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0.1 Abstract

This thesis compares six phylogenetic tests, or equivalently, methods for con- structing
confidence sets of phylogenetic trees : the Kishino-Hasegawa (KH) test statistic,
Shimodaira–Hasegawa (SH), two versions of the Approximately Unbiased (AU) test,
Chi-square and Bonferroni. The Bonferroni test is a new variation of the Chi-square
test that corrects for selection bias. A variation of the AU test, AU Corrected, is
considered that adjusts for di�culties arising when bootstrap support for trees is
low. Confidence regions for each test are ex- amined using simulations from six and
eight-taxon trees. We consider di�ering internal edge-lengths and challenging inference
scenarios where some internal edge-lengths are equal to 0. In the second part of this
thesis we apply the same tests to multiple real-world data sets, some with larger
numbers of taxa, and make references to the observations and trends obtained in the
previous part.
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Chapter 1

Introduction

This thesis considers evolutionary inferences drawn from DNA or amino acid sequence
alignments. A sequence alignment arranges sequences for a number of species into
sites (Wu 2010). Although alignments are subject to error, the intent is that the ith

corresponds to a ‘homologous position’ across all species and across ancestral species.
That is, the ith site in all sequences in all living and ancestral species evolved from a
common ancestral site in the earliest common ancestral species in the tree by vertical
descent. The sequences are represented as rows in a matrix (see example Table 1.1) in
such way to match as many nucleotides along columns.

1.1 Conventional Phylogenetic Models

For nucleotide data, each site can be one of A, C, T, G, the four nucleotide bases
of DNA strands. Although there are possible errors in alignment, conventional
evolutionary models usually ignore those errors and treat sites as corresponding to
the same physical position. Thus a change of one of the nucleotides in a site is the
consequence of evolutionary substitutions along the tree, and that is what we are
trying to exploit in developing models of evolution.

For example, consider a subset of the –-globin plus —-globin gene sequences from Yang
(1993). Table 1.1 shows sites 7-10 of the full 570 site alignment.

Table 1.1: DNA sequence example

mamal ... site 7 site 8 site 9 site 10 ...

Human ... C C G C ...

Rabbit ... C C - C ...

Rat ... G C G A ...

Note that to denote a gap a ‘-’ is used. The reason for a gap is either a deletion or
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an insertion. For instance, at site 9, the rabbit lineage may have lost a nucleotide at
that position, making their gene shorter. Alternatively, the ancestor of Human, Rat
may have gained a nucleotide.

Denoting x as a ‘site pattern’, in Table 1.1, the 7th column represents site pattern
x7 = CCG. Meaning, C was observed for Human and Rabbit, and G for Rat.

Conventional phylogenetic models make three main assumptions:

1. Evolutionary events at di�erent sites occur independently of each other in an
independent and identically distributed way.

2. Given the ancestral character state for an edge at a site, evolution along that
edge occurs independently of all else.

3. Evolution along an edge occurs according to a continuous-time Markov chain.

Because of the first assumption it su�ces to consider evolution separately for each
site.

Considering site 7 in the table above, we assume that this corresponds to the same
physical location in the genes of the observed taxa and their ancestors. One possible
explanation for the data is given in Figure 1.1.

Evolution at site 7 in Table 1.1

Letters in circles indicate the nucleotides
for the node. Boxes label lineages.

G

C

C C G

HB

H B

R

Human Rabbit Rat

Figure 1.1: Site 7
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In the illustration above a substitution occurred in the lineage leading to Human (H),
Rabbit (B).

The reasons for di�ering nucleotides arising for di�erent species is that mutations
can arise and get fixed in the populations giving rise to these species. These would
be considered substitutions and it is this substitution process that a Markov chain
models.

Two other types of commonly occurring evolutionary events that a�ect sequences are
insertions and deletions. Consider the Human and Rabbit sequences in Table 1.1, for
illustration. The ‘-’ at site 9 is a gap and arose because of either an insertion or a
deletion. For instance sites 7-10 might have been CCGC in the ancestor HB of Human
and Rabbit and then, in the lineage leading to Rabbit, the G was lost (a deletion
event). Alternatively, sites 7-10 might have been CCC in HB and then a G was gained
in the Human lineage, leading to CCGC (an insertion event). It is impossible to know
which occurred, so the event is sometimes referred to as an indel event. Although
considerable e�ort has been devoted to modeling such events (eg. Miklós et al. 2009)
the models often involve approximations and are only computationally feasible for
short sequence alignments and a small number of sequences. Consequently, in most
analyses indels, or gaps, are treated as missing data.

The continuous-time Markov chain substitution model along edges is usually assumed
to be a stationary, time-reversible Markov chain. The Markov chain is characterized by
its rate matrix Q. Given that the ancestral nucleotide is i, the probability, Pij(t), that
at time t it is j gives the ijth entry of the substitution matrix, P (t). The substitution
matrix is related to the rate matrix through the matrix exponentiation P (t) = exp[Qt]
(Sheldon 1996).

The rate matrix (Wu 2010) given in Eq. (1.1) is the most general time-reversible
nucleotide rate matrix, and is referred as the general time-reversible model (GTR).
The general time-reversible (GTR) model of DNA substitution is the most general
neutral, independent, finite-sites, time-reversible model possible. It was first described
in a general form by Tavaré (1986).
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Q = {qij} = fl ú

S

WWWWWWWU

· afiC bfiG cfiT

afiA · dfiG efiT

bfiA dfiC · ffiT

cfiA efiC ffiG ·

T

XXXXXXXV

(1.1)

This substitution model was used for the HIV real data analysis considered in this
thesis.

If a = c = d = f = 1, b = e = Ÿ, the GTR model reduces to the HKY85 model, which
was proposed by Hasegawa, Kishino and Yano (1985). It has the following rate matrix:

Q = {qij} = fl ú

S

WWWWWWWU

· fiC ŸfiG fiT

fiA · fiG ŸfiT

ŸfiA fiC · fiT

fiA ŸfiC fiG ·

T

XXXXXXXV

(1.2)

where Ÿ is the transition/transversion ratio (ratio of rate of transition and transversion
per site) parameter. This substitution model was used in simulations.

Although most of our analyses are of nucleotide data, we consider amino acid data sets
in some of our real data examples. Amino acid alignments are used for protein-coding
genes and e�ectively recode each triple of nucleotides into its corresponding amino acid.
Site 2 in an amino acid alignment thus corresponds to sites 4-6 in the corresponding
nucleotide alignment. Although some information is lost in converting nucleotide
alignments to amino acid alignments, amino acid data tends to be less a�ected by
model misspecification when dealing with longer evolutionary time scales. In any
case, the model assumptions 1-3 are also used for amino acid models but the state
space is now 20-dimensional because there are 20 amino acids. Because of the larger
dimension of the state space, rather than estimating rate matrix parameters, empirical
exchangeabilities derived from large data bases are used. The rate matrix entry Qij is
related to the fixed empirical exchangeability Sij via the equation Qij = Sijfij where
the stationary frequencies are usually estimated by the frequency with which they
occurred in the alignment. The empirical exchangeabilities used in this thesis are the
JTT rate matrix (Jones, Taylor, and Thornton 1992), the LG matrix (Le and Gascuel
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2008) and the mtREV matrix (Adachi and Hasegawa 1996). The usual nomenclature
for describing such models, which we use in the real data sections, is for instance,
JTT+F or mtREV+F if the stationary frequencies are derived from the data and JTT
or mtREV if the stationary frequencies come from the database.

To allow evolutionary processes to vary over sites, conventional models use mixtures.
One such adjustment that we consider throughout the thesis is the gamma model of
Yang (1994) that allows rates of evolution to vary across sites according to a discretized
gamma distribution. In our examples, the model has G = 4 rates r1(–), . . . , r4(–) each
of which arise with equal probability, 1/G. The rate rj(–) is the conditional mean of a
�(–, 1/–) random variable T , conditional upon T being between the (j ≠ 1)/Gth and
jth quantile of the �(–, 1/–) distribution. Under this model, rates for sites are iid
from the discretized gamma distribution. The substitution matrix for a site that has
drawn rate rj(–), is then P (rj(–)t) instead of P (t). The nomenclature adjustment
for a gamma rates across sites model is to add a +G. So, for instance, JTT+F+G
denotes a model where the JTT exchangeability is used, frequencies are estimated
from the data set and a gamma rates-across-sites process is fit.

A final extension of base models considered in one of the real data examples, is to allow
stationary frequencies to vary over sites via a mixture model. The model assumes
that one frequency vector, fic, in a fixed finite set of frequency vectors. Here the fic

were estimated as frequently occurring at sites in a large database (Le and Gascuel
2008). The weights or probabilities of the fic occurring at sites are estimated from the
data at hand. The nomenclature here is to add a C60 if, for instance, there were 60
frequency classes. For instance, LG+C60+F+G.

Throughout this thesis we denote a tree as · , edge-lengths as t and other parameters
as ◊. The data for a site i, for instance CCA at site 10 in Table 1.1, is usually denoted
xi.

1.2 Maximum Likelihood Estimation

Using substitution probabilities for the Markov chain at a site (the change of a C
æ G for example), the Maximum Likelihood (ML) method infers the tree for which
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the data was most probable. A tree that requires many substitutions to explain the
observed tip data will usually be assigned a lower probability.

Evolution is assumed conditionally independent along lineages and usually assumed
according to Markov Chain. This leads to a probability for the site pattern in Figure
1.1 as

fiGPGC(tHB)PCC(tH)PCC(tB)PGG(tR) (1.3)

where fiG is the probability of having G as the root of the tree.

We don’t actually know that the ancestral states are G & C, but we can calculate the
product above for any choice xR, xHB:

J(xR, xHB) = fiGPxR,xHB
(tHB)PxHBC(tH)PxHBC(tB)PxRG(tR) (1.4)

Since the only thing we observe is the tip data x7 = CCG, the probability of the
observed data is:

p(x7; ‘, t, ◊) = q
xRœ{A,C,T,G}

q
xHBœ{A,C,T,G}J(xR, xHB) (1.5)

Here we explicitly indicate dependence on the tree · , edge-lengths t, and other
parameters involved in the substitution process, ◊. Assuming independent evolution
across sites, the likelihood can be calculated after repeating the process above for all
sites, as

L(·, t, ◊) =
nŸ

k=1

p(xn; ·, t, ◊) (1.6)

Equation (1.5) can get quite a bit more complicated with more taxa; A sum has to be
included for each internal node. With m taxa there are m ≠ 2 internal nodes, so 4(m≠2)

terms need to be summed over. This becomes prohibitive with many taxa. A pruning
algorithm (Felsenstein, 1981) is available to reduce the number of terms summed over
to something that is linear in the number of species, m.
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1.3 Phylogenetic ML Tests

1.3.1 The Two-Tree Problem

Consider a two-tree comparison Ho : · = ·o vs HA : · = ·1, for two fixed trees a
one-sided test is considered testing whether there is a significant evidence against tree
·0 and in favour of tree ·1. KH and Chi-square (discussed later below) are two tests
that consider only two trees at a time, which can create a selection bias, as we explain
below.

1.3.2 Confidence Set of Trees

A confidence set of trees C is a random set satisfying that P (·0 œ C) ¥ 1 ≠ –, where
·o is the true tree.

A confidence set is said to be conservative if P (·o œ C) > 1 ≠ –. The advantage of
such a set is that it is likely to contain the true tree. The disadvantage is that it often
contains too many trees.

There is a duality or 1-1 correspondence between tests and confidence sets. If p(·o)
is a p-value for a test of the null hypothesis Ho : · = ·o and can be applied for any
choice of ·o, then a (1 ≠ –) ◊ 100% confidence set, C, can be constructed as the set of
·o with p(·o) Ø –.

We consider a number of settings where there are multiple true trees due to some
subset of internal edge-lengths being set to 0. As an extreme example, if all of the
internal edge-lengths are set to 0 in the true tree, then every tree topology is true.
For multiple true trees, coverage is the average probability, over all true trees, that
the true tree is contained in the confidence set. It can be approximated by what we
refer to as average observed coverage over simulations, which is the average, over true
trees, of the observed coverage: the proportion of simulated data sets for which the
true tree was in the confidence set.
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1.3.3 Selection Bias

One possible way of using a two-tree test to construct a confidence set is to apply the
approach above with p(·o) for the test of Ho : · = ·o vs HA : · = ·̂ , where ·̂ is an
estimated tree (usually the ML tree). The problem with this approach is that, for two
tree tests, ·1 is supposed to be fixed in advance. In this approach, ·̂ is selected based
on the data. When ·̂ is selected in this way it becomes too easy to reject Ho, resulting
in P (·o œ C) π 1 ≠ –. Tests that will be described to test the two-tree problem are
the KH test and Chi-square test detailed in the tests section below.

1.3.4 Bootstrap Support

The bootstrap was originally developed by Efron (1982). Its use in phylogenetics
was initiated by Felsenstein (1985). With bootstrap support we resample sites,
observational units, at random with replacement. The bootstrap principle used in
obtaining approximations is that parameter estimates from the original data should
be treated as if they were true and estimates from bootstrap samples as estimated
quantities. For instance, a standard use of bootstrapping is to approximate the
distribution of ◊̂ ≠ ◊ by the empirical distribution of ◊̂ú ≠ ◊̂ over repeated bootstrap
samples, where ◊̂ú is a bootstrap estimated quantity. Bootstrap support for a tree is
defined as the proportion of times that the tree was estimated over repeated bootstrap
sample data sets. Large bootstrap support means that there is little sampling error in
the tree estimate.. Bootstrap support is a non-standard use of bootstrap principles.

Because estimation and even likelihood calculation is computationally intensive in
phylogenetics, an approximation to full bootstrapping was developed referred to as
Resampling Estimated Log-Likelihoods, or RELL (Kishino, Miyata, and Hasegawa
1990). Rather than re-estimating parameters for each bootstrap, the approach uses the
estimated parameters from the original data, thus e�ectively resampling the maximized
site likelihoods for the original data.

To illustrate, we contrast what would be treated as the maximized log likelihoods for
a bootstrapped data set using the RELL approach or the standard bootstrap:

x1, . . . , xn original data

8



xú
1
, . . . , xú

n
after resampling with replacement (bootstrap data)

l(xú
1
, ·, t, ◊), . . . , l(xú

n
, ·, t, ◊) log-likelihood for ◊ contributions from first to nth obser-

vation.

The ML estimates, (◊̂, t̂), and ML bootstrap estimates, (◊̂ú, t̂ú), are:

(◊̂ú, t̂ú) = arg max
◊,t

ÿ
l(xú

i
, ·, t, ◊)

(◊̂, t̂) = arg max
◊,t

ÿ
l(xi, ·, t, ◊)

For the standard bootstrap, the maximized log likelihood for · is:

max l =
ÿ

l(xú
i
, ·, t̂ú, ◊̂ú)

whereas for RELL bootstrap it is:

l =
ÿ

l(xú
i
, ·, t̂, ◊̂)

Because RELL does not require re-estimating parameters for each bootstrapped data
set it is much faster and computationally cheaper than the standard bootstrap.

1.4 Tests

In the subsections that follow we describe the existing tests that will be considered
in this thesis. Two other likelihood-based tests are available. The SOWH test is
a parametric bootstrap test that was described in detail in Goldman, Anderson,
and Rodrigo (2000) and is named after its authors (Swo�ord et al. 2004). The
Single Distribution Nonparametric Bootstrap (SDNB) test is another bootstrap-based
approach defined in Shi et al. (2005). Owing to the computational expense of
bootstrapping in phylogenetics, these tests are not as frequently reported as some
of the tests below. Moreover, the computational expense of these tests makes it
di�cult to include them in the simulations reported here, particularly in 8-taxon tree
simulations which included a large number of trees.
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1.4.1 KH

The KH test (Kishino and Hasegawa 1989) is a two-tree test that is based on a
reformulation of the hypotheses of interest in terms of the di�erences between site log
likelihoods for the two trees.

di = l(xi; ·1, t̂, ◊̂) ≠ l(xi; ·2, t̂, ◊̂) (1.7)

Here ◊̂ represents any parameters other than edge-lengths that had to be estimated
(such as substitution rate etc.), and l(xi; ·j, t̂, ◊̂) denotes the log probability of the site
pattern xi for the ith site in the sequence alignment.

If the two trees explain the data equally well, then on average, the site log likelihoods
for one should not tend to be larger than another. On the other hand, if Tree 1 is
correct and Tree 2 is not, then we expect that the observed data will tend to be more
likely under Tree 1 than Tree 2. This leads to the hypotheses

H0 : E[di] = 0 against HA : E[di] > 0 (1.8)

Treating the di as independent and identically distributed, by the Central Limit
Theorem, for n large, the approximate distribution of d̄ is d̄ ≥ N(0, s2

d
/n) where s2

d

denotes the sample variance of the di. The KH test computes the p-value

p = P (Z > nd̄) (1.9)

to check whether the KH test statistic is larger than expected from a N(0, ns2

d
)

distribution.

In reality the di are not iid, so the z-test is not strictly justified (Susko 2014), and
indeed the test turns out to be highly conservative, as we will illustrate.

A later variation to the test replaced N(0, s2

d
/n) with a bootstrap distribution (Kishino

and Hasegawa 1989). However, because this test tends to give very similar p-values to
the original KH test, this thesis will focus on the original KH test.

10



1.4.2 SH

The Shimodaira–Hasegawa test, SH (Shimodaira and Hasegawa 1999) was created as
a modification to the KH test. The KH test was originally designed to compare a pair
of trees, but ended up being used to make inferences about multiple null hypothesis
trees. Moreover, in the absence of a clear alternative hypothesis tree, the ML tree is
used as the alternative tree in the log-likelihood ratio. As a tree that is not fixed in
advance but rather selected based on the data, such a choice can induce a selection
bias. The SH modifies KH to correct for this selection bias.

Let L1, . . . , LM denote the maximized log likelihoods for a fixed set of M candidate
trees; in most of our examples, these would be all trees. Let ·̂ denote the maximum-
likelihood topology. We have to consider the e�ect of selection of ·̂ to derive the
distribution of L·̂ ≠ L· .

A method to test multiple-comparison of trees to statistical model selection was
introduced by Shimodaira (1993, 1998) using the following steps:

1. Calculate the test statistics

T· = max{L1 ≠ L· , . . . , LM ≠ L· } = L·̂ ≠ L· for · = 1, . . . , M (1.10)

2. Create N bootstrap replicates of (L1, . . . , LM) for an M ◊ N matrix for boot-
strapping, and use the RELL method described in Section 1.3.4.

3. Centering - in order to overcome the issue where bootstrapping is e�ectively
like simulating from whatever the true process was, which might correspond to
the null or might correspond to the alternative hypothesis, centering the data
forces it to correspond to the null hypothesis. SH corrects by centering the log
likelihoods for each tree so that the mean di�erence in log likelihoods for any
pair of trees is 0 under the null hypothesis. This is done by subtracting from
each element in a row the average of the row to create ÂR·◊i, a replicate of L·

generated under the least favorable configuration, LFC (which is the star tree,
explained more later).

ÂR·◊i = ÂL·◊i ≠ 1
N

Nÿ

j=1

ÂL·◊j (1.11)
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Here i indexes the bootstrap replicate.

4. Now for each column in ÂR· i calculate a replicate of the vector T· .

ÂS· i = max{ ÂR1i ≠ ÂR· i, . . . , ÂRMi ≠ ÂR· i} (1.12)

5. Calculating p-value: For each row · = 1, . . . , M in ÂS· i count the number of
entries that exceeded T· :

P· = number of { ÂS· i > T· }
N

(1.13)

Note that for the case that there are two true trees in a set, we should expect to
see the same results for KH vs SH, however, due to Monte Carlo we see some small
variations.

1.4.3 AU

The Approximately Unbiased test (AU) for regions with general smooth boundaries
Shimodaira (2002) was developed based on the theory of Efron, Halloran, and Holmes
(1996), Efron and Tibshirani (1998).

The test was based on the results about bootstrap support for regions in normal
mean problems. In this setting the data are Y ≥ N(µ, �). The alternative hypothesis
of interest is that µ œ R for some region R. The bootstrap support for a region is
defined as the proportion of bootstrap samples for which the bootstrap mean is in
the region. Efron and Tibshirani (1998) showed that bootstrap support for regions
with smooth boundaries are approximately the same as 1 minus the p-value for a
test of the null hypothesis that the true mean is not in the region R. The AU test
was developed as a higher-order correction to this p-value. Strictly speaking, the
motivation below applies only to this normal means setting. The hope was that the
results would extrapolate to bootstrap support in phylogenetics. However, it was later
shown that bootstrap support does not give an approximate p-value in phylogenetic
settings (Susko 2009). Thus the properties of the AU test are not well understood in
this setting. Nevertheless, the AU test is frequently used in practice. Thus we include
it among our comparator methods.

12



AU’s methodology is to compare bootstrap probability (BP) of regions:

1. Bootstrapping is repeated with varying sample sizes, some of which di�er from
that of the original data.

2. For a given region of interest and each sample size, count the number of bootstrap
samples for which the bootstrapped mean is in the region to obtain BP values

for di�erent sequence lengths.

3. The AU test calculates the approximately unbiased p-value from the change

in the BP values along the changing sample sizes, based on the motivation
below.

It follows from the Corollary of Efron (1985) that the p ≠ value, 1-AU, where AU is
defined as:

AU = 1 ≠ �(d ≠ c) (1.14)

is an O(n≠3/2) approximation to a valid p-value for the alternative hypothesis that
the true mean is in the region of interest. Here d is the signed Euclidean distance
between the sample mean for the data and the projection of that sample mean onto the
boundary of the region. It is the implicit test statistic for the procedure. The quantity
c is related to the curvature at the boundary, and �(·) denotes standard normal
cumulative distribution function. Although d and c can, in principle be calculated, the
AU procedure instead utilizes their relationship to BP to approximate them indirectly.
Shimodaira uses an argument from Efron and Tibshirani (1998) that

BP ¥ 1 ≠ �(d + c) (1.15)

Shimodaira (2002) notes that if BP is calculated for a fraction r of the original sample
size, then the resulting BP , BPr should satisfy

BPr ¥ 1 ≠ �(d
Ô

r + c/
Ô

r) (1.16)
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Since BPr and BP can be calculated, this gives two equations in two unknowns which
can be solved to approximate d and c which can then be substituted into (1.14). The
actual procedure used in Shimodaira is a little more complicated and uses BPr for
multiple choices of r to approximate d and c. 1-AU from (1.14) approximates an
exact p-value up to O(n≠3/2) which is considered third-order accurate; the usual error
in approximation, for instance, from (1.15) is O(n≠1/2). Often what is reported is
AU, which is referred to as the support or confidence level for the region, not to be
confused with the level, –, of a (1 ≠ –) ◊ 100% confidence set.

Susko (2009) argues that BP is not first order correct when used in a phylogenetic
setting and that, consequently, the AU test might not have even approximately correct
coverage. Thus the properties of the AU test are not well understood in this setting.
Nevertheless, the AU test is frequently used in practice. Its actual coverage properties
are an issue that will be discussed in the next chapter.

1.4.4 Chi-square

The chi-square test was developed in R. Ota et al. (2000) for the case where two trees
di�er by a single edge. That is, when a single edge-length in Tree 1 is set to 0, it gives
a special case of Tree 0.. A conservative extension that applies more generally was
developed in Susko (2014).
Consider the topology ·0, compared with the alternative ·1, which is the tree that is
believed to be the true tree:

H0 : · = ·0 HA : · = ·1 (1.17)

Let the log likelihood for the best topology ·1 be l·1
and l·0

for ·0. Then the log ratio
statistic is lrs = 2{l·1

≠ l·0
}. The distribution of lrs, under the null hypothesis, is

treated as being chi-square distributed with df degrees of freedom in Susko (2014),
where the df is the number of branches that had to be adjusted to 0 in order for the
two topologies to be equal.

In Figure 1.2, topology ·0 on the left and topology ·1 on the right di�er in that the
placements of taxa 2 and 4 have been reversed. Consequently, the edges ab in red
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correspond to two di�erent splits of the taxa into two groups.

Topology τ0
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2

1

0

4

a b

c
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Topology τ1

5

3

4

1

0

2

a b

c

4

2

Figure 1.2: Equivalent Topologies

Defining topology · Õ
0

as the topology ·0 with the only change being internal edge
length ab set to 0, gives the tree in Figure 1.3 where the upper branch with tips [1, 0]
are separated from the rest of the tips [2, 3, 4, 5]. The same is true for ·1; topology · Õ

1

is identical to · Õ
0
.

In the resulting tree we see that all tips [2, 3, 4, 5] are now branched from the same
node a without distinction between · Õ

0
and · Õ

1
.

A tree with internal edge-lengths set to 0, call it T0, that makes the topologies
equivalent is on the boundary between the parameter space for topology ·0 and the
parameter space for topology ·1. Because T0 is on the boundary of the parameter
space it is the appropriate tree for computing p-values. In a similar sense, when we
test H0 : µ Æ 0 against HA : µ > 0, we calculate p-values using the value µ = 0
on the boundary between the null (≠Œ, 0] and alternative (0, Œ) parameter spaces.
As discussed in Susko (2014), the p-value, p, can in principal be calculated using the
distribution of lrs under the null hypothesis. That distribution is a weighted mixture
of chi-squares, qdf

j=0
wjP [‰2

j
Æ x], where df is the number of edge-lengths set to 0 in

T0. The weights, wj, which are positive and sum to 1, are not easily calculated. But
the resulting p-value, p, satisfies that
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Figure 1.3: Setting Internal Edge To 0

p =
dfÿ

j=0

wjP [‰2

j
> lrs] Æ

dfÿ

j=0

wjP [‰2

df
> lrs] = P (‰2

df
> lrs) = p‰2 (1.18)

for large sequence. The quantity p‰2 can be calculated. Since p Æ p‰2 , then the
probability

P (p‰2 < –) Æ P (p < –) (1.19)

Since approximate p-values satisfy that P (p < –) ¥ –, the probability of false rejection
satisfies that

P (p‰2 < –) Æ P (p < –) ¥ – (1.20)

Thus as a two-tree test, the chi-square test is conservative because p2

‰
always larger

than p. We illustrate the calculation leading to this conclusion in Figure 1.4.

The chi-square confidence sets are constructed using the chi-square test for two trees,
taking ·1 = ·̂ the ML topology. For any fixed topology ·0 being considered for inclusion
in the confidence set,
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Figure 1.4: Illustrating why the chi-square test is conservative
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1. Obtain the consensus tree, T0, with just enough edge-lengths set to 0 to make
·0 and ·1 equivalent. The only information required is setting df = the number
of edge-lengths set to 0

2. Calculate p‰2 with this degrees of freedom df and topology ·1 = ·̂

3. Include ·0 in the confidence set if p‰2 Ø –

Because the ML topology is used as the alternative tree, a selection bias is expected
and as a confidence set procedure, the chi-square test is no longer guaranteed to
be conservative. In fact, in our simulations it showed to be rather aggressive in
comparison to the other tests.

1.5 Thesis Structure

In this thesis we compare four existing models, KH, SH, AU and Chi-square introduced
in Chapter 1 as well as two new methods: AU-corrected and a Bonferroni correction
to Chi-square, derived in Chapter 2, over multiple metrics to assess favourability. We
define coverage and mean set size of a resulting test, and discuss the complexity of
calculating a confidence interval for coverage due to correlation of trees appearing in
a resulting set. We slice and dice the data under di�erent circumstances of tree type
for both 6-taxa and 8-taxa, for each type setting a di�erent number of internal edge
lengths to zero, as well as looking at the di�erence between two adjacent zero-length
internal edges versus non-adjacent. We also compare varying internal edge lengths
(the non-zero ones of course) to observe the e�ect of the length on the tests’ abilities
to identify trees, And lastly we compare confidence levels of the more common 0.05
level as well as 0.1 and 0.01, with the expectation that the tests may behave more
conservatively when setting a higher threshold of confidence level. We contrast high
coverage performance of tests with their ability to keep the resulting set size of trees
closer to the expectation of the tree type, and also discuss the significance of having a
coverage higher than the confidence level set. Chapter 3 shows the detailed results of
all of our findings, showing side-by-side output for the tests. In Chapter 4 we apply the
same tests to four real-world datasets. Chapter 5 concludes the thesis by providing a
summary and discussion of the findings as we outline the common behaviour observed
for each of the tests.
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Chapter 2

Methodology

2.1 Bonferroni Correction

Bonferroni here refers to a new approach of calculating confidence sets that utilizes
the Chi-square test of two trees and adjusts for selection bias. We use the ML tree
to determine a relevant set of comparisons. It is related to but not quite the same
as conventional Bonferroni corrections for multiple tests. Let T0 be the tree with
edge-lengths set to 0 to make ·̂ equivalent to ·0. Let A(T0) be the set topologies that
are consistent with T0 .

In the following example we look at comparing topology ·0 with the ML topology ·̂ :

Topology τ0
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3

0

1

4

5

a

b

c

d

Topology τ̂

0

1

3

4

5

2

a

b

c

d

Figure 2.1: Bonferroni - Example Topology

In order to make the two equivalent we need to shorten the internal edge length ab to
0. That results in Figure 2.2 consensus tree (topology T0):
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Consensus tree for A(T0)
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Figure 2.2: Bonferroni - Setting Internal Edge To 0

The next step is to list all topologies that would result in topology T0 above if we
shorten only a single internal edge length.

The resulting set A(T0) is given in Figure 2.3.

Let n(A) be the number of trees in A(T0) and let df be the number of edges that were
set to 0 in T0. Then the Bonferroni confidence set includes ·0 in the confidence set if

1 ≠ (1 ≠ P [‰2

df
> 2(l·̂ ≠ l·0

)])n(A) Ø – (2.1)

The algorithm to get the Bonferroni confidence set calculates the p-value for each
choice of ·0. Suppose that the current tree being considered is ·0 in Figure 2.1. The
procedure to get a p-value for ·0 would be as follows:

1. Determine the ML tree (given in Figure 2.1 for the example)

1.1. Determine the log-likelihood for ·0 and ·̂ and use these to determine
lrs = 2{l·1

≠ l·0
}. As a hypothetical example, we suppose this ended up

being lrs = 2.3

2. Determine the df as the number of edge-lengths required to make ·̂ and ·0
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Figure 2.3: Bonferroni - The trees in A(T0)
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equivalent. In the example, the consensus tree making ·0 and ·̂ equivalent is
given in Figure 2.2 where we see that df = 1

3. Determine the set A(T0). In the example A(T0) set is given in Figure 2.2

4. Determine n(A), the number of trees that are compatible with T0. In the example
n(A) = 3 as in Figure 2.3

5. Calculate the p-value using Equation (2.1). In the example, plugging in the
values from previous steps we get a p-value of 0.9999673.

To motivate the Bonferroni confidence set we make two approximations:

C1. We treat A(T0) as the set of plausible trees that the ML estimate could have come
from. The idea here is that if the null hypothesis is correct and T0 is the correct tree,
then in theory, by consistency of tree estimation, if sequence length is large enough,
the ML tree will be in A(T0) most of the time.

C2. We set df to the number of 0 edge-lengths in T0 for the test of

H0 : · = ·0 vs HA : · = ·i for some i inA(T0) (2.2)

and use the chi-square test. Note that the usual chi-square test would set df to the
number of 0 edge-lengths in the consensus tree for ·0 and ·i rather than the consensus
tree for ·0 and ·̂ .

The Bonferroni approach seeks to determine whether ·0 is in the confidence set by
checking whether any of the tests

H0 : · = ·0 against HA : · = ·i where i œ A(T0) (2.3)

rejects. If not, ·0 is in the confidence set. Assuming approximations C1 and C2 are
true, then the ith test rejects at the – -level if

Pi = P [‰2

df
> 2(l·i

≠ l·0
)] < – (2.4)

Thus at least one of the tests rejects at the – -level if
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– > min Pi

= min P [‰2

df
> 2(l·i

≠ l·0
)]

= P [‰2

df
> maxi 2(l·i

≠ l·0
)]

= P [‰2

df
> 2(l·̂ ≠ l·0

)]

The di�culty with this approach is that there are multiple comparisons. If each of
the tests has a chance approximately – of rejecting, then the probability that at least
one rejects is greater than –. The usual Bonferroni correction replaces min Pi with
n(A) min Pi and rejects when n(A) min Pi < –. The resulting corrected test has type
I error probability at most –. The Bonferroni correction that we use treats the tests
as independent and replaces min Pi with

1 ≠ (1 ≠ min Pi)n(A) (2.5)

where n(A) is the number of tests. When min Pi is small, which is the main case of
interest, this expression is approximately the same as n(A) min Pi. The value in (2.5)
has the advantage that it is always in (0,1).

To establish that little di�erence arises from using the independence correction in (2.5)
rather than the actual Bonferroni correction, consider the result of an – = 0.05 level
test for various choices of n(A). The Bonferroni test rejects when n(A) min Pi < 0.05
or equivalently when min Pi is less than the Bonferroni threshold 0.05/n(A). Similarly,
the independence approach rejects if (2.5) is less than 0.05 which can be shown to be
equivalent to min Pi being less than the independence threshold 1 ≠ 0.951/n(A). Figure
2.4 gives the two thresholds for various choices of n(A).

We would only get a di�erent test result when min Pi is between the Independence
and Bonferroni thresholds.

The Bonferroni approach makes two approximations. The first, C1, if used in isolation
would cause the approach to be slightly anti-conservative. In reality any tree is possible,
so the p-values should in principle be calculated from the set of all trees in place of
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Figure 2.4: Thresholds for a 0.05 level test

A(T0). If that were to be done with the chi-square approximation it would lead to an
approach that was too conservative.

We did not need the second approximation C2. We could explicitly account for di�ering
degrees of freedom by calculating min Pi where the df are di�erent for di�erent tests.
In practice this would require explicitly calculating l·i

for all i œ A(T0). For larger
trees, this is unfeasible. We wanted an approach that only required l·̂ and the log
likelihood, l·0

for the tree being considered for inclusion in a confidence set.

The second approximation, C2, treats the df as the number of edge-lengths in T0

that were set to 0. In reality for some of the tests, the df would be smaller and the
p-value would be smaller. So some of the Pi used in calculating min Pi are too large.
Thus min Pi might be larger than it would have been had the di�ering degrees of
freedom been used. Consequently, C2 results in making the testing procedure more
conservative. We don’t expect it to be an overly conservative adjustment, however,
because the ML tree uses the correct df . Because the ML tree gives the largest log
likelihood, it will still frequently give the smallest Pi even had the Pi been calculated
with the correct degrees of freedom.
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In summary, the use of chi-square tests, condition C2 and Bonferroni corrections all
result in a conservative confidence set construction procedure. On balance, these are
the most important issues, so generally we expect the Bonferroni method will produce
confidence sets with coverage greater than 1 ≠ –.

2.2 AU Correction

The AU test e�ectively solves (1.16). Equivalently, it solves

d
Ô

r + c/
Ô

r = �≠1(1 ≠ BPr) (2.6)

where �≠1 is the inverse of the standard normal distribution function.

Two approaches are given in (Shimodaira 2002) to solve (2.6). Consider a set r1, . . . , rk

of multipliers. Let yi be �≠1(1≠BPri
), xi1 = Ô

ri and xi2 = 1/
Ô

ri. The first approach
solves for c and d using least squares applied to (2.6) for r = r1, . . . , rk. The other
approach treats rnBPr as an independent Binomial, where the probability of success
for each trial is defined by (1.16), and uses maximum likelihood to solve for c and d;
using optimization since no explicit solution is available.

Because yi = �≠1(1 ≠ BPri
), when BPri

¥ 0, small variations in BPri
can cause large

variations in yi, making the approach unstable. The quantity BPr is not directly
available from the software we use, so we use BP = 0 as a proxy for BPr = 0. Because
BP = 0 suggests the tree is not plausible, the AU correction is 0 whenever BP = 0
and otherwise coincides with AU . Note that one might consider more aggressive AU
corrections that are 0 when BP is less than some small threshold.

Figure 2.5 compares the p-values spread between AU and AU Correction for 1000
simulations from a six-taxon tree. It shows AU Correction has a stretched down
spread of p-values, meaning lower values than AU’s.

2.3 Confidence Intervals for Coverage

We will use simulation to approximate the true coverage of any given confidence set
construction procedure by the average percent of true trees that are in the confidence
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Figure 2.5: AU vs AU Correction p-values

sets over all simulations. We need to adjust for the possibility that there are often
multiple true trees due to some edge-lengths being 0 in the simulating model. We ran
either 100 or 1000 simulations. Thus it was important to have confidence intervals
(CI) for the true coverage.

Let C be the average observed coverage over simulations, then

C =
Kÿ

j=1

Bÿ

b=1

”jb/(KB)

where

K = Number of true trees,

B = Number of simulations

”jb =

Y
]

[
1 if tree j œ Cb

0 otherwise

Cb = Confidence set for simulation b
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The average observed coverage, C, is an approximation to the true coverage.

Complication: ”jb & ”jbÕ are independent, but ”jb & ”jÕb are correlated.

Define
pj = long-run proportion of Cb with j œ Cb (2.7)

pij = long-run proportion of Cb with both i, j œ Cb (2.8)

Then the covariance is

Cov[”jb, ”ib] = pij ≠ pipj (2.9)

The quantities pi, pj can be estimated by observed proportions.

Since ”jb is Bernoulli:

Var[”jb] = pj(1 ≠ pj) (2.10)

Var
5 Kÿ

j=1

”jb

6
=

Kÿ

j=1

Var[”jb] + 2
ÿ

i<j

Cov[”jb, ”ib] (2.11)

Var[C] = Var
5 Kÿ

j=1

”jb

6
/(K2B) (2.12)

Rather than obtaining a confidence interval for C directly, we obtain a confidence
interval for the logistic transformation of C and then transform back to get a CI for
C. This ensures that the bounds are in (0,1).

g(C) = log
5

C

1 ≠ C

6
= log [C] ≠ log [1 ≠ C]

gÕ(C) = 1
C

+ 1
1 ≠ C

(2.13)
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� -method:

Var[g(C)] = gÕ(C)2 · Var[C] (2.14)

Let [L, U ] be the lower and upper limits of the 95% CI for g(C), then:

[L, U ] = g(C) ± 1.96
Ò

Var[g(C)] (2.15)

Then the 95% CI for C is:

[g≠1(L), g≠1(U)] (2.16)

2.4 Simulation Settings

We considered two main sets of simulations. One with six taxa and another with eight.
For any fixed tree setting, we generated data sets with sequence length 1000. The
substitution model used was the HKY model with transition-transversion ratio 2 and
frequencies of nucleotides fiA = 0.1, fiC = 0.2, fiG = 0.3 and fiT = 0.4. Simulations
included rates-across-sites variation from an 8-category gamma rates across sites model
with – = 1. We generated 1000 data sets for each six-taxon simulation setting and
100 data sets for each eight-taxon simulation setting. Internal edge-lengths varied
across settings but terminal edge-lengths were always set to 0.1.

To obtain the p-values for each of the tests described above, an open-source phylogenetic
reconstruction package, IQ-TREE was used (L. Nguyen et al. 2014). In the words of
the product description on its website, IQ-TREE takes as input a multiple sequence
alignment and will reconstruct an evolutionary tree that is best explained by the input
data. We used the latest version of IQ-TREE available at the time of analysis. All
version numbers were greater than or equal to 1.6.8. IQ-TREE returns the Maximum
likelihood tree and p-values for the tests KH, SH and AU. More info on IQ-TREE can
be found here: http://www.iqtree.org
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In our simulation applications of IQ-TREE, for each simulation, taxa and length of
internal-edge likelihoods and p-values were obtained for a fitted GTR model with 4
gamma rate categories. The following IQ-TREE command was run:

iqtree -s {sequences input file} -z {tree file for the taxa}
-nt 8 -m GTR+G -n 0 -zb 10000 -au -wsl -mem 10GB -redo > {output file}

where the sequence input file looks like:

6 1000
0 ATCGTTGGCCCGGCGTCGGTTGATGTGAGTTCGCG...
1 ATCGTTGGCCCTGCGCCGGCTGATGTGGATTCGCG...
...

and represents the edge nodes for the tree, so for example, for the 6-taxon the file
contained 6 alignments (0-5) for each of the nodes.

The tree file for the taxa looks like:

(3,(2,5),(1,(0,4)));
((2,5),(3,1),(0,4));
(5,(3,2),(1,(0,4)));
(2,(3,5),(1,(0,4)));

...

and goes to 105 possible trees for a 6-taxon, and 10395 tree possibilities for the 8-taxon.

The software outputs data from which a p-value dataframe is extracted and saved as
a file.

Setting a fixed seed for the data sampling, running the same test n times, and varying
the length of internal edges, calculating for each case the p-value for each of the tests,
a confidence set was calculated.

The term set and simulation are used interchangeably throughout this paper as a
single simulation produces a set of trees.
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2.5 Six-taxon Simulation Settings

The maximum number of internal edge lengths for a 6-taxon tree is 3. We ran
n = 1, 000 simulations for trees with 0, 1, 2 or 3 of the internal edge-lengths set to 0.
For each setting we also considered three choices of edge-lengths for the other internal
edge-lengths (0.1, 0.01 and 0.001).

The formula for the number of possible trees depends on the number of taxa. For an
unrooted tree, Nu = (2m ≠ 5)(2m ≠ 7)...1, where m is the number of taxa. So for six
taxa there are 105 possible tree structures to examine in each simulation. For the
case of two edge-lengths set to 0, there are two possible cases; one of which the two
zero-length internal edges are adjacent, and one when they’re not.

26: (2,(3,(1,0)),(5,4));

nulling the length of internal edge 'ab'
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a
b c
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52: (5,((3,2),(1,0)),4);

nulling the length of internal edge 'bc'
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64: (2,(1,0),(3,(5,4)));

nulling the length of internal edge 'ac'
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6−taxon tree with single zero−length internal edge

6−taxon tree with only two internal edges
(or a single zero−length internal edge, nzero = 1)
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Figure 2.6: The three true six-taxon trees corresponding to the six taxon tree with a
single zero-length edge considered in simulations

Settings with zero-length edges can become challenging for ML because otherwise-
di�erent structure trees become identical; In Figure 2.6, the six-taxon trees 26, 52 and
64 all become the tree on the bottom when nulling one of each of their internal edge
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lengths (in red).

2.6 Eight-taxon Simulation Settings

For eight-taxon trees the maximum number of internal edge lengths is 4. Only n = 100
simulations were performed as it is computationally harder to obtain ML estimates for
all 10,395 possible trees, and the internal edge lengths compared in the eight-taxon
setting were 0.1, 0.05 and 0.01 for the same reason. Terminal edge-lengths were set to
0.1.

Tree types tested:

Table 2.1: Eight-Taxon Tree Types Tested

Name R Script Reference Description

8taxon-0 8cat0 with none of the edge-lengths set to 0

8taxon-1 8cat1 with one of the edge-lengths set to 0

8taxon-2 8cat2sep for two of the edge-lengths set to 0, where the zero length internal edges *are not* adjacent

8taxon-2-adj 8cat2adj for two of the edge-lengths set to 0, where the zero length internal edges *are* adjacent

8taxon-star 8star where all of the edge-lengths are set to 0

8−taxon tree with no internal edge lengths
equal to or greater than 0
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e

same tree with two adjacent internal
‘ab‘ (blue edge) and ‘ac‘ (red edge) edges equal to 0
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same tree with two non−adjacent internal
‘ab‘ (blue edge) and ‘cd‘ (purple edge) edges equal to 0

2
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4

7

8

ab

cd
e

Figure 2.7: Three of the eight-taxon trees considered in simulation

Figure 2.7 shows an example of an eight-taxon tree with no zero length internal edges
on the left, followed by a tree with two adjacent edge-lengths set to 0 in the middle.
The tree on the right has two non-adjacent edge-lengths set to 0.
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2.7 Nomenclature For Simulations

Throughout the thesis I will be referring to the tree types I’ve analyzed either by full
name or description or by shorthand abbreviation/code that I was working with while
writing the script. Table 2.2 summarizes each tree type and its abbreviation.

Table 2.2: Tree Type Abbreviations and Descriptions

Name True Trees Description

6taxon-0 1 Six taxon tree with all positive edge-lenghs

6taxon-1 3 Six taxon tree with one zero-length edge

6taxon-2 9 Six taxon tree with two non-adjacent zero-length edges

6taxon-2-adj 15 Six taxon tree with two adjacent zero-length edges

6taxon-star 105 Six taxon star tree

8taxon-0 1 Eight taxon tree with all positive edge-lengths

8taxon-1 3 Eight taxon tree with one zero-length edge

8taxon-2 9 Eight taxon tree with two non-adjacent zero-length edges

8taxon-2-adj 15 Eight taxon tree with two non-adjacent zero-length edges

8taxon-star 10395 Eight taxon star tree

For convenience, The tree plots below will show an example of each type of tree
analyzed in the thesis for both the six and eight-taxon cases:

none of edge−lengths were set to 0
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d

Figure 2.8: A well resolved 6-taxon tree, with all internal-edge-lenghts > 0
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A 6−taxon tree with
a single zero−internal−edge−lenghts

one of edge−lengths was set to 0
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A 6−taxon tree with
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Figure 2.9: Six-taxon tree types
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and the 8-taxon case:

none of edge−lengths were set to 0

5

3

0

1

2

4

6

7

a
b

c
d

e

f

Figure 2.10: A well resolved 8-taxon tree, with all internal-edge-lenghts > 0
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Figure 2.11: Eight-taxon tree types
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2.8 Performance Comparison Metrics

The metrics used to describe and evaluate the tests are set size and coverage.

Mean Set Size

This metric counts the number of trees in a confidence set. For example for the
well-resolved tree in simulation #1, for SH where internal edge length is 0.1 we have
the set (26, 52, 62, 64, 65, 86, 102) so the set size here would be the count of elements
in the set, 7. Ideally, we would expect to see the set size as close as possible to the
expected true set size (in the case above, it’s a set of a single tree, size of 1). The
values in the data tables shown in each result below will show the mean set size
±1.96 ◊ Standard DeviationÔ

n
.

Mean Tree Coverage

Coverage of a simulation is the count of true trees predicted over the total number
of true trees for the tree type. For example, if a six-taxon simulating tree has 3 true
trees, and the AU test in a particular simulation only predicted 2 of those three trees,
then the coverage for this instance is 2/3. If the simulation-tree coverage of each
true tree in the set is a boolean, than the mean over simulations of that boolean is
the mean-tree coverage. Taking the mean of all mean-tree for each test gives us the
coverage for that test. This calculation is equivalent to counting the true trees present
in each set (simulation) for a test, and dividing by the number of expected true trees
to produce a simulation-coverage (for example if in simulation #1 we expected 3
trees and counted only 2 true trees in the set produced by the simulation then the
simulation-coverage is 0.67). Equivalently, it is the coverage (over true trees) of the
coverage proportions for those true trees.

This metric shows us how many of the true trees were predicted correctly by the test.
For a (1 ≠ –) ◊ 100% confidence set procedure, the coverage should be approximately
1 ≠ –. Erring on the side of being larger than 1 ≠ – (a conservative procedure or test)
is better than being too small.

Exact Trees
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Lastly, a count of simulations that produced the exact number of true trees in the
confidence set, without any excess trees, over the total number of simulations was
used in the comparison.

2.8.1 Datasets

In summary, three types of datasets will be examined; 6-taxon, 8-taxon data sets and
several real data sets.

Several cases of tree types will be examined, each with a di�erent number of internal
edges set at length zero. When some internal edge lengths are set to zero, the resulting
tree is equivalent to several tree topologies which is expected to make selection bias
more challenging for a test.

6−taxon tree with internal edge lengths
(in red) equal and greater than 0
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0

4
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c

same tree, with edges ‘ab‘ and ‘bc‘
almost at length 0, starting to get

the shape of a 'star tree'

5

3

2

1

0

4

abc

Figure 2.12: Six-taxon with two zero-length edges Example

The trees plotted in Figure 2.12 demonstrate the case how a particular tree is consistent
with the star tree. In the star tree case, all trees are true making selection bias
particularly challenging.
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Chapter 3

Simulation Results

Throughout this chapter I will be using abbreviations at times for the tests as follows:

Table 3.1: Test Abbrevaitions

Abbreviation Test

KH KH

SH SH

AU AU

AU-corr AU with Bootstrap correction

chisq Chi-sqaure

bonf Bonferroni

38



3.1 Six-taxon

3.1.1 Six taxon tree with all positive edge-lenghs (6taxon-0)

Mean Set Size Coverage
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Figure 3.1: Results for six taxon simulations with no zero edge lengths

Table 3.2: Results for six taxon simulations with no zero edge-lengths

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

0.1 Internal Edge Length
KH 1.000 ± 0.000 1.000 0.000 100.00% 100.000% 100.000% 1000

SH 4.809 ± 0.082 1.000 3.809 100.00% 100.000% 100.000% 5

AU 1.106 ± 0.067 1.000 0.106 100.00% 100.000% 100.000% 976

AU-corr 1.000 ± 0.000 1.000 0.000 100.00% 100.000% 100.000% 1000

chisq 1.000 ± 0.000 1.000 0.000 100.00% 100.000% 100.000% 1000

bonf 1.000 ± 0.000 1.000 0.000 100.00% 100.000% 100.000% 1000

0.01 Internal Edge Length
KH 41.886 ± 2.166 1.000 40.886 100.00% 100.000% 100.000% 0

SH 62.725 ± 2.270 1.000 61.725 100.00% 100.000% 100.000% 0

AU 42.138 ± 1.569 1.000 41.138 100.00% 100.000% 100.000% 0

AU-corr 35.717 ± 1.230 1.000 34.717 100.00% 100.000% 100.000% 0

chisq 7.983 ± 0.828 0.991 6.992 99.10% 98.515% 99.685% 161

bonf 29.432 ± 2.283 0.998 28.434 99.80% 99.523% 100.077% 65

0.001 Internal Edge Length
KH 104.623 ± 0.281 1.000 103.623 100.00% 100.000% 100.000% 0

SH 104.963 ± 0.073 1.000 103.963 100.00% 100.000% 100.000% 0

AU 91.337 ± 0.860 0.941 90.396 94.10% 92.640% 95.560% 0

AU-corr 78.326 ± 0.668 0.923 77.403 92.30% 90.648% 93.952% 0

chisq 85.632 ± 2.045 0.889 84.743 88.90% 86.953% 90.847% 0

bonf 104.008 ± 0.379 0.994 103.014 99.40% 98.921% 99.879% 0
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For the configuration where none of the edge-lengths were set to 0, we have a single
correct tree. This is the simplest tree to identify.

Mean Set Size demonstrates the mean set sizes of 95% confidence sets of trees for
each of the tests listed in the x-axis, broken down by the three internal edge lengths
shown in the legend on the right. The maximum value in this case would be 105 for
all possible trees for a 6-taxon. The larger the edge length, the easier it is for the test
to distinguish between trees, and since only one tree is true in the case where none of
the edge-lengths is set to 0, we expect to have a set size of 1. Most tests performed
well with an internal edge-length of 0.1 (the largest value tested) having a mean of set
size = 1, with the exception of AU with a value of 1.1, and SH with a value of 4.8.
SH’s performance is relatively conservative with roughly 5x the set size of the other
tests.

The black lines at the top of each bar are the error bars that show the 95% spread of
the values for each case.

Focusing on the di�erences between internal edge-lengths for each of the trees, we
see an increase in set size as mentioned above, however, the rate of increase is not
the same for every test. Moreover, we see that for internal edge-length set to 0.01 for
instance, chisq managed to keep its mean set size at a low 8.0, the smallest one in
the test group, while AU-corr had a value of 35.717 ~◊4.5 as big, while for internal
edge-length set to 0.001 AU-corr has the lowest mean set size value of 78.326 and
chisq’s value shoots up to 85.632.

Coverage shows the proportion of times the true tree set (in this case only tree #64)
was present in the set. This value was calculated for each simulation and then the
mean value was taken per test, with 95% confidence intervals for the mean being
indicated as well. The maximum value for this plot is 1 (as there is only one true
tree). Even though we set the probability to be at 0.95 (so we expect to see the true
tree 95% of the times), we still see that when internal edge-lengths are 0.1 the mean
value for coverage is 1 across the board. With the high set size we viewed in the Mean
Set Size plot set on the left, it appears that all tests predicted the true tree in every
set. The values are high for lower internal edge-length’s with chi-square having the
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lowest coverage rate when internal edge-lengths are 0.001 with a value of 0.889.

Exact Trees shows a large contrast between SH and the rest of the tests for internal
edge length 0.1, where SH only has 5 simulations containing exactly the one true
tree out of 1,000, whereas the rest of the tests either had the exact set every single
simulation or very close to it (AU). Varying the internal edge length to a smaller value
shows the tests struggle with this metric, and for a value set to 0.001 none of them
had a single simulation that contained only the true tree.
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3.1.2 Six taxon tree with one zero-length edge (6taxon-1)
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Figure 3.2: Results for six taxon simulations with a single zero-length edge

Table 3.3: Results for six taxon simulations with a single zero-length edge

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

0.1 Internal Edge Length
KH 3.000 ± 0.000 3.000 0.000 100.00% 100.000% 100.000% 1000

SH 3.136 ± 0.072 3.000 0.136 100.00% 100.000% 100.000% 980

AU 3.002 ± 0.005 2.999 0.003 99.97% 99.764% 99.995% 997

AU-corr 2.999 ± 0.002 2.999 0.000 99.97% 99.764% 99.995% 999

chisq 2.892 ± 0.027 2.892 0.000 96.40% 95.382% 97.200% 939

bonf 2.958 ± 0.017 2.958 0.000 98.60% 97.899% 99.069% 976

0.01 Internal Edge Length
KH 81.276 ± 2.059 3.000 78.276 100.00% 100.000% 100.000% 1

SH 93.492 ± 1.581 3.000 90.492 100.00% 100.000% 100.000% 0

AU 68.329 ± 1.432 2.991 65.338 99.70% 99.345% 99.863% 0

AU-corr 58.204 ± 1.119 2.989 55.215 99.63% 99.272% 99.816% 0

chisq 31.573 ± 2.145 2.843 28.730 94.77% 93.480% 95.811% 123

bonf 76.841 ± 2.319 2.961 73.880 98.70% 98.014% 99.151% 26

0.001 Internal Edge Length
KH 104.837 ± 0.192 3.000 101.837 100.00% 100.000% 100.000% 0

SH 105.000 ± 0.000 3.000 102.000 100.00% 100.000% 100.000% 0

AU 91.928 ± 0.854 2.732 89.196 91.07% 89.484% 92.432% 0

AU-corr 79.141 ± 0.667 2.484 76.657 82.80% 80.960% 84.496% 0

chisq 88.474 ± 1.900 2.633 85.841 87.77% 85.720% 89.556% 0

bonf 104.385 ± 0.246 2.986 101.399 99.53% 98.949% 99.793% 0

This is the setting where we have a single internal edge length that is equal to zero.
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There are three trees that are compatible with the generating tree. Consequently, the
expected set size is 3.

Mean Set Size Again, all tests performed well under internal edge-length set at 0.1
having a mean of set size of ~3, SH still slightly higher than the rest at 3.136 but this
time the di�erence is minor.

Focusing on the di�erences between internal edge-length again we see the same story as
in none of edge-lengths were set to 0, with the same phenomena where chisq performs
pretty well even at 0.01, but grows above AU for internal edge-length 0.001.

Coverage Even though these are 95% confidence sets (so we expect to see the true
tree 95% of the times), we still see that for internal edge-length set to 0.1 the mean
value for coverage is roughly ~100% across the board, so the set of three trees shown
above was correctly predicted most of the time, and it’s only at internal edge-length
0.001 that we start seeing the mean decrease as low as 83% for AU Corr.
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3.1.3 Six taxon tree with two non-adjacent zero-length edges (6taxon-2)
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Figure 3.3: Results for six taxon simulations with two non-adjacent zero-length edges

Table 3.4: Results for six taxon simulations with two non-adjacent zero-length edges

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

0.1 Internal Edge Length
KH 9.000 ± 0.000 9.000 0.000 100.00% 100.000% 100.000% 1000

SH 9.000 ± 0.000 9.000 0.000 100.00% 100.000% 100.000% 1000

AU 9.001 ± 0.012 8.992 0.009 99.91% 99.793% 99.962% 990

AU-corr 8.992 ± 0.007 8.992 0.000 99.91% 99.793% 99.962% 994

chisq 8.509 ± 0.092 8.509 0.000 94.54% 93.428% 95.480% 868

bonf 8.901 ± 0.036 8.901 0.000 98.90% 98.417% 99.237% 959

0.01 Internal Edge Length
KH 82.675 ± 2.229 8.997 73.678 99.97% 99.897% 99.989% 79

SH 89.121 ± 1.933 9.000 80.121 100.00% 100.000% 100.000% 48

AU 69.244 ± 1.571 8.968 60.276 99.64% 99.405% 99.788% 19

AU-corr 58.168 ± 1.273 8.966 49.202 99.62% 99.378% 99.771% 19

chisq 30.304 ± 2.201 8.502 21.802 94.47% 93.339% 95.413% 504

bonf 65.397 ± 2.688 8.919 56.478 99.10% 98.663% 99.395% 273

0.001 Internal Edge Length
KH 104.881 ± 0.157 8.992 95.889 99.91% 99.599% 99.980% 0

SH 104.998 ± 0.004 9.000 95.998 100.00% 100.000% 100.000% 0

AU 91.867 ± 0.851 8.202 83.665 91.13% 89.895% 92.233% 0

AU-corr 78.961 ± 0.644 8.009 70.952 88.99% 87.677% 90.176% 0

chisq 87.706 ± 1.935 7.842 79.864 87.13% 85.212% 88.837% 8

bonf 104.251 ± 0.321 8.957 95.294 99.52% 99.149% 99.732% 0

For the case of two internal edge lengths equal to zero, we have two possibilities: the
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0-length branches are adjacent, or not adjacent. In this sub-section we consider first
the non-adjacent case, with 9 trees compatible with the true tree.

Mean Set Size At an internal edge length of 0.1 SH did not show any excess of trees
in this configuration as opposed to the two previous cases, however, SH did find all
105 trees correct in its set for internal edge length of 0.001 as in the previous two
configurations.

Coverage Chi-square’s confidence interval coverage contained the 95% confidence
level for internal edge lengths 0.1 and 0.01, but was well below the level for internal
edge length set to 0.001. For the harder-to-distinguish case of internal edge length of
0.001 it seems like KH, SH and Bonferroni were very conservative, all predicting 100%
of the true trees coverage, and that the AU’s and chisq were below.
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3.1.4 Six taxon tree with two adjacent zero-length edges (6taxon-2-adj)

Mean Set Size Coverage
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Figure 3.4: Results for six taxon simulations with two adjacent zero-length edges

Table 3.5: Results for six taxon simulations with two adjacent zero-length edges

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

0.1 Internal Edge Length
KH 15.000 ± 0.000 15.000 0.000 100.00% 100.000% 100.000% 1000

SH 15.000 ± 0.000 15.000 0.000 100.00% 100.000% 100.000% 1000

AU 14.824 ± 0.052 14.824 0.000 98.83% 98.428% 99.125% 930

AU-corr 14.722 ± 0.054 14.722 0.000 98.15% 97.751% 98.474% 832

chisq 13.914 ± 0.189 13.914 0.000 92.76% 91.397% 93.921% 828

bonf 14.898 ± 0.045 14.898 0.000 99.32% 98.942% 99.564% 962

0.01 Internal Edge Length
KH 97.069 ± 1.345 14.984 82.085 99.89% 99.579% 99.973% 13

SH 101.773 ± 0.891 15.000 86.773 100.00% 100.000% 100.000% 6

AU 81.580 ± 1.239 14.740 66.840 98.27% 97.740% 98.672% 4

AU-corr 69.092 ± 0.957 14.546 54.546 96.97% 96.408% 97.452% 5

chisq 57.180 ± 2.556 13.650 43.530 91.00% 89.439% 92.350% 228

bonf 94.790 ± 1.482 14.839 79.951 98.93% 98.438% 99.263% 39

0.001 Internal Edge Length
KH 104.901 ± 0.134 14.982 89.919 99.88% 99.546% 99.968% 0

SH 105.000 ± 0.000 15.000 90.000 100.00% 100.000% 100.000% 0

AU 92.651 ± 0.833 13.499 79.152 89.99% 88.805% 91.068% 0

AU-corr 79.488 ± 0.640 12.610 66.878 84.07% 82.876% 85.190% 0

chisq 89.119 ± 1.858 12.931 76.188 86.21% 84.231% 87.970% 4

bonf 104.477 ± 0.233 14.923 89.554 99.49% 99.142% 99.693% 0

By contrast with the previous example, the two zero-length edges are adjacent. There
are thus 15 trees that are compatible with the true generating tree.
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Mean Set Size This is the first case where we can see that other than the conservative
KH and SH, all other tests predicted a set size of less than 15 (number of true trees
for this configuration) for internal edge length 0.1.

Coverage This brings our coverage down to lower than 100% for the case of internal
edge length 0.1. But for any test other than the chi-square test, coverage is above
the 95% confidence level. SH & KH both predict 100% of the coverage, for all three
varying internal edge lengths, although the expected value would have been closer to
the 95% confidence level. You can also see that the mean wrong trees for these tests
is the highest compared to the other tests. This again shows how conservative these
tests are.
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3.1.5 Six taxon star tree (6taxon-star)

Mean Set Size Coverage
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Figure 3.5: Results for six taxon simulations with three zero-length edges

Table 3.6: Results for six taxon simulations with three zero-length edges

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

KH 104.894 ± 0.153 104.894 0 99.90% 99.574% 99.976% 994

SH 104.960 ± 0.078 104.960 0 99.96% 99.730% 99.995% 999

AU 93.242 ± 0.821 93.242 0 88.80% 87.997% 89.560% 251

AU-corr 80.119 ± 0.628 80.119 0 76.30% 75.701% 76.896% 0

chisq 90.361 ± 1.799 90.361 0 86.06% 84.256% 87.684% 652

bonf 104.507 ± 0.229 104.507 0 99.53% 99.254% 99.705% 900

The set of true trees is all 105 possible trees, this is a star tree where all terminal
edges stem from the root.

Mean Set Size With star tree being the hardest configuration to deal with, The AU
tests and chisq were struggling to recognize that all trees should be in their confidence
sets, while KH, SH and Bonferroni were consistently showing a mean set size of the
size of all possible trees, 105.

Coverage As with the mean set size, AU-correction had the most trouble distinguish
the trees and only predicted ~75% of the trees as true trees. Chi-Square was slightly
better at 86%.
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3.2 Eight-taxon

3.2.1 Eight taxon tree with all positive edge-lengths (8taxon-0)

Mean Set Size Coverage
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Figure 3.6: Eight-taxon simulations with a single true tree

Table 3.7: Eight-taxon simulations with a single true tree

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

0.1 Internal Edge Length
KH 1.000 ± 0.000 1.00 0.00 100.00% 100.000% 100.000% 100

SH 23.980 ± 1.398 1.00 22.98 100.00% 100.000% 100.000% 0

AU 11.040 ± 4.950 1.00 10.04 100.00% 100.000% 100.000% 53

AU-corr 1.000 ± 0.000 1.00 0.00 100.00% 100.000% 100.000% 100

chisq 1.000 ± 0.000 1.00 0.00 100.00% 100.000% 100.000% 100

bonf 1.000 ± 0.000 1.00 0.00 100.00% 100.000% 100.000% 100

0.05 Internal Edge Length
KH 1.100 ± 0.081 1.00 0.10 100.00% 100.000% 100.000% 94

SH 60.550 ± 3.562 1.00 59.55 100.00% 100.000% 100.000% 0

AU 9.600 ± 5.249 1.00 8.60 100.00% 100.000% 100.000% 66

AU-corr 1.080 ± 0.072 1.00 0.08 100.00% 100.000% 100.000% 95

chisq 1.000 ± 0.000 1.00 0.00 100.00% 100.000% 100.000% 100

bonf 1.000 ± 0.000 1.00 0.00 100.00% 100.000% 100.000% 100

0.01 Internal Edge Length
KH 163.720 ± 51.305 1.00 162.72 100.00% 100.000% 100.000% 0

SH 1275.850 ± 347.877 1.00 1274.85 100.00% 100.000% 100.000% 0

AU 807.870 ± 243.268 1.00 806.87 100.00% 100.000% 100.000% 0

AU-corr 159.990 ± 25.233 1.00 158.99 100.00% 100.000% 100.000% 0

chisq 13.530 ± 4.232 0.98 12.55 98.00% 95.256% 100.744% 12

bonf 178.420 ± 118.411 1.00 177.42 100.00% 100.000% 100.000% 4
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With no zero-length internal edge lengths, there is a single tree.

Mean Set Size Comparing to the six-taxon case with a configuration of a single true
tree, we see a somewhat similar picture here; SH is still being very conservative at
internal edge length of 0.1, predicting more wrong trees than the rest, and this time
AU-correction is behaving similarly too, whereas in the six-taxon case its number
of wrong trees was ~10% larger than the true set size, this time it’s ~1000%. The
variance for the set size spreads much wider here than in the six-taxa since only 100
simulations were run for the eight-taxa, versus 1,000 in the former case. We see that
for larger internal edge length only AU’s variance is large compared to the others,
although for smaller internal edge lengths SH has large variance as well.

The large variance for AU can be explained by comparing to the relatively small
variance of AU-corr. The two methods di�er only when BP = 0. For reasons discussed
in Section 2.2, the AU p ≠ values become highly unstable in this case.

Coverage For both internal edge lengths of 0.1 and 0.01 we see that all tests were
able to predict close to 100% of the coverage, hence a little too conservative for our
95% confidence level. At internal edge length of 0.01, the lowest value of internal
edge length for the eight taxa that we tested, only chisq had a very slight decrease in
coverage to 98%.
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3.2.2 Eight taxon tree with one zero-length edge (8taxon-1)

Mean Set Size Coverage
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Figure 3.7: Eight-taxon simulations with a single zero-length edge

Table 3.8: Eight-taxon simulations with a single zero-length edge

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

0.1 Internal Edge Length
KH 3.000 ± 0.000 3.00 0.00 100.00% 100.000% 100.000% 100

SH 37.400 ± 1.070 3.00 34.40 100.00% 100.000% 100.000% 0

AU 19.290 ± 12.834 3.00 16.29 100.00% 100.000% 100.000% 60

AU-corr 3.000 ± 0.000 3.00 0.00 100.00% 100.000% 100.000% 100

chisq 2.850 ± 0.102 2.85 0.00 95.00% 90.318% 97.481% 92

bonf 2.940 ± 0.067 2.94 0.00 98.00% 94.017% 99.350% 97

0.05 Internal Edge Length
KH 3.260 ± 0.272 3.00 0.26 100.00% 100.000% 100.000% 94

SH 67.070 ± 5.525 3.00 64.07 100.00% 100.000% 100.000% 0

AU 3.390 ± 0.255 3.00 0.39 100.00% 100.000% 100.000% 83

AU-corr 3.240 ± 0.221 3.00 0.24 100.00% 100.000% 100.000% 92

chisq 2.870 ± 0.095 2.87 0.00 95.67% 91.163% 97.927% 93

bonf 2.950 ± 0.058 2.95 0.00 98.33% 94.776% 99.481% 97

0.01 Internal Edge Length
KH 614.650 ± 252.991 3.00 611.65 100.00% 100.000% 100.000% 0

SH 2905.130 ± 612.882 3.00 2902.13 100.00% 100.000% 100.000% 0

AU 2684.050 ± 446.997 2.99 2681.06 99.67% 97.688% 99.953% 0

AU-corr 296.510 ± 34.297 2.99 293.52 99.67% 97.688% 99.953% 0

chisq 47.330 ± 20.691 2.87 44.46 95.67% 91.163% 97.927% 12

bonf 1112.220 ± 478.899 2.94 1109.28 98.00% 94.017% 99.350% 1

With a single zero-length internal edge. There are three true trees.
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Mean Set Size Again comparing to the six-taxon case where only a single edge
length is set to zero, we see a similar comparison as with the previous case, where SH’s
wrong tree count has increased significantly, as well as AU’s for the case of 0.1 internal
edge length. At 0.01 internal edge length chisq seems to have the least number of
wrong trees.

Coverage As well as having a low count of wrong trees, the coverage of the chi-square
test is closest to the stated level (95%) of the confidence set.
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3.2.3 Eight taxon tree with two non-adjacent zero-length edges

(8taxon-2)

Mean Set Size Coverage
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Figure 3.8: Eight-taxon simulations with two non-adjacent zero-length edges

Table 3.9: Eight-taxon simulations with two non-adjacent zero-length edges

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

0.1 Internal Edge Length
KH 9.000 ± 0.000 9.00 0.00 100.00% 100.000% 100.000% 100

SH 120.600 ± 10.024 9.00 111.60 100.00% 100.000% 100.000% 0

AU 28.020 ± 23.591 9.00 19.02 100.00% 100.000% 100.000% 64

AU-corr 9.000 ± 0.000 9.00 0.00 100.00% 100.000% 100.000% 100

chisq 8.720 ± 0.254 8.72 0.00 96.89% 92.465% 98.751% 94

bonf 9.000 ± 0.000 9.00 0.00 100.00% 100.000% 100.000% 100

0.05 Internal Edge Length
KH 9.080 ± 0.127 8.99 0.09 99.89% 99.222% 99.984% 96

SH 176.900 ± 15.431 9.00 167.90 100.00% 100.000% 100.000% 0

AU 13.250 ± 4.267 8.98 4.27 99.78% 99.127% 99.944% 76

AU-corr 9.480 ± 0.657 8.98 0.50 99.78% 99.127% 99.944% 95

chisq 8.530 ± 0.283 8.53 0.00 94.78% 90.600% 97.157% 88

bonf 8.890 ± 0.130 8.89 0.00 98.78% 96.078% 99.626% 96

0.01 Internal Edge Length
KH 424.300 ± 221.759 9.00 415.30 100.00% 100.000% 100.000% 0

SH 1691.730 ± 489.247 9.00 1682.73 100.00% 100.000% 100.000% 0

AU 1493.980 ± 366.928 9.00 1484.98 100.00% 100.000% 100.000% 0

AU-corr 233.730 ± 32.118 9.00 224.73 100.00% 100.000% 100.000% 0

chisq 55.610 ± 23.221 8.65 46.96 96.11% 92.191% 98.104% 25

bonf 578.980 ± 361.691 8.89 570.09 98.78% 96.078% 99.626% 4

With two non-adjacent zero-length internal edge. There are 9 true trees.
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Mean Set Size The trend continues for SH and AU having a substantial number of
wrong trees in their confidence set with SH having as much as 91% of its set wrong,
and AU 68% for internal edge length of 0.1. Chisq is the only test with a set size less
than the number of true trees (9).

Coverage Very close to the configuration of a single zero-length edge, the tests all
performed similarly when varying the internal edge length, with chisq being larger
than the 95% confidence interval but the closest to it.
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3.2.4 Eight taxon tree with two adjacent zero-length edges

(8taxon-2-adj)

Mean Set Size Coverage
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Figure 3.9: Eight-taxon simulations with two adjacent zero-length edges

Table 3.10: Eight-taxon simulations with two adjacent zero-length edges

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

0.1 Internal Edge Length
KH 15.000 ± 0.000 15.00 0.00 100.00% 100.000% 100.000% 100

SH 75.870 ± 7.875 15.00 60.87 100.00% 100.000% 100.000% 5

AU 25.420 ± 9.210 14.88 10.54 99.20% 98.151% 99.656% 74

AU-corr 14.790 ± 0.112 14.79 0.00 98.60% 97.621% 99.180% 84

chisq 13.640 ± 0.665 13.64 0.00 90.93% 85.454% 94.482% 81

bonf 14.740 ± 0.297 14.74 0.00 98.27% 94.691% 99.448% 95

0.05 Internal Edge Length
KH 14.930 ± 0.181 14.88 0.05 99.20% 96.885% 99.798% 96

SH 199.900 ± 11.121 15.00 184.90 100.00% 100.000% 100.000% 0

AU 15.470 ± 0.452 14.77 0.70 98.47% 96.526% 99.331% 78

AU-corr 15.240 ± 0.450 14.65 0.59 97.67% 95.925% 98.674% 71

chisq 13.420 ± 0.760 13.42 0.00 89.47% 83.263% 93.549% 80

bonf 14.540 ± 0.441 14.54 0.00 96.93% 92.199% 98.831% 93

0.01 Internal Edge Length
KH 2096.310 ± 553.728 15.00 2081.31 100.00% 100.000% 100.000% 0

SH 5842.910 ± 786.055 15.00 5827.91 100.00% 100.000% 100.000% 0

AU 4220.440 ± 414.809 14.80 4205.64 98.67% 97.026% 99.408% 0

AU-corr 511.660 ± 46.647 13.72 497.94 91.47% 88.070% 93.962% 0

chisq 253.580 ± 104.404 13.35 240.23 89.00% 83.154% 92.988% 5

bonf 4112.470 ± 842.260 14.94 4097.53 99.60% 98.785% 99.869% 0

With two adjacent zero-length internal edge. There are 15 true trees.
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Mean Set Size For both internal edge lengths of 0.1 and 0.05 we see a very similar
pattern to that of the previous configuration, Eight-taxon simulations with two non-
adjacent zero-length edges. However, at internal edge length of 0.01 the number of
wrong trees in the confidence set increases unproportionately to the ratio of the true
trees between the two configuration, 15/9. We see the wrong trees for KH, for example,
increase by ~5 folds, chisq by over 7 folds, bringing the percentage of true trees in the
set to less than 1% of the trees for all tests except for AU-Corr and Chisq. This shows
that it is harder to distinguish the adjacent compared to the non-adjacent zero-length
internal edges.

Coverage For the 0.01 internal edge length we see that both AU-Corr and Chisq,
mentioned above with smaller set set sizes, also have below confidence-level coverage
results with Chisq predicting as low as 89% of the true trees.
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3.2.5 Eight taxon star tree (8taxon-star)

Mean Set Size Coverage
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Figure 3.10: Eight-taxon simulations from a star tree

Table 3.11: Eight-taxon simulations from a star tree

Test Mean Set Size Mean Right Trees Mean Wrong Trees Coverage Lower 95% CI Upper 95% CI Exact Trees

KH 10247.420 ± 168.467 10247.42 0 98.58% 0.000% 0.000% 94

SH 10395.000 ± 0.000 10395.00 0 100.00% 0.000% 0.000% 100

AU 6670.570 ± 250.385 6670.57 0 64.17% 0.000% 0.000% 0

AU-corr 1108.540 ± 31.678 1108.54 0 10.66% 0.000% 0.000% 0

chisq 7335.100 ± 723.405 7335.10 0 70.56% 0.000% 0.000% 25

bonf 10393.850 ± 0.944 10393.85 0 99.99% 0.000% 0.000% 86

With all internal edges are of zero length, and the true set is all 10395 possible trees.

Coverage The AU tests struggle again with this configuration, with AU-correction
this time predicting only 11% of the true trees. The original AU is much higher but
still relatively low with a coverage of ~65% along with chi-square at a similar rate.
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The following plots compare the coverage of all tests at an alpha-level of 0.05 dissected
by tree type (a combination of tree configuration and taxa) and internal edge length.
The first set of six plots is for all but the star tree case. The results have been
considered in Sections 3.1- 3.2. The plots below are included to more clearly illustrate
some of the points above. We can see that the variance between tree types makes the
biggest di�erence for chisq whereas KH and SH hardly have any di�erence in coverage
between the tree type. Another observation to emphasize is that the AU and KH
tests were not designed to be conservative, so it is surprising that they tend to be.
By contrast, the SH and Bonferroni approaches were expected to be conservative. As
expected, at the lower internal edge lengths the tests generally perform worse, and
only the very conservative tests, SH & KH had consistently high coverage as well as
Bonferroni that was slightly lower, which was a surprise as KH was not designed to
be conservative.
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Figure 3.11: Coverage Comparison
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Table 3.12: Coverage Comparison
Test 0.1 IEL 0.01 (6tx) / 0.05 (8tx) IEL 0.001 (6tx) / 0.01 (8tx) IEL

6-taxa, nzero 0, 6-taxa, nzero 1, 6-taxa, nzero 2, 6-taxa, nzero 2, adjacent
6 Taxa

KH 1.000, 1.000, 1.000, 1.000 1.000, 1.000, 1.000, 0.999 1.000, 1.000, 0.999, 0.999

SH 1.000, 1.000, 1.000, 1.000 1.000, 1.000, 1.000, 1.000 1.000, 1.000, 1.000, 1.000

AU 1.000, 1.000, 0.999, 0.988 1.000, 0.997, 0.996, 0.983 0.941, 0.911, 0.911, 0.900

chisq 1.000, 0.964, 0.945, 0.928 0.991, 0.948, 0.945, 0.910 0.889, 0.878, 0.871, 0.862

bonf 1.000, 0.986, 0.989, 0.993 0.998, 0.987, 0.991, 0.989 0.994, 0.995, 0.995, 0.995

AU-corr 1.000, 1.000, 0.999, 0.981 1.000, 0.996, 0.996, 0.970 0.923, 0.828, 0.890, 0.841

8 Taxa
KH 1.000, 1.000, 1.000, 1.000 1.000, 1.000, 0.992, 0.999 1.000, 1.000, 1.000, 1.000

SH 1.000, 1.000, 1.000, 1.000 1.000, 1.000, 1.000, 1.000 1.000, 1.000, 1.000, 1.000

AU 1.000, 1.000, 0.992, 1.000 1.000, 1.000, 0.985, 0.998 1.000, 0.997, 0.987, 1.000

chisq 1.000, 0.950, 0.909, 0.969 1.000, 0.957, 0.895, 0.948 0.980, 0.957, 0.890, 0.961

bonf 1.000, 0.980, 0.983, 1.000 1.000, 0.983, 0.969, 0.988 1.000, 0.980, 0.996, 0.988

AU-corr 1.000, 1.000, 0.986, 1.000 1.000, 1.000, 0.977, 0.998 1.000, 0.997, 0.915, 1.000

a
Where IEL here is internal edge length

and for the extreme case of the star tree:
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Figure 3.12: Coverage Comparison - Star tree
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3.3 Confidence Level

The analysis up to this point has looked only at a confidence level of 0.95. This section
examines the di�erence of setting the confidence level at 0.9 and 0.99 and comparing
to 0.95. A side by side comparison of the results for 6-taxon simulations with 1 or 2
edge-lengths set to 0 with the varying confidence level is plotted in Figure 3.13
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Figure 3.13: Varying Confidence Levels - 6-taxon
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Table 3.13: 6-Taxon Side by Side Comparison with Varying Confidence Level
Test internal edge length 0.1 internal edge length 0.01 internal edge length 0.001

Confidence Level 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

6 taxa nzero 1
KH 0.998 1.000 1.000 0.997 1.000 1.000 0.959 1.000 1.000

SH 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000

AU 0.992 1.000 1.000 0.994 0.997 1.000 0.815 0.911 0.987

AU-corr 0.992 1.000 1.000 0.994 0.996 0.999 0.766 0.828 0.861

chisq 0.919 0.964 0.993 0.900 0.948 0.988 0.769 0.878 0.973

bonf 0.975 0.986 0.997 0.974 0.987 0.999 0.987 0.995 1.000

6 taxa nzero 2
KH 0.993 1.000 1.000 0.992 1.000 1.000 0.957 0.999 1.000

SH 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000

AU 0.983 0.999 1.000 0.982 0.996 0.999 0.794 0.911 0.976

AU-corr 0.983 0.999 1.000 0.982 0.996 0.999 0.785 0.890 0.939

chisq 0.897 0.945 0.992 0.882 0.945 0.991 0.776 0.871 0.973

bonf 0.979 0.989 0.999 0.978 0.991 0.998 0.988 0.995 0.999

Repeating the same for 8-taxon:

Table 3.14: 8-Taxon Side by Side Comparison with Varying Confidence Level
Test internal edge length 0.1 internal edge length 0.05 internal edge length 0.01

Confidence Level 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

8 taxa nzero 1 (8cat1)
KH 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000 1.000

SH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AU 0.987 1.000 1.000 1.000 1.000 1.000 0.993 0.997 1.000

AU-corr 0.987 1.000 1.000 1.000 1.000 1.000 0.993 0.997 1.000

chisq 0.900 0.950 0.980 0.927 0.957 1.000 0.897 0.957 0.987

bonf 0.970 0.980 0.993 0.980 0.983 1.000 0.967 0.980 0.993

8 taxa nzero 2 (8cat2sep)
KH 0.994 1.000 1.000 0.987 0.999 1.000 0.991 1.000 1.000

SH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AU 0.990 1.000 1.000 0.970 0.998 1.000 0.999 1.000 1.000

AU-corr 0.990 1.000 1.000 0.970 0.998 1.000 0.999 1.000 1.000

chisq 0.930 0.969 0.996 0.898 0.948 0.992 0.937 0.961 0.991

bonf 0.984 1.000 1.000 0.980 0.988 0.993 0.984 0.988 1.000

With respect to the di�erence between confidence levels, we can clearly see that in
higher confidence levels the tests are more conservative, and in fact, most tests only
start showing smaller confidence sets for level 0.9. As far as the di�erence between the
tests goes, for the most part we see that the coverage is greater than the confidence
level, where the main exception to that is Chi-square where it was consistently slightly
below. It can be argued that Chi-Square’s coverage is more inline with the level that
the confidence regions were set to. Notice how its coverage is closer to the vertical
threshold in every case. At the smaller internal edge length 0.001 for the 6-taxon case
we also notice the AU Corr’s coverage is below the confidence level
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Figure 3.14: Varying Confidence Levels - 8-taxon

63



Chapter 4

Real Data Analysis

To illustrate how the tests compare in more complicated settings we consider several
real data sets. The table below summarizes the properties of the data sets considered.

Name Number of Taxa Number of Sites Type Model Used *

HIV 6 2,000 nucleotide GTR+G
Mammal 6 3,414 amino acid mtRev+F+G
Amborella 24 15,688 amino acid JTT+F+G
Rqua 148 195 amino acid LG+C60+F+G

• The column ‘Model Used’ will be discussed later.

4.1 HIV

The HIV data is a set of six homologous sequences, each 2000 base pairs long, from
the gag and pol genes for isolates of HIV-1 subtypes A, B, D and E: A1 (Q23), A2
(U455), B (BRU), D (NDK), E1 (90CF11697) and E2 (93TH057). The data set was
first used in a testing context in Goldman, Anderson, and Rodrigo (2000). Again,
here the analysis will consider confidence sets coming from analyses of all 105 possible
6-taxon trees.

Confidence sets of trees were extracted for each of the four species using each of
the tests discussed in this thesis. For HIV that is 6-taxon for example, the file with
possible trees contained 105 lines.
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Table 4.2: HIV p-values

Tree Likelihood Ratio KH SH AU AU Corr Chi-square Bonferroni Agreement Newick Format
26 0.000 0.800 1.000 0.837 0.837 1.000 1.000 6 (A1, (A2, (E2, E1)), (B, D));
64 3.964 0.200 0.869 0.262 0.262 0.005 0.015 4 (A1, (E2, E1), (A2, (B, D)));
52 4.266 0.177 0.867 0.258 0.258 0.003 0.010 4 (B, ((A2, A1), (E2, E1)), D);
99 21.621 0.012 0.398 0.005 0.005 0.000 0.000 1 (E2, (E1, (A2, A1)), (B, D));
18 21.665 0.011 0.397 0.002 0.002 0.000 0.000 1 (B, (E1, (E2, (A2, A1))), D);
79 25.856 0.005 0.316 0.003 0.003 0.000 0.000 1 (A1, (E2, (A2, E1)), (B, D));
43 26.739 0.002 0.302 0.001 0.001 0.000 0.000 1 (A1, (E1, (A2, E2)), (B, D));
102 31.702 0.003 0.226 0.003 0.003 0.000 0.000 1 (E2, (A1, E1), (A2, (B, D)));
86 32.037 0.002 0.220 0.002 0.000 0.000 0.000 1 (E1, (E2, A1), (A2, (B, D)));
95 38.148 0.002 0.147 0.003 0.003 0.000 0.000 1 (E2, (A1, (A2, E1)), (B, D));
74 38.171 0.002 0.146 0.001 0.000 0.000 0.000 1 (B, ((A2, E1), (E2, A1)), D);
104 38.942 0.001 0.136 0.002 0.000 0.000 0.000 1 (E2, (A2, (A1, E1)), (B, D));
100 38.999 0.001 0.135 0.004 0.000 0.000 0.000 1 (B, ((A2, E2), (A1, E1)), D);
37 39.432 0.001 0.131 0.000 0.000 0.000 0.000 1 (B, (E1, (A1, (A2, E2))), D);
91 39.432 0.001 0.131 0.000 0.000 0.000 0.000 1 (B, (E1, (A2, (E2, A1))), D);
25 153.829 0.000 0.000 0.000 0.000 0.000 0.000 0 (B, (A2, (E2, E1)), (A1, D));
27 153.829 0.000 0.000 0.000 0.000 0.000 0.000 0 ((A1, B), (A2, (E2, E1)), D);
65 161.800 0.000 0.000 0.000 0.000 0.000 0.000 0 (A1, (E2, E1), (D, (A2, B)));
a Data is sorted by descending Tests Count, and then ascending Likelihood Ratio
b The table above has any probability greater than 0.05 with a dark green background, and a light green for probabilities greater than 0.01
c The Test Count on the right is the count of tests with a probability greater than 0.05

�
Please note that the first value for KH should in fact be always

equal to 1 by definition, as KH uses a t-test to compare every tree to the
ML tree. The row in the table represents the tree with the least likelihood
ratio, the ML tree. The program used to calculate the p-values, IQ-TREE,
treats the ML tree as an observation and the result is not well defined,
and that is the reason we see a value lower than 1.

We can see that for the trees, as the likelihood ratio increases, the p-values for the
tests decrease. Another thing to point out is that the likelihood ratio jump from the
third line, tree 52 to the fourth line, tree 99 is a substantial one, going from 4.266 to
21.621, and again going from tree 91 to tree 25 where the likelihood ratio went from
39.432 to 153.829.

We can also see some of the things we’ve seen so far; SH correction compared to KH
is a lot more conservative, and the most conservative compared to the other tests.
Bonferroni correction is a bit more conservative than Chi-square (probabilities for
trees 64 and 52 are slightly larger).

We see that all tests are in agreement on tree #26, and all but chisq and Bonferroni
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are in agreement on trees #52 and #64 as well. An interesting observation here is
that Bonferroni gave a smaller confidence set than AU-corr which is the opposite of
what we observed in the simulations. We can also observe that as in our simulations,
SH behaves in the most conservative way, with a confidence set size of 15 trees.

Plotting trees 26, 52 and 64 to view similarities:
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Figure 4.1: HIV - Trees In Agreement

4.2 Mammal

The mammalian mitochondrial data has been considered in Goldman, Anderson, and
Rodrigo (2000) and Shimodaira (2002). It was also considered in Susko (2014), but in
a context where only two trees were considered, where in this thesis the confidence
sets come from analyses of all 105 possible 6-taxon trees.

The results from the tests:

where Hm = human, Sl = seal, Cw = cow, Rb = rabbit, Op = opossum, Ms = mouse

We observe a similar table to the HIV’s here, except we can clearly see that KH’s
p-values are not perfectly inversely correlated to the likelihood ratio, and neither are
the AU tests.
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Table 4.3: Mammal p-values

Tree Likelihood Ratio KH SH AU AU Corr Chi-square Bonferroni Agreement Newick Format
86 0.000 0.527 1.000 0.674 0.674 1.000 1.000 6 (Hm, (Sl, Cw), (Rb, (Op, Ms)));
91 0.597 0.473 0.965 0.631 0.631 0.275 0.618 6 (Op, (Hm, (Rb, (Sl, Cw))), Ms);
74 8.694 0.103 0.841 0.082 0.082 0.000 0.000 4 (Op, ((Rb, Hm), (Sl, Cw)), Ms);
90 18.020 0.095 0.622 0.052 0.052 0.000 0.000 4 ((Op, Hm), (Rb, (Sl, Cw)), Ms);
85 20.476 0.067 0.562 0.121 0.121 0.000 0.000 4 (Op, Hm, ((Rb, Ms), (Sl, Cw)));
80 24.821 0.033 0.453 0.058 0.058 0.000 0.000 3 (Sl, Cw, (Op, (Hm, (Rb, Ms))));
32 21.068 0.058 0.547 0.013 0.013 0.000 0.000 2 (Op, (Rb, (Sl, Cw)), (Hm, Ms));
87 20.957 0.028 0.547 0.047 0.047 0.000 0.000 1 (Hm, (Sl, Cw), (Op, (Rb, Ms)));
8 28.529 0.021 0.377 0.019 0.019 0.000 0.000 1 (Sl, Cw, (Op, (Rb, (Hm, Ms))));
67 29.498 0.001 0.355 0.001 0.000 0.000 0.000 1 (Hm, (Sl, Cw), (Ms, (Rb, Op)));
68 33.287 0.007 0.285 0.021 0.021 0.000 0.000 1 (Sl, Cw, (Op, (Ms, (Rb, Hm))));
73 34.181 0.005 0.277 0.006 0.000 0.000 0.000 1 ((Sl, Cw), (Rb, (Op, Hm)), Ms);
12 34.538 0.003 0.266 0.009 0.000 0.000 0.000 1 (Sl, Cw, ((Hm, Ms), (Rb, Op)));
75 40.040 0.001 0.179 0.008 0.000 0.000 0.000 1 ((Sl, Cw), (Op, (Rb, Hm)), Ms);
66 42.188 0.000 0.152 0.017 0.000 0.000 0.000 1 ((Sl, Cw), (Hm, (Rb, Op)), Ms);
102 55.111 0.001 0.043 0.001 0.000 0.000 0.000 0 (Sl, (Cw, Hm), (Rb, (Op, Ms)));
64 57.230 0.000 0.035 0.000 0.000 0.000 0.000 0 (Cw, (Sl, Hm), (Rb, (Op, Ms)));
92 77.135 0.000 0.002 0.002 0.000 0.000 0.000 0 (Sl, (Cw, Hm), (Op, (Rb, Ms)));
a Data is sorted by descending Tests Count, and then ascending Likelihood Ratio
b The table above has any probability greater than 0.05 with a dark green background, and a light green for probabilities greater than 0.01
c The Test Count on the right is the count of tests with a probability greater than 0.05

4.3 Amborella

The data set has been considered in Leebens-Mack, Soltis, and Soltis (2005), Lartillot,
Brinkmann, and Philippe (2007), Wang, Susko, and Roger (2019) and Susko, Lincker,
and Roger (2018). The amborella data includes a large number of taxa (24) and sites
(15,688). Because there are so many taxa, the trees considered for inclusion in the
confidence set are not all trees. Rather they are all of the trees estimated in 100
bootstrap samples.

In this example there is more contrast between the tests; at a 0.95 confidence level
Chi-Square and Bonferroni only predict a single tree #3 whereas KH predicts 6, SH
predicts 35, and both the AU tests predict 13.

Table 4.5 summarizes the tests agreement on the data in Table 4.4 where each element
in the matrix represents a count of trees in agreement in the two tests (row header
and column header), and the diagonal is the number of total trees in the confidence
set for the test.

Figures 4.2 and 4.3 consider the first two trees with the smallest likelihood ratio from
Table 4.4.

In the tree in Figure 4.3, Amborella (an evergreen shrub) branches at the base of the
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Table 4.4: Amborella p-values

Tree Likelihood Ratio KH SH AU AU Corr Chi-square Bonferroni Agreement
3 0.000 0.607 1.000 0.878 0.878 1.000 1.000 6
36 6.015 0.393 0.960 0.640 0.640 0.002 0.012 4
1 10.289 0.246 0.936 0.422 0.422 0.000 0.000 4
24 15.082 0.132 0.855 0.206 0.206 0.000 0.000 4
29 31.772 0.101 0.644 0.071 0.071 0.000 0.000 4
28 47.210 0.095 0.382 0.100 0.100 0.000 0.000 4
20 25.152 0.036 0.713 0.110 0.110 0.000 0.000 3
10 28.432 0.032 0.664 0.074 0.074 0.000 0.000 3
18 28.437 0.014 0.650 0.052 0.052 0.000 0.000 3
9 33.080 0.015 0.579 0.051 0.051 0.000 0.000 3
11 35.303 0.042 0.539 0.067 0.067 0.000 0.000 3
8 38.859 0.035 0.483 0.054 0.054 0.000 0.000 3
22 41.264 0.034 0.437 0.050 0.050 0.000 0.000 3
2 25.799 0.026 0.715 0.005 0.005 0.000 0.000 1
35 33.738 0.023 0.548 0.046 0.046 0.000 0.000 1
6 39.188 0.022 0.475 0.034 0.034 0.000 0.000 1
14 43.572 0.017 0.412 0.016 0.016 0.000 0.000 1
17 44.900 0.002 0.393 0.007 0.007 0.000 0.000 1
7 50.535 0.005 0.323 0.007 0.000 0.000 0.000 1
12 54.375 0.003 0.277 0.011 0.011 0.000 0.000 1
16 54.428 0.001 0.278 0.000 0.000 0.000 0.000 1
32 56.864 0.003 0.260 0.010 0.010 0.000 0.000 1
4 58.964 0.002 0.228 0.010 0.000 0.000 0.000 1
21 59.596 0.002 0.243 0.006 0.000 0.000 0.000 1
23 61.517 0.001 0.219 0.024 0.000 0.000 0.000 1
41 62.434 0.003 0.221 0.012 0.012 0.000 0.000 1
30 64.028 0.006 0.197 0.009 0.000 0.000 0.000 1
42 70.721 0.003 0.174 0.025 0.000 0.000 0.000 1
33 72.536 0.002 0.142 0.008 0.000 0.000 0.000 1
26 74.587 0.002 0.145 0.005 0.000 0.000 0.000 1
19 79.265 0.000 0.105 0.010 0.000 0.000 0.000 1
38 80.725 0.020 0.106 0.003 0.003 0.000 0.000 1
25 82.786 0.000 0.101 0.010 0.000 0.000 0.000 1
40 83.915 0.000 0.089 0.018 0.000 0.000 0.000 1
31 91.724 0.000 0.076 0.007 0.000 0.000 0.000 1
5 128.141 0.002 0.019 0.000 0.000 0.000 0.000 0
34 138.854 0.001 0.008 0.001 0.000 0.000 0.000 0
13 142.383 0.001 0.007 0.000 0.000 0.000 0.000 0
a Data is sorted by descending Tests Count, and then ascending Likelihood Ratio
b The table above has any probability greater than 0.05 with a dark green background, and a light green for probabilities greater than 0.01
c The Test Count on the right is the count of tests with a probability greater than 0.05
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Figure 4.2: Amborella - Trees with Smallest Likelihood Raio, Tree 3
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Table 4.5: Amborella Tests Agreement

KH SH AU AU Corr Chi-square Bonferroni

KH 6 6 6 6 1 1

SH 6 35 12 12 1 1

AU 6 12 12 12 1 1

AU Corr 6 12 12 12 1 1

chisq 1 1 1 1 1 1

bonf 1 1 1 1 1 1
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Figure 4.3: Amborella - Trees with Smallest Likelihood Ratio, Tree 36

angiosperms (flowering plants including Spinacia (spinach) to the Nuphar, Nymphia
clade (water lilies). By contrast in Figure 4.3 Amborella branches with the water lilies.
Which of these placements is correct has been contentious (cf. (Drew et al. 2014);
(Goremykin et al. 2015)). We see here that for many of the tests, the di�erences can
be explained by sampling variation whereas the chi-square and Bonferroni approaches
suggest that the tree in Figure 4.2 is correct.

69



Table 4.6: Rqua p-values

Tree Likelihood Ratio KH SH AU AU Corr Chi-square Bonferroni Agreement
1 0.000 0.519 1.000 0.858 0.858 1.000 1.000 6
133 0.936 0.481 1.000 0.691 0.691 0.931 0.995 6
76 2.404 0.425 0.998 0.697 0.697 0.904 0.991 6
27 2.578 0.405 0.999 0.583 0.583 0.821 0.968 6
117 2.707 0.429 0.997 0.594 0.594 0.988 1.000 6
155 2.727 0.417 0.999 0.681 0.681 0.941 0.997 6
161 2.775 0.420 0.999 0.651 0.651 0.902 0.990 6
20 2.826 0.419 0.998 0.691 0.691 0.933 0.995 6
192 2.943 0.423 1.000 0.708 0.708 0.969 0.999 6
167 2.962 0.416 0.998 0.668 0.668 0.981 1.000 6
171 3.191 0.424 0.999 0.630 0.630 0.956 0.998 6
121 3.299 0.412 0.999 0.575 0.575 0.679 0.967 6
a Data is sorted by descending Tests Count, and then ascending Likelihood Ratio
b The table above has any probability greater than 0.05 with a dark green background, and a light green for probabilities greater than 0.01
c The Test Count on the right is the count of tests with a probability greater than 0.05

4.4 Rqua

The Rqua data set was considered in Stairs et al. (2018). This is unusual data. There
are 148 taxa and 195 sites. Since the total number of possible trees is very large only
216 trees were considered. The were obtained through a combination of bootstrapping
but also include trees created from apriori hypothesized topological relationships.
Additional information is available in Stairs et al. (2018). So it is a setting that is
very di�erent from the usual case where there are a lot of sites and few taxa. It pushes
the boundaries of how the methods might be used.

The full detailed probability table per tree for each of the tests is too large to display
here.

Table 4.7: Rqua Tests Agreement

KH SH AU AU Corr Chi-square Bonferroni

KH 202 202 201 200 135 150

SH 202 209 203 202 135 150

AU 201 203 203 202 135 150

AU Corr 200 202 202 202 135 150

chisq 135 135 135 135 135 135

bonf 150 150 150 150 135 150

Table 4.7 shows a matrix of the number of overlapping trees above the confidence level
between each two-test pair.
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Chapter 5

Discussion

This thesis compared six di�erent phylogenetic ML tests, pointing out the strengths
and weaknesses of each under various scenarios.

• KH had surprisingly high coverage even though it does not adjust for selection
bias at all. KH, similarly to SH performed very well in the star-tree cases,
although it was not perfect. In the six-taxon case where two adjacent edge-
lengths were set to 0, it was the only one with SH (at high internal edge-length)
to have a mean set size of 15 (the number of true trees for that case), where the
rest averaged below that. Overall based on the results in this thesis, it seems as
if the SH correction to KH isn’t necessary, as it has similar coverage to SH, with
mean set size generally less than or equal to SH’s which is better.

• SH seems too conservative usually, overshooting the confidence region to achieve
higher coverage than KH on the expense of additional wrong trees. SH’s mean
set size is conservative relative to the other tests, especially in the case of 6-taxon
none of the edge-lengths were set to 0, and all the 8-taxon trees (star tree case
all tests are conservative just as much). The only case where SH might be
considered to perform better than other tests is the extreme case of the star tree
(both 6 and 8 taxa) with coverage of 100%.

• AU - Throughout the simulations we observed a di�erence between AU and
AU-corr, which means that the case where BP = 0 happens frequently. Generally
the AU tests performed somewhere between SH/KH and Chi-square/Bonferroni.
It seems hard to interpret as the test definition is a bit convoluted and there is
some question as to whether it can really be expected to give correct coverage
in a phylogenetic setting. AU’s mean set size is also conservative, but only in
the 8-taxon tree simulations. In the 6-taxon tree it is very comparable to the
other tree configurations, and only SH’s set sizes stands out. Another interesting
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thing is that for the most part when decreasing the internal edge-length for any
given test, the set size increases (the test is more conservative as it’s harder
to distinguish between the branches and they look more like a star tree as we
shrink the internal edge-length), however, AU’s set size actually decreases with
internal edge-length in the 8-taxon cases. In the 8-taxon simulations we observed
a high variability in AU’s mean set size. This may be due to the fact that, as
shown in Section 2.2, small variations in BP can cause large variations in the
p ≠ value. The large variance for AU can be explained by comparing to the
relatively small variance of AU-corr. The two methods di�er only when BP = 0.
For reasons discussed in Section 2.2, the AU p-values become highly unstable in
this case. We believe that the instabilities arising with small BPr provide the
explanation for why AU was often conservative in the eight-taxon case. Due
to the instability, small BP can lead to large p-values and small BP was more
likely in the eight-taxon rather than six-taxon case due to the larger number of
trees under consideration.

• AU Corr - AU Corrected (with a BP correction) was a little less conservative
than the original AU. In 6-taxon it was consistent in being below the 95%
coverage at 0.001 internal edge-length (unlike the rest), performed the worst in
coverage for the 6-taxon star tree, as well as the 8-taxon star tree case. Adjusting
for the di�culties with small BP discussed in Section 2.2 by simply setting the
AU to 0 when BP = 0 may be an over-adjustment when there are a large number
of competing trees.

• Chi-square was a bit too aggressive with low set sizes. Its coverages were
almost in all cases below the 95%, but at the same time it was closer to the
95% mark than the other tests, which is more inline with the expectation. The
Chi-square test’s coverage was consistently below-95% in many of the cases:
eight taxon tree with two non-adjacent zero-length edges, eight-taxon star-tree,
six-taxon star tree, six-taxon tree with two adjacent zero-length edges and in all
cases when internal edge-length was small. Chi-square had the best exact trees
metric, however.

• Bonferroni correction to Chi-square performed very well in terms of coverage,
and although more conservative than Chi-square, its set didn’t introduce as
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many excess trees as KH did. Bonferroni’s correction is still above the 95%
coverage confidence level while chisq tends to have a lower coverage when the
internal edge-lengths in the simulating tree were smaller or even when we have
harder cases to distinguish (higher number of internal edge lengths set to zero),
which is where we expect it to be in order not to exclude a true tree in the
resulting confidence set. This was consistent in both the 6-taxon and 8-taxon
case. For the star-tree chisq’s coverage was hovering around 85% when all trees
are right in the 6-taxon while Bonferroni maintained a 100% coverage. The mean
set size of Bonferroni was higher than chisq’s for that reason. Curiously, both
Bonferroni and chi-square gave relatively small set sizes for the real data. The
exact reasons for this are not clear but it may be that the inevitable presence of
model misspecification, which was absent in simulations, plays a role.

5.1 Final Thoughts

Using the the arguments in the discussion above, we conclude that SH is not a necessary
adjustment to KH. Indeed, KH was surprisingly so conservative that, although it
frequently included all of the true trees in its sets, that came at the cost of large Type
II error (excess of trees) to the point that it sometimes included all possible trees in
the confidence set.

Although the AU test was originally motivated as being higher-order correct, the
argument leading to this result was later found to be problematic in phylogenetic
settings (Susko 2009). Consistent with Susko (2009) we did not find AU to have
approximately correct coverage, as BP is not first order correct when used in a
phylogenetic setting. A major di�culty for AU arises when BP is expected to be small
for the trees under test. The AU test becomes unstable in such cases and coverage
and set sizes were found to be highly variable as a consequence. Small BP is expected
when there are many trees being considered for inclusion in the confidence set. In
such settings we do not recommend use of the AU test.

Bonferroni correction was a more conservative version of Chi-square and, as expected,
tended to have excess coverage and excess trees, Chi-square seemed to have a balance
between Type I and Type II error, although its Type I error could be large in the case
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of a very poorly resolved tree. We conclude from the findings in this thesis that overall
the chi-square would be the best to use perhaps with Bonferroni as a conservative
cross-check.
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