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Abstract

Marine picoplankton account for a considerable portion of primary

production in the Ocean, particularly in the oligotrophic regions. Picoplank-

ton are dominated by three major groups: Prochlorococcus, Synechococcus

and picoeukaryotes, whose populations are controlled by many complex in-

teracting factors. We analyze a rich dataset from a cruise in the North

Pacific Ocean to model the distribution and elemental composition of each

picoplankton group using only environmental data as predictors. Linear re-

gression, generalized additive models, and random forests were used to make

models of phytoplankton abundances and carbon biomasses. Elemental com-

position for each phytoplankton group was modeled using Bayesian linear re-

gression by regressing elemental C, N, and P concentrations on picoplankton

biovolumes. Our species distribution models show temperature and salinity

are consistently the most important predictors to explain variation in abun-

dance and biomass. Along the full transect, nutrient concentrations (PO4,

Fe, Mn, Cu) provide useful insights on sharp population shifts over short

distances and our results support the claim that iron and phosphorus are

limiting nutrients in the North Pacific Ocean’s oligotrophic gyre. Our ele-

mental quota model show that the composition and cellular C:P, N:P and

C:N ratios varies substantially among the three picoplankton groups. Av-

erage carbon content for Prochlorococcus, Synechococcus and picoeukaryotes

were 167 fg C/µm (95% CR: 6.89−457.8), 538 fg C/µm (95% CR: 307.2−

771.5), and 297 fg C/µm ( CR: 13.74−804.6) respectively. This model pro-

vides a method for estimating individual elemental content of each phyto-

plankton group, which is otherwise unmeasurable directly from field samples.
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1 Introduction

Primary production in marine picoplankton ( . 2µm in diameter) is dominated

by three phytoplankton functional groups: Prochlorococcus, Synechococcus and

picoeukaryotes. Flombaum et al. [2013] estimates that Prochlorococcus and Syne-

chococcus are responsible for 8.5% and 16.7% of global net primary production,

respectively. The prokaryotes Prochlorococcus and Synechococcus are photosyn-

thetic marine cyanobacteria that often dominate oligotrophic regions of the ocean

(Ting et al. [2002]). Prochlorococcus are very small, with diameters typically in

ranges 0.5µm − 0.8µm, and dominate in waters with low nutrient concentrations

(Bertilsson et al. [2003]). These features make them exceptionally well suited for

the low nutrient conditions of the tropical and subtropical oceans, where they are

the most numerically abundant photosynthetic organisms (Ribalet et al. [2015]).

Synechococcus are slightly larger with diameters of 0.7µm− 1.6µm (Paulsen et al.

[2015]) and are ubiquitous along a wider latitudinal range than Prochlorococcus,

capable of being found in waters as cold as 2◦C (Shapiro and Haugen [1988]). Pi-

coeukaryotes refer to a diverse multi-phyletic group of photosynthetic eukaryotes

that are smaller than 3µm in diameter, although typically still larger than the two

previously mentioned groups.

Environmental conditions vary widely throughout the area of our study in

the North Pacific Ocean. The subarctic gyre, situated in the northernmost region

of the Pacific Ocean, is nutrient rich and high in primary production due to up-

welling bringing nutrients up from the deep ocean. The subtropical gyre south

of the subarctic gyre is a convergent body of water resulting in downwelling of

nutrients, making these waters oligotrophic (Reid [1962]). This sharp contrast

in nutrient concentrations between these two adjacent bodies of water, along with

other physical processes give rise to the Transition Zone Chlorophyll Front (TZCF):

a dynamic boundary between low and high chlorophyll levels in the ocean. The

TZCF is known to be good indicator for primary productivity and separating sub-
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arctic and subtropical phytoplankton communities (Polovina et al. [2017]). The

TZCF is located between 32◦N and 42◦N and migrates seasonally about 1000km,

reaching its southernmost position in the winter and northernmost position in the

summer (Roden [1991]). The dataset used for this study was gathered on a single

cruise along the 158◦W meridian, collecting data between 22◦N and 43◦N latitude.

The dataset contains high frequency abundance measurements of Prochlorococcus,

Synechococcus, and picoeukaryotes along with various physical and chemical vari-

ables (see Table 2.1 for a summary of all variables).

Phytoplankton distribution is controlled by complex interaction of a number

factors. Bottom-up control factors (e.g., temperature, nutrients) are known to be

well correlated with phytoplankton abundances globally (Flombaum et al. [2013],

Guo et al. [2013]). Picoplankton mortality can be strongly controlled by top-

down controls, notably grazers and viruses (Guo et al. [2014], Guo et al. [2013]).

Given our rich and diverse environmental dataset on the nutrient gradient of the

North Pacific, we aim to determine if these bottom-up controls are sufficient to

determine phytoplankton distributions, implicitly capturing top-down factors con-

trolling populations. Thus, our first research question is: what physical-chemical

environmental variables can best determine the concentration of picoplankton com-

munities in the North Pacific Ocean? The different functional groups experience

predation in differing amounts, even in the same location (Guo et al. [2013]), while

competing with each other for resources. Ocean conditions in our study consis-

tently have limiting nutrients relative to the physiological needs of their phyto-

plankton populations, and the identity of the limiting nutrient changes depending

on the region of the ocean (Moore et al. [2013]). We hypothesize that the sharp

changes in community structure occurring along the gradient can be explained by

the combination of gradual changes in the suite of physical-chemical conditions.

We will determine the relation between environmental conditions and abundance

of each phytoplankton functional groups using linear models, generalized additive

2



models, and random forests, to cover a range between simple interpretable models

and more complex models.

Phytoplankton play an important role in the biological carbon pump: a part

of the carbon cycle where atmospheric CO2 is absorbed by phytoplankton and a

portion of it eventually sinks to the deep ocean to be sequestered in sediment.

Total particulate and cellular sources of organic carbon, nitrogen, and phosphorus

in the ocean typically follow a molar elemental ratio of 106C : 16N : 1P, known as

the Redfield ratio (Redfield et al. [1963]). The Redfield ratio is an average and can

vary considerably by region, depth and season. C:N:P stoichiometry also varies

considerably between species, phytoplankton functional groups as a whole, and as

a response to environmental conditions such as nutrient limitations (Liefer et al.

[2019]; Heldal et al. [2003]; Gundersen et al. [2002]). Samples collected during

the cruise enabled measurements of total particulate CNP. Our second research

questions is: can we model cellular carbon, nitrogen and phosphorus of our three

picoplankton groups as a function of abundances and cell volumes. We hypothesize

that phytoplankton of the picoplanktonic size range and organic debris should

account for nearly all organic macromolecules in oligotrophic region of the North

Pacific. We will use Bayesian linear regression to model particulate organic C,N,

and P. The model’s posterior distributions allow us to estimate the an expected

value and credible region for elemental quotas of C, N, and P in Prochlorococcus,

Synechococcus and picoeukaryotes.
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2 Methods

2.1 Data

The focus of this study is on data obtained from the "Gradients 2" cruise. The

cruise departed from Honolulu, Hawaii, and did a round trip roughly along the

158◦W meridian, collecting data between 22◦ and 43◦ north latitude. The cruise

took place in 2017 from May 28 to June 13. We also look at datasets from two

sister cruises Gradients 1 and Gradients 3, which took place along a similar tra-

jectory in 2016 and 2019 respectively.

Figure 2.1: Map of Gradients 2 cruise trajectory (black line).

The Gradients 2 dataset contains high frequency ( every ∼ 3 minutes) data,

of cell abundance (cells/µL) of Prochlorococcus, Synechococcus and picoeukary-

otes, collected by SeaFlow, a surface level underway flow cytometry instrument.

Sea surface temperature (SST), salinity (SAL), phosphate concentration (PO4)

and photosynthetically active radiation (PAR) measurements are also provided

with similar high frequency. Phosphate measurements were only taken on the

northward transect. The dataset frequently contained small gaps, less than 30

minutes, of missing data that were filled in with linear interpolation. A few large

gaps were also present and left empty since linear interpolation would no longer be

appropriate, given their larger size. Surface trace metal measurements were much

lower in frequency but still taken over the whole latitude range. Data was grouped
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and averaged into 0.01◦ latitude bins.

short name n obs units description

pro 3555 cells/µL Prochlorococcus abundance
syn 3555 cells/µL Synechococcus abundance
pico 3555 cells/µL picoeukaryotes abundance
pro_d 3555 µm Prochlorococcus average spherical diameter
syn_d 3555 µm Synechococcus average spherical diameter
pico_d 3555 µm picoeukaryotes average spherical diameter
pro_C 3555 pg/µL Prochlorococcus estimated biomass
syn_C 3555 pg/µL Synechococcus estimated biomass
pico_C 3555 pg/µL picoeukaryotes estimated biomass
SST 3555 ◦C sea surface temperature
SAL 3510 PSU salinity
PO4 1655 nmol/L Phosphate concentration
PAR 2946 µmol m−2s−1 photosynthetically active radiation
Fe 129 nmol/L iron concentration in seawater
Mn 140 nmol/L manganese concentration in seawater
Cu 140 nmol/L copper concentration in seawater
C 99 µmol/L particulate organic carbon concentration
N 99 µmol/L particulate organic nitrogen concentration
P 99 µmol/L particulate organic phosphorus concentration

Table 2.1: Names, descriptions and number of observations for the variables used
in the Gradients 2 dataset. Interpolation of small missing segments and binning
data into 0.01◦L already applied. Variables used in random forests are imputed to
3555 observations for those models, to match picoplankton abundances.

2.2 Models

We aim to both predict phytoplankton abundance accurately and understand the

effect of each factor on abundance. We use three methods to model phytoplank-

ton abundance: linear models, generalized additive models (GAMs) and random

forests. The linear and generalized additive models provide a simple interpretable

output describing predictors and their effect on abundance, while random forests

can provide a more accurate model but with a more complex interpretation of its

variables. All analyses were conducted with R (R Core Team [2020]) and all plots

were made with ggplot2 (Wickham [2016]).
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Figure 2.2: Imputed and raw data of all predictors used as input for random
forests. Raw data are circled by a dark border to differentiate from imputed data.

2.2.1 Linear Models

Linear models are used for the initial analysis as they are very interpretable and

can identify the most important predictors. For the linear models only, predictors

were standardized to have 0 mean and identical variance to make model coeffi-

cients comparable. Since linear regression requires no missing data, we limit these

models to the most abundant predictors: temperature, salinity, PAR and PO4.

The model equation for all three picoplankton groups is:

log(Abun) = β0+β1(SST )+β2(SAL)+β3(PO4)+β4(PAR)+ε, ε ∼ N(0, σ) (1)

where Abun is the abundance of Prochlorococcus, Synechococcus, or picoeukary-

otes. No interaction terms between predictors are included in the model. We

assume error terms ε to be iid and normally distributed with mean 0 and con-
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stant variance. Since all predictors are standarized to a 0 mean, the intercept β0

represents the log abundance of picoplankton at average environmental conditions

for each predictor. Models were made using the base R lm function R Core Team

[2020].

2.2.2 Generalized Additive Models

Liang et al. [2019] and Irwin and Finkel [2017] show that phytoplankton growth

rates have a non-linear relationship with temperature and nutrient concentrations.

Variation in phytoplankton growth rates is known empirically to be linked to vari-

ation in biomass. We use GAMs to capture these non-linear relationships, which

fit smooth functions of the environmental predictors to the data in lieu of constant

coefficients used linear models. The model equation for all three picoplankton

groups is:

log(Abun) = s(SST ) + s(SAL) + s(PO4) + ε, ε ∼ N(0, σ) (2)

where s(·) is a smooth function of the data. Smooth functions in this model are

made of cubic splines with 9 knot positions. Flexibility of the smooth functions

in GAMs are penalized by a smoothing parameter to avoid potential overfitting,

which we choose with the help of k-fold cross validation (k = 10). Model does not

include interaction terms between any of the predictors. GAMs serve well as an

intermediate between linear models and random forests, as they are more complex

than linear models yet much easier to interpret than machine learning algorithms

such as random forests. We limit our GAMs to the same predictors as used in the

linear models. All models are made using the mgcv R package [Wood, 2011].

2.2.3 Random Forests

In situ observations often have a limiting factor controlling phytoplankton popula-

tions and there are some sharp changes in abundance along the transect, suggesting

there could be equally sharp changes in the relationship between abundance and
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environmental predictors. Random forests provide a nonparametric approach for

fitting flexible non-linear relationships to the data, making them more appropriate

than GAMs for modeling these potential step-wise relationships between predic-

tors and abundance. Random forests can deal with missing values by means of

imputing them, allowing us to include sparse trace metal data in our models with-

out having to discard predictors with higher frequency measurements used in the

previous models. Random forests models and data imputations were done with

the randomForest R package [Liaw and Wiener, 2002] and imputed data were only

used for random forests.

We model picoplankton in a number of different ways using random forests,

using SST, SAL, PO4, PAR, Fe, Mn, and Cu as predictors. The three metals were

selected from a set of six metals by LASSO using the glmnet package (Friedman

et al. [2010]). To validate our models, we split our into test and training sets,

chosen by splitting the data into alternating sets of 24 hours. These testing and

training sets ensure the model is trained along the unique conditions throughout

the entire transect of the cruise and that training data includes both day and

night data on picoplankton. As with our previous models, we first model individ-

ual abundances of each picoplankton group. Phytoplankton abundances are not

comparable across species since their nutrient requirements vary because of their

different sizes. Thus, comparing abundances between the different phytoplankton

groups can be misleading, making it hard to produce a meaningful form of relative

abundance by summing up their abundances. Instead of relative abundances, we

model the log of pro/syn and syn/pico abundance ratios. These two ratios still

provide a relative measure of abundances allowing us to account implicitly for

competition between the phytoplankton groups that co-occur in high quantities.

To obtain a more comparable measure of individual picoplankton populations, we

estimate carbon biomasses from abundances and average cell volumes using con-

versions obtained from our elemental quota models in our second analysis. We
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then model these carbon biomass estimates against the same environmental pre-

dictors used in the individual abundance random forest models.

The relationships modeled between picoplankton abundances and the envi-

ronmental predictors from the Gradients 2 data may not necessarily be represen-

tative of picoplankton abundances in general. We use random forests to model

abundances from the gradients 1, 2 and 3 cruises using temperature, salinity and

average cell diameter as a possible proxy for nutrient conditions. Only three pre-

dictors are used since sufficient phosphate and metals data are not available in the

two other cruise datasets. These models will allow us to see how relationships be-

tween abundances and environmental predictors differ in similar datasets collected

at different times.

2.3 Interpreting Models

Linear model coefficients and GAM smooth functions provide a simple inter-

pretable description of the effect of each predictor on phytoplankton abundances.

Although random forests perform very well at fitting a model to the data, they

are not as interpretable as the two previous models. We therefore use some extra

tools to understand the output of our random forests: variable importance mea-

sure and accumulated local effects (ALE) plots to describe the individual effect

and importance of each predictor. Importance measures are computed using the

randomForestExplainer package (Paluszynska et al. [2020]), and Accumulated

local effects are computed using the iml package (Molnar et al. [2018]).

2.3.1 Accumulated Local Effects (ALE)

To visualize the individual effects of predictors from our random forests we use

accumulated local effects (ALE) as suggested by Molnar. ALE plots hold a few

advantages over other commonly used methods such as partial dependence (PD)
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plots and marginal plots (M plots), namely, they are unbiased. For a two variable

example, PD plots are calculated as:

f1,PD (x1) ≡ E [f (x1, X2)] =

∫
p2 (x2) f (x1, x2) dx2,

where x1 is the variable of interest, f(·) is the model, and p2(x2) is the marginal

density function of x2. There are two main problems that occur in the likely case

that the variables are correlated. The first problem is that using the marginal

distribution of x2 will likely extrapolate beyond the scope of the data, for cer-

tain combinations of (x1, x2). M plots solve this by using the conditional density

p2|1(x2 | x1) instead of the marginal density p2(x2), and are calculated by:

f1,M (x1) ≡ E [f (X1, X2) | X1 = x1] =

∫
p2|1 (x2 | x1) f (x1, x2) dx2.

A second problem with PD plots is that the interpretation of correlated variables

remains entangled: the effect of changing x1 will include the effect of changing x2

as well. ALE plots address this second problem as well, and are calculated by:

fj,ALE (xj) =

∫ xj

xmin,j

E
[
f j
(
Xj,X\j

)
| Xj = zj

]
dzj − C

=

∫ xj

xmin,j

∫
p\j|j

(
x\j | zj

)
f j
(
zj, x\j

)
dx\jdzj − C,

where f j
(
xj,x\j

)
≡ ∂f(xj ,x\j)

∂xj
is the local effect of xj on f(·). Xj is the variable of

interest, X\j is the set of all other variables, xmin,j is a value chosen near the lower

bound of the effective support of pj(·), and C is a constant chosen to vertically

center the function at 0. The local effect isolates the effect of xj from the other

variables at a particular value xj = zj, and is then averaged across all values of

x\j weighted by the conditional density of X\j given Xj = zj. This averaged local

effect is then integrated across all values of xj up to zj to account for the combined

effect of all previous local effects, thus calculating the accumulated local effect.

ALE plots use the conditional density similarly to M plots to avoid extrapolation,
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while using local effects allows ALE plots to omit the effect of other variables from

xj (Apley and Zhu [2020]).

2.3.2 Importance Measures

There are various methods to evaluate a notion of how important a certain variable

is to a random forest. In this study, we use and compare three different methods:

mean minimal depth (MMD), mean square error (MSE) increase, and node purity

increase. Mean minimal depth is the average depth across all trees at which a

predictor is first used as the splitting criteria for a node. MSE increase is the

change in mean squared error on out-of-bag data, from before and after randomly

permuting the predictor of interest. For regression random forests, node purity

increase is calculated as the total decrease residual sum of squares from splitting

on the variable of interest and then averaged across all trees (Liaw and Wiener

[2002] ).

2.4 Elemental Quota Models

Particulate organic carbon, nitrogen and phosphorus concentrations were regularly

measured along the Gradients 2 transect. We model these biomasses as a function

of abundances of the three phytoplankton groups. There are a few problems with

using the data as is: first, the biomass samples are unfiltered and can contain

organic particles larger than can be measured by the flow cytometer. To solve

this, we restrict our model to data taken in oligotrophic waters below 35◦N lat-

itude. Irwin et al. [2006] show that smaller phytoplankton dominate large cells

in oligotrophic waters and that the picoplankton size fraction (< 2µm) accounts

for nearly all biomass in low nutrient conditions. Second, biomass samples were

taken from much larger volumes of water samples while seaflow abundance is de-

termined from small microliter samples, making measurements more susceptible

to the ocean’s patchiness. Abundance therefore suffered from higher variance and

outliers which could lead to selecting erroneous data points to use in the model. To
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solve this, abundance is smoothed using a one hour running median before selecting

data points matching the location of biomass samples. Third, non-photosynthetic

bacteria and organic debris contribute to the total particulate organic matter mea-

surements, but were not counted by the SeaFlow instrument. To solve this prob-

lem, we assume this extra organic mass to be relatively constant throughout the

transect and add an intercept to the model. We were unable to verify this assump-

tion due to lack of relevant data and it may be a source of considerable uncertainty.

We use bayesian linear regression to model organic biomass of carbon, ni-

trogen and phosphorus as a function abundance and volume of the three phyto-

plankton groups. Linear models are chosen so that the model coefficients provide

an interpretable conversion ratio from volume to biomass. The model formula is:

C = β0 + β1(pro ∗ vol) + β2(syn ∗ vol) + β3(pico ∗ vol) + ε, ε ∼ N(0, σ) (3)

where C is the concentration of carbon, nitrogen, or phosphorus in pmol/µL

and pro, syn and pico are the abundances of the three phytoplankton groups in

cells/µL. Coefficients β1−3 are for the interaction terms between phytoplankton

abundances and their respective spherical volumes (vol) and have units cells/µL µm3.

The interaction terms represent cell biovolumes: the quantity in moles of C, N, or

P per unit of volume. The intercept β0 represents organic debris, assumed to be

constant due to not having any measurements pertaining to debris. All param-

eters are restricted to positive values, by specifying non-negative uninformative

priors for each of them, in order keep their interpretation meaningful, since they

all represent a quantity of organic matter. Bayesian regression provides a sim-

ple way to estimate average cell biovolumes and range of possible values via the

parameters’ posterior distributions. We assess our bayesian model using two diag-

nostic measures: n_eff , the effective number of independent MCMC samlpes for

a particular parameter, and Rhat, a measure of how well chains have converged to

a stable posterior distribution. We use an adapted R2 for Bayesian regression as
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defined by Gelman et al. [2019] to evaluate model goodness of fit. Models were fit

using rstan (Stan Development Team [2020]).

Model coefficients can be used to create separate volume to particulate or-

ganic matter biomass conversions for each phytoplankton group. We assume ele-

mental cell quotas and the way they vary with cell volume are fixed over the whole

transect, and estimate particulate organic biomass for the entire dataset. De-

spite only training the model on data up to 35◦ latitude predicted carbon biomass

estimates were used in section 3 for the carbon biomass random forest models.
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3 Picoplankton Distribution Models

3.1 Results

3.1.1 Linear Models

Figure 3.1: Linear models of phytoplankton log abundance. Blue line: predicted
log abundance fit, black dots: raw data averaged over 0.01◦ latitude bins.

Underway phosphate measurements were only available on the northward

transect and PAR measurements were not available south of 32.5◦N, resulting in a

restricted latitude range for these first models (Figure 3.1). The Prochlorococcus

model had the best adjusted R2 value at 0.761 All predictors in the linear models

are highly significant (p-value < 0.001), with the exception of PAR in the Syne-

chococcus model, and PO4 in the picoeukaryotes model, which were significant

with a p-value < 0.05, (Table 3.2). Diagnostic plots for the linear model residuals

can be found in the Appendix (Figures 6.2, 6.3, and 6.4). Lag−1 autocorrelation in

residuals for Prochlorococcus, Synechococcus and picoeukaryotes are 0.956, 0.975,

and 0.947 respectively. These autocorrelations result in an effective sample size of

24, 14, and 29 for Prochlorococcus, Synechococcus and picoeukaryotes respectively,

calculated as suggested by Reiher and Huzzen [1967]. The largest coefficient in all

models is always SST followed by SAL. Note that in each model, SST and SAL are

always of the opposite sign, despite SST and SAL being positively correlated with

a Pearson correlation coefficient of 0.879. PAR and PO4 coefficient effect sizes are
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relatively small compared to their corresponding SST effect size.

Linear model Adjusted R2 AIC

Prochlorococcus 0.837 1710.8

Synechococcus 0.636 2540.9

picoeukaryotes 0.756 1015.6

Table 3.1: Adjusted R2 and AIC values
of linear models in Figure 3.1. AIC val-
ues comparable to corresponding GAM AIC
values in Table 3.3.

Coefficient pro s.e. p-value syn s.e. p-value pico s.e. p-value

Intercept 4.2740 0.0400 0.000 2.0979 0.0594 8.47e-181 1.2414 0.0288 1.84e-234

SST 2.363 0.0610 1.36e-204 -3.768 0.090 1.25e-224 -1.442 0.044 1.33e-163

SAL -0.497 0.0821 1.93e-09 2.675 0.122 2.00e-88 0.594 0.059 7.84e-23

PO4 0.085 0.0306 5.73e-03 -0.561 0.045 5.63e-33 0.019 0.022 3.99e-01

PAR -0.133 0.0165 1.89e-15 0.062 0.025 1.11e-02 0.062 0.012 1.80e-07

Table 3.2: Coefficients from linear models in Figure 3.1. All predictors
have been standarized to have mean 0 and unit variance so that coefficients
are comparable to each other. P-values may be misleading due to high
autocorrelation in data.

3.1.2 GAMs

GAMs were also fit using only data from the northward transect, but PAR was

removed as a predictor due to its very small effect size in the linear models (Table

3.2). Predicted log abundance matches the main patterns in the data, including

the sharp transition in Synechococcus log abundance near 33◦ latitude, which the

linear model failed to capture (Firgure 3.2).
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GAM models were trained on the exact same data as linear models making

their adjusted R squared and AIC calues comparable (see Tables 3.1 and 3.3).

Adjusted R squared and AIC values were improved in every model. Diagnostic

plots for the GAM residuals can be found in the Appendix (Figures 6.5, 6.6, and

6.7). Error distributions follow a mostly normal distribution with some slight

deviations in the tails of the distributions most likely due to some of the steep

shifts in abundances missed by the models. Lag−1 autocorrelation in residuals

for Prochlorococcus, Synechococcus and picoeukaryotes are 0.948, 0.949, and 0.873

respectively. These autocorrelations result in an effective sample size of 29, 28, and

72 for Prochlorococcus, Synechococcus and picoeukaryotes respectively, calculated

as suggested by Reiher and Huzzen [1967].

GAM smooth functions for temperature (Table 3.3) have the largest effect

size for all three phytoplankton groups, compared to salinity and PO4. Each

temperature curve has a distinctive peak where temperature contributes the most

to abundance (Figure 3.3). Smooth functions for salinity in picoeukaryotes and

Prochlorococcus have a similar shape to their temperature counterparts, although

smaller in effect size. The PO4 smooth function for picoeukaryotes barely deviates

from zero, while the PO4 smooth functions for the two other groups show a slight

decrease at low PO4 concentrations.

GAM Adjusted R2 AIC

Prochlorococcus 0.864 1523.2

Synechococcus 0.843 1665.5

picoeukaryotes 0.900 89.9

Table 3.3: Adjusted R2 and AIC val-
ues of generalized additive models. AIC
values comparable to corresponding lin-
ear model AIC values in Table 3.1.
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Figure 3.2: Generalized additive models of phytoplankton log abundance. De-
viance explained by model: pro 86.6%, syn 84.5%, pico 90.1%.

Figure 3.3: GAM smooth functions, with standard error (shaded area), of models
from Figure 3.2.

3.1.3 Random Forests

Random forests captures log abundance of all three phytoplankton groups excep-

tionally well. Models explain 85% to 88% of the variance and even capture some

of the slight differences in abundance between northward and southward tran-

sects of the cruise (Figure 3.4). Accumulated local effects (ALE) curves in Figure

3.5 show temperature and salinity have the largest effect on log abundance (note

the larger range on the scales of SST and SAL). Temperature ALE curves show

a clear optimum for each species: high temperature for Prochlorococcus, inter-

mediate temperatures for Synechococcus and low temperatures for picoeukaryotes.
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Phosphate ALE curves at very low phosphate concentrations show a positive effect

on Prochlorococcus abundance and a negative effect on the two other picoplankton

groups. Synechococcus thrive better than the two other groups on intermedi-

ate phosphate levels and picoeukaryotes has an affinity for the highest phosphate

concentrations. PAR ALE curves are all flat, this is consistent with the near

zero coefficients in the linear models. Iron and especially manganese ALE curves

demonstrate a clear stepwise behavior. Cu ALE curves have little effect size with

the only discernible pattern being a peak at intermediate copper concentrations

for Synechococcus.

Figure 3.4: Random forest models of log abundance of Prochlorococcus (pro),
Synechococcus (syn), and Picoeukaryotes (pico). Black lines: random forest model
fits, dots: cruise raw data binned in 0.01 latitude intervals, colored by time of
collection. Percent variance explained on test data: pro 85.7%, syn 87.0%, pico
88.0%.

All three importance measures agree relatively well with each other amongst

all phytoplankton groups (Figure 3.6). Temperature is always the most impor-

tant predictor in the three importance plots, which reflects well the fact that

temperature ALE curves had the largest effect sizes out of all the other predic-

tors. Phosphate and salinity are the next two most important predictors, with

phosphate being more important in all three measures for Synechococcus. PAR is
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unequivocally the least important predictor and this is consistent with all previous

results on PAR. All three mportance measures of Mn and Fe for Synechococcus

were comparable to salinity and PO4. Copper has peculiarly high importance

in node purity increase for Prochlorococcus, seemingly contradicting its relatively

small effect size in its associated ALE curve.

Figure 3.5: Accumulated local effects (ALE) plots of environmental covariates
for each random forests in Figure 3.4.

Figure 3.6: Three selected importance measures computed from the random
forests in Figure 3.4.
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3.1.4 Abundance Ratios

As with abundance models, our random forests predict log abundance ratios with

high explained variance (Figure 3.7). Log abundance ratios show somewhat step-

wise behavior, with syn/pico ratios having only one stepwise increase while pro/syn

ratios show two stepwise decreases along the gradient. ALE curves (Figure 3.8)

essentially provide the same information as ALE curves for individual phytoplank-

ton groups (Figure 3.5): Temperature and salinity have the largest effect size and

their ALE curves show that each picoplankton group has clear optimal range for

temperature and phosphate concentrations. Stepwise behavior in iron and man-

ganese is also maintained for Prochlorococcus and Synechococcus as shown in the

corresponding curves for pro/syn in Figure 3.8. One notable difference is that the

ALE curve for copper now show a clear peaks in their relationship, both showing

the advantage of Synechococcus and intermediate phosphate concentrations. Tem-

perature consistently remains the most important predictor across all measures

(Figure 3.9). Copper has particularly high importance for pro/syn ratios while

iron was the most important metal for syn/pico ratios.

3.1.5 Comparing Gradients Cruises 1, 2, and 3

We bring in the Gradients 1 and Gradients 3 data set to see if the relationship

between phytoplankton abundance and the environmental covariates are the same

across three different years in the same geographic location of the ocean. Differ-

ences in absolute values of effect sizes of ALE curves (3.10) can be found for all

predictors between the three cruises. This reflects the different levels of abun-

dances in phytoplankton amongst the three cruises (Need to add abundance raw

data for G1 and G3 in appendix for reference). Sharp shifts in temperature ALE

curves for Prochlorococcus and Synechococcus occur mostly at different thresholds

amongst the three cruises. This is consistent with the sharp shifts in abundance for

Prochlorococcus and Synechococcus occurring at different latitudes/temperatures
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Figure 3.7: Random forest models of pro / syn and syn / pico abundance log
ratios. Black lines: random forest model fits, dots: cruise raw data binned in 0.01
latitude intervals, colored by time of collection. Percent variance explainedon test
data: pro/syn 96.0% syn/pico 68.0%.

Figure 3.8: Accumulated local effects (ALE) plots of environmental covariates
abundance log ratio random forests in Figure 3.7.

in the three cruises.
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Figure 3.9: Importance measures computed from the abundance log ratio random
forest in Figure 3.7. Mse_increase and node_purity_increase for syn\pico has
been scaled up by a factor of 5 for visibility.

Figure 3.10: ALE plots of random forests modeled on the three Gradients cruises
for Prochlorococcus, Synechococccus and picoeukaryotes.

3.1.6 Carbon Biomass

Carbon biomasses were estimated using elemental carbon models from section 4

(see methods section 2.4 also). Carbon biomass random forests perform very sim-
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ilarly log abundance counterparts with explained variances of: 87.2%, 85.4%, and

88.7% for Prochlorococcus, Synechococcus and picoeukaryotes respectively (Figure

3.11). ALE plots in Figure 3.12 shows temperature and salinity having a consid-

erably larger effect size than other predictors. Temperature and phosphate ALE

curves show the same essential relationship as with their corresponding abundance

model ALE curves. Prochlorococcus have higher ALE curve values at high tem-

perature and low phosphate than the two other groups, Synechococcus has higher

ALE curves at intermediate temperature and phosphate levels, and picoeurakyote

ALE curves are greatest at low temperatures and high phosphate levels. Iron,

manganese and copper ALE curves (Figure 3.12) also show higly similar relation-

ships to their abundance counterparts (Figure 3.5). PAR ALE curves are nearly

flat, as with all previous random forest models. Importance measures in Figure

3.13 all show temperature as the most important followed by salinity and phos-

phate. Metals’ imortance measure for all three groups were mostly all comparable

in size to phosphate importances.

Figure 3.11: Random forest models on phytoplankton log carbon biomass of
Prochlorococcus (pro), Synechococcus (syn), and Picoeukaryotes (pico). Black
lines: random forest model fits, dots: cruise raw data binned in 0.01 latitude
intervals, colored by time of collection. Percent variance explained on test data:
pro 87.2%, syn 85.4%, pico 88.7%.
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Figure 3.12: Accumulated local effects (ALE) plots of environmental covariates
for each random forest in Figure 3.11.

Figure 3.13: Importance measures computed from the random forests in Figure
3.11.

3.2 Discussion

We’ve modeled the abundances and biomasses of the three dominant photosyn-

thetic picoplankton groups along the gradient in the North Pacific using a series

of statistical models. We showed that temperature and salinity have a non-linear

relationship to abundance and that they are the main predictors of abundance

(Tables 3.2 & 3.6). Nutrients in general tend to have a smaller step-wise relation-

ship to abundance and our results suggested that iron and phosphate are likely

limiting nutrients in the lower latitudes. Nutrients’ effects on abundances were
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markedly different from their effect on carbon biomass concentrations, especially

copper concentrations which had a role in determining Prochlorococcus and Syne-

chococcus biomass but no effect on their abundances.

3.2.1 Linear Models of Picoplankton Abundance

Our linear models captured some of the main features explaining abundances of

the three main picoplankton groups, but the models contain a number of inade-

quacies suggesting better models are needed. The low adjusted R2 values (Table

3.1) for the linear models suggest linear relationships are not appropriate to cap-

ture the relationship between the environment and abundances. In particular, the

Synechococcus linear model (Figure 3.1) misses the sharp increase in log abun-

dance near 33◦ latitude, a main goal of this study. Although PAR is significant

(t-test, α < 0.05) in two of the models (Table 3.2), its effect size in all three

models is very small, suggesting light levels play little role in predicting current

cell abundance in this part of the surface ocean. Picoeukaryotes are larger cells

and much more abundant in the nutrient rich waters of the North Pacific Ocean

where the competitive advantage of small cells acquiring more nutrients, due to

their lower surface area-to-volume ratios, are no longer important. Thus, we could

reasonably expect that phosphate plays an important role in picoeukaryote abun-

dance, yet PO4’s coefficient in the picoeukaryotes model is insignificant with a

minimal effect size (Table 3.2). This suggests linear relationships are most likely

not appropriate to model PO4’s effect or perhaps that temperature better reflects

nutrient conditions in the ocean. Temperature has the largest effect size in all

three picoplankton models and yet it’s also known to have a non-linear relation-

ship with growth rate (Liang et al. [2019]). Having temperature with such a large

and significant effect despite its inadequate linear relationship emphasizes just how

important temperature is as a predictor. As previously noted, the coefficient for

SST is always opposite sign of SAL even though these two predictors are posi-

tively correlated (Figure 6.1). This may be the models’ attempt in adjusting to a
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relationship with temperature that should be non-linear. Lastly, p-values for the

model coefficients are most likely highly inflated making the above interpretations

hard to validate. Our errors are fairly well normally distributed but the high au-

tocorrelation in the data reduces our effective sample sizes to 24, 14, and 29, for

Prochlorococcus, Synechococcus and picoeukaryotes respectively, making perhaps

only the picoeukaryotes model results viable.

3.2.2 Generalized Additive Models of Picoplankton Abundance

Our fairly simple GAMs with just three predictors capture more than 85% of the

variance in abundance for all three picoplankton groups. Like the linear models,

GAMs maintain temperature as the most important predictor with the largest ef-

fect size. Phosphate concentration smooth functions’ effect remains small, showing

just a small decrease in abundance for Prochlorococcus and Synechococcus below

100 nmol/L and slight increase in the highest concentrations. The temperature

smooth function for picoeukaryotes shows a number of local peaks despite the

smoothing penalty. This jagged relationship with temperature is most likely a re-

sult of its strong correlation with other environmental predictors (see Figure 6.1)

including those we could not include in this model, whose effect would be predomi-

nantly absorbed into temperature. Errors in our GAMs are also fairly well normally

distributed but still suffer from high autocorrelation, although slightly lower tham

those of the linear models. Thus the effective sample sizes of 29, 28, and 72, for

Prochlorococcus, Synechococcus and picoeukaryotes respectively, make our GAM

results much more viable than the linear models. Overall, GAMs are much more

effective than linear models at capturing variation in phytoplankton populations

using just the most readily available data, as validated by their lower AIC values

(Table 3.3). However, the unusual temperature smooth functions warrant further

investigation and there isn’t enough metals data to verify their importance using a

GAM. This highlights the need to use non-linear models capable of incorporating

our low frequency nutrient measurements, hence our choice to use random forest
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models.

3.2.3 Absolute Abundance and Abundance Ratio Random Forests

Random forests performed best in fitting the data while also showing the clearest

picture of the effect and importance of the environmental predictors. Log abun-

dance and log abundance ratio random forests all have high explained variance

ranging from 85%− 88% (Figures 3.4 & 3.7), still suggesting potential over-fitting

of the models. ALE curves for individual abundance models (Figure 3.5) are

very similar in shape to their GAM smooth function counterparts (Figure 3.3)

and account for the largest effect sizes of all predictors. Phosphate concentration

ALE curves however, show a much clearer relationship with abundance than GAM

smooth curves for phosphate. Phosphate ALE curves show a step-wise increase

in effect at roughly 100 nmol/L for Synechococcus and picoeukaryotes. Iron ALE

curves show a similar increase in the 0.3 − 0.4 nmol/L range for Prochlorococcus

and Synechococcus. Moore et al. [2013] note that phosphate and iron are gen-

erally limiting nutrients for phytoplankton in the oligotrophic gyre of the North

Pacific Ocean. These step-wise increases to abundance for phosphate and iron

support the idea that they were limiting nutrients up until reaching the threshold

concentrations mentioned above. Manganese ALE curves show a strong stepwise

relationship for all 3 groups at roughly 5.5 nmol/L, with concentrations above

the threshold having a positive on Prochlorococcus and negative effect on Syne-

chococcus and picoeukaryotes. Twining and Baines [2013] and Moore et al. [2013]

show phytoplankton to have consistently lower metal quotas for manganese than

for iron. Since manganese concentrations are almost always higher than iron con-

centrations, manganese is most likely not a limiting nutrient. Note that the con-

centrations for the step-wise changes at 100 nmol P/L, 0.3− 0.4 nmol Fe/L, and

5.5 nmol Mn/L, all occur at roughly 33◦N latitude (see Figure 2.2): the same

region at which Synechococcus abundance sharply increase and where there is a

sudden drop in Prochlorococcus abundance. Thus these sudden changes in nutrient
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concentrations may be good environmental indicators of when sharp changes in

Prochlorococcus and Synechococcus abundances occur.

To account for the effect of competition and relative advantage between pi-

coplankton groups for accessing resources in different conditions, we’ve modeled

the log ratios of their abundances. We considered ratios between Prochlorococcus

and Synechococcus, who are the two main competitors in lower latitudes, and ra-

tios between Synechococcus and picoeukaryotes, who are the two main competitors

in the higher latitudes. ALE curves for log abundance ratios in Figure 3.8 largely

communicate the same changes in abundances as ALE curves for individual log

abundance models (Figure 3.5). This could suggest that effects competition be-

tween groups are already implicitly captured in individual models. One new piece

of information however comes from the copper ALE curves, which are much more

clearly resolved in Figure 3.8. They show that Synechococcus profit the most from

intermediate concentrations of copper, while Prochlorococcus benefits from both

higher and lower concentrations of copper, relative to Synechococcus abundance.

3.2.4 Comparing Random Forests on Gradients Cruises 1, 2 & 3

We modeled picoplankton distributions from two other similar cruises to see if

abundances maintain the same relationship to their environmental conditions. Due

to limits on common data between the three datasets, we had to limit predictors to

temperature and salinity, and used average cell diameter as well to gain potential

insight on nutrient conditions. Almost all temperature ALE curves in Figure 3.10

show either very sharp increases/decreases or wavy shapes with multiple peaks, a

pattern that seems unusual knowing that temperature tends to have a more gradual

relationship between temperature and phytoplankton growth rates (Liang et al.

[2019]). For example, the Gradients 2 temperature ALE curve for Synechococcus

(Figure 3.10), shows an extremely sharp decrease around 18◦C, much more steep

than its counterpart in Figure 3.5. This is most likely caused by temperature
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having to account for the effects of its correlating nutrients, that could not be

included in this model. Thus, varying nutrient conditions may explain some of

the differences in temperature relationships to phytoplankton abundance between

the three cruises. Diameter ALE curves in Figure 3.10 show differing size ranges

and effects between the three cruises, supporting our assumption that nutrient

conditions were varying between the cruises, but limitations in data collection

prevent us from further verifying this.

3.2.5 Carbon Biomass Random Forests

Carbon biomass estimates provides a measurable quantity that is comparable

across the different picoplankton groups, and that accounts for both abundance

and cell size. Our biomass ALE curves (Figure 3.12) reveal notably similar re-

lationships to those of our abundance model ALE curves (figure 3.5). The close

similarity in model fits and ALE curve relationships suggest biomass and abun-

dance are equally predictable using our set of environmental predictors. Copper

ALE curves in all our random forest models (log abundance, lag abundance ratios,

and log biomass) all show a slight preference for intermediate copper concentra-

tions for Synechococcus. Copper does play a few important biological roles in

phytoplankton (Twining and Baines [2013]). Mann et al. [2002] show that Syne-

chococcus in particular were generally resistant to copper toxicity in high copper

concentrations. This may be why Synechococcus appears to benefit more from

higher concentrations of copper.

3.2.6 Model limitations

Light is essential for phytoplankton to photosynthesize and consequently grow, yet

in all our models, PAR is consistently the least important predictor. Flombaum

et al. [2013] show that average monthly PAR is an important predictor of average

monthly global populations of Prochlorococcus and Synechococcus. One reason for
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PAR being unimportant may be that we are using surface PAR measurements

which greatly overestimate irradiation levels below the surface that phytoplankton

are actually receiving. Since we modeled surface level populations, light may also

essentially always be available in excess relative to phytoplanktons’ other needs

for growth. Having access to measurements or estimates of the mixed layer depth

may be a better proxy of average available light near the surface to use in our

models. Another possible reason is that phytoplankton growth rates have a lagged

response to light exposure. Since abundance data collected varies over both time,

space, and consequently nutrient conditions as well, it would be impractical to

determine the correct lag used to adjust PAR data.
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4 Analysis of Elemental C, N, P Cell Content in

Picoplankton

4.1 Results

All parameters in macromolecular quota models converged with R hat values

within 0.01 of 1 and sufficient effective sample size (n_eff). Model parameter

outputs and parameter distribution plots can be found in appendix Tables 6.1, 6.2

& 6.3, and appendix Figures 6.8, 6.9, & 6.10. The summarized results in Tables

4.1 - 4.3 are averaged results for the models up to 35◦ as shown in Figure 4.1.

Quota models for C,N,P had a Bayesian R2 of 0.34, 0.64, 0.64 respectively.

The large majority of organic C, N, and P in oligotrophic waters is at-

tributed to debris, especially in carbon, which represents 61.7% of organic carbon

(Table 4.1). Excluding debris, picoeukaryotes account for the largest proportion

of phosphorus, while Prochlorococcus accounts for the most carbon and nitrogen

(see Table 4.1 and Figure 4.2). However, when accounting for cell volume, Table

4.2 shows that Synechococcus has the highest cell density of carbon, nitrogen and

phosphorus by a fairly large margin compared to the next most abundant group.

Synechococcus on average have 81.2% more carbon than picoeukaryotes, 215%

more nitrogen than Prochlorococcus and 106% more phosphorus than picoeukary-

otes. Table 4.3 shows that total elemental ratios match closely to Redfield ratios of

carbon, nitrogen and phosphate. In contrast, elemental ratios in the composition

of phytoplankton and debris vary substantially from Redfield. Ratios range from:

58.18 to 170.14 for C:P, 7.06 to 41.22 for N:P and 3.86 to 8.64 for C:N (Table 4.3).

Above 35◦N latitude, our extrapolated model predicts an overall increase

in C, N, and P biomass, attributed to a large increase in Synechococcus and pi-

coeukaryotes (see Figure 4.2). Prochlorococcus biomass decreases to nearly zero in

the higher latitudes.
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Figure 4.1: C, N, P quota models fit to data. Grey area represents a 95% credible
region on the posterior mean fit.

Figure 4.2: Predicted biomass for carbon, nitrogen and phosphorus, broken down
by contribution from phytoplankton groups and debris. The model was trained on
data south of 35◦N latitude (dashed line).
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pro 95% CR syn 95% CR pico 95% CR debris 95% CR

C 0.1476 0.0060–0.4001 0.1267 0.0779–0.1739 0.1087 0.0051–0.2965 0.6170 0.2648–0.8435
N 0.2207 0.0152–0.5252 0.1727 0.1234–0.2242 0.0841 0.0030–0.2515 0.5226 0.1513–0.7853
P 0.1040 0.0034–0.3186 0.2079 0.1666–0.2507 0.1802 0.0167–0.3935 0.5080 0.1875–0.7446

Table 4.1: Average contribution (%), of each phytoplankton
group and debris, to total predicted biomass for carbon, nitro-
gen and phosphorus. Rows sum up to ∼ 1.

fg C/um3 95% CR fg N/um3 95% CR fg P/um3 95% CR

pro 167.7 6.89–457.8 46.17 3.22–109.2 2.73 0.09–8.38
syn 538.4 307.2–771.4 145.62 98.98–194.8 23.90 18.44–29.38
pico 297.2 13.74–804.6 41.77 1.51–126.3 11.58 1.01–25.51

Table 4.2: Average mass of C, N, P per cubic micrometer of cell
volume for each phytoplankton group.

C:P 95% CR N:P 95% CR C:N 95% CR

pro 170.14 7.05–4343.00 41.22 2.32–1135.07 3.86 0.19–67.11
syn 58.18 32.30–90.02 13.46 8.72–19.87 4.31 2.24–7.39
pico 60.58 3.32–764.37 7.06 0.29–92.72 8.64 0.38–219.57
debris 133.88 52.48–405.97 17.91 4.71–58.84 7.47 2.91–27.51

total data 111.17 17.61 6.36
Redfield 106 16 6.625

Table 4.3: Median elemental ratios for each phytoplankton
group, debris, and total data.

4.2 Discussion

Our linear models provide an estimate of biomass for each picoplankton group,

describing how cell biomass changes with volume. However, we expect this linear

relationship to break for cell volumes moving further away from the mean volume

and outside the range of our data, especially since the ratio between the volume

of the inside of the cell and cell membrane will change with size and these two

components differ in composition.

Worden et al. [2004] propose 237 fg C/µm3 as robust estimate for carbon

biomass in Prochlorococcus and Synechococcus and potentially picophytoplank-

ton in general. Our average estimate for Prochlorococcus and picoeukaryotes of

168 fg C/µm3 and 297 fg C/µm3 respectively, are relatively close to this esti-

33



mate. However, Synechococcus carbon content is estimated to be substantially

higher at 538 fg C/µm3. Such high values are not unheard of: Verity et al. [1992]

find an average of 470 fg C/µm3 for Synechococcus in their culture studies relating

cell volume to carbon content. Bertilsson et al. [2003] find that cellular C quotas

in Synechococcus are consistently higher when they are P-limited, which could be

the case in these oligotrophic waters, so the high density of Synechococcus may in

fact be a stress response. C:N:P ratios vary widely among phytoplankton groups

and debris (Table 4.3), demonstrating the different resource requirements of each

phytoplankton groups. Bertilsson et al. [2003] find elemental ratios ranging from

121− 165 for C:P and 21− 33 for N:P in nutrient replete conditions for Prochloro-

coccus and Synechococcus and even higher ratios in P-limited conditions. Our own

C:P ratio for Prochlorococcus of 168 falls just at the edge of this range while its

N:P ratio of 42.1 is also slightly above this range (see Table 4.3). In contrast, The

C:P and N:P of Synechococcus (58.2 and 13.5, respectively) are well below these

ranges. The particularly high densities for carbon, nitrogen and phosphorus of

Synechococcus, paired with its low C:P and N:P ratios, indicate that Synechococ-

cus is thriving in oligotrophic waters. Despite this, Figure 4.2 shows that up to

about 33◦N latitude, Synechococcus account for the smallest fraction of C,N and

P biomass. This suggests that Synechococcus biomass is being controlled by some

external factor other that nutrient availability.

As with abundance, biomass of Synechococcus and picoeukaryotes increases

markedly in the higher latitudes, while Prochlorococcus biomass falls to baseline

levels. A noteworthy difference between abundance and biomass for picoeukaryotes

is that picoeukaryote carbon biomass plummets around 39◦ latitude (Figure 4.2),

replaced mostly by a peak in Synechococcus and even a small peak in Prochlorococ-

cus. Looking at the raw data, this seems to be caused by a combination of both a

decrease in average volume and abundance. This drop in biomass may be slightly

exaggerated though, as picoeukaryote volumes in that range are smaller than what

34



the model was trained on in lower latitudes. Synechococcus biomass may also be

overestimated in the higher latitudes since our model is assuming the high C,N,P

densities of Synechococcus in oligotrophic waters to be ubiquitous throughout the

entire range of the study. In reality, it’s not clear that Synechococcus would main-

tain its high elemental C,N,P quotas while competing with picoeukaryotes in high

nutrient conditions. Lastly, it’s possible that concentration of organic debris could

change in the higher latitudes was well. In future studies, these issues could be

addressed by measuring carbon, nitrogen and phosphate contents with samples

filtered to the same size fraction as measurements gathered from flow cytometry.
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5 Conclusion

Phytoplankton populations are controlled by a variety of complex interacting fac-

tors. Determining what affects their populations will be key in understanding how

they will react to expected future changes in ocean biogeochemistry due to climate

change. We conducted an analysis on a rich environmental dataset from a cruise

in the North Pacific Ocean. Our goal was to model the distribution of the three

dominant groups of photosynthetic picoplankton using just environmental condi-

tions, i.e. "bottom-up" factors, and furthermore, determine their macromolecular

compositions for carbon nitrogen and phosphorous content.

Our abundance models show the necessity of using non-linear methods to

predict phytoplankton abundances. Using progressively more complex models

demonstrated how much additional insight is gained from using non-linear and

machine learning models compared to the simpler and easier to interpret linear

models. Temperature and salinity are identified as the most important predictors

and this result is supported later on by the non-linear models as well. However,

GAMs clearly demonstrate that variance in picoplankton abundances are better

explained using a non-linear relationship for temperature, salinity, and phosphate.

Random forests had the additional advantages of having even more flexibility in

modeling non-linear relationships and being able to include sparsely available nu-

trients data via imputation of missing data. Random forest models were thus

able to show the lesser, albeit still important roles of nutrient concentrations that

couldn’t be identified with the previous models. Phosphate, iron, and manganese

concentrations were the particularly important nutrients in explaining picoplank-

ton abundances. Nutrient concentrations often have a step-wise relationship to

abundance and biomass. These findings support previous research finding that

phosphorus and iron concentrations are limiting factors controlling phytoplankton

abundance in the North Pacific Ocean’s oligotrophic gyre. These stepwise effects

of nutrient concentrations offers insight the sharp changes in populations that

36



temperature doesn’t fully account for. Picoplankton carbon biomasses maintain

essentially the same relationship as thier corresponding abundances with environ-

mental predictors. Even though carbon biomasses are an estimated value, which

adds uncertainty to modeling them, they can be modeled just as well as abun-

dances.

Estimates for total CNP content and C:P, N:P and C:N ratios for phyto-

plankton and organic debris were determined by Bayesian linear regression. These

estimates varied considerably among the different phytoplankton groups and de-

bris, but were all close to or within the range of previous studies’ results. Esti-

mates for carbon per unit volume for Synechococcus were particularly high while

Prochlorococcus and picoeukaryotes estimates matched closely to known average

carbon content. Typically, estimating carbon biomass from field samples relies on

using cell volume to carbon conversion or average carbon per cell values based on

controlled culture experiments. However, cellular elemental content and ratios in

the different phytoplankton groups are known to have a fair degree of plasticity.

Our elemental content models provide a relatively simple method to estimate cel-

lular carbon, nitrogen, and phosphorus that relies directly on sample data rather

than relying on reference values.

Abundance models comparing cruises show that although temperature and

salinity are the most important predictors for modeling abundance, they are in-

adequate on their own to explain differences in populations between these cruises

on different years. Having more data on nutrient concentrations from multiple

datasets would be necessary to test whether or not differing nutrient conditions

can account for the discrepancies in phytoplankton abundance between cruises.

We had to limit our elemental quotas model to the oligotrophic region of the

North Pacific due to abundance data not being able to account for larger cells in

the highly productive northern latitudes. Abundance measurements and organic
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matter measurements filtered to the same size fraction would allow for a greater

latitudinal coverage of our model. Elemental C,N,P cellular content is expected

to change along with resource availability so extending the range of our model

would allow us to see how picoplankton elemental composition might change in

high nutrient conditions.
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6 Appendix

Figure 6.1: Correlation matrix of predictors from imputed data used in individual
abundance random forests (Figure 3.4), abundance ratio random forests (Figure
3.7) and biomass random forests (Figure 3.11).

Figure 6.2: Diagnostic plots for Prochlorochoccus GAM model (Figure 3.2).
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Figure 6.3: Diagnostic plots for Synechococcus GAM model (Figure 3.2).

Figure 6.4: Diagnostic plots for picoeukaryotes GAM model (Figure 3.2).

Figure 6.5: Diagnostic plots for Prochlorochoccus GAM model (Figure 3.2).
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Figure 6.6: Diagnostic plots for Synechococcus GAM model (Figure 3.2).

Figure 6.7: Diagnostic plots for picoeukaryotes GAM model (Figure 3.2).
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mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta_pro_vol 0.014 0.00026 0.0103 0.00057 0.0057 0.012 0.020 0.038 1594 1.0007
beta_syn_vol 0.045 0.00022 0.0098 0.02557 0.0382 0.045 0.051 0.064 1949 1.0005
beta_pico_vol 0.025 0.00042 0.0183 0.00114 0.0103 0.021 0.036 0.067 1911 1.0007
intercept 1.410 0.01011 0.3609 0.58527 1.1833 1.458 1.680 1.978 1275 1.0018
sigma 0.652 0.00152 0.0717 0.52802 0.6020 0.647 0.697 0.810 2238 1.0006
lp__ -14.7 0.0547 1.77 -19.09 -15.58 -14.341 -13.44 -12.33 1041 1.0023

Table 6.1: Stan ouptut for carbon elemental quota model (Figure 4.1).

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta_pro_vol 0.0033 0.000055 0.0021 0.00023 0.0017 0.0030 0.0047 0.0078 1425 0.9992
beta_syn_vol 0.0104 0.000040 0.0017 0.00707 0.0092 0.0104 0.0115 0.0139 1918 1.0026
beta_pico_vol 0.0030 0.000048 0.0024 0.00011 0.0011 0.0024 0.0042 0.0090 2502 1.0012
intercept 0.1878 0.001760 0.0629 0.05226 0.1453 0.1947 0.2349 0.2931 1275 0.9999
sigma 0.1152 0.000281 0.0130 0.09341 0.1059 0.1141 0.1230 0.1448 2142 1.00151
lp__ 59.83 0.049608 1.793 55.6878 58.898 60.171 61.155 62.236 1306 0.9997

Table 6.2: Stan ouptut for nitrogen elemental quota model (Figure 4.1).

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta_pro_vol 0.000088 0.0000019 0.000073 0.0000029 0.00003 0.00007 0.00013 0.00027 1458 0.9997
beta_syn_vol 0.000771 0.0000020 0.000088 0.0005955 0.00071 0.00077 0.00083 0.00095 2048 0.9996
beta_pico_vol 0.000374 0.0000051 0.000209 0.0000325 0.00022 0.00035 0.00051 0.00082 1692 1.0006
intercept 0.010502 0.0000963 0.003142 0.0037729 0.00845 0.01077 0.01279 0.01584 1065 0.9999
sigma 0.006059 0.0000138 0.000658 0.0049508 0.00559 0.00600 0.00647 0.00747 2286 1.0033
lp__ 186.8941 0.0536948 1.775701 182.46531 185.943 187.284 188.194 189.239 1094 1.0029

Table 6.3: Stan ouptut for phosphorus elemental quota model (Figure
4.1).
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Figure 6.8: Posterior distributions of parameters (Table 6.1) for carbon elemental
quota model (Figure 4.1).

Figure 6.9: Posterior distributions of parameters (Table 6.2) for nitrogen ele-
mental quota model (Figure 4.1).
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Figure 6.10: Posterior distributions of parameters (Table 6.3) for phosphorus
elemental quota model (Figure 4.1).
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