
PERSISTENT MAPPING IN QUASI-STATIC DYNAMIC
ENVIRONMENTS USING UNMANNED AERIAL VEHICLES

by

Amy Deeb

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

March 2021

© Copyright by Amy Deeb, 2021



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Abbreviations and Symbols Used . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Autonomous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Persistent Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Factor Graph SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Research Motivation and Objective . . . . . . . . . . . . . . . . . . . 8

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Probabilistic Static SLAM . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Graph SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Detection and Tracking of Moving Objects . . . . . . . . . . . . . . . 19

2.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Dynamic SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Removing Dynamic Objects . . . . . . . . . . . . . . . . . . . 23
2.4.2 Using DATMO for Dynamic Objects Separately from SLAM . 23
2.4.3 Assuming Semi-Static Environment . . . . . . . . . . . . . . . 24
2.4.4 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Problem Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



3.2 Piecewise-Deterministic Dynamic Environments . . . . . . . . . . . . 29

3.3 Iceberg Kinematic Motion Models . . . . . . . . . . . . . . . . . . . . 30

3.4 Quasi-Static Dynamic Environments . . . . . . . . . . . . . . . . . . 31

Chapter 4 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Mission and Environment . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Fiducial Tag Landmarks . . . . . . . . . . . . . . . . . . . . . 39

4.1.3 Mobile Landmarks . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.4 Flight Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Platform and Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Parrot Bebop 2 Quadrotor . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Hector Quadrotor Model . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Robotic Middleware . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Summary of Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Simulation Environment Validation . . . . . . . . . . . . . . . . . . . 53

4.4.1 Static SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 SLAM Covariance Matrices . . . . . . . . . . . . . . . . . . . 54

4.4.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.4 Validation Results . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Applying Static SLAM in Dynamic Environment . . . . . . . . . . . 61

Chapter 5 Proposed Model-Based Dynamic SLAM . . . . . . . . . . . 63

5.1 Model-Based Dynamic Factors . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Latent Variable Approach . . . . . . . . . . . . . . . . . . . . 67

5.1.2 Expectation Maximization Approach . . . . . . . . . . . . . . 67

5.2 Proposed Model-Based Dynamic SLAM Algorithm . . . . . . . . . . 70

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Case 1: Full-Scale Simulation . . . . . . . . . . . . . . . . . . 73

5.3.2 Case 2: Model-Scale Simulation and Experiment . . . . . . . . 80

5.3.3 Case 3: Full-Scale Simulation with Quasi-Static Landmarks . . 88

5.4 Summary of Results and Discussion . . . . . . . . . . . . . . . . . . . 92

5.4.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 94

iii



Chapter 6 Proposed Model-Based Quasi-Static SLAM . . . . . . . . . 95

6.1 Proposed Model-Based Quasi-Static Factors . . . . . . . . . . . . . . 97

6.2 Velocity Estimation Convergence . . . . . . . . . . . . . . . . . . . . 98

6.3 Proposed Quasi-Static Assumption . . . . . . . . . . . . . . . . . . . 106

6.4 Model-Based Quasi-Static SLAM Algorithm . . . . . . . . . . . . . . 108

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5.1 Case 1: Full-Scale with Quasi-Static Landmarks . . . . . . . . 111
6.5.2 Case 2: Model-Scale with Quasi-Static Landmarks . . . . . . . 114
6.5.3 Case 3: Full-Scale with Anomalously Fast Landmark . . . . . 118
6.5.4 Case 4: Full-Scale with All Static Landmarks . . . . . . . . . 121
6.5.5 Case 5: Full-Scale with Multiple Episodes . . . . . . . . . . . 123

6.6 Summary of Results and Discussion . . . . . . . . . . . . . . . . . . . 126
6.6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 7 Detection of Disruptions to Environmental Model . . . . 129

7.1 Proposed Event Detection Strategies . . . . . . . . . . . . . . . . . . 130
7.1.1 Postulated Loop Closure Factors . . . . . . . . . . . . . . . . 130
7.1.2 Score-Based Structure Learning (SBSL) . . . . . . . . . . . . 132
7.1.3 KMM Convergence Pre-Filter Design . . . . . . . . . . . . . . 133

7.2 Proposed Event Detection Algorithm . . . . . . . . . . . . . . . . . . 134

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.3.1 Sandbox Environment . . . . . . . . . . . . . . . . . . . . . . 137
7.3.2 Detection of One Event for One Landmark . . . . . . . . . . . 137
7.3.3 Detection of Simultaneous Events . . . . . . . . . . . . . . . . 140

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Chapter 8 Proposed Piecewise-Deterministic Quasi-Static SLAM . . 143

8.1 Novel Edge Finite State Machine . . . . . . . . . . . . . . . . . . . . 145

8.2 Proposed Piecewise-Deterministic Quasi-Static SLAM Algorithm . . . 148

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.3.1 Case 1: Full-Scale in Simulation . . . . . . . . . . . . . . . . . 151
8.3.2 Case 2: Model-Scale in Experiment and Simulation . . . . . . 154
8.3.3 Case 3: Full-Scale in Simulation with Multiple Landmarks’

KMM Disrupted . . . . . . . . . . . . . . . . . . . . . . . . . 158

iv



8.4 Summary of Results and Discussion . . . . . . . . . . . . . . . . . . . 161
8.4.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 162

Chapter 9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

v



List of Tables

4.1 Mission parameters for full- and model-scale experiments . . . 39

4.2 AprilTag detection accuracy model . . . . . . . . . . . . . . . . 40

4.3 Parrot Bebop 2 odometry noise model . . . . . . . . . . . . . . 46

4.4 Parrot Bebop 2 PD-controller gains . . . . . . . . . . . . . . . 47

4.5 Hector quadrotor simulator PD-controller gains . . . . . . . . . 49

4.6 Summary of simulations and experiments . . . . . . . . . . . . 52

4.7 Static SLAM covariance matrices . . . . . . . . . . . . . . . . . 56

4.8 Static SLAM performance accuracy . . . . . . . . . . . . . . . 58

5.1 LV velocity prior covariance matrix . . . . . . . . . . . . . . . . 73

5.2 Case 1 (full-scale, slow) simulation performance summary for
LV- and EM-MBD-SLAM . . . . . . . . . . . . . . . . . . . . . 78

5.3 Case 2 (model-scale, slow) simulation and experiment perfor-
mance summary for LV-MBD-SLAM . . . . . . . . . . . . . . . 80

5.4 Case 2 (model-scale, slow) simulation and experiment perfor-
mance summary for EM-MBD-SLAM . . . . . . . . . . . . . . 86

5.5 Case 3 (full-scale, quasi-static) simulation performance for LV-
and EM-MBD-SLAM . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 QSA standard deviation . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Case 1 (one-pass, full-scale, quasi-static) simulation performance
summary for MBQS-SLAM . . . . . . . . . . . . . . . . . . . . 113

6.3 Case 2 (one-pass, model-scale, quasi-static) simulation and ex-
periment performance summary for MBQS-SLAM . . . . . . . 117

6.4 Case 3 (one-pass, full-scale, anomalously fast) simulation perfor-
mance summary for MBQS-SLAM . . . . . . . . . . . . . . . . 120

6.5 Case 4 (one-pass, full-scale, static) simulation performance sum-
mary for MBQS-SLAM . . . . . . . . . . . . . . . . . . . . . . 123

vi



6.6 Case 5 (two-pass, full-scale, quasi-static) simulation performance
summary for MBQS-SLAM . . . . . . . . . . . . . . . . . . . . 126

7.1 Event detection performance summary for one event tests . . . 138

7.2 Simultaneous event detection test KMMs . . . . . . . . . . . . 140

8.1 Case 1 (two-pass, full-scale, one event) simulation performance
summary for PDQS-SLAM . . . . . . . . . . . . . . . . . . . . 152

8.2 Case 2 (two-pass, model-scale, one event) simulation and exper-
iment performance summary for PDQS-SLAM . . . . . . . . . 154

8.3 Case 3 (two-pass, full-scale, two events) simulation performance
summary for PDQS-SLAM . . . . . . . . . . . . . . . . . . . . 160

vii



List of Figures

1.1 Motivating application for the thesis. . . . . . . . . . . . . . . 1

1.2 Architecture of an autonomous system showing the cycle of in-
formation flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Examples of autonomous systems available in the ACML and
ISL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Example of a factor graph for SLAM. . . . . . . . . . . . . . . 8

1.5 Diagram of organization of thesis chapters by applicable regimes
of motion in a piecewise-deterministic dynamic environment. . 11

1.6 Diagram of flow of information through the thesis. . . . . . . . 12

2.1 Essential description of the SLAM problem. . . . . . . . . . . 14

2.2 Formulation of graph SLAM and pose graph SLAM using Fac-
tor graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Factor graph representation of the dynamic pose/feature graph
SLAM problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Problem formulation mission context. . . . . . . . . . . . . . . 26

3.2 Definition of piecewise-deterministic landmark motion. . . . . 29

4.1 Elements used in experiments grouped by sub-system. . . . . 35

4.2 Example of a tag from the AprilTag fiducial tagging system. . 39

4.3 A LEGO MINDSTORMS NXT as a model-scale iceberg ana-
logue for laboratory experiments. . . . . . . . . . . . . . . . . 41

4.4 Laboratory flight space used for simulation validation. . . . . 41

4.5 Motion Analysis Corporation motion capture system as config-
ured in the ISL in the Oceans Tech Hub. . . . . . . . . . . . . 42

4.6 Simulated flight environment. . . . . . . . . . . . . . . . . . . 43

4.7 Quadrotor body reference frame. . . . . . . . . . . . . . . . . 43

4.8 ROS graph for baseline static SLAM. . . . . . . . . . . . . . . 51

viii



4.9 Taxonomy of performance tests in this thesis. . . . . . . . . . 52

4.10 Ground truth map of landmarks in full-scale mission. . . . . . 53

4.11 Algorithm for static pose graph SLAM. . . . . . . . . . . . . . 54

4.12 Experimental result for static SLAM. . . . . . . . . . . . . . . 59

4.13 Simulation result for static SLAM. . . . . . . . . . . . . . . . 59

4.14 Simulation result for static SLAM applied to a (slow) dynamic
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Factor graph representation of the proposed MBDF for pose-
graph SLAM assuming a constant velocity landmark motion
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Geometric derivation of MBDFs. . . . . . . . . . . . . . . . . 66

5.3 Proposed LV-MBD-SLAM algorithm. . . . . . . . . . . . . . . 70

5.4 Proposed EM-MBD-SLAM algorithm. . . . . . . . . . . . . . 71

5.5 Comparison of execution time for one cycle of LV- and EM-
MBD-SLAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Case 1 simulation of LV-MBD-SLAM in full-scale, slow envi-
ronment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Case 1 simulation of EM-MBD-SLAM in full-scale, slow envi-
ronment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.8 Case 2 simulation of LV-MBD-SLAM in model-scale, slow en-
vironment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Case 2 experiment of LV-MBD-SLAM in model-scale, slow en-
vironment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10 Case 2 simulation of EM-MBD-SLAM in model-scale, slow en-
vironment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.11 Case 2 experiment of EM-MBD-SLAM in model-scale, slow en-
vironment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.12 Case 3 simulation of LV-MBD-SLAM in full-scale, quasi-static
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.13 Case 3 simulation of EM-MBD-SLAM in full-scale, quasi-static
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ix



6.1 Map used for WLS convergence simulation study. . . . . . . . 100

6.2 Definition of batches of observations used in analysis of WLS
convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 WLS convergence – Variant 1 (baseline). . . . . . . . . . . . . 101

6.4 WLS convergence – Variant 2 (UAV at half speed). . . . . . . 103

6.5 WLS convergence – Variant 3 (two passes). . . . . . . . . . . . 105

6.6 Proposed MBQS-SLAM algorithm. . . . . . . . . . . . . . . . 109

6.7 Proposed algorithm to calculate the landmark velocity measure
to use in the MBQSFs. . . . . . . . . . . . . . . . . . . . . . 109

6.8 Case 1 simulation of MBQS-SLAM in full-scale, quasi-static
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Case 2 simulation of MBQS-SLAM in model-scale, quasi-static
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.10 Case 2 experiment of MBQS-SLAM in model-scale, quasi-static
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.11 Case 3 simulation of MBQS-SLAM in full-scale, anomalously
fast environment. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.12 Case 4 simulation of MBQS-SLAM in full-scale, static environ-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.13 Case 5 simulation of MBQS-SLAM in full-scale, quasi-static
environment with two passes. . . . . . . . . . . . . . . . . . . 125

7.1 Factor graph constructed for a piecewise-deterministic environ-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Factor graph constructed for a piecewise-deterministic environ-
ment, with and without an event. . . . . . . . . . . . . . . . . 131

7.3 Proposed event detection algorithm. . . . . . . . . . . . . . . . 135

8.1 Applicability of the proposed PDQS-SLAM. . . . . . . . . . . 143

8.2 Proposed FSM governing state of the set of edges formed through
loop closures of landmark k during epoch e. . . . . . . . . . . 146

8.3 Proposed PDQS-SLAM algorithm. . . . . . . . . . . . . . . . 149

x



8.4 Case 1 simulation of PDQS-SLAM in full-scale, piecewise- de-
terministic environment with one event. . . . . . . . . . . . . . 151

8.5 Case 2 simulation of PDQS-SLAM at model-scale, piecewise-
deterministic environment with one event. . . . . . . . . . . . 155

8.6 Case 2 experiment of PDQS-SLAM at model-scale, piecewise-
deterministic environment with one event. . . . . . . . . . . . 156

8.7 Case 3 simulation of PDQS-SLAM at full-scale, piecewise- de-
terministic environment with two events. . . . . . . . . . . . . 159

xi



Abstract

Mapping and tracking Arctic sea ice is critical to protecting the people and animals

that inhabit and transit the Canadian Arctic. Unmanned aerial vehicles (UAVs) are

well suited to these activities given the vast area of interest, the remote, potentially

dangerous environment, and the need to persistently capture the most current state

of the map. The scarcity of reliable global position references at high latitudes means

that a UAV must localize itself within a map it is in the process of building – a

problem called Simultaneous Localization and Mapping (SLAM). While traditional

SLAM assumes all landmarks are static, UAVs in marine Arctic environments must

perform persistent mapping while coping with the motion of ice masses in the dy-

namic environment. This research proposes piecewise-deterministic quasi-static pose

graph SLAM (PDQS-SLAM) to exploit landmark motion information during graph

construction. This will contribute to persistent mapping in a dynamic environment.

The primary contribution of this thesis is the relaxation of the static assumption

inherent to traditional SLAM algorithms. This is achieved by assigning a kinematic

motion model to each landmark, proposing a new loop closure factor structure, and

estimating the landmark motion alongside the UAV trajectory in the pose graph. Ap-

plicability to a general dynamic environment is achieved by augmenting loop closure

edges with a state, governed by a finite state machine (FSM), that captures the edge’s

behaviour over time. This FSM captures edge behaviours during constant-velocity

epochs, and across disrupting events detected using score-based structure learning.

The resulting PDQS-SLAM is validated in both simulations and laboratory ex-

periments. The localization and mapping performance of PDQS-SLAM in a dynamic

environment including two mobile landmarks that experience events, is shown to have

similar performance when compared to the baseline static SLAM in a static environ-

ment. This demonstrates that the static assumption can be relaxed by modelling

landmark motion and responding appropriately to inevitable disruptions to that mo-

tion. This is a step towards persistent mapping by UAVs in a complex, quasi-static

environment inspired by the Canadian marine Arctic.
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vmeas landmark translational velocity measurement used in MBQSFs

Weight Least Squares Regression Symbols

x̄w weighted mean of the x coordinate for a linear system

ȳw weighted mean of the y coordinate for a linear system

b̂ estimated y-intercept for a linear system
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m̂ estimated slope for a linear system

V ar(m̂) variance of the estimated slope for a linear system

wi weight of observation i used in weighted least squares regression for a

linear system

Event Detection Symbols

∆v̂, ∆ω̂ change in translational and angular velocity estimates that results

from incorporating a new observation (zk) in the WLS regression

θ0, θ1 mobile landmark heading before and after event

εv, εω event detection pre-filter thresholds on translational and angular ve-

locity

v0, v1 mobile landmark speed before and after event

Augmented Edges Symbols

Σk covariance on pk

ΣT covariance on the geometrical transform that defines an edge

En
k loop closure edge n for landmark k in current epoch

n number of edges in Ee
k

pk parameters of landmark k’s KMM

sk state of the set of edges an edge belongs to, governed by FSM

T geometrical transform that defines an edge

Ee
k set of loop closure edges in a graph related to landmark k, in epoch e
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Chapter 1 Introduction

Understanding the Arctic environment is important to Canada’s identity both domes-

tically and internationally. As our climate continues to warm, mapping and tracking

Arctic sea ice will be critical to protecting the people and animals that inhabit and

transit the region. Autonomous systems are well suited to these activities given the

vast area of interest, the remote, potentially dangerous environment and the need to

capture the most current state of the environment. In particular, unmanned aerial

vehicles (UAVs) can be deployed from a ship to persistently map the area of interest

in near real-time allowing safe passage in unmapped dynamic environments, such as

the scenario shown in Figure 1.1.

Figure 1.1: Motivating application for the thesis. A UAV flies ahead of a ship in the
Arctic, mapping ice to create an up-to-date map and determine safe paths through
the dynamic environment.

Deploying a UAV from a ship increases situational awareness by increasing the

distance to the horizon. The distance to the horizon increases with altitude according

to the relationship d ≈ 3.57
√
h, where dh is the distance to the horizon in km and h

is the UAV altitude in m. While at 1 m above the surface, the horizon is only 3.5 km

1
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away, the horizon for a UAV at an altitude of 13 m would be more than 12 km away

providing additional advantages to the ship.

UAVs function autonomously, using their own sensors and decision-making capa-

bilities to perform the mission [1], while also detecting and recovering from failures

including communication drop-outs, imperfect sensors, and inclement weather – all

typical characteristics of the Arctic environment. Additionally, the scarcity of a reli-

able global position reference, such as from the global positioning system (GPS), at

high latitudes means that a UAV must localize itself within the map it is in the pro-

cess of building – a problem called Simultaneous Localization and Mapping (SLAM).

While traditional SLAM algorithms assume all elements in the map are static, UAVs

operating in marine Arctic environments must perform so-called persistent autonomy

to cope with the complex dynamic environment and long-term missions [2].

In particular, persistent mapping is a key behaviour in which an autonomous ve-

hicle develops a representation of a changing environment over the life of the system

– including tracking targets that change their position and appearance over time.

Persistent mapping not only enables navigation, it also provides data necessary for

scientific insight to the changing Arctic environment. This thesis proposes an ap-

proach that addresses the challenges of persistent mapping to enable a UAV to operate

autonomously in a dynamic environment.

1.1 Autonomous Systems

Autonomous systems are used in a wide variety of applications typically characterized

as dull, dirty or dangerous [2]. These are applications that humans are not very good

at because they either require consistently repeating a boring task or occur in an

environment that puts their life at risk. On the other hand, robots excel at repetition

and can be built more robustly than a human body as needed. Autonomous systems

are also good choices for applications where frequent, detailed data is available to the

robot to act upon more quickly than human reflexes may allow. However, these sys-

tems face challenges when responding to unexpected events in complex environments.

This thesis develops the persistent mapping behaviour to address one such challenge

that is common in the marine Arctic environment – dynamic landmarks.

It is convenient to describe the performance of autonomous systems through the
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behaviours they display. For instance, an autonomous car might perform a highway

driving behaviour, a parking behaviour or an emergency stop behaviour. These are

high level behaviours that can be built up from more detailed states and actions. It

is also useful to capture the behaviour of a system as a series of transitions between

states. As a simple example, the autonomous car might start in an highway-driving

state, and transition to an emergency-stop state if an obstacle is detected. The field

of finite automata has proposed using finite state machines (FSM) to succinctly define

these states and transitions. This thesis will use this language of behaviours and FSM

to enable SLAM graphs to adapt to dynamic environments.

Robotic systems can be broadly classified based on their capability to operate

without direct human intervention [1, 2]. At the low end, non-autonomous systems

are human operated. Here humans make every decision and adjust all parameters,

control settings and tasks manually. The robot can be considered a remote sensor

that follows direct instructions, sent in real-time. This is the typical remote control

operation paradigm. If a robot is able to follow scripted instructions, using a timer

or a look up table based on specified sensor measurements, it displays a low-level

of automation termed human delegated. These systems are only as good as their

instructions, meaning detailed programmed responses are necessary for all scenarios.

In the case of a flying vehicle this could mean the pilot requests a displacement of 1 m

in the forward direction and the vehicle calculates the correct power levels to control

that motion, then waits for the next instruction from the pilot.

The next level is the first stage of proper autonomy, called human supervised. At

this stage robots are asked to perform behaviours, and are enabled to take a broad set

of actions in response to sensor data. The human sets a series of tasks or behaviours

and monitors all operations. If there are unexpected circumstances, the operator can

take over some or all of the operations to recover. In order to reach full autonomy the

system must be able to recover from these anomalies and on-board faults in a safe

manner. Typically, fully autonomous systems are also able to translate general goals

programmed by an operator into the specific tasks and behaviours it must perform.

For example, a fully autonomous aerial vehicle could be given the goal of surveying

a field bounded by given coordinates to measure crop yield. It would then need to
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determine the imaging settings, plan a path and adjust this plan based on the in-

situ measurements. This type of autonomy is highly desirable for robotic systems

engaged in tasks that have limited communication with operators and occur in harsh

environments that can change quickly, such as the marine Arctic.

At a high-level, robotic systems cycle from perception to planning, to acting and

back again as shown in Figure 1.2. Depending on their level of autonomy the planning

stage may be completed by the human operator.

Figure 1.2: Architecture of an autonomous system showing the cycle of information
flow.

Perception is critical to an autonomous system’s behaviour as sensors are how a

robot gathers data about the current state of its environment and itself. As such,

sensors are very application specific and pre-processing algorithms are highly tailored

to the environment and robotic system on which they are integrated [1, 2]. In the

context of UAVs, sensors can be grouped into two categories:

• proprioceptive: measures internal parameters/states of the UAV (e.g. inertial

measurement unit (IMU)), and

• exteroceptive: measures external parameters/states of the UAV’s environment

(e.g. camera observations of landmarks).

By fusing together information from these sensors, the UAV is able to, depending on

its level of autonomy, adapt its mission to navigate a changing environment [2]. This
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process of fusing information from multiple sensors will be leveraged in the dynamic

SLAM developed in this thesis.

Autonomous systems come in many forms, but are typically classified by their

medium of locomotion. Unmanned ground vehicles (UGV) use wheels or tracks to

drive across the ground or floor, unmanned surface vehicles (USV) use motors or sails

to propel them across the water, UAVs typically use propellers to fly through the air

and unmanned underwater vehicles (UUV) typically use propellers to swim through

the water [1]. Unmanned spacecraft can also be considered autonomous systems

using momentum, magnetic fields or propellant to change their orbits. Members

of the Advanced Control and Mechatronics Laboratory (ACML) and the Intelligent

Systems Laboratory (ISL) at Dalhousie University, have access to many different

autonomous systems. Several examples are shown in Figure 1.3.

(a) RobuCar UGV. (b) LEGO NXT UGVs. (c) DuckieBot UGV.

(d) ISL USV.

(e) Riptide UUV.

(f) Bebop UAV. (g) AR.Drone UAV.

Figure 1.3: Examples of autonomous systems available in the ACML and ISL. Image
permissions: (a) Y.J. Pan, (d) J. Lindsay and (e) E. Wetter.
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In the Arctic environment, we are particularly interested in small UAVs that can

provide increased line of sight for ships navigating ice-fields. UAVs encompass two

primary types of aircraft: fixed-wing (i.e. airplanes) and rotary-wing (i.e. helicopters,

quadrotors, hexacopters). This thesis will focus on quadrotors as they provide a stable

platform that can hover in place and move laterally to improve a UAV’s capability

as a remote sensor.

1.2 Persistent Mapping

As autonomous systems become more capable they are asked to perform long-term

autonomous behaviours in increasingly complex environments, also called persistence.

This requires autonomous systems to not only react, but to reason about their envi-

ronment and develop an understanding of it [2]. Critical to this process is a robot’s

ability to localize itself and build a map. For robots operating in unknown environ-

ments without a global position reference, localization and mapping are a simultane-

ous problem, in which the robot cannot find its position without a map and cannot

add sensor measurements (observations) to a map without knowing its position. This

is the SLAM problem.

The majority of solutions to the SLAM problem have only addressed operations in

environments that are assumed to be static [1, 3]. As robots are tasked with remaining

on station for longer durations, this assumption will be violated. In addition, marine

environments are particularly challenging for SLAM applications as they are unstruc-

tured and populated with landmarks that change their appearance over time [2]. For

instance, in Arctic environments, icebergs are available as landmarks, yet they are

amorphous, which makes them difficult to characterize, they move and, as they melt,

they often flip over – changing their appearance. This thesis is interested in the per-

sistent mapping problem and its intersection with SLAM in dynamic environments.

A particularly motivating example is the Arctic environment, however there are also

parallel challenges in other scenarios such as agricultural mapping where crops grow

and change appearance over time, or underwater where terrain and sunken objects

may be evolving or in motion.
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1.3 Factor Graph SLAM

This thesis develops new approaches based on recent advances in using graph opti-

mization techniques to solve the SLAM problem. Early SLAM work utilized different

forms of Kalman filters and later particle filters to simultaneously estimate the tra-

jectory of the robot and the map of landmarks in the environment [1, 3, 4]. These

solutions used the fact that the error between the true and estimated landmark po-

sitions is common, as it stems from uncertainty in the pose of the landmark at the

time it is observed. This means that while the position of a landmark from a single

observation may be noisy, the relative position between two landmarks can be known

with high accuracy [5]. Futher, this accuracy increases monotonocally as more ob-

servations are made [5]. Smoothing algorithms, such as Graph SLAM, were a later

approach to solving the SLAM problem and have been shown to be efficient in their

use of non-linear graph optimization methods [6].

Factor graphs are a particular type of probabilistic model that express a func-

tion in terms of its composing factors [7, 8]. The term graph refers to a structure

consisting of a set of nodes that represent random variables, and a set of edges that

represent dependencies between the connected nodes. In the case of SLAM, the nodes

can represent positions of the vehicle over time and edges can represent geometrical

transformations (constraints) between those positions. An example of a factor graph

is shown in Figure 1.4 with xi, xi+1, xj representing the vehicle poses over time, Lk

representing a landmark and fa,b representing factors (geometrical constraints) be-

tween nodes a and b. Optimization on the graph implies determining the best values

for the variables (nodes) given the constraints (edges) [8]. Graphs are also helpful

for visualizing a probabilistic problem, such as SLAM, to gain insight to efficient

approaches for estimating the relevant variables given the constraints.

The accuracy of measurements used to construct the graph impacts the accuracy

of the estimate of the trajectory and map [8]. When dynamic landmarks are assumed

to be static, the geometric constraints cannot account for the motion of the landmark

and subsequently drive the trajectory estimate away from the true values. For this

reason, when applied to dynamic environments the traditional SLAM algorithms

seek to identify and remove any dynamic landmarks, thereby ensuring the map (and

all factors) only contain static landmarks. Although in some cases it is possible
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Figure 1.4: Example of a factor graph for SLAM, where circles are nodes (x are vehicle
poses, Lk is a landmark) and lines with a dot on them are factors that geometrically
constrain the nodes.

to consider small motions to be a category of noise contribution, this increases the

uncertainty of the estimate. Instead, this thesis hypothesizes that estimating and

accounting for the dynamics of the landmark separately from the measurement noise

can improve performance.

1.4 Research Motivation and Objective

Persistent mapping is an enabler for autonomous operations in complex dynamic en-

vironments, such as the Canadian marine Arctic, that motivates this research. Recent

strides towards incremental graph optimization techniques, such as [9], have been sig-

nificant and inspired this thesis work. While the specific case of interest shown in

Figure 1.1 requires a UAV to persistently develop a map of a quasi-static dynamic

marine Arctic environment, this work aims to develop a SLAM approach that can

be used in a variety of complex, dynamic environments by any class of autonomous

vehicle.

Objective: The objective of this research is to relax the static assumption of

existing SLAM solutions to allow autonomous operations in quasi-static dynamic

environments populated with evolving, amorphous landmarks.
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1.5 Contributions

The primary contribution of this thesis is the relaxation of the static assumption. In

support of that work, two further contributions were made: assigning kinematic mo-

tion models (KMM) to landmarks, and designing an FSM that governs the behaviour

of edges (factors) associated with non-stationary landmarks. A fourth contribution

is the end-to-end validation of the proposed piecewise-deterministic quasi-static pose

graph SLAM (PDQS-SLAM) algorithm in simulations and experiments. Details of

these contributions are described below.

1. Relaxation of Static Assumption

A basic assumption of the SLAM problem, and subsequently SLAM solutions,

is that all landmarks are static. This thesis shows that this assumption can

be replaced with an assumption that landmarks follow a motion model whose

structure is known a priori and whose values can be learned through observation

during the mission. While in principle this is no different than adding any other

variables into a factor graph, these particular variables allow the factors to rep-

resent not only geometrical constraints, but also time-dependent constraints.

This in turn allows dynamic elements to be exploited, rather than excluded,

as they are in traditional SLAM approaches. In complex environments, this

is especially important, as there are comparatively few static landmarks. The

cases demonstrated in this thesis focus on constant velocity motion that is

common in natural and artificial environments, however, this could be more

generally applied in environments that behave according to other kinematic or

appearance-based evolutionary models. The implementation of this contribu-

tion is presented in Chapters 5 and 6.

2. Landmark Kinematic Motion Models

The relaxation of the static assumption is supported by the design of piecewise-

deterministic landmark KMMs and the definition of quasi-static environments

as a distinct regime of landmark motion. While most work divides dynamic

environments into the static elements that are useful for mapping and the dy-

namic elements that are filtered and removed or tracked separately, in this work,

dynamic environments are conceptualized on a continuum defined not only by
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the speed of change, but also by the sensor’s observation frequency and pre-

cision. Inherent to this is a novel attribution of a KMM or appearance-based

evolutionary model to landmarks used in SLAM.

In particular, this work addresses piecewise-deterministic quasi-static dynamic

landmarks. The concept of quasi-static motion describes landmarks that evolve

so slowly that their motion cannot be directly measured in consecutive obser-

vations. Meanwhile, the concept of piecewise-deterministic models describes

motion of landmarks that follow a deterministic (constant parameter) model

during epochs that are disrupted by discontinuities that are called events [10].

Together, piecewise-deterministic quasi-static defines a category of dynamic en-

vironments that is also useful for other areas of research into operations in com-

plex environments, whether related to SLAM or detection and tracking more

generally. The definitions of quasi-static and piecewise-deterministic motion are

presented in Chapter 3.

3. Finite State Machine Edge Attributes

This work contributes a refinement of the definition of edges in a factor graph

to include the state of an edge as it evolves through epochs and events. This

extends the concept of assigning attributes to graph nodes, but goes further

by constructing an FSM that allows the behaviour of each edge to change over

time as the landmark through which it is constructed evolves. This FSM can be

adapted to a variety of environments and cases where SLAM is implemented.

For this application, the state transitions are focused on detecting events based

on a measure of the edge’s correctness calculated using the observations and pro-

posed graph structure. This event detection applies the learnings from the field

of score-based structure learning (SBSL) to the SLAM problem. The work on

event detection is presented in Chapter 7 and the FSM contribution is detailed

in Chapter 8.

4. Validation of Piecewise-Deterministic Quasi-Static Dynamic SLAM

Finally, the proposed PDQS-SLAM algorithm is extensively demonstrated on a

quadrotor UAV in both simulations and experiments. Several cases are analysed

to show the capabilities and limitations of this approach in the motivating
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scenario shown in Figure 1.1. This end-to-end SLAM approach is demonstrated

in Chapter 8.

1.6 Organization

The main chapters of this thesis each apply to a different regime of landmark motion

as exemplified in Figure 1.5. This thesis starts by implementing the baseline static

SLAM algorithm (Chapter 4), then proposes solutions for epochs where the landmark

motion is slow (Chapter 5) or quasi-static (Chapter 6). Chapter 7 develops a novel

event detection approach that enables the proposed piecewise-deterministic quasi-

static pose graph SLAM (Chapter 8) to apply within and across events that disturb

static, slow and quasi-static epochs.

Figure 1.5: Diagram of organization of thesis chapters (4-8) by applicable regimes of
motion in a piecewise-deterministic dynamic environment, consisting of four events
disturbing three epochs: one static, one slow and one quasi-static.

The organization of this thesis is shown in Figure 1.6. After this introduction,

a review of relevant literature is presented in Chapter 2. The problem formulation

is detailed in Chapter 3 and provides context and definitions required for the main

chapters of this thesis. Chapter 4 describes the experimental set-up used throughout

the thesis including the mission, the experimental environments and the platforms. It

also implements a baseline static SLAM, first in a static environment, and then in a
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slowly evolving environment to justify the need for a SLAM approach that accounts for

landmark motion. Chapter 5 describes the development of novel model-based dynamic

factors that form the basis for this work. These factors are subsequently applied to the

limiting case of quasi-static environments in Chapter 6. In parallel, Chapter 7 shows

how disruptions to the landmark motion model can be detected using SBSL. Next,

the approaches developed in Chapters 6 and 7 together lead to the general dynamic

SLAM approach for piecewise-deterministic quasi-static environments, proposed in

Chapter 8. Finally, conclusions and future work are discussed in Chapter 9.

1. Introduction 

2. Literature Review

4. Experimental Set-Up

5. MBD-SLAM 

6. MBQS-SLAM 

8. PDQS-SLAM

9. Conclusions

7. Detection of Disruptions 

3. Problem Formulation

Figure 1.6: Diagram of flow of information through the thesis.



Chapter 2 Literature Review

This chapter describes the state-of-the-art for fields related to SLAM in dynamic

environments. Literature is reviewed in the following four themes:

1. probabilistic Static SLAM (Section 2.1): describes the development of SLAM

with a particular focus on the promising field of graph SLAM and the challenge

of data association.

2. detection and tracking of moving objects (DATMO) (Section 2.2): provides

a summary of methods in the field of DATMO that are useful towards the

estimation of iceberg motion.

3. anomaly detection (Section 2.3): outlines the tools available to address the

detection of events that disrupt quasi-static landmark motion in the piecewise-

deterministic environment.

4. dynamic SLAM (Section 2.4): describes current approaches to SLAM in a dy-

namic environment including: methods that filter out moving objects, meth-

ods that treat the static and dynamic parts of environments separately and

semi-static methods that assume dynamic objects are static while the UAV is

mapping, then move abruptly before the next mapping session.

Each section concludes with a comment on the relevance of the approaches re-

viewed to the thesis work.

2.1 Probabilistic Static SLAM

In his review of the principles of SLAM with Tim Bailey, Hugh Durrant-Whyte, de-

fined the problem in the following way: “The simultaneous localization and mapping

(SLAM) problem asks if it is possible for a mobile robot to be placed at an un-

known location in an unknown environment and for the robot to incrementally build

a consistent map of this environment while simultaneously determining its location

within this map” [5]. Beginning with Smith et al.’s foundational paper in 1990 [11],

13
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early works by Cox [12] and Leonard and Durrant-Whyte [13] set out the primary

challenges and opportunities that define the SLAM problem to this day. Topological

mapping is also a clear precursor to the field of SLAM including the works of Dudek

et al. [14, 15] and Kuipers and Beeson [16]. Since those early works, a myriad of

approaches have been demonstrated that successfully solve the SLAM problem, there

is still a long way to go before truly autonomous robotic operations is possible due to

implementation challenges in real (large, unstructured, dynamic etc.) environments.

This section outlines the SLAM problem statement based on [1, 5, 17, 3, 18].

Figure 2.1: Essential description of the SLAM problem as defined by Durrant-Whyte
and Bailey [5] © 2006 IEEE.

As shown in Figure 2.1, for each time instant k, several quantities are defined:

• xk: robot pose state (vector, location and orientation of the vehicle)

• uk: control action (vector) that led to the vehicle arriving at xk (ie. applied at

xk−1)

• zik: observation of the ith landmark from xk
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• mi: location of the ith landmark (vector which is assumed constant)

Further, the history of the poses, control inputs and landmark observations are

grouped in the sets X0:k, U0:k and Z0:k respectively. Finally, the map that includes

all landmarks is m.

With these definitions, probabilistic SLAM has the goal of finding the posterior

of the robot’s trajectory and the environment’s map, given the control action history,

the landmark observation history and the robot’s initial pose (x0). This is given as:

P (xk,m|Z0:k,U0:k,x0:k). (2.1)

This probability distribution shows that the SLAM problem is a coupled one

– requiring both the robot poses and landmark positions (or map) be calculated

simultaneously. This posterior can in general be calculated in two ways. Full SLAM,

requires the determination of the entire trajectory and map given the full history,

while Online SLAM, requires the determination of only the current pose and map

given the history up to the current time. In either case, to calculate the posterior, two

steps are implemented recursively – a time-update (prediction) and a measurement-

update (correction), given by Equations (2.2) and (2.3) [5], respectively.

P (xk,m|Z0:k−1,U0:k,x0) =

∫︂
P (xk|xk−1,uk)× P (xk−1,m|Z0:k−1,U0:k−1,x0)dxk−1

(2.2)

P (xk,m|Z0:k,U0:k,x0) =
P (zk|xk,m)P (xk,m|Z0:k−1,U0:k,x0)

P (zk|Z0:k−1,U0:k)
(2.3)

These updates require two models. The motion (or state transition) model given

by, P (xk|xk−1,uk), is assumed to be a Markov process. The observation model

(P (zk|xk,m)), represents the probability of an observation given a known state (posi-

tion and map) – this is the state estimation with a known map problem. For SLAM,

the time update makes a prediction about where the robot should be using the mo-

tion model, then the measurement update provides a correction by using the map.

Although it is possible to separate the localization and mapping problems into two

separate probability distributions, this makes the assumption that either the map is
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known (localization) or that the vehicle’s trajectory is known (mapping), neither of

which are generally valid assumptions.

One important thing to note about the structure of the SLAM problem is that

the error between the true and estimated landmark positions is, for the most part,

common between landmarks since it stems (related by a transformation) from the

uncertainty in robot pose at the time of observation. This causes high correlation in

estimates, which shows that although the position of a single landmark may not be

well known, the distance between two landmarks can be known with high accuracy

[5]. Further, this correlation increases monotonically as more observations are made

[5]. The observed landmarks form a network of relative locations that converges as

more measurements are made of any landmark in the network. Ideally, the map

accuracy is only limited by the localization accuracy of the robot (rather than the

sensor accuracy, which is stationary).

To summarize, solutions to the SLAM problem require applying the appropriate

observation and motion models and computing a consistent posterior distribution for

the map and robot trajectory [5]. Reviews of approaches and taxonomy of the SLAM

problem are available in The Handbook of Robotics [18], Probabilistic Robotics [1],

Durrant-Whyte and Bailey’s SLAM tutorial (Part I and II) [5, 17] and a 2016 SLAM

review from Saeedi et al. [3].

2.1.1 Graph SLAM

New tools and techniques have been recently emerging in the field of graph optimiza-

tion which have allowed more flexibility and capability for the application of graph

SLAM in unstructured and dynamic environments. The ability to incrementally solve

the full SLAM problem is advantageous in the complex environments we are interested

in here. This section will detail the mathematical basis of graph SLAM, drawing on

the 2010 tutorial from Grisetti [19], as well as the graduate works of Walcott-Bryant

[20] and Kretzschmar [21].

Graph SLAM was originally proposed in 1997 by Lu and Milios [22]. A graph is

composed of a set of soft constraints that arise from observations that are encoded as

edges between nodes that represent poses (spatial coordinates) of the robot at each

step in time (xt) and locations of landmarks in the environment (m). By relaxing all of
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the constraints (finding the minimum energy of the system) the best estimate for the

robot’s full trajectory and the map (set of all landmarks) is found. Probabilistically,

graph optimization results in the most likely trajectory and map given the set of

observations and control inputs – also known as the full SLAM problem.

Recent approaches have used factor graphs to represent the SLAM problem, clar-

ifying the structure to enable more efficient inference solutions [7, 8]. An example of

a factor graph for graph SLAM and pose graph SLAM are shown in Figure 2.2.

(a) Graph SLAM (b) Pose Graph SLAM

Figure 2.2: Formulation of a (pose/feature) graph (left) and pose graph (right) for
SLAM using factor graphs.

In a factor graph, each node represents a variable to be estimated, while each edge

represents a constraint between the nodes characterized by a factor shown here as a

solid dot. The graph is constructed (called the front-end) by using measurements

to establish constraints, then the variables are optimized (called the back-end) to

minimize the nonlinear least squares problem the factor graph represents.

Graph SLAM is targeted at environments with point landmarks that can be distin-

guished from the environment and localized. In pose graph SLAM, only the trajectory

is found using the graph, then the map is built up from observations made at the

(optimized) poses. In pose graph SLAM, edges between sequential poses arise from

odometry measurements as well as between poses that observe a common landmark,

resulting in loop closure constraints. Since features are not tracked directly, pose

graph SLAM can use measurements of arbitrary features as well as point landmarks.

This makes pose graph SLAM the preferred structure for dynamic environments.

While graph construction is particular to the environment, platform, and sensors,

the back-end graph optimization algorithms are more widely applicable. Popular

back-ends include square root smoothing and mapping (SAM) [23], hierarchical op-

timization for pose graphs on manifolds (HOGMAN) [24], g2o [25], and incremental
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SAM (iSAM) [9]. iSAM is a particularly popular back-end proposed by Kaess in 2008

[9]. iSAM incrementally updates the solution by only re-optimizing portions of the

graph that are affected by recently added constraints. This significantly improves

computational time allowing it to produce online estimates for the robot’s pose. Re-

cent developments in graph optimization have built off of iSAM including bayes tree

[26] and multi-hypothesis iSAM2 [27]. Using iSAM as a back-end optimizer means

that these advances could be incorporated with the developments of this thesis in the

future.

2.1.2 Data Association

Graph construction (the front-end) relies upon to ability to recognize features/objects

in the environment in order to insert constraints between non-sequential poses. Known

correspondence is the name for the case when landmark recognition is trivial, and is

generally accomplished by labelling objects in the environment with a defined tag

that is easily detected. There are many different forms of tags for different sensing

modalities and performance requirements. For visual sensors where localization and

identification is needed, Olson et al. developed AprilTags that are easily detected and

can be quickly interpreted [28].

With unknown correspondence, data association requires (1) segmenting recogniz-

able elements in the environment, (2) search a list of previously observed landmarks

for potential matches, (3) estimate the likelihood that the current observation corre-

sponds to that landmark and (4) construct a constraint using the most likely corre-

spondence. Each of these steps is a potential source of error, making data association

a significant challenge.

Data association algorithms are specific to the types of objects/features that can

be extracted from the environment as well as the method by which they are mea-

sured (the sensors used). Some common approaches include scan matching techniques

such as iterative closest point [29], random sample consensus (RANSAC) [30], joint

compatibility branch and bound [31], and nearest neighbour approaches [32] among

others.

In general, data association is susceptible to perceptual aliasing where objects with

similar appearances are mistaken for the same object and it is considered preferable
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to avoid adding any correspondence that is potentially in error due to the strong neg-

ative impact of false correspondences on the optimization results [2]. In some cases,

this has driven researchers to maintain multiple hypotheses for the data association

for extended periods, however this cannot be done indefinitely due to the size of the

resulting hypothesis tree [2]. In dynamic environments, data association becomes fur-

ther complicated as objects and features move and evolve. In a piecewise-deterministic

model of the environment, a correct landmark recognition may still result in an in-

correct correspondence if an event has occurred between the observations.

2.2 Detection and Tracking of Moving Objects

In the field of detection and tracking of moving objects (DATMO), several authors

have attempted to model the changes of objects in the environment for the purpose

of predicting the future position of objects.

The literature related to DATMO and dynamic mapping shows a variety of struc-

tures used to model environmental elements. The most common selection is a constant

velocity model, which was used, among others, by Wang, Thorpe and Thrun in SLAM

for urban environments [33], Pomerleau et al. to produce models of each dynamic

point in a map of a campus environment [34], Wang et al. to develop a hidden Markov

model for the state of each cell in an occupancy grid map [35] and Galceran, Olson and

Eustice [36] as well as Ushani et al. [37] to model the motion of other vehicles on the

road while they are occluded from an autonomous vehicle’s sensors. Other approaches

use Deep Neural Networks to generate state estimates (such as Murphy [38]), Prob-

abilistic Transition Models (such as Moratuwage et al.’s Bernouilli Random Finite

State Transition Models [39, 40]) or estimate periodic trends for presence/absence of

objects (such as Fentanes et al. [41]).

Many of these solutions consider structured environments such as office buildings

or streets, rather than natural environments such as marine or Arctic environments.

An exception to this is Kimball and Rock’s work on mapping the underside of icebergs

using AUVs, which required tracking the iceberg’s motion to remove the motion’s

contribution to the estimation error [42, 43]. Their work used a constant velocity

model in [42] and both a constant velocity model as well as a four-segment (5 knots)

third degree polynomial in [43].
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Another important motion model structure from the field of DATMO is piecewise-

deterministic motion, such as the structures used in [10]. In these structures, tar-

gets are assumed to follow a deterministic model during a period of time called an

epoch. Eventually, this epoch is disturbed, by an instantaneous event, which starts

a new epoch with a new instance of the same deterministic model structure. These

piecewise-deterministic motion models mean a simple model such as a constant veloc-

ity model can be applied within an epoch, while infrequent disruptions to this model

can be managed by detecting and appropriately responding to events. This approach

is suitable to natural environments where rare forces change the otherwise constant

velocity motion of landmarks.

2.3 Anomaly Detection

The piecewise-deterministic, dynamic SLAM problem formulated in this thesis re-

quires distinguishing between observations of a landmark before and after a disturbing

event. This problem is related to several other types of anomaly detection problems

in the literature. These include:

• the data association problem: a challenge to identify and remove incorrect cor-

respondences. Robust SLAM implementations have been designed to counter

this challenge. This includes Switchable Constraints [44] and Dynamic Covari-

ance Scaling [45] that each detect erroneous factors by comparing the covariance

of a particular factor to a threshold.

• perceptual aliasing: a particular type of data association problem that typically

occurs in an environment that has repeating structures that make it difficult to

determine if an observation corresponds to a new or existing landmark. Several

researchers have attempted to address this problem, by using methods such as

max-mixtures models in [46] and Discrete-Continuous Graphical Models in [47].

• statistical local outlier detection: attempts to identify and if appropriate remove

an anomalous measurement that was improperly captured, incorrectly assigned

to a set or otherwise deviates from the natural variance of the population. As

reviewed in [48], outliers are identified because they do not fit with the rest of
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the model. For example, Z-score analysis assesses each value’s distance from the

dataset’s mean is relative to the typical variance of the data in the set. Then,

a threshold is defined to remove observations that are further from the mean

than that variance. Residual analysis [49] for outlier detection is a common

approach in logistic regression.

• anomaly detection in signal processing: a challenge of detecting when an un-

usual behaviour in a system or network has occurred. Relies on correlations

between ‘correct’ measurements by applying tactics such as principal compo-

nent analysis (PCA), Kalman filtering, wavelet-based detection and hypothesis

testing discussed for example in [50, 51]. In the SLAM domain, spectral anal-

ysis of time-series data was applied by Krajnik et al. to model the long-term

variation of an environment with a Fourier transform [52]. Here, periodic pro-

cesses were captured and predicted, allowing anomalous environment states to

be detected, when the state differed from the predicted state by more than the

threshold confidence level.

• score-based structure learning (SBSL): a branch of machine learning in which

the edges of a graph are selected based on some quantitative criteria [53, 54].

It first determines the set of all possible graphs, then evaluates each according

to criteria to select the best fit structure for the data. SBSL has been limited

in its applicability due to the need to search for the set of possible graphs.

Since in SLAM the number of possible graph structures is small (only a small

number of edges are potential removal candidates at any time), this problem

is avoided. Selection criteria are typically in the form of scoring functions [55].

For Bayesian networks, there are two main classes: Bayesian scoring functions

and Information-theoretic scoring functions.

• edge selection problem: a particular part of SBSL in which factors are ordered

from strongest to weakest, then a number of edges are selected to be retained

in the graph. An example is degeneracy-aware loop closures that implement

a threshold on eigenvalues of the loop closures such that only well-conditioned

measurement directions (eigenvectors) are used in the loop closures [56]. Unlike

typical solutions for edge selection that pre-select a number of edges to keep,
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a threshold is used in this case, based on the ratio between the largest and

smallest eigenvalues. Only if this ratio is large are some eigenvectors removed.

In each of these fields, the essential task is to recognize when a new measurement

differs in a measurable way from the existing population of measurements. Score-

based structure learning is a useful tactic for this problem as it uses the existing

graph structure to detect incorrect or anomalous edges that could indicate an event.

2.4 Dynamic SLAM

Extending SLAM algorithms into dynamic environments has proven to be difficult,

due to the static assumption embedded in the original SLAM problem statement. In

traditional SLAM it is assumed that landmarks are static so common observations

of a landmark can imply a relative position change of the UAV. The problem with

this assumption is evident when the dynamic scenario is placed into the factor graph

form as in Figure 2.3.

Figure 2.3: Factor graph representation of the dynamic pose/feature graph SLAM
problem.

In the dynamic factor graph it is clear that ignoring the motion of the landmark

is equivalent to an inaccurate loop closure constraint, which causes the solution to

degenerate. For this reason, SLAM algorithms applied to dynamic environments have

settled into three primary categories:

1. filter out dynamic objects and remove/ignore them;

2. track the dynamic objects, but store them separately from the static map (see

DATMO review in Section 2.2)); or,
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3. treat the dynamic objects as static during each mapping session and potentially

moving in between sessions (semi-static).

2.4.1 Removing Dynamic Objects

The first option neglects the insight that dynamic objects and features can provide

into the state of the environment as well as the processes that influence it. Further,

in environments with few static landmarks, it reduces the number of potential loop

closure constraints. This is the approach taken by the majority of SLAM algorithms

in dynamic environments including [57, 58, 59, 60, 61].

This decision to only utilize static landmarks relies on the assumption that there

are a sufficient number of static landmarks to successfully SLAM. In the marine

Arctic environment, landmarks are sparse and all landmark information should be

exploited. This thesis hypothesizes that when treated properly mobile landmarks can

be incorporated in the graph, without degrading the graph estimate.

2.4.2 Using DATMO for Dynamic Objects Separately from SLAM

The second option separates the problems of target tracking and SLAM, so that

the SLAM algorithm only uses the static elements in the environment. As with the

first category, this disregard for the dynamic objects in the SLAM algorithm ignores

information that could be helpful. Nonetheless, a significant amount of work on the

second option has been performed. For instance, an early work by Wang, Thorpe

and Thrun in 2003 studied the SLAM and DATMO problem within a probabilistic

framework by estimating the velocity of dynamic objects and tracking them separately

from the static landmarks used in the SLAM algorithm [33]. In 2015, Einhorn and

Gross extended DATMO for SLAM by fading out objects that were labelled dynamic

but moved beyond the sensor field of view – solving the problem of artifacts left

behind when part of a dynamic object was removed in occupancy grid maps [62].

Another interesting approach was developed by Moratuwage, Vo and Wang as an

extension to a multi-robot SLAM implementation based on random finite sets (RFS),

thereby allowing for complex motion models beyond constant velocity [39].

While this method does provide insight to the motion of the dynamic objects, it

does not use that insight to improve the SLAM estimate, which is a key limitation of



24

this approach.

2.4.3 Assuming Semi-Static Environment

The third option includes the dynamic objects in the map used for navigation, but

treats them as static at any particular instant. This has been accomplished by using

multiple map layers each capturing objects with a certain temporal scale.

For example, Dynamic Pose Graph SLAM (DPG-SLAM), developed by Walcott-

Bryant et al., extends pose graphs to low dynamic environments by using two maps:

one active and one dynamic [29]. Here, dynamic objects are semi-static and only

move between mapping passes of the robot. Using the two maps, means a history of

the environment is maintained and a map of the current environment exists for every

point in time [29].

Another tactic used by several authors (including Milford and Wyeth [63], Labbe

and Michaud [64], Li, Li and Ge [65], Bacca, Salvi and Cufi [66] and Dayoub, Ciel-

niak and Duckett [67]) to incorporate dynamic objects in the map, is to maintain

two representations of the environment where one functions as short term memory

(STM) (holding all recent observations) and the other as long term memory (LTM)

(capturing features that are static or that persist in the environment for long peri-

ods of time). This is a biologically inspired solution that works well with different

map representations and large numbers of moving targets, but remains limited by the

assumption that the landmarks used in the long-term are static.

These methods miss the opportunity of capturing the underlying structure of a

dynamic environment by simplifying the landmarks to a series of static positions.

2.4.4 Exceptions

Two notable exceptions exist to these three categories: a DATMO-inspired multi-

layer RANSAC-based algorithm developed by Bahraini et al. in 2018 [68], and an

object-aware, model-free semantic SLAM algorithm developed by Henein et al. in

2020 [69]. Both of these approaches attempt to simultaneously estimate the vehicle

pose and the landmark speed, as is done in this thesis.

Bahraini uses a two-step algorithm, iteratively estimating the landmark states and

velocities, then estimating the robot poses, until the system converges [68]. This work
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focuses on developing the data association to incorporate the velocity estimate using

filtering techniques. This approach was shown to be successful in a fast application

where the motion is easily detected by the front-end machine learning object detector.

The dynamic SLAM proposed by Henein et al. is similarly well suited to fast

moving environments, such as autonomous driving scenarios [69]. Their approach is

to segment rigid objects in the scene as either static or dynamic, then build a factor

graph to jointly optimize the rigid body motion parameters, the landmark poses and

the vehicle poses. The ternary factors that they propose to describe the motion model

of a point on a rigid body are the most similar approach to the MBDFs developed

in this thesis and the pose change vertices are an alternative solution to the event

detection problem addressed in the thesis. However, [69] does not address the quasi-

static environment or the long-term behaviour of dynamic loop closure factors in a

unified way – two challenges that are essential to persistent mapping in an Arctic

environment, which is studied in this thesis.

The recent acceleration of work to address dynamic environments indicates the

importance of developing a solution for persistent mapping in the presence of dy-

namic landmarks. This further motivates the thesis objective to relax the static

SLAM assumption to allow a UAV to operate autonomously in dynamic environ-

ments such as in the marine Arctic. These advances also support the hypothesis that

exploiting landmark motion in predominantly dynamic environments will improve

the SLAM performance compared to removing or segmenting landmark motion. The

next chapter will define the dynamic environment of interest to enable the subsequent

contributions.



Chapter 3 Problem Formulation

This chapter describes the context and problem formulation needed for the theoretical

developments in the thesis. After defining the project scope (Section 3.1), the concept

of piecewise-deterministic KMM are defined in the context of dynamic SLAM (Section

3.2), leading to the justification of the constant velocity KMM used to model icebergs

in this thesis (Section 3.3). Finally, quasi-static motion is defined and the factors

that effect whether a landmark or an environment can be considered quasi-static are

discussed (Section 3.4).

3.1 Problem Scope

Inspired by the application of autonomous systems in the Canadian Arctic, this thesis

explores persistent mapping in the context of unstructured environments populated

with slowly moving or evolving amorphous landmarks, exemplified by icebergs, as

shown in Figure 3.1.

Figure 3.1: Problem formulation mission context, in which a UAV takes-off from a
ship, performs a pass to observe icebergs in an area of interest, then returns to the
ship. Note the few recognizable landmarks, all of which are, or may become, mobile.

26
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The Canadian Arctic environment has several characteristics that pose a challenge

for autonomous robots, and by choosing to address them, the resulting approach is

more generally applicable to other complex environments. The characteristics of a

UAV mission in the Arctic environment include:

• unavailable global references (ex. GPS) and absolute heading ref-

erence by compass requires the vehicle to use local positing references and

SLAM techniques, this also occurs when operating underground, in deep water

or in urban canyons,

• limited communication infrastructure requires autonomous behaviours rather

than direct operator control,

• sparse environment with few recognizable landmarks means every landmark

is valuable and should be exploited, unlike environments where there is the

opportunity to select the best landmarks (ex. indoors, underground mines etc)

and discard dynamic landmarks,

• icebergs are amorphous landmarks, this makes them good templates for

general environments that likewise have limited structure,

• all landmarks must be assumed to be potentially moving now, or in the

future, placing no prior expectation regarding environment structure,

• landmark motion is very slow typically noticeable only over the course of

days and a solution that reduces the lower limit on motion detection is more

generally applicable, and,

• full six degree-of-freedom (6-DOF) vehicle allows flexible path plans and

is the most general pose model for an unmanned vehicle.

To address this complex, unstructured environment the following assumptions will

be made:

• first landmark observed is static: The first landmark the vehicle observes,

the one directly below the start position, is assumed static and known to be

static a priori. This provides a critical link to the absolute reference frame that
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makes it possible to separate the UAV’s motion from the average landmark

motion. All other landmarks will be assumed mobile.

• long mission duration: The set of observations captured by the UAV are

assumed to span a long enough duration that even very slow landmark speeds

can be measured by comparing observations from the start and the end of the

mission. This is justified by the UAV’s task being persistent monitoring of a

region.

• omni-direction vehicle: The UAV is assumed to be a quadrotor or other

omni-directional vehicle. This simplifies the path planning problem compared,

for example, to fixed wing UAVs that have to change their heading before

moving in that direction.

• perfect data association: Perfect data association (detection and recognition

of landmarks) is assumed, by using an abstracted landmark tagging system.

This allows the thesis to focus on the persistent mapping problem and the

challenges of associating and modelling mobile landmarks.

• unlimited computational resources: On-board computational power is as-

sumed to be sufficient to perform any algorithm that can be performed on

a desktop PC. This implies that the thesis does not study the efficient opti-

mization for graph inference or optimize the code (implemented algorithms) for

computational efficiency.

These assumptions are used throughout the thesis to develop a proposed approach

to persistent mapping in the Arctic environment as characterized above. The work

is demonstrated at five stages starting from the baseline static and progressively

adding capabilities resulting in the complete PDQS-SLAM algorithm. While parent

cases and variants are tested in simulations, exemplary cases are tested in both a

simulated environment and in a controlled laboratory setting to validate the simulated

environment.
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3.2 Piecewise-Deterministic Dynamic Environments

The field of DATMO has identified that many natural and artificial dynamic environ-

ments can be characterized by piecewise-deterministic motion of the mobile elements

in the scene [10]. Targets or landmarks in these environments follow a deterministic

(constant-parameter) model for a period of time, called an epoch, then are disturbed,

called an event, before starting to follow a new deterministic model of the same

structure, with different values. The motion of a piecewise-deterministic target can

be described as in Figure 3.2 which shows a target following a constant velocity KMM

(constant slope when describing distance travelled over time) during three epochs.

Figure 3.2: Definition of piecewise-deterministic motion, characterized by determin-
istic motion during epochs, disturbed by events.

An example from the research in DATMO, is the motion of an aircraft [10]. Typ-

ically pilots select a constant altitude, orientation and velocity for the majority of a

trip, with distinct turns, ascents or descents before a new constant velocity segment.

Natural phenomena such as large icebergs follow a similar pattern, with a period of

constant velocity disturbed by an event such as a significant melt, strong storm or

running aground, that results in the iceberg moving at a new constant velocity or

becoming static. Different models apply in different environments (for example, a
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constant velocity model for icebergs [42], or constant acceleration models for objects

in free fall) and while the velocities and accelerations the targets experience are not

likely to be known a priori, the type (structure) of the model can be known in advance.

While piecewise-deterministic motion models can apply to the evolution of pa-

rameters of many kinds of models (changes in shape, colour, transparency, radiation

levels etc), this thesis is particularly interested in changes in an iceberg’s pose as it

moves through the water. For clarity, when the model is of a landmark’s change in

position or orientation relative to an inertial reference frame, it will be referred to as

a kinematic motion model (KMM).

In developing an approach to dynamic SLAM, Chapters 5 and 6 propose methods

for estimating KMMs during an epoch while Chapter 7 proposes a method for iden-

tifying events that disturb the model. Modelling the motion during each epoch, then

detecting and recovering from an event, results in the novel approach to dynamic

SLAM presented in Chapter 8.

3.3 Iceberg Kinematic Motion Models

In the context of SLAM, attributing a piecewise-deterministic KMM to a landmark is

necessary in dynamic environments to correctly compute the geometrical constraints

between the vehicle and landmarks over time. Now, it remains to select the struc-

ture of motion model. While in specific cases, the choice of the motion model may

be obvious, for general amorphous landmarks under the assumption of piecewise-

deterministic, slow motion, a constant velocity (constant translational and rotational

speeds) model is proposed. Conceptually, very slow motion lends itself well to con-

stant velocity estimates, as the error due to small accelerations would be even smaller

than the already low velocity. Large accelerations would manifest as events in the

piecewise-deterministic framework and could be handled in that way. Icebergs are an

example of amorphous, slowly moving landmarks and are proposed as a template by

which the proposal to use a constant velocity model can be studied.

The motion of icebergs is affected by a large variety of factors making it difficult

to predict without a complete model of the iceberg’s keel shape, mass and density.

Kimball and Rock studied iceberg motion models in order to develop an iceberg-

centric map from an AUV in 2008 [42] and 2010 [43]. They use a motion model for
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the translation and rotation of the iceberg to transform measurements from inertial

frame to an iceberg-fixed reference frame, thereby removing the warping of the map

that results from the iceberg’s motion. In [42], a constant translational and rotational

velocity model was used, while in 2010 they use basis splines to model the motion. In

particular, they choose a four-segment (5 knots) third degree polynomial (continuous,

piecewise-linear acceleration) [43, 70].

Based on the results shown in [70], the shape of the iceberg was recoverable using

either the constant velocity (i.e. constant translational speed and constant rotational

speed) approach from [42] or the piecewise-linear acceleration approach in [43]. Thus,

a constant velocity model is a sufficient approximation for the iceberg

motion and will be used in this thesis, starting in Chapter 5.

3.4 Quasi-Static Dynamic Environments

In characterizing an operational environment as dynamic, there is an acknowledge-

ment that an underlying pattern in the observations of landmarks, if not captured

appropriately, would contribute to the error in the localization and mapping esti-

mates. From this perspective, very slow motion could be considered a source of noise

in an assumed static environment. While treatment of fast moving objects using

DATMO-inspired approaches has been studied (see review in Section 2.4), the Arctic

environment presents a different challenge, that of very slowly moving landmarks.

These landmarks traverse huge waterways, but do so over many months. Some dy-

namic SLAM approaches treat these landmarks as semi-static – landmarks that move

only between visits by the robot, as was done in Dynamic Pose Graph SLAM [20]

– however, this thesis is interested in modelling landmark motion, even if it is very

slow. The term quasi-static is proposed to describe environments populated with

these very slowly moving landmarks. Quasi-static environments cannot be addressed

through direct observations of the landmark and instead the motion of the landmark

must be inferred over multiple observation cycles – teasing apart the uncertainty due

to this very slow motion from the intrinsic observation noise.

In thermodynamics, quasi-static processes are characterized as progressing very

slowly such that approximation as a series of equilibrium states is effective. The def-

inition of very slow depends on the definition of the system – in particular its size
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and the time it takes to reach equilibrium. This concept can be extended to the un-

derstanding of very slow dynamic environments. Quasi-static dynamic environments

are environments where consecutive observations capture a single equilibrium state,

ie. they do not capture landmark dynamics. In the case of an environment whose

landmarks move with constant velocity, consecutive observations of a quasi-static dy-

namic landmark would appear to be static. Just as in thermodynamics, quasi-static

dynamic environments are characterized by an infinite series of these equilibrium

states, where the landmark is seemingly static in the state, but over a longer period

of time, the evolution of the system is clear.

It is useful to define a quasi-static speed threshold, vQS, under which a land-

mark’s motion can be considered quasi-static. Then, using prior knowledge of the

characteristic speed of a landmark υk, the decision can be made to apply a quasi-

static SLAM method when υk < vQS.

Since a quasi-static environment is defined as one in which the motion of a land-

mark cannot be detected from two consecutive images of it, the minimum detectable

speed is proportional to the minimum detectable change in position and inversely

proportional to the time between the observations. In other words:

minimum detectable speed =
minimum detectable change in position

time between observations
. (3.1)

Any landmark moving faster than the minimum detectable speed would have

moved far enough between observations that the measured change in position is distin-

guishable from the noise on the position measurement. Any landmark moving slower

than that can be considered quasi-static. In other words, the maximum speed to be

considered quasi-static (vQS) is also the minimum detectable speed. This gives the

relationship between the quasi-static speed threshold vQS, the minimum detectable

change in position xmin and the time between observations tobs,

vQS =
xmin

tobs
. (3.2)

To further specify vQS in the case of constant translational velocity landmark

(i.e. rotational velocity is zero), it is assumed that the UAV and landmark are both

moving in the same direction, both parallel to the surface and the UAV’s field of view
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is pointing directly perpendicular to the surface. Also, it is assumed that the first

image is captured when the landmark enters the field-of-view (FOV) and the second

image is captured just before the landmark leaves the FOV. Then, tobs is given by,

tobs =
lFOV

(vUAV − υk)
, (3.3)

where lFOV is the length in the direction of UAV motion of the FOV and vUAV is

the speed of the UAV. The minimum detectable change in position, xmin, is equal to

the uncertainty on the landmark position measurement. Rearranging Equations (3.2)

and (3.3) for the minimum value of υk that is detectable gives the equation for vQS,

vQS = vUAV
xmin

lFOV + xmin

. (3.4)

Finally, a landmark can be considered quasi-static if its characteristic speed follows

the relationship:

υk < vQS. (3.5)

Equation (3.4) makes it clear that, for the same characteristic landmark speed,

a fast environment can be treated as a quasi-static environment by adjusting the

following UAV or mission parameters:

• decrease the dimension of the FOV (or the altitude of the UAV);

• increase the speed of the UAV; or

• increase the uncertainty of the landmark position measurement.

This means that an environment is not inherently fast, slow or quasi-static. Rather

those descriptions are only useful relative to the selected parameters of the mission

(ex. UAV speed, altitude etc) and sensor(s) (ex. FOV, pixel size, noise in estimation

etc.).

Note that the quasi-static threshold, vQS, as defined in equation (3.2) can be ap-

plied to landmarks that have both or either constant translational speed and constant

rotational speed by using the xmin in the appropriate units (i.e. metres for transla-

tional and radians for rotational speeds). However, tobs can not be directly expressed

in terms of the dimension of the field of view in the case of rotational speeds meaning
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equation (3.4) cannot be used for the case with non-zero, constant rotational speeds.

The patterns listed above regarding the mission parameters’ effect on the quasi-static

threshold remain valid for the constant translational and rotational speeds (i.e. non-

zero rotational speed).

The selected mission and sensor parameters that require icebergs to be treated

as quasi-static are defined in Chapter 4. Subsequently, Chapter 6 designs a SLAM

algorithm to estimate quasi-static KMMs.



Chapter 4 Experimental Set-Up

This chapter defines the set-up for simulations and experiments performed throughout

the thesis. This includes the mission and testing environment (Section 4.1) inspired

by the Canadian marine Arctic environment, and the quadrotor platform and sensors

(Section 4.2). The scope of simulations and experiments (together: test cases) that

evaluate the performance of the algorithms developed in this thesis are described in

Section 4.3. In addition, a baseline case showing the performance of an established

static SLAM algorithm is captured to validate the simulated environment relative to

the experimental environment at model-scale (Section 4.4). Finally, static SLAM is

applied to a dynamic environment (Section 4.5) to highlight the requirement for an

approach that is not limited by the static assumption.

Figure 4.1: Elements used in experiments grouped by sub-system.

The experimental set-up, whether in the simulated or laboratory environment,

includes several elements summarized in Figure 4.1 based on the sub-system they

are part of. The thick bordered boxes show the platform and sensors (Section 4.2)

35
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necessary to test various SLAM algorithms (gray-filled box) as well as two support-

ing tools (AprilTag detection and a waypoint-tracking controller for the UAV). The

double-outlined boxes are functions for the landmarks that form the map and ground

truth capture system, they are external to the UAV and SLAM approach (Section

4.1).

4.1 Mission and Environment

While the approaches developed in this thesis are not specific to the type of au-

tonomous vehicle, sensor suite, or environment, the inspirational case is of a UAV

traversing a Canadian marine Arctic environment. This section details the mission

and experiment parameters, as well as describes the fiducial tags used to represent

landmarks, the mobile landmark implementation, and the simulated and laboratory

flight spaces where the tests are performed. The mission and environment inspire the

choice of platform (UAV) and drive the choice of appropriate sensors (described in

Section 4.2).

4.1.1 Mission

The mission selected for experimentation is inspired by the Canadian marine Arctic

environment, where a UAV flies over a region of interest, observes several landmarks

that may be static, quasi-static or slowly-moving, to simultaneously localize itself

within a map it is building of the observed landmarks. While the SLAM approaches

developed in this thesis estimate both the position and orientation of the vehicle in

three-dimensional space, to focus on error growth patterns without path complexities,

the mission trajectory is reduced to a one-dimensional pass. A pass consists of a

transit out to a waypoint some distance away from the start (take-off) point, then a

return to the start point, in a nominally straight line that defines the X-axis. This

choice does not result in any loss of generality as the factors constructed in the graph

are not constrained in any way to the one-dimensional space. In fact, while the desired

path will be one-dimensional, due to disturbances and uncertainties, the vehicle will

inevitably respond with cross-track and altitude motions, in addition to the expected

along-track motions.

In static environments, the SLAM loop closures constructed in the first pass have
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the largest impact to reduce the dead-reckoning drift localization error, while subse-

quent passes create more loop closures that can, to a lesser extent, continue to improve

the estimate. In piecewise-deterministic environments that are disturbed by events,

subsequent passes can improve the estimate, but they also mean more opportunities

for events to disrupt the KMM. To study the estimation of the landmark KMM in

an epoch (no events), a one-pass mission is suitable, while studying event detection

and estimation of landmark KMMs in multiple epochs should use a two-pass mission

with the event occurring between passes.

Mission Parameters: For such pass-based missions, the primary parameters

that describe a particular mission are the pass length (l), UAV altitude (h), forward

velocity of the UAV (vUAV ), and the SLAM pose update frequency (f). In the

laboratory, the pass length is limited to 10 m and a reasonable altitude is 1-1.5

m (1.3 m was chosen). For a mission lasting approximately 1 minute, the UAV

velocity should be 0.4 m/s along the X-axis. From experimentation with static SLAM

and the quadrotor, the pose update frequency is selected to be 2 Hz. This was

selected as a trade-off between increased computational time (at higher frequencies)

and diminished waypoint tracking accuracy (at lower frequencies).

Landmark speed: Selecting the landmark speed for the mission is difficult due

to the variety of iceberg size, shape and dynamics. In [42], Kimball and Rock de-

termined the speed of the iceberg in their study to be 0.0918 m/s (translational)

and -0.4644 rad/hr (-0.000129 rad/s). This translational speed is approximately 8

km/day. Assuming that their team selected a nearly-static iceberg that would re-

main in place long enough for them to perform the experiments, iceberg speeds up to

20 km/day (i.e. vQS = 20 km/day) will be considered as a quasi-static environment

in this thesis. Such speeds are not atypical.

In Equation (3.4), the threshold to treat landmark motions as quasi-static was

defined relative to the speed of the UAV, the camera’s FOV, and the minimum de-

tectable change in a landmark’s position. In Table 4.2, the accuracy for landmark

pose measurements in the experiments was found to be 0.0611 m in the X-direction

(the primary direction of motion). For xmin = 0.0611 m, vUAV = 0.4 m/s and camera

FOV = 1.1 m in the X-direction at an altitude of 1.3 m, speeds under 0.02 m/s can be

considered quasi-static. For icebergs to be treated as quasi-static, the scale between
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the model-scale and the full-scale should be chosen such that 20 km/day in full-scale

is geometrically and kinematically similar to 0.02 m/s at model-scale.

To study the estimation of motion models faster than the quasi-static regime, thus

defining a slow environment, speeds of 40-80 km/day are used.

Mission Scales: The tests include both simulations and experiments, where

simulations help explore performance in boundary cases that are anticipated to be

challenging for the approach, while laboratory experiments demonstrate the robust-

ness of the method to sensor and actuator noise, and other unknowns on actual

systems. Two scales of tests are thus proposed: a full-scale one with a 100 m pass

length (in simulations), and a model-scale one with a 10 m pass length (simula-

tions and experiments). A 100 m pass is close to the limit for visible line of sight

UAV operations. While the greatest use would be beyond line of sight, permissions

to perform missions beyond line of sight is regulated. Buckingham π analysis was

performed to keep geometrical and kinematic similarity between these two scales. In

addition to pre-selecting the pass-lengths, the quadrotor speeds were also pre-selected

to avoid high-pitch angles that interfere with an optimal landmark detection with the

on-board downward-looking camera. In the full-scale tests, vUAV is limited to 2 m/s

which results in a maximum 5◦ vehicle pitch.

The full-scale test is chosen to have lengths 10× longer than the model-scale one,

and to have times (durations) 2× longer than the model-scale. This means a 20

km/day (0.2 m/s) equivalent iceberg would have a full-scale speed in experiments of

0.1 m/s and a speed for model-scale experiments of 0.02 m/s. Also, the pose update

rate at model-scale of 2.0 Hz (one measurement update every 0.5 s) is reduced to 1

Hz (one measurement update every 1 s) at full-scale. The summary of the mission

parameters for the full- and model-scales are given in Table 4.1.

The scaling used for the environment is extended to the corrupting noise and

covariances. For example, while at model-scale, the landmark position measurement

is corrupted with zero-mean Gaussian noise with a standard deviation of 0.0611 m

in the X-direction, at full-scale, it would be corrupted with a standard deviation of

0.611 m.
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Table 4.1: Mission parameters for full- and model-scale experiments

parameter full-scale model-scale

pose update frequency (f ) [Hz] 1.0 2.0
pass length (l) [m] 100 10
vehicle altitude (h) [m] 13.0 1.3
vehicle velocity (vUAV ) [m/s] 2.0 0.4
landmark velocities (vice):

quasi-static (20 km/day) [m/s] 0.1 0.02
slowly-moving (80 km/day) [m/s] 0.4 0.08

4.1.2 Fiducial Tag Landmarks

To focus development on the SLAM algorithm, the task to detect and identify land-

marks is abstracted using the AprilTags fiducial tagging system [28]. An example of

an AprilTag is shown in Figure 4.2. The AprilTag C++ library is easily integrated

within the ROS middleware. The AprilTag detection node can detect and identify

tags from either the actual or simulated camera images.

Figure 4.2: Example of a tag from the AprilTag fiducial tagging system [28] © 2011
IEEE.

The AprilTag system can discriminate between multiple tags in a single image,

recognize their specific identification numbers and estimate their positions. The po-

sition estimate improves when the tag is perpendicular to the camera axis and when

the tag is centred in the image. Accurate knowledge of camera parameters (such as

focal length, principle point, and rectification matrix) is required for accurate pose

estimation. In the simulated environment, the estimate is fairly accurate in all cases,
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while in actual measurements, when the quadrotor’s camera captures a tag at a high

pitch or roll angle, the orientation is not as accurately estimated. Zero-mean Gaus-

sian noise with standard deviations specified in Table 4.2, is added to the simulated

tag pose estimates to capture the observed experimental performance.

Table 4.2: Zero-mean Gaussian noise added to the tag pose measurements from the
AprilTag detector to capture observed experimental measurement accuracy.

pose standard deviation
x [m] 0.0611
y [m] 0.0467
z [m] 0.0220
roll [rad] 0.0651
pitch [rad] 0.0713
yaw [rad] 0.0201

Printed AprilTags of 10 cm width were glued to wood coasters and arranged on

the laboratory floor. In the simulated environment, Gazebo box objects of width 10

cm (model-scale) or 1 m (full-scale) are generated, each with a different tag pattern

applied to the top surface.

4.1.3 Mobile Landmarks

To implement mobile landmarks in the laboratory, LEGO MINDSTORMS NXT

robots, Figure 4.3, provide the landmarks’ locomotion. The r2d2mipal ROS package

provides a driver [71] that controls the NXT motors’ rotation rates over Bluetooth

using a velocity controller based on [72], where the motion capture system provides

the NXT pose feedback. The NXTs have a minimum speed of 0.01 m/s and are able

to maintain a straight path over a 10 m distance with a deviation of less than 0.1 m.

For simulated mobile landmarks, a controller moves the Gazebo tagged objects

at a constant velocity by publishing the desired (or reference) updated landmark

position, calculated based on the Gazebo landmark ground truth pose.

4.1.4 Flight Space

The laboratory flight space is in the Oceans Tech Hub at Dalhousie University. It

provides a long, controlled space without fluctuations in light or airflow that may
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Figure 4.3: LEGO MINDSTORMS NXTs as model-scale iceberg analogue. NXTs
provide locomotion to move the AprilTag landmarks in the laboratory flight space
with IR-reflective markers for motion tracking.

affect UAV sensors or flight performance. The laboratory space is shown in Figure

4.4 with the quadrotor at the start (take-off) position and a total 21 landmarks laid

out over a 10 m span, 19 of which are static (two are labelled for clarity) and 2 of which

are mobile using NXTs. Note that the SLAM algorithm assumes all landmarks are

mobile except the reference landmark located below the quadrotor at take-off. This

reference landmark (always landmark 1) is assumed static throughout this thesis,

however, a precisely known change in position is also acceptable.

Figure 4.4: Laboratory flight space used for simulation validation.

A motion capture system is also used in the laboratory set-up. The Motion Anal-

ysis Corporation motion capture system measures the UAV and landmarks’ ground
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truth poses. Ground truth displacements are measured to within a fraction of a mil-

limetre and attitudes to within 0.2◦ for each tracked object in the captured volume.

It is capable of tracking multiple bodies with its eight identical infra-red (IR) cameras

and, in the configuration used here, the captured volume is 12 m long × 4 m wide ×
2.5 m high. Figure 4.5 shows one of the cameras as well as the Motion Analysis user

interface.

(a) one of 8 IR-based motion
capture cameras

(b) motion capture system computer displays multiple
bodies tracked in the flight space

Figure 4.5: Motion Analysis Corporation motion capture system as configured in the
ISL in the Oceans Tech Hub.

Similarly, the simulated flight space is populated with a quadrotor, and static

and dynamic landmarks. The Gazebo physics engine and Hector Quadrotor model

(described in Section 4.2) are available as open source ROS packages (see Section

4.2.3). Figure 4.6 shows the Gazebo environment as well as the simulated camera

output from the Hector model with one visible (tagged) landmark.

4.2 Platform and Sensors

This section describes the quadrotor platform’s integrated payload sensor (visible

wavelength optical camera) and vehicle sensor suite. The quadrotor’s dynamics will

also be discussed in this section. The quadrotor’s body reference frame is shown

in Figure 4.7 where the forward direction is the positive X-direction, an increase in

altitude is a positive Z-direction and the positive Y -direction to port completes the

right-handed reference frame. This figure also shows the reference positive roll, pitch
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Figure 4.6: Simulated flight space environment using the Gazebo physics engine, Hec-
tor Quadrotor and landmarks (AprilTags). Inset shows the output from the quadro-
tor’s camera after labelling by the AprilTag detection algorithm.

and yaw body rotation angles.

Figure 4.7: Quadrotor body reference frame, shown on Bebop quadrotor looking down
in the negative Z-axis direction.

A quadrotor is a 6-DOF vehicle that is underactuated due to only inputs from

four rotors (motors) in the horizontal plane. The impact of this underactuation is,

for instance, a positive pitch angle (trim) to actuate a forward motion or a constant
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roll (list) to move laterally. Details on flight performance and control schemes for

quadrotors are reviewed in [73] and [74] among other sources.

The following sections will describe the quadrotor used in the laboratory experi-

ments (the Parrot Bebop 2) and the one used in simulations (the Hector Quadrotor).

4.2.1 Parrot Bebop 2 Quadrotor

The UAV used to validate the simulation environment is the Parrot Bebop 2 quadrotor

shown in Figure 4.7. The Bebop’s flight time is approximately 25 minutes per battery

charge. Communications with its ground control station is through WiFi.

A. Navigation Sensors

The Bebop is integrated with an on-board stabilization controller based on an inertial

measurement unit (IMU) (3-axis gyroscope and 3-axis accelerometer), compass (3-

axis magnetometer), ultrasonic altimeter (under 4.9 meters), pressure sensor (above

4.9 meters) and an optical flow camera that only operates at low altitudes. For clarity,

this camera will be referred to as the optical flow camera to distinguish it from the

payload camera that captures images of the landmarks for SLAM. The Bebop also

has a GPS chipset which, of course, does not work for indoor testing.

Odometry: Fusing the measurements from these sensors, the Bebop calculates

and broadcasts an odometry estimate that includes its pose (translation and orienta-

tion) and velocity (translational and angular) relative to its take-off pose. Since the

compass is disoriented indoors due to the presence of metal, the yaw angle estimate is

inaccurate, and, consequently, the translation estimates are also inaccurate. However,

the translational velocities and pitch and roll angle measurements are unaffected.

Optical Flow (Translational Velocities): The primary source for the trans-

lational velocities is the optical flow camera. Jaegle, Phillips and Daniilidis, demon-

strated that optical flow noise models under optimal model parameters, with appro-

priate pre-filtering to remove outliers, follow a normal (Gaussian) distribution, while

a Laplacian distribution is a better fit when outliers are present [75]. Since the Bebop

filters the optical flow velocity estimates, a zero-mean Gaussian distribution model is

used for the translational velocities.

Gyroscope: In the case of the roll and pitch, the gyroscope is the primary sensor,
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for which the Kalibr package defines a reasonable noise model [76]. This package uses

a two-part noise model consisting of a slowly-varying sensor bias and an additive

zero-mean Gaussian noise term. As the attitudes are filtered in the on-board Bebop

controller, it is difficult to isolate the contribution of the bias. Instead, the assumed

noise model is limited to zero-mean Gaussian noise.

Altimeter: The altitude of the Bebop is determined by fusing measurements

from the on-board ultrasonic range finder and barometric pressure sensor. Since

experiments were performed indoors and at low altitudes (well under the 4.9 m Be-

bop specification), the barometric pressure sensor should not have been used, yet

black-box internal recordings indicated that it was being fused into the altitude mea-

surement. While the noise model for a Gazebo simulated altimeter (as used in the

Hector Quadrotor dynamics model [77]) uses a zero-mean Gaussian noise model to

corrupt the altitude estimate, experimental measurements displayed both a zero-mean

noise component and intermittent step-changes of 0.1 to 0.3 m, approximately every

10-30 s. This undesirable, intermittent step-change is attributed to the barometric

pressure sensor being inappropriately fused with the ultrasonic sensor. Temperature

had the strongest influence on the rate and magnitude of the barometric pressure

step-changes. To reduce the impact, temperature changes were minimized in the lab-

oratory and trials were run between breaks spanning several minutes, allowing the

battery to cool down. Despite these interventions, the step-changes were observed in

nearly all experimental trials.

Summary: The accuracy of the Bebop’s odometry estimate was calculated by

performing several test flights in the laboratory and comparing the odometry estimate

with absolute position measurements from the motion capture system. The noise

models of the elements of the odometry estimate are captured in Table 4.3.

B. Payload Sensor

The Bebop’s payload sensor is a digitally stabilized, pan-tilt, 14 megapixel camera

that for these experiments is pointed at its maximum pitch, 83◦ from the horizontal,

towards the ground. The image streamed to the ground control station in near real-

time is 856 × 480 pixels resolution with a camera horizontal FOV of 80◦. For the
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Table 4.3: Parrot Bebop 2 odometry zero-mean Gaussian noise model’s standard
deviations.

measure standard deviation
translational velocity x [m/s] 0.0294
translational velocity y [m/s] 0.0141
altitude z [m] 0.0759
roll angle [rad] 0.0209
pitch angle [rad] 0.0110
yaw rate [rad/s] 0.02

experiments performed here, stabilization is disabled so that changes in the orienta-

tion of the image reference frame are tied to changes in the quadrotor orientation.

C. Dynamics and Controller

Researchers at Simon Fraser University (Burnaby, British Columbia) developed the

bebop_autonomy driver [78] for the Bebop quadrotors which controls the UAV us-

ing the ROS (Robot Operating System) middleware (see Section 4.2.3). The driver

provides the odometry estimate, the altimeter measurement and payload camera im-

ages to the ground control station. Notably, it does not broadcast raw gyroscope or

accelerometer measurements nor images from the optical flow camera, meaning only

the fused odometry estimate can be used for SLAM.

On-board control: The driver controls the UAV through a velocity command

for the forward (X), lateral (Y ), ascent (Z) and yaw (ψ) directions. UAV roll and

pitch cannot be directly controlled through the driver. The on-board stabilization

controller filters the pilot-commanded velocity input before actuation to smooth the

flight performance. This happens whether the velocity input is commanded by a hu-

man pilot or an autonomous agent responsible for controlling the quadrotor’s position

(i.e. an autopilot).

Quadrotor Dynamics: Several on-board controller parameters can be adjusted

to a pilot’s preferences (for example, indoor/outdoor, smooth/aggressive or enabling

GPS-automated behaviours). All default parameters for indoor flight were used with

the exception of three settings that smoothed the flight given the low pose update

rate (2 Hz). The maximum tilt angle was reduced to 5◦, the maximum pitch/roll
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rotation rates were reduced to 300◦/s and the maximum yaw rate was reduced to

60◦/s. When the pilot sends a hold command (velocities in all directions are zeroed),

the Bebop holds its position indoors (i.e. without GPS), at an altitude of 1 m, to

within 0.15 m.

To assess the Bebop’s ability to fly a straight path in the flight space, it was

tasked with flying at an altitude of approximately 1.3 m over a length of 10 m using

only the on-board odometry estimate. Over that distance, the quadrotor drifted in

the positive Y -direction by 0.90 m. The cross-track drift primarily arises from the

on-board controller’s inclusion of the compass in its odometry filter.

Controller: A proportional-derivative (PD) waypoint-tracking velocity controller

node was developed. It uses the estimated UAV position from the SLAM algorithm

to calculate the velocity commands (in the X, Y , Z and ψ directions) to fly the

quadrotor through a series of waypoints. A saturation limit for the maximum setpoint

quadrotor velocity is applied to the calculated command. The experimentally-tuned

control gains are listed in Table 4.4.

Table 4.4: Parrot Bebop 2 PD-controller gains

control gain along-track (X) cross-track (Y ) altitude (Z) yaw (ψ)
proportional (kp) 0.4 0.3 0.02 0.2
derivative (kd) 0.18 0.2 0.0025 0.01

4.2.2 Hector Quadrotor Model

The Hector Quadrotor model [77] is used for simulations. It was developed and

validated by the Technical University of Darmstadt (Darmstadt, Germany) and im-

plemented with the ROS middleware [77]. The Hector Quadrotor model simulates the

kinematics and dynamics of a quadrotor in response to velocity setpoint commands

of the same form as the Bebop quadrotor’s. It also includes sensor models, in this

case a camera and altimeter, whose parameters can be adjusted to model the Bebop’s

sensors. Those parameters are then scaled for the full-scale simulation tests using the

dimensional analysis described in section 4.1.1. The Gazebo physics-based engine is

used to track the quadrotor’s and landmarks’ ground truth poses.
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A. Navigation Sensors

Rather than individually simulating each of the navigation sensors, an odometry

message was constructed for the Hector quadrotor to match the Bebop’s odometry

message. The ground truth measurements from the Gazebo physics engine are cor-

rupted with zero-mean Gaussian noise with the standard deviations given in Table

4.3. In addition, to model the intermittent step changes observed in altitude, an offset

of oalt ∼ N (0.2, 0.12) in meters at a time toalt ∼ N (20, 102) in seconds. These inter-

mittent step changes are only applied in the model-scale, as a full-scale experiment

would occur outdoors where the barometer measurements would not cause this error.

B. Payload Sensor

Hector’s default camera was adjusted to match the Bebop’s payload camera (856

× 480 pixels resolution, 80◦ horizontal FOV, 83◦ pitch downwards) and AprilTag

detection was also corrupted with noise as described in Table 4.2.

C. Dynamics and Controller

The default Hector Quadrotor was adjusted to provide similar a performance between

the experiments and the simulations. This also applies to the platform dynamics and

the waypoint-tracking controller.

Platform Dynamics: The Hector dynamics was used with their default settings,

including a twist controller which translates command velocities (in the X, Y , Z and

ψ directions) to motor commands. The mass, size and inertia of the Hector Quadrotor

were matched to the Bebop based on the measures taken by [79], where the mass is

0.5 kg, the distance from the UAV centre of mass to the centre of each rotor is 0.12905

m, the moments of inertia with respect to the X and Y axes are both 0.00389 kg m2

and the moment of inertia with respect to the Z axis is 0.0078 kg m2.

Controller: The Bebop PD waypoint-tracking controller is applied to the simu-

lated quadrotor with the control gains given in Table 4.5. To model the cross-track

drift observed on the Bebop, an additional 0.02 m/s was sent to the quadrotor twist

controller for the cross-track (Y -direction) velocity.
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Table 4.5: Hector quadrotor simulator PD-controller gains

control gain along-track (X) cross-track (Y ) altitude (Z) yaw (ψ)
proportional (kp) 0.4 0.4 0.1 0.2
derivative (kd) 0.18 0.18 0.01 0.01

4.2.3 Robotic Middleware

Information flow and communications is managed with the ROS middleware. ROS is

a message-based infrastructure that connects independently developed functions [80].

Code is organized into functional blocks called nodes, while nodes are organized into

packages. Nodes use a publish-subscribe architecture to asynchronously pass data

structures called messages on topics. ROS is inherently decentralized and modular,

meaning that a node that performs image processing can subscribe equally to a node

that is simulating an image or to a node that is capturing an image from an actual

camera. This allows a seamless transition from initial simulation-based development

to real-world testing that is transparent to the functional code.

The ROS architecture allows nodes to be distributed across multiple platforms

(computers). For development purposes, the nodes of the primary SLAM package

are run on the ground control station computer while the autonomous system’s flight

computer sends raw data to the ground control station computer. Later, the final

implementation could run all of the nodes on the flight computer with only health

monitoring data shared with the ground control station computer.

The ROS middleware in this thesis is implemented on a machine running Ubuntu

14.04 (LTS) with ROS Indigo. This version of ROS uses Gazebo version 2.2.3. The

ROS installation followed the recommendations on the ROS wiki. The following

open-source packages were also installed:

• Hector Quadrotor (binary)

https://wiki.ros.org/hector_quadrotor

• AprilTags with ROS wrapper (source)

https://wiki.ros.org/apriltags_ros

• Tele-op Twist Keyboard (binary)

https://wiki.ros.org/teleop_twist_keyboard
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• gtsam 3.2.1 (source)

https://borg.cc.gatech.edu/download.html

• Bebop Autonomy (source)

https://github.com/AutonomyLab/bebop_autonomy

• r2d2mipal NXT Driver (source)

https://github.com/mipalgu/NXTdriver

• Cortex Bridge (source)

https://github.com/unr-arl/cortex_ros_bridge

• Rviz Covariance Plugin (source)

https://wiki.ros.org/rviz_plugin_covariance

A ROS graph (visually) depicts the inter-relationships between the nodes and

messages/topics within a ROS system. For the static SLAM case with a simulated

quadrotor, the ROS graph is shown in Figure 4.8 where nodes are highlighted in light

grey ovals and topics are shown in unfilled rectangles.

Nodes with thick black borders are nodes developed for this thesis: /static slam

implements the static SLAM algorithm and /vel pub node is the waypoint-tracking

controller. Those with thin borders are from open-source packages. Nodes that

publish messages to a topic have an arrow from the node to the topic, while nodes

that subscribe to a topic have an arrow from the topic to the node. Debug nodes and

topics that are not used are hidden from this graph for clarity.

The ROS graph makes the modularity of the system apparent. When the quadro-

tor and flight space are available for real-world testing, the Gazebo physics engine

would not be necessary and the topics the /gazebo node publishes are published

by the quadrotor’s drivers instead. Further, the /command/twist topic published

by the velocity controller would be subscribed to by the quadrotor’s motor driver

to close the control loop. This means the AprilTag detector node, the SLAM node

and the velocity publisher node are unaffected by the transition from simulations to

experiments.
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Figure 4.8: ROS graph for baseline static SLAM. Nodes shown as filled grey ovals
and topics as unfilled rectangles. Thick outlined ovals are nodes developed for this
thesis.

4.3 Summary of Test Cases

The proposed SLAM algorithms is evaluated with several performance tests. Each

test studies a particular case (a specific mission, environment and scale), is executed

as either a simulation or an experiment and comprises 10 repeat trials to quantify the

consistency of the results. This is necessary given the additive zero-mean Gaussian

noise. The taxonomy is summarized in Figure 4.9.

The cases of interest are summarized in Table 4.6 by the section number that dis-

cusses those results. A bold-faced font indicates both a simulation and an experiment

is performed for the case, otherwise only a simulation is performed. Underlined cases

are the parent case for the particular method, i.e. the case for which the method and

any covariances or thresholds have been designed.

These tests are consistent with the cases of interest outlined in Section 4.1, with

two mission types (one-pass and two-pass), two scales (full-scale and model-scale) and
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performance test

case
• mission
• environment
• scale

method
• simulation
• experiment

number of trials

Figure 4.9: Taxonomy of performance tests in this thesis.

Table 4.6: Tests performed in the thesis organized by mission type, scale and envi-
ronment variant with the section(s) that discusses those results.

mission one-pass two-pass
scale full-scale model-scale full-scale model-scale
static 6.5.4 4.3.3
slow 5.3.1 4.4, 5.3.2
quasi-static 5.3.3, 6.5.1 6.5.2 6.5.5
anomalously fast 6.5.3
one event 8.2.1 8.2.2
two events 8.2.3

four environment types (static, slow, quasi-static and quasi-static with one event).

Two other environments provide insight into the SLAM performance in Canadian

marine Arctic environments. Firstly, an anomalously fast environment where the

expected speeds are quasi-static yet one landmark travels at slow speed, can show if

the quasi-static SLAM method is robust to imperfect prior knowledge. Secondly, a

quasi-static environment with two events can show the ability to detect two different

events that occur at the same time.

All of the test cases use the same base map which includes several landmarks over

which the UAV performs either one or two passes. Figure 4.10 shows the true map of

the static landmarks (red) and start positions of potentially mobile landmarks (black).
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The landmarks are not numbered in any particular order, except that landmark 1 is

always located at the take-off (start) position and is known to be static a priori.

0 10 20 30 40 50 60 70 80 90 100
-10
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x [m]
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Figure 4.10: Ground truth map of landmarks for full-scale mission, with red triangles
indicating static landmarks and black triangles indicating the start positions of mobile
landmarks.

The ground truth map can be compared to the problem context diagram in Figure

3.1, with the start position similar to the take-off position on the ship and a sparse

environment of landmarks (icebergs) two of which are mobile during the UAV’s mis-

sion. The UAV’s task is to perform a pass: take-off from the ship (at x = 0 m), travel

in a straight line (along the X-axis) to a waypoint (at x = 100 m), then return to

the ship for recovery. During this mission, the ship is assumed to remain stationary,

or to accurately know its change in pose.

4.4 Simulation Environment Validation

To validate this simulated environment, a baseline static SLAM simulation and lab-

oratory experiment is performed and compared.

4.4.1 Static SLAM

The baseline static SLAM algorithm selected, based on the literature review in Chap-

ter 2, is pose graph SLAM using version 3.2.1 of the gtsam library and the iSAM graph

optimizer [9]. An overview diagram of the (static) pose graph SLAM algorithm is

shown in Figure 4.11.

The quadrotor payload camera captures images that are pre-processed with the

AprilTag package from Olson [28]. The processed images are used to form the loop
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Figure 4.11: Algorithm for static pose graph SLAM. The algorithm uses two open
source packages 1AprilTags [28] and 2iSAM from the gtsam library [9].

closure factors that link both sequential and non-sequential poses. The second set of

factors are dead-reckoning ones that integrate the odometry measurements (transla-

tional velocities and gyroscope angles) over time to predict the vehicle pose. Together,

these factors construct the graph structure which is passed to the iSAM graph op-

timizer [9]. The localization estimate is passed to the waypoint-tracking velocity

controller to calculate the next control input to the vehicle, while the map is com-

puted from the iSAM pose estimates and landmark observations. The update rate

for the loop is tied to the desired pose update frequency for the mission.

4.4.2 SLAM Covariance Matrices

The most important parameters of a SLAM algorithm are its covariance matrices on

the factors that form the graph. The covariance matrix represents the Gaussian noise

on a factor, whether that be a unary factor that constrains one pose, like the prior,

or a binary factor that constrains the geometrical transformation between two poses,

like the odometry or loop closure factors.

A diagonal covariance matrix (variance on each element, with off-diagonals all

zero) is assumed for all measurements. This implies that the elements of the uncer-

tainty on the transformation are uncorrelated (ie. the uncertainty on the X element

has no influence on the Z element uncertainty). For the odometry factors that connect

quadrotor poses, the off-diagonal elements can be assumed small when the orienta-

tion angles are small (see linearization of quadrotor motion models, for example [74]).
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The detection accuracy for AprilTags is similarly assumed to be uncorrelated for tags

placed at near-zero tilt angles.

In general, large variances create flexible factors, meaning the optimizer can select

a wider range of values for the pose(s), while small variances express a high degree

of confidence in the measurement to create a smaller solution space. These matrices

are described in this section and are summarized in Table 4.7.

Prior Factor and Covariance: The SLAM algorithm requires a prior factor to

anchor its first pose to an inertial reference frame. Without this prior, there would

not be a unique solution, since all other factors are relative (between poses). The

prior is characterized by an initial robot pose, which is defined at (x, y, z) = (0, 0, 0)

and rotation angles all zero as well in the experiments here, and a covariance matrix

specifying the certainty of this measurement. A larger covariance means the optimizer

has more flexibility in where to connect the trajectory to the inertial reference frame,

i.e. the first pose can deviate further from the prescribed initial value. The variances

on the prior pose should be small to convey high certainty in these initial values and

to constrain the trajectory tightly to the global reference frame.

Dead-Reckoning Covariance: The dead-reckoning factor links two consecu-

tive poses by the geometrical transformation from the odometry measurement. The

odometry accuracy is assumed to be zero-mean Gaussian (as discussed in Section 4.2),

so the covariance for this translation is treated as constant. The constant covariance

matrix is rotated based on the previous orientation angle estimate.

Underestimating these variances makes the resulting graph rely too heavily on the

dead-reckoning estimate. However, overestimating these variances drives the graph

to the loop closures and makes it more sensitive to incorrect data associations.

The variances populating the diagonal covariance matrix, as given in Table 4.3, are

calculated based on the accuracy of the two Bebop odometry measurements that are

combined to calculate the transformation. In the case of the attitudes and altitude,

two measurements, with standard deviations, σ1 and σ2 = σ, are subtracted to yield a

resulting measurement with a standard deviation of σ2−1 =
√︁
σ2
1 + σ2

2 =
√
2σ2 =

√
2σ

. In the case of the X and Y odometry that are based on the velocity measurements,

the variance on the measured velocity is multiplied by the (constant) time step (the

SLAM pose update rate) to determine the variance on the displacement.
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Loop Closure Covariance: The loop closure factors are based on the AprilTag

detection node output. This package estimates the position and yaw-orientation of

landmarks with good accuracy, however the tilt (pitch and roll) of the landmarks is

more uncertain. Loop closures are essential to removing drift from pose and trajectory

estimates. If the covariances are too large, the loop closures are effectively unused in

the estimate, while if they are too constrained (small) an incorrect data association

or poorly localized landmark can lead to rapid divergence of the graph.

The variances used for the loop closure factors are calculated based on the land-

mark pose estimation accuracy in Table 4.2.

Table 4.7: Static SLAM covariance matrices described by the standard deviations on
the diagonal.

prior dead reckoning loop closure

roll [rad] 0.01
√
2(0.0209) = 0.029557

√
2(0.0651) = 0.092065

pitch [rad] 0.01
√
2(0.0110) = 0.015556

√
2(0.0713) = 0.100833

yaw [rad] 0.05
√
2(0.02) = 0.028284

√
2(0.0201) = 0.028426

X [m] 0.05 (0.5)(0.0294) = 0.014700
√
2(0.0611) = 0.086408

Y [m] 0.05 (0.5)(0.0141) = 0.007050
√
2(0.0467) = 0.066044

Z [m] 0.05
√
2(0.0759) = 0.107339

√
2(0.0220) = 0.031113

4.4.3 Performance Metrics

The SLAM performance is quantified through its accuracy of the UAV position, land-

mark map, and for non-static cases, landmark speed.

Localization and Mapping: The RMSE of the UAV position (x, y, z) esti-

mates for the complete trajectory is calculated using ground truth measures at each

iteration. The landmark map is found by transforming observations from the body-

frame to the world-frame using the pose estimates, then averaging all observations of

each static landmark. This map is then compared with the ground truth static land-

mark positions to calculate the RMSE. These metrics are consistent with traditional

SLAM algorithms and are the primary measure of successful performance as without

an accuracy trajectory, the UAV may be unable to complete its mission and safely

recovered.
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Landmark Speed: For slow and quasi-static environments, the true and esti-

mated speeds in the X-Y plane of each landmark are compared using a bar chart,

and the speed accuracy is reported as the RMSE separately for the static and moving

landmarks. The landmark speed is necessary to predict the landmarks pose in the

future. However, because the speeds are by definition slow or quasi-static, the impact

of inaccurate speed estimates is smaller.

Boundary between Moving and Static Landmarks: While the SLAM algo-

rithms in subsequent chapters treat all landmarks as potentially mobile, it is useful

to define a boundary or threshold to distinguish moving landmarks from static ones

for reporting performance metrics. The boundary for a moving landmark is defined

as one standard deviation above the mean landmark speed, where these statistics

are found using the estimates for all landmarks. Since the speeds in quasi-static and

slow environments are by definition low, the ability to discern whether landmarks are

moving or static, especially close to the UAV’s take-off location, is more important

than the precision of the speed estimate. This boundary provides an indication of

the slowest speeds that can be detectable or discerned as non-static.

Performance Consistency: Each experiment is repeated 10 times to report

the consistency of the performance. Although this is a small population to perform

statistical analysis, a simulation study was performed on the static environment and

after approximately 8 trials, the statistical measures (mean and standard deviation)

converged. A Gaussian model of the statistics of these 10 trials is selected to match the

Gaussian models in the underlying SLAM algorithm and sensor noise models. These

statistics are reported in a table, while two figures (a trajectory and landmark map,

and landmark speed bar chart) are plotted for the trial with the median-performance.

An analysis of the measures in the table and the median-performance trial exposes

trends between cases.

Reporting: For each case in Chapters 4, 5, 6, and 8 the results presented take

the form of:

1. quantitative performance summary (table)

• localization error (norm and x, y, z components)

• mapping error (norm and x, y, z components)
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• mean static landmark speed error

• mean dynamic landmark speed error

• mean speed boundary

2. planar (X-Y ) map of UAV trajectory and landmark positions for median-

performance trial (figure)

3. bar chart showing the estimated speed for each landmark, and the boundary

between static and mobile landmarks for median-performance trial (figure)

Although the SLAM estimate computes the full 6-DOF poses, accuracies are re-

ported only for the position, as the orientation is controlled close to zero for the

selected missions. This is because the errors in the attitudes are bounded.

4.4.4 Validation Results

Using the described static SLAM approach (Figure 4.11), platforms and sensors (Sec-

tion 4.2) and model-scale environment (Table 4.1), the one-pass, model-scale, static

environment test is performed in both the laboratory and simulated environments.

The test results are summarized in Table 4.8, with the trajectory and map of the

median-performance trials of the experiment shown in Figure 4.12 and the simulation

shown in Figure 4.13.

Table 4.8: Localization and mapping errors for baseline static SLAM in the experi-
ment and the simulation.

metric experiment simulation

localization error (norm) [m] 0.41 ± 0.15 0.46 ± 0.17
x error [m] 0.14 ± 0.07 0.20 ± 0.08
y error [m] 0.18 ± 0.07 0.14 ± 0.05
z error [m] 0.28 ± 0.16 0.33 ± 0.20

mapping error (norm) [m] 0.30 ± 0.13 0.54 ± 0.24
x error [m] 0.09 ± 0.04 0.26 ± 0.16
y error [m] 0.06 ± 0.03 0.18 ± 0.11
z error [m] 0.26 ± 0.15 0.35 ± 0.25
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Figure 4.12: Experimental result: planar map of baseline static SLAM in model-scale,
static environment.
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Figure 4.13: Simulation result: planar map of baseline static SLAM in model-scale,
static environment.

A visual comparison of Figures 4.12 and 4.13 reveals two primary patterns. Firstly,

the cross-track drift of the Bebop quadrotor is notable compared to the simulated

vehicle, yet the SLAM algorithm is successfully able to estimate much of this drift from

the desired trajectory to ensure an accurate map of the environment and trajectory
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estimate. Secondly, the landmark positions are over-estimated in the X-direction

in both the simulation and the experiment. This along-track underestimation arises

from a pitch error that drives a translation in the altitude (Z) rather than in the

horizontal plane (X-Y ). Due to the relatively large variance on the pitch for loop

closure factors (0.1 rad), the loop closure factors are uncertain for this dimension, and

unable to drive down the drift in the odometry pitch estimate. In simulation results,

the X-direction localization error is larger than in the experimental results, which

also drives the larger mapping error in the along-track direction, discussed below.

Turning to the quantified measures of performance in Table 4.8, the localization

and mapping error are of similar magnitudes in simulations and experiments. The

large altitude error is due primarily to the altimeter’s intermittent step-changes dis-

cussed in Section 4.2. These step changes require the altitude measurement variance

to be larger than the along-track and cross-track positions, resulting in more uncer-

tainty on that element of the pose estimate. In addition, the altitude error also arises

from the uncertainty in landmark pitch and roll estimation for loop closure factors

that are unable to reduce the drift from the odometry pitch estimate.

On the mapping side, the error is statistically higher in the simulation than in the

experiment, especially in the X-Y plane. The simulation models the worst case situ-

ation, where there are uncorrelated errors in all dimensions of the landmark estimate

concurrently, while in the real system there is coupling between the contributions (for

example, if the range estimate to the landmark has an error it propagates to the po-

sition of the landmark in the X-Y plane). The result is that the simulated variability

in landmark accuracy calculated from a large set of measurements is conservatively

larger than the error on any one particular landmark.

While the simulated platform and environment do not perfectly capture the labo-

ratory system and environment, the simulation provides a reasonable model to assess

the impact/sensitivity of the proposed SLAM algorithms (MBD-SLAM in Chapter 5,

MBQS-SLAM in Chapter 6 and PDQS-SLAM in Chapter 8) on the localization and

mapping performance.
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4.5 Applying Static SLAM in Dynamic Environment

Before developing the proposed dynamic SLAM algorithm, it is useful to see how

the baseline pose graph SLAM algorithm performs in the thesis’ simulated dynamic

environment. The simulation result in Figure 4.14 is for the case with two moving

landmarks (landmarks labelled 3 and 4) travelling with different velocities (4 cm/s

and 8 cm/s respectively). They are labelled using solid black triangles to mark their

ground truth starting (left in figure) and ending (right in figure) positions. These

speeds correspond to 40-80 km/day, i.e. the slow environment type for the one-pass,

model-scale experiment. The trajectory and map of the median-performance trial of

the static pose graph SLAM algorithm is shown in Figure 4.14.
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Figure 4.14: Simulation of static SLAM in a dynamic environment with two slow
mobile landmarks (labelled 3 and 4), at 8 cm/s and 4 cm/s, respectively.

Figure 4.14 clearly demonstrates that the map generated, with the static envi-

ronment assumption, is significantly less accurate. Although the quadrotor is able

to complete its trajectory, the estimate of the trajectory deviates from the ground

truth, so much so, that the quadrotor only estimates that it travelled 80% of the total

distance. In fact, the localization error (norm) is 0.84 m (± 0.33 m) and the mapping

error (norm) is 0.82 m (± 0.34 m); each much larger, and more variable between

repeat trials, than the baseline case in Figure 4.13, where the localization error was

0.46 m (± 0.17 m) and the mapping error was 0.54 m (± 0.24 m).
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To understand the performance of the baseline SLAM in a dynamic environment,

it is interesting to follow the progression of the SLAM estimate over the quadrotor’s

mission. For the first half of the pass (while travelling from x = 0 m to x = 10

m), the graph consists predominantly of dead-reckoning factors. These factors are

typically quite accurate early in the mission, then begin to deviate over time due

to accumulation of sensor errors. As the quadrotor begins its return trip (from x =

10 m to x = 0 m), loop closures are added to the graph as more and more tags are

re-observed. For static landmarks, these loop closures reduce the quadrotor’s position

estimate drift, however loop closures involving moving landmarks assign the motion

of the landmark to the quadrotor’s change in position.

Depending on both the balance of certainty between dead-reckoning and loop

closure factors (quantified in the covariance matrices) and the location of these poorly-

formed loop closures in the graph structure, the impact can be damaging, or even

cause the trajectory solution to diverge. In this case, since most of the moving

landmarks’ motion is in the same direction as the positive along-track motion of the

quadrotor, the optimizer holds landmarks 3 and 4 close to the positions where they

were first observed (where the quadrotor’s pose estimate had not yet accumulated

much drift) and shortens the estimated pass length.

This simple case motivates the requirement to develop a SLAM algorithm that

does not rely on a static map to provide an accurate localization solution in dynamic

environments.



Chapter 5 Proposed Model-Based Dynamic SLAM

This chapter proposes a novel structure, the model-based dynamic factor (MBDF),

with which to extend and apply pose graph SLAM to a spatio-temporally evolving

environment. This is the first step towards relaxing the static environment assumption

in traditional SLAM approaches.

This work follows from the concepts of landmark KMMs, piecewise-deterministic

dynamic environments (Chapter 3) and the demonstrated need to not treat dynamic

landmarks as static ones (Section 4.5). The proposed MBDFs are applicable to a

single epoch of a piecewise-deterministic dynamic environment where the landmark

KMM is a constant velocity model.

MBDFs are used in place of static loop closure factors in the traditional SLAM

formulation. They replace the static landmark assumption with one where landmarks

evolve with time, following a motion model whose parameters are estimated in real-

time. While the landmark evolution implemented here is restricted to landmark

KMM, and specifically constant velocity KMMs, this concept can also apply to the

time evolution of other iceberg landmark features like size, shape, texture, color, or

reflectivity to name a few.

After first defining the MBDFs and detailing two proposed KMM parameter esti-

mation approaches in Section 5.1, this chapter proposes model-based dynamic SLAM

(MBD-SLAM) as a proof-of-concept that KMM parameters can be inferred from a

small number of landmark observations, while simultaneously estimating the UAV’s

trajectory in Section 5.2. MBD-SLAM is tailored to slow environments, as defined in

Section 4.1, and its performance is shown for three cases:

1. one-pass, full-scale, slow environment, simulation (Section 5.3.1),

2. one-pass, model-scale, slow environment, simulation and experiment compari-

son (Section 5.3.2); and,

3. one-pass, full-scale, quasi-static environment, simulation (Section 5.3.3).

The first case is the mission for which MBD-SLAM is designed, while the second

63
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case can be compared with the performance of static SLAM in the slow environment

(Section 4.5) to demonstrate the improved performance of MBD-SLAM. Finally, the

third case captures a limitation of MBD-SLAM and motivates tailoring a SLAM

approach to quasi-static environments in Chapter 6. The performance results of

MBD-SLAM approach is discussed in Section 5.4.

5.1 Model-Based Dynamic Factors

In pose graph SLAM, loop closure factors model geometric constraints between vehicle

poses by comparing measurements of a common landmark that is assumed to be static.

To facilitate relaxing the static environment assumption, these loop closure factors

must capture the landmark’s dynamics. Specifically, the landmark KMM must be

part of the factor’s construction before applying the standard graph optimization.

MBDFs allow the landmark KMM to integrate directly into the factor graph, so the

graph is responsive to the environmental dynamics.

Figure 5.1 shows the pose graph representation in a dynamic environment where

poses xi and xj are related through a model-based dynamic factor (MBDF) notated

by f(vk,∆t)ij where vk is the velocity of landmark k that was observed at the two

poses.

Figure 5.1: Factor graph representation of the proposed MBDF for pose-graph SLAM
assuming a constant velocity landmark motion model [81] © 2019 IEEE.

Like static loop closure factors in Figure 2.2, MBDFs depend on two observa-

tions of a common landmark, however, they also require a model of the landmark

transformation over time. Compared with dynamic pose and landmark graph SLAM,

MBDFs for pose graph SLAM combine three factors from Figure 2.3 into one. Once
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the MBDF is constructed, the optimizer can, as usual, estimate the variables that

minimize the error on each factor in the graph.

This graph can also be described as a cost function that is minimized to find the

optimal trajectory (X∗) and landmark velocities (V ∗), as follows:

X∗, V ∗ = argmin
x,v

∑︂
i

||f(xi, ui)− xi+1||2Σi +
∑︂
ijk

||f(xi, xj, vk)− zij,k||2Λij . (5.1)

In this formulation, the first term minimizes the error (Mahalanobis distance) on

the dead-reckoned odometry factors and the second term minimizes the error on

the observation-based loop closure factors. Here, ui is the pose change in the body

reference frame calculated from odometry, xi, xi+1 and xj are poses as in Figure 5.1,

zij,k is the observed distance between pose xi and xj calculated through the common

landmark k, and Σi and Λij are covariances on the respective factors.

In static SLAM, the difference between two observations zik and zjk of the common

landmark k is calculated as zij,k = zik ⊖ zjk, where ⊖ is the reverse operator [11] that

finds the difference of the two observations while accounting for rotations. Since the

landmark is assumed static, zij,k is a measure of the transformation of the platform

between the two observations. Hence, this measurement can be compared with the

estimate of the measurement (hij), using values for xi and xj from the graph as

hij = xi ⊖ xj. Graph optimization then minimizes the error eij,k = hij ⊖ zij,k for all

factors. The same process is repeated here taking into account the landmark KMM.

MBDF Construction

For the proposed MBDF, the measurement of the distance between poses, zij,k, is

found as in the static case (zij,k = zik ⊖ zjk) since the velocity is not available as a

direct measurement. The estimate h must therefore be modified to remove the contri-

bution of the landmark’s motion. This modified estimate of the static measurement

is referred to as hs and is found as hs = (xi ⊖ xj) ⊖ Tkikj = h ⊖ Tkikj . The factor’s

error is e = hs ⊖ zij,k.

This factor is visualized in Figure 5.2. Consider the two measurements of the

landmark. The first measurement of the landmark, labelled Tik, is a measure of the

landmark’s position at time ti, when the robot was in position xi, in the robot’s body

frame at xi. The second measurement of the landmark, labelled Tjk, is a measure of
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Figure 5.2: Geometric derivation of MBDFs. Components used to form MBDFs (left)
and the use of a constructed point to transform the system to a comparable static
representation in blue (right).

the landmark’s position at time tj, when the robot was in position xj, in the robot’s

body frame at xj. In the intervening time between ti and tj, the landmark follows its

motion model, resulting in a transform Tkikj . Thus, to compare the estimate of the

measurement between xi and xj, the second measurement Tjk must be transformed

through the inverse of Tkikj to be in the coordinate frame of the robot when at ti.

Removing the contribution of the landmark’s motion results in the transform Tsij

which can be compared with the apparent transform between the robot’s poses based

on the measurements.

Constant Translational and Angular Velocity KMM

The transform Tkikj representing the motion model can be addressed as a change in

position (∆p) and orientation (∆θ) over a time step (∆t) for a landmark experiencing

constant translational acceleration (ab) and constant angular velocity (ωb) measured

in its body frame. This is given by Sittel, Muller and Burgard [82] as:

∆p = vb∆t+ 0.5(ab + ωb × vb)∆t
2, (5.2)

and

∆θb = ωb∆t. (5.3)
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To transform this from body frame to the world frame for the transform Tkikj , these

expressions must be pre-multiplied with by the initial orientation of the body, Rb.

With this structure established, the next step is to estimate the landmark KMM

parameters, the landmark velocity, using one of two proposed approaches: integrate

the motion model into the graph optimization as a latent variable (LV) to be estimated

simultaneously with the robot’s poses (5.1.1), or to use expectation maximization

(EM) to approximate the parameter’s value (5.1.2). This chapter will explore the

expected computational advantage of the EM method compared with the expected

performance advantage of the LV method to assess their applicability.

5.1.1 Latent Variable Approach

An LV is one that is not directly observed, but is instead inferred. In the case of

the landmark KMM, the parameters of the model (the translational velocity vb, and

angular velocity ωb) are treated as LVs and inferred from the graph. Building these

factors requires the time step ∆t between poses, the initial rotation of the landmark

Rb, and the two observations (pose and covariance) of the landmark as inputs. The

Jacobian for this factor is determined from the numerical derivative function in the

gtsam library.

This above method allows the evolution of the landmarks in 6-DOF (translational

velocity in X, Y , Z, and angular velocities in roll, pitch and yaw). In the case of

2-D landmarks that exhibit primarily translational velocities in the (X -Y ) plane and

angular yaw rate, a prior factor can be placed over the velocity variables (v and

ω) that strictly constrain the standard deviation of the Z, roll and pitch elements,

while more loosely constraining the X, Y and yaw elements (the prior used in these

experiments is given in Table 5.1).

5.1.2 Expectation Maximization Approach

Adding LVs to estimate the model parameters in the graph increases the graph di-

mension, and with it, the time to determine the optimal variable values. In 1998, Neal

and Hinton defined an approximation approach, EM, to iteratively solve for the pose

and landmark state estimates [83]. While Neal and Hinton fist used this to estimate

the landmark positions in a static map, Graham and How later used this approach for
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Robust SLAM in 2014 to iteratively estimate the poses and covariance matrix [84].

EM is applied to solve for the landmark KMM parameters (ie. velocity). The

KMM parameters are estimated from observations and unoptimized poses in the

expectation-step (E-step) then those values are used to form the loop closure factors

and apply standard iSAM optimization [9] in the maximization-step (M-step). The

EM algorithm, as proposed by Neal and Hinton [83], iterates between the E- and

M-steps until the estimates of KMM parameters and poses convergence. Due to the

high computational cost of each M-step, Graham and How [84] proposed a single-

iteration approach. Their logic assumed that since the trajectory has many poses,

the M-step (iSAM optimization) will be repeated many times over the mission. So

rather than iterating until the estimate converges each time a new pose is added,

the single-iteration approach can iterate only once when a new pose is added, and

delay further iterations to subsequent pose additions, eventually driving the estimate

towards the true value.

Weighted Least Squares Linear Regression

Linear regression is applied to estimate the landmark’s KMM’s parameters in the

E-step. Following the constant velocity model proposed in Chapter 3, the slope

(velocity) and intercept (initial position) for each landmark can be computed using

ordinary least squares. However, since the confidence of each observation may vary,

weighted least squares (WLS) is preferred. This is performed for each of the land-

mark’s motion directions. In a general system this would be translational velocities in

X, Y and Z and angular velocities in roll, pitch and yaw, while in a planar landmark

case, this reduces to translational velocities in X and Y and angular rate in yaw (ψ).

Given a generic system y = mx + b and n observations of the form (xi, yi) with

standard deviation σi, the WLS estimate for m and b are:

m̂ =

∑︁
wi(xi − x̄w)(yi − ȳw)∑︁

wi(xi − x̄w)2
, (5.4)

and

b̂ = ȳw − m̂x̄w, (5.5)

where the x̄w and ȳw are the weighted means given as:

x̄w =

∑︁
wixi∑︁
wi

, (5.6)
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and

ȳw =

∑︁
wiyi∑︁
wi

. (5.7)

In the case of velocity estimation, m is the estimated velocity, b is an estimate of the

position at t = 0, x is the observation time and y denotes the observed landmark

position. The variances of each observation are inversely related to the weights used

in the estimation:

wi =
1

σ2
i

. (5.8)

Finally, the variance of the estimated velocity is:

V ar(m̂) =
σ2∑︁

wi(xi − x̄w)2
. (5.9)

The estimate of the landmark’s velocity and variance for the E-step can be used

to calculate the transform Tkikj and subsequently hs, for the loop closure factors

used to construct the graph for the M-step. While the LV approach adjusts the

velocity estimates in the graph along-side the pose estimates, the EM method treats

the velocity estimate outside of the graph, only updating the loop-closure factors

with the first iteration of the velocity estimate calculated each time the landmark is

observed.

Implications for Estimating with Few Observations

In implementing EM for parameter estimation, it is interesting to look at the limiting

case of only a few observations. If a landmark has only been observed once, its

velocity cannot be estimated and a default value must be used. The assumption

of a static landmark is tied to the expectation that most landmarks will be static,

quasi-static or slow in this application. If a landmark has been observed exactly

two times, the estimate of the velocity is calculated by attributing all changes in a

landmark’s measured position to its velocity. This means that the uncertainty in

the vehicle’s pose and the landmark velocity cannot be distinguished. Only when

there are several measurements, and multiple iterations of the EM cycle, can the

uncertainty in the landmark’s motion and the uncertainty in the quadrotor’s position

be separated, yielding the mapping and localization accuracy benefits of MBD-SLAM

over traditional static SLAM.
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Computational Implications of EM Approach

The EM approach to estimate the landmark KMM parameters has the advantage of

reduced computational complexity, as the graph size is not scaled by the number of

landmarks. However, at each SLAM update, it requires re-calculating all loop closure

factors for each landmark that is observed. Since so many factors are changed at

each iteration, especially on the return trip of the mission, the computational gains

of incremental optimizers, like iSAM, over full-graph optimizers are diminished.

5.2 Proposed Model-Based Dynamic SLAM Algorithm

Two approaches to MBD-SLAM were proposed. In both approaches, a quadrotor

uses 1AprilTag-abstracted landmarks [28] to perform pose-graph SLAM based on the

2iSAM optimizer [9], while following waypoints using a velocity controller. LV-MBD-

SLAM, as defined in Section 5.1.1, is shown in Figure 5.3. Meanwhile Figure 5.4

shows EM-MBD-SLAM, which uses an approximation as defined in Section 5.1.2 to

reduce the graph size, and consequently the computational load.

Figure 5.3: Proposed LV implementation of the MBD-SLAM algorithm. The yellow
block indicates the novel MBDFs that allow the graph to estimate the landmark
velocities.

Both proposed MBD-SLAM approaches learn the landmark velocities by allowing

the factor graph to adapt to the spatio-temporally evolving environment. As with the

baseline static SLAM in Figure 4.11, a quadrotor with navigation sensors that report

the altitude and odometry and a downward facing payload camera, uses landmarks

abstracted with the AprilTag fiducial tagging system to perform SLAM. The SLAM
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Figure 5.4: Proposed EM approximation for the MBD-SLAM algorithm. The yellow
block indicates the proposed landmark velocity estimation step of the EM algorithm.
Figure adapted from [81].

pose estimate for the quadrotor is used by the velocity controller to provide the inputs

necessary to follow the set waypoints. However, for MBD-SLAM, the standard static

loop closure factors are replaced (MBDFs for the LV approach) or adjusted (using

the landmark velocity estimation from the EM approach). In Figures 5.3 and 5.4,

these new blocks are filled in yellow.

With the LV approach, the observations of landmarks are directly used to build

the MBDFs. At each iteration, the number of variables (nodes) in the graph grows

by one for the new pose and one for each previously unseen landmark’s velocity. The

number of factors also grows by one for the new dead-reckoning factor and by the

number of loop closures that are formed.

With the EM approach, all observations of each landmark are first used to calcu-

late the landmark velocity using WLS linear regression, before that velocity estimate

is used to adjust the loop closure factor by the transform Tkikj . In the EM approach,

the graph grows by only one variable (the new pose), one dead-reckoning factor and

the number of loop closure factors, at every iteration. This means the LV-approach’s

graph grows more quickly, especially when more landmarks exist in the environment.

Larger graphs translate directly to longer computation times due to the computa-

tionally expensive graph optimization step [20].

Although this Chapter focuses on landmarks that evolve according to a KMM, the

WLS regression and parameter estimation approach can be modified to estimate the
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parameters of any motion model that is meaningful to the landmark evolution. For

example, this method can be extended to other types of evolving landmarks such as

those with changing size, shape, or reflectivity. Further, either estimation approach

for the MBD-SLAM algorithm can be used with different sensors and platforms, and

for various missions and environments, so long as an odometry and landmark pose

measurement is available and an appropriate landmark KMM can be selected.

5.3 Results

To understand the performance of the MBD-SLAM proposed in this chapter, three

cases are performed using the two velocity estimation approaches: LV and EM. All

cases assume the landmarks move in a 2D plane, thus, their velocities are only es-

timated for X, Y and ψ. The UAV’s task in all cases is to take-off from the start

position at (x, y, ψ) = (0, 0, 0), travel to the right (positive X-direction) until reaching

a waypoint then return to the start position. The mission and environment parame-

ters of the cases are established in Table 4.1. The three cases are as follows:

• Case 1: one-pass, full-scale, slow environment, simulation (Section 5.3.1)

Case 1 is the parent case for the MBD-SLAM, and in addition to demonstrating

the successful performance in terms of the metrics established in Section 4.4.3,

benchmarks for the execution time of one SLAM iteration are compared in Case

1 to assess if the theoretical computation improvement of the EM approach over

the LV approach is achieved.

• Case 2: one-pass, model-scale, slow environment, simulation and experiment

(5.3.2)

Case 2 allows comparison between simulated and experimental results, as well

as comparison with the results of applying static SLAM from Section 4.5 to

demonstrate the improvement when the static assumption is relaxed through

MBDFs.

• Case 3: one-pass, full-scale, quasi-static environment, simulation (Section

5.3.3)
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The improvement shown in Case 2 provides justification for proceeding with

this approach to the limiting case of quasi-static environments, however, Case

3 shows the MBDF’s limitations in quasi-static environment, and motivates the

work of the next chapter.

The covariance matrices used in MBD-SLAM match the static SLAM covariance

matrices in Table 4.7. The only exception is the yaw term of the dead-reckoning

factor which, when reduced by an order of magnitude (from 0.03 rad to 0.003 rad),

resulted in improved performance in velocity estimation accuracy in the full-scale

tests. This change did not produce a noticeable effect in the model-scale tests, and

is thus ascribed to the exponentially larger cross-track uncertainty associated with a

yaw variance over 100 m compared to 10 m. This is used in all tests in Chapters 5,

6, 7 and 8.

Further, the LV approach requires a prior for the velocity of each landmark to

restrict the velocity estimates to planar (X, Y , ψ) motion only. This is done by

placing a tight variance on elements that are not estimated (Z , roll and pitch) and a

loose variance on elements that are estimated (X, Y , ψ). The standard deviations on

the diagonal of that covariance matrix are given in Table 5.1. The system sensitivity

is such that specifying the order of magnitude of the standard deviation is sufficient.

Table 5.1: LV MBDF covariance matrix prior described by the standard deviations on
the diagonal for the model-scale. Suitable for planar landmark motion in model-scale,
slow environment.

LV velocity prior standard deviations

roll [rad/s] 0.0001
pitch [rad/s] 0.0001
yaw [rad/s] 0.1
X [m/s] 0.01
Y [m/s] 0.01
Z [m/s] 0.001

5.3.1 Case 1: Full-Scale Simulation

The performance of MBD-SLAM using the two approaches – LV and EM – is shown

below. First, the computational effort of the two methods are compared to determine
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whether the EM-MBD-SLAM is in fact more efficient. Next, the localization, mapping

and velocity estimation test results are summarized in Table 5.2 and the localization

and mapping performance of the median-performance trial is shown in Figure 5.6 for

LV-MBD-SLAM, and Figure 5.7 for EM-MBD-SLAM.

Case 1 Computational Effort Result

An important consideration for autonomous systems is the ability to perform the

algorithm on-board in near real-time. For that reason, the EM approximation was

proposed for MBDFs. The execution time of the two approaches is compared in

Figure 5.5 to assess whether that theoretical reduction in complexity resulted in

reduced computational effort.
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Figure 5.5: Comparison of execution times for one cycle of LV- and EM-MBD-SLAM.
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The execution time is calculated for one cycle which starts when an image is

received via the AprilTag detector. In most cases, two landmarks are viewed in one

image, but there may be no landmarks or several landmarks in an image depending

on the configuration of the moving landmarks and the quadrotor’s pose. The cycle

ends when the new pose estimate is published to the quadrotor’s velocity controller.

The maximum value of the execution time for one cycle and the maximum execution

time per factor in the graph are reported.

While the execution time grows with the graph size for both cases, because the

LV approach has more variables to estimate, it is more computationally expensive to

optimize. In this case, only 20 landmark velocities (each in 3-DOF) are estimated

(recall, 21 landmarks, but landmark 1 is assigned to be static while all others are

treated as potentially moving) while over 100 poses (each in 6-DOF) are being es-

timated so the impact is more evident later in the mission when many factors use

those velocities. Note that the exact number of poses is different in each trial due

to the slightly different paths taken by the UAV in response to the pose estimates.

For example, if the pose is underestimated as the UAV approaches a waypoint, the

UAV will continue moving until it is estimated to be within a tolerance distance of

the waypoint thereby requiring one or more extra poses to complete the pass. This

difference does not change the general trend of the execution time per cycle of EM or

LV.

For the execution time per factor in the graph, the LV approach initially grows

more quickly during the first half of the mission, then stabilizes before growing again.

That point of stability corresponds with the quadrotor hovering near x = 100 m prior

to returning to the start point on a reciprocal heading on the same path. This is an

expected behaviour as at that position it sees one landmark (AprilTag 11) and adds

new odometry factors and several loop closure factors through AprilTag 11 without

having a significant impact on the rest of the graph. At this moment, the graph grows

quickly in number of factors, with a relatively small cost to optimize the incremental

change in the graph. Meanwhile, the execution time per factor for the EM approach

is approximately linear, as expected for iSAM [9].
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Figure 5.6: Case 1 simulation of LV-MBD-SLAM in full-scale, slow environment.

Case 1 Localization and Mapping Results

Figure 5.6a shows the median-performance trial of the one-pass, full-scale, slow en-

vironment LV-MBD-SLAM as a map. Here, the quadrotor’s trajectory in the X-

direction is overestimated resulting in the landmark positions also being over-estimated.

The cross-track error on both the trajectory and the map grows as the quadrotor trav-

els further from the start location. The velocities are mostly well estimated as shown
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in Figure 5.6b, with landmarks far from the take-off location, where the localiza-

tion uncertainty is highest, having the worst velocity estimation accuracy. The mean

speed boundary between the static and mobile landmarks is 0.19 m/s which is just

lower than the defined slow speed (0.2 m/s), which means the LV-MBD-SLAM might

struggle to distinguish slowly moving landmarks from the static landmarks in some

trials.
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Figure 5.7: Case 1 simulation of EM-MBD-SLAM in full-scale, slow environment.
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Table 5.2: Case 1 (full-scale, slow) simulation performance summary for LV- (Figure
5.6) and EM- (Figure 5.7) MBD-SLAM.

metric units LV EM

localization error (norm) [m] 4.09 ± 1.12 4.22 ± 1.78
x error [m] 2.40 ± 1.01 1.96 ± 1.46
y error [m] 1.52 ± 0.93 1.19 ± 0.74
z error [m] 2.25 ± 0.99 2.75 ± 1.41

mapping error (norm) [m] 3.87 ± 1.23 4.50 ± 2.77
x error [m] 1.78 ± 1.09 2.22 ± 1.74
y error [m] 1.48 ± 1.29 1.21 ± 0.68
z error [m] 2.41 ± 1.09 3.22 ± 2.19

mean static landmark speed error [m/s] 0.0637 ± 0.0177 0.0581 ± 0.0211
mean dynamic landmark speed error [m/s] 0.0444 ± 0.0218 0.0286 ± 0.0187
mean speed boundary [m/s] 0.1878 ± 0.0235 0.1720 ± 0.0233

maximum execution time [ms] 779.23 332.10
maximum execution time per factor [ms] 0.4226 0.2162

The median performance case of the one-pass, full-scale, slow environment EM-

MBD-SLAM algorithm map in Figure 5.7a shows an overestimation of the along-track

(X) positions of the landmarks, as well as a notable cross-track error on the trajectory.

The speeds for the landmarks in Figure 5.7b are well estimated. Not surprisingly,

landmarks far from the start location have the highest error, though the estimated

speeds (approximately 0.13 m/s in the median-performance trial) remain below the

mean speed boundary (0.17 m/s) for the 10 trials. This mean speed boundary is

between the defined slow speed (0.2 m/s) and the quasi-static speed (0.1 m/s) which

indicates the EM-MBD-SLAM approach would be able to distinguish slow landmarks,

but not quasi-static landmarks, from the static environment.

Case 1 Discussion

The performance of both the LV and EM approaches show dramatically improved

localization and mapping compared to applying static SLAM in the dynamic envi-

ronment. Not only are the moving landmarks well estimated, the trajectory and map

of static landmarks match the ground truth better.

The mapping and localization performance of these two cases appear quite similar
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when comparing Figures 5.6 and 5.7, and the localization and mapping errors are

statistically similar. Comparing the localization and mapping errors to the path

length of 100 m, the localization error is between 4-5% for both cases and between 3-

5% for the mapping error. Much of these errors are in the Z-direction which matches

the modelled noise of the altimeter. This performance aligns with the static SLAM

performance (Table 4.8) in the static environment.

The spread of mapping and localization performance (the standard deviations)

for the EM approach is larger than the LV approach for most measures. Due to the

use of a single-iteration of linear regression in the EM approach, the uncertainty on a

given measurement has a larger impact on the estimated velocity (and subsequently

the mapping and localization estimates) than if that uncertain measurement were

optimized (until convergence) in the graph. This means the performance variation

over 10 trials is expected (and observed) to be larger for the EM approach than the

LV approach.

The speed estimates of the landmarks shown in Figures 5.6b and 5.7b are statis-

tically similar based on their standard deviations for the two cases, though the LV

approach tended to overestimate the speed of static landmarks slightly more than

the EM approach. The threshold to distinguish between moving and static land-

marks was similar for the two approaches (approximately 0.18 m/s, equivalent to 36

km/day), as was the mean static speed estimate (approximately 0.06 m/s, equivalent

to 12 km/day).

The most notable difference between the two approaches is the execution time

shown in Figure 5.5. The EM-MBD-SLAM does provide a clear improvement in

execution time for each cycle as well as execution time per factor particularly as the

number of poses grows. Note that MBD-SLAM does not utilize node or edge removal

techniques that could bound the graph execution time. Given the growth rates of the

execution time for either approach, it is clear that if the mission were longer with the

same SLAM iteration rate, node or edge removal would be necessary to maintain an

acceptable pose update rate for the UAV waypoint-tracking controller.
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5.3.2 Case 2: Model-Scale Simulation and Experiment

The second case demonstrates the performance of MBD-SLAM in the model-scale,

slow environment in a simulation and an experiment. The LV approach results are

summarized in Table 5.3 with the median-performance simulation trial shown in Fig-

ure 5.8 and experimental trial is shown in in Figure 5.9. The EM approach results

are summarized in Table 5.4 with the median-performance simulation trial shown

in Figure 5.10 and experimental trial shown in Figure 5.11. These four tests allow

comparison of MBD-SLAM with static SLAM applied to slow environments (Section

4.5) as well as ensuring MBD-SLAM does not perform more poorly in experiments

than in simulations.

Case 2 LV-MBD-SLAM Results

Table 5.3: Case 2 (model-scale, slow) simulation (Figure 5.8) and experiment (Figure
5.9) performance summary for LV-MBD-SLAM.

metric units simulation experiment

localization error (norm) [m] 0.34 ± 0.07 0.37 ± 0.11
x error [m] 0.21 ± 0.07 0.20 ± 0.07
y error [m] 0.11 ± 0.05 0.17 ± 0.08
z error [m] 0.18 ± 0.09 0.19 ± 0.08

mapping error (norm) [m] 0.34 ± 0.07 0.28 ± 0.09
x error [m] 0.22 ± 0.05 0.13 ± 0.05
y error [m] 0.11 ± 0.05 0.12 ± 0.04
z error [m] 0.20 ± 0.11 0.18 ± 0.08

mean static landmark speed error [m/s] 0.0104 ± 0.0047 0.0060 ± 0.0017
mean dynamic landmark speed error [m/s] 0.0071 ± 0.0089 0.0101 ± 0.0075
mean speed boundary [m/s] 0.0332 ± 0.0072 0.0259 ± 0.0045

Figure 5.8a shows the median performance trial of the one-pass, model-scale, slow

environment LV-MBD-SLAM simulation as a map. Here, the quadrotor’s trajectory

in the X-direction is overestimated resulting in the landmark positions also being

over-estimated. The cross-track error in both the trajectory and the map are not

significant. The velocities are well estimated as shown in Figure 5.8b, with landmarks

far from the take-off location, where the localization uncertainty is highest, having
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Figure 5.8: Case 2 simulation of LV-MBD-SLAM in model-scale, slow environment.

the worst velocity estimation accuracy. The speed boundary between the static and

mobile landmarks is on average 0.033 m/s for the ten trials (see Table 5.3), which

is about halfway between the defined slow speed (0.04 m/s) and quasi-static speed

(0.02 m/s), which means the LV-MBD-SLAM can distinguish slow landmarks, but

not quasi-static landmarks, from static ones.

Figure 5.9a shows the median performance case of the one-pass, model-scale, slow
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Figure 5.9: Case 2 experiment of LV-MBD-SLAM in model-scale, slow environment.

environment LV-MBD-SLAM experiment as a map. Unlike the simulation experi-

ment, the plotted case shows an underestimation of the quadrotor’s trajectory in the

X-direction along with underestimation of the mobile landmark velocities and a shift

towards the origin of the static tag positions. The cross-track drift of the quadrotor

is notable in the ground truth trajectory and while it is well estimated for the first

70% of the mission, poses further from the take-off point, where the uncertain atti-

tudes mean pose uncertainty is larger, show higher cross-track error. The velocities



83

of mobile landmarks are under-estimated but are close to their correct values (0.072

m/s estimated compared to 0.084 m/s for the faster mobile landmark) as shown in

Figure 5.9b, while static landmark speeds are well estimated. The speed boundary in

the experiment is slightly lower than in simulation at 0.026 m/s on average for the 10

trials, meaning again the LV-MBD-SLAM can distinguish slow landmarks, but not

quasi-static landmarks, from the static ones.

Case 2 LV-MBD-SLAM Discussion

The simulation and experimental performance in terms of mapping and localization

accuracy on average showed similar magnitudes and trends between the X, Y and

Z components for LV-MBD-SLAM at model-scale. The speed boundary between

static and mobile landmarks was better (lower) in the experiment (0.026 m/s) than

in the simulation (0.033 m/s) but both are sufficient to discern slow landmarks, but

not quasi-static landmarks. Although the median cases that were plotted showed a

discrepancy in the cross-track accuracy and under-estimation/over-estimation of the

UAV poses in the along-track, on average the cross-track and along-track localization

errors were not significantly different across the 10 repeat trials (Table 5.3).

The performance of the LV approach in the model-scale tests (both simulation and

experiment) show the same trends as the full-scale test in Case 1. The localization

and mapping errors are between 3-4% relative to the 10 m pass length, the same

error (as a percentage) as the full-scale. The boundary between static and dynamic

landmarks is equivalent to approximately 26-33 km/day, which is somewhat better

than the full-scale (36 km/day), but both scales were able to accurately distinguish

slow landmarks from static landmarks. In the model-scale, the LV approach is better

able to estimate the static landmark speed at an equivalent speed of 6-10 km/day

(full-scale at 12 km/day), due to the smaller UAV attitude errors growth over 10 m.

Overall, the proposed LV-MBD-SLAM approach is an effective method to esti-

mate the trajectory and map in a slow environment, as the mapping and localization

performance in the slow environment are similar to the baseline static SLAM per-

formance in a static environment. However, speed estimation for static landmarks is

less accurate than desired in that several static landmarks would be mis-identified as

mobile ones.
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Case 2 EM-MBD-SLAM Results
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Figure 5.10: Case 2 simulation of EM-MBD-SLAM in model-scale, slow environment.

Figure 5.10a shows the median performance case of the one-pass, model-scale,

slow environment EM-MBD-SLAM simulation as a map. As with the median LV-

MBD-SLAM simulation of this case, the quadrotor’s trajectory in the X-direction

is overestimated resulting in the landmark positions also being over-estimated. The

cross-track error on both the trajectory and the map are small but notable, especially

for the mobile landmarks. The velocities are well estimated as shown in Figure 5.10b.
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Figure 5.11: Case 2 experiment of EM-MBD-SLAM in model-scale, slow environment.

The velocities tended to be over-estimated initially, with more observations driving

the velocity estimate closer to the true speeds. The mean speed boundary between the

static and mobile landmarks is 0.038 m/s which is close to the defined slow speed (0.04

m/s). This means the EM-MBD-SLAM implementation would be able to distinguish

slow landmarks from the static landmarks in most cases.

Figure 5.11a shows the median performance case of the one-pass, model-scale,
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Table 5.4: Case 2 (model-scale, slow) simulation (Figure 5.10) and experiment (Figure
5.11) performance summary for EM-MBD-SLAM.

metric units simulation experiment

localization error (norm) [m] 0.46 ± 0.17 0.35 ± 0.07
x error [m] 0.20 ± 0.08 0.23 ± 0.04
y error [m] 0.14 ± 0.05 0.13 ± 0.05
z error [m] 0.33 ± 0.20 0.14 ± 0.06

mapping error (norm) [m] 0.54 ± 0.24 0.29 ± 0.06
x error [m] 0.26 ± 0.16 0.17 ± 0.04
y error [m] 0.18 ± 0.11 0.11 ± 0.03
z error [m] 0.35 ± 0.25 0.15 ± 0.07

mean static landmark speed error [m/s] 0.0126 ± 0.0043 0.0163 ± 0.0046
mean dynamic landmark speed error [m/s] 0.0061 ± 0.0054 0.0059 ± 0.0048
mean speed boundary [m/s] 0.0382 ± 0.0066 0.0405 ± 0.0074

slow environment EM-MBD-SLAM experiment as a map. The cross-track drift of

the quadrotor is notable in the ground truth trajectory and while it is well estimated

for the first 70% of the mission, poses further from the take-off point, where the

uncertain attitudes mean pose uncertainty is larger, shows higher cross-track error.

The velocities of mobile landmarks are well estimated with an average speed error of

0.006 m/s (6 km/day), as shown in Figure 5.9b, while static landmarks are well esti-

mated with low speeds. The mean speed boundary in the experiment is higher than

in the simulation at 0.040 m/s meaning again the EM-MBD-SLAM would struggle to

distinguish slow landmarks from static landmarks, despite mapping and localization

accuracies similar to the baseline static SLAM case.

Case 2 EM-MBD-SLAM Discussion

The mapping and localization accuracies, summarized in Table 5.4, show similar per-

formance in the X and Y components for EM-MBD-SLAM at model-scale between

the simulation and experiment. The Z-component was much larger and more vari-

able in the simulation than in the experiment. This is likely attributed to a day

when the altimeter performance in the experiment was more stable than the day the

altimeter was characterized. In terms of speed estimation, the velocity estimation
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for mobile landmarks was similar between the simulation and experiment, however,

the static landmark speed estimation was worse (larger speeds) in the experiment

(0.0163 ± 0.0046 m/s) than in the simulation (0.0126 ± 0.0043 m/s). This increased

the boundary between the static and dynamic landmarks, making discrimination

between mobile and static landmarks more difficult in the experiment than in the

simulation.

The high boundary between mobile and static landmarks does not occur in the

full-scale results for the EM approach (Case 1), nor is it as pronounced in the LV

approach at either scale. At model-scale, the WLS regression at the core of the

EM-MBD-SLAM approach is challenged both by a small number of observations per

landmark, as well as a large cross-track drift of the quadrotor (relative to the distance

travelled). Since for small numbers of observations, WLS attributes the localization

error of the quadrotor to motion of landmarks (as discussed in Section 5.1.2), it is

reasonable to expect the EM approach to be more sensitive to the model-scale’s cross-

track drift than the LV approach when estimating the KMM parameters (velocity).

As with the LV approach, the localization and mapping accuracies of the EM

approach show the same trends in the full-scale experiment in Case 1 and the model-

scale experiments in Case 2. The mapping and localization errors relative to the pass

length are between 3-5%, with the most significant difference being the smaller Z

component error in the model-scale experiment. While the velocity estimation ac-

curacies of the static and mobile landmarks are similar between Case 1 and Case 2,

the estimate of the boundary between static and mobile landmarks for the full-scale

(34 km/day equivalent) is better than the model-scale (38-40 km/day) as the model-

scale would struggle to discern slow landmarks (40 km/day) from static landmarks.

Although correctly recognizing whether a landmark is static or mobile is important

for navigating a dynamic environment, the localization accuracy is the primary re-

quirement of the MBD-SLAM approach. The localization and mapping accuracy of

the EM-MBD-SLAM approach is similar to the baseline static SLAM.

Case 2 Discussion

As in the large scale (Case 1), the performance of the EM-MBD-SLAM and LV-

MBD-SLAM is generally similar in the model-scale simulations and experiments.
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The primary difference in performance is seen in the speed boundary between the

mobile and static landmarks for the experiment. In that measure, the LV approach

performed significantly better, due the limitation of the EM approach when there are

a small number of observations, as previously discussed.

Although the accuracy of the speed estimate is less important to the quadrotor’s

operation than the localization and mapping accuracy, it is interesting to note that the

error on the static landmark speed estimate is higher for the EM approach compared

with the LV approach in the model-scale. This is primarily due to the large cross-

track speeds estimated for static landmarks numbered 10, 21 and 11 located farthest

from the take-off location (x = 9-10 m). While the LV approach re-estimates the

velocities of all landmarks at every pose-update iteration, the EM approach only

re-estimates the velocities of the landmarks that are observed in that pose-update

iteration. This means that when using the EM approach, the velocity estimates of

AprilTags 10, 21 and 11 are not re-estimated in response to the loop closure factors

constructed as the quadrotor returns to the start position. Since those loop closures

are critical to reducing the dead-reckoning error that accrues over time, there is more

uncertainty in estimating velocities of landmarks far from the start position using EM-

MBD-SLAM approach. Additional observations of these landmarks during additional

passes through the environment would trigger updating their velocity estimates, thus

improving the velocity estimate’s accuracy.

5.3.3 Case 3: Full-Scale Simulation with Quasi-Static Landmarks

The third and final case challenges the MBD-SLAM performance with a quasi-static

environment. Cases 1 and 2 showed that the EM-MBD-SLAM and LV-MBD-SLAM

were able to discern slow landmarks from static landmarks, but the boundary be-

tween static and mobile landmarks was above the quasi-static threshold. This case

implements the MBD-SLAM in a quasi-static environment for the full-scale, one-pass

experiment to quantify the performance in that challenging environment. The test

results are summarized in Table 5.5 and the localization and mapping performance

of the median-performance trial is shown in Figure 5.12 for LV-MBD-SLAM, and

Figure 5.13 for EM-MBD-SLAM. This case shows that MBD-SLAM continues to

perform well in terms of localization and mapping accuracy, but struggles to estimate
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quasi-static landmark speeds.

Case 3 Localization and Mapping Results
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Figure 5.12: Case 3 simulation of LV-MBD-SLAM in full-scale, quasi-static environ-
ment.

The map of the median-performance trial of the LV-MBD-SLAM approach applied

to the one-pass, full-scale quasi-static environment is shown in Figure 5.12a. As in

Case 1 (slow environment), the quadrotor’s trajectory and landmark positions are
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Figure 5.13: Case 3 simulation of EM-MBD-SLAM in full-scale, quasi-static environ-
ment.

over-estimated in the X-direction. The velocity estimates of the tags are also over-

estimated as shown in Figure 5.12b. This is both for the mobile landmarks as well

as for the estimate of the static landmarks’ speed. The boundary between the static

and mobile landmarks is on average 25 km/day, which is much lower than Case 1 (36

km/day), but still unable to discern the quasi-static landmarks from the static ones.
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Table 5.5: Case 3 (full-scale, quasi-static) simulation performance summary for LV-
(Figure 5.12) and EM- (Figure 5.13) MBD-SLAM.

metric units LV EM

localization error (norm) [m] 4.56 ± 1.18 4.21 ± 2.76
x error [m] 2.45 ± 1.02 2.77 ± 2.37
y error [m] 1.51 ± 1.00 1.00 ± 0.55
z error [m] 2.70 ± 1.54 2.11 ± 1.30

mapping error (norm) [m] 4.39 ± 1.14 3.71 ± 1.73
x error [m] 2.14 ± 0.91 2.27 ± 2.01
y error [m] 1.22 ± 0.85 0.81 ± 0.38
z error [m] 3.00 ± 1.73 2.22 ± 1.13

mean static landmark speed error [m/s] 0.0688 ± 0.0192 0.0683 ± 0.0276
mean dynamic landmark speed error [m/s] 0.0400 ± 0.0169 0.0351 ± 0.0309
mean speed boundary [m/s] 0.1265 ± 0.0301 0.1243 ± 0.0484

Figure 5.13a shows the performance of EM-MBD-SLAM for the one-pass, full-

scale, quasi-static environment case as a map, while the speed estimates are shown in

Figure 5.13b. As in the slow-environment, the trajectory in the X-direction and the

landmark speed estimates are over-estimated. While the localization and mapping

accuracies are similar (approximately 3-4% error) as are the static and mobile land-

mark speed errors, the boundary between the static and mobile landmark speeds is

on average 25 km/day for the quasi-static environment, compared with 34 km/day for

the slow environment. The pattern of estimation accuracy of landmark speed deteri-

orating for landmarks farther from the start position is seen again in the quasi-static

environment.

Case 3 Discussion

The overall performance of the MBD-SLAM algorithm using both the EM and LV

approaches in the quasi-static environment show similar performance as in the slow

environment. In particular, despite neither method being particularly designed for the

quasi-static landmark speeds, the localization and mapping errors are similar (3-5%

of the 100 m pass length) not only to the slow environment in Case 1, but also to the

baseline static SLAM performance shown in Section 4.4.4. The speed boundary was
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lower for the quasi-static environment compared to the slow environment, indicating

that the MBD-SLAM algorithm was trending towards better estimating the quasi-

static speeds and static speed, however, the boundary (25 km/day) remained above

the threshold for quasi-static motion for this system and mission (20 km/day). This

indicates that MBD-SLAM is not well suited to the quasi-static environment, but

is able to cope sufficiently well that the quadrotor is able to complete its mission

with reasonable localization and mapping accuracy. This shows that integrating the

velocity estimate – even if the quasi-static speed estimate accuracy is not acceptable

– improves the localization and mapping performance of a UAV in slow dynamic and

quasi-static environments compared to the traditional static SLAM.

5.4 Summary of Results and Discussion

The MBDFs and MBD-SLAM algorithm proposed in this chapter were shown to

enable a 6-DOF quadrotor to localize itself in an unfamiliar and GPS-denied envi-

ronment with slowly moving landmarks. Although these landmarks defy the static

assumption that is required in traditional SLAM algorithms, MBD-SLAM is able

to accommodate their motion due to the MBDFs that relax the static assumption.

Note that the scope of this chapter was limited to operations within a single epoch

of a piecewise-deterministic environment, and the parameters of MBD-SLAM were

designed for the slow environment.

For MBD-SLAM, the landmarks are attributed a deterministic, constant velocity

KMM, with the parameters of the model estimated in one of two ways: the LV

approach, or the EM approach. Neither of these approaches require prior estimates

of characteristic speeds or transit directions of the landmarks.

Two cases were studied to demonstrate MBD-SLAM in slow environments. Suc-

cess here meant that the localization accuracy and static landmark mapping accuracy

were statistically similar to the performance of the baseline static SLAM in a static

environment (Section 4.4.4).

• Case 1 was the parent case for which MBD-SLAM was designed. This one-pass,

full-scale simulation experiment showed that the UAV was able to successfully

complete its mission while estimating landmark KMM parameters in near real-

time. This ability to estimate the environment’s changes is critical to missions



93

in slow or quasi-static environments over long periods of time when treating the

map as static fails, such as navigating through marine Arctic ice flows.

• Case 2 varied the scale of the experiment to be able to compare the simulation

to experimental performance and to relate the performance to the model-scale

baseline static SLAM implementation in Section 4.4.4. This case was also one-

pass through a slow environment and showed that the mapping and localization

performance using either the LV-MBD-SLAM or the EM-MBD-SLAM algo-

rithms was significantly better than static SLAM applied to the slow dynamic

environment in Section 4.5 and was comparable to static SLAM applied in the

static environment (Section 4.4.4). This proves the hypothesis that incorporat-

ing landmark KMM’s into the loop closure factors enables a UAV to operate

in a slow dynamic environment that the UAV would otherwise be unable to

persistently map.

Expectation maximization approximation performance

The LV and EM approaches each had their limitations, but both were able to success-

fully estimate the UAV’s trajectory and produce a map, despite the presence of mobile

landmarks. Initially, the EM approach was selected as an approximation method to

reduce the computational time required by the LV approach to simultaneously esti-

mate the KMM parameters alongside the trajectory in the graph. While this was

successful in that the EM method did require less time to execute a pose iteration

cycle, it was also shown that the performance of the EM did not suffer significantly

compared to the LV approach. Two main drawbacks of the EM approach were the

increased variation in performance between trials (the standard deviation across 10

repeated trials was larger) and the larger speeds estimated for static landmarks in the

model-scale experiments compared to the LV approach. Neither of these disqualify

the EM approach. Further, the speed estimate limitation can be mitigated by per-

forming multiple passes through the environment. In general, LV-MBD-SLAM should

be applied when the accurate estimation of landmark speeds for landmarks far from

the start position is critical to the operator (or ship navigator) and the trajectory is a

single one-dimensional pass, while EM-MBD-SLAM should be applied when on-board

processing is limited.
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MBD-SLAM and quasi-static landmarks

In Cases 1 and 2, MBD-SLAM was shown able to distinguish slow landmarks from

static ones, however, the threshold used to make this distinction would have struggled

had the mobile landmarks been quasi-static. For that reason, a third case was selected

to quantify the performance of MBD-SLAM for this challenging case. This one-pass,

full-scale, quasi-static landmark simulation experiment showed that despite MBD-

SLAM being unable to distinguish quasi-static landmarks from static ones and poorly

estimating the speeds of mobile landmarks, MBD-SLAM remained successful in the

primary goal of allowing a UAV to localize itself and map a dynamic environment.

Again the localization and mapping accuracies were comparable to the baseline static

SLAM implementation in the static environment, despite the MBD-SLAM not being

designed for quasi-static landmarks.

5.4.1 Concluding Remarks

MBD-SLAM relaxes the static assumption of traditional SLAM by including land-

mark KMMs in the factor graph construction. Both LV-MBD-SLAM and the EM-

MBD-SLAM approximation were shown to have similar performance in the slow en-

vironment as the baseline static SLAM in a static environment. In the quasi-static

environment, the localization and mapping performance was again comparable to the

baseline static SLAM, however the speeds of the landmarks were over-estimated.

While these experiments were inspired by a mission to navigate marine Arctic

environments, there are parallel cases in which MBD-SLAM can be used. The con-

stant velocity KMM is just one example of a state transition model that could define

the spatio-temporal evolution of a landmark. Any change in position, orientation,

size, colour, reflectivity or other characteristic, that can be described by a determin-

istic, analytical model can have its parameters estimated in the graph alongside the

vehicle’s trajectory.

Given the results of the three cases in this chapter, MBD-SLAM can be recom-

mended over traditional SLAM algorithms for both slow and quasi-static

environments, where vehicle localization accuracy is the primary require-

ment. Improving the ability to accurately estimate landmark speeds in quasi-static

environments is the focus of the next chapter.



Chapter 6 Proposed Model-Based Quasi-Static SLAM

This chapter extends the MBD-SLAM algorithm proposed in Chapter 5 to quasi-static

landmarks. Specifically, this chapter defines the quasi-static assumption (QSA) that

is required for model-based quasi-static factors (MBQSF), and proposes the model-

based quasi-static pose-graph SLAM (MBQS-SLAM) algorithm. This algorithm is

specifically designed for the quasi-static environments described in Chapter 3, but

acceptable performance is also shown for landmarks that are all static and anoma-

lously fast.

In the previous chapter, MBDFs were proposed to integrate the landmarks’ kine-

matic model into the SLAM pose graph. The resulting MBD-SLAM algorithm en-

abled a UAV to successfully localize itself and produce a map of a dynamic envi-

ronment populated with both static and mobile landmarks. Mobile landmarks were

attributed a constant velocity KMM with parameters optimized in the SLAM pose

graph or estimated using WLS linear regression. These KMMs are applied during

a single epoch of a landmark’s more general piecewise-deterministic motion model,

meaning it is assumed that no events disrupt the landmark’s KMM.

The primary difference between MBD-SLAM and MBQS-SLAM is the way that

the landmark’s KMM parameters (velocity) are treated in the graph. In MBD-SLAM

the velocity is a latent variable, while in MBQS-SLAM, the graph treats the velocity

as observable. Similar to the use of state observers (e.g. Luenberger observer) in

control theory, an estimate of the velocity is used as a measure of the hidden state.

The graph in MBQS-SLAM then simultaneously minimizes the error on the UAV’s

trajectory and the landmarks’ velocities, rather than leaving the landmarks’ velocities

unconstrained (free variables) in MBD-SLAM.

By definition, in quasi-static environments, the velocity cannot be inferred from

consecutive camera frames, thus, this chapter will test the hypothesis that (1) the

WLS estimate of the quasi-static mobile landmarks converges after several observa-

tions, (2) the WLS estimate can be used as the measurement after it converges, and

95
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(3) until that convergence, the velocity measure can be assumed zero with a stan-

dard deviation based on a characteristic landmark speed. This third element of the

hypothesis will be called the QSA as it should only be assumed when the landmark

motion is quasi-static. This hypothesis forms the proposed MBQS-SLAM algorithm.

It will be shown that this approach has comparable localization and mapping per-

formance to the baseline static SLAM applied to a static environment and is able to

more accurately discern and estimate quasi-static landmarks from static landmarks

than the MBD-SLAM proposed in Chapter 5.

This chapter starts by establishing the theory and assumptions to apply MBD-

SLAM to quasi-static environments. First, the MBDFs from Chapter 5 are extended

to include landmark speed measures (which were previously unobservable), forming

MBQSFs (Section 6.1). Next, the convergence of the WLS estimate in the EM al-

gorithm defined in Chapter 5 is studied, to determine if and, if so, when the WLS

estimate is an effective measure of landmark velocity (Section 6.2). This study re-

sponds to element (1) of the hypothesis and is critical to using the WLS algorithm

as an observer for the hidden velocity variable in quasi-static environments. Third,

the QSA is defined and the associated parameters are discussed (Section 6.3). These

elements are combined into the MBQS-SLAM algorithm (Section 6.4).

MBQS-SLAM is demonstrated through five cases, starting with the parent case

that is most representative of mobile icebergs in marine Arctic environments. This

shows that the QSA enables MBQS-SLAM to overcome the performance limitations of

traditional static and the proposed MBD-SLAM in quasi-static environments. Next,

the model-scale case is demonstrated in both a simulation and an experiment to de-

termine that there is no degradation in performance in moving from the simulated to

experimental environment. This is followed by three tests that explore the limiting

cases of MBQS-SLAM, specifically: a slow moving landmark, a fully-static environ-

ment, and a two-pass mission. In summary, the five cases are:

1. one-pass, full-scale, quasi-static environment, simulation (Section 6.5.1) (anal-

ogous to Case 3 from Chapter 5),

2. one-pass, model-scale, quasi-static environment, simulation and experiment (Sec-

tion 6.5.2),
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3. one-pass, full-scale, anomalously fast (one landmark quasi-static, one landmark

slow) environment, simulation (Section 6.5.3)

4. one-pass, full-scale, fully-static environment, simulation (Section 6.5.4)

5. two-pass, full-scale, quasi-static environment, simulation (Section 6.5.5)

While Cases 3 and 4 present the algorithm with the extremes of landmark motion

in a quasi-static environment, Case 5 is chosen to quantify how the amount of time

a vehicle remains on station, persistently mapping the region, impacts performance.

Additional passes provide observations that span a longer duration and provide fur-

ther opportunities to iterate landmark velocities that are only updated when the

landmarks are in the camera’s FOV. While in a static environment, this would nei-

ther improve nor degrade the localization and mapping accuracy, in a quasi-static

environment, more passes should improve the performance. However, longer dura-

tions on-station increase the likelihood of an event disrupting the landmark’s KMM.

Case 5 bridges the gap between the one-pass mission of Case 1 and the two-pass

missions, with events, that will be examined in Chapters 7 and 8.

This chapter concludes with a summary of the results and discussion on the ap-

plicability and limitations of the proposed MBQS-SLAM algorithm in Section 6.6.

6.1 Proposed Model-Based Quasi-Static Factors

The MBDFs proposed in Chapter 5 incorporate the landmarks’ KMMs into the graph

structure allowing the pose graph optimizer to successfully estimate both the UAV

trajectory and the landmark velocities. In MBDFs, the error function to be mini-

mized is related to the trajectory, while the velocities are free to take any values that

minimizes the error on the UAV’s trajectory. This means the velocity estimates are

initially larger than the true value before approaching the true value as more observa-

tions are made. Given the static and very slow speeds of a quasi-static environment,

constraining the velocity term to be within the quasi-static regime is beneficial.

The derivation of the MBQSF extends from the derivation of the MBDF in Chap-

ter 5. The MBQSF error E concatenates the error e of the translation between poses
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xi and xj, with the error ev on the landmark velocity vk. In MBQSF, the measure-

ment h has two elements: hs, as defined in the MBDF, and hv, which is the graph’s

estimate of the velocity, hv = vk. The error for this factor is given by:

E =

[︄
e

ev

]︄
=

[︄
hs ⊖ zij,k

hv ⊖ zvk

]︄
, (6.1)

where zij,k is the measurement of the transform between poses xi and xj through

landmark k, and zvk is the measurement of velocity for landmark k. As in MBDFs,

these measurements are probabilistic, meaning they are represented by a probability

distribution (Gaussian) with a mean value and a standard deviation to capture the

uncertainty of the measurement. This makes this version of the factor useful both

when there is a direct velocity measurement (as is possible for fast landmarks), but

also when the velocity can be constrained to a bounded region (as for quasi-static

landmarks).

These proposed MBQSFs require selection or calculation of an appropriate land-

mark velocity measurement. Based on the success of EM-MBD-SLAM, the velocity

calculated using WLS will be used. However, Chapter 5 showed that the WLS veloc-

ity does not converge to a stable value until several observations are made. Section

6.2 explores the convergence behaviour of the WLS velocity to determine a threshold

beyond which the WLS velocity can be used, while Section 6.3 proposes a velocity

measurement to be used before that convergence occurs.

6.2 Velocity Estimation Convergence

Section 5.1.2 defined EM-MBD-SLAM, which applies WLS regression to estimate

the landmarks’ velocity in the expectation step, then the graph optimizer, iSAM, is

applied for the maximization step. In this Section, the evolution of the WLS velocity

estimate is studied to assess its convergence. The standard deviation on the WLS

velocity estimate (σWLS) is a measure of the confidence in the estimate. When the

standard deviation becomes small, the estimate has incorporated enough observations

that the velocity estimate can be considered as converged. The performance of SLAM

using the WLS velocity estimate in quasi-static environments will be assessed in

Section 6.5.
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The WLS standard deviation is calculated after each landmark observation. The

same full-scale, quasi-static environment as in Case 3 of Chapter 5 is used, except

that two mobile landmarks both move the equivalent of 20 km/day. Motion is again

restricted to the horizontal plane, where two elements of the translational velocity

(vx and vy) and one of angular velocity (ωz) are each estimated using WLS resulting

in three standard deviations (σvx, σvy, σωz). The norm of the translational velocity

standard deviation (σv =
√︁
σ2
vx + σ2

vy) and the standard deviation on the yaw rate, are

monitored as measures of convergence. While cross-validation tests (i.e. repeatedly

using a different subset of the observations to calculate the standard deviations) would

provide a quantification of the robustness and sensitivity of the WLS convergence,

they would also require many more observations (passes) than performed in this

thesis. Instead, this study provides a visual understanding of the WLS estimate’s

convergence on the observation pattern typical of trials performed in this thesis.

Three variants of Case 1 are tested: (1) baseline one-pass, (2) one-pass with UAV at

half-speed, and (3) two-pass. These variants determine first whether the evolution of

σWLS is smoothly decreasing and second, whether the time between observations or

the number of observations drive the decrease in σWLS.

For analysis, the environment is divided into four zones, numbered as shown in

Figure 6.1. Each zone contains five landmarks. Black triangles indicate static land-

marks while red triangles indicate mobile landmarks. Landmark 1 is known static a

priori and is not included in the WLS convergence analysis. Zones are numbered from

closest to the start position (zone 1: landmarks 12, 3, 14, 2, 14) to furthest from the

start position (zone 4: landmarks 9, 20, 10, 21, 11). These zones are approximately

aligned with the patterns seen in velocity estimation performance in Chapter 5. To

assess whether landmark motions impact the convergence, the velocity estimates’

standard deviations for the two mobile landmarks are plotted in red.

As in Case 1, a full-scale, quasi-static simulation will be performed using EM-

MBD-SLAM. To clarify the language in the analysis in this section, observations of

each landmark will be grouped into batches as shown in Figure 6.2. One batch of

observations consists of several consecutive observations of the same landmark. For

example, as the UAV travels from x = 0 m to x = 100 m, it passes through a region

in which it can observe the landmark at one or more poses. At these poses, the first
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Figure 6.1: Map used for WLS convergence simulation study.

batch of observations of a landmark are captured. Then as the UAV returns along a

reciprocal heading from x = 100 m to x = 0 m, a second batch of observations are

captured. If a two-pass mission were performed, a total of four batches of observa-

tions would be collected for each landmark. In the limiting case where the observation

frequency is such that only one observation is captured of each landmark as the UAV

passes over it, the batch would contain only a single observation.
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Figure 6.2: Definition of batches of observations used in analysis of WLS convergence.

Variant 1: One-pass (baseline) WLS convergence
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The baseline test for studying WLS convergence is the one-pass, full-scale, quasi-

static environment is shown in Figure 6.3. The overall trend is a consistent decrease

in σWLS for each landmark as the number of observations used to calculate the ve-

locity estimate using WLS increases. Halfway through the mission, after the 6th or

7th observation, there is a notable drop in the landmark’s standard deviation. The

6th or 7th observation corresponds to the first observation of the landmark on the

quadrotor’s return trip (second batch). This drop is more distinct for landmarks in

Zones 1 and 2 than in Zone 4.
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Figure 6.3: Standard deviation evolution for the translational (top) and angular (bot-
tom) velocity estimates from WLS regression for Variant 1 (baseline).

Consider the observation sequence for the static landmark 15 as the quadrotor
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performs its mission. As the quadrotor enters Zone 2 (Figure 6.1), the first image

with landmark 15 is captured. Given the quadrotor’s pose update rate, the camera’s

FOV and the quadrotor’s speed, landmark 15 is captured in five more consecutive

images (ie. six consecutive poses observe landmark 15 in the first batch). As the

quadrotor continues its mission, the FOV no longer captures landmark 15, until the

quadrotor completes the outbound trajectory and performs its return journey. On the

return trip, as the quadrotor passes through Zone 2, it captures a seventh image of

landmark 15 as well as seven more consecutive images before landmark 15 is outside

the FOV (concluding the second batch). These fifteen observations provide fifteen

position estimates of landmark 15 over the two minute mission. The time between

the two batches is longest for landmarks in Zone 1, and essentially zero for landmarks

in Zone 4.

When calculated incrementally, as each new position estimate arrives, the largest

impact on the landmark velocity estimate’s standard deviation occurs when the first

image of a batch is captured. This is because the time between images within a batch

is too short to detect landmark motion in a quasi-static environment, while the time

between batches is long enough to detect quasi-static motion.

This test showed that the standard deviation of the WLS velocity estimate (σWLS)

smoothly decreases as more observations are made for all landmarks (static/mobile

and all zones). It shows that the largest changes in standard deviation are when

there are very few observations of a landmark, but once σWLS stabilizes only the

first observation of a new batch has a notable impact on σWLS. Zone 4 showed

the largest σWLS, while zone 1 showed the smallest σWLS, which is consistent with

the expected impact of the quadrotor’s larger pose uncertainty far from the start

position. Zone 1 also showed the strongest impact of the first observation of the

second batch while zone 4 showed the smallest impact with landmark 11 showing

nearly no notable drop between batches. This implies that while some minimum

number of observations is needed to have a converged velocity estimate, the most

critical factor in the convergence is the time between batches of observations.

Variant 2: One-pass, half-speed UAV WLS convergence

Figure 6.4 shows the convergence for a quadrotor travelling at half the nominal speed

(1.0 m/s). This case doubles the number of observations for each landmark as the
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quadrotor’s camera FOV takes twice as much time to pass over the landmark. If the

number of observations is critical, σWLS should be smaller for this variant than the

previous one and the notable drop in σWLS should again occur after 6-7 observations.

If the time is the critical factor, the drop should occur after the first observation in

the second batch of observations, and the converged value of σWLS should be the

same as in the first variant.
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Figure 6.4: Standard deviation evolution of translational (top) and angular (bottom)
velocity estimates from WLS regression, for Variant 2 (UAV travelling at half its
nominal speed).

In Figure 6.4, there is a smaller, but still discernible, drop in the WLS velocity

estimate’s standard deviation at the 13th-16th observation of each landmark which,
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as in Case 1, corresponds to the first observation of the landmark on the quadrotor’s

return trip. The converged value of σWLS is smaller than Variant 1, but not by

the amount that a doubling in number of observations would expect. Instead, this

is more likely attributed to the fact that mission parameters of this variant (the

half-speed quadrotor and the same landmark speed) no longer represent a quasi-

static environment, as the time between the first and last observation in a batch is

long enough to detect the landmark’s motion. This is also supported by the smaller

intensity of drop in σWLS as the later observations in the first batch have already

contributed enough information for the estimate to stabilize without the need for the

next batch.

This variant confirms the previous conclusion that while there is a minimum num-

ber of observations that are required for the WLS algorithm (approximately 4-5),

σWLS converges when the time between observations within the set used for WLS

estimation is large enough for quasi-static motion to be detected.

Variant 3: Two-pass, half pose update rate WLS convergence

To further explore the difference between the impact of number of observations and

time between observations, the third variant doubles the distance the quadrotor trav-

els (two-passes) and halves the pose update rate (ie. doubles the time between con-

secutive observations). This means the same number of observations are made per

landmark as in Case 1, as shown in Figure 6.5. Confirming that the time between

observations in the set of observations used for WLS estimation would mean the σWLS

will converge at the same time as in the first variant (half the number of observations).

This variant captures four batches of observations of each landmark (two batches per

pass) and can also indicate if there is a velocity convergence benefit achieved by

performing additional passes through the environment.

The third variant shows σWLS for most landmarks in zones 1, 2 and 3 converging

after four observations, where the fourth observation is the first in the second batch

of observations. For these landmarks, after this point σWLS does not show addi-

tional drops associated with the third or fourth batches for either static and mobile

landmarks.

Landmarks in zone 4 show convergence after the sixth or seventh observation,

which corresponds to the first observation in the third batch (the first observation
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Figure 6.5: Standard deviation evolution for the translational (top) and angular (bot-
tom) velocity estimates from WLS regression, for Variant 3 (two passes, half pose
update rate).

of the second pass). As described in the typical observation pattern above, the time

between observation batches 1 and 2 for landmarks in zone 4 is essentially zero,

meaning that the observations of the first two batches do not span a sufficiently long

duration to estimate a quasi-static speed. However, once the third batch begins, the

elapsed time is sufficient for the velocity estimate to converge. This aligns with the

discussion of results in Chapter 5 where velocity estimates for landmarks far from

the start point were overestimated, while those closer to the start position were well

estimated.
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WLS Convergence study conclusions

The consistently decreasing convergence behaviour of σWLS, and the consistent con-

verged value of σWLS across the three variants indicates that when the magnitude

of the standard deviation is small, the velocity estimate can be treated as converged

and used in the MBDF. Using the magnitude of σWLS removes the reliance on the

number of landmarks and the time between observations whose thresholds would vary

depending on the specific mission variant that was tested. The next section will dis-

cuss what should be done until the WLS velocity converges, and how to select the

threshold of σWLS for a particular mission.

6.3 Proposed Quasi-Static Assumption

By definition, in a quasi-static environment, there is a set of static and mobile land-

marks, where mobile landmarks move so slowly that two consecutive camera images

cannot detect a change in the landmark’s position, as defined in Section 3.4. In this

chapter, Section 6.1 defined MBQSFs that extended the MBDFs from Chapter 5 to

include an error term related to the landmark velocity. Then Section 6.2 showed that

the WLS velocity estimate smoothly converges after observations span a sufficient

duration to detect quasi-static motion. However, the MBQSFs require a velocity

measurement for factors created before the WLS estimate converges. An assumption

is proposed to provide that measurement.

Definition quasi-static assumption (QSA):

If the landmarks’ characteristic speed (υk) and the selected mission parameters are

such that the environment is best described as quasi-static, as in Equation (3.4), the

landmarks’ velocity measurement shall be assumed zero, with a standard deviation of

σQSA, until the WLS velocity estimate converges.

Until the WLS estimate converges, this assumption causes the graph to simulta-

neously minimize the error on the quadrotor trajectory, as well as the magnitude of

the landmark speed. Minimizing the magnitude of landmark speed essentially treats

the landmark as static with the certainty of it being static captured in σQSA. This

means that mobile landmark speeds are likely to be underestimated, particularly if

their speed is larger than the characteristic speed (υk).

The selection of σQSA should be related to the landmarks’ characteristic velocity.
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For the planar motion, constant velocity case, it is recommended that σQSA be set

to the slowest characteristic landmark speed of interest. For this thesis, in the case

of the marine Arctic environment described under the heading ‘Landmark Speed’ in

Section 4.1.1 with a combination of static landmarks and planar motion landmarks

with expected translational velocities of 10-20 km/day and angular yaw rates of 1

rotation every 10 minutes, σQSA is:

σQSA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σQSAx

σQSAy

σQSAz

σQSAϕ

σQSAθ

σQSAψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 km/day

10 km/day

2 km/day

0.02 RPM

0.02 RPM

0.10 RPM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.2)

This σQSA is designed for a case when only planar velocities are expected, however,

non-zero values for the z, roll and pitch components allow the factors to have some

flexibility to landmarks that have velocity components outside the plane (such as a

small roll rate). If more is known about the motion model this should be used to

inform the selection of σQSA.

By selecting an appropriate value for σQSA, the graph allows the landmark ve-

locity to vary within reasonable bounds, preventing the trajectory from potentially

diverging as a result of large velocity estimates. This variance is preferable to treat-

ing the landmarks as strictly static, as that would result in the performance shown

in Section 4.5. In addition, the parameter σQSA indicates the operator’s confidence

in the (prior) belief that the landmark is static. When in-situ information becomes

available, generating a velocity estimate in which there is more confidence than the

QSA, the QSA should no longer be applied to that landmark.

Threshold from QSA to WLS estimate

The choice of σQSA also defines the point to transition from using the QSA to the WLS

estimate. When the confidence in theWLS estimate is better than the QSA covariance

(broadly, σWLS < σQSA), the WLS estimate can be treated as the landmark velocity

measurement. More specifically, the transition to using the WLS velocity estimate
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should occur when:

√︂
σ2
WLSx

+ σ2
WLSy

+ σ2
WLSz

<
√︂
σ2
QSAx

+ σ2
QSAy

+ σ2
QSAz

, (6.3)

and,

√︂
σ2
WLSϕ

+ σ2
WLSθ

+ σ2
WLSψ

<
√︂
σ2
QSAϕ

+ σ2
QSAθ

+ σ2
QSAψ

, (6.4)

are true. Note that for a given set of mission parameters that are typically not variable

during a mission, σQSAv and σQSAω are constants, while σWLSv and σWLSω decrease

as more observations are made of the landmark. Thus, the QSA will be used at the

beginning of a mission, with landmarks transitioning to using their WLS velocity esti-

mate as the mission progresses. Given the smoothly decaying σWLS evolution, unless

there was an incorrect data association (for example due to an event), landmarks

would never transition from using the WLS estimate back to using the QSA. This

transition threshold will be used in the MBQS-SLAM algorithm defined in the next

section.

6.4 Model-Based Quasi-Static SLAM Algorithm

The MBQS-SLAM algorithm is summarized in Figure 6.6. Much of the algorithm

is the same as the baseline static SLAM (Figure 4.11), where a quadrotor performs

pose-graph SLAM by filtering camera images using the 1AprilTag detection algorithm

[28] and the 2iSAM optimizer [9], while following waypoints. However, there are two

new blocks indicated in yellow.

The MBQSFs (B) are loop closure factors that simultaneously minimize the tra-

jectory and the landmark velocity errors, as described in Section 6.1. The calculation

of the landmark velocity measure (A) is similar to the WLS velocity estimate in EM-

MBD-SLAM, but before the WLS velocity is used to build the MBQSFs, convergence

is checked (Section 6.2). If the WLS velocity has not converged, the QSA is applied

(Section 6.3). The proposed process to calculate the landmark velocity measure is

defined in Figure 6.7.
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Figure 6.6: Proposed MBQS-SLAM algorithm. The yellow blocks indicate (A) the
proposed calculation of the landmark velocity measurement using either the quasi-
static assumption (QSA) or the WLS regression estimate, and (B) the novel MBQSFs.

Figure 6.7: Proposed algorithm to calculate the landmark velocity measure to use in
the MBQSFs.

6.5 Results

Five cases are selected to demonstrate the MBQS-SLAM performance. The summary

of test cases in Table 4.6 includes five cases to test the MBQS-SLAM algorithm. The
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mission parameters for the full- and model-scale tests are given in Table 4.1. All cases

restrict landmark motion to the plane (X , Y , ψ). The five cases are:

• Case 1: one-pass, full-scale, quasi-static environment, simulation (6.5.1)

This represents the nominal mission for which MBQS-SLAM has been designed

and shows the improvement of MBQS-SLAM compared to the performance of

MBD-SLAM for the same Case in Section 5.3.3.

• Case 2: one-pass, model-scale, quasi-static environment, simulation and ex-

periment (6.5.2)

This case will be compared to the full-scale Case 1 and the baseline static SLAM

from Section 4.4.4 to demonstrate the continued localization and mapping suc-

cess in a more complex environment.

• Case 3: one-pass, full-scale, anomalously fast (one landmark quasi-static, one

landmark slow) environment, simulation (6.5.3)

Case 3 challenges the algorithm by applying MBQS-SLAM in an environment

with one anomalously fast landmark (the speed of one landmark is slow, while

both are expected to be quasi-static) to determine if the QSA harms the per-

formance when landmarks are unexpectedly fast.

• Case 4: one-pass, full-scale, static environment, simulation (6.5.4)

At the other extreme, Case 4 challenges MBQS-SLAM with an entirely static

environment.

• Case 5: two-pass, full-scale, quasi-static environment, simulation (6.5.5)

The two-pass case builds towards the more general dynamic environments dis-

cussed in Chapters 7 and 8, where events disturb landmark motion.

The covariance matrix used for the dead-reckoning factors match the one used

in the baseline static SLAM and MBD-SLAM as given in Table 4.7. The MBQSF

covariance matrix comprises 12 elements. The first six elements are related to the

quadrotor’s relative pose and match the values for the MBD-SLAM defined in Section

5.3. The last six elements are related to the velocity of the landmark – three for the

translational velocity and three for the angular velocity – and are the same as the

corresponding σv (in [m/s]) or σω (in [rad/s]) element. The value of σv and σω are
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the pre-selected QSA values until the WLS velocity converges, at which point they

are equal to the WLS regression calculated standard deviations, as shown in Figure

6.7. The pre-selected values for σQSA for the model-scale environment are given in

Table 6.1.

Table 6.1: QSA standard deviation (σQSA) on translational and angular velocity
elements, specified for the model-scale case.

element unit σQSA

roll rate [rad/s] 0.002
pitch rate [rad/s] 0.002
yaw rate [rad/s] 0.01
X speed [m/s] 0.01
Y speed [m/s] 0.01
Z speed [m/s] 0.005

The selection of σQSA should exploit any prior knowledge of the environment.

For this section, the covariance matrix is held constant for all five cases to assess how

imprecise selection of σQSA impacts the performance when landmarks are faster (Case

3) or slower (Case 4) than expected.

6.5.1 Case 1: Full-Scale with Quasi-Static Landmarks

The performance of the proposed MBQS-SLAM algorithm in the full-scale, quasi-

static environment for a one-pass mission is summarized in Table 6.2 and the median-

performance trial is shown in Figure 6.8. This first case is the parent case for which

MBQS-SLAM was designed with two mobile landmarks moving at the equivalent of

10 and 20 km/day (ie. quasi-static motion).

This case is the same as the third case for MBD-SLAM in Section 5.3.3. Recall

that the localization and mapping accuracy of MBD-SLAM was similar to the baseline

static SLAM performed in a static environment in Chapter 4, however the velocity

estimates resulted in a boundary that was unable to discern mobile landmarks from

static ones. MBQS-SLAM was designed to maintain the localization and mapping

accuracy, while improving the velocity estimation accuracy and the ability to discern

quasi-static motion from static landmarks.
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Case 1 Localization and Mapping Results
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Figure 6.8: Case 1 simulation of MBQS-SLAM in full-scale, quasi-static environment.

The planar map of the trajectory and landmark positions in Figure 6.8a shows

little error in estimating landmark positions, particularly in the along-track direction.

However, Table 6.2 indicates that the along-track error on the mapping is on average

larger than the cross-track error. As noted previously, the cross-track error on the

trajectory tends to grow as the UAV travels further from its start position, while the

along-track error arises from over- or under-estimating the landmark speeds in the
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Table 6.2: Case 1 (one-pass, full-scale, quasi-static) simulation performance summary
for MBQS-SLAM (Figure 6.8).

metric unit simulation

localization error (norm) [m] 4.42 ± 1.40
x error [m] 2.41 ± 1.30
y error [m] 2.16 ± 1.98
z error [m] 1.75 ± 0.68

mapping error (norm) [m] 4.05 ± 1.20
x error [m] 2.50 ± 1.71
y error [m] 1.50 ± 1.23
z error [m] 1.89 ± 0.79

mean static landmark speed error [m/s] 0.0476 ± 0.0149
mean dynamic landmark speed error [m/s] 0.0299 ± 0.0189
mean speed boundary [m/s] 0.0847 ± 0.0225

X-direction.

In terms of speed, the mean speed estimated for static landmarks was 0.048 m/s

(equivalent to 9.6 km/day), while the boundary used to distinguish between the static

and mobile landmarks was a speed of 0.085 m/s (17 km/day). Looking through the

results of the ten trials also shows that while typically MBD-SLAM over-estimated

the speeds of mobile landmarks, MBQS-SLAM tends to under-estimate their speeds

as expected. This results in MBQS-SLAM performing more similarly to static SLAM

during the early parts of a mission and performing more similarly to MBD-SLAM in

the later parts of the mission. This is postulated to be a more successful behaviour

outcome than the MBD-SLAM’s over-estimated velocities for quasi-static environ-

ments, as quasi-static environments are expected to be well-mapped using static ap-

proaches for short-duration missions, until the displacement of landmarks becomes

large (as discussed in Section 3.4).

Case 1 Discussion

The localization and mapping accuracies of the MBDQS-SLAM (4-5% relative to the

100 m pass-length) are statistically similar to the baseline static SLAM algorithm

applied in a static environment (3-6%). Since the localization performance of the
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UAV is the primary success criterion, the MBQS-SLAM performs acceptably in the

quasi-static environment. The next question is whether it performs better than the

MBD-SLAM of Section 5.3.3.

While the localization and mapping performance are similar to that shown in Case

3 for the LV- and EM-MBD-SLAM (Section 5.3.3), there is notable improvement in

the velocity estimation accuracy. While MBD-SLAM showed a mean speed boundary

of 25 km/day (equivalent), meaning quasi-static landmarks (10-20 km/day) could not

be distinguished, for MBQS-SLAM, the boundary was 17 km/day. This means that

the slowest landmarks of interest (10 km/day) could not be distinguished from the

static landmarks, while the motion of 20 km/day landmarks can be distinguished.

This is also apparent in the reduced mean static landmark speed estimate for MBQS-

SLAM (14 km/day for MBD-SLAM, and 9.6 km/day for MBQS-SLAM).

As expected, the velocities estimated using MBQS-SLAM are lower than their true

values. This is because the QSA minimizes the magnitude of the landmarks’ velocity

until the WLS estimate converges. Thus, compared with MBD-SLAM which selects

any value for the velocity that minimizes the UAV localization error, MBQS-SLAM

chooses velocities close to zero initially. This underestimation can be controlled by

selecting an appropriate σQSA as it governs the magnitude of the velocity estimate in

the graph.

6.5.2 Case 2: Model-Scale with Quasi-Static Landmarks

Next, MBQS-SLAM is tested in simulations and experiments at model-scale, as

described in Chapter 4. Performance is summarized in Table 6.3. The simula-

tion median-performance trial is shown in Figure 6.9 and the experiment median-

performance trial is shown in Figure 6.10.

Case 2 Localization and Mapping Results

The planar map of trajectory and landmark positions for the trial with the median

performance in simulation is plotted in Figure 6.9a. It shows a growing cross-track

error as the UAV moves away from the start position, as well as a 0.1-0.2 m off-set

in the along-track position of all landmarks and the poses in the UAV’s trajectory.

The localization and mapping error on average is approximately 5% of the 10 m pass



115

0 2 4 6 8 10
x [m]

-2

-1

0

1

2

3

4
y
[m

]

1 2 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21

3

4

ground truth UAV trajectory
estimated UAV trajectory
ground truth landmark positions
estimated landmark positions
ground truth mobile landmark trajectory
estimated mobile landmark trajectory

(a) planar map

12  1  3 13  2 14 15  4  5 16  6 17  7 18  8 19  9 20 10 21 11   
landmark ID

0

0.02

0.04

0.06

0.08

0.1

sp
ee
d
[m

/
s]

0.021

0.01

boundary between mobile and static landmarks
estimated static landmark speed (norm)
estimated mobile landmark speed (norm)
ground truth mobile landmark speed

(b) speed estimates

Figure 6.9: Case 2 simulation of MBQS-SLAM in model-scale, quasi-static environ-
ment.

length with most of the error attributed to the altitude component of the estimate.

The mean speed boundary between static and mobile landmarks is 8.5 km/day equiv-

alent, meaning both the 10 km/day and 20 km/day landmark could be discerned if

their speeds are well estimated. The error on the mobile landmark speeds is on av-

erage 0.0028 m/s (on 0.01 m/s and 0.02 m/s true speeds). As the mobile landmark

speeds are typically underestimated using MBQS-SLAM, some trials do not succeed
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Figure 6.10: Case 2 experiment of MBQS-SLAM in model-scale, quasi-static environ-
ment.

in distinguishing the 10 km/day landmarks from the static landmarks.

In the experiment, the Bebop quadrotor’s motion deviated farther in cross-track

from the designed one-dimensional trajectory, however, as seen in Table 6.3, the lo-

calization error in the cross-track direction is not statistically larger than in the sim-

ulation. In the experiment, the altitude components of the localization and mapping

errors were largest by a small margin compared with the along-track and cross-track
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Table 6.3: Case 2 (one-pass, model-scale, quasi-static) simulation (Figure 6.9) and
experiment (Figure 6.10) performance summary for MBQS-SLAM.

metric unit simulation experiment

localization error (norm) [m] 0.48 ± 0.19 0.37 ± 0.09
x error [m] 0.14 ± 0.06 0.20 ± 0.06
y error [m] 0.10 ± 0.03 0.13 ± 0.06
z error [m] 0.42 ± 0.19 0.21 ± 0.09

mapping error (norm) [m] 0.50 ± 0.19 0.35 ± 0.10
x error [m] 0.15 ± 0.07 0.17 ± 0.07
y error [m] 0.13 ± 0.11 0.14 ± 0.08
z error [m] 0.42 ± 0.20 0.22 ± 0.11

mean static landmark speed error [m/s] 0.0036 ± 0.0011 0.0031 ± 0.0005
mean dynamic landmark speed error [m/s] 0.0028 ± 0.0009 0.0062 ± 0.0018
mean speed boundary [m/s] 0.0085 ± 0.0016 0.0066 ± 0.0005

errors. Speeds of mobile landmarks were again under-estimated in the experiments as

indicated by the larger mean error for the mobile landmark speed estimates (0.0062

m/s) than for the static landmark speed estimates (0.0031 m/s). The boundary be-

tween the static and mobile landmark speeds was on average 6.6 km/day meaning

landmarks at 20 km/day could be discerned, while landmarks at 10 km/day may

struggle to be assigned as mobile given the error on mobile landmark speed estima-

tion.

Case 2 Discussion

In general, the patterns in performance of simulation and experiment trials were

similar with a few exceptions. While the along-track component of the the localization

error was larger in the experiment than in the simulation, the altitude component was

notably smaller, resulting in localization and mapping errors smaller in the experiment

than in the simulation. This aligns with the expectation that the simulated quadrotor

altimeter is modelled with the worst case noise model to be conservative. The mean

speed boundary in both cases was below the 10 km/day quasi-static landmark speed,

meaning quasi-static landmarks could be distinguished from static landmarks. On the

other hand, speed estimates of mobile landmarks were notably better in simulation
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than in the experiment, possibly due to the smooth, consistent motion of simulated

landmarks compared to the somewhat lurching motion of NXT landmarks at low

speed in the experiment.

Compared to Case 1, Case 2 shows very similar performance with the full-scale

simulation performance falling between the model-scale simulation and experiment

performance in terms of localization and mapping errors. The model-scale trials

show improvements to the velocity estimation accuracy of both the static and mobile

landmarks, resulting in the boundary between static and dynamic landmarks being

a slower speed. At model-scale, an iceberg with an equivalent speed of 7-9 km/day

could be detected and the average static landmark is estimated with a speed of 3-4

km/day. This improvement compared to the full-scale case (17 km/day boundary

between static and mobile landmarks) is attributed to the lower impact of quadrotor

attitude error propagation over shorter distances.

6.5.3 Case 3: Full-Scale with Anomalously Fast Landmark

As it is impossible to be certain that all landmarks in an environment are quasi-static,

the MBQS-SLAM must be robust to faster-than-expected landmarks. In this case,

an anomalously fast landmark travelling at 80 km/day (fastest speed used in the

slow environment tests in Chapter 5) and a quasi-static landmark at 20 km/day are

simulated. Note that the value of σQSA is unchanged from the parent case (Case 1)

as the faster landmark is unexpected. The performance is summarized in Table 6.4

and the median-performance trial is shown in Figure 6.11.

Case 3 Localization and Mapping Results

The localization and mapping error remains at 3-4% of the pass length (100 m)

despite the presence of a landmark moving much faster than σQSA was designed for.

However, the error on both static and mobile landmark speed estimation is much

larger. For the anomalously fast landmark (labelled landmark 3), the transition

from using the QSA to using the WLS estimate is delayed. The consequence is the

underestimation of this landmark’s speed, subsequently underestimating the UAV’s

change in X position when it observes that landmark. This makes the nearby static

landmarks appear to be moving in the negative X direction and makes landmark
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Figure 6.11: Case 3 simulation of MBQS-SLAM in full-scale, anomalously fast envi-
ronment (one quasi-static landmark and one slow landmark).

4 (the quasi-static landmark) appear to be slower. This accounts for the under-

estimation of the positions of landmarks in the along-track direction of approximately

2.5 m, the high static speed error of 6.6 km/day and the shorter estimated trajectory

than ground truth trajectory in the X direction. It also exacerbates the error on the

mobile landmark speed estimates. In turn, this leads to an increase in the boundary

used to discern mobile from static landmarks to 22 km/day.
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Table 6.4: Case 3 (one-pass, full-scale, anomalously fast) simulation performance
summary for MBQS-SLAM (Figure 6.11).

metric unit simulation

localization error (norm) [m] 3.52 ± 1.03
x error [m] 2.51 ± 1.31
y error [m] 1.11 ± 0.32
z error [m] 1.45 ± 0.69

mapping error (norm) [m] 3.38 ± 1.01
x error [m] 2.51 ± 1.33
y error [m] 0.90 ± 0.30
z error [m] 1.53 ± 0.76

mean static landmark speed error [m/s] 0.0332 ± 0.0068
mean dynamic landmark speed error [m/s] 0.0789 ± 0.0229
mean speed boundary [m/s] 0.1111 ± 0.0080

Case 3 Discussion

The definition of the boundary between the static and mobile landmarks is one stan-

dard deviation above the mean speed of all landmarks. In this case, the boundary is

skewed by the large speed for the anomalously fast landmark. If instead the boundary

were calculated iteratively – first calculating the boundary with all landmarks, then

removing any that are faster than the boundary and re-calculating the boundary – the

boundary decreases. For instance, for the plotted example, the mean speed boundary

calculated without landmark 3 is the equivalent of 12 km/day, which is similar to

Cases 1 and 2. As the boundary is used only in post-processing data, its definition

does not impact the functionality of MBQS-SLAM, but is important for an operator

acting upon the results.

While the localization and mapping errors are comparable in the anomalously fast

case to the parent case (Case 1) and to the baseline static SLAM applied in the static

environment, the mobile landmark speed estimates and boundary both deteriorated in

the presence of an anomalously fast landmark. This means that while the quadrotor

would successfully localize itself to complete its mission, it would be difficult to make

a safe navigation plan as the quasi-static landmark could not be detected. If this

situation were to occur, the recommendation would be to perform an additional pass
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over the landmarks to take advantage of the improved estimate for landmark 3 that

is available at the end of the mission.

The anomalously fast case is useful for comparing the velocity estimates from

MBQS-SLAM to those from MBD-SLAM. In Chapter 5, MBD-SLAM was shown

to over-estimate the velocities of mobile landmarks and typical estimates for static

landmarks included motion in the positive X direction (aligned with the motion of the

quadrotor). MBQS-SLAM on the other hand underestimates slow mobile landmark

velocities and estimates of static landmark velocities are in the negative X direction.

The QSA is responsible for this reduction in magnitude of the speed estimates.

Note that as the number of landmarks moving faster than the characteristic speed

grows, so does the graph’s effort to minimize the magnitude of the speed of those

mobile landmarks. Assuming the mobile landmarks move in a consistent direction,

as they do in this thesis, in compensation for these under-estimates, static landmarks

are attributed motion in the opposite direction of the mobile landmarks. To avoid

this, additional known-static landmarks such as landmark 1 could be deployed to

strengthen the tie of the relative factors in the graph to the inertial reference frame.

This approach is not available in an unstructured Arctic environment, making the

proper selection of σQSA important.

While MBQS-SLAM is shown to be robust to an anomalously fast landmark, it

is preferable to select σQSA to suit the environment when possible, to improve the

speed estimates of the landmarks.

6.5.4 Case 4: Full-Scale with All Static Landmarks

The opposite limiting case to the anomalously fast landmark in Case 3, is a fully

static environment. This case gives insight into the lower-bound on the landmark

speeds that can be detected by simulating all 21 landmarks as stationary while using

σQSA designed for the environment of Case 1. The performance is summarized in

Table 6.5 and the median-performance trial is shown in Figure 6.12.

Case 4 Localization and Mapping Results

The localization and mapping errors (3% and 3.3% respectively of the 100 m pass

length) are similar to the previous three cases in quasi-static environments. The
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Figure 6.12: Case 4 simulation of MBQS-SLAM in full-scale, static environment.

most notable difference to the parent case (Case 1) is the boundary between static

and mobile landmarks is less than 8 km/day (17 km/day in Case 1). The average

speed estimated for the static landmarks (all 21) is 5 km/day, also smaller than Case

1 (9 km/day).
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Table 6.5: Case 4 (one-pass, full-scale, static) simulation performance summary for
MBQS-SLAM (Figure 6.12).

metric unit simulation

localization error (norm) [m] 3.10 ± 1.23
x error [m] 1.82 ± 1.16
y error [m] 0.81 ± 0.64
z error [m] 1.84 ± 1.00

mapping error (norm) [m] 3.29 ± 1.51
x error [m] 2.16 ± 1.39
y error [m] 0.78 ± 0.54
z error [m] 1.91 ± 1.11

mean static landmark speed error [m/s] 0.0241 ± 0.0059
mean speed boundary [m/s] 0.0391 ± 0.0094

Case 4 Discussion

Although this Case is performed at full-scale, the localization and mapping accuracy

is even slightly better (3-3.5% of the 100 m pass length) than the baseline Static

SLAM in a static environment from Section 4.4.4 (4.5-5.5% in simulation relative to

the 10 m pass length). Given this, unless on-board processing is limited, there is no

downside to applying MBQS-SLAM in a static environment, if there is a possibility

of mobile landmarks.

6.5.5 Case 5: Full-Scale with Multiple Episodes

Case 5 is the two-pass, full-scale, quasi-static environment simulation of MBQS-

SLAM. It is identical to Case 1 in this chapter, except:

1. after the quadrotor returns to the start position it pauses for 5 seconds then

performs a second pass from x = 0 m to x = 100 m, and,

2. the pose update rate is halved (to 0.5 Hz) to keep the total number of observa-

tions of each landmark the same.

This update rate change is reflected in the X and Y elements of the dead-reckoning

factor covariance matrices as those elements are based on the optical flow speed

measurement (Table 4.7). All other covariance matrices are the same as Case 1.
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As discussed earlier in this chapter, while the second pass in a static environment

does not improve or degrade the static SLAM performance, a second pass over mobile

landmarks results in a longer time spanned by the set of observations used to calcu-

late the WLS velocity estimate. The WLS convergence study in Section 6.2 showed

that longer time spanned by observations resulted in more certainty in the velocity

estimate. This means the performance is expected to improve in this case compared

to Case 1.

On the other hand, as more time passes, the likelihood of an event occurring

that disrupts a landmark’s motion increases (see Chapter 3). While an event is not

simulated in this case, events will be studied in Chapters 7 and 8 in a mission and

environment otherwise similar to this case.

Also, it was previously noted that since the velocity estimates used to construct

the loop closure factors are only updated when the landmark is observed, there is more

uncertainty in the velocity estimates of landmarks 10, 21 and 11 than in landmarks

12, 13 and 2 as they cannot take advantage of the loop closure factors constructed

during the return to the start location. These new factors are only used to re-estimate

landmarks 10, 21, and 11 when those landmarks are re-observed during the second

pass, which is expected to improve their estimation accuracy.

The performance is summarized in Table 6.6 and the median-performance trial is

shown in Figure 6.13.

Case 5 Localization and Mapping Results

Table 6.6 shows an average localization error of 3.6 m and an average mapping error

of 3.1 m over 10 repeat trials. The median case plotted as a map in Figure 6.13a

does not show a growth in the cross-track error further from the start position, and

shows good accuracy in the estimated and ground truth mobile landmark paths. This

is also seen in the bar chart of landmark speeds in Figure 6.13b with well estimated

mobile landmark speeds and all static landmarks correctly located below the boundary

line. However, the table shows that statistically, the mean speed boundary is 12.4

km/day which would be too fast to discern that the 10 km/day landmark was mobile.

The mean static landmark speed estimate (ie. error on the static landmarks) was 6

km/day, while the mobile landmarks were more accurately estimated with an average
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Figure 6.13: Case 5 simulation of MBQS-SLAM in full-scale, quasi-static environment
with UAV performing two passes.

error of 3.6 km/day.

Case 5 Discussion

The two pass mission not only showed an improvement over the one-pass mission (see

Table 6.2) in velocity estimation accuracy and a lower boundary for distinguishing
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Table 6.6: Case 5 (two-pass, full-scale, quasi-static) simulation performance summary
for MBQS-SLAM (Figure 6.13).

metric unit simulation

localization error (norm) [m] 3.60 ± 0.80
x error [m] 1.88 ± 0.45
y error [m] 1.76 ± 0.83
z error [m] 1.86 ± 0.69

mapping error (norm) [m] 3.05 ± 0.95
x error [m] 1.22 ± 0.57
y error [m] 1.36 ± 0.89
z error [m] 2.01 ± 0.85

mean static landmark speed error [m/s] 0.0304 ± 0.0117
mean dynamic landmark speed error [m/s] 0.0183 ± 0.0090
mean speed boundary [m/s] 0.0622 ± 0.0139

mobile landmarks from static landmarks, but also showed an improvement in local-

ization and mapping accuracies. These improvements were consistent across the ten

trials as indicated by the smaller standard deviation on nearly every metric (the ex-

ception being the altitude error for both localization and mapping which each had

a smaller mean value, but a larger standard deviation in the two-pass trials). Much

of the improvements in speed and mapping estimates are due to the improvements

on landmarks that are farthest from the start position (landmarks 10, 21 and 11), as

expected. Case 5 also shows that reducing the SLAM update rate to 0.5 Hz does not

reduce the localization and mapping accuracy.

The improvement in mapping and localization accuracy is not sufficient to recom-

mend performing multiple passes in every case due to the costs in terms of (1) energy,

(2) processing power, and (3) time delay. However, if the accuracy of landmark speed

estimation is critical to the mission, then multiple passes are effective towards this.

6.6 Summary of Results and Discussion

This chapter addressed the limiting case of quasi-static environments by extending

MBD-SLAM to MBQS-SLAM using the proposed MBQSFs. The quasi-static limit-

ing case is particularly interesting as direct measurements of landmark velocity are
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not possible, making visual-SLAM approaches to dynamic environments unsuitable.

Optimizing the parameters of quasi-static landmark KMMs in the graph was shown

to be effective, where otherwise this motion could cause the localization estimate to

diverge.

Focused only on the deterministic motion during an epoch between events, the

novel MBQS-SLAM method used the proposed QSA to treat the landmark velocity

as zero until the WLS regression velocity estimate converged. After defining the

MBQSFs and the QSA, as well as studying the convergence of the WLS estimate,

MBQS-SLAM was defined and successfully demonstrated in simulations at full- and

model-scale and in experiments at model-scale.

In Cases 1 and 2, MBQS-SLAM proved to have similar mapping and localization

accuracies to MBD-SLAM in quasi-static environments, while the velocity estimation

accuracy improved with MBQS-SLAM. MBQS-SLAM tended to under-estimate the

speed of landmarks when only a few observations were used to calculate the speed.

This is better suited to quasi-static environments than the over-estimation that is

typical of MBD-SLAM. In exchange for this improvement of velocity estimation,

a characteristic speed of landmarks in the environment is needed. As this prior

knowledge is unlikely to be known absolutely, two boundary cases were chosen to

assess the impact of imprecisely specifying the landmark characteristic speed: Case 3

in which motion is faster than expected, and Case 4 in which motion is slower than

expected).

Performance in boundary cases

Simulation cases showed that for two boundary conditions, firstly an anomalously

fast landmark and secondly a fully static case, the SLAM estimate was not degraded,

instead, only the accuracy of the landmark velocity estimates was impacted. These

two cases were ones that challenged the MBD-SLAM proposed in Chapter 5, and

bounded the design space for the landmark KMM velocity. These boundary cases

show that if prior knowledge of the expected landmark velocities is available, it should

be incorporated into the variance measure of the QSA, but even if that prior measure

is imprecise, localization and mapping accuracies comparable to the baseline static

SLAM can be achieved with MBQS-SLAM.

The quasi-static pose graph SLAM approach proposed here was finally applied
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to a mission with two passes through the environment (a multi-episode mission) in

Case 5. This case demonstrated that, after the second pass, the trajectory, map and

velocity estimates were improved as more observations were made over the extended

mission.

Since much of the improvement is attributed to the longer time elapsed between

observations, it is expected that a single pass with longer length would also show a

similar velocity estimation accuracy improvement. However, longer pass lengths mean

a longer duration relying on dead-reckoning during the outbound portion of the pass

before the loop closures during the return trip, and, like all SLAM, poses estimated

with MBQS-SLAM would accrue more uncertainty during this period. Improving the

UAV’s orientation accuracy (ie. compass and gyroscope) or identifying known-static

landmarks along the route would reduce the uncertainty growth rate.

6.6.1 Concluding Remarks

In conclusion, the proposed MBQS-SLAM algorithm enabled a UAV to remain on-

station, persistently mapping a quasi-static environment. It was able to maintain

an accurate map and trajectory estimate despite an anomalously fast landmark, and

performed as well as the baseline static SLAM in static environments. Given these

results, MBQS-SLAM can be recommended for quasi-static environments,

when a characteristic landmark velocity is available, even if the environ-

ment includes landmarks that are much faster or slower than the expecta-

tion. This ability to accurately localize the UAV in a quasi-static environment cannot

be achieved through traditional static SLAM or existing dynamic SLAM algorithms.

The next chapter explores the event detection capability that will enable the UAV

to apply MBQS-SLAM during epochs in a general piecewise-deterministic dynamic

environment, without the KMM of a previous epoch corrupting the estimate in the

current epoch.



Chapter 7 Detection of Disruptions to Environmental Model

The proposed MBDFs and MBQSFs were shown to be effective for SLAM in environ-

ments where the landmark KMMs have constant (though unknown a priori) parame-

ters. However, general dynamic environments do not follow this constant constraint.

UAV performance in general dynamic environments relies on correct modelling as the

inclusion of a factor based on an incorrect KMM – whether a static assumption that

is incorrectly applied to a mobile landmark, or a landmark’s KMM parameters have

evolved – can cause a graph to diverge.

Piecewise-deterministic KMMs are better descriptions of landmark motion in gen-

eral dynamic environments, such as marine Arctic environments, and are character-

ized by a series epochs, each with a deterministic KMM, disturbed by events. Events

are disruptions that underlie changes in the environment, which subsequently change

a landmark’s KMM. Typically, events cannot be directly observed, but instead are

inferred from the unanticipated changes to the landmark position. Events will be

treated as instantaneous discontinuities in a landmark’s path since the duration of

an event is typically much shorter than the duration of the mission. Since epochs

are characterized by constant velocity KMMs, events change either (1) speed (mag-

nitude), (2) direction of motion, or (3) both. The events studied in this chapter will

be of all three types and will have different magnitudes.

To apply piecewise-deterministic KMMs, it is necessary to detect disruptions

to the KMM that are estimated using MBQS-SLAM in quasi-static environments.

This chapter will describe the strategy for event detection (Section 7.1), propose the

method for detecting disruptions (events) in a piecewise-deterministic environment

(Section 7.2) and test the proposed approach’s ability to detect a variety of events in

idealized conditions (Section 7.3). Finally, Section 7.4 discuses the performance of the

proposed event detection algorithm as an enabler for SLAM in piecewise-deterministic

quasi-static environments that will be discussed in Chapter 8.

129
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7.1 Proposed Event Detection Strategies

As already noted, whether applied in static or dynamic environments, constructing

the factor graph is a critical process for graph SLAM. Incorrect factors can cause a

graph to diverge or result in solutions that differ from the ground truth.

It is common for incorrect factors to arise due to incorrect data association – when

an observed landmark is mistakenly associated (matched) to a previously observed

landmark during the SLAM loop closure step. This is often the case in static SLAM.

Meanwhile, in piecewise-deterministic environments, it may arise when a landmark’s

KMM has changed due to a disruption and an observation after this disruption is in-

correctly associated with an observation prior to the disruption. In the static SLAM

case, the goal is to remove the incorrect factors. Meanwhile in dynamic SLAM pos-

tulated for a piecewise-deterministic environment as it is here, the goal is to detect

the event, disconnect the newest observation and use it to begin learning the new

KMM parameters. In this sense, event detection is the process of recognizing that

a new landmark observation is inconsistent with the previous KMM based on the

measurement and model variances. In this thesis, data association challenges from

mis-identifying landmarks will not be addressed since landmarks are uniquely identi-

fied by AprilTags. Rather, this chapter will address data association challenges due

to events.

7.1.1 Postulated Loop Closure Factors

When a previously observed landmark is observed again, new loop-closures are pos-

tulated as shown in Figure 7.1. This figure shows a simple case where loop closures

are only drawn for a single landmark in a piecewise-deterministic environment. The

landmark is observed at consecutive UAV poses 3, 4, 5 and 6, then not observed

again until pose 12. The observations at poses 3, 4, 5 and 6 are associated with the

same landmark and KMM (i.e. all are within one epoch). At pose 12, the landmark

is observed again, and new loop closure factors are postulated that connect to each

pose that previously observed that landmark.

Figure 7.2 shows the resulting graph two poses later. If the observation made

at pose 12 were determined to be from the same epoch as the observations made at
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poses 3, 4, 5 and 6, those loop closure factors should become part of the graph (as

shown in (a)), however, if an event occurred during the time the UAV travelled from

pose 6 to pose 12, the postulated loop closure factors should not be added (as shown

in (b)).

Figure 7.1: Factor graph constructed for a piecewise-deterministic environment, be-
fore postulated factors have been evaluated to detect an event. Figure shows only
dead-reckoning factors and loop closure factors for a single landmark for clarity.

Figure 7.2: Factor graph constructed for a piecewise-deterministic environment in two
cases: (a) no event detected and (b) event detected. Figure shows only dead-reckoning
factors and loop closure factors for a single landmark for clarity.
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Impact of False Positive Detections or False Negative Misses

Figure 7.2 shows how important the event detection decision is to a successful SLAM

estimate. Even with only seven observations of the landmark, there are a total of

21 loop closure factors constructed, twelve of which would be incorrect if an event

had occurred. Removing those factors unnecessarily means the dead-reckoning drift

that occurs between poses 6 and 12 cannot be corrected through the loop closures,

while keeping those factors when they are not connected to the same epoch for the

landmark means more than half of that landmark’s factors are driving the velocity

estimate away from the correct value. Assuming persistent operations where there will

be many observations of many landmarks over a long period of time, it is preferable

to have a false positive detection (missing the gains of a loop closure) than to have a

false negative (incorrect loop closure factors).

There are ways to assess whether a new measurement is consistent with the es-

tablished model, as reviewed in Section 2.3. Of particular interest are the approaches

of structure learning, which find erroneous factors by examining the graph structure

itself. This method is computationally expensive so a pre-filter is proposed. This

section will describe the application of score-based structure learning (SBSL), before

the complete event detection approach is described in Section 7.2.

7.1.2 Score-Based Structure Learning (SBSL)

SBSL uses the information in the graph structure, to detect anomalous measurements.

The error of a graph is defined as the average error of a graph’s edges, where the

error of an edge is defined as the difference between the measurement and the graph-

optimized value estimated for that edge. This graph error is minimized during the

optimization step (in this thesis, the iSAM back-end is used), and typically as more

loop closure factors are incrementally added to the graph, the graph error will decrease

or stabilize. In SBSL, the graph error can be used to score the graph. A small score

is best, as it means the optimized poses have a better fit to the measurements.

Evolution of graph error in MBD- and MBQS-SLAM

As MBD-SLAM and MBQS-SLAM operate within a single epoch, each new landmark

observation may be noisy, but the new observations are always of the same KMM.

More observations reduce the uncertainty in the velocity measurement (as seen in the
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WLS convergence study in Section 6.2), and improves the velocity measurement (as

seen when comparing the two-pass mission in Section 6.5.5 to the one-pass mission

in Section 6.5.1). As loop closure factors are added, and drift in the dead-reckoning

factors is corrected, the values optimized through iSAM become a better fit for the

set of all of measurements, and the graph error subsequently decreases.

However, in the case of adding a new observation after an event, this new observa-

tion will be inconsistent with the previously constructed factors moving the optimized

poses and velocities away from the previous best fit and increasing the error on all of

those factors. This means the graph error before adding the new observation will be

measurably lower (better) than the graph error after adding the new observation.

SBSL uses this notable increase in graph error to indicate the newly added ob-

servation does not belong to the model that the rest of the graph represents (in this

case the landmark KMM) and, thus, the factor(s) constructed using that observa-

tion should not be included in the graph. SBSL does not rely on the graph error to

smoothly decrease when no event occurs, but only looks at how the error changes from

adding one or more edges related to an observation. This means SBSL is well suited

for complex dynamic environments where the graph error may fluctuate as a result of

noisy measurements. Calculating the graph error is computationally expensive, but

is a definitive way to detect whether an event occurred between observations. A pre-

filter that identified potential events to then be scored would be more computationally

efficient.

7.1.3 KMM Convergence Pre-Filter Design

In Chapter 6, the convergence of the WLS velocity estimate was demonstrated. Once

this estimate converged, new observations of the landmark position did not cause

large (compared to σWLS) changes in the velocity estimate for the landmark. As

such, a heuristic threshold ε on the variation of the estimate in response to a new

observation is a useful pre-filter for events. This pre-filter would identify potential

events when either:

∆v̂ ≥ εv, (7.1)
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or,

∆ω̂ ≥ εω, (7.2)

where ∆v̂ and ∆ω̂ are the changes in translational and angular velocity estimates

respectively that result from incorporating the new observation in the WLS regression,

and εv and εω are the pre-filter thresholds for translational and angular velocities,

respectively.

This threshold provides an opportunity to balance the competing needs to (a)

minimize the computational time (fewer potential events identified) and (b) catch

events as they occur. A larger threshold means more potential events are detected for

the SBSL event detector to assess, while a smaller threshold means events of small

magnitude may not be detected, or may be detected late. As it is preferable to have a

false-positive event detection than to miss an event, future work should be undertaken

to optimize the computation time of the error calculation, allowing the increase of the

threshold (or the removal of the pre-filter altogether) to bias the pre-filter towards

false-positive detections.

Threshold selection: In the case of a quasi-static environment, there already

exists a measure of the characteristic velocity (υk) for a landmark that was used to

construct σQSA in the QSA. Using this velocity to design the threshold is appropri-

ate. Simulation and experimental experience suggests that a threshold of ε = υk/3

creates a filter that is sensitive to the types and magnitudes of events studied in this

thesis. When the threshold is larger (such as εv = υk), several false events were pos-

tulated and the cycle time became too long to maintain waypoint-tracking. When the

threshold was smaller (such as ε = σWLS) many events were missed by the pre-filter.

7.2 Proposed Event Detection Algorithm

The proposed event detection algorithm is described in this section. It does not

address SLAM or the method of estimating the landmark velocity, as those elements

remain the same as in the MBQS-SLAM proposed in Chapter 6. The proposed

approach uses a series of checks presented in Figure 7.3 to determine if an event has

occurred.
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Figure 7.3: Proposed event detection algorithm, consisting of three checks.

When a new observation (zk) is made of landmark k, it is added to the set of

all observations of landmark k. The first check that is performed (labelled (a) in the

Figure 7.3) determines if the WLS estimate has converged. Recall that MBQS-SLAM

assumes the landmark is static until the WLS velocity estimate converges (called the

QSA) and as such, it is not possible to detect events before the WLS velocity estimate

converges.

The next check (b) examines how the translational and angular velocity estimates

(v̂k and ω̂k), respectively, change when zk is added. This check functions as a pre-filter

for event detection, costing little computation-wise, but potentially providing false
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positives. If the change in the estimates is small, the new observation is considered

consistent with the current KMM, meaning no event has occurred, otherwise, the

SBSL approach to event detection is applied.

The final check (c) consists of several steps: (1) the graph score without the

postulated loop closures formed based on zk is calculated; (2) the zk-based factors are

added to the graph; (3) the graph is optimized, and (4) the graph error is calculated.

If the graph score without the loop closures (1) is larger than the graph score with

the loop closures (4), the new loop closures are considered consistent with the current

KMM, no event has occurred, and the standard MBQS-SLAM algorithm can continue.

Otherwise, an event is detected.

Once the event has been detected, the postulated factors based on zk must be

removed, returning the graph to the state it was in at step (1). It is also necessary

to appropriately track that the landmark has experienced an event causing it to

transition to a new epoch. This means that all observations made in the previous

epoch should be archived, and a new KMM should be started with zk as its first

observation. Starting a new KMM means returning to using the QSA until the WLS

velocity estimate converges, treating future observations as part of the new KMM,

and not constructing factors across the event.

7.3 Results

Unlike previous chapters where localization and mapping accuracy as well as velocity

estimation accuracy were performance metrics, this chapter is interested in whether

events are correctly detected, if they are detected at the correct time (before incor-

porating the first observation after the event) and if any false-positive events are

detected by the proposed algorithm. As such, the simulation environment and cases

defined in Chapter 4 are not used. Instead, a sandbox is developed with idealized

conditions to focus on the event detection rather than the SLAM.

This section begins by defining the sandbox environment then uses that sandbox

to test the detection success for different types and magnitudes of events.
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7.3.1 Sandbox Environment

To assess the performance of the proposed event detection approach, many different

events are tested in a sandbox environment. The sandbox environment uses the

same basic structure as in Chapter 6 with 19 static and two mobile landmarks in

the configuration of Figure 4.10 over a 100 m length, with only the first landmark

known a priori to be static. Unlike the tests in the previous chapters, in the sandbox

there is no added corrupting noise to either the tag detection position estimates or

the odometry and altitude measurements. In this way, the SLAM inputs are idealized

compared to Chapter 6. This means event detection limitations cannot be attributed

to noisy observations, and repeat trials of the same set of parameters yield the same

results (completely deterministic).

Task: The selected task is a two-pass mission as in Section 6.5.5, where in each

pass the quadrotor nominally flies along the X-axis and returns to the start position

while mapping the landmarks and localizing itself with MBQS-SLAM in the process.

The update rate for the MBQS-SLAM algorithm is 0.5 Hz, and landmarks 3 and 4

are both mobile at 20 and 10 km/day, respectively (quasi-static).

Event characteristics: Events have different types and magnitudes. For this

study, the type of an event will be limited to (1) changes in speed, (2) changes in

direction, or (3) both. Due to the layout of the map and the quadrotor’s FOV, to

ensure the landmark is visible after the event, only one magnitude of direction change

will be studied: a moderate turn to port. Speed changes will be either increasing or

decreasing between three possible settings: static, quasi-static (0.1 m/s (20 km/day)),

and slow (0.2 m/s (40 km/day)).

Event insertion: Events are scheduled to occur between passes while the quadro-

tor pauses (5 seconds duration) at the start position. First, a set of tests will insert

an event for one landmark (landmark 3) only, while the other mobile landmark (land-

mark 4) remains in a single epoch. Next, an additional test will be performed where

both landmark 3 and 4 undergo different events simultaneously.

7.3.2 Detection of One Event for One Landmark

The set of all events studied for the case of one landmark experiencing one event

are presented in Table 7.1. It shows the pre-event KMM (heading θ0 and speed v0)
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of landmark 3 on the left hand side and the post-event KMM (θ1 and v1) on the

top. Cells of the table that are shaded in gray with the label ‘N/A’ are arrangements

that either do not result in an event (ie. the KMM parameters do not change), or

they change in a way that is redundant. For example, if the quadrotor began at

0.1 m/s, then stopped moving, a rotation just before the stop would not change the

detectability of the event. Colours of the other cells indicate the success of the event

detection. Green cells are events that are detected at the correct time, yellow cells

are events that are detected but not at the correct time and red cells are events that

are not even detected. The number in the cell is the number of false positive events

detected after the entire algorithm in Figure 7.3 is applied.

Table 7.1: Performance summary of event detection for landmark 3. At left is the
pre-event KMM, on top is the post-event KMM. Cell colours indicate level of success
(green: detected at the correct time, yellow: detected late, red: not detected) and
numbers indicate any false-positive detections.

θ1 [rad] -0.13 0.5
v1 [m/s] 0 0.1 0.2 0 0.1 0.2

θ0 [rad] v0 [m/s]
0 N/A 0 0 N/A N/A N/A

-0.13 0.1 0 N/A 0 N/A 0 0
0.2 0 0 N/A N/A 0 0

Table 7.1 shows that the proposed event detection algorithm in Figure 7.3 per-

formed perfectly for events that altered the landmark direction. It was also able

to detect events that changed only landmark speed but detected these events late

(yellow). These events were detected on the first observation of the landmark as the

UAV returned to its start point in the second pass. The one event that was not

detected (red), was a reduction in speed from 40 km/day to 20 km/day. No false

detections were reported in these tests. The proposed event detection algorithm was

able to detect nine out of the ten events tested. The late detections for speed-change

only events are acceptable given the small magnitudes in speed changes and the short

duration between passes.
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Detection of One Event Discussion

Direction changes are easier types to detect because the new landmark observation has

both an unexpected position as well as an unexpected orientation. This combination

means that the loop closure factor error is larger and has a strong impact on the

graph error after a single observation.

When only the speed changes, the landmark needs time to transit far enough

from the its expected position for the error to be significant relative to the estimated

covariance. The observation that is captured when the UAV is returning to its start

position the second time allows the landmark a longer interval to transit than the

observation that is captured when the UAV travels away from its start position for

the second time. A longer pause between passes would mean the event would have

a larger impact on the magnitude of the position deviation, making the event more

likely to be detected on-time.

A delayed event detection means the observations that are captured between the

true event and the detected event are associated with an incorrect KMM, influencing

the estimated velocity for the first epoch towards the true velocity of the second epoch

(which is undesirable). If the event magnitude is small, this can cause an event to

be missed entirely and the velocity to be estimated as between the values for the two

epochs. The missed case in this test was a change in speed from 0.2 m/s to 0.1 m/s.

This case was particularly challenging for the event detection as the MBQS-SLAM

algorithm notably under-estimates slow speeds to begin with. As the first epoch’s

KMM would be under-estimated, when the second epoch began, the smaller difference

in speed combined with the tendency to detect speed-only events late, resulted in a

missed event.

In a persistent mapping scenario, the time between passes and the number of

passes would both be much larger, increasing the likelihood of timely event detection.

Persistent mapping scenarios also typically result in more observations within an

epoch. More observations reduces the uncertainty on the WLS velocity estimate

(σWLS). If an event occurs for a landmark with a smaller σWLS, the amount by which

the landmark’s position must deviate from the expected position before its error is

noticed is smaller, thus making timely event detection more likely.

In this analysis a core assumption is that an appropriate KMM is selected for the



140

environment, such that landmarks spend the majority of their time following a KMM

with infrequent disruptions. In other words, these simulations only test the event

detection algorithm for cases when the landmarks are truly moving with a constant-

velocity for nearly the entire mission, with the except of one or only a small number of

disruptions (events). This means the characteristic duration of an epoch is assumed

to be longer than the time required for the WLS estimate of KMM parameters to

converge, and much longer than the time between consecutive observations and pose

updates. If that is not the case, then the KMM should be changed to acknowledge

that the best description of landmark motion is not constant-velocity. As an example

in the Canadian marine Arctic environment, if the region of interest was a narrow

straight, where the ice masses used as landmarks were frequently colliding, a constant-

velocity KMM would be inappropriate, as there would be events happening at high

frequency. These high frequency events defeat the purpose of attempting to estimate

the KMM parameters of any particular epoch.

7.3.3 Detection of Simultaneous Events

In addition to testing if different magnitudes and types of events could be detected,

it is important that the algorithm can detect events for multiple (ex. two) landmarks

at similar times. This is representative of a case where a weather system moves

through the marine Arctic environment, simultaneously influencing the motion of all

ice masses in the active season.

This test used the same sandbox with the pre- and post-event KMM parameters

given in Table 7.2. Landmark 3 experiences an event that changes only its heading,

while landmark 4 experiences an event that changes only its speed.

Table 7.2: Parameters of KMMs before (θ0 , v0) and after (θ1 , v1) the events for
landmarks 3 and 4.

Landmark ID θ0 [rad] v0 [m/s] θ1 [rad] v1 [m/s]
3 -0.13 0.1 0.5 0.1
4 0.2 0.1 0.2 0.2

The proposed event detection algorithm successfully detected both events on the

first observation after the event occurred (i.e. on-time). The detection of the event for
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landmark 3 is not surprising given the results in Table 7.1. However the detection of

the event for landmark 4 at the correct time is notable, as a similar event was detected

late (Table 7.1). Landmark 4 is located further from the start position than landmark

3, meaning that the UAV requires more transit time before the first observation of

landmark 4 is made after the event. This means the landmark’s position has deviated

further from the expected position, increasing both σWLS and the graph error by more

than the WLS velocity estimate confidence permits, triggering the event’s detection.

The algorithm did not struggle to identify the simultaneous events as each land-

mark is treated independently for event detection. However, the execution time for

the cycles when the SBSL score calculation is performed does take longer, and if

landmarks 3 and 4 had been observed in the same frame, that pose update cycle

would have exceeded the nominal 2 seconds allotted (the pose update rate is 0.5 Hz).

Scenarios where there are many mobile landmarks all of whose KMM’s are affected

by the same event could mean that the score calculation needs to be performed many

times within a cycle. This would drastically reduce the frequency of pose update to

the UAV waypoint tracking controller, possibly to the point where it becomes un-

stable. Managing the processing power required for this algorithm is a key task for

future persistent applications.

7.4 Discussion

This chapter proposed an algorithm for detecting events in a piecewise-deterministic,

quasi-static environment as a step towards enabling a UAV to operate persistently in

marine Arctic environments. While the previous chapters addressed estimation of a

landmark’s KMM in slow and quasi-static environments, this chapter addressed the

problem of the events that inevitably disrupt those KMMs as the time on station

increases. Timely detection of these events is essential to avoiding incorrect loop

closure factors that can cause the SLAM estimate to diverge.

The event detection algorithm proposed in this chapter is based on the concept

that a graph’s structure itself contains information that can be used to identify factors

that are inconsistent with the underlying model that the graph represents. Following

methods of SBSL, the graph error is calculated before and after a new observation is

incorporated to determine if that observation is consistent with its landmark’s KMM,
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or if it indicates an event has occurred. To compensate for the high computational

expense of calculating the graph error, a pre-filter is used to identify potential events

by comparing the change in the velocity estimate resulting from the new observation

to a heuristic threshold. While the SBSL detector requires no prior knowledge or pre-

selected thresholds, the pre-filter is designed based on the characteristic velocity of

landmarks that is already required for MBQS-SLAM. This threshold puts a limitation

on the flexibility of the event detector to uncertain environments, but also presents

an opportunity to manage the computational load. Improving the efficiency of the

SBSL implementation would allow the pre-filter threshold to be loosened or event

removed, decreasing the reliance on prior knowledge of the characteristic velocity.

The event detector was first tested on 10 events spanning different types and

magnitudes, and then tested with two simultaneous events (one event for each of

two landmarks). While the event detector did not always detect the event at the

correct time, these tests revealed important considerations to event detection: the

time between the event and the observation of the landmark, and the confidence in

the WLS velocity estimate before the event occurs. The time element determines the

amount of deviation between the expected landmark position (under the KMM of the

previous epoch) and the observed landmark position (due to the KMM of the new

epoch). The longer the time the landmark transits under the new KMM, the more

likely the event detector is to be successful, assuming a subsequent event does not

disrupt that KMM. In a similar way, higher confidence in the WLS velocity estimate

means a smaller deviation between the expected and observed landmark positions

will trigger detection of an event, as the graph error is calculated with consideration

for the uncertainty in the estimated velocity.

In Chapter 6, SLAM in an epoch characterized by quasi-static motion was de-

veloped. This chapter added the capability to detect events that bound

the epochs to quasi-static motion. To fully address operations in a piecewise-

deterministic quasi-static environment, these two capabilities need to consider the

behaviour of a landmark as it evolves through several epochs and events. This is the

focus of the next chapter.



Chapter 8 Proposed Piecewise-Deterministic Quasi-Static

SLAM

All of the necessary components for SLAM in a piecewise-deterministic, quasi-static

environment have been presented in the previous chapters. This chapter combines

those components into a complete algorithm to estimate the deterministic KMM

of mobile landmarks in the environment during an epoch using the MBQS-SLAM,

and to detect and recover from disruptions (events) to the KMM using the event

detection algorithm in Chapter 7. The new approach proposed in this chapter is

piecewise-deterministic quasi-static pose graph SLAM (PDQS-SLAM).

The application of PDQS-SLAM is captured in Figure 8.1, where MBQS-SLAM

is applicable between events (during epochs), while PDQS-SLAM is applicable both

between and across events.

Figure 8.1: PDQS-SLAM is proposed to bring together the methods of MBQS-SLAM
that is applicable to quasi-static environments within epochs, and event detection, to
enable SLAM in a piecewise-deterministic environment.

PDQS-SLAM was designed in response to the concept that a landmark in a

piecewise-deterministic environment can be described as existing in a stable, active

143
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state within an epoch, then undergoes a transition to a new stable state as a result

of an event. Since the graph is an attempt to model the landmark’s state, it can also

be described by a series of states and transitions as it models the landmark’s KMM.

This inspired the development of an FSM to capture the evolution of the graph’s

confidence that an event has occurred. In designing the FSM, it became clear that

the FSM was a property of the set of edges that are constructed from multiple obser-

vations of a common landmark, inspiring the addition of the state, as an attribute,

to each loop closure edge in the graph.

This chapter first defines the proposed FSM and the augmented loop closure

factors (Section 8.1), then presents the PDQS-SLAM algorithm. Next, PDQS-SLAM

is tested in three cases:

• Case 1: two-pass, full-scale, quasi-static environment with one mobile land-

mark experiencing one event – simulation (Section 8.3.1)

This case is similar to Case 5 for MBQS-SLAM in Section 6.5.5, with the ex-

ception that there was no event in Case 5 for MBQS-SLAM. This is the parent

case for the PDQS-SLAM algorithm and shows the opportunities of applying

PDQS-SLAM in complex piecewise-deterministic quasi-static environments.

• Case 2: two-pass, model-scale, quasi-static environment with one mobile land-

mark experiencing one event – simulation and experiment (Section 8.3.2)

This is the same as Case 1 but at model-scale. It is performed both in simulation

and experiment to assess the impact of actual sensors and mobile landmarks on

the performance.

• Case 3: two-pass, full-scale, quasi-static environment with two mobile land-

marks each experiencing one event – simulation (Section 8.3.3)

The additional event in this case is selected to challenge the algorithm with two

events as in the tests of the event detection algorithm in Chapter 7.

Finally, Section 8.4 summarizes the results and discusses the strengths and limi-

tations of the PDQS-SLAM algorithm.
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8.1 Novel Edge Finite State Machine

In a piecewise-deterministic environment, a landmark transitions between two deter-

ministic KMM’s as a result of an event. The event detection algorithm proposed

in Chapter 7 attempts to model that transition, while the MBQS-SLAM algorithm

proposed in Chapter 6 attempts to model the KMM’s in the epochs before and after

the event. Together these strategies indicate how the set of loop-closure edges associ-

ated with a particular landmark should behave. They provide transition points from

initialization, to a state where the edge set is actively contributing to SLAM, through

the state of the set potentially spanning an event, to a decision point where the event

is detected and the KMM is divided.

Finite State Machines: An FSM models a system as a finite set of discrete

states and transitions [85]. The behaviour of the system depends only on its state.

In an FSM, transitions can consist of a triggering event, a condition that must be

true for the transition to occur, or an action that occurs while in transition between

states. FSMs are useful to capture a complex system’s behaviours succinctly, for

example Araujo et al. modelled a search and rescue UAV using an FSM [86].

Based on the event detection algorithm described in 7.3 and the MBQS-SLAM

described in 6.6, the proposed FSM for each set of edges related to a landmark k, Ek,

is shown in Figure 8.2.

The FSM defines six states for the set of edges (loop closure factors) related to

landmark k in the current epoch e. The entry point to the FSM is the initialization

of the empty set with the first observation of the landmark in the epoch.

1. initialized: In the initialized state, Ee
k is an empty set as there has only been

a single observation of landmark k. In this state, SLAM variables are initialized but

the velocity cannot be estimated. Transition from the initialized state is triggered

when a second observation of landmark k is made, resulting in Ee
k containing one edge.

From this state, Ee
k either transitions to being under the QSA, if the characteristic

velocity of landmarks in the environment is below the threshold for quasi-static motion

(υk ≤ vQS), or directly to the active state if the environment is slow.

2. under QSA: While under the QSA, the MBQS-SLAM algorithm uses the

QSA to assume the landmark is static. When the WLS regression converges, the

transition is triggered to the active state.
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1. initialized

edges in 
current epoch
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e = {} e

3. active 4. aged

5. divided
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OR 
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increased

start new epoch
Ek
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Legend:
Ek

n loop closure factor n for landmark k (edge)
Ek

e set of edges ({Ek
1, Ek

2, Ek
3, … Ek

n }) in epoch e
υk characteristic speed of landmark k
vQS maximum speed for quasi-static regime
σWLS standard deviation of WLS velocity estimate
Δොvk, Δෝωk change in linear, angular velocity estimate due to 

newest observation
εv , εω threshold for event detection pre-filter

score decreased

6. archived

store past epoch
Ek

e = {Ek
1… Ek

n} e

Figure 8.2: Proposed FSM governing state of the set of edges formed through loop
closures of landmark k during epoch e (Ee

k).

3. active: The active state is the primary state for Ee
k. This is the state the

set is in when MBQS-SLAM or MBD-SLAM (as driven by υk) is applied to a single

epoch as in Chapters 5 and 6. The event detection pre-filter (with thresholds ϵv and
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ϵω) triggers transition out of this state.

4. aged: The event detection approach in Chapter 7 describes a state for Ee
k where

there is the potential that an event has occurred, but it has not been confirmed. This

is the aged state. Using the event detection algorithm proposed in Chapter 7 keeps

Ee
k in this state for less than one SLAM update cycle, with Ee

k transitioning out of

this state when the graph error (score based on SBSL) confirms the potential event.

The calculation of the score triggers the event. If the score increases (event detected),

Ee
k moves to the divided state. If the score decreases (no event detected), Ee

k returns

to the active state.

5. divided: The divided state performs the actions to recover from the detected

event. In this state, the set of observations Ze
k used to form the loop closures Ee

k

spans across an event – the newest observation captured after the event and all other

observations captured before the event. This means: (1) any loop closure edges

formed relating to the newest observation must be removed from the graph; (2) the

newest observation is assigned to the next epoch of the landmark; (3) Ee
k needs to be

archived; and (4) a new set of edges for the next epoch, E
(e+1)
k , is to be initialized as

an empty set.

6. archived: The exit state for an edge is archived. Archiving this set of edges

keeps them in the graph, but prevents future observations of the landmark from being

associated with the observations from previous epochs.

FSM state as an attribute of edges

The current state of Ek defined through the FSM can be considered an attribute

of each of the edges in the set Ee
k in a similar way to the attributes of the nodes

proposed by DPG-SLAM [29]. The DPG-SLAM node attributes track the state of

observations made at the pose to determine if that pose adds observations to the

graph that are part of the current map state or from a previous state of the map.

When the observations of a node are from a previous state, the node is removed,

which simultaneously removes the incorrect observations and reduces the number of

nodes in the graph. Assigning the state to the edges is a better representation of the

landmark time evolution compared to assigning the state to the node which would

represent the evolution of the map state as a single entity.
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An augmented loop closure factor edge is recommended in the form of:

En
k =< T,ΣT , pk,Σk, sk >, (8.1)

where T and ΣT are the standard geometrical constraint and covariance on that

constraint. MBDFs and MBQSFs added the landmark’s KMM parameters, pk, and

their covariance Σk to the edge definition. PDQS-SLAM adds the current state of

the set of edges that this edge belongs to, sk, which is governed by the FSM.

This addition of state attribute to the graph edges is a novel development in

response to dynamic environments. In static SLAM, edges are constant once formed

since the measurements used to construct the edge do not change (assuming perfect

data association). The graph is constructed to estimate the map which is a static,

unchanging structure. In dynamic SLAM however, the underlying map changes with

time, meaning the graph edges should also reflect this and change with that map.

Assigning state attributes do just that: they allow the edges to change as more

knowledge of the motion in the environment is acquired.

8.2 Proposed Piecewise-Deterministic Quasi-Static SLAM Algorithm

The integration of MBQS-SLAM and event detection results in the proposed PDQS-

SLAM algorithm shown in Figure 8.3. The quadrotor (including downward camera,

altimeter and odometry), 1AprilTag detection [28], velocity controller, dead-reckoning

factors construction, 2 iSAM graph optimizer [9] and mapping blocks are all consistent

with the baseline static SLAM (Figure 4.11). In lighter yellow, the landmark velocity

estimation and MBQSF construction blocks are both from MBQS-SLAM (Figure

6.6). In darker yellow, the event detection pre-filter and the SBSL arbiter (compares

graph errors before and after a new observation to detect an event) are both from

the event detection algorithm (Figure 7.3). The dashed arrows indicate steps that

are only performed if a potential event is detected by the pre-filter.

In PDQS-SLAM, after the WLS regression algorithm is applied to estimate the

landmark velocity, the event detection pre-filter checks if the change in the velocity

estimate, in response to the newest observation, is larger than the threshold ε. If

so, the FSM sets the edge set to the aged state and the graph error is calculated by

optimizing the graph (A) having added the new dead-reckoning factor, but no loop
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Figure 8.3: Proposed PDQS-SLAM algorithm. The yellow blocks indicate the new
elements relative to static SLAM.

closure factors related to this newest observation. This graph error at (A) is compared

with the graph error calculated by optimizing the graph (B) with the new loop closure

factors added, by the SBSL arbiter. The pose estimate from the graph with the lowest

error of (A) or (B), is used to map and generate the quadrotor’s velocity input. If

(A) is used, then an event has been detected, sending Ee
k to the divided state. On

the other hand, if (B) was invoked, no event is detected returning Ee
k to the active

state. If the pre-filter does not detect a potential event (dashed lines removed), then

iSAM is not applied at (A), meaning the arbiter selects the iSAM estimate generated

at (B). This is the same outcome as if the MBQS-SLAM algorithm had been applied.

8.3 Results

Three cases, identified in Table 4.6 are selected to demonstrate PDQS-SLAM per-

formance. The cases in this chapter are two-pass missions with one or two events

occurring between passes. This event timing ensures that the UAV does not witness

the event happening and that there is enough time for the first WLS estimate to

converge before the event. The three illustrative cases are:

• Case 1: two-pass, full-scale, piecewise-deterministic environment with one
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event – simulation (8.3.1)

This represents the parent case for which PDQS-SLAM has been designed and

shows successful localization and mapping despite events disrupting the KMM

used in MBQS-SLAM. Landmark 3 experiences an event that changes its speed

and its heading (20 km/day at -0.13 rad to 40 km/day at 0.5 rad), while land-

mark 4 does not experience an event (10 km/day at 0.2 rad).

• Case 2: two-pass, model-scale, piecewise-deterministic environment with one

event – simulation and experiment (8.3.2)

Geometrically similar to Case 1, this case determines if or how PDQS-SLAM

differs in performance in simulations compared to experiments.

• Case 3: two-pass, full-scale, piecewise-deterministic environment with two

events – simulation (8.3.3)

In Case 3, both landmarks experience an event. Landmark 3 experiences a

change in heading only (20 km/day at -0.13 rad to 20 km/day at 0.5 rad), while

landmark 4 experiences a change in speed only (20 km/day at 0.2 rad to 40

km/day at 0.2 rad). This is a challenging case identified in Section 7.3.3 as the

event applied to landmark 4 was detected late in the one event sandbox experi-

ment. This could result in the speed of landmark 4 being poorly estimated and

the KMM after the event not being observed over a long enough time span for

the WLS estimate to converge in the second epoch.

While Chapter 7 provided insight on event detection success in an idealized (noise-

free) world, these three cases will provide insight into the impact of anticipated cor-

rupting noise in the odometry and tag position estimates on the event detection

success, and on the ability to successfully estimate the KMM parameters for a land-

mark after an event. As in Chapter 6, success is measured by the localization and

mapping accuracy relative to the baseline static SLAM applied to a static environ-

ment, and as well by the accuracy of the velocity estimate for each landmark. In

addition, successful event detection means all events are detected, at the right time,

without false-positive event detections (events that are detected but did not actually

happen).
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8.3.1 Case 1: Full-Scale in Simulation

The proposed PDQS-SLAM algorithm is tested at full-scale in the quasi-static envi-

ronment for a two-pass mission with one event impacting landmark 3. This case is

summarized in Table 8.1 and the median-performance trial is shown in Figure 8.4.

Case 1 Localization and Mapping Results
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Figure 8.4: Case 1 simulation of PDQS-SLAM in full-scale, piecewise-deterministic
environment with one event.
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Table 8.1: Case 1 (two-pass, full-scale, one event) simulation performance summary
for PDQS-SLAM (Figure 8.4).

metric unit simulation

localization error (norm) [m] 5.38 ± 1.69
x error [m] 2.56 ± 0.56
y error [m] 2.30 ± 0.83
z error [m] 3.20 ± 2.02

mapping error (norm) [m] 4.61 ± 1.91
x error [m] 1.52 ± 0.91
y error [m] 1.27 ± 1.09
z error [m] 3.54 ± 2.32

mean static landmark speed error [m/s] 0.0375 ± 0.0110
mean dynamic landmark speed error [m/s] 0.0988 ± 0.1279
mean speed boundary [m/s] 0.1536 ± 0.0998

Figure 8.4a shows the planar map of the trajectory and landmark positions for the

median trial of Case 1. Note that landmark 3 in epoch 2 is labelled as landmark 33 for

clarity. This figure shows that the along-track landmark positions are over-estimated,

with the along-track error larger for landmarks further from the start position. The

bar chart of the speeds shows that all three KMMs (landmark 3 before the event,

landmark 3 after the event, and landmark 4) converged by the end of the second

pass. It also indicates that the choice of boundary is less meaningful when there are

a mix of quasi static (10-20 km/day) KMMs and slow (40 km/day) KMMs as the

boundary is skewed high by the slow landmark. This chapter will continue to report

that metric for consistency, but the focus will be on the localization and mapping

accuracies and event detection success.

The localization error over the 10 trials was on average 5.4% of the 100 m pass

length, while the mapping error was 4.6% of the pass length. The average speed

estimated for a static landmark was 7.5 km/day, which is slightly higher than the

two-pass, no event mission in Section 6.5.5 (6 km/day).
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Case 1 Discussion

Unlike SLAM within an epoch, the map shows that landmarks in the middle of the

pass – close to the landmark that experiences an event – have the largest error.

This is because the KMM of landmark 3 after the event does not converge until

the quadrotor travels back over landmark 3 during the return to the start position of

the second pass. This motion uncertainty subsequently increases the pose uncertainty

near landmark 3 which translates to uncertainty in the map of nearby landmarks. Just

as the landmark positions furthest from the start position become more accurate in a

second pass (when they are observed after their motion model converges), so should

the poses near landmark 3 in a third pass (assuming another event did not disrupt

the ‘new’ KMM).

In all 10 repeat trials, PDQS-SLAM was able to detect the event to landmark 3

at the correct time (i.e. the first observation after the event occurred). However, the

KMM for landmark 3 after the event did not always converge. This is apparent in

the large mean error on the mobile landmark speed (0.0988 m/s). In the cases that

the WLS velocity estimate did not converge, it is because fewer observations were

made of the landmark during the return to the start position on the second pass.

This happens because either: (1) the UAV trajectory deviates from the x-axis to a

position where the AprilTag is not visible; (2) the UAV travels slower or faster than

nominal so the AprilTag is outside the FOV when the UAV passes over it, or (3) the

computation time is longer than the nominal 2 s due to potential event detection(s),

causing the SLAM to skip an observation.

Table 8.1 shows that, taking into account the 10× geometrical scaling between full

and model-scale, the localization error is larger (5.38 m ± 1.69 m) using PDQS-SLAM

than the baseline static SLAM at model-scale (0.46 m ± 0.17 m), while the mapping

error is smaller (4.61 m± 1.91 m) than baseline (0.54 m ± 0.24 m). Recalling that

in the application of static SLAM to the slow dynamic environment, the localization

error was 0.84 m ± 0.33 m and the mapping error was 0.82 m ± 0.34 m, the per-

formance of PDQS-SLAM is more similar to the baseline static SLAM performance

in a static environment. This shows that PDQS-SLAM is successful in a complex

environment (quasi-static with an event) that was otherwise unsuccessfully mapped

by a UAV.



154

8.3.2 Case 2: Model-Scale in Experiment and Simulation

The second case tests the PDQS-SLAM in simulations and experiments at model-

scale. Both tests are summarized in Table 8.2. The median-performance simulation

trial is shown in Figure 8.5, while the median-performance experiment trial is shown

in Figure 8.6.

Case 2 Localization and Mapping Results

Table 8.2: Case 2 (two-pass, model-scale, one event) simulation (Figure 8.5) and
experiment (Figure 8.6) performance summary for PDQS-SLAM.

metric unit simulation experiment

localization error (norm) [m] 0.33 ± 0.13 0.46 ± 0.16
x error [m] 0.18 ± 0.05 0.29 ± 0.11
y error [m] 0.11 ± 0.03 0.15 ± 0.05
z error [m] 0.20 ± 0.16 0.24 ± 0.17

mapping error (norm) [m] 0.34 ± 0.12 0.47 ± 0.19
x error [m] 0.16 ± 0.06 0.32 ± 0.16
y error [m] 0.11 ± 0.07 0.11 ± 0.03
z error [m] 0.22 ± 0.18 0.25 ± 0.20

mean static landmark speed error [m/s] 0.0028 ± 0.0007 0.0038 ± 0.0019
mean dynamic landmark speed error [m/s] 0.0031 ± 0.0025 0.0104 ± 0.0052
mean speed boundary [m/s] 0.0142 ± 0.0008 0.0114 ± 0.0035

The median simulated trial plotted in Figure 8.5a shows little cross-track error

in the UAV trajectory and static landmark positions, and good matches between

the simulated and ground truth mobile landmark trajectories. There is an along-

track error on the trajectory and static landmark positions of approximately 20-

30 cm, smaller than the baseline static SLAM case. The speed estimate for static

landmarks is on average 0.0028 m/s (2.8 km/day equivalent) and the average error on

mobile landmarks is 0.0034 m/s (3.4 km/day). Figure 8.5b shows that in the median-

performance trial, the three KMMs are well estimated and the static landmarks have

low speed estimates. Of the 10 trials, the event detection was always successful

(detected at the correct time) for landmark 3’s events and one trial had a false-positive

event detected for landmark 5 during the return-to-start position of the second pass.
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Figure 8.5: Case 2 simulation of PDQS-SLAM in piecewise-deterministic environment
with one event.

This false-positive event did not diminish the accuracy of the PDQS-SLAM trajectory

and is attributed to a particularly noisy AprilTag position estimate.

The experiment showed considerable cross-track drift of the quadrotor that the

PDQS-SLAM was only partially able to compensate for. This drift resulted in mixed

success in event detection. Of the ten trials performed in the lab the event on land-

mark 3 had the following event performance:



156

0 2 4 6 8 10
x [m]

-2

-1

0

1

2

3

4
y
[m

]

1 2
5

6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21

3

4

33

ground truth UAV trajectory
estimated UAV trajectory
ground truth landmark positions
estimated landmark positions
ground truth mobile landmark trajectory
estimated mobile landmark trajectory

(a) planar map

12  1  3  2 13 15 14  5  4 16  6 17  7 18  8 19  9 20 10 21 11 33   
landmark ID

0

0.02

0.04

0.06

0.08

0.1

sp
ee
d
[m

/
s]

0.019

0.0092

0.036

boundary between mobile and static landmarks
estimated static landmark speed (norm)
estimated mobile landmark speed (norm)
ground truth mobile landmark speed

(b) speed estimates

Figure 8.6: Case 2 experiment of MBQS-SLAM at model-scale, piecewise-
deterministic environment with one event.

• one trial missed an event on landmark 3,

• six trials detected the event on landmark 3, but were late (event detected on

return of second pass), and

• three trials successfully detected the event for landmark 3 and were able to

correctly estimate the KMM after the event.
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With regards to false-positive events, the ten trials included:

• three trials that had one false-positive event each (landmark 9; landmark 18;

and landmark 5), and

• two trials that had three false-positive events each (landmarks 16, 4 and 5; and

landmarks 12, 5, and 6).

In all of the trials the quadrotor was able to successfully localize itself despite the

mixed event detection performance. This mixed event detection performance is not

only due to the cross-track drift of the quadrotor, but also the variable motion of the

NXT propelling the landmarks. Depending on their condition (such as the on-board

battery charge, the cleanliness of the floor and wheels, initial orientation etc.) their

path and speed through the environment varied across trials. Together with the drift

in the quadrotor’s route and altimeter noise indoors, these variations in NXT motion

were large enough to result in observations being captured at different times or from

different relative orientations leading to the variation in the ten trials. This variation

was at times large enough that unintended events occurred, and other times intended

events were less intense than planned. While future tests could endeavour to reduce

this variance in the mobile iceberg analogues by more strictly controlling the set-up for

consistent NXT charge and floor cleaning, or by considering changing from the NXTs

to a platform with more precise control inputs, in all trials PDQS-SLAM successfully

localized the quadrotor and mapped the environment despite the variability.

Case 2 Discussion

The reason that experimental trials are performed is especially clear in Case 2. While

the accuracy of the simulation and experiment were similar (ex. localization accuracy

in simulation 3.3% and in experiment 4.6% of the 10 m pass length), the variability of

the trial success in the experiment is notably different from the consistency achieved

in the simulation. This type of variation arises from the interaction of multiple fac-

tors that are not captured in a simulation environment. In general, the experiment

trials showed that the event detection algorithm is prone to false-positive event de-

tections. This could be reduced by tuning the pre-filter threshold, ε, or requiring

a larger increase in graph error after adding the loop closure factors. However, as
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discussed during the design of the pre-filter in Section 7.1.3, it is preferable to have

a false-positive error than to miss an event. The sensitivity of the event detection

algorithm of PDQS-SLAM to the variability of trials is tied to the selection of the

strict constant-velocity landmark KMM. If the variability of landmark motion in an

environment is as seen with the NXTs, a constant acceleration or constant jerk model

might be a more effective choice. Alternatively, the covariance used on the landmark

velocity measurements (σWLS and σQSA) could be artificially increased, to accommo-

date small deviations from a strict constant-velocity KMM. However, this alternative

would reduce the confidence, and potentially the accuracy, of the velocity estimates,

when the constant-velocity model was well-followed by the landmarks.

8.3.3 Case 3: Full-Scale in Simulation with Multiple Landmarks’ KMM

Disrupted

This third case presents the PDQS-SLAM algorithm with two events, one per mobile

landmark. Landmark 3 experiences a change in heading only while landmark 4 ex-

periences a change in speed only. This case was also performed in the sandbox in in

Section 7.3.3, where it was able to successfully detect both events.

The same case is tested here, but in the simulated environment with odometry

and landmark position estimation noise representative of the real environment. This

not only tests the event detection algorithm, but also assess the ability to correctly

estimate the KMMs after the events. This case is summarized in Table 8.3 and the

median-performance trial is shown in Figure 8.7.

Case 3 Localization and Mapping Results

In this case with two events, the PDQS-SLAM is able to localize the robot with

an average error of 3.53 m. The map has an average error on the static landmark

positions of 2.98 m while the static landmarks are estimated with a small speed (6.2

km/day equivalent). The median trial that was plotted in Figure 8.7a shows what

happens when the (speed-only) event on landmark 4 is not detected. The estimated

trajectory of landmark 4 stretches the entire distance that landmark 4 travelled in the

two epochs without recognizing that an event occurred. This is also visible in Figure

8.7b where the speed estimated for landmark 4 (0.18 m/s) is between the speed in the
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Figure 8.7: Case 3 simulation of PDQS-SLAM at full-scale, piecewise-deterministic
environment with two events.

first epoch (0.046 m/s) and the second epoch (0.20 m/s). In this case, not detecting

the event for landmark 4 does not change the outcome for a ship navigating the

environment as the magnitude of the event (speed change) was small so the impact

on the map used to select a safe path was similarly small when looking ahead to

project the future position of icebergs.
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Table 8.3: Case 3 (two-pass, full-scale, two events) simulation performance summary
for PDQS-SLAM (Figure 8.7).

metric unit simulation

localization error (norm) [m] 3.53 ± 0.68
x error [m] 2.04 ± 0.72
y error [m] 1.67 ± 0.67
z error [m] 1.60 ± 0.66

mapping error (norm) [m] 2.98 ± 0.68
x error [m] 1.44 ± 0.74
y error [m] 1.34 ± 0.77
z error [m] 1.72 ± 0.85

mean static landmark speed error [m/s] 0.0310 ± 0.0067
mean dynamic landmark speed error [m/s] 0.0785 ± 0.0206
mean speed boundary [m/s] 0.0827 ± 0.0112

Case 3 Discussion

In the ten trials conducted, all ten successfully detected the event to landmark 3 at

the correct time. The success for landmark 4 was mixed:

• one trial detected the event at the correct time;

• two trials detected the event but late, and

• seven trials did not detect the event at all.

Also, for one of the trials where the event to landmark 4 was not detected, one false-

event was detected for landmark 6. This difference in success rate for landmark 3

(change in orientation only) and landmark 4 (change in speed only) indicates that the

current pre-filter threshold is more sensitive to orientation than speed changes. This is

actually a desirable characteristic in the context of marine Arctic environments where

an iceberg’s change in direction can result in a more difficult navigation problem than

an iceberg increasing or decreasing speed on a trajectory that the navigator knows.

In terms of localization, the PDQS-SLAM algorithm performed better in the case

of two events (localization: 3.53 m ± 0.68 m) than with only a single event (local-

ization error: 5.38 m ± 1.69 m), with most of the difference between the two cases
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in the UAV altitude estimation (1.60 m ± 0.66 m in Case 3, compared to 3.20 m ±
2.02 m in Case 1) as also noted in previous cases. The along-track, cross-track and

velocity estimation accuracies agree much more closely between Cases 1 and 3. Even

with the high variance in the altitude estimate, both cases show the UAV is able to

successfully complete the two-pass mission to return to the start position, and is able

to consistently detect the events of landmark 3’s KMM.

8.4 Summary of Results and Discussion

This chapter proposed PDQS-SLAM, an approach that enables a UAV to operate

persistently in general quasi-static environments, where UAVs could not otherwise

operate. This method combines the MBQS-SLAM developed in Chapter 6 for use

within an epoch, with the event detection algorithm developed in Chapter 7, by

proposing a novel state attribute, governed by an FSM, for edges in the pose graph.

Insight into the evolution of a mobile landmark in a dynamic environment is at the

core of the proposed PDQS-SLAM developments.

Despite being applied to a complex, piecewise-deterministic environment, PDQS-

SLAM generally maintained the localization and mapping accuracy of the baseline

static SLAM applied in a static environment. It showed similar success in estimating

the velocity of mobile landmarks as MBQS-SLAM, and similar success in detecting

events as in the idealized sandbox used in Chapter 7. While only three cases were stud-

ied here (with only two different event types/magnitudes), the more complete cases

study the separate components in Chapters 6 and 7 provide confidence in the broader

applicability. The patterns in the performance indicate that the FSM is a good

description of the evolution of a quasi-static landmark in a piecewise-deterministic

environment.

Parallel cases and variants

The proposed FSM for sets of edges related to a landmark in the piecewise-deterministic

environment provides several opportunities for parallel cases to be addressed by vary-

ing the specific transition triggers and rules to, for example, different KMMs than

constant velocity models. The FSM could also be adjusted for additional or substi-

tuted states if a different front-end were used that provided additional insight to the

mobile landmarks besides their characteristic velocity. This might include a visual
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SLAM system that provided insight into the expected direction or speed of motion

based on a visual estimate of the age of the ice or environmental factors such as

currents and waterway dimensions.

The detection of events in PDQS-SLAM could also function as a health monitor

in other situations. For example, if the number of events were much higher than

expected (information embedded in the selection of ε), the operator could be alerted

to a potential sensor fault in the UAV, or an unanticipated environmental condition

that warrants attention.

The states and transitions of a FSM could also be analysed probabilistically to,

potentially, select the appropriate state for a set of edges by optimizing for the state

in the same pose graph used for SLAM. Optimizing for the state of edges has been

proposed by Sunderhauf et al. with the Switching Constraints Robust SLAM method

[44], but an FSM provides more granularity than the simple on/off switch available

with the switching constraints method.

8.4.1 Concluding Remarks

The PDQS-SLAM is a step towards persistence in quasi-static environ-

ments as it responsive to the inevitable disruptions to a landmark’s mo-

tion in a complex environment. PDQS-SLAM improves with prior knowledge

of the environment – particularly landmark characteristic velocity – however, it does

not require precise knowledge and it is flexible to environments with a mix of static,

quasi-static and slow landmarks present. This quasi-static regime is one that has

not been previous addressed by SLAM problems, but is an important enabler for

applications such as UAVs in marine Arctic environments.



Chapter 9 Conclusions

The research conducted through this thesis contributed to the field of persistent map-

ping by relaxing the static assumption in traditional SLAM algorithms that prevented

a UAV from operating in a quasi-static dynamic environment, exemplified by the

Canadian marine Arctic.

9.1 Summary

While SLAM in slow and fast dynamic environments has been previously addressed

in literature, there existed a gap in capabilities for quasi-static environments that this

research into relaxing the static assumption in graph SLAM addresses. This work was

supported through several stages of development:

1. landmark kinematic motion models: a clear definition of a quasi-static

dynamic environment was developed in the form of attributing a piecewise-

deterministic KMM (a series of epochs disturbed by events) to landmarks that

are traditionally considered static.

2. quasi-static motion definition: the interesting quasi-static motion regime

was quantified relative to the mission and sensor parameters to distinguish its

properties from semi-static and slow environments. Clarity on what factors

result in a quasi-static environment and how landmarks in a quasi-static envi-

ronment behave, allowed this motion to be incorporated into the graph structure

using novel factors.

3. model-based dynamic and quasi-static factors: factors were constructed

that allowed the KMM parameters of landmarks to be estimated directly in the

graph, or through the expectation-maximization approximation. These factors

allow the graph to optimize simultaneously for the UAV trajectory, as well as

the landmark KMM parameters (ie. velocity). This means the graph no longer

requires the landmarks to be static, only that the landmarks behave according

to a constant velocity motion model within an epoch.

163
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4. score-based structure learning event detection: the capabilities of SBSL

were applied to the dynamic SLAM problem to take advantage of the concept

that since the graph is a representation of the environment, the graph structure

itself (specifically, whether a proposed loop-closure edge should be included, or

be removed due to an event that disrupts the epoch) can be determined by

monitoring the changes in the graph’s score or error. This means that SLAM is

no longer limited to epochs where the mobile landmarks have a constant motion

model, as disruptions can be identified and appropriate recovery steps can be

implemented.

5. edge finite state machine attribute: the definition of an edge in a factor

graph was refined to include a state that specifies the behaviour of the edge.

This state is governed by a finite state machine that describes the transitions

between states based on the epoch or event the landmark used to construct

the edge is experiencing or has experienced. This creates the opportunity for

edges to evolve over time as the geometrical constraint they represent evolves in

response to landmark motion, and allows the graph to detect and recover from

events that disrupt that motion.

6. end-to-end PDQS-SLAM validation: these elements were combined into

the PDQS-SLAM algorithm, which was validated in its elements (MBQS-SLAM

in quasi-static epochs, and SBSL event detection), and as a single end-to-end

algorithm. The PDQS-SLAM algorithm was evaluated in simulation and in

experiments in a controlled laboratory setting. It was shown to be capable of

accommodating multiple events for an environment with a mix of static, quasi-

static and slow landmarks.

PDQS-SLAMwas shown to have a similar performance in a piecewise-deterministic,

quasi-static environment as the baseline static SLAM in a static environment (3-5%

error on localization and mapping, relative to the pass length). This means that with-

out loss of SLAM performance, the proposed approach provides additional capabilities

of landmark motion estimation and UAV localization in quasi-static environments –

key enablers to persistent mapping.
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9.2 Future Work

This thesis developed the PDQS-SLAM algorithm to enable persistent mapping in

quasi-static dynamic environments using a UAV, by relaxing the static assumption

of traditional SLAM algorithms. While the simulation tests and experiments per-

formed in this thesis provided important insight to the performance of PDQS-SLAM

in dynamic environments, they could not capture the full range of phenomena that

would occur in a deployment in the Arctic environment. The most impactful of these

are recommended for further validation studies. In addition, this research opens sev-

eral opportunities to expand the study of the PDQS-SLAM algorithm, and to apply

elements of this work in other scenarios, including underwater navigation, under-ice

mapping or agricultural mapping. These opportunities are listed as follows.

1. Further validate PDQS-SLAM towards Arctic trials:

• Full-scale experiment and in-situ testing: the next stage of testing for the PDQS-

SLAM would be to move to more complex trajectories and larger environments.

An appropriate setting for such tests could be a nearby lake, with the opera-

tion of multiple unmanned surface vehicles (e.g. small remote controlled or

autonomous boats) carrying tags to act as landmarks. Such an experiment

would provide insight into the uncertainties and errors that arise in natural

environments and impact SLAM performance.

• Validation on long-distance and long-duration, persistent missions: this the-

sis limited tests to one- and two-pass missions as these passes are the most

challenging for SLAM in unknown environments. In the Arctic environment, it

would be useful to perform longer passes and longer-duration missions, if similar

performance could be achieved. These tests would improve the understanding

of the effects of graph size and density on the performance of PDQS-SLAM, as

well as more complex sensor models and vehicle dynamics.

• Landmark detection and identification without fiducial tags: this thesis relied

on AprilTags to ensure any data association challenges were due to dynamics,

not mis-identification of landmarks. A logical next step would be to integrate

PDQS-SLAM with an appropriate front-end system to study these data associ-

ation challenges. In particular, satellite observations of icebergs or observations
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gathered by aircraft (manned or unmanned) in previous trials would be ideal

to incorporate into the Gazebo simulation environment. This test would help

to identify what features on an iceberg are useful for recognition. It would also

expose the impact of incorrect data associations on PDQS-SLAM performance,

and allow an assessment of the relative magnitude of harm arising from incorrect

data association in the dynamic sense (i.e. a loop closure across an event) com-

pared to incorrect data association in the traditional sense (i.e. mis-recognition

of landmarks).

2. Expand study of PDQS-SLAM:

• Expand understanding of solution robustness: the work presented in this the-

sis showed that PDQS-SLAM provides advantages in many scenarios, however

it also showed limitations for example, when there are many moving targets

moving with a common velocity vector. As more trials are conducted, espe-

cially trials with larger numbers of observations of a common landmark, the

robustness of the solution can be assessed more completely.

• Application of Active SLAM to improve the SLAM performance: this thesis

showed that there were many situations where the SLAM performance was

limited by the number of observations, or the position of the UAV when making

the observation. Active SLAM is a method by which the UAV’s path is selected

during the mission to meet the mission objectives (i.e. survey a region for

icebergs) while simultaneously optimizing the UAV’s localization accuracy. As

an example, when the landmark velocity vector is very similar to the UAV

direction of motion, it is difficult to accurately measure the relative motion.

Active SLAM might choose a lawnmower (paired-track) path over the same

region so that the directions of motion would be perpendicular and more easily

measured by the moving UAV. Similarly, changing altitudes to increase the

resolution of the sensor or decrease the number of landmarks visible in the

UAV’s FOV would be another example where Active SLAM would be useful.

• Validation on a wider variety of motion models and events: this thesis explored

key KMMs and events that are appropriate to the Canadian marine Arctic
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environment. Each application will have specific characteristic motion models

and a broader study would be useful to understanding the breadth of PDQS-

SLAM’s applicability.

• Recommendations for characteristic velocity selection in complex environments:

the PDQS-SLAM relied on prior knowledge of the characteristic speed of land-

marks in the environment. It was shown to be flexible to landmarks outside this

speed for the range from static through to slow, however more specific guidance

on how to determine this value would be helpful especially in environments

where landmarks move with very different speeds.

• Improve computational efficiency of implemented code: the software imple-

mented in this thesis would benefit from re-factoring to improve its compu-

tational efficiency, especially before moving to larger environments with more

landmarks and more potential events. This would also potentially allow the

removal of the pre-filter on the event detector.

• Improvements to SBSL event detector: the field of structure learning provides

many different approaches to scoring a graph. While the event detector was

successfully demonstrated here, further study into other approaches may reveal

techniques that improve the performance.

• Improvement to selection of threshold for segmenting static and mobile land-

marks in post-processing: to aid understanding of the results, a threshold was

selected to distinguish static and mobile landmarks. It was shown to be less

useful in environments with a mix of quasi-static and slow landmarks, leav-

ing room for improvement. This boundary does not change the performance

of PDQS-SLAM, but could help an operator to understand the output more

quickly.

• Generalize to a hierarchy of discretizations: the idea of dynamic landmarks as a

continuum (static, quasi-static, slow, fast) was developed in this thesis in such

a way that it lends itself well to a broader idea of a hierarchy of discretizations

not only in terms of velocity thresholds at very slow speeds, but expanding to

faster speed thresholds and labelling of landmarks in meaningful ways. The
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relationship between how a landmark is observed (e.g. the vehicle’s speed,

altitude, position uncertainty and the sensor’s resolution, frequency and field

of view) and how the observation impacts the SLAM problem provides insight

for designing missions to better meet objectives. Descriptions of environments

such as fast, many moving landmarks, large are intuitively only relevant within

a defined context. Exploring non-dimensional parameters and or thresholds are

interesting lines in inquiry to better support missions in complex environments.

3. Elements to consider applying in other scenarios:

• Variants of the FSM: the FSM designed in this thesis is tailored to a specific

KMM and and event detection algorithm. The flexibility of FSMs mean a deeper

study of the impact of adding more granular states or adjusting the transition

rules could provide further insight to dynamic SLAM applications beyond the

quasi-static Arctic environment addressed in this work.

• Variants of landmark evolution beyond KMMs: this thesis focused on SLAM

in marine Arctic environments, making KMMs the most interesting type of

landmark evolution. It would be interesting to explore the ability to apply these

methods to model changes in other properties (ie. size, colour, reflectivity, etc).

• Event detection or FSM state as health indicator: The rate of transition across

states in the FSM, or the state of persisting in a particular state of the FSM

could provide an indication of an anomaly or fault in the autonomous system. In

the scenario described in this these, frequent transitions between the Aged and

Active states might indicate observations that are very noisy or a poorly selected

landmark KMM. Insights into these types of anomalies can allow interventions,

either autonomously in-situ or by an operator between passes, that can improve

the vehicle’s performance.

• Explore other useful edge attributes: The refinement of edges to include at-

tributes besides the geometric constraint, in this case a state governed by an

FSM, is a novel approach that could inspire a review of other attributes that

would be useful to track along with the edges. In a dynamic environment the
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state provides a time-varying relevance for the edge, while other problems may

reveal other context-aware attributes.

• Explore a unified graph optimization solution: having expressed the problem of

estimating the KMM using a FSM in the thesis, it may be possible to consider a

method to solve the SLAM problem while simultaneously estimating the appro-

priate state for each set of edges associated with a landmark. This could even

result in a structure that uses a multiple-hypothesis model to assess whether

the characteristic velocity for a landmark should be static, quasi-static, slow

or fast without a prior (i.e. expert) expectation. This is likely to be compu-

tationally expensive, and may be best performed in an off-line capacity where

the UAV performs the mission with PDQS-SLAM, then the map is improved

by re-estimating the full trajectory and map after the mission is complete with

the additional multiple-hypothesis model.
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[10] M. Pilté, S. Bonnabel, and F. Livernet, “A novel nonlinear least-squares approach
to highly maneuvering target tracking,” Comptes Rendus Physique, vol. 20, no. 3,
pp. 228–239, 2019.

[11] R. Smith, M. Self, and P. Cheeseman, “Estimating Uncertain Spatial Relation-
ships in Robotics,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 167–193, 1990.

[12] I. J. Cox, “Blanche-an experiment in guidance and navigation of an autonomous
robot vehicle,” IEEE Transactions on Robotics and Automation, vol. 7, no. 2,
pp. 193–204, 1991.

170



171

[13] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous map building and local-
ization for an autonomous mobile robot,” in Proceedings IROS ’91:IEEE/RSJ
International Workshop on Intelligent Robots and Systems ’91, pp. 1442–1447
vol.3, 1991.

[14] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Map validation and self-location
in a graph-like world,” in Proceedings of the Thirteenth International Conference
on Artificial Intelligence, (Chambery, France), pp. 1648–1653, August 1993.

[15] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Map validation and robot self-
location in a graph-like world,” Robotics and Autonomous Systems, vol. 22, no. 2,
pp. 159–178, 1997.

[16] B. Kuipers and P. Beeson, “Bootstrap learning for place recognition,” in Eigh-
teenth National Conference on Artificial Intelligence, (USA), p. 174–180, Amer-
ican Association for Artificial Intelligence, 2002.

[17] T. Bailey and H. F. Durrant-Whyte, “Simultaneous Localization and Map-
ping (SLAM): Part II,” IEEE Robotics and Automation Magazine, pp. 108–117,
September 2006.

[18] C. Stachniss, J. J. Leonard, and S. Thrun, “Simultaneous Localization and Map-
ping,” in Springer Handbook of Robotics (B. Siciliano and O. Khatib, eds.),
pp. 1153–1176, Springer, Cham, 2016.

[19] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A Tutorial on Graph-
Based SLAM,” IEEE Intelligent Transportation Systems Magazine, pp. 31–43,
2010.

[20] A. N. Walcott, Long-term robot mapping in dynamic environments. Ph.D. Thesis,
Massachusetts Institute of Technology, 2011.

[21] H. Kretzschmar, Life-long Map Learning for Graph-based Simultaneous Localiza-
tion and Mapping. Msc thesis, Albert-Ludwigs-Universitat Freiburg, 2009.

[22] F. Lu and E. Milios, “Robot Pose Estimation in Unknown Environments by
Matching 2D Range Scans,” Journal of Intelligent and Robotic Systems, vol. 18,
pp. 249–275, 1997.

[23] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous location and map-
ping via square root information smoothing,” International Journal of Robotics
Research, vol. 25, no. 12, pp. 1181–1203, 2006.

[24] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg, “Hierarchi-
cal Optimization on Manifolds for Online 2D and 3D Mapping,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 273–278, 2010.



172

[25] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A
general framework for graph optimization,” IEEE International Conference on
Robotics and Automation (ICRA), pp. 3607–3613, 2011.

[26] M. Kaess, V. Ila, R. Roberts, and F. Dellaert, “The Bayes Tree: An Algorithmic
Foundation for Probabilistic Robot Mapping,” in Algorithmic Foundations of
Robotics, vol. 68, pp. 157–173, 2010.

[27] M. Hsiao and M. Kaess, “MH-iSAM2: Multi-hypothesis iSAM using bayes tree
and hypo-tree,” IEEE International Conference on Robotics and Automation
(ICRA), vol. 2019-May, pp. 1274–1280, 2019.

[28] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in IEEE
International Conference on Robotics and Automation (ICRA), pp. 3400–3407,
May 2011.

[29] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard, “Dynamic pose
graph SLAM: Long-term mapping in low dynamic environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1871–
1878, IEEE, oct 2012.

[30] J. McDonald, M. Kaess, C. Cadena, J. Neira, and J. J. Leonard, “Real-time
6-DOF multi-session visual SLAM over large-scale environments,” Robotics and
Autonomous Systems, vol. 61, pp. 1144–1158, 2013.

[31] J. Aulinas, X. Llado, J. Salvi, and Y. R. Petillot, “Selective Submap Joining for
Underwater Large Scale 6-DOF SLAM,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 2552–2557, 2010.

[32] W. Maddern, M. J. Milford, and G. F. Wyeth, “Towards Persistent Localiza-
tion and Mapping with a Continuous Appearance-based Topology,” in Robotics:
Science and Systems (RSS), 2012.

[33] C.-C. Wang, C. Thorpe, and S. Thrun, “Online simultaneous localization and
mapping with detection and tracking of moving objects: Theory and results from
a ground vehicle in crowded urban areas,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 1, pp. 842–849, IEEE, 2003.

[34] F. Pomerleau, P. Krusi, F. Colas, P. Furgale, and R. Siegwart, “Long-term 3D
map maintenance in dynamic environments,” in IEEE International Conference
on Robotics and Automation (ICRA), pp. 3712–3719, May 2014.

[35] Z. Wang, R. Ambrus, P. Jensfelt, and J. Folkesson, “Modeling motion patterns
of dynamic objects by IOHMM,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1832–1838, 2014.



173

[36] E. Galceran, E. Olson, and R. M. Eustice, “Augmented vehicle tracking under
occlusions for decision-making in autonomous driving,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3559–3565, 2015.

[37] A. K. Ushani, N. Carlevaris-Bianco, A. G. Cunningham, E. Galceran, and
R. M. Eustice, “Continuous-time estimation for dynamic obstacle tracking,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 1137–1143, Sept 2015.

[38] K. P. Murphy, “Bayesian map learning in dynamic environments,” Advances in
Neural Information Processing Systems, vol. 12, pp. 1015–1021, 2000.

[39] D. Moratuwage, B.-N. Vo, and D. Wang, “Collaborative Multi-Vehicle SLAM
with Moving Object Tracking,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 5702–5708, 2013.

[40] D. Moratuwage, D. Wang, A. Rao, N. Senarathne, and H. Wang, “RFS Col-
laborative Multivehicle SLAM: SLAM in Dynamic High-Clutter Environments,”
IEEE Robotics and Automation Magazine, vol. 21, pp. 53–59, June 2014.

[41] J. P. Fentanes, B. Lacerda, T. Krajnik, N. Hawes, and M. Hanheide, “Now
or later? Predicting and maximising success of navigation actions from long-
term experience,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 1112–1117, May 2015.

[42] P. Kimball and S. Rock, “Sonar-based iceberg-relative AUV navigation,” 2008
IEEE/OES Autonomous Underwater Vehicles, AUV 2008, pp. 1–6, 2008.

[43] P. Kimball and S. Rock, “Estimation of iceberg motion for mapping by AUVs,”
2010 IEEE/OES Autonomous Underwater Vehicles, AUV 2010, pp. 1–9, 2010.

[44] N. Sunderhauf and P. Protzel, “Towards a robust back-end for pose graph
SLAM,” in IEEE International Conference on Robotics and Automation,
pp. 1254–1261, 2012.

[45] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard, “Robot
Map Optimization using Dynamic Covariance Scaling,” in IEEE International
Conference on Robotics and Automation (ICRA), 2013.

[46] P. Agarwal, Robust Graph-Based Localization and Mapping. Ph.D. Thesis,
Albert-Ludwigs-Universitat Freiburg, 2015.

[47] P. Y. Lajoie, S. Hu, G. Beltrame, and L. Carlone, “Modeling Perceptual Alias-
ing in SLAM via Discrete-Continuous Graphical Models,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1232–1239, 2019.

[48] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,” Arti-
ficial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.



174

[49] K. Murphy, “Logistic Regression: Residual analysis (outlier detection),” in Ma-
chine Learning: A Probabilistic Perspective, ch. 8.4.5, pp. 260–261, MIT Press,
2012.

[50] D. Brauckhoff, K. Salamatian, and M. May, “A signal processing view on packet
sampling and anomaly detection,” Proceedings - IEEE INFOCOM, 2010.

[51] J. Mai, C. N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled data
sufficient for anomaly detection?,” Proceedings of the ACM SIGCOMM Internet
Measurement Conference, IMC, pp. 165–176, 2006.

[52] T. Krajnik, J. P. Fentanes, G. Cielniak, C. Dondrup, and T. Duckett, “Spectral
Analysis for Long-Term Robotic Mapping,” in IEEE International Conference
on Robotics and Automation (ICRA), pp. 3706–3711, 2014.

[53] K. P. Murphy, “Graphical model structure learning,” in Machine Learning: A
Probabilistic Perspective, ch. 26, pp. 907–944, MIT Press, 2012.

[54] D. Koller and N. Friedman, Probabilistic Graphical Models- Principles and Tech-
niques. Cambridge, Massachusetts: The MIT Press, 2009.

[55] A. Carvalho, “Scoring functions for learning bayesian networks,” Inesc-id Tec.
Rep, 2009.

[56] A. Hinduja, B. J. Ho, and M. Kaess, “Degeneracy-Aware Factors with Appli-
cations to Underwater SLAM,” IEEE International Conference on Intelligent
Robots and Systems, pp. 1293–1299, 2019.

[57] D. Hahnel, R. Triebel, W. Burgard, and S. Thrun, “Map building with mobile
robots in dynamic environments,” in IEEE International Conference on Robotics
and Automation (ICRA), vol. 2, pp. 1557–1563, 2003.

[58] D. F. Wolf and G. S. Sukhatme, “Mobile robot simultaneous localization and
mapping in dynamic environments,” Autonomous Robots, vol. 19, no. 1, pp. 53–
65, 2005.

[59] C. Sheng, S. Pan, W. Gao, Y. Tan, and T. Zhao, “Dynamic-DSO: Direct sparse
odometry using objects semantic information for dynamic environments,” Ap-
plied Sciences (Switzerland), vol. 10, no. 4, 2020.

[60] S. Han and Z. Xi, “Dynamic Scene Semantics SLAM Based on Semantic Seg-
mentation,” IEEE Access, vol. 8, pp. 43563–43570, 2020.

[61] D. Li, W. Yang, X. Shi, D. Guo, Q. Long, F. Qiao, and Q. Wei, “A visual-inertial
localization method for unmanned aerial vehicle in underground tunnel dynamic
environments,” IEEE Access, vol. 8, pp. 76809–76822, 2020.



175

[62] E. Einhorn and H.-M. Gross, “Generic NDT mapping in dynamic environments
and its application for lifelong SLAM,” Robotics and Autonomous Systems,
vol. 69, pp. 28–39, 2015.

[63] M. J. Milford and G. F. Wyeth, “Persistent Navigation and Mapping using a
Biologically Inspired SLAM System,” International Journal of Robotics Research,
vol. 29, no. 9, pp. 1131–1153, 2010.

[64] M. Labbe and F. Michaud, “Appearance-Based Loop Closure Detection for On-
line Large-Scale and Long-Term Operation,” IEEE Transactions on Robotics,
vol. 29, no. 3, pp. 734–745, 2013.

[65] Y. Li, S. Li, and Y. Ge, “A biologically inspired solution to simultaneous lo-
calization and consistent mapping in dynamic environments,” Neurocomputing,
vol. 104, pp. 170–179, 2013.

[66] B. Bacca, J. Salvi, and X. Cufi, “Long-term mapping and localization using fea-
ture stability histograms,” Robotics and Autonomous Systems, vol. 61, pp. 1539–
1558, 2013.

[67] F. Dayoub, G. Cielniak, and T. Duckett, “Eight Weeks of Episodic Visual Nav-
igation Inside a Non-stationary Environment Using Adaptive Spherical Views,”
Field and Service Robotics, pp. 379–392, 2015.

[68] M. S. Bahraini, M. Bozorg, and A. B. Rad, “SLAM in dynamic environments
via ML-RANSAC,” Mechatronics, vol. 49, pp. 105–118, 2018.

[69] M. Henein, J. Zhang, R. Mahony, and V. Ila, “Dynamic SLAM: The need for
speed,” arXiv, pp. 2123–2129, 2020.

[70] P. W. Kimball and S. M. Rock, “Mapping of translating, rotating icebergs
with an autonomous underwater vehicle,” IEEE Journal of Oceanic Engineering,
vol. 40, no. 1, pp. 196–208, 2015.

[71] V. Estivill-Castro, “NXTDriver.” Available: https://github.com/mipalgu/

NXTdriver (accessed: Sept. 1, 2016), 2014.

[72] V. Estivill-Castro, “NXTController.” Available: https://github.com/

mipalgu/NXTcontroller (accessed: Sept. 1, 2016), 2014.
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