and the first batch of trials was loaded by the I/O thread.

Once the graph and the input occurrences for the initial batch of trials were loaded, the I/O

cost of loading the remaining input occurrence data was hidden, as the I/O thread was able to

retrieve input faster than the occurrence processor threads could process them.

Starting from a newly provisioned cluster of occurrence processors with no input data

preloaded onto it, the system was able to compute the output portfolio YELTs for 10,000 trials

in approximately 17 minutes.

48

3.4.6 Comparison Against a Commercial System

The substantial licensing fees of commercial risk analytics systems make it infeasible to

compare our system against a wide range of them. Due to a working relationship with one of

the major vendors,2 we were given access to a server running their platform.

The vendor’s analytics suite offers two separate programs: an insurance client for modeling

primary insurance structures and a reinsurance client for modeling reinsurance structures.

Using these programs to model a reinsurer’s portfolio at location-level requires using the

insurance client to model the primary insurance contracts in the reinsurer’s portfolio, manually

exporting the resulting loss distributions to the reinsurance client, and running the reinsurance

client to apply the portfolio’s reinsurance treaties to the loss distributions generated by the

insurance client.

We used this process to perform a location-level analysis on a real primary insurer’s data

set of 500,000 locations, representing hurricane risk exposures in a US state. Each location

was covered by one primary insurance contract. As the reinsurance structure, we created a

simple synthetic contract. A full reinsurance portfolio includes locations from many other

states and countries. Thus, this data set represents only a small slice (≤ 1%) of the amount of

work required for a typical location-level analysis.

We evaluated the vendor’s analytics suite on the vendor’s hardware, a virtualized Windows

Server 2016 machine running on a Xeon Gold 6154 processor with 16 virtualized cores and

64GB of memory, and another Windows Server machine running Microsoft SQL Server 2017

with 2 virtualized cores and 16GB of memory. With this configuration, it took the vendor’s

platform approximately 38 minutes to compute the portfolio’s losses.

We ran the same experiment on our platform using comparable compute resources: one

m5.4xlarge EC2 instance with 16 cores and 64GB of memory. We could not run on the vendor’s

hardware because the implementation of our platform is Linux-based. With this configuration,

our platform took 35 seconds to perform the same analysis (plus an additional 11 seconds

to topologically sort the graph and reduce its maximum degree). Due to nuances in the

interpretation of some financial contracts, both systems generated different loss distributions

in some instances. However, with detailed knowledge of the vendor’s interpretation of such

contracts, our system is capable of generating matching output.

In addition to being significantly faster, our system is also significantly more flexible. The

2Again, confidentiality agreements prevent us from disclosing the name of the vendor.

49

vendor’s system allows only one primary insurance contract per location. The contract itself

only supports the three most common terms. The reinsurance client allows users to create

portfolios containing multiple contracts of different types, but they are difficult to combine

to model arbitrary dependencies between contracts. The system uses a referencing system

to direct output from one reinsurance contract to another but only some contracts can be

referenced by others and keeping track of the overall structure becomes difficult as more

references are added.

On the small data set in this comparison, our system was over 50 times faster than the

vendor’s system. Therefore, while our system can perform a full-scale location-level analysis

in around 30 minutes, we expect the vendor’s system to take more than a day. This has a

significant impact on the feasibility of location-level analyses in the reinsurance industry.

Moreover, we expect that the vendor’s system’s use of a single SQL server for processing and

retrieving data introduces a significant bottleneck that severely hampers its scalability to the

size of a full-scale location-level portfolio.

3.5 Conclusion

In this chapter, we presented a scalable, available, consistent and highly performant big

data decision support system for processing complex reinsurance portfolios at location-

level resolution. Our system is capable of processing several terabytes of data through very

large graphs of hundreds of millions of vertices to compute a probability distribution of a

reinsurance portfolio’s risk. This distribution can be used to help inform reinsurers of the

overall risk profile of their portfolio, and which reinsurance contracts they should underwrite.

By employing a flexible graph representation, our system can model arbitrary dependen-

cies between reinsurance contracts. In contrast, many commercial systems on the market

impose significant restrictions on the type of portfolio structures they can model. In spite of

this greater flexibility, our system is over 50 times faster than at least one commercial system

by a major vendor we were able to use for comparison. Moreover, it is unclear whether current

commercial systems can scale to the size of a full-size location-level portfolio, an input our

system can process in 17 minutes using a scalable cloud-based architecture.

Our system achieves excellent scalability by distributing each analysis over a range of trials.

Because reinsurance analyses typically contain 10,000 trials, all of which can be computed

independently, our system can, in theory, scale up to 10,000 concurrent threads. Our system

50

is made highly available by making each occurrence processor stateless, and by storing all

data necessary to complete any analysis on a fault-tolerant distributed storage system. In

the event an occurrence processor fails to process a trial range, the failed task will be pushed

back onto the occurrence processor queue after a specified timeout duration. Following this,

a healthy occurrence processor will take the rescheduled job from the queue, download the

required data from distributed storage, and begin processing the trial range. Data consistency

in our system is entirely handled by the distributed storage system. Our implementation

uses Amazon S3, which guarantees that the first version of each object uploaded is always

consistent. By processing each trial entirely in memory, we achieve excellent single-threaded

performance. This, combined with the high scalability of our system, makes our system highly

performant.

We note that, while our system is significantly faster than commercial systems on the

market today, the running times on the system described in this chapter are still too slow

to support interactive workflows. In order to support interactive workflows, we expand our

system to cache and reuse intermediate results in the next chapter.

Chapter 4

Efficient Caching for Location-level Analytics

In the previous chapter we introduced a graph-based computational model for reinsurance

analytics. In this model, a reinsurance portfolio composed of many interdependent contracts

is represented as a graph of transformations, where edges describe the flow of loss data,

and vertices describe contract transformations on loss data. This system is highly available,

consistent and scalable, but is not yet fast enough to support interactive workflows. In this

chapter, we introduce a method of caching a subset of the intermediate results generated

during a location-level analysis to support fast computation of incremental analyses, and

therefore interactive workflows.

An incremental analysis is an analysis run after completion of an initial analysis and after a

series of incremental updates to the graph. Incremental analyses happen when a reinsurance

analyst makes small (relative to the hundred-million-vertex scale of the graph) changes to

their portfolio graph and recomputes the portfolio’s losses to compare how the changes have

affected the portfolio’s overall loss distribution. Changes are usually localized within a small

portion of the graph (e.g., the vertices that comprise an individual treaty or contract). This is

because primary insurers insure many properties within a single region, and thus reinsurance

treaties typically cover regional clusters of locations. Fast incremental analyses are extremely

important to reinsurers, as it allows them to see the impact the terms of a treaty have on their

portfolio as they negotiate these terms with a broker over the phone.

We achieve fast incremental analyses by caching (i.e., writing to distributed storage) the

loss distributions associated with a carefully chosen subset of edges in the portfolio graph.

This allows us to avoid reanalyzing large parts of the portfolio that are unaffected by the

changes made elsewhere in the portfolio. Because caching significantly reduces subsequent

analysis running times, the time taken to load the portfolio graph becomes a major bottleneck.

To address this, and to further improve performance, we split the portfolio graph into multiple

“shards” that can be loaded individually. By only loading the shards of the graph needed to

process an incremental analysis, we can significantly reduce I/O time.

51

52

For 10,000 trials, edge outputs are large enough that caching the results of a large number

of edges would use a prohibitive amount of disk space. Thus, the main challenge is to select a

small number of edges that ensure that caching their YELTs dramatically reduces the size of

the portfolio to be reevaluated after a typical incremental update, while still keeping cache

storage requirements low.

Our experiments show that by caching a small number of cache edges allows us to com-

pute the portfolio’s loss distribution up to 90 times faster than without caching. This means

that an incremental analysis of a location-level reinsurance portfolio can be performed in

approximately 10 seconds, allowing reinsurers to see the impact updates to their portfolio

have on their loss distribution in real-time as they negotiate contractual terms with brokers

over the phone.

The remainder of this chapter is organized as follows: Section 4.1 covers related work on

caching intermediate outputs in directed graph processing systems. Section 4.2 describes our

caching strategy. Section 4.3 introduces a new graph data structure to support partial loading

of the portfolio graph, depending on which cache edges are available. Section 4.4 describes

how to support graph updates while maintaining the existing cache edges and data structures.

Section 4.5 discusses experimental results that demonstrate the performance of our approach,

with a series of comparisons across a variety of use cases. Section 4.6 offers closing comments.

4.1 Related Work

For related work on reinsurance analytics and graph processing, see Sections 2.2 and 3.1. This

section covers work related specifically to the problem of caching within graph processing

systems.

The Spark data flow and graph processing framework has built-in caching of its intermedi-

ate results (called Resilient Distributed Data (RDD) objects), which simply places all RDDs

into a Least Recently Used (LRU) cache [99]. Under the LRU system in Spark, each RDD is

added to the cache when it is produced. If inserting a new RDD in the cache causes the cache

to exceed its configured memory limit, the least recently used RDD is evicted before the new

RDD is added. The intention is to avoid computing the same RDD twice within the same job.

For example, if an RDD is needed twice at different times in the same Spark job, keeping the

RDD cached would prevent that RDD from being recomputed when it is needed the second

time later in the job.

53

LRU caches are conceptually simple, easy to implement, require little configuration and

perform well for a wide variety of applications. They are therefore used in a wide variety of

systems outside of Spark [71]. For our application, our low-cutwidth vertex ordering described

in Section 3.3.3 means that no YELT will need to be recomputed a second time within the

same job, which makes LRU caching ineffective. More generally, Spark uses its cache to solve

a similar but different problem than ours. Spark’s goal is to avoid recomputing intermediate

results during a single graph evaluation, while our goal is to avoid recomputing intermediate

results across multiple portfolio analyses, in response to portfolio updates. Thus, our platform

would instead benefit from a cache that stores intermediate results between analyses to

improve the performance of incremental analyses. A LRU cache for this purpose would

perform poorly. At the end of a job, the LRU cache would contain only the outputs from the

last vertices in the vertex ordering. These vertices are close to the sink, and their cached edge

outputs are therefore the least likely to be valid after a change to the graph is made (as an

update to the graph would require the recomputation of all YELTs “downstream” from the

update.

Multiple works introduce different variations on the LRU cache within Spark [32, 94, 97,

98]. The Least Reference Count (LRC) cache [98] attempts to reduce the number of RDD

recomputations over the default LRU cache implementation by evicting RDDs with the fewest

“reference counts” instead of the RDDs with the oldest access time, where reference count is

the number of unfinished tasks that require the cached RDD as input. The Least Effective

Reference Count (LERC) cache [97] augments the LRC cache by preferring to evict RDDs to be

used by succeeding tasks that do not already have all their input RDDs in cache. The Least Cost

Strategy (LCS) [32] cache evicts RDDs that take the least time to recover. Another work [94]

uses adaptive optimization to determine which RDDs should be cached during processing.

Since these works are focused on caching RDDs within a single analysis for the sake of

improving the running time of that single analysis, we expect that applying these caching

mechanisms to improve performance of incremental analyses on a large graph would yield

results similar to using the LRU cache.

Much of the research on caching in dataflow and graph processing systems is focused on

utilizing limited-memory CPU caches to minimize the running time of individual analyses

or jobs [46, 47, 52, 53, 64, 68, 79, 101]. This is done by finding vertex orderings that optimizes

for locality of reference during graph processing. A vertex ordering optimized for locality of

54

reference can have lower running times compared to other orderings, as they are more likely to

have more CPU cache hits, and thus reduce the number of expensive read and write operations

to and from main memory. Like the LRU cache, we stress that these works are focused on

solving an entirely different problem than ours; they describe how graph processing systems

can be optimized to use CPU caches to minimize the impact of memory latency. These works

do not cache data in between analyses, nor do they aim to reduce the overall computational

effort for subsequent evaluation of modified graphs.

4.2 Caching for Location-Level Reinsurance Analyses

Computing the loss distribution of the portfolio in a location-level graph is time-consuming.

By writing the YELTs associated with a subset of edges produced during a from-scratch portfolio

analysis to distributed storage, we can significantly reduce the number of YELTs that have to

be computed in an incremental analysis by loading the stored YELTs from storage instead of

processing the associated vertices and their predecessors. We refer to this process of storing

intermediate YELTs to reduce the computational effort of subsequent or incremental analyses

as caching. Given a graph G = (V , E) and the set of edges with cached YELTs, Ec (henceforth

called cache edges), an incremental analysis needs to reevaluate only the vertices that can

reach the sink of G in G ′ = (V , E −Ec), provided none of the cache edges’ YELTs are affected by

the portfolio update that triggered the incremental analysis. The contribution of the vertices

that do not have a path to the sink in G ′ to the portfolio’s output is already accounted for in

the YELTs associated with the cache edges that separate them from the sink.

This is illustrated in Figure 4.1. Without cache edges, the entire set of vertices must be

evaluated, that is, every vertex must transform the YELTs generated by its in-neighbours into

an YELT passed to its out-neighbours. When the 4 cached edges are included, the set of vertices

that cannot reach the sink in G ′ = (V , E − Ec) (colored gray) do not have to be evaluated to

compute the output of the sink.

Since the YELT generated by any vertex in the portfolio graph depends on the YELTs

associated with edges that can reach this vertex, we consider any cache edge reachable from

a vertex or edge in G involved in a portfolio update to be invalidated by this update—its

YELT needs to be recomputed. We call such an edge a downstream edge of the update. An

incremental analysis needs to recompute the YELTs of all edges that can reach the sink via a

path consisting entirely of uncached edges and invalidated cache edges.

55

Figure 4.1: A small directed graph, with cache edges shown as dotted lines. The gray vertices
do not need to be reevaluated to compute the output of the sink.

4.2.1 Selecting Cache Edges

Selecting which edges to cache has a significant impact on the memory footprint and efficiency

of the cache. In the location-level reinsurance analytics use case, graphs are very large and

can contain hundreds of millions of edges. The size of each YELT depends on the number of

occurrences in the YELT, which itself is dependent on how often occurrences merge during

processing of merge vertices. Let us assume a very low estimate of an average of 10 occurrences

(160 bytes) per YELT per trial. Since a 10,000 trial simulation is typical for reinsurance analytics,

each cache edge requires 1,600 kilobytes. Even with such a small YELT memory footprint,

caching even 1% of the edges in a 300 million edge portfolio graph requires 4.8 terabytes of

memory.

Conversely, if too few edges are cached, a single user update to the portfolio graph that

invalidates one or two cache edges can result in several million vertices being processed in an

incremental analysis. Thus, the choice of edges to cache needs to strike a balance between

storage cost and the running time of incremental analyses.

To keep storage costs low, we would like to see significant speedup while using less than

56

a terabyte of storage for the edge cache of a single graph. As a result, we need a method

of intelligently selecting a configurable number of cache edges from graphs on the scale of

hundreds of millions of edges, so that in the event of several incremental updates to the graph,

the number of vertices that must be processed to obtain a result for an incremental analysis is

small enough such that the incremental analysis can be computed significantly faster than

the initial analysis.

Location-level portfolio graphs are generally trees of small 2-edge-connected components

(representing primary insurance contracts) and with only very few larger 2-edge-connected

components (representing the complex network of reinsurance treaties). Each edge between

any two 2-edge-connected components is a bridge; that is, an edge whose removal partitions

the graph into two disconnected subgraphs. This implies that a significant fraction of edges

in a location-level portfolio graph are bridges.

Our method to select cache edges starts with the bridges of the portfolio graph as the

candidate set of potential cache edges. Bridges are promising candidate cache edges because

by caching a single such edge, the cost of an incremental analysis is reduced by the number

of all “upstream” edges of the chosen edge (that is, all edges reachable from the edge after

reversing the directions of the graph) unless these upstream edges are invalidated by the

portfolio update that triggered the incremental analysis.

Many of these bridges are close to the sources of the portfolio graph (i.e., locations) and

thus separate only a small number of upstream vertices from the rest of the graph. Bridges

near the sink of the graph are more likely to partition large numbers of upstream vertices

from the sink. However, a cache edge that splits off too many upstream vertices is fragile

in the sense that it has a high probability of being invalidated by an update. To balance the

promised savings from caching edges (due to many upstream vertices) versus the probability

of invalidating many of these edges with an update (also due to many upstream vertices), we

select the cache edges so that their removal partitions the graph into subgraphs of roughly

equal size. We call these subgraphs shards from now on.

Given a target number of n shards, we compute the set of cache edges as follows. We

compute the 2-edge-connected components of G (using a depth-first traversal [84]) and

replace each component with a single vertex of weight equal to the size of the component.

The result is a weighted tree T whose edges are exactly the bridges of G . Figure 4.3 shows

the tree T obtained from the graph in Figure 4.2. Let W be the total weight of T , that is, the

57

Figure 4.2: The example graph from Figure 4.1, grouped into its 2-edge-connected components
by dotted lines. The edges that cross between two components are the bridges.

number of vertices in G , and let w =W /n be the desired shard size. We select cache edges

using a postorder traversal of T . Whenever we encounter an edge whose descendant nodes in

T have weight at least w , we select the edge as a cache edge and remove all its descendant

nodes from T . The removed nodes no longer contribute to the total weight of descendant

nodes of any edge considered subsequently. If every node in T has weight at most w and

degree at most d , then this approach is guaranteed to produce a set of between n/d and n

cache edges that partition G into shards of size between w and d w . For the tree in Figure 4.3,

the partition obtained using the edges chosen with parameter w = 5 are shown using dotted

lines. The corresponding shards are shown in Figure 4.4.

4.3 Efficient Subgraph Loading

While caching reduces the number of YELTs that need to be computed in an incremental

analysis, loading the portfolio graph and its input YELTs remains costly. Recall that in Sec-

tion 3.4, it took approximately 25 seconds to load a large location-level graph into memory.

Assuming caching reduces the cost of computing the YELTs in an incremental analysis to a

few seconds, loading the portfolio graph thus becomes the bottleneck. We address this by

58

1 1

1 1 1 1 1

1 1

1 1 1 14

3

4

Figure 4.3: The tree T obtained by contracting the 2-edge-connected components of the graph
in Figure 4.2. Vertex labels represent vertex weights, that is, the sizes of the 2-edge-connected
components represented by the vertices. The dotted lines represent the partitioning of T into
subtrees with w = 5.

Figure 4.4: The graph from Figure 4.2 broken into 3 shards, s1 through s3 corresponding to the
subtrees in Figure 4.3. The edges between shards are cache edges.

59

Figure 4.5: A graph with cache edges pointed towards different vertices within the same shard

loading only the shards of the graph that are needed for the incremental analysis. To support

this, we modify the in-memory graph representation described in Section 3.3.5 into a sharded

graph representation, which consists of three parts.

First, we store each shard of G as a separate file in a distributed storage system. Each shard

is simply stored as a graph file in the same format described in Section 3.3.5.

Second, we store a file containing the shard graph. This graph has one vertex per shard.

Its edge set is the set of cache edges connecting these shards. Each vertex in the shard graph

stores a reference to the shard it represents, that is, a key identifying the shard’s graph file in

distributed storage.

To keep track of invalidated cache entries, we store a “version ID” value for each shard in

the shard graph. Whenever one of the shards is modified, its corresponding file gets assigned

a new version ID. During analysis, whenever the edge output between two shards is written to

cache, we also store the version ID of the shard that generated the output. For a given cache

edge, we determine if its cache entry has been invalidated by comparing the version ID of the

edge’s cache data against the version ID of the graph file belonging to the edge’s head vertex.

If the version IDs do not match, then the cache entry is invalid, and the head vertex must be

processed.

Third, since the shard graph only describes which shards are connected, and does not

specify which vertices within the shards act as output or input to or from another shard, we

store a small vertex mapping file to describe, for each cache edge, the vertex in the tail shard

that the output from the head shard should be forwarded to.

For example, consider Figure 4.5. Shards s1 and s2 both output to s3, but to different vertices

60

within s3. Results stored on the cache edge from s1 to s3 must be passed to vertex v7 in s3.

Results on the cache edge from s2 to s3 must be passed to vertex v8 in s3. These shard-to-shard

data flows are not represented in the shard graph at the individual vertex level, and thus the

mapping file is used to determine which vertex within s3 the output from s1 goes to, and which

vertex within s3 the output from s2 goes to.

The result is |Ec |+1 partitions of the original graph, stored in separate files, and a small

shard graph of |Ec | edges and |Ec |+1 vertices describing the data dependencies between the

shards.

During occurrence processing, a traversal over the shard graph starting from the sink

determines whether or not individual shards should be loaded and processed, where only

edges with invalidated cache entries are traversed. The vertices in the shard graph that are

traversed are therefore the shards that must be loaded and processed; the shards that are not

traversed do not need to be loaded as their output can be loaded from cache.

In the context of the platform described in Chapter 3, finding an appropriate set of cache

edges, and writing the shards, shard graph and vertex mapping file to storage can all be done

as an extension of the graph optimization step.

4.4 Updates

Underwriters may decide to add or remove treaties to or from their portfolio or agree to change

the terms of a treaty, after negotiating treaty terms with a broker. Thus, after running incre-

mental analyses to evaluate the impact of the proposed changes on the risk exposure of the

portfolio, they may decide to accept the proposed changes, and the portfolio representation

needs to be updated accordingly. It is easy to take these changes into account during the next

nightly from-scratch portfolio analysis. To allow additional incremental analyses before the

next from-scratch analysis, however, we also need to support updates to the graph representa-

tion. These updates may not result in the optimal set of cache edges for the updated portfolio,

but the updates need to be fast and need to ensure that the updated portfolio representation

continues to support fast incremental analyses.

Any portfolio update can be expressed as a sequence of elementary updates of the following

types:

• Modification of a vertex’s terms (e.g, adjusting the deductible of a vertex)

61

• Addition of a disconnected vertex

• Deletion of a disconnected vertex

• Edge addition (must keep the graph acyclic)

• Edge deletion

These operations are complete in the sense that any portfolio graph can be constructed

and broken down using only these operations.

Thus, we only need to discuss how to support these elementary updates. Any addition,

deletion or modification of an edge or vertex in the graph invalidates all cached edges down-

stream of the change.

Vertex additions and deletions do not invalidate existing cache edges, as a disconnected

vertex has no output. Since new vertices are always disconnected, they are not assigned to

a shard until they are connected to the graph with an edge addition. When a disconnected

vertex is connected to the graph with an edge addition, it joins the shard belonging to its new

neighbor. Unlike vertex additions and deletions, vertex modifications operate on connected

vertices, and can invalidate cache edges. In the event of a vertex modification, all cache edges

accessible by following directed paths from the modified vertex must be invalidated. Similarly,

for an added or deleted edge, all cache edges accessible by following directed paths from

the head of the added or deleted edge are invalidated. This is true no matter whether the

endpoints of the edge are in the same or different shards.

When an edge is added that connects vertices in different shards, the added edge must also

be added to the set of cache edges Ec and the shard graph’s vertex mapping. This is because

the computation of the shard containing the edge’s tail vertex cannot be skipped unless a

YELT is present in the cache for both the existing cache edge and the newly added edge. If an

edge is added between two vertices in shards that do not have an edge directly linking them

together in the shard graph, the shard graph must be updated to include an edge between the

affected shards.

If the added cache edge creates no cycles in the shard graph, nothing else needs to be

done. However, even an edge addition that keeps G acyclic may introduce cycles in the shard

graph (see Figure 4.6). In this case, the shard graph must be restructured to eliminate the

cycle. This can be done by moving all vertices in the shard containing the tail of the new edge

that can reach this tail to a new shard. An example is given in Figure 4.6. An added edge from

62

Figure 4.6: The graph from Figure 4.5 with an added edge between the vertices v2 and v8 in
shards s3 and s1. The graph on the right shows the new partitioning of the same graph that
eliminates the cycle in the shard graph.

a vertex in s3 to a vertex in s1 results in a cycle between these two shards in the shard graph. In

the graph on the right, s3’s v8 vertex is moved into its own shard to remove the cycle from the

shard graph.

In addition to the elementary update operations listed above, we also support one non-

elementary update operation directly, because simulating it using elementary updates would

have the potential to introduce significant imbalances to the shard graph. Our bulk insert

operation allows the user to add a connected subgraph to the portfolio graph with a single

update. All vertices belonging to the bulk-inserted subgraph are placed in the same, newly

constructed shard. In doing this, we can avoid several individual edge and vertex addition

operations, which would be likely to make one shard significantly larger than others, or, in

some cases, introduce a significant number of new shards and cache edges. This is particularly

useful when adding a new primary insurer to the portfolio, as this requires the reinsurer to

add the primary insurer’s entire subgraph to the reinsurer’s portfolio graph.

4.4.1 Periodic Repartitioning into Shards

When an edge is added between shards, the number of cache edges increases by 1. Ideally,

these kinds of edge additions would trigger a recomputation of cache edges and shards, but

63

for large graphs, this is an expensive operation. Additionally, a complete recomputation would

likely use an entirely different set of edges for the cache and would require a full uncached

analysis to regenerate. A repartitioning of the graph is therefore best initiated during a period

of low user activity, perhaps nightly, and should be followed by a new analysis to populate the

cache. As long as edge additions between shards are rare, and repartitioning tasks run regularly,

incremental analyses should remain fast, while keeping cache storage costs reasonable.

4.4.2 Realistic Use Cases

Here, we describe a set of common reinsurance use cases for incremental analyses. For each

use case, we describe the application, how it modifies the portfolio graph, and the set of

update operations it requires.

New Business. In a “new business” incremental analysis, the reinsurer adds a new primary

insurer to the reinsurance portfolio, and attaches it to a reinsurance treaty. This is done

whenever a reinsurer writes a new business into their portfolio. In terms of the portfolio graph,

this use case adds a potentially large (depending on the size of the primary insurer) primary

insurance structure to the graph, and attaches it to a vertex representing the beginning of a

reinsurance contract.

This use case is performed with our non-elementary bulk update operation. This ensures

that the primary insurance structure is added to a new shard to facilitate efficient caching for

later analyses. Once the new primary insurance subgraph has been added, it is connected

to the rest of the portfolio graph with one or more edge addition operations. Each edge

added between the new shard and the other shards must be cached. If the primary insurance

structure added is much larger or smaller than other shards in the portfolio graph, or if the

addition of new edges significantly increases the number of cache edges, the portfolio graph

can later be repartitioned offline to find a more balanced set of cache edges.

Pricing. The “pricing” use case occurs when a reinsurance company negotiates the terms of

renewal or new business with a primary insurer, typically over the phone. In this use case, the

reinsurer updates terms of the reinsurance treaty attached to the primary insurer to see the

impact the changes have on the portfolio’s overall loss distribution, relative to the premium

gained by the renewal or new business. This results in one or more vertex modification

64

operations, which do not affect the structure of the shard graph, but result in all cache edges

downstream of the affected vertices to be invalidated.

Timely responses are extremely important for the “pricing” use case. Since multiple

reinsurers are competing for the same primary insurance contracts, being early to make a fair

offer significantly increases the reinsurer’s chances to get a share of the contract.

Renewal planning. Reinsurers have renewal seasons wherein they price and sign contract

renewals with primary insurers. In the months leading up to a renewal season, reinsurers go

through a “renewal planning” process, where they adjust their shares in existing contracts

and compare the portfolio’s new loss distribution. By doing this, the reinsurer can begin to

plan what primary insurer contracts they want to renew and what contracts they want to

increase or reduce their share in. Like a “pricing” analysis, a “renewal planning” analysis only

modifies the terms of reinsurance structures that control the shares or participation rates of a

reinsurance contract. Thus, they result in one more more vertex modifications, which do not

alter the structure of the shard graph, but result in cache invalidations downstream.

Timely responses to “renewal planning” incremental analyses are beneficial as they allow

the reinsurer to tweak their contract’s shares and get quick feedback on the impact the changes

have on the portfolio’s loss distribution. This allows the reinsurer to make multiple adjustments

to further fine-tune the shares on each of their contracts.

Renewal. When a primary insurer renews a contract with a reinsurer, the primary insurer

typically sends new exposure data containing the up-to-date location loss distributions (YELTs)

to the reinsurer. Since reinsurance contracts renew all throughout the year, reinsurers process

renewals on a daily basis. In a “renewal” incremental analysis, the reinsurer replaces the old

location loss distributions with the newer distributions and recomputes their portfolio loss

distribution. In order to change the input location loss distributions, the terms of the vertices

that load losses for each affected location must be updated to point to the location of the new

files in distributed storage, resulting in several vertex modification operations.

Binder book update. Reinsurers sometimes participate in “binder” contracts. Unlike typi-

cal contracts, where loss distributions are only updated upon renewal of the contract, loss

distributions in a binder contract update on a regular basis (e.g. monthly). Thus, reinsurers

that participate in binder contracts must periodically run “binder book updates”, wherein

65

the loss distributions for a contract are updated. Like the “renewal” use case, this results in a

series of modifications to vertices that load input loss distributions from distributed storage.

Retrocession pricing. Retrocession treaties function like insurance for reinsurers. In the

event of an extreme catastrophic event or loss to the reinsurer, a retrocession treaty may

activate and pay out the reinsurer depending on the terms of the treaty. Reinsurers typically

buy retrocession insurance to improve the solvency of their portfolio. Retrocession treaties

are priced similarly to primary insurer contracts: the reinsurance and retrocession broker

negotiate terms and premiums over the phone until an agreement is made. In the “retrocession

pricing” use case, the reinsurer modifies the terms of an existing retrocession treaty, or adds

a new retrocession treaty, and compares the impact the changes have on the portfolio’s loss

distribution. If the reinsurer only wants to model the result of numerical adjustments to the

treaty and not modify the structure, this only results in one or more vertex modifications. If

the reinsurer is adding a new retrocession treaty, or is adding new terms to an existing treaty,

then new vertices and edges must be added to the graph. If the reinsurer is modifying an

existing treaty by removing terms, then the edge and vertex deletion operations are required.

4.5 Evaluation

In this section, we present experimental results that demonstrate the viability of our caching

strategy to support incremental location-level portfolio analyses. We start with an evaluation

of the number of cache edges obtained for different shard sizes. Intuitively, smaller shards

mean faster incremental analyses, but as the number of cache edges increases, the storage

cost and the cost of writing cached YELTs to distributed storage during a from-scratch analysis

increase. Thus, it is worthwhile to investigate this trade-off. Our first set of running time

experiments evaluates for three different shard sizes how the cost of an incremental analysis

increases as the number of invalidated cache edges increases. We note that realistic updates of

realistic reinsurance portfolios lead to only a small number of invalidated cache edges, so this

evaluation of the analysis cost as a function of up to a few hundred invalidated cache edges

serves as an extreme stress test of our approach. The second set of running time experiments

evaluates the cost of incremental analyses for typical portfolio updates in a range of realistic

use cases.

66

4.5.1 Test Platform and Portfolio

Our evaluation platform uses the system presented in Chapter 3 augmented with the caching

strategy proposed in this Chapter. Experiments were run on two separate clusters of compute

nodes running Amazon Linux 2, provisioned from Amazon EC2. The first cluster was com-

posed of 350 c5.2xlarge instances (each with 16GB memory and 8 vCPUs), while the second

was composed of 40 c5.18xlarge instances (each with 144GB memory and 72 vCPUs).

As explained in Chapter 3, since current commercial systems are unable to perform a

full location-level portfolio analysis in a reasonable amount of time, there do not exist any

real-world location-level portfolio data to date that could be used in experiments to evaluate

our system. Therefore, we used the same synthetic portfolio described in Section 3.4.1, which

simulates the structure we anticipate future location-level portfolios to have. The test portfolio

had approximately 307M vertices and 377M edges.

4.5.2 Shard Size vs Number of Cache Edges

Figure 4.7 shows the number of cache edges |Ec | as a function of the shard size parameter w .

Unsurprisingly, the number of cache edges decreases with increasing shard size, but there are

numerous plateaus in the curve, indicating that for our test portfolio, changing the value of w

by small increments had little effect on |Ec |.

This is caused by vertices in T with many in-neighbors, all of large, but roughly equal

subtree weight, say n . For any such vertex v , if w >= n , then all of v ’s in-edges will be selected

as cache edges. If w < n , then none of v ’s in-edges will be selected. Thus, at w = n , there is a

jump in the number of cache edges.

As a result, finding the value w that produces a particular number of cache edges is

difficult. In a production system, the step that partitions T into subtrees may need to be run

with different values of w , in order to find a partition that generates an appropriate number

of cache edges.

4.5.3 Analysis Cost vs Invalidated Edges

To measure the impact of the number of invalidated cache edges on the cost of an incremental

portfolio analysis, we ran multiple 10,000-trial incremental analyses on partitions of our

portfolio graph into shards with parameter w = 100,000, w = 250,000, and w = 500,000. These

67

103 104 105 106

w, desired shard size

101

102

103

104

105

|E
c|,

 n
um

be
r o

f c
ac

he
 e

dg
es

Figure 4.7: Number of cache edges generated for different values of the shard size parameter
w .

shard sizes resulted in 2808, 702, and 9 cache edges, respectively. For each partition, we

measured the cost of an incremental analysis as a function of the number of invalidated cache

edges. For all three values of w , the shard graph had one shard containing the sink of the

portfolio graph and all other shards had out-edges to this sink shard and no edges between

each other. This is because, while the portfolio graph is extremely large, it has a relatively small

depth or distance from any source to the sink and is generally tree-like, making it unlikely to

find large enough components that do not contain a sink or source vertex during cache edge

selection. As a result, a certain number k of invalidated cache edges translated directly into

the evaluation of k +1 shards during an incremental analysis.

For w = 100,000 and w = 250,000, the sink shard had approximately 8,000 vertices and

contained all reinsurance treaties and insurance contracts for high-value properties. The

remaining shards were portions of the primary insurance business unit subgraphs covering

around 25,000 and 100,000 locations, respectively.

For w = 500,000, the sink shard became extremely large, containing approximately 250

million vertices. This was the result of two factors: w was larger than the size of any individual

primary insurer business unit subgraph, and the reinsurer’s contractual terms subgraph was

densely connected, containing almost no bridges. Thus, once the partitioning algorithm

decided not to form a shard for any individual primary insurer business unit, many of these

68

0 100 200 300 400 500 600
Cache edges invalidated

0

50

100

150

200

250

300

Ru
nn

in
g

tim
e

(s
ec

)

w = 250,000
w = 100,000

Figure 4.8: Running time of an incremental analysis as a function of the number of invalidated
cache edges on a cluster of 350 c5.2xlarge instances. Running times are averaged across 5
runs.

subgraphs merged with the reinsurer’s contractual terms subgraph to form a very large shard.

For this experiment, we provisioned 350 c5.2xlarge instances. Each such instance had

16GB of memory and 8 virtual cores, running on a 1st or 2nd-generation Intel Xeon Platinum

8000 series CPU. All input data and cache was stored entirely on Amazon S3. For reasonable

shard sizes, these instances have sufficient memory to carry out an incremental analysis

across a small number of trials. However, due to the extremely large sink shard for w =

500,000, an incremental analysis with this shard size parameter has to evaluate around 80%

of the entire portfolio graph, which would require more memory than which is available

on c5.2xlarge instances. We therefore could not run any incremental analyses with the w =

500,000 partition on our c5.2xlarge cluster. On clusters with more memory, the w = 500,000

partition is expected to perform extremely poorly, for similar reasons. Because the sink shard

contains approximately 80% of the entire portfolio graph, each incremental analysis must

process, at minimum, 80% of the entire portfolio graph.

Figure 4.8 shows the running time of an incremental analysis with w = 100,000 and w =

250,000 for up to 600 invalidated cache edges. With a shard size of w = 100,000, even an

incremental analysis with an unrealistically high number of 500 invalidated cache edges took

less than 4 minutes. Due to the larger shard size, the running time of an analysis with shard size

69

parameter w = 250,000 increases faster as the number of invalidated cache edges increases.

For more than 300 invalidated cache edges, the larger shard size resulted in the analysis

using more memory than available on c5.2xlarge instances. This memory limit was reached

only after 600 invalidated cache edges for the smaller shard size achieved with parameter

w = 100,000.

As we’ve seen in Section 4.4.2 (and explore in more detail in Section 4.5.5), each incremental

analysis use case typically updates only one primary insurance, reinsurance or retrocession

structure of the portfolio graph. This means that changes for each individual use case are

highly localized within a small number of structures within the portfolio. Because of this, a

series of changes that results in more than 10–20 invalidated cache edges represents significant

changes to the graph, and is atypical for an incremental analysis.

Figure 4.9 shows the results for a smaller range of invalidated cache edges corresponding

to typical portfolio updates. In this range, the larger shard size achieved with parameter

w = 250,000 resulted in faster running times. Since all cache edges in the partition were

in-edges of the sink shard for both w = 100,000 and w = 250,000, this means that all cached

YELTs need to be read from Amazon S3 no matter how many cache edges are invalidated. The

significantly higher number of cache edges for w = 100,000 led to a significantly higher I/O

cost. Figure 4.9 demonstrates that with parameter w = 250,000, an incremental analysis after

virtually any realistic portfolio update takes less than 35 seconds. Any portfolio update that

affects only reinsurance treaties and none of the primary insurer contracts, a common use case

as discussed in Section 4.5.5, does not invalidate any cache edges. Without invalidated cache

edges, an incremental analysis took around 11 seconds in our experiments for w = 250,000.

For reference, the from-scratch portfolio analysis in Chapter 3 took approximately 1000

seconds to perform without the use of caching. On our c5.2xlarge cluster (which has almost

exactly the same total memory, virtual cores, and cost per hour as the cluster used in Chapter 3),

the same portfolio with w = 250,000 and a typical range of 0–10 invalidated cache edges,

caching resulted in 40–90 times faster processing.

4.5.4 Cluster Comparison

Due to the c5.2xlarge cluster’s inability to complete incremental analyses with more than

300 invalidated cache edges (w = 250,000), we conducted another set of experiments using a

cluster with a much higher per-node memory capacity. The c5.18xlarge cluster consisted of

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Cache edges invalidated

10

15

20

25

30

35

40

45

Ru
nn

in
g

tim
e

(s
ec

)

w = 250,000
w = 100,000

Figure 4.9: Zoomed view of Figure 4.8 for up to 18 invalidated cache edges.

40 c5.18xlarge Amazon EC2 instances. Each c5.18xlarge instance had 144GB of memory and

72 virtual cores, running on the same CPU series as the c5.2xlarge nodes. Both the c5.18xlarge

cluster and original c5.2xlarge were roughly equal in terms of memory and compute power.

In total, the c5.2xlarge cluster had 5,600GB of memory and 2,800 vCPUs, while the c5.18xlarge

cluster had 5,760GB and 2,880 vCPUs. Both clusters had approximately the same hourly rental

cost.

In Figure 4.10, we show the incremental analysis running time of the two clusters with

w = 250,000 from 0 to all 702 invalidated cache edges. As seen in Figure 4.8, the c5.2xlarge

cluster runs out of memory while attempting to process any incremental analysis with greater

than 300 invalidated cache edges. The c5.18xlarge cluster was able to compute all incremental

analyses without running out of memory, despite having approximately equal total memory

capacity. This is because each compute node must hold one copy of the portfolio graph in

memory at all times during processing. The graph is shared across all worker threads. Since

there are only 40 compute nodes in the c5.18xlarge cluster, only 40 copies of the graph need

to be held in memory across the entire cluster. In the c5.2xlarge cluster, 350 copies must be

held in memory, resulting in limited memory when more cache edges have been invalidated

and more shards of the graph need to be loaded.

For the incremental analyses the c5.2xlarge cluster was able to process, the c5.18xlarge

cluster had slower running times in general. Since each instance of the c5.18xlarge cluster

71

0 100 200 300 400 500 600 700
Cache edges invalidated

0

200

400

600

800

1000

Ru
nn

in
g

tim
e

(s
ec

)

c5.2xlarge cluster
c5.18xlarge cluster

Figure 4.10: Running time of an incremental analysis as a function of the number of invalidated
cache edges across different cluster configurations. Running times are averaged across 5 runs.

needed to process a large number of trials to maximize CPU utilization, the 10,000 trials were

bundled into a small number of jobs. If certain jobs contain longer running trials, then the

entire analysis may wait for the completion of one or two jobs. Similarly, if one instance

encounters rate limiting or network interruptions, a single large job can be significantly stalled

before eventually completing or being rescheduled by the queue. These problems were largely

avoided on the c5.2xlarge cluster, due to its finer distribution of trials.

We note that the difference in performance between the two clusters can be attributed

to poor load balancing on the c5.18xlarge cluster. With a more nuanced distribution of trials

to each worker (e.g. dynamic load balancing [33]) we expect the c5.18xlarge cluster to have

roughly comparable performance to the c5.2xlarge cluster. However, because we believe that

the extreme majority of incremental analyses will contain far fewer than 300 invalidated cache

edges, we leave this for future work. To cover the unlikely case when an incremental analysis

requires recomputing a significant percentage of the portfolio graph, a check can be added

that provisions higher-memory resources when the number of invalidated cache edges is

large.

Figure 4.11 shows the results for a smaller range of invalidated cache edges corresponding

to typical portfolio updates. As with Figure 4.10, the c5.18xlarge cluster performed poorer in

comparison, taking on average about 10-15 seconds longer than the c5.2xlarge cluster, with

72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Cache edges invalidated

10

20

30

40

50

60

70

Ru
nn

in
g

tim
e

(s
ec

)

c5.2xlarge cluster
c5.18xlarge cluster

Figure 4.11: Zoomed view of Figure 4.10 for up to 18 invalidated cache edges.

some spikes taking more than 35 seconds longer. The spiking can also be attributed to the

coarse distribution of work on the c5.18xlarge cluster.

Since an incremental analysis with more than 10–20 invalidated cache edges would be

atypical, we conclude that the c5.2xlarge cluster is generally the better cluster for processing

incremental analyses due to its faster running time.

4.5.5 Use Case Evaluation

In this section, we explore the running time of incremental analyses over the set of common

reinsurance use cases described in Section 4.4.2. We used the shard size parameter w =

250,000 in these experiments, as it resulted in the best running times for small numbers of

invalidated cache edges in the experiments reported above. The use cases can be divided into

two categories, of which we evaluate separately, depending on the parts of the portfolio graph

affected by the application of the use case.

Changes to reinsurance treaties. The first class of use cases only affects the reinsurance

structures of the portfolio graph. Portfolio updates of this class include the “pricing”, “retroces-

sion pricing” and “renewal planning” use cases. Low running times are extremely desirable

for these types of analyses, as they are typically done while negotiating terms over the phone.

Since multiple reinsurers are competing for the same pool of client contracts, being early to

73

make a fair offer significantly increases the reinsurer’s chances to get a share of the contract.

Since all reinsurance structures are part of the sink shard in the w = 250,000 partition of the

portfolio graph, these updates do not invalidate any cache edges and thus, as reported in

Section 4.5.3, take around 11 seconds to perform on average.

Changes to primary insurer structures. The second class of use cases covers modifications

that affect the structure of the portfolio’s underlying primary insurance contracts. This covers

the “new business”, “renewal” and “binder book update” use cases.

In the “new business” use case, the vertices representing the added primary insurer’s

structure are added to the portfolio as a new shard. The edges connecting the new client to

the reinsurance portfolio are added as (initially invalidated) cache edges. The imbalance in

the partition this may create can be corrected in the next from-scratch portfolio analysis.

In the “model update” and “binder book update” use cases, the vertices that load the

input loss distributions are modified to load the updated loss distributions. For both use

cases, all shards containing the new or modified vertices must be reevaluated, as well as their

dependent shards.

For both use cases, the running time was the same and depended primarily on the size of

the primary insurer shard being added or modified. Figure 4.12 shows the running time for the

“new business” use case on our c5.2xlarge cluster as a function of the size of the added primary

insurer structure. Typical primary insurers cover up to 100,000 locations, a scenario that led to

the incremental analysis taking no more than 16 seconds on our cluster. Some large primary

insurers insure 1,000,000–10,000,000 locations. The running time of an incremental analysis

naturally increases for such updates. Adding an atypically large new business of 10,000,000

locations is equivalent to increasing the total size of the portfolio graph by about 14% and

resulted in an average running time of approximately 230 seconds. This is still 4 times faster

than a from-scratch analysis and is acceptable, given that “new business” portfolio updates

(especially of this size) usually do not happen in “real time” while negotiating treaty terms

over the phone.

4.6 Conclusion

We have demonstrated how to support fast incremental analyses on complex location-level

reinsurance portfolios containing hundreds of millions of contracts. Fast incremental analyses

74

102 103 104 105 106 107

Locations added

50

100

150

200

Ru
nn

in
g

tim
e

(s
ec

)

Figure 4.12: 10,000-trial running time as a function of number of locations added for the “new
business” use case. Running times are averaged across 5 runs.

are achieved by selecting a small number of cache edges in the graph whose loss distribution

data is cached on distributed storage. This allows an incremental analysis to avoid reevaluating

the portion of the portfolio that feeds into a cache edge unless a portfolio update invalidates

the loss distribution associated with the cache edge. As verified using a number of typical use

cases, our cache edge selection strategy is resilient to multiple modifications to the graph, and

it exposes a tuning parameter to tune the trade-off between storage cost and reducing the

portion of the portfolio to be reevaluated in an incremental analysis.

Reevaluating only part of the portfolio graph in an incremental analysis turned loading the

portfolio graph into memory into a bottleneck, which we alleviated using a hierarchical graph

representation. At the bottom level is the set of shards into which the graph is partitioned by

the cache edges. The dependencies between shards are recorded in a small shard graph. This

shard graph allows us to identify the shards required to complete a given incremental analysis,

so that shards unnecessary to the current analysis are never loaded.

Using a 2,800-vCPU cloud cluster, we observed incremental analysis running times as low

as 11 seconds with only 702 cache edges for several reinsurance analyst use cases. Without

caching, the same incremental analysis took over 1000 seconds.

With the introduction of caching, our system from Chapter 3 now supports interactive

workflows, making it an interactive big data decision support system. Our system is capable of

75

processing several terabytes of input data through a directed graph of hundreds of millions of

vertices representing financial transformations. Our system outputs a single portfolio loss

distribution, which can be used by reinsurers to help price reinsurance contracts and help

determine which contracts they should underwrite and add to their portfolio. As explored

through several use cases in this chapter, the introduction of caching allows reinsurers to see

the impact adding a specific contract or adjusting the terms of an existing contract has on

the loss distribution of their portfolio within approximately 11 – 16 seconds of making the

request. This fast response time allows reinsurers to operate the system interactively, making

additional adjustments and requests to the system based on the previous responses generated

by the system seconds ago.

Chapter 5

Background: Online Analytical Processing and Staleness

In this chapter, we give an introduction to Online Analytical Processing (OLAP) and staleness

in distributed data stores. This will serve as the background for Chapter 6, where we will

explore staleness in the context of real-time OLAP systems.

5.1 Background

5.1.1 Online analytical processing

Online analytical processing (OLAP) data stores are designed to quickly present generally

summarized, broadly scoped information to decision makers (for example, managers and

executives) in order to allow them to make informed decisions. A typical OLAP query often

involves operating on several thousands or millions of individual data points in the system.

Traditional transactional databases, while well suited for smaller queries that operate on

one or two dimensions of the data, are ill-suited for executing such large-scale queries in an

acceptable amount of time. As such, OLAP data stores, built specifically to efficiently compute

large-scale decision support queries, have grown into a billion-dollar industry [23].

In general, OLAP data stores can be viewed on an abstract level as a large, multi-dimensional

data cube [90]. A data cube is composed of several dimensions, where each dimension corre-

sponds to a specific property, entity or metric that is deemed important for making OLAP-

supported decisions [41]. For example, time, location and product would be three common

dimensions for a data cube representing sales by a company. A hierarchy is associated with

each dimension, and each record written to an OLAP data store contains a value for each

dimension at the finest possible hierarchical level. Each record also contains one or more

measure values, which can be combined using aggregation functions (e.g. sum, max). For

example, the data cube for a retail store chain may have dimensions for time and region. A

hierarchy for the time dimension may be year, month, day and hour, while the hierarchy for

region may be country, province, city and address. Each sale at a store would write a record

76

77

with the time and location to the OLAP store, along with the sale price as the measure value.

Using a data cube and its associated hierarchies for each dimension, users can summarize

or eliminate specific hierarchical levels or dimensions to generate a more compact data cube,

called a cuboid. Every cuboid has its own measure values, which can be found by aggregating

the measure values of all records within the hierarchies covered by the cuboid. Figure 5.1

illustrates a simple data cube, where the cuboid for 2020 US sales is composed of the sum of

four smaller cuboids representing each quarter of the year.

Time Departm
ent

Lo
ca

tio
n

$100

$50

$125

$60

$20

$130

$110

$50

$70

U
S

 C
AN

M

EX

2018 2019 2020

Q1 Q2 Q3 Q4

U
S

$10
$25

$15

$20

Figure 5.1: A simple data cube demonstrating how a cuboid can “contain” other cuboids.

The set of data cube operators most commonly seen in the literature are roll-up, drill-

down, slice and dice [3, 38, 41, 89]. Rolling-up a data cube essentially consolidates levels of

a dimension into a single level. As an example, consider a data cube where one dimension

represents time. The cube has 365 cuboids in that specific dimension alone, representing

revenue (as the measure value) for each day in a specific year. An analyst may not want that

level of detail, and decides to roll up the time dimension of the cube to the next level in the

78

hierarchy, the month. A new cube is generated where there are now only 12 values in the time

dimension instead of 365. The measure values in each cuboid now become the aggregation of

the measures of each of the cuboids in the previous cube, grouped by month. In this case, it

makes sense for the aggregation to be the sum function, but other aggregation functions may

be used.

Drill-down operates in a somewhat opposite manner to roll-up. Instead of summarizing

data and reducing the number of cuboids in a cube, drill-down introduces more detail to the

cube. While roll-up steps up a level of the dimension hierarchy (say, day to month), drill-down

steps down a level in the hierarchy (month to day). Continuing from the previous example, if

the analyst decides they would now like to look at daily revenue once again, they perform a

drill-down operation on the time dimension, generating a new cube with 365 sets of cuboids,

one for each day in the year.

Slicing allows a user to remove specific elements of the hierarchy for a dimension from

the cube, resulting in a smaller cube where the specified elements of the dimension have

been removed entirely. A dice operation is simply multiple slice operations across multiple

dimensions executed at once. An analyst wanting to determine the revenue during the first

quarter of the year may do so by slicing all months other than January, February and March.

5.1.2 Distributed Consistency

Quorum-based Replication

To make a data store highly available, data store architects often turn to replication. Replication

is the act of storing data on multiple independent nodes, in such a way that if one node

becomes inaccessible, there exist several other functioning nodes that contain the same data.

Replication can also serve to further scale-out or load-balance a system, as read-only traffic to

specific rows of data no longer has to hit the same node; load can be spread out across the

different replicas. Replication is also important for data stores which have users in significantly

different locations in the world, as reading or writing to a node across the world is likely to

have unacceptable levels of latency. Having replicas spread out across the world can help

solve this problem as well.

While introducing replication to a system solves many issues important for data acces-

sibility, it also introduces new problems. Now that a system has, say N replicas of its data

distributed on different nodes, the data store’s existing algorithms for reading and writing

79

need to be modified. Since keeping all replicas up to date is critical, writes need to arrive at

each replica in a timely manner. As write operations now must write to multiple replicas, each

replica is likely to have a significant period of time where its contents differ from the other

replicas (due to factors like varying network latency and workload). This desynchronization

of data complicates read operations, as now measures must be taken to ensure the result of

the read is up to date. This is best summed up with the CAP theorem [35], which states that

no distributed data store can ever simultaneously provide strong consistency, availability and

partitioning (or, fault-tolerance) guarantees.

One widely popular method of approaching these problems is to implement a quorum

consensus algorithm. Under this scheme, two new variables are introduced to the system, W ,

the “write quorum” and R , the “read quorum”. Under a write operation, all N replicas must

be sent the write. After W replica responses indicated the write was committed, the write

operation, from the client’s perspective, is complete. Note however that in the background,

writes for the remaining N −W replicas are in progress. Under a read operation, all N replicas

are queried for the same data and, like quorum-based writes, the client waits until it receives

R replica responses. Once the R responses have returned, the most up-to-date response

is selected, using some means of comparison (in key-value stores, this is usually a simple

timestamp storing the time of last write).

Figure 5.2 presents a graphical representation of a read in a quorum system. The client C

begins by sending a read request to each of the N replicas, represented here as B1 through

B3. Once the client receives R = 2 replica replies, represented as the dotted lines, the client

selects the most up-to-date response, completing the read operation. The remaining N −R

responses (1 in this example) are ignored by the client. Figure 5.2 could also be used as an

example of a write operation in a quorum system. The write is sent to all N replicas and, after

the client receives W = 2 responses, the write is considered complete.

Implementing these quorum rules is not enough to guarantee up-to-date reads. Values of

N , W and R must be configured in such a way to ensure that at least one of the R responses

contains the most up-to-date version of the data being queried. For example, consider the

case where [N=3, W=1, R=1]. Under these parameters, all writes complete once the data

has been committed to one replica, while all reads complete when the client receives its first

response from a replica. In other words, a write followed by a read on the same point will only

be up-to-date if the first replica to reply to the read is the first replica to reply to the write.

80

C

B3B2B1

Figure 5.2: An example of a read operation using quorum rules. C is the client, while B1, B2

and B3 are the nodes containing the replicated data relevant to the query. Solid lines represent
to read requests, and dotted lines represent responses to the client.

Obviously then, reads are not guaranteed to be up to date in this system.

A well known property of quorum consensus systems is that reads are guaranteed to always

be up to date if W +R >N . Under this condition, for any read/write pair, there is always at

least one more read or write replies than the number of replicas. It then follows that there

must be at least one replica that has replied both to the write as well as the read. Therefore, if

W , R and N are configured such that W +R >N , each read is guaranteed to read the latest

write. However, it is also well known that large W , R and N can negatively impact several

performance characteristics of a data store.

Types of Consistency

In general, we refer to consistency as a system state of a data store where read or query

operations retrieve sufficiently recent results from the data store. However, “consistency” is

only a useful term from a general perspective. One survey on the topic [85] compiles several

popular definitions of consistency which are applicable mostly to key-value stores. Here we

present the definitions relevant to this chapter described in the survey and other popular

literature, with some slight revisions so that the definitions may be applicable to data stores

where reads operate on multiple writes.

“Strong consistency” guarantees the system offers the best possible consistency at all

times. Specifically, under strong consistency, all reads are guaranteed to use the values of

the latest relevant writes to the data store. Since this guarantees perfect consistency, the CAP

theorem implies that any system that offers strong consistency will have poor availability,

partitioning, or both. For example, Cassandra [54] under the W +R >N quorum configuration

guarantees strong consistency, but offers poorer availability when compared with less strict

81

configurations.

“Read my writes” guarantees strong consistency, but only for the writes initiated on the

same client as the reader.

The “monotonic reads” guarantee requires that, on each client, once a point has been read

by a query, any subsequent reads of the same point must read the same or more recent value

as the previous read. Essentially, this means that consistency cannot degrade over time.

“Eventual consistency”, described in more detail in [92], guarantees that, given a finite

amount of time, the system will eventually always read the most recent writes. This is the

most lenient guarantee of all, but is typically the least sensitive to partitioning and can provide

almost arbitrarily high availability. Additionally, while these aren’t covered under the CAP

theorem, eventual consistency also often offers the best latency and throughput.

A system that obeys “k -regular consistency semantics” [6] guarantees that, provided the

read and write quorums do not overlap, the result from one of the last k completed writes

is returned. If there is overlap between the read and write quorums, either a result from the

last k completed writes is returned, or the result from a more recent write which has not yet

completed on W replicas is returned.

A system that obeys “bounded staleness” has the view that a bounded amount of staleness

(that is, the possibility of system inconsistency) in a system is acceptable. k -regular consistency

semantics can be viewed as a type of bounded staleness that allows for a bounded amount of

staleness with respect to the versioning or ordering of writes.

A final consistency guarantee covered in this thesis, described in [16, 17, 18], is probabilis-

tically bounded staleness (PBS). PBS is similar to bounded staleness, in that they both provide

guarantees based on time or version bounds. However, while bounded staleness is strict and

guarantees every query obeys its bound, PBS requires each query to meet its bound with a

certain probability. PBS is covered in depth in the following section.

5.2 Related Work

5.2.1 Staleness in OLAP

Several papers have been published on the topic of imprecise or ambiguous data in OLAP

systems [19, 24, 63]. However, instead of focusing on the uncertainties that arise from lack

of synchronization and eventually consistent data, these papers focus on dimensional data

82

and measures which are uncertain by nature. For example, all measures may have a certain

amount of error with a known distribution. Another work [19] proposes a modified OLAP

model which incorporates this concept of uncertain data and, much like this chapter, presents

different metrics of query correctness within this context. However, since the metrics are

within the context of inherently uncertain data, the model and corresponding metrics are

inapplicable to eventually consistent OLAP systems studied in this chapter.

Another work [75] presents a middleware for distributed OLAP systems which manages

replication, insert and query operations through the system to guarantee a certain freshness

bound. The paper describes a “freshness index”, which measures how consistent a given

replica is at the current point in time from a scale of 0 to 1. The paper also presents a model

wherein query-answering OLAP nodes receive batch updates from writable nodes running

online transaction processing (OLTP) software. Under this model, the authors compute the

freshness index by dividing the time of the last update to an OLAP node by the commit time

of the most recent transaction on an OLTP node.

BatchDB [60] is a real-time OLTP/OLAP hybrid system that takes consistency into account

by ensuring all OLAP reads operate on a consistent snapshot of the database at a point in time.

That is, each read only accesses the writes before a certain timepoint, and no write after that

point is read. There is no guarantee how long it may take a write to be visible in the system,

and no discussion regarding what relative error or number of missed writes in an OLAP query

may look like.

Analyticdb [100] is another real-time OLAP system. It allows the user to send writes in a

strongly consistent mode (at the cost of increased latency) and an eventually consistent mode

(at the cost of data freshness). Under the eventually consistent mode, all writes are said to

be visible after a “bounded delay”, but there is little discussion regarding how this effects the

number of missed insertions or the relative error of OLAP queries.

Another work [55] describes an eventually consistent OLAP system where the user can

submit a query with an acceptable staleness range, specified as seconds since last update.

If a query accesses data from a snapshot which has not been updated within the provided

acceptable staleness range, the query is re-routed to another server to get a more recent version

of the data (at the cost of increased latency). To evaluate their system’s level of consistency, the

authors measured the amount of time it takes for writes to become visible to reads (without

using the acceptable staleness range feature). In their experiments, writes were typically

83

visible after 1 millisecond.

5.2.2 Probabilistically bounded staleness in key-value stores

In recent years, there has been increased interest in providing consistency guarantees for

quorum systems that operate probabilistically, with several papers published on the subject [2,

8, 16, 17, 18, 59, 62, 95]. In [17], the authors examine eventual consistency from the perspective

of quorum based key-value data stores and present a probabilistic metric of staleness for

partial quorums. First a closed form method for determining the probability of no intersection

between randomly selected read and write quorums is given:

p =

��N−W
R

�

�

N
R

�

�

(5.1)

In this equation, the numerator becomes the number of different ways R replicas can be

selected from the set of replicas that do not contain the most recent write (N −W), and the

denominator becomes the number of ways R replicas can be selected from the total number

of replicas N . In other words, the number of quorum selections that yield no intersection

between reads and writes, and the number of possible quorum selections in total.

With this in mind, a PBS k -staleness is introduced whose definition is included from [17]

below:

Definition 1 (PBS k -staleness). A quorum system obeys PBS k -staleness consistency if, with

probability 1−p , at least one value in any read quorum has been committed within k versions

of the latest committed version when the read begins.

The value p , while not included in the name of definition, is also a parameter similar

to k . For applications where there is little tolerance for stale results, a system that obeys

PBS k -staleness for very low values of p would likely be more desirable than a system that

only obeys PBS k -staleness for larger values of p . PBS k -staleness essentially describes the

probability of a read having k -regular consistency semantics (as described in Section 5.1.2).

Following this, a closed form for determining the upper bound of the value of p for PBS

k -staleness is derived. The closed form equation does not take into account time, and in-

stead assumes each write is committed to only W replicas. Because of this, p becomes the

probability of the read quorum not intersecting with any of the write quorums, which can be

84

determined using equation 5.1, for k versions:

p ≤

��N−W
R

�

�

N
R

�

�k

(5.2)

The closed form describes an upper bound of p , as it does not account for the fact that

other replicas may receive and commit the write before the read is processed.

Additionally, a second type of bounded staleness is presented in the paper. PBS t -visibility

imparts time onto the metric, and therefore reflects how long it takes for writes to become

eventually consistent. The definition as seen in [17] is presented verbatim:

Definition 2 (PBS t -visibility). A quorum system obeys PBS t -visibility consistency if, with

probability 1−p , any read quorum started at least t units of time after a write commits returns

at least one value that is at least as recent as that write.

In PBS t -visibility, t encodes a lower bound on the range of time between the completion

of the latest partial write quorum (W write replies from W replicas) and the time of initiation

of the read quorum. Since writes in a quorum system arrive at different replicas at different

times, PBS t -visibility is useful for determining the impact of system-specific read and write

latencies on consistency. However, because t -visibility strongly reflects the system, and not

the quorum configuration as k -staleness does, it is difficult to construct a closed form analysis

of t -visibility.

To address this, a method for examining t -visibility in the context of Dynamo-style (that is,

distributed, quorum-based, key-value stores) data stores is discussed. In Dynamo-style stores,

inconsistency is introduced solely through message reordering. A Dynamo-style system where

all reads and writes are serialized and executed in the same order across all replicas would

guarantee strong consistency. Therefore, in order to model inconsistency in a Dynamo-style

system, message reordering must also be modeled. Using the WARS model, writes and reads

are modeled using system-specific time distributions. These distributions are:

• The replica write latency distribution Dw

• The write reply (i.e., acknowledgement) latency distribution Da

• The replica read latency distribution Dr

• The replica read response latency distribution Ds

85

For example, a write followed by a read, using WARS, would be modeled as follows. The

coordinator begins by sending a write request to N replicas. The distribution Dw is sampled

from N times to determine the time taken for each replica to receive the write request and to

complete the write locally. The distribution Da is sampled once for each replica, and summed

with each replica’s sampled value from Dw to obtain the time at which the coordinator has

received the quorum write reply from each replica. Of these, the W th smallest time is the time

at which the coordinator receives W replies from the replicas, satisfying the partial quorum

rules for a write. Reads behave similarly, except the distribution Dr is used to sample the time

taken for a read request to arrive and complete locally on a replica, and Ds is used to sample

the time taken for a read reply to arrive at the coordinator.

As is illustrated in Figure 5.3, t -visibility can be tested using WARS by modeling a single

write, waiting t units of time after W write acknowledgements, and modeling a read. If, of

the R replicas which responded earliest, at least one completed their read after the write

completed, then this specific read is said to contain the most recent write.

This sets the stage for a relatively simple method of determining the value of a system’s

probability p of PBS k -staleness using event-based simulation. Simply construct a Monte

Carlo simulation, where each trial is a WARS-style write, followed by a delay of t units of

time, followed by a read. As mentioned above and illustrated in Figure 5.3, this can be easily

computed by sampling from Dw , Da , Dr and Ds and checking if the write and read has been

reordered in all of the read replies. If enough trials are simulated, the value of ps t is estimated

by the ratio of trials which were not consistent over the total number of trials.

86

Coordinator Replica

send to N replicas

Time

WRITE

ACKwait for W
responses

t seconds elapse

READ

RESPONSE
wait for R
responses

stale if
READ
arrives
before
WRITE

send to N replicas

Figure 5.3: The WARS model for Dynamo-style data stores, from [17] with minor adjustments
to notation

Chapter 6

Probabilistically Bounded Staleness in Real-time Online Analytical

Processing

In this chapter, we present Aggregate Probabilistically Bounded Staleness (A-PBS). Inspired

by the Probabilistically Bounded Staleness (PBS) measure [17] for key-value stores, A-PBS

measures staleness for aggregate queries. 1 While a key-value query only retrieves a single

key, an aggregate query in a distributed OLAP system typically aggregates a large set of data

items specified by a multi-dimensional bounding box in d -dimensional space. Instead of

examining the write/read history of the different copies of a single data item in the case of PBS,

the A-PBS measure introduced here depends on the write/read history of the different copies

of all data items within a multi-dimensional space, possibly the entire database. This greatly

increases the complexity of both measuring and modeling staleness, and clearly distinguishes

A-PBS for distributed OLAP systems from the PBS measure for key-value stores.

The A-PBS measure introduced here includes a formal model for describing an OLAP

system’s data stream and the state of consistency for individual aggregate queries. A-PBS uses

either the number of missed inserts or the relative numerical error (incurred by reading stale

data) of the query result to quantify staleness. These different cases do not arise for PBS in

data stores. We introduce (t , c)-staleness for queries that have missed more than c inserts

and were issued t time units after the last write, and (t ,ε)-staleness for queries that have a

relative numerical error greater than ε and were issued t time units after the last write. These

measures are then utilized to introduce the following system-wide probabilistic staleness

measures: bounded (t , c)-staleness and bounded (t ,ε)-staleness.

Simulation

To complement A-PBS, we also present a generic model and corresponding Monte Carlo

simulation of data aggregation in quorum-replicated distributed OLAP systems. Given a list of

1The core contributions of this chapter were published in the proceedings of the 21st International Database
Engineering and Applications Symposium [21]

87

88

system parameters, our model and simulation can be used to estimate staleness for aggregate

queries, thereby enabling the exploration of the trade-offs between consistency and latency

in quorum-replicated distributed OLAP systems.

Case Study

We used the VOLAP [29] quorum-replicated distributed OLAP system for a case study to

evaluate our A-PBS measure and Monte Carlo simulation. We observed that the bounded

(t ,ε)-staleness of aggregate queries predicted through our A-PBS measure and Monte Carlo

simulation was close to the actually observed staleness of aggregate queries in VOLAP.

Our A-PBS analysis revealed that for VOLAP a partial quorum with [N=3, W=0, R=1] is

“good enough” in practice. Even very large aggregate queries that cover the entire database

and are issued only 10 milliseconds after the last insert have ≈80% probability to have zero

staleness. If staleness occurs for such aggregate queries, the number of missed data items is

expected to be low, as only 0.5 inserts are missed on average. This results in only a very small

numerical error in the aggregate query result for the mean and sum aggregation functions,

and very close to zero probability of any numerical error for the max aggregation function.

6.1 Aggregate Probabilistically Bounded Staleness (A-PBS)

In this section, we present Aggregate Probabilistically Bounded Staleness (A-PBS), a means of

analyzing consistency in distributed OLAP systems. Like PBS, A-PBS defines metrics examin-

ing the consistency of aggregate queries in terms of missed writes. Unlike PBS, since aggregate

queries, especially in OLAP, are conventionally numerical by nature [41], new consistency

metrics are introduced that view consistency from the perspective of numerical error.

6.1.1 Data Streams and Queries

While queries in key-value stores essentially retrieve a single value specified by a key from a

node, aggregate queries may involve a much larger percentage of the data. For example, a

single query in a typical aggregate OLAP system can operate on anything between a single point

in the system to all points across all nodes in the system. This is an important distinction which

divides key-value staleness analysis from aggregate OLAP-style staleness analysis. Therefore,

we begin with a set of definitions describing the stream of incoming insert operations to a

89

Time of operation initiation

Figure 6.1: A DATA(3, λ, D) insert stream. The white circles represent the points in time at
which inserts in the stream are sent from the client. The amount of time between adjacent
inserts is determined by sampling from an exponential distribution with parameter λ.

system, henceforth described as the data stream, and the coverage and aggregation function

of an aggregate query, both fundamental for further discussion of correctness in aggregate

stores.

Definition 3 (Input data stream DATA(n,λ, D)). DATA(n,λ, D) is a stream of n insert operations,

where each insert, with measure value sampled from the distribution D , is sent to the system

according to a Poisson process with rate λ.

Definition 4 (Aggregate query Q). An aggregate query Q is defined by an aggregate function

A and a coverage C which describes the probability each insert has of being required in the

computation of the aggregate function.

Figure 6.1 presents a graphical representation of a simple data stream. Since each insert in

the stream is sent to the system according to a Poisson process, the amount of time between

adjacent inserts in the stream follows an exponential distribution using the same λ parameter.

6.1.2 (t, c)-staleness

We define the notion of a partially committed insert (within the context of partial quorum

systems) as an insert that has been written to at least W replicas, but less than N replicas. A

read operation that depends on one or more partially committed inserts may or may not be

consistent, depending on which replicas are accessed by the system during the read.

From this, we define our first metric of staleness in an aggregate setting.

Definition 5 ((t , c)-staleness). Given an insert data stream DATA(n, λ, D), a query Q , initiated

t units of time after each insert in the stream has been partially committed, has (t , c)-staleness if

and only if more than c insert operations covered by the query’s bounding box were not included

in the computation of the aggregate function A.

90

Time of operation initiation

Time of operation partial committal

bc bc bc bc bc

bc bc bc bc bc
t

l

Time of operation committallbc bc bc bcbc

Figure 6.2: A query that has (t , c=1)-staleness. The upper bar represents the time of initiation
of a query or insert, the middle bar represents the time at which each insert has been partially
committed and the bottom bar represents the time at which the corresponding insert is
readable, or the cutoff time at which the query begins to read committed inserts. The last two
inserts in the stream and the query are reordered, so more than c = 1 inserts are missed.

Time of operation initiation

Time of operation partial committal

bc bc bc bc bc

bc bc bc bc bc
t

l

Time of operation committallbc bc bc bc bc

Figure 6.3: A query that does not have (t , c=1)-staleness. Since c = 1, the reordering of the
last insert in the stream and the query does not impact (t , c)-staleness.

Figures 6.2 and 6.3 demonstrate queries with (t , c)-staleness and without (t , c)-staleness,

respectively, and provide a visual representation of (t , c)-staleness and the “slack” parameters

t and c . As time proceeds from left to right, insert operations, represented by white circles,

are sent to the system according to a Poisson process with parameter λ. Consequently, the

distance of time between consecutive inserts obeys an exponential distribution with the same

λ parameter. Once each insert has been partially committed (for example, W replica replies

have been received in a partial quorum system), t units of time are waited until the query,

represented by the black diamond, is initiated.

Since aggregate query freshness depends on each point in a data stream, ensuring that

queries do not have (t , c)-staleness is potentially much more difficult to achieve than the

key-value PBS equivalent.

6.1.3 Staleness and Error

In key-value PBS, read operations are deemed fresh or stale solely based on the number of

writes missed by the read operation. In A-PBS, the number of missed insert operations is not

the only means of quantifying query staleness. The numerical error of the aggregation results

91

from a query can also be used as an indicator of a query’s staleness, which can be useful in

understanding the practical impact staleness has on a query’s result and how different the

result would be under a perfectly consistent system.

We refer to the (correct) result of a given aggregate query on a perfectly consistent system

as the true aggregate value, and the (possibly incorrect) result observed from issuing the same

query on an eventually consistent system as the observed aggregate value. We define the error

of a query as the relative error of the true aggregate value and the observed aggregate value,

or, more formally:

Definition 6 (Aggregate relative error). The aggregate relative error of a query Q with an

observed aggregate value of o and a true aggregate value of v is |o−v |
v .

With this in mind, we present a definition, much like (t , c)-staleness, to classify the result

of a query as being acceptably consistent, with respect to a relative error:

Definition 7 ((t ,ε)-staleness). Given an insert data stream DATA(n, λ, D), a query Q with

aggregation function A, initiated t units of time after each insert in the stream has been partially

committed, has (t ,ε)-staleness if and only if the query’s relative error is greater than ε.

The absence of (t ,ε)-staleness essentially places an upper bound ε on the relative error

of a query. A query whose relative error is less than or equal to ε is said to have an accept-

able amount of error, in which case the query is acceptably consistent (similar to c in (t , c)-

staleness). Where (t , c)-staleness measures staleness depending on whether or not points

are present during the time the aggregation takes place, (t ,ε)-staleness measures staleness

based on the result of the aggregation. Thus, (t ,ε)-staleness is dependent on the aggregation

function A used by the query, as well as the distribution D of measure values in the data

stream.

Another important difference is that, unlike for (t , c)-staleness, points missed by a query

only impact (t ,ε)-staleness if the missed point has an impact on the final aggregation. For

example, missing a single point will not likely have an impact on (t ,ε)-staleness when the

aggregation function is max, as that point would have to be the largest point covered by the

query in order to impact the result of the aggregation function. Conversely, missing a single

point when the aggregation function is count is guaranteed to increase the relative error of

the query.

92

6.1.4 Probabilistic Staleness

So far, we have examined how staleness impacts individual queries. Since we would like to be

able to reason about a system’s accuracy as a whole, we now introduce staleness metrics on a

system-based level.

Definition 8 (Bounded (t , c)-staleness). A system for aggregate queries on an input data stream

DATA(n, λ, D) has bounded (t , c)-staleness with probability p if and only if, with probability p ,

an aggregate query Q with coverage C does not have (t , c)-staleness.

Definition 9 (Bounded (t ,ε)-staleness). A system for aggregate queries on an input data stream

DATA(n, λ, D) has bounded (t ,ε)-staleness with probability p if and only if, with probability p ,

an aggregate query Q with coverage C and aggregation function A does not have (t ,ε)-staleness.

Using bounded (t , c)-staleness and bounded (t ,ε)-staleness, the probability of a system

being unacceptably inconsistent (determined by c or ε), can be described. For example, given

a system constantly ingesting a stream of new points at a rate of 10,000 a second, if we would

like to approximate the probability of a query with coverage C returning a result with a relative

error of no more than 0.01, we need only to model a stream DATA(n, λ= 1
10000 , D), and find the

probability p of bounded (t=0,ε=0.01)-staleness for the coverage C and given aggregation

function.

6.2 Simulation

In order to evaluate how the different parameters affect staleness within our model, a method

for estimating the probability p of bounded (t , c)-staleness and bounded (t ,ε)-staleness is

needed. To accomplish this, we use a Monte Carlo simulation to evaluate repeated trials

consisting of an insert stream followed by a query. The result of each trial is whether or not

the query has (t , c)-staleness or (t ,ε)-staleness.

6.2.1 Aggregate Model

The basis of our simulation is a simple model of a distributed quorum-replicated aggregate

system with the following properties:

• The set of multi-dimensional point data and their associated measure values is parti-

tioned into m partitions.

93

• Each partition of the data is redundantly stored in N buckets. The set of N buckets

which replicate a partition is called a bucket set.

• Location data used to determine which buckets store which points are held in a structure

called an index.

• Insertions and queries are produced by clients, and are sent to the index to route opera-

tions to the relevant buckets.

Insert operations in this model function similar to a typical quorum-replicated key-value

store. Inserts are sent from a client to an index, and are then routed to all N buckets within

the relevant bucket set. A response is sent to the client from the index once W buckets have

reported a successful write.

Like inserts, queries are initiated from a client and sent to an index. An index that receives

a query request must route the query to all N buckets for each bucket set relevant to the query.

Once at least R bucket set aggregations are received from all relevant bucket sets, the index

aggregates the responses from each bucket set and sends the final aggregation to the client.

Figure 6.4 presents a graphical representation of the model.

6.2.2 Simulation Parameters

Each simulated insert represents an insert operation as described in our distributed aggregate

model. Using a set of system parameters, which describe the latency timings of insert and

query operations of a system, the time at which each simulated insert in the stream is consis-

tent (or readable) at each of N replicas can be determined. The same set of parameters can

be used to determine the time a query arrives at each bucket in the system, and the set of R

buckets from each bucket set whose responses are the first to arrive at an index. Comparing

the insert committal times against the query arrival times can then be used to determine the

number of stale inserts.

A summary of the key system parameters is given in Table 6.1. T (M) is a distribution

which describes the network latency of sending a message from an index to a bucket or from

a bucket to an index. For simplicity, we assume that all query and insertion requests and

replies have the same impact on network latency, and thus network latencies for any type of

message (insert or query) sent within the system can be drawn from T (M). Tw (I) and Tw (B)

are distributions which describe the time taken by an index (I) or bucket (B) to complete the

94

b b b

b b b

I1 I2 Ij

B1
1 B1

2 B1
m

m sets of buckets

j indices

C2

b

b

b

b b bB2
1 B2

2 B2
m

b bBN
1 BN

2 BN
m

b

b

b

b

b

b

N
re
p
li
ca
s
p
er

b
u
ck
et

se
t

b

CbC1

Figure 6.4: Diagram illustrating the node structure of the aggregate model.

local computation required for an insert. Likewise, Tr (I) and Tr (B) describe the time taken by

an index or bucket to complete the local computation required for a query.

Name Description

T (M) Distribution of time taken to send a message from one node to another
Tw (I) Distribution of time taken for local insert work on an index
Tw (B) Distribution of time taken for local insert work on a bucket
Tr (I) Distribution of time taken for local query work on an index
Tr (B) Distribution of time taken for local query work on a bucket

Table 6.1: The set of system parameters

6.2.3 Algorithm

Each trial in our simulation begins by modeling the initiation time of each insert. We refer to

the initiation time of an insert as qi , where i is the number of inserts in the stream so far. We

assign the earliest insert in the stream time q0 = 0, and all subsequent inserts qi = qi−1+di ,

95

where di is drawn from the Poisson distribution with parameter λ. The committal time of

the insert for each of the N relevant buckets is computed by sampling from Tw (I), T (M) and

Tw (B) and adding the insert’s initiation time, qi . The quorum reply time (the time at which

the index has received the W write replies) is computed by adding a new sample from T (M)

to each bucket replica committal time, and selecting the W th fastest time. The committal

time of each insert, and the insert’s quorum reply time are stored for later use.

Once each insert has been simulated, the query simulation begins by determining the

time at which all inserts have been partially committed. This is accomplished by taking the

max of each insert’s quorum reply time from the previous step. The time is then offset by t

to get the time of query initiation. This value is added to a random sample of Tr (I) to get the

time at which the index has done its local bucket location lookup. Then, for each bucket B

in the system, the time of query arrival is recorded by adding a sample of T (M) to the time

the index has finished its local work. To determine which buckets are the first R responders,

the time of query arrival from each bucket is offset by random samples from Tr (B) and T (M).

From this, the time R responses have been received from each bucket set can be observed,

and the maximum value is taken to get the time the query has met its read quorum rules for

each bucket set.

The query simulation groups all buckets into two sets: those which have responded to

the query before R responses have been received from each bucket set, and those which

have not. Since those that have not responded in time are not included in the result of the

query, they may be safely ignored. The buckets which have responded in time will simulate an

aggregation operation on all inserts they contain (within the query’s coverage), excluding the

points that were committed locally later than the time of query arrival on the current bucket.

When evaluating (t ,ε)-staleness, the aggregation function provided should be used, while

when evaluating (t , c)-staleness, the count aggregation function should be used. Afterwards,

the freshest partial aggregation from each bucket set is determined by selecting the partial

aggregation with the greatest count value. The freshest partial aggregations from each bucket

set are then aggregated together, using the query’s specified aggregation function, to compute

the observed aggregation value. To compute the true aggregation value, all simulated inserts

are aggregated, regardless of committal time. This is the result of the aggregation we would

expect to get under a perfectly consistent system. With the true value and the observed

value, whether or not the query has (t ,ε)-staleness can be determined by evaluating the

96

0.000 2.284 4.568
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty Tw (I)

0.0000 0.0922 0.1844

Tw (B)

0.000 0.067 0.134

Tr (I)

0.0000 0.0069 0.0138

Tr (B)

0.0000 0.2789 0.5578

T(M)

Figure 6.5: Cumulative distribution functions for distributions Tw (I), Tw (B), Tr (I), Tr (B) and
T (M) used in Section 6.3. For legibility, only the first 99 percentiles are plotted.

error between the true and observed values. Likewise, (t , c)-staleness can be determined by

comparing the observed and true counts with value of c .

6.3 Case Study

In this section, we use the VOLAP [29] quorum-replicated distributed OLAP system for a

case study to evaluate our A-PBS metrics and Monte Carlo simulation. By using recorded

system parameters from VOLAP in our Monte Carlo simulation, we compare staleness metrics

obtained by simulation against actual staleness metrics observed from an OLAP system.

We obtained the operational latency distributions Tw (I), Tw (B), Tr (I), Tr (B)and the network

latency distribution T (M) by sampling the amount of time taken to execute or transmit an

insert or query operation in VOLAP. The latencies observed for VOLAP were from runs on an

Amazon EC2 cloud with 8 c4.xlarge nodes using the TPC-DS [1] data set with 8 hierarchical

dimensions. Read and write latencies were recorded while processing a workload composed

of an even mix of queries and inserts. The first 99 percentiles of the distributions used are

shown as cumulative distribution functions in Figure 6.5. The ingestion rate was measured to

be approximately 20,000 inserts per second with N = 3, or λ= 1
20000 seconds between inserts.

To determine the actual probability of bounded (t , c)-staleness on VOLAP, we first generate

a pool of queries of which we know the approximate coverage and aggregation result. To do

this, we submit to the system a stream of 100,000 insert operations, using the TPC-DS [1] data

set with 8 hierarchical dimensions as input. A quorum configuration of [N=1, W=1, R=1] is

used to ensure consistency during the query generation step. After all inserts are complete,

the random queries are issued to the system and their results are recorded. Once the pool of

queries with known aggregation results and coverage has been generated, we approximate the

probability of bounded (t , c)-staleness by repeating several trials of the following. We begin

97

5 10 15
0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
. o

f m
iss

in
g

no
 p

oi
nt

s
25% coverage

5 10 15
0.0

0.2

0.4

0.6

0.8

1.0
50% coverage

5 10 15
t elapsed (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. o
f m

iss
in

g
no

 p
oi

nt
s

75% coverage

5 10 15
t elapsed (ms)

0.0

0.2

0.4

0.6

0.8

1.0
100% coverage

Observed
Simulated

Figure 6.6: Observed and simulated bounded (t , c=0)-staleness with [N=3, W=0, R=1] and
varying query coverage

by clearing all previous inserts from the system and issuing the same stream of inserts (this

time with a partial or eventually consistent quorum configuration) used during the query

generation step. After waiting t units of time after W quorum responses from each insert

have been received, we issue a query from the pool. We compare the possibly incorrect result

against the recorded correct result to determine whether the query in this trial was (t , c)-stale

or (t ,ε)-stale.

Figure 6.6 plots the simulated and observed VOLAP probabilities of bounded (t , c=0)-

staleness across increasing t values in the x -axis with varying query coverages. We use

the quorum configuration [N=3, W=0, R=1] instead of the typical [N=3, W=1, R=1], as

setting W ≥ 1 in our test environment results in the relatively uninteresting case where nearly

all queries return correct results. When W = 0, queries are initiated t units of time after

the last item in the data stream has been sent, without waiting for any partial committal

98

responses. In both the observed and simulated experiments, the probability of bounded

staleness is proportional to the coverage of the query. Queries with higher coverage have a

lower probability of bounded staleness, as they cover a greater number of possibly unreadable

points. For < 100% coverage queries, the simulated probabilities line up reasonably well with

the observed probabilities of bounded staleness. For 100% coverage queries, the simulation is

somewhat pessimistic compared to the observed probabilities. This is likely because in VOLAP,

100% coverage queries are much faster to compute than < 100% queries. The simulation,

which uses the same latency distribution regardless of coverage, does not account for that.

In Figure 6.7, we plot the simulated probability and VOLAP’s observed probability of

bounded (t ,ε=0.00001)-staleness using various aggregation functions and measure distri-

butions. A small amount of relative error (0.00001) is allowed for demonstration purposes,

as setting ε= 0 is equivalent to bounded (t , c=0)-staleness for most aggregation functions.

We include the sum aggregation function, whose rate of change is steady regardless of the

number of points (similar to count), max, as its value is essentially determined by a single

point and is therefore highly insensitive to randomly selected missing points, and mean, as it

is a non-monotonic aggregation function whose rate of change drops as the number of points

in the aggregation increases. For the measure distributions, we use the folded normal distri-

bution with mean µ= 0 and standard deviationσ= 1 to represent a short-tailed distribution

of measure values, and an exponential distribution with λ= 1 to emulate the case where the

distribution of measure values is fat-tailed. Both distributions have been selected to yield only

non-negative values in order to further contrast sum, which is monotonically increasing if D

yields only positive values, with mean, whose aggregation value can increase or decrease on

the inclusion of a single point. 100% coverage queries on a data stream with 100,000 inserts

and quorum configuration [N=3, W=0, R=1] were used. In both the simulation and the

VOLAP experiment, the max aggregation function has a > 99% probability of the error being

bounded by ε, illustrating the function’s insensitivity to missing points. The sum and mean

aggregation functions have a much lower probability of bounded error, but still have a slightly

higher probability than bounded (t , c=0)-staleness in Figure 6.6 due to the slight amount of

slack in ε. We note that the mean aggregation function has a higher probability of bounded

error than sum. This is because the amount of relative error incurred by missing a point under

mean can be offset by missing a point on the side opposite of the true mean. Since we are

using positive distributions, a missed point under sum cannot be offset by missing a negative

99

5 10 15
0.0

0.5

1.0
Pr

ob
 o

f
0.

00
00

1
Exponential = 1.00, sum

5 10 15
0.0

0.5

1.0
Folded = 0.00 = 1.00, sum

5 10 15
0.0

0.5

1.0

Pr
ob

 o
f

0.
00

00
1

Exponential = 1.00, mean

5 10 15
0.0

0.5

1.0
Folded = 0.00 = 1.00, mean

5 10 15
t elapsed (ms)

0.0

0.5

1.0

Pr
ob

 o
f

0.
00

00
1

Exponential = 1.00, max

5 10 15
t elapsed (ms)

0.0

0.5

1.0
Folded = 0.00 = 1.00, max

Observed
Simulated

Figure 6.7: Observed and simulated bounded (t ,ε=0.00001)-staleness with [N=3, W=0,
R=1] and varying measure distributions and aggregation functions

point of similar magnitude. A small but noticeable gap in observed and simulated probability

of bounded error can be seen for the two measure distributions under sum and mean. The

exponential distribution results in a slightly lower probability with mean, as the long, thin tail

decreases the likelihood that a pair of missed inserts will offset each other, since the majority

of the points lie to the left of the mean. With sum, the exponential distribution performs

better, as a large part of the total sum is determined by a relatively small number of points

with large measure values, which are therefore less likely to be missed compared to the much

larger number of points with smaller measure values.

Figure 6.8(a) shows the expected number of missed inserts with varying coverage observed

from VOLAP. Figure 6.8(b) shows the average relative error of a 100% coverage query on a data

stream of 100,000 items with varying measure distributions and aggregation functions, also

observed from VOLAP. Both figures demonstrate that, in VOLAP, when queries are stale, their

100

results are expected to be only one or two points off from the true result.

0 5 10 15 20
t elapsed (ms)

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 m

is
se

d
 p

o
in

ts

100% coverage

75% coverage

50% coverage

25% coverage

0 5 10 15 20
t elapsed (ms)

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 r

e
la

ti
v
e
 e

rr
o
r

1e 5

Exponential λ = 1.00 sum

Exponential λ = 1.00 max

Exponential λ = 1.00 mean

Folded µ = 0.0 σ = 1.0 sum

Folded µ = 0.0 σ = 1.0 max

Folded µ = 0.0 σ = 1.0 mean

(a) (b)

Figure 6.8: Observed average number of missed inserts (a) and relative error (b) with [N=3,
W=0, R=1]

Figure 6.9 demonstrates the impact a system’s read and write speeds have on staleness

by plotting the simulated probability of bounded (t , c=0)-staleness with varying query (Tr (I),

Tr (B)) and insert (Tw (I), Tw (B)) distributions. Under the “fast reads” configuration, an expo-

nential distribution with λ= 1 (mean of 1 millisecond) is used for the query distributions, and

an exponential distribution with λ= 0.5 (mean of 2 milliseconds) is used for the insert distri-

butions. “Fast writes” uses λ= 1 for its write distributions and λ= 0.5 for its read distributions,

and “fast reads and writes” uses λ= 1 for all read and write distributions. In all configurations,

the network transmission distribution T (M) is set to λ= 1. The importance relative query and

insert speeds have for bounded (t , c)-staleness is clearly illustrated. When writes are as fast

or faster than reads, more inserts are likely to become accessible by a query in the extended

amount of time the query takes for processing at the index, leading to high probabilities of

bounded (t , c)-staleness. With faster reads, the opposite is true; queries spend less time being

processed at the index and thus queries arrive at buckets to aggregate insertions earlier.

6.4 Conclusion

Unlike the previous chapters which focused more on performance, scalability and availability

in reinsurance portfolio decision support systems, this chapter focused on consistency in

distributed Online Analytical Processing (OLAP) decision support systems, an area where

101

0 5 10 15 20
t elapsed (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
b
o
u
n
d
e
d
 (
t,
c=

0
)-

st
a
le

n
e
ss

Fast writes

Fast reads

Fast reads and writes

Figure 6.9: Probability of bounded (t , c=0)-staleness with varying read and write speeds

consistency is generally harder to measure. Here, we presented Aggregate Probabilistically

Bounded Staleness (A-PBS), a measure for the staleness of aggregate queries. Inspired by the

Probabilistically Bounded Staleness (PBS) measure [17] for key-value stores, A-PBS measures

staleness for aggregate queries in distributed OLAP decision support systems that aggregate a

large set of data items and depend on the write/read history of the different copies of all data

items covered by the query.

Our A-PBS measure includes a formal model for describing an OLAP system’s data stream

and the state of consistency for individual aggregate queries. A-PBS can use either the number

of missed inserts or the relative numerical error of the query result to quantify staleness. To

complement A-PBS, we have also presented a generic model and corresponding Monte Carlo

simulation of data aggregation in quorum-replicated distributed OLAP systems. Given a list of

system parameters, our model and simulation can be used to estimate staleness for aggregate

queries, thereby enabling the exploration of the trade-offs between consistency and latency

in quorum-replicated distributed OLAP systems.

In a case study evaluating our A-PBS measure and Monte Carlo simulation using the

VOLAP [29] quorum-replicated distributed OLAP system, we observed that the bounded

(t ,ε)-staleness of aggregate queries predicted through our A-PBS measure and Monte Carlo

102

simulation was close to the actually observed staleness of aggregate queries in VOLAP.

Our A-PBS analysis also revealed that for VOLAP a partial quorum with [N=3, W=0, R=1]

is “good enough” in practice. Even very large aggregate queries that cover the entire database

and are issued only 10 milliseconds after the last insert have ≈80% probability to have zero

staleness. If staleness occurs for such aggregate queries, the number of missed data items is

expected to be low, as at t = 10 milliseconds only 0.5 inserts are missed on average, resulting

in only a very small numerical error in the aggregate query result for the sum and mean

aggregation functions, and very close to zero probability of any numerical error for the max

aggregation function.

Chapter 7

Conclusion

In this thesis, we explored the design and development of interactive big data decision support

systems with four key characteristics in mind: performance, scalability, availability and

consistency. We did this within the context of two applications of interactive big data decision

support systems: location-level reinsurance portfolio analytics and real-time OLAP.

Chapters 2, 3 and 4 focused on performance, scalability and availability (and, to a lesser

extent, consistency) to develop an interactive reinsurance portfolio analytics system. Our

system is capable of modelling reinsurance portfolios at a resolution that other systems (both

academic and commercial) cannot. Chapters 5 and 6 focused solely on consistency. We

described a method for quantifying consistency in eventually consistent OLAP systems. We

applied our method to a real OLAP system to quantify the system’s level of consistency under

different scenarios.

7.1 Reinsurance Analytics

Location-level reinsurance portfolio analytics systems are used by reinsurance underwriters

to estimate the probability distribution of the yearly net profit or loss of a given reinsurance

portfolio. With this distribution, reinsurers can make well-informed decisions to adjust their

portfolio to meet their desired risk profile. For example, if portfolio analysis reveals that there

is a 5% chance the reinsurer’s portfolio will result in losses large enough to bankrupt the

reinsurer, then the reinsurer knows to take action to reduce the risk of their portfolio.

Location-level reinsurance portfolio analytics systems compute a given portfolio by pro-

cessing terabytes of simulated insurance claims of individual properties through financial

transformations specified in the reinsurance portfolio, which in itself is a complex network

of hundreds of millions of primary insurance and reinsurance contracts. As discussed in

Chapter 2, to the best of our knowledge, there is no research on reinsurance analytics at the

location-level, nor are there any commercial systems today capable of modelling a reinsur-

ance portfolio at the location level. This is due to the immense amount of data that must

103

104

be processed to perform reinsurance at the location level. Instead, the existing research and

commercial systems are focused on analytics at the county or region level. This drastically

reduces the amount of data to process, but yields less accurate results.

In Chapter 3, we presented a highly scalable, available, consistent and performant location-

level reinsurance analytics system. Our system uses a novel portfolio representation, where

each contractual term, clause or treaty is described as a vertex in a directed acyclic graph. In

this “portfolio graph” representation, edges represent the flow of profits or losses from one

contractual term, clause or treaty to another.

We describe how our system achieves excellent scalability by distributing the work across

Monte Carlo trials (of which they are typically at least 10,000 in a reinsurance portfolio analy-

sis). Each thread independently computes the portfolio’s profit or loss for its assigned trials

without any communication or synchronization with other works. This not only results in

high scalability, but also high performance, as costly synchronization and communication

steps are avoided entirely.

In order to further maximize performance, each worker stores and processes all data in

memory. This, however, combined with the fact that each Monte Carlo trial is processed

on a single thread, presents a memory problem: if each compute node has t threads and

limited memory, how can each worker process t trials in parallel without running out of

memory? We address this by optimizing the cutwidth of the graph. For our purposes, the

graph’s cutwidth essentially describes (for a given topological ordering) the peak number of

intermediate results that must be held in memory to compute the portfolio’s loss or profit for

a single trial. By minimizing the cutwidth, we minimize the memory footprint required to

process each trial. We reduce the cutwidth of the portfolio graph using a 2-step process: First,

we optimize the graph to reduce the maximum in and out-degree of the graph. High degree

vertices are relatively common in reinsurance portfolios, and can significantly increase the

cutwidth of a graph. By replacing high degree vertices with semantically equivalent d-ary trees,

we can significantly reduce cutwidth without changing the semantics of the graph. Second,

we exploit the typical structure of location-level reinsurance portfolios to find an ordering in

which vertices should be processed that results in low cutwidths. Our low-cutwidth approach,

combined with careful selection of our in-memory graph data structure, allows us to use

commodity compute hardware to process trials of a reinsurance portfolio analysis entirely

in-memory.

105

Our system also achieves high availability and consistency by storing all of our input data

on a decentralized distributed data storage system (i.e., Amazon S3). This ensures that newly

uploaded data is always consistent, and that all data is accessible at all times (barring any

significant outages on Amazon’s servers). A task queuing system ensures that if any worker

fails to produce output after a specified timeout duration, the same task will be rescheduled on

a healthy worker to be processed. This ensures that even if some workers experience internal

failures, a full result will still be computed.

With similar hardware, our system is over 50 times faster than the the major commercial

system we were able to use for comparison. When scaled up to 40 compute nodes, each with

72 cores, our system processed a full-size location-level portfolio, with 4TB of input data and

a 307 million vertex graph in only 17 minutes.

In order for our location-level reinsurance analytics system to support interactive work-

flows, in Chapter 4 we expanded our system to cache and reuse intermediate results. We

presented an algorithm that selects a small number of edges from the entire portfolio graph

to serve as the set of “cache edges”. During processing, each cache edge writes its intermedi-

ate output to distributed storage to be reused for later incremental analysis. This allows for

later analyses to avoid reevaluating the portion of the portfolio that feeds into a cache edge

unless a portfolio update invalidates the cache edge. As verified using a number of typical

use cases, our cache edge selection strategy is resilient to multiple modifications to the graph,

and it exposes a tuning parameter to tune the trade-off between storage cost and reducing

the portion of the portfolio to be reevaluated in an incremental analysis.

Since caching significantly reduces the number of vertices that have to be processed in

an incremental analysis, we also introduced a sharded graph representation. The sharded

graph representation allows us to only load the sections of the graph required to perform the

incremental analysis.

With caching, we observed incremental analysis running times as low as 11 seconds,

approximately 90 times faster than without caching. An evaluation across many common

reinsurance analytics use cases showed that for the large majority of use cases, incremental

analyses only take 11 to 16 seconds to process. This allows reinsurers to quickly determine the

impact adding a new contract, or modifying an existing contract’s terms, has on their portfolio’s

bottom line. The fast response time allows reinsurers to operate the system interactively,

making additional adjustments and requests to the system based on the previous responses

106

generated by the system seconds ago.

With the addition of caching, the location-level reinsurance analytics system becomes

an interactive big data decision support system. Our system is capable of processing several

terabytes of input data across through a directed graph of hundreds of millions of vertices

representing financial transformations, and can output a response in only 11 seconds.

7.1.1 Other Applications

At its core, the reinsurance risk analytics system described in this thesis is a distributed system

capable of efficiently processing billions of small records, split up into several thousand Monte

Carlo trials, through a directed acyclic graph containing hundreds of millions of vertices that

apply transformations to the incoming records. Consequently, this system can be applied to

other practical applications not related to reinsurance risk analytics, so long as the application

can be reduced to a problem of processing many independent sets of records through a

dependency graph of transformations.

For example, consider a large investment portfolio containing many stock options. The

investor may use a Monte Carlo simulation to model possible future values for each stock

covered by the portfolio. The investor could then construct a directed acyclic graph describing

the contracts, fees, and commissions associated with each stock option. The reinsurance

risk analytics system described in this thesis could then be applied to process the profits and

losses from each stock option across each Monte Carlo trial through the network of financial

transformations, quickly generating the estimated profit or loss distribution for the entire

portfolio of stock options.

Other applications may include modelling the return and risk of many individual credit

loans across a large credit card company, or modelling a government’s annual tax revenue

under different tax codes described by a directed acyclic graph.

7.2 Aggregate Probabilistically Bounded Staleness

OLAP systems allow users to insert large amounts of numerical measure data within a multi-

dimensional, hierarchical space. Users can query multidimensional subspaces within the

dataset to obtain aggregations of the measure data within the subspaces much faster than

would be possible on a traditional transactional or key-value database. In the final chapters

107

of this thesis, we explored consistency in the context of Online Analytical Processing (OLAP)

interactive big data decision support systems.

Unlike the previous chapters in this thesis, in Chapter 6 we explored consistency in greater

detail. We described Aggregate Probabilistically Bounded Staleness (A-PBS), a method of

quantifying consistency in OLAP systems. Inspired by the Probabilistically Bounded Staleness

(PBS) measure [17] for key-value stores, A-PBS measures staleness for aggregate queries in

distributed OLAP systems. Quantifying consistency for aggregate queries is more challenging

than quantifying consistency for simple key-value queries, as the result of an aggregate query

depends on multiple data items, rather than just one. This means the consistency of an

aggregate query depends on the write history of the different copies of all data items covered

by the query.

We first defined a formal model for describing an OLAP system’s data stream and the state

of consistency for individual aggregate queries. We then defined two measures from which

we can quantify the consistency or staleness of an OLAP system on a probabilistic level. The

first measure uses the number of data points missed by a query to measure consistency. The

second measure instead measures consistency through the relative error of the query.

To complement our model, we presented a generic model and corresponding Monte

Carlo simulation of a quorum-replicated distributed OLAP system. Using the simulation and

model, along with a set of system parameters, an approximate value of the A-PBS measures

of staleness can be computed, allowing users to explore their system’s level of consistency

under different usage scenarios. We evaluated the accuracy of our model and simulation by

using the simulation to approximate the A-PBS measures of a real distributed OLAP system,

and comparing them against the actual A-PBS measures observed on the same system. When

comparing the A-PBS measures based on relative error, the simulation generated staleness

values extremely close to the staleness values actually observed on the OLAP system.

Through our exploration of the A-PBS measures in VOLAP, we demonstrated that even

though VOLAP only formally guarantees eventual consistency, it has a high likelihood of

queries being perfectly consistent in practice. Even very large aggregate queries that cover the

entire set of data and are issued only 10 milliseconds after the last insert have≈80% probability

to be consistent. For queries that are stale, the impact that staleness has on the relative error

of the result are extremely likely to be negligible.

108

7.3 Future Work

We leave the following topics for future work.

Improved scheduling of work to occurrence processors. As noted in Section 4.5.4, we ob-

served that our fine-grained c5.2xlarge cluster outperformed our coarse-grained c5.18xlarge

cluster in some experiments. Since both clusters essentially have the same compute capability,

this suggests that our current approach for distributing work to occurrence processors is not

optimal for coarse-grained clusters with many (e.g. 72) vCPUs per worker. Since coarse-

grained clusters have a much higher amount of memory per worker, they are important in

computing the memory-intensive initial portfolio analyses that have no cached data from

previous analyses. With improved scheduling for coarse-grained clusters, it is likely that the

performance of such clusters would come close to matching the performance of roughly

equivalent fine-grained clusters.

Online adjustment of cache edges. In Section 4.4, we described how certain types of user

submitted portfolio modifications require that additional edges be cached in order to ensure

that incremental analyses are still processed in a timely manner. If the user frequently makes

such modifications, the number of cache edges can become large. We mention in Section 4.4.1

that this can be addressed by computing a new set of cache edges during periods of low user

activity, but this is not ideal for users that need to submit portfolio updates during all hours of

the day. A better solution may be to develop a modified version of the cache edge selection

algorithm that only considers a small subgraph localized around a single modification. Since

the localized cache edge selection algorithm wouldn’t need to process the entire portfolio

graph, it could be run alongside each graph modification operation, ensuring that the number

of cache edges always remains low.

Compilation of portfolio graphs for increased performance. Since each portfolio graph

and topological ordering describe a static pipeline of data transformations, compiling this

pipeline into machine code to be executed directly on an occurrence processor may signifi-

cantly reduce the running time of portfolio analyses. This would eliminate the need for the

occurrence processor to store an explicit representation of the portfolio graph in memory,

and possibly eliminate the computational overhead associated with managing intermediate

109

output reference counts at runtime.

User-facing interfaces for managing location-level graphs. The reinsurance analytics sys-

tem presented in this thesis allows reinsurance underwriters to quickly compute the risk

distribution of extremely large portfolio graphs containing hundreds of millions of vertices.

However, it does not provide a user-friendly interface for querying, visualizing or modifying

the portfolio. In particular, we expect that a practical visualization of the portfolio will be

extremely difficult due to the number of vertices and edges in a typical location-level portfolio

graph.

Application of A-PBS simulation to other data synchronization models. While the quo-

rum consensus model is a popular method for synchronizing data in key-value data stores, it

is a relatively new idea in distributed OLAP systems. Distributed OLAP systems like Analyt-

icdb [100] and BatchDB [60] instead address the problem of data synchronization by having

the “read” (i.e. query processing) nodes periodically retrieve new snapshots of the data from

the “write” (i.e. insertion handling) nodes. By adjusting the A-PBS simulation to support

consistency models like the ones in Analyticdb and BatchDB, it would become significantly

easier to approximate the A-PBS measures of staleness for other OLAP systems that do not

synchronize their data using quorum consensus algorithms.

Bibliography

[1] Transaction processing performance council, TPC-DS (decision support) benchmark.
http://www.tpc.org. Accessed: 2021-04-26.

[2] Ittai Abraham and Dahlia Malkhi. Probabilistic quorums for dynamic systems. In
Distributed Computing, volume 18, pages 113–124. Springer, 2005.

[3] Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi. Modeling multidimensional
databases. In Proceedings of the 13th International Conference on Data Engineering,
pages 232–243. IEEE, 1997.

[4] AIR Worldwide. AIR Worldwide: Catastrophe Modeling and Risk Assessment. https:
//www.air-worldwide.com/. Accessed: 2021-04-26.

[5] AIR Worldwide. Touchstone Re: Complex Reinsurance Modeling. https://www.
air-worldwide.com/software-solutions/Touchstone-Re/. Accessed: 2021-
04-26.

[6] Amitanand Aiyer, Lorenzo Alvisi, and Rida A Bazzi. On the availability of non-strict
quorum systems. In Distributed Computing, pages 48–62. Springer, 2005.

[7] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Reuven
Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: fault-
tolerant stream processing at internet scale. Proceedings of the VLDB Endowment,
6(11):1033–1044, 2013.

[8] Ramy E Ali. Consistency analysis of replication-based probabilistic key-value stores.
arXiv preprint arXiv:2002.06098, 2020.

[9] Amazon Web Services. Amazon EC2. https://aws.amazon.com/ec2/. Accessed:
2021-04-26.

[10] Amazon Web Services. Amazon S3 | Strong Consistency. https://aws.amazon.com/
s3/consistency/. Accessed: 2021-04-26.

[11] Amazon Web Services. Cloud Object Storage. https://aws.amazon.com/s3/. Ac-
cessed: 2021-04-26.

[12] Analyze Re. Analyze Re. https://analyzere.com/. Accessed: 2021-04-26.

[13] Aon. ReMetrica. https://www.aon.com/reinsurance/analytics-(1)
/remetrica.jsp. Accessed: 2021-04-26.

[14] A. Arvind and D. Culler. Tagged token dataflow architecture. Technical report, Laboratory
for Computer Science MIT, Cambridge, MA., 1983.

110

http://www.tpc.org
https://www.air-worldwide.com/
https://www.air-worldwide.com/
https://www.air-worldwide.com/software-solutions/Touchstone-Re/
https://www.air-worldwide.com/software-solutions/Touchstone-Re/
https://aws.amazon.com/ec2/
https://aws.amazon.com/s3/consistency/
https://aws.amazon.com/s3/consistency/
https://aws.amazon.com/s3/
https://analyzere.com/
https://www.aon.com/reinsurance/analytics-(1)/remetrica.jsp
https://www.aon.com/reinsurance/analytics-(1)/remetrica.jsp

111

[15] Aman Kumar Bahl, Oliver Baltzer, Andrew Rau-Chaplin, and Blesson Varghese. Parallel
simulations for analysing portfolios of catastrophic event risk. In 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, pages 1176–1184. IEEE,
2012.

[16] Peter Bailis and Ali Ghodsi. Eventual consistency today: Limitations, extensions, and
beyond. Communications of the ACM, 56(5):55–63, 2013.

[17] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein, and Ion
Stoica. Probabilistically bounded staleness for practical partial quorums. Proceedings
of the VLDB Endowment, 5(8):776–787, 2012.

[18] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein, and Ion
Stoica. Quantifying eventual consistency with PBS. The VLDB Journal, 23(2):279–302,
2014.

[19] Doug Burdick, Prasad M Deshpande, TS Jayram, Raghu Ramakrishnan, and Shivakumar
Vaithyanathan. OLAP over uncertain and imprecise data. The VLDB Journal, 16(1):123–
144, 2007.

[20] Neil Burke, Oliver Baltzer, and Norbert Zeh. Efficient location-level risk analytics. In
30th Annual International Conference on Computer Science and Software Engineering,
pages 33–42, 2020.

[21] Neil Burke, Frank Dehne, Andrew Rau-Chaplin, and David Robillard. Quantifying
eventual consistency for aggregate queries. In Proceedings of the 21st International
Database Engineering & Applications Symposium, pages 274–282, 2017.

[22] Neil Burke, Andrew Rau-Chaplin, and Blesson Varghese. Computing probable maximum
loss in catastrophe reinsurance portfolios on multi-core and many-core architectures.
Concurrency and Computation: Practice and Experience, 28(3):836–847, 2016.

[23] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP
technology. SIGMOD Record, 26(1):65–74, 1997.

[24] Arbee LP Chen, Jui-Shang Chiu, and Frank SC Tseng. Evaluating aggregate operations
over imprecise data. IEEE Transactions on Knowledge and Data Engineering, 8(2):273–
284, 1996.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[26] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[27] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. ACM SIGOPS
Review, 41(6):205–220, 2007.

112

[28] Frank Dehne, Glenn Hickey, Andrew Rau-Chaplin, and Mark Byrne. Parallel catastrophe
modelling on a cell processor. In Proceedings of the 2009 Conference of the Center for
Advanced Studies on Collaborative Research, pages 24–31. IBM Corp., 2009.

[29] Frank Dehne, David Edward Robillard, Andrew Rau-Chaplin, and Neil Burke. VOLAP: A
scalable distributed real-time OLAP system for high-velocity data. IEEE Transactions on
Parallel and Distributed Systems, 29(1):226–239, 2017.

[30] Jack B Dennis. First version of a data flow procedure language. In Programming Sympo-
sium, pages 362–376. Springer, 1974.

[31] Jack B Dennis and David P Misunas. A preliminary architecture for a basic data-flow
processor. In Proceedings of the 2nd annual symposium on Computer architecture, pages
126–132, 1974.

[32] Yuanzhen Geng, Xuanhua Shi, Cheng Pei, Hai Jin, and Wenbin Jiang. LCS: An effi-
cient data eviction strategy for Spark. International Journal of Parallel Programming,
45(6):1285–1297, 2017.

[33] Einollah Jafarnejad Ghomi, Amir Masoud Rahmani, and Nooruldeen Nasih Qader. Load-
balancing algorithms in cloud computing: A survey. Journal of Network and Computer
Applications, 88:50–71, 2017.

[34] Archontia C Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M
Thilikos, and Marcin Wrochna. Cutwidth: Obstructions and algorithmic aspects. Algo-
rithmica, 81(2):557–588, 2019.

[35] Seth Gilbert and Nancy Lynch. Perspectives on the CAP theorem. Computer, 45(2):30–36,
2012.

[36] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Pow-
erGraph: Distributed graph-parallel computation on natural graphs. In Proceedings of
the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI
12), pages 17–30, 2012.

[37] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J Franklin,
and Ion Stoica. GraphX: Graph processing in a distributed dataflow framework. In
Proceedings of the 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), volume 14, pages 599–613, 2014.

[38] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali
Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: a relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge
Discovery, 1(1):29–53, 1997.

[39] John R. Gurd, Chris C. Kirkham, and Ian Watson. The manchester prototype dataflow
computer. Communications of the ACM, 28(1):34–52, 1985.

113

[40] Guy Carpenter & Company. MetaRisk. http://www.guycarp.com/managing-risk/
analytics/metarisk.html. Accessed: 2021-04-26.

[41] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: Concepts and techniques.
Elsevier, 2006.

[42] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim, Jinha
Kim, and Hwanjo Yu. TurboGraph: A fast parallel graph engine handling billion-scale
graphs in a single PC. In Proc. of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 77–85. ACM, 2013.

[43] Robert A Iannucci. A datafiow/von neumann hybrid architecture. Technical report,
MIT/LCS/TR-418, MIT for ACM Computing Surveys, Cambridge, 1988.

[44] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Dis-
tributed data-parallel programs from sequential building blocks. In ACM SIGOPS Oper-
ating Systems Review, pages 59–72. ACM, 2007.

[45] Wesley M Johnston, JR Paul Hanna, and Richard J Millar. Advances in dataflow program-
ming languages. ACM computing surveys (CSUR), 36(1):1–34, 2004.

[46] Krishna M Kavi and Ali R Hurson. Design of cache memories for dataflow architecture.
Journal of systems architecture, 44(9-10):657–674, 1998.

[47] Krishna M Kavi, Ali R Hurson, Phenil Patadia, Elizabeth Abraham, and Ponnarasu
Shanmugam. Design of cache memories for multi-threaded dataflow architecture. ACM
SIGARCH Computer Architecture News, 23(2):253–264, 1995.

[48] Ephraim Korach and Nir Solel. Tree-width, path-width, and cutwidth. Discrete Applied
Mathematics, 43(1):97–101, 1993.

[49] Mathias Kraus and Stefan Feuerriegel. Decision support from financial disclosures with
deep neural networks and transfer learning. Decision Support Systems, 104:38–48, 2017.

[50] Matjaž Kukar, Petar Vračar, Domen Košir, Darko Pevec, Zoran Bosnić, et al. Agrodss:
A decision support system for agriculture and farming. Computers and Electronics in
Agriculture, 161:260–271, 2019.

[51] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-scale graph computa-
tion on just a PC. In Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 31–46, 2012.

[52] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. GPOP: A scal-
able cache-and memory-efficient framework for graph processing over parts. ACM
Transactions on Parallel Computing (TOPC), 7(1):1–24, 2020.

[53] Kartik Lakhotia, Shreyas Singapura, Rajgopal Kannan, and Viktor Prasanna. Recall:
Reordered cache aware locality based graph processing. In 2017 IEEE 24th International
Conference on High Performance Computing (HiPC), pages 273–282. IEEE, 2017.

http://www.guycarp.com/managing-risk/analytics/metarisk.html
http://www.guycarp.com/managing-risk/analytics/metarisk.html

114

[54] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage
system. ACM SIGOPS Review, 44(2):35–40, 2010.

[55] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun Cha, and
Wook-Shin Han. Parallel replication across formats in SAP HANA for scaling out mixed
OLTP/OLAP workloads. Proceedings of the VLDB Endowment, 10(12):1598–1609, 2017.

[56] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999.

[57] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph Hellerstein. GraphLab: A new framework for parallel machine learning. In
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
pages 340–349, 2010.

[58] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song, Wendy
Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential consistency: measuring and
understanding consistency at facebook. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 295–310, 2015.

[59] Jun Luo, Jean-Pierre Hubaux, and Patrick Th Eugster. PAN: Providing reliable storage in
mobile ad hoc networks with probabilistic quorum systems. In Proceedings of the 4th
ACM International Symposium on Mobile Ad Hoc Networking & Computing, pages 1–12.
ACM, 2003.

[60] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. BatchDB: Effi-
cient isolated execution of hybrid OLTP+OLAP workloads for interactive applications.
In Proceedings of the 2017 ACM International Conference on Management of Data, pages
37–50, 2017.

[61] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
pages 135–146. ACM, 2010.

[62] Dahlia Malkhi, Michael Reiter, and Rebecca Wright. Probabilistic quorum systems.
In Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 267–273. ACM, 1997.

[63] Sally McClean, Bryan Scotney, and Mary Shapcott. Aggregation of imprecise and uncer-
tain information in databases. IEE Transactions on Knowledge and Data Engineering,
13(6):902–912, 2001.

[64] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Cache-guided scheduling: Ex-
ploiting caches to maximize locality in graph processing. In 1st International Workshop
on Architecture for Graph Processing, 2017.

115

[65] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martín Abadi. Naiad: A timely dataflow system. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles, pages 439–455. ACM, 2013.

[66] Allen Newell. Unified theories of cognition. Harvard University Press, 1994.

[67] Rishiyur S Nikhil et al. Executing a program on the MIT tagged-token dataflow architec-
ture. IEEE Transactions on computers, 39(3):300–318, 1990.

[68] Songjie Niu and Shimin Chen. Optimizing CPU cache performance for Pregel-like
graph computation. In 2015 31st IEEE International Conference on Data Engineering
Workshops, pages 149–154. IEEE, 2015.

[69] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[70] Gregory M Papadopoulos and David E Culler. Monsoon: an explicit token-store archi-
tecture. ACM SIGARCH Computer Architecture News, 18(2SI):82–91, 1990.

[71] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache replacement strategies.
ACM Computing Surveys (CSUR), 35(4):374–398, 2003.

[72] Andrew Rau-Chaplin, Blesson Varghese, Duane Wilson, Zhimin Yao, and Norbert Zeh.
QuPARA: Query-driven large-scale portfolio aggregate risk analysis on MapReduce. In
IEEE International Conference on Big Data, pages 703–709. IEEE, 2013.

[73] Reynolds Porter Chamberlain. RPC Tyche. https://www.rpc-tyche.com/. Accessed:
2021-04-26.

[74] Risk Management Solutions. Risk Management Solutions, Models, Software & Services.
https://www.rms.com/. Accessed: 2021-04-26.

[75] Uwe Röhm, Klemens Böhm, Hans-Jörg Schek, and Heiko Schuldt. FAS: A freshness-
sensitive coordination middleware for a cluster of OLAP components. In Proceedings
of the 28th International Conference on Very Large Data Bases, pages 754–765. VLDB
Endowment, 2002.

[76] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph
processing using streaming partitions. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles, pages 472–488. ACM, 2013.

[77] Yousef Saad. Iterative methods for sparse linear systems. Society for Industrial and
Applied Mathematics, second edition, 2000.

[78] Oluwarotimi Williams Samuel, Grace Mojisola Asogbon, Arun Kumar Sangaiah, Peng
Fang, and Guanglin Li. An integrated decision support system based on ann and
fuzzy_ahp for heart failure risk prediction. Expert Systems with Applications, 68:163–172,
2017.

https://www.rpc-tyche.com/
https://www.rms.com/

116

[79] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe. Cache aware
optimization of stream programs. In Proceedings of the 2005 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded systems, pages 115–126,
2005.

[80] Jung P Shim, Merrill Warkentin, James F Courtney, Daniel J Power, Ramesh Sharda, and
Christer Carlsson. Past, present, and future of decision support technology. Decision
support systems, 33(2):111–126, 2002.

[81] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework for
shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 135–146, 2013.

[82] Jurij Silc, Borut Robic, and Theo Ungerer. Asynchrony in parallel computing: From
dataflow to multithreading. Parallel and Distributed Computing Practices, 1(1):3–30,
1998.

[83] Jaspar Subhlok and Gary Vondran. Optimal latency-throughput tradeoffs for data
parallel pipelines. In Proceedings of the eighth annual ACM symposium on Parallel
algorithms and architectures, pages 62–71, 1996.

[84] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1(2):146–160, 1972.

[85] Doug Terry. Replicated data consistency explained through baseball. Communications
of the ACM, 56(12):82–89, 2013.

[86] Dimitrios M Thilikos, Maria Serna, and Hans L Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005.

[87] TigerRisk Partners. The leading risk-to-capital advisor worldwide. https://
tigerrisk.com/. Accessed: 2021-04-26.

[88] Ultimate Risk Solutions. Leading Provider of Dynamic Financial Analysis DFA Software.
https://www.ultirisk.com/. Accessed: 2021-04-26.

[89] Panos Vassiliadis. Modeling multidimensional databases, cubes and cube operations. In
Proceedings of the Tenth International Conference on Scientific and Statistical Database
Management, pages 53–62. IEEE, 1998.

[90] Panos Vassiliadis and Timos Sellis. A survey of logical models for OLAP databases.
SIGMOD Record, 28(4):64–69, 1999.

[91] Sitalakshmi Venkatraman, Kiran Fahd, Samuel Kaspi, and Ramanathan Venkatraman.
SQL versus NoSQL movement with big data analytics. International Journal of Informa-
tion Technology and Computer Science, 8:59–66, 2016.

[92] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.

https://tigerrisk.com/
https://tigerrisk.com/
https://www.ultirisk.com/

117

[93] Gerd Waloszek and Ulrich Kreichgauer. User-centered evaluation of the responsiveness
of applications. In IFIP Conference on Human-Computer Interaction, pages 239–242.
Springer, 2009.

[94] Zhengyu Yang, Danlin Jia, Stratis Ioannidis, Ningfang Mi, and Bo Sheng. Intermediate
data caching optimization for multi-stage and parallel big data frameworks. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), pages 277–284. IEEE,
2018.

[95] Xin Yao and Cho-Li Wang. Probabilistic consistency guarantee in partial quorum-based
data store. IEEE Transactions on Parallel and Distributed Systems, 31(8):1815–1827,
2020.

[96] Morteza Yazdani, Pascale Zarate, Adama Coulibaly, and Edmundas Kazimieras Zavad-
skas. A group decision making support system in logistics and supply chain manage-
ment. Expert systems with Applications, 88:376–392, 2017.

[97] Yinghao Yu, Wei Wang, Jun Zhang, and Khaled B Letaief. LERC: Coordinated cache
management for data-parallel systems. In GLOBECOM 2017-2017 IEEE Global Commu-
nications Conference, pages 1–6. IEEE, 2017.

[98] Yinghao Yu, Wei Wang, Jun Zhang, and Khaled Ben Letaief. LRC: Dependency-aware
cache management for data analytics clusters. In IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, pages 1–9. IEEE, 2017.

[99] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

[100] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin, Sheng Wang,
Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, et al. Analyticdb: Real-time OLAP database
system at Alibaba cloud. Proceedings of the VLDB Endowment, 12(12):2059–2070, 2019.

[101] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and Matei
Zaharia. Making caches work for graph analytics. In 2017 IEEE International Conference
on Big Data (Big Data), pages 293–302. IEEE, 2017.

[102] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and Alexan-
der S Szalay. FlashGraph: Processing billion-node graphs on an array of commodity
SSDs. In 13th USENIX Conference on File and Storage Technologies (FAST 15), pages
45–58, 2015.

[103] Chai Zhengmeng and Jiang Haoxiang. A brief review on decision support systems and
it’s applications. In 2011 IEEE International Symposium on IT in Medicine and Education,
volume 2, pages 401–405. IEEE, 2011.

[104] Xiaowei Zhu, Wentao Han, and Wenguang Chen. GridGraph: Large-scale graph pro-
cessing on a single machine using 2-level hierarchical partitioning. In 2015 USENIX
Annual Technical Conference (USENIXATC 15), pages 375–386, 2015.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Interactive Big Data Decision Support Systems
	Performance, Scalability, Availability and Consistency
	Contributions of this Thesis
	Reinsurance Analytics
	Real-Time OLAP

	Thesis Outline

	Background: Reinsurance Analytics
	Portfolio Risk Analysis Using Monte Carlo Simulation
	Related Work
	Reinsurance Analytics in the Literature
	Reinsurance Analytics in the Industry

	A Scalable System for Efficient Location-level Analytics
	Related Work: General-Purpose Graph Modeling Frameworks
	Graph-Based Model for Reinsurance Analytics
	A Cloud-Based System for Location-Level Risk Analytics
	System Design
	Overview of Optimizations
	Occurrence Processor
	Graph Optimizer
	In-Memory Graph Data Structure
	Scalability, Availability and Hiding I/O Cost

	Evaluation
	Test Portfolio
	Edge-Buffered vs Cutwidth-Based Approach
	Graph Optimizer Evaluation
	Occurrence Processor Evaluation
	Evaluation as a Distributed System
	Comparison Against a Commercial System

	Conclusion

	Efficient Caching for Location-level Analytics
	Related Work
	Caching for Location-Level Reinsurance Analyses
	Selecting Cache Edges

	Efficient Subgraph Loading
	Updates
	Periodic Repartitioning into Shards
	Realistic Use Cases

	Evaluation
	Test Platform and Portfolio
	Shard Size vs Number of Cache Edges
	Analysis Cost vs Invalidated Edges
	Cluster Comparison
	Use Case Evaluation

	Conclusion

	Background: Online Analytical Processing and Staleness
	Background
	Online analytical processing
	Distributed Consistency

	Related Work
	Staleness in OLAP
	Probabilistically bounded staleness in key-value stores

	Probabilistically Bounded Staleness in Real-time Online Analytical Processing
	Aggregate Probabilistically Bounded Staleness (A-PBS)
	Data Streams and Queries
	(t,c)-staleness
	Staleness and Error
	Probabilistic Staleness

	Simulation
	Aggregate Model
	Simulation Parameters
	Algorithm

	Case Study
	Conclusion

	Conclusion
	Reinsurance Analytics
	Other Applications

	Aggregate Probabilistically Bounded Staleness
	Future Work

	Bibliography

