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Abstract  
 

Natural ambient noise levels in time, frequency, and space, in coastal regions are 

modeled based on local environmental forcing and propagation conditions. Continuous audio 

recordings were taken between April 18th and May 12th, 2018 off Sooke Inlet, BC, a shallow 

water region with complex bathymetry and persistent vessel traffic, for model parameterization. 

The received noise levels were decimated to their hourly minimums, and spectral component 

filtering was used for source classification.  An ambient noise model in the form of a linear 

combination of wind speed and rain rate source terms, modulated by a tidally driven amplitude 

term, was developed. Model-data comparisons of monthly sound levels from April 2018 to 

February 2019 show less than 5 dB error above 1 kHz, and less than 3dB error above 20 kHz. A 

computational sound propagation model is used to compute the source level per unit of area of 

the natural noise generating mechanisms.   
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1. Introduction 
 

Physical properties of water such as its density and relative incompressibility allow sound 

to travel at high speed over great distances underwater, permitting trans-basin target detection 

with the SOFAR channel (Abileah and Lewis 1996 Sep 26), long distance marine mammal 

communication (Dudzinski et al. 2009) and the acoustic detection of the ocean weather footprint 

(Wenz 1962; Vagle et al. 1990; Nystuen et al. 2010). The cylinder1 of influence of a sound 

source is therefore not restricted to its immediate location but contributes to the global oceanic 

susurrus comprised of locally or distantly generated sounds, generally known as the ambient 

noise field. This makes underwater sound and noise useful for many aquatic organisms, as it 

provides a means to “shed light2” on their surroundings in an environment where light and other 

electromagnetic waves are restricted. Humans have progressively exploited sound in the marine 

environment with the advent of active and passive acoustic methods with the introduction of 

SONAR in WW1 (McCarthy 2004).  

The objectives of this project are threefold: filter acoustic recordings from a heavily 

trafficked area to isolate for the ambient environmental signal consisting of wind driven waves, 

rain and currents, parameterize an empirically fit effective source term model for near shore 

regions using the filtered recordings, and combine the model with the local effective listening 

area calculated from the numerically modeled transmission loss, yielding the sound source level 

(SSL) per unit area. With a well parameterized source level in terms of wind and surface current 

vectors, rainfall rate, and an accurate transmission loss model, the near shore ambient noise level 

 
1 While sound radiates in the shape of a sphere from a point source, the surface and bottom of the 
ocean truncate it such that at long ranges it is better represented as a cylinder. 
2 Given that light itself does not penetrate to great depths in the ocean (Lee et al. 2005), marine 
organisms have adapted to other methods of sensing their environment (Dudzinski et al. 2009).  
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may generally be used to determine the absolute contributions of natural mechanisms and 

anthropogenic activities in the sound field. This project takes place in coastal British Columbia, 

with five stations deployed throughout the strait of Juan de Fuca, Salish Sea, and Gulf Islands 

(Figure 1). Continuous acoustic recordings are on-going, having begun in January of 2018. 

Preliminary model development was performed on a subset of the recordings collected at station 

S in the open straight off Sooke inlet between April 18 and May 12, 2018 and was tested against 

recordings from April 18, 2018 to February 27, 2019.  

 

Figure 1: Recording locations (red) overlaid on the bathymetry (CHS NONNA-100) of the 
sampling region (blue, scale included) in coastal British Columbia. Sooke station (Station S), the 
site of primary investigation is marked by a triangle. Race Rocks light station is marked by the 
crossed circle. Black represents regions of no high-resolution bathymetric data, including small 
islands and other regions above water. 
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1.1 Motivation 
 

Noise levels in the deep ocean have been increasing over the last century (McDonald et 

al. 2006; Chapman and Price 2011), although recent decreases at low frequencies have been 

observed (Miksis-Olds and Nichols 2016).  This trend is driven by increasing human use of the 

ocean for transport of the growing international trade of goods (Frisk 2012) and balanced to 

some extent by improved noise management systems. This increase in international commercial 

shipping must be accompanied by an growing use of coastal oceans, along with an expansion of 

recreational and commercial activities (e.g. ferries, fishing), particularly in regions near key 

export and import hubs such as the Port of Vancouver (Thomson and Barclay 2020).   

Given the technical complexity of monitoring underwater noise, human generated 

acoustic pollution in the natural ocean environment has not been considered until relatively 

recently (McCarthy 2004).  Modeling a natural coastal ambient noise field baseline is important 

because there are few pristine soundscapes remaining (Marques and Araújo 2015), resulting in 

no absolute standard for pre-anthropogenic noise levels, and thus no basis for comparison or 

context for current levels of emission. While developing baselines is a less than glamorous 

pursuit, they are nonetheless a fundamental part of acoustic monitoring (Ainslie et al. 2018).  

To establish the degree to which ocean noise is a concern for the marine environment, it 

is essential that normal noise levels and variability be established with geographic location, 

through seasonal variations, and changes due to anthropogenic activity. This effort is 

complicated by the efficiency with which sound propagates underwater. Due to depth-gradients 

in pressure, temperature, salinity, the sound-speed profile can cause favourable propagation 

conditions where distantly generated noise mixes with locally generated noise (Urick and 

Kuperman 1989). The physical dynamics of the ocean (waves, currents, tides) and atmosphere 
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(persistent winds, storms) determine the mixing of water masses and structure of the sound-speed 

profile. These conditions are dynamically variable in Canadian waters and the effect of noise 

from a single ship may vary significantly from one day to the next.  Additionally, meteorological 

conditions drive sound production mechanisms at the ocean’s surface, such as breaking waves 

and rainfall, causing short-term variability in the natural underwater soundscape. 

Baseline natural environmental noise can be used to generate quantitative estimates of the 

anthropogenic contribution to the soundscape, conceptually as: 

 

where the measurements are expressed as  the ‘total’ sound field, natural noise sources are 

summarized as , the ‘environmental’ and anthropogenic contributions, ,  may be from a 

wide range of industrial or human activity.  The contributions of relatively transient acoustic 

signals of biological and geophysical origin to the underwater soundscape are ignored.  

Quantitative estimates of the anthropogenic contribution to the underwater sound field 

are needed by bodies such as Transport Canada (TC 2020), the Department of Fisheries and 

Oceans (DFO 2020), indigenous groups (TC 2020), and the Port of Vancouver (Olszewski and 

Ren 2015) to inform policy and legislation on acoustic noise levels in Canadian coastal regions. 

The issue of anthropogenic underwater noise is of societal concern because of the potential 

impact on marine mammals and other valued marine species; there are reports of whale 

strandings following explosive noises and high intensity sonar trials (Ketten et al. 1993). Sub-

lethal consequences can also result in marine mammals due to chronic noise that interferes with 

normal animal activities, including changes in stress hormones in whales (Rolland et al. 2012).  

For animals that navigate, communicate, hunt and forage using acoustics, an increase in human 

generated noise can reduce the range over which these methods are effective or mask the 
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necessary signals altogether (Putland et al. 2018; Pine et al. 2020). Many marine fish, including 

commercial species, are known to be acoustically active and use sound to detect prey or evade 

predation with elevated anthropogenic noise having shown to negatively impact their catch rates 

(Engås et al. 1996). 

In the study region, the impacts of vessel noise on the endangered Southern Resident 

Killer Whales (SRKW) are of particular interest.  It has been observed that ship traffic can 

disrupt foraging behavior (Lusseau et al. 2009) and that vessel presence has the impact of 

causing SRKW to raise their calling amplitudes (Holt et al. 2009) along with other behavioural 

changes (Williams et al. 2014). Though ship noise is most powerful in the 100’s of Hz band, it 

can extend into the frequency range which may mask echolocation signals (Veirs et al. 2016).  

Central to traditional active and passive SONAR acoustics is the concept of signal to 

noise ratio (SNR), the difference between the amplitude of a signal relative to the amplitude of 

the background variation where the signal is detected. The noise portion of this relationship is 

typically comprised of the ambient sound field of the ocean and electronic and mechanical noise 

generated by the recording system and associated hardware. Accurate modeling of the ambient 

background allows signal processing algorithms and acoustic antenna designs (absolute and 

relative sensor positioning) to be implemented to optimize the SNR and model detection 

performance.  

Natural ambient sound can be inverted to passively monitor a variety of noise-generating 

natural processes, including wind speed (Vagle et al. 1990), rainfall rates and drop size (Medwin 

et al. 1992; Ma and Nystuen 2005), snowfall rates (Alsarayreh and Zedel 2011), breaking waves 

(Bass and Hay 1997; Deane and Stokes 2010), and currents.  Wind-driven noise can also be used 

to infer the physical properties of the ocean through which the sound is propagating, such as 
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temperature (Woolfe et al. 2015), local sound speed (Barclay and Buckingham 2013), seawater 

pH (Barclay 2011), seabed geoacoustic properties (Barclay et al. 2019) and structure (Siderius et 

al. 2006), and water column structure (Katsnelson et al. 2019; Shajahan and Barclay 2020). 

The WOTAN (Weather Observation Through Ambient Noise) project (Vagle et al. 1990) 

demonstrated the applicability and performance of a sustained passive acoustic wind and rain 

monitoring system in the open ocean.  In the deep water (> 100 m) case, the relationship between 

the wind speed and noise level depends almost uniquely on the action of the wind stress on 

ocean’s surface.  A frequency dependent source level per unit area (or source level density) as a 

function of wind speed was estimated by assuming simple geometric spreading sound 

propagation.  

Shallow water ambient noise levels are site dependent (Ingenito and Wolf 1989), making 

the development of a generalized relationship between wind forcing and noise levels difficult to 

establish (Wille and Geyer 1984).  Previous work in shallow water met with relative success and 

required significant tuning to the local environment through in situ transmission loss experiments 

(Kuperman and Ferla 1985).  Sound propagation in littoral waters depends heavily on the 

bathymetry and seabed properties, while the local coastal topography varies fetch as a function 

of wind direction.  Combining these passive and active observations allowed the source level 

density for wind noise to be estimated. 

In this work, a computational approach is taken to estimate the surface receive sensitivity, 

or effective listening area of the receiver as a function of frequency, from which empirical 

relationships between power spectral levels and meteorological and oceanographic forcing can 

be determined.  Combining these relationships with the receiver’s effective listening area allow 

the source level per unit area to be estimated.  
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1.2 Goal and Objectives  
 

The goal of this research is to model the soundscape baseline in coastal waters as it varies 

in frequency, time, and space.  The model will be empirically driven by acoustic data collected in 

the Salish Sea along with available forcing data such as wind speed and direction, surface current 

speed and direction, and spatial rainfall intensity.  This will be accomplished by achieving the 

following three objectives: 

 
1. Develop a sufficiently robust filtering system to isolate noise that is natural and abiogenic in 

origin. 

2. Parameterize an empirical ambient noise model as a function of wind speed and perform 

model data comparison to evaluate suitability. In doing so, other environmental sources and 

forcing terms, including precipitation and tidal current speed and direction, and wind 

direction, may be linearly included to improve fit. 

3. Transform the empirical model into a generalized relationship between the forcing variables 

and the source level per unit area by computing the local effective listening area.  
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2 Theory 
 

Human perception of sound is the sensory representation of a summation of pressure 

waves3, where loudness is the perceived pressure amplitude of these waves and pitch the 

perceived frequency. Underwater noise is identical, save that the medium of propagation is 

water, rather than air. While minor in scope, this subtle difference has numerous effects on the 

behavior of sound – chief among them its fast sound speed and high transmission efficiency, 

leading to its wide use as a means to explore and sense the underwater environment.  

The speed of a pressure wave is a function of the density of its medium of transference, 

and thus also a function of anything that changes this parameter. Kundu et al (Kundu et al. 2008) 

have an excellent treatment of pressure wave speed relationship with bulk material properties, 

presented here in summary. Consider a minute pressure disturbance travelling right to left at 

some speed  into still water. Ahead of the wavefront, the fluid has pressure , density , 

temperature , and particle speed . Behind the wavefront, it has pressure , density 

, temperature , and particle speed , in the direction of propagation. To simplify 

analysis, we enter the waves frame of reference, and consider a finite area  on the wavefront, 

with fluid entering the front at speed , and leaving at speed . Taking the mass balance 

yields 

 

Ignoring second order terms due to low assumed disturbance amplitude, this simplifies to 

 

 
3 Hence the representation of noise as sound pressure in , or in dB referenced to 1  
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Applying the momentum equation to our system, namely that net force (left side) is equal to the 

change in momentum in the system (right side) without viscous stresses, yields: 

 

and simplifies to 

 

Substituting  from Eq. 3 yields 

 

In seawater these parameters are generally temperature, pressure, and density. The true equation 

of state is formulated in terms of the Gibbs free energy of the system as described in the TEOS-

10 standard (McDougall and Barker 2011). As the system is highly complex, specific interaction 

between temperature, pressure, and salinity on density in seawater are empirical relationships 

derived from large amounts of experimental data.   

 In the following sub sections, the theoretical basis for a linear combination of acoustic 

source terms is presented. Section 2.1 details the process of moving a time domain acoustic 

pressure series into a frequency domain acoustic power series. Section 2.2 describes the complex 

effects that the propagation environment has on the received acoustic signal, the methods used to 

quantify these effects, and the use of the principle of reciprocity in modelling a distributed noise 

source. From a conceptual model of a collection of superimposed source terms in the time 

domain, Section 2.3 develops the process of source separation through the frequency domain and 

calculation of the sound source level from received level through acoustic transmission 

modelling. Section 2.4 demonstrates the use of a common regression model as a way to 

parameterize the linear combination of the different sources of environmental noise in the 

received soundscape.  
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2.1 Signal Processing 
 

It is useful to break noise signals down into their spectral components for further 

analysis. This is typically achieved by performing a Fourier Transform, moving a signal from the 

time domain into the frequency domain. As the samples in this study are discrete time series, a 

discrete transform is used, given by, 

 

where  represents the spectral energy at frequency k,  represents the signal of interest, N 

represents the number of samples in the signal, and . The resulting spectra will have a 

frequency resolution equal to the inverse of , the signal length in the time domain where 

 is the time resolution determined by the sampling rate, fs.  

A straight, discrete Fourier Transform will also be biased towards the spectral 

components in the middle of the time domain window. The Welch periodogram (Welch 1967) 

alleviates this bias by dividing the time domain signal into overlapping subsamples which are 

Fourier transformed independently and recombined into a mean spectrum in the frequency 

domain. In doing so, the beginning and end of the signal are better represented in the final 

spectra. It also reduces the variability in the final spectra, although this comes at the expense of 

frequency resolution due to the shortened signal length. 

 The complex output of a Fourier transform can be squared by multiplication by its 

complex conjugate to compute the signal’s power present in a time series as a function of 

frequency, 

 



11 
 

where k is the power at frequency k, * denotes the complex conjugate, and the  indicate that 

the ensemble average has been taken.  By Plancherel's theorem, the integral of the squared 

modulus of a function in the time domain is equal to the integral of the squared modulus of its 

spectrum, where both quantities represent the signal’s energy. 

For the discretely sampled time series, the spectrum will range from the negative to 

positive Nyquist frequency (fs/2) and, for all real-world signals, be mirrored about 0 Hz, making 

spectral values at negative frequencies redundant.  The spectrum from 0 to fs/2 can be multiplied 

by a factor of 2 to account for the loss in energy in the discarded negative frequencies and be 

made independent of sample length (frequency resolution), resulting in a power spectrum in the 

units of .  Measured noise power as a function of frequency is the acoustic metric 

used in this study. 

 
2.2 Sound Propagation 
 

The sources of interest in this study, bubbles generated by breaking waves and rain drop 

impacts, are all near-surface processes occurring uniformly over the area of sea surface that 

ensonifies the receiver.  For each hydrophone, the range dependent listening area is called the 

surface receive sensitivity, which depends on the depth of the sensor and details of the 

propagation environment. It is practical to model ensembles of these bubbles as monopole 

sources with a prescribed strength per unit area, placed uniformly in an infinite horizontal plane 

at fixed depth, z’, below the surface (Cron and Sherman 1962; Barclay and Buckingham 2013).   

The depth-dependent sound speed profile and range-dependent bathymetry in the 

surrounding ocean requires the use of computational method to determine the transmission loss. 

Sound will refract as it passes through mediums of changing sound speed, where continuously 

varying sound speed by depth and range will result in rays bending (wave fronts refracting) 
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continuously in response. Given the bandwidth of the wind driven noise (0.100 – 100 kHz), the 

most practical and appropriate computational model of sound propagation is ray tracing.  Bellhop 

is a collection of algorithms that solve the Eikonal equation to compute ray trajectories, and the 

transport equations to estimate the density of rays at all points, itself an estimate of the acoustic 

pressure field as a function of range and depth in an arbitrarily complex environment. The 

transmission loss is then calculated as the proportional difference between source and received 

level. 

The range dependent contribution of each patch of surface noise to a receiver placed at 

the location of the model source can be calculated by a running a single instance of the 

computational model and invoking the principal of reciprocity (Carey and Evans 2011).  In the 

simulation, the source can be placed at the receiver, and the field can be computed at the depth z’ 

at all ranges.  Since the wave equation obeys reciprocity, the resulting computation can be used 

to determine the field at the actual receiver (simulated source) due to a source placed arbitrarily 

in range at depth z’.   

The ray tracing software Bellhop will be used to compute the surface receive sensitivity 

at the study location as a function of frequency (Porter 2011). 

 
2.3 A shallow water ambient noise model 
 

In terms of spatial and temporal extent, the oscillation and collapse of bubbles are a 

dominant acoustic source in the ocean (Wenz 1962; Deane and Stokes 2002), created by bubble 

entrainment of breaking waves (Farmer and Vagle 1988), falling raindrops (Ma and Nystuen 

2005), or cavitation on the blades of a ship’s screw (Arveson and Vendittis 2000). Thus, to a 

certain degree, it is possible to correlate the natural underwater noise field to sea-state, offering a 

method of predicting underwater noise levels (Wenz 1962; Kuperman and Ferla 1985), or if 
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inverted, sea-state from noise levels (Vagle et al. 1990; Nystuen et al. 2010). This is made more 

complex as the sound, once generated and moving towards the receiver, can be further 

influenced by the environment through which it is propagating (Figure 2). In the open ocean, off 

the continental shelf, propagation effects are typically restricted to changes in sound speed 

profiles, however in shallower water, the sound interacts with the ocean floor making the 

propagation environment more complex due to multiple reflections and bottom attenuation 

(Jensen et al. 2011).  

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2: Schematic of sound in the marine environment, describing the path from noise 
generation as a result of environmental sources including wind and rain, through noise 
modification by transmission effects like reflection, attenuation, and scattering, to receiving the 
sound on an acoustic recorder. 
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The principle of wave superposition in the acoustic pressure field allow the received 

acoustic pressure time series, , to be represented as the sum of source time series, 

 

where , , , and  represent the signals attributed to sources generated by wind, 

rain, shipping, and unknown mechanisms respectively.  is a tidal scale amplitude 

modulation on tidal timescales, , due to the effect of surface currents on surface noise source 

generation as well as the varying water depth that modulates the characteristics of transmission 

loss between the noise sources and receiver. The longer tidal timescale, , is differentiated from 

 due to its implication in shifting a multiplication of time series into the frequency domain. 

In practice, continuous acoustic pressure signals in the time domain are inseparable. An 

acoustic pressure series represents the instantaneous deviation in pressure from the hydrostatic 

background at the hydrophone and do not individually encode any information on their origin. 

An instantaneous 10 μPa difference from the rupture of a wave entrained bubble is the same as a 

10 μPa difference from the impact of a raindrop, the grinding of tidally transported bed load, 

nearby shipping, or even a biological call like that of a whale.  

 Moving the acoustic pressure series into the frequency domain through a discrete Fourier 

Transform (DFT) allows sources to become separable through frequency content.  Eq. 9 becomes 

 

where W, R, T, S and  are the Fourier transformed received, wind, rain, tidal effects, shipping, 

and unknown components of the signal.  Over the time scale of the transform window,  is 

functionally constant and represents a simple scaling factor, rather than a convolution of two 

time series.  The power becomes 
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where the frequency dependence of all terms is implied, and uncorrelated cross-terms go to zero 

when the ensemble average is taken.  Note that over the time scale of the ensemble averaging 

process, the tidal amplitude modulation is effectively constant and thus remains unbracketed. 

Fourier Transforms performed and ordered at multiple timesteps generates a spectrogram of the 

received signal, with dimensions of frequency, time, and intensity. With the added frequency 

information, it is now possible to correlate time series of received power by frequency to time 

series of environmental forcing.  

In this study we are primarily concerned with measuring and predicting the sound field 

for natural, abiotic, background sources for two reasons. They are more conducive to being 

modeled across longer4 timescales, and in nearly all cases are solely responsible for the baseline 

noise level in the absence of human activity. Lastly, there already exists a large body of research 

surrounding ocean bioacoustics, and a treatment in this thesis would be insufficient to do the 

field justice. Thus, ignoring shipping, Eq. 11 becomes 

 

where wind  and rain  are all distributed sources (Farmer and Vagle 1988; Ma and 

Nystuen 2005), meaning that rather than originating from a point source, they originate from a 

random distribution of sources on a plane within the surface receive area of the hydrophone.  

With wind driven breaking waves as an example, let , the complex pressure received 

from a single patch of ocean surface with area  at point  and at 

frequency , be given by 

 

 
4 Weeks + 
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where  is the source strength with units 1/length due to breaking waves and  is the complex 

pressure at the bottom mounted receiver located at the origin for a unit source.  The total 

contribution of wind generated sources to the noise power impinging on the hydrophone is 

therefore the continuous sum of all such patches in the listening area of the hydrophone, given by 

 

where * indicates the complex conjugate.  Note that the source density,  now has units 

1/area ensuring that  has units of .  Assuming a computationally discrete domain, 

Eq. 14 becomes the double sum 

 

where  are iterators for range and bearing, respectively. The values within the double 

summation may computed using a transmission loss model and are not related to the wind stress 

on the ocean’s surface, the forcing considered in this example.  For a fixed hydrophone, the 

computational result obtained using a known discrete transmission loss model can be summed 

and substituted into Eq. 15 to further to reduce it to  

 

where the noise transmission loss , is now a simple scaling factor representing the 

listening area of the hydrophone and the propagation environment, including bathymetric and 

oceanographic effects.  An identical expression to Eq. 16 can be written to describe the received 

rain noise power, . 

Eq. 16 demonstrates that a predictive noise model of received acoustic level 

parameterized by the forcing related directly to the acoustic source strength will rapidly lose its 

predictive ability as the distance from the recording location increases, or even when the 
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oceanographic environment is altered. To improve model portability to other regions, it is 

therefore useful to determine the relationship between an effective source level and the 

meteorological (wind speed and direction, rainfall rate) and oceanographic (surface current speed 

and direction) variables that drive natural underwater ambient sound, rather than a direct 

correlation between those variables and the measured noise.  

  Substituting the wind and rain variants of Eq. 16 into Eq. 12, gives a relationship between 

the received power and the source strengths for both wind-wave and rain generated noise 

 

where, for simplicity, the presence of additional unknown noise sources is assumed to be zero.  If 

we assume the distribution of wind and rain sources is uniform over the entire listening area of 

the receiver, then , noting that T is a small oscillation about unity and 

thus T2 can be approximated as unity itself, then Eq. 17 can be expressed as 

 

Eq. 18 shows that the relationship between the observed noise power and the source strength per 

unit area is a linear scaling defined by the transmission loss between all contributions of the 

distributed source and the receiver.   

 
2.4 The common regression model 
 
 The linear combination of source terms in the received acoustic power shown in Eq. 12 

lends itself well to regression against the respective environmental forcing terms. In general, a 

received signal can be represented as its central tendency, and associated process noise, namely: 
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where  is the ith element of series y,  is the central tendency, and the process noise  

having a zero mean, and some standard deviation, and where  can be modelled through time as 

function of some predictor variable. Generalizing to the acoustic power series yields 

 

with  representing the combined process noise of the wind and rain terms. In this 

formation, it is apparent that the residual of any single process against the received series is made 

up of the other processes, and their noise terms. Thus, by systematic fitting of different 

processes, in effect their linear combination in the modelled series, it is possible to remove 

predictable variation from the received series until all that remains is the sum of process noise 

which is due to natural variation in the processes themselves and the unknown noise , which 

may be physically attributed to mechanical noise generation on the receiver mooring or electrical 

noise in the data acquisition system.  For poorly chosen form of the regression model, 

 will appear unreasonably large, while for an inadequately defined ambient noise 

model,  will be large. 

 A non-zero process noise for wind generated ocean sound is expected, since the best 

source level estimates for individual breaking waves has a non-zero variance, and the size of the 

ensemble used to estimate , which depends on receiver depth and channel geometry, is 

typically large.  A probabilistic model of wind generated noise could be used to model process 

noise (Barclay and Lin 2019). 
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3 Methods 
 

From January 2018 to present, continuous acoustic recordings from the Strait of Juan de 

Fuca, Salish Sea, and Gulf Islands in Coastal British Columbia (Figure 1) were collected with a 

goal of parameterizing an empirical noise model. Data were collected in conjunction with 

Department of Fisheries and Oceans (DFO) research scientists from the Institute of Ocean 

Sciences (IOS) in Sidney, BC, as part of a monitoring project led by Dr. Svein Vagle. A subset 

of the entire deployment (April 18 – May 12th, 2018) was selected from Station S to regress 

against, while the model performance was evaluated against the entirety of the acoustic 

recordings captured at the station until February 27, 2019. 

 
3.1 Acoustic data collection 
 
  Acoustic records used in this thesis originates from the Sooke station (Station S, Figure 

1) between April 2018 and February 2019 (Table 1) captured across five deployments. The 

moorings are bottom mounted, consisting of an anchor, buoyant payload attachment, and 

hydrophone mast (Figure 3), with an overall length just over four meters (Figure 4). The acoustic 

package deployed on each mooring consisted of the Autonomous Multi-channel Acoustic 

Recorder (AMAR) G4 acoustic recorder developed by JASCO, utilizing Geospectrum 

Technologies M36-100 hydrophones, with single and dual channel configurations. The AMARs 

were configured to record continuous pressure time series with a sampling frequency of 256 kHz 

with a 24-bit dynamic range, storing the information as 5-minute-long wave files. The 

hydrophones have a sensitivity of -165 dB re 1V/μPa over the band 5 Hz – 250 kHz, and, with 

anti-aliasing filters applied, the system has an acoustic bandwidth of 5 Hz – 100 kHz.  An 

observed system noise floor above 20 kHz was centered around . Power 
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usage and data rates necessitated mooring recovery and redeployment every three to four months 

(Appendix 1).  

Table 1: Schedule of 2018 to 2019 Sooke station (48° 17.365’N, 123°39.127’W) (-165 m) 
deployments used in this analysis, detailing deployment and recovery times, sensors, and 
deployment notes. 

Deployment Retrieval Deployment notes Environmental Sensors 

01-Feb 15-Apr 
Stopped recording Feb 6 to Mar 6 

2018 JFE Advantech AEM USB flow meter 
15-Apr 19-Jun   
19-Jun 17-Aug  RBR TR-1050 
17-Aug 12-Oct Participated in Aug 17th cruise TDR-2050 
12-Oct 29-Nov   
29-Nov 05-Mar Stopped recording Feb 27 XR-420 CT 

 
 

 To maintain maximum sampling coverage through time, mooring maintenance cruises 

occurred every three to four months, performed on board the CCGS Vector. Procedures for a 

typical mooring overhaul follow, taking approximately 1 hour. Arriving on station, an acoustic 

modem is deployed to locate the mooring and trigger the redundant acoustic releases, separating 

the mooring from the anchor, allowing it to surface in visual range of the ship. Surfacing times 

are dependent on depth but are typically between 2 – 5 minutes. Once on board, the science 

payload is removed for data retrieval and replaced by a new deployment ready payload. Zinc 

anodes are checked for corrosion, along with all fittings and fasteners to avoid premature 

subsurface disassembly and are replaced if required. Remaining corrosion tolerances for zinc 

anodes are approximately 30%, while fasteners and fittings are 60%. The acoustic releases are 

re-programmed and fitted to a new anchor. The mooring is then re-deployed on station, and its 

seabed position and orientation localized via triangulation with the acoustic modem. When 

desired, in situ transmission loss characterization was then carried out with the ship at differ 
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ranges serving as a source, and environmental characterization collected via a ship borne 

conductivity, temperature and depth (CTD) profile. 

 

Figure 3:Submerged acoustic mooring system consisting of: (A) hydrophone (Geospectrum 
M36), (B) current meter, (C) AMAR, (D) auxiliary batteries, (E) buoyancy ring, (F) dual 
acoustic releases (Teledyne Benthos) for redundant retrieval, (G) 225 lb anchor. 
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Figure 4: Hands-on, hanging deployment of the mooring from the aft A-Frame of CCGS Vector, 
demonstrating in-situ mooring orientation.  The author is to the left. Aug 17, 2019 
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3.2 Hydrophone Function and Calibration  
 
 A hydrophone is an electromechanical instrument designed to measure pressure 

fluctuations in a working fluid and is one component of an acoustic recorder, generating a signal 

passed to a pre-amplifier, analog to digital converter (ADC), and finally to a data logging device 

(Figure 5).  It operates on a similar principle to an air microphone where a vibration induces an 

electric current, although rather than making use of a diaphragm and magnetic coil, it uses a 

cylindrical or spherical piezoelectric crystal deformed by pressure oscillations to generate a 

voltage difference across the inner and outer surfaces of the sensor. Piezoelectric systems are 

typically preferred for underwater sensing installations due to impedance matching with the 

medium of transference, a function of pressure wave speed and density of the fluid. Acoustic 

pressure variations result in small voltage differences which drive small current or voltage 

variations (depending on preamplifier design).  This signal must be amplified to take advantage 

of the full dynamic range of the ADC before recording to storage, and the distance between the 

preamplifier and the piezo crystal is minimized. The ADC receives analog signals5 and quantizes 

it as digital count value in comparison to some nominal reference voltage range. An acoustic 

pressure series can be represented and saved digitally by sampling the output of the ADC 

through time 

 

 

 

 

 

 
5 Continuous both in current and time. 
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Figure 5: Schematic detailing the theoretical arrangement of systems in an acoustic recorder; 
including hydrophone, pre-amplifier, Analog to Digital converter, and Recording device. 

 
Each piezoelectric transducer is an analog device with subtly different sensitivity and 

current generation in response to noise and therefore requires calibration, often performed in a 

controlled environment pre-deployment, and is represented as a free field sensitivity6 spectrum in 

units of dB re 1V/μPa . Furthermore, the acoustic series has undergone significant amplification 

and transformation to be recorded, and thus must be back transformed prior to use. Calibration of 

the acoustic series used in this project followed the methodology outlined in Appendix A of the 

ADEON Hardware Specification version 2.3 (Martin et al. 2017). Wave files contain ordered 

collections of ADC count values, thus by scaling the count value by ADC voltage sensitivity and 

gain, hydrophone output voltage can be reconstructed from digital records as in Eq. 21 

 

where  is the ADC count value in the wave file,  is the voltage range in Volts of the 

ADC,  is the bit depth of the ADC, and  is the amplifier gain in the system in Volts per 

Volt. The free field sensitivity of the hydrophone is a function of frequency, and thus the final 

calibration of volts to μPa is most conveniently applied in the frequency domain on a spectrum 

 
6 The voltage output of the hydrophone at known sound levels and known frequencies 

Hydrophone 
μPa to V 

Pre Amp 
V to V 

ADC 
V to 24-bit count Storage media 

Y link for hydrophone 
array deployment 
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of the hydrophone output voltage. Shifting both the hydrophone voltage spectrum and the free 

field sensitivity spectrum to dB simplifies this operation to a subtraction of the free field 

sensitivity spectrum level from the hydrophone voltage spectrum level following the logarithmic 

identity 

 

where A and B are the hydrophone voltage level (dB re 1V) and the free field sensitivity level 

(dB re 1V/μPa) respectively.  The result of the applying the calibrations in Eq. 21 and 22 to the 

digital signal recorded by the ADC, converted into a power spectrum by squaring the normalized 

output of discrete Fourier Transform, is the signal power in units of dB re 1μPa/Hz. 

 
3.3 Oceanographic and meteorological data 
 

Station S is located near the eastern mouth of the strait of Juan de Fuca, south of 

Vancouver Island in the Pacific North West (Figure 1). As the focus of this study is the 

prediction of the ambient noise field from environmental parameters, sources for wind, rain and 

tidal current velocity and direction are required as inputs for the model. The sections below 

outline the acquisition and basic processing of the environmental data used in the model. 

 
3.3.1 Wind 
 
 Wind represents the single largest driver of underwater ambient noise through the 

mechanism of breaking waves, bubble entrainment, and bubble excitation. Thus, physically 

grounded, observational wind speed and direction are preferred. Race Rocks is a light station 

eight km east of Station S (Figure 1), located on an offshore reef (48° 17.898’ N, -123° 31.896’ 

W) and is the nearest weather station providing U10, hourly wind speed (m/s) (Figure 6) and 

direction (degrees) at 10 m, accessed through the Environment Canada historical weather data 
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portal (ECCC 2020).  The hourly wind speed is reported from the average speed during the one-, 

two- or ten-minute period ending at the time of observation while the wind direction is reported 

from the same data with 10-degree angular resolution.  The co-location within the strait of Juan 

de Fuca; bounded by the Olympic mountain range to the south and Vancouver Island Range to 

the north, suggest that over eight km spatial scales the wind regime would remain relatively 

consistent between the acoustic and meteorological observations, and Race Rocks would be an 

adequate predictor of wind driven noise levels. 

 
Figure 6: Example wind velocity and direction series generated for acoustic model formation. 
Data from Race Rocks light station between (April 18th and May 12th), Environment Canada. 
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3.3.2 Rain 
 
 In the Pacific North West, a region synonymous with heavy precipitation, rain is 

prominent contributor to the underwater soundscape due to drop impacts and cavity collapse 

leading to bubble entrainment (Nystuen et al. 1992). Spatially averaged hourly rain rate (mm/hr) 

at the deployment location was derived from Environment Canada PRECIP-ET Radar images 

(Figure 7). To automatically extract rain rate from a radar image, the deployment location of the 

acoustic recorder was localized in the image using the known locations of the cities and their on-

image pixel location. While errors due a linear approximation on a spherical projection were a 

concern, it was mitigated by preferentially selecting known city coordinates near and fully 

surrounding the deployment location. Pixel colors on and surrounding the deployment location 

were then compared to the precipitation scale and subsequently averaged to provide a spatial 

composite estimate of rain rate and account for errors in color matching. Hourly radar images 

from 2018 – 2019 allowed for the formation for a time series of rain rate (Figure 8).  
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Figure 7: Example Composite PRECIP-ET radar image from March 8th, 2018 used to create 
local time series of precipitation at the deployment site. Environment Canada. 

 
The time series of rain rate required further processing to separate true rain events from 

other radar anomalies including false returns from surface waves or heavy mist (ECCC). This 

was accomplished using a hysteretic peak detection algorithm with critical values of 0.02 mm/hr 

and 0.36 mm/hr, based on a 1-dimensional implementation of the Canny edge-detection 

algorithm (Smith 1998). Rain rates above 0.36 mm/hr were considered true returns, while rain 

rates below 0.02 mm/hr were immediately flagged as false returns. Values between 0.02 mm/hr 

and 0.36 mm/hr were considered true if they were adjacent to true returns, and false if they were 

isolated from returns. Through successive iterations, the true returns propagate out from values 

above 0.36 mm/hr until they cross the 0.02 mm/hr threshold, maintaining the shape of the lower 
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value regions of the rain events.  Concern due to snow as another form of precipitation in this 

environment can be neglected due to the rarity of snow falling at sea level in this region (ECCC).   

 
Figure 8: Example of rain rate time series before and after rain events were identified with a 
hysteretic filter algorithm based on a one-dimensional implementation of a canny edge detection 
algorithm. 

 
3.3.3 Currents 
 
 The strait of Juan de Fuca has measurable tidal currents (Figure 9). As discussed in 

section 2.2, the environment and medium through which sound propagates can have a profound 

impact on the received sound pressure level (SPL). As the medium itself is moving, it is 

reasonable to include some form of periodic information to account for the tidal currents as they 

play a role in structuring the water masses in this complex coastal region and modifying surface 

noise generation processes, like current modulated wave steepening when wind direction is 

nearly constant.  Other sources of sound that occur on tidal timescales including flow noise and 

saltation noise are not considered here since the first is outside of the band of interest and the 

second is not observed in the data. Current speed and heading information were captured by the 
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inductive flow sensor deployed on the mooring, however it suffered a battery fault attributed to a 

high duty cycle part-way through the deployment, resulting in a shortened training dataset of 

only 18 days between April 15th and May 3rd. To complement the observed tidal record, the 

Bedford Institute of Oceanography WebTide tidal prediction model (DFO 2009) was used to 

estimate current speed at the mooring location as it showed good agreement with the in situ 

measurements (Figure 10). 

 
Figure 9: Periodogram of current velocity measured in-situ, overlaid with known tidal 
frequencies between April 15th and May 3rd, 2018. 

 



31 
 

 
Figure 10: Comparison of current velocity captured in situ and modelled using DFO WebTide 
model between April 15th and May 3rd. 

 
 
 
3.4 Data processing 
 
 The data analysis procedure for this project is designed to capture the linear behavior of 

the combined source terms in the region. The first minute of each five-minute wave file was 

isolated and used to calculate a representative spectrum with 1 Hz bins, over the band 5 Hz to 

100 kHz) using the Welch method (Welch 1967) developing 119 one second spectra with 50 % 

overlap averaged together.  It is assumed that the noise is stationary over the full five-minute 

file7. When spectra are ordered through time a spectrogram is formed, and time series of sound 

pressure level (SPL) in dB re 1mPa2 Hz-1 at each frequency is extracted to compare and 

iteratively corelate against time series of environmental parameters, first against windspeed (m/s) 

and then against rain rate (mm/hr), in a training data set. Lastly, harmonic regression of the fit 

 
7 As the recording is continuous, there is no duty cycling, and no startup noise. 
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residuals was performed at the tidal frequencies present in the observed and WebTide modelled 

current velocity series. This order of environmental parameters, wind, rain, then tide, was chosen 

to sequentially remove the largest source of variation, to improve the detection of effects of 

secondary environmental noise sources like rain and tidal modulation. The combination of the 

regression models was used to predict sound levels for the remaining acoustic records between 

April 18th, 2018 and February 27th 2019 and their fit was evaluated. 

 
3.4.1 Filtration of acoustic power series 
 

The Strait of Juan de Fuca is an acoustically diverse region due to the environmental 

noise sources described above, the biological sources like cetaceans supported by the rich 

ecosystem, and anthropogenic sources due to heavy surface traffic and marine development 

(Eng\aas et al. 1996; Lusseau et al. 2009; Olszewski and Ren 2015). Acoustic records therefore 

required filtering to isolate the ambient background signal prior to comparison and regression 

against environmental sources could begin. 

Two filtering methods were used sequentially to isolate the environmental signal; hourly 

decimation to the mean, minimum, and maximum, and spectral component filtering to quantify 

spectral slope and identify sound source. Environmental data were collected at hourly intervals, 

in comparison to the five-minute intervals of the acoustic records, providing an opportunity to 

remove a portion of the non-environmental variability and short duration transients in the 

soundscape while aligning the sampling rates of the acoustic and environmental series.  

Spectral component filtering is a method, proposed by Vagle et al 1990 and subsequently 

used by Nystuen et al 2010, of attributing acoustic records to specific sources through comparing 

the spectral shapes of different sources. Spectral shapes can be sorted and identified by plotting 

spectral levels of two or more frequencies against each other in a scatter-gram, where sources 
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will self-organize into groups (Vagle et al. 1990; Nystuen et al. 2010). In this configuration, 

records of broadband sources will self-organize about a line with a slope of unity and an 

intercept related to the consistent relative difference in spectral levels at the target frequencies. 

Sources that deviate from a slope of one indicate more narrowband source characteristics as they 

do not affect the spectrum equally. Wind, as a broadband source, closely follows the slope of 

one. Rain with its acoustic presence more pronounced at higher frequencies, is found above the 

wind line, while ship noise, with power concentrated in the lower frequencies, is found below the 

wind signal (Figure 11) (Nystuen et al. 2010). Spectral component cutoffs are found in Table 2. 

Following the example set by Nystuen et al, 8 kHz and 20 kHz were selected as the frequencies 

in this application. In doing so, wind, rain, and ship spectra are identified and flagged for later 

use in regression against their relative source. 

 

Table 2: Cutoff functions for spectral component filtering. Values contained within these bounds 
are attributed to their respective sources. 

Parameter Domain 
Rain (SPL 20kHz) > (SPL 8kHz) - 6.6 dB,   (SPL 20kHz) > 54 dB 
Wind (SPL 20kHz) < (SPL 8kHz) - 6.6 dB,   (SPL 20kHz) > (SPL 8kHz) - 9.8 dB 

Shipping (SPL 20kHz) < (SPL 8kHz) - 9.8 
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Figure 11: Spectral component scatter-gram whereby different acoustic sources self-organize 
into distinct regions. Rain noise (dark blue) is categorized by relatively higher noise levels at 
high frequencies, while shipping noise (red) is categorized by relatively higher noise levels at 
lower frequencies. Wind noise (light blue) follows quasi-linear relation in the center of the plane, 
uncharacterized points are unfilled. Method adapted from Nystuen et al. 2010. 

 
 
 
3.4.2 Fitting wind  
 
 Wind flagged SPL in  records were regressed against concurrent 

observations of wind speed as the predictor for each frequency, using first, second, and third 

order polynomials and a piecewise continuous function. Testing SPL records for normality 

showed a bi-modal distribution (Figure 12), suggesting a wind regime change and motivating the 

use of a piecewise continuous function comprised of two segments above and below a windspeed 
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breakpoint. A second order polynomial regression was used above the breakpoint while below, a 

linear fit was forced through the 1st percentile SPL at 0 m/s and the extrapolated 10th percentile 

of the regression above the breakpoint.  This ensures continuity at the potential expense of 

improved R2 values. Wind speed was not log transformed as in earlier studies (Vagle et al. 1990) 

as it shifted the distribution of wind further away from normality (Figure 12).  

Though the regression model of wind was computed in logarithmic space inherent to the 

units of dB re 1μPa2Hz-1, the residual resulting from the wind fitting procedure, , 

was calculated in linear space in units of .   Since T2 is assumed to be oscillatory with 

an unknown frequency w0 taking the form  and to have a small amplitude relative to 

variations in  and , we can express it as a Taylor’s series and keep only the leading 

term.  Subtracting the model produced from Eq. 12 gives 

 

The residual  is then converted back to dB for meaningful use in fitting a model for the next 

environmental parameter, rain fall noise. 
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Figure 12: Histograms of untransformed linear (left) and dB (right) transformed logarithm time 
series of sound pressure (μPa^2 Hz^(-1)) (top) and wind speed (m/s) (bottom).  

 
3.4.3 Fitting rain 

Rain represents a complex acoustic source, as it generates noise from drop impact and 

impact cavity collapse. This is further confounded by the increase in drop size seen with rain 

rate, and the effects of rain impact grazing angle (Ma and Nystuen 2005). Following their 

recommendation, the residual SPL, given by  were linearly regressed against 

,  where  is the rain fall rate, the time series of rain events measured in units 

. Noise levels were always underestimated by the preceding wind portion of the 
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model during rain events, so   is always positive, allowing for meaningful transformation 

into logarithmic space8. This regression takes the form of a simple power law in linear space 

which could be predicted by physical models based on drop sizes. Assuming a raindrop has 

reached terminal velocity towards a relatively flat sea surface, the average impact grazing angle 

is primarily a function of the drop’s lateral velocity, itself is a function of wind speed. As a first 

order approximation it is fitting to scale the rain rate by the wind speed prior to transforming it 

into logarithmic space. This is the result of the relationship between the grazing angle  and the 

inverse tangent of the ratio of vertical  to horizontal velocities  

 

The regression between and the ratio of rain fall rate and windspeed produces a model of 

rain generated noise,   Under the same assumptions that T2 is both oscillatory with a small 

amplitude relative to  and , the residual can be computed again as  

 

In this case the residual has lost its dependence on T2, as that second order variation has been 

absorbed into the process noise for both the wind and the rain.  However, to determine the tidal 

amplitude modulation component of the model using regression, the residual can be computed in 

logarithmic space.  

 

 

 

 
8 An important distinction should be made between residuals in μPa which are transformed into dB, and 
residuals calculated in dB, given that residuals in μPa represent a Euclidean distance, while those 
calculated directly in dB represent a scaling factor. Furthermore, it is not possible to calculate the 
logarithmic units of a negative value. 
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3.4.4 Fitting tidal components via harmonic regression 
 

Harmonic regression is a linear regression schema where the predictor variables are a 

trigonometric function of a single variable (Hamilton 2020) – typically time. Due to the 

repeating nature of harmonic regression, it performs poorly on timeseries with a large and 

temporally inconsistent variance. Post-rain, untransformed residuals have a large variety of 

positive and negative amplitudes9, which without pre-processing is a sub-optimal application of 

harmonic regression.  Scaling raw residuals into level space to account for the dynamic range 

proves difficult as negative values are undefined when transformed in dB space. The residuals 

feeding the harmonic regression were calculated as the difference in dB between the modeled 

series and the observed series,  

 

with the distinction that rather than informing further linear combination, it would represent a 

harmonic scaling function. In the ambient noise model presented in Eq. 12 this corresponds to 

T2, the amplitude modulation of surface noise processes by tidally driven currents 

The full mechanics of the tidal modulation are potentially quite complex, as it impacts 

both sound transmission through changing water depth, water mass structure, and generation 

through wind-wave-current interaction. As such, rather than directly fitting time series of 

observed or modelled current speed to the dB residuals, harmonic regressions were carried out at 

critical frequencies identified in the observed tidal series (Table 3). To capture phase 

information, both sine and cosine series were fit at the critical frequencies in the form 

 
9 Due primarily to the large dynamic range of associated with untransformed acoustic pressure 
measurements 
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where  and  are the frequency dependent coefficients of the ith critical frequency identified in 

the tidal series, and  is the ith critical frequency. Each sine cosine pair in this series can 

subsequently be recombined with the identity 

 

Given constant phase yields constant  and , and by the Pythagorean theorem (Eq. 

28), 

 

 

 

such that Eq. 27 can be written equivalently as 

 

where  is a new frequency dependent coefficient of the ith critical frequency, and  is the 

phase of harmonic regression.  

 
Table 3: Critical frequencies identified in the observed tidal frequencies, subsequently targeted in 
harmonic regression. 

Nearest Darwin 
Symbol 

Period 
(hrs) 

NOAA 
order 

MS4 6.08 37 
MN4 6.26 10 
MK3 8.15 8 
M2 12.34 1 
N2 12.71 3 
K1 24.00 4 
O1 25.41 6 
Q1 27.00 26 
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3.4.5 Modelling through time and evaluation of performance 
 
 Frequency dependent coefficients and model structure were extracted for both the wind 

and rain dependent models generated in the fitting process and used to predict hourly noise levels 

each month between April 2018 and February 2019. As the harmonic regression used to account 

for tidal mechanics did not directly make use of any time dependent input, it was applied a 

posteriori to each month at the identified critical frequencies, taking into account month to 

month differences in phase and superposition of long terms signals not identified in in the 

analysis of tidal signals. Applying the model by frequency and through time results in the 

formation of a spectrogram that can then be compared to the spectrogram of the acoustic 

recording.  

 The goodness of fit was modelled through time via the creation of a dB difference 

spectrogram, representing the scale difference between the observed and modelled spectrograms 

by computing 

 

While two-dimensional plots of  are useful to identify temporal errors in the model, for a 

quantifiable estimate of model performance by frequency, the root mean squared (RMS) of  

was computed by 

 

where N is the number of samples considered in the model data comparison. Monthly  

values by frequency can then be combined into a representation of model performance across the 
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full deployment, highlighting seasonal effects that are beyond the ability of the training dataset to 

resolve.  An RMS under 3 dB is desired as it constrains the model performance to predict 

untransformed sound power  to within a factor of two. 

 
 
3.5 Transmission loss modelling of distributed sources 
 
 

By invoking the principle of reciprocity, the transmission loss between a large distributed 

source and a receiver can be efficiently modelled (Barclay and Lin 2019).  Wind and rain noise 

are well described by an infinite plane of uniformly distributed monopole sources placed just 

below the sea surface.  By placing a modeled source and the location of the experiment receiver, 

the amplitude and phase of the pressure arriving at the receiver from each patch of noise sources 

can be modelled in a single instance.  In this study, a Nx2D ray tracing model is used where 

seabed geoacoustic properties are assumed to be uniform and a range and azimuth independent 

iso-sound speed profile with c = 1500 m/s is used.  Horizontal refraction and reflection are not 

permitted in this study though, in general, the chosen model may be arbitrarily complex.  

The model bathymetry is the GEBCO 2020 global terrain model for ocean and land 

(GEBCO Compilation Group 2020) with 15 arc second resolution, shown in Figure 13.  The 

experimental receiver and model source location is shown by red circle, at a depth of 4 m above 

the seabed.   

The compressional sound speed of the seabed was chosen as cp=1640 m/s with a 

compressional attenuation of p = 0.5 dB/m and a density of 1700 kg/m3 based on data from the 

dBseabed global seabed database (Jenkins 2010).  The seabed is modelled as a fluid infinite half-

space, since for the majority of the frequency band considered here (1 kHz – 20 kHz), sub-

bottom properties and layering do not have a large impact on the propagation.  In the water 
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column, Thorpe’s analytical expression for frequency dependent absorption is applied (Thorp 

1967).  

Bellhop, the raytracing model employed, is configured to compute the 2D pressure field 

calculations along 10 km radials, with 1 m range resolution emanating from the source location 

with an azimuthal resolution of 6 degrees.  The pressure field is computed by summing 

(coherently) for each range-depth grid cell over the amplitude of rays, accounting for the relative 

phase of each ray.  Ray paths are given an effective width using a Gaussian cross-sectional area. 

For each radial, 2000 rays were launched between the angles -89.9 to 89.9 degrees relative to 

vertical.  An example of the computation in terms of the transmission loss as a function of range 

and depth along a bearing of 45 degrees (north-west) is shown in Figure 14.   
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Figure 13:  a) The Salish Sea with b) the model domain bathymetry from the GEBCO ocean data 
with 10 m contours shown by the black lines and the receiver location shown by the red circle. 

 
The computed pressure field at a depth of 0.5 m is then mosaiced to produce a 2D plan 

view of the surface receive sensitivity, or the sensitivity of the receiver to each discrete area of 

the ocean’s surface, shown in terms of transmission loss in Figure 15 at 1, 5, 10 and 20 kHz.  The 

pressure field is summed over, accounting for the area represented by each pixel, following Eq. 

15 and producing a value for  at that frequency. 
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Figure 14: The modelled transmission loss along the radial in the 45 degrees (North-West) 
bearing direction, with the source placed 4 m from the bottom, computed at 1 kHz. 

 

Figure 15: The modelled surface receive sensitivity, or transmission loss at a depth of 0.5 m, for 
the receiver placed at the origin, computed at a) 1 kHz, b) 5 kHz, c) 10 kHz, and d) 20 kHz. 
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4 Results 
4.1 Wind  
 

Comparing the time series of SPL to time series of absolute wind speed, the dominant 

natural source of ambient noise through the breaking wave mechanism, it is readily apparent that 

the minimum hourly sound level correlates well with absolute wind speed (Figure 16). Maximum 

sound level does not correlate well and mean sound level falls in between. Correlation is not 

consistent through frequency, with frequencies below 2.5 kHz having a small relation to wind, 

while above 2.5 kHz, it is the dominant forcing term, as seen in Figure 17. The maximum 

coefficient of determination achieved was 0.58 at 20 kHz. Down sampling to hourly minimum 

sound levels reduces the number of data records used in the model fitting from 6993 to 584. 

 
Figure 16: Time series of noise level (SPL dB re 1 Pa2Hz-1) at 20 kHz superimposed over local 
absolute wind speed (m/s) collected at Race Rocks Light station.  

 
Improved correlation was possible by taking advantage of the different spectral shapes of 

different sources, and further isolating SPL samples that are uncontaminated by sources other 

than wind generated noise. Regressing wind speed against wind-flagged spectra increased 
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correlation markedly, with a maximum coefficient of determination of 0.66 at 39.4 kHz (Figure 

17). Correlation remains inconsistent across frequencies; however, the frequency at which 

divides the weakly correlated from the highly correlated sections of the spectrum is consistent at 

2.5 kHz. Spectral component filtering further reduced the number of useable records to 350 over 

the training interval. 

 

 
Figure 17: R2 as a function of frequency for linear relationship between hourly minimum, mean, 
and maximum noise power level and wind speed (m/s), and model after spectral component 
filtering.  
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The best regression function found for wind was in the form of a piecewise polynomial 

due to the clear presence of different wind regimes above and below 5 m/s, shown in Figure 18.  

The general form for the fit is  

 

with the coefficients  all being frequency dependent and  being  wind speed in 

m/s. Local model data comparison achieves an error RMS of 3.5 dB at 20 kHz (Figure 19 A). 

The residuals of the model contain three large anomalous errors and minor periodicity (Figure 19 

B). 

 
Figure 18: Two-dimensional histogram demonstrating the high and low wind regimes present, 
with a breakpoint at 5 m/s. 
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Figure 19: A) Local 20 kHz wind noise model-data comparison through time. B) Data-model 
differences calculated as the difference between predicted noise level and recorded noise level. 
Large deviations represent rain events, and cyclic variations appear tidal in timescale. 

 
4.2 Rain 
 
 In comparing the residual acoustic power time series to that of rain rate, it is apparent that 

the large anomalies present are attributable to rain events due to their alignment in time (Figure 

20). Linear correlation between the absolute rain level (dB re 1 mm/Hr) and residual noise level 

(dB re 1 μPa2Hz-1) again shows variation through frequency, with a maximum R2 of 0.46 at 67.9 

kHz (Figure 21 A), and a critical frequency of (11 kHz). Correlation between residual acoustic 

power and rain rate scaled by wind speed  (dB re 1mm/Hr * 1s/m) shows a reduced R2 across 

most frequencies (Figure 21 A) and an improved RMS error values across the training dataset by 

frequency when combined with the wind source model as described in Section 4.1 (Figure 21 B). 

B 

A 
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In this case, improved RMS is preferred over improved R2 as it represents better cumulative 

model performance, rather than its ability to fit a single facet of the environment.  

 
Figure 20: Top) Example time series of wind residuals at 20 kHz. Bottom) Raw, wind scaled, 
and wind-scaled filtered rain rate. 
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Figure 21: A) Spectra of coefficient of determination (R2) of raw and wind scaled rain model. B) 
Spectra of total model dB difference after applying raw and wind scaled rain model 

 
 The best rain driven regression model is therefore the linear regression  

 

where  and  are fitted coefficients, where  is the rain fall rate, and the time series of rain 

events is measured in units . Representing Eq. 36 in natural units reduces it to a 

power law, 

 

where 

 

Model performance is adequate, removing the large transient anomalies in the residual acoustic 

power series shown in Figure 22, reducing the RMS of the dB difference in the training data set 

from 3.53 to 2.99 at 20 kHz. 

R2 
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Figure 22: Example of data-model dB residual time series of the training dataset before and after 
the addition of rain driven acoustic events at 20 kHz. Note the presence of cyclic variations in 
amplitude occurring on approximately tidal timescales. 

 
4.3 Amplitude modulation at tidal timescales 
 
 The Strait of Juan de Fuca can be considered a large tidal channel over which wind blows 

with a relatively consistent westerly direction. This motivates the need to include some capacity 

to capture the modulation in the wind and rain noise signals on tidal time scales in the model.  

Additive noise sources maybe present on these time scales as well, at lower frequencies (< 1 

kHz) where flow noise or mooring noise may be present, and at high frequencies (> 10 kHz) 

where tidally driven sediment transport may generate noise.  Residual dB,  in Eq. 26, 

show periodic variations on tidal timescales persisting across a broad spectrum of acoustic 

frequencies, persisting in some cases up to 20 kHz, (Figure 23), and through most of the training 

data set (Figure 22). Harmonic regression at the critical frequencies identified in table 3 has two 

R2 maxima of 0.21 and 0.19 at 100 Hz and 4.9 kHz respectively (Figure 24A). RMS dB residuals 

showed a similar trend with frequency where the largest deceases were seen at frequencies below 
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15 kHz (Figure 24B). Periodic variations in model residual are removed across the full frequency 

spectrum when the harmonic regression is used as a scaling factor (Figure 25).   

 
Figure 23: Periodospectrogram demonstrating the strength of wind, rain residual periodicity by 
frequency, prior to performing harmonic regression. Overlay is the periodicity present in the 
wind, in-situ current, and WebTide modelled velocity series. 
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Figure 24: A) Spectra of coefficient of determination (R2) of harmonic regression at tidal 
frequencies identified in table 3. B) Spectra of total model dB difference after before and after 
applying the scaling factor generated by the harmonic regression. 
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Figure 25: Periodospectrogram demonstrating the removal of wind and rain residual periodicity 
by frequency, after scaling by harmonic regression. Overlay is the periodicity present in the 
wind, in-situ current, and WebTide modelled velocity series, and critical frequencies used in the 
harmonic regression.  
 
 As the harmonic portion of the model takes the form of Eq. 32 and was fit on , 

it must be transformed into linear space prior to inclusion in the full ambient noise field model. 

Consider that the residuals feeding the harmonic regression are calculated by Eq. 26. When 

combined with Eq. 26 and transformed to acoustic power ( , Eq. 30 becomes   
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4.4 The cumulative model 
 
 Following the common regression model described in section 2.4 it is now possible to 

combine each of the environmental models together to predict the ambient noise field. Eq. 12 can 

be expanded to include the wind, rain, and tidal models in raw acoustic power (  

yielding: 

 

 

 

where  is in ,  are all frequency dependent coefficients, 

u is U10 wind speed (m/s), and  are the critical tidal frequencies for harmonic regression. 

Example coefficients for pre fit terms for at a variety of frequencies are provided in table 4.  

 

Table 4: Example pre fit coefficients for model, including significance terms. Tides were not 
included as they were fit a posteriori. Harmonic frequencies are available in table 3. 

  Coefficient  
  K B A G H M D 

Freq 
(kHz) Fit P-Val Fit P-Val Fit P-Val Fit P-Val Fit P-Val Fit P-

Val Fit P-
Val 

3 60.06 8.06E-
130 0.93 2.60E-

04 
-

0.01 
2.10E-

01 
-

0.23 
1.40E-

01 77.22 4.77E-
17 2.07 NA 64.47 NA 

8 41.78 1.21E-79 2.23 5.29E-
13 

-
0.05 

5.34E-
05 

-
0.24 

2.21E-
01 70.77 3.03E-

14 1.04 NA 64.07 NA 

10 37.88 3.41E-67 2.35 5.45E-
13 

-
0.06 

4.36E-
05 0.02 9.33E-

01 75.02 1.41E-
13 0.68 NA 66.89 NA 

20 33.04 1.91E-61 2.30 8.42E-
14 

-
0.06 

2.24E-
05 

-
0.05 

8.64E-
01 70.25 1.93E-

12 1.82 NA 62.54 NA 

50 35.77 3.99E-
142 0.78 1.30E-

08 
-

0.01 
2.56E-

02 
-

0.06 
7.75E-

01 61.50 5.93E-
13 0.79 NA 54.15 NA 
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The model performs well capturing wind events like those on April 21st or May 6th, 2018 

(Figure 26). At frequencies above 10 kHz, rain events are present in both the observed and 

modelled spectrogram on April 20th, 28th, and between May 9th and 10th. The dynamic range of 

the model is also well represented with power falling towards the noise floor at higher 

frequencies. Structure below 10 kHz is less well characterized given the semi random broadband 

errors observable in the  spectrogram, both positive and negative in equal measure, with 

 of 2.88 at 20 kHz. 

 
Figure 26: Top) Received level spectrogram used in the training dataset from April 18th to May 
11th.  Middle) Spectrogram predicted by Eq. 34 over the same time period. Bottom) 
Spectrogram of the difference in dB between the observed and predicted spectrograms. Red 
represents positive residuals (model underestimation) while blue represent negative residuals 
(model overestimation). 
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4.5 Source level estimation 
 

Source level was calculated from predicted received level at six wind speeds and across 5  

example frequencies (Figure 27 A) demonstrating model wind and frequency response. Figure 

27 B shows the effect of NTL scaling of received level to source per unit area. The reduction in 

spectral slope highlights the increased transmission loss at high frequencies.  

 

 
Figure 27 A) Modelled received levels at wind speeds of 2, 5, 10, 15, 20, 35 knots (1, 2.6, 5.1, 
7.7 10.3, and 18 m/s) demonstrating wind speed frequency response of the model and B) Source 
strength per unit area computed from Eq. 18 from the modelled receive values shown in A. 

 
 
4.6 Quality of fit through time 
 

The cumulative model formation described in Section 4.4 was applied to time series of 

environmental parameters, with a posteriori harmonic regression for tidal periodicity, and 

compared to acoustic recordings between April 18th 2018 and February 27th 2019. Model-data 

comparison is quantified with monthly  spectrogram (Figure 28), representing the RMS 

scale difference between the observed and modelled spectrogram. Complete monthly model-data 

comparisons are from April 2018 to February 2019 are shown in Appendix 2. Separation in time 
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between the training data set (April 18th to May 12th 2018) and the testing month generally 

increased  at frequencies up to 1 kHz, save February 2019.  at mid-frequencies (1 kHz 

to 10 kHz) are relatively consistent at between 3 and 5 dB save for a temporary increase to 5.2 

dB between November 2018 and January 2019. At high frequencies between 50 and 100 kHz, 

 is relatively consistent at 1.3 dB. The narrowband deviation present at 50 kHz in 

September and October is visible in their respective spectrograms (A2 Figs 4 and 5).   

The 3 dB residual contour in the monthly  spectrogram (Figure 28) represents the 

model achieving better than a factor of two fit with the observed spectrogram and is present 

between 10 and 50 kHz. The contour appears to show seasonality, with the largest band of the 

spectrum being adequately characterized by the model in May 2018, showing a 3 dB crossing 

frequency of 15.3 kHz. The month with the smallest band of the spectrum adequately 

characterized by the model was January 2019, with a 3 dB crossing frequency of 39.3 kHz. 

February 2019 showed a reversal of trend, with a greater portion of the spectra characterized by 

the model than January, with a 3 dB crossing frequency of 27.8 kHz. The average 3 dB crossing 

frequency was 29.2 kHz. A large portion of the model was characterized below the 6 dB 

threshold, representing a factor of four fit, with an average crossing frequency of 220 Hz, and 

showed no signs of seasonal effects. Qualitatively, there appears to be a plateau in RMS dB 

difference values between 10 and 20 kHz, similar to that present in the RMS dB difference 

observed in the training dataset (Figure 24 B).  
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Figure 28: RMS dB difference by frequency for each month between April 2018 and February 
2019. March wav files were omitted due to insufficient calibration resources. The white line 
represents the 3 dB contour, below which the model achieves a fit within a factor of 2. The red 
line represents the 6 dB contour and a fit within a factor of 4. 

 
April (Figure 29) and May (Figure 30) 2018 show good agreement between the observed 

and modelled spectrogram. Medium and large-scale wind events are resolved throughout the 

frequency range, while rain events are well resolved above 10 kHz. April has minor periodicity 

on tidal timescales, while May shows increased tidal activity. Structure below 10 kHz is present, 

however the dynamic range of the model at these lower frequencies is less than the recorded 

spectrogram. The model accurately quantifies the appearance of the noise floor above 10 kHz as 

indicated by the dB difference trending towards zero.  
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Spectrograms from June (A2 Figure 1), July (A2 Figure 2), and August (A2 Figure 3) 

2018, show substantial periodic variations on tidal timescales, including the strong presence of a 

spring-neap cycle with signatures extending across the full frequency spectrum. Characterization 

of the noise floor above 10 kHz is adequate in June, however the presence of strong tidal signals 

above 10 kHz in July and August reduce the predictive ability of the model. Structure of wind 

and rain events are again discernable, but to a lesser extent than in the preceding months, a 

corollary to the increasing RMS dB difference seen in Figure 24. Tidal signals are accounted for; 

however, the model is underestimating the dynamic range of their effects as demonstrated by the 

more consistent pattern in dB difference spectrums (A2 Figure 2, 3). All modeled spectrograms 

continue to deviate from their respective observed monthly spectrograms. 

Spectrograms from September (A2 Figure 4), October (A2 Figure 5) and November (A2 

Figure 6) continue to show periodic variations on tidal frequencies. In September, there are few 

resolvable wind events both in the observed and modelled series. Rain events, while present, are 

poorly characterized in September, with the model over and under estimating sound levels in 

equal measure. Anomalies present at 52 kHz account for the high frequency structure visible 

September and October in Figure 24. October shows improved agreement both in structure 

below 10 kHz, and the characterization of the noise floor above. However, the single rain event 

on October 6th is poorly represented as demonstrated in the dB difference spectrogram. 

November again shows the clear presence of a strong spring-neap cycle. 
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Figure 29: Comparative Spectrograms. Top) Received level spectrogram from April 18th to 
April 30th, 2018. Middle) Spectrogram predicted by Eq. 36 over the same time period. Bottom) 
Spectrogram of the difference in dB between the observed and predicted spectrograms. Red 
represents positive residuals (model underestimation) while blue represent negative residuals 
(model overestimation). 
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Figure 30: Comparative Spectrograms. Top) Received level spectrogram from May 2018. 
Middle) Spectrogram predicted by Eq. 36 over the same time period. Bottom) Spectrogram of 
the difference in dB between the observed and predicted spectrograms. Red represents positive 
residuals (model underestimation) while blue represent negative residuals (model 
overestimation). 

 
  

 Spectrograms of December 2018 (A2 Figure 7), January (A2 Figure 8), and February (A2 

Figure 9) all show strong signs of a spring neap cycle at lower frequencies. In November, the 

model accurately targets the presence of wind events in time and frequency but underestimates 
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their contribution to the noise field by 5 - 7 dB. The model only shows good agreement with 

January 2019 in on the largest of wind structures above 39 kHz. Rain contribution is over 

predicted as seen in the precipitation event early in the month, and may be attributable to 

snowfall. February 2019 shows improved agreement with the model, with adequately resolved 

wind events and structure below 10 kHz. Rain events, though few, are adequately characterized 

and visible towards the beginning of the month. Residual dB for February shows a slowly 

oscillating trend on the order of 3 weeks.  
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5 Discussion 
 

The Strait of Juan de Fuca, the surrounding Salish Sea, and Gulf Islands represent a 

highly diverse acoustic environment, with a variety of environmental, biogenic, and 

anthropogenic sources contained within a complex propagation environment (Eng\aas et al. 

1996; Lusseau et al. 2009; Olszewski and Ren 2015). The goal of this project was to model the 

ambient soundscape baseline via in-situ acoustic recording and empirical regression against time 

series of environmental forcing agents, such as U10 (m/s) and rain rate (mm/hr). The model was 

parameterized on a subset of the data collected at Station S between April 18th and May 12th 

2018, and then evaluated on acoustic recordings from Station S between April 18th 2018 and 

February 27th 2019. The following sections discuss model performance in both training and 

testing its predictive ability (5.1), sources of error from both the environment and assumptions in 

the model (5.2), comparisons with other source level models (5.3), and future recommendations 

on the next generation of ambient soundscape modelling (5.4).  

 
5.1 Model performance 
 
 As the ambient sound scape in the region is created by a diverse array of sources, 

prefiltering of the data was required to isolate the signal of interest using with two filtering steps 

sequentially. Hourly minimum decimation outperformed mean and maximum decimation 

because the ambient background level, when all else is removed, is best characterized by the 

minimum sound level (Figure 17). Conversely, hourly maximum decimation selected for high 

intensity transients related to shipping or mooring noise and so does not make up the background 

ambient noise level; it was ultimately included out of completeness. Standard decimation to the 

hourly mean was also outperformed by the hourly minimum filter as it included the high 

intensity transients in its calculation.  
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 While defining the natural ambient soundscape at all frequencies as the hourly minimum 

received sound level is possible as is demonstrated herein, it is likely that with a more nuanced 

approach such as frequency-dependent hourly percentiles, hourly decimation could yield better 

results. Hourly minimum decimation is highly dependent on the noise floor of the system being 

used, as it will always identify the noise floor if it is present within an hour. Given that spectral 

levels typically diminish with frequency, the noise floor becomes more prevalent (Figure 26), 

reduces the dynamic range of the predicted variable, and may account for the presence of two 

wind regimes in the training set. Furthermore, as the noise floor is present in the training dataset 

upon which the model is based, comparisons to systems with different noise floors will result in 

a perceived dynamic range error, as that is a strong feature identified by the model in the training 

dataset.  

 Spectral component filtering was used to identify the source characteristics of the hourly 

minimums and showed when they were attributable to a particular source, providing a cleaner 

training dataset for their respective environmental source regressions. 8 kHz and 20 kHz were 

used in this study following the example set by (Nystuen et al. 2010). These frequencies, while 

capable of resolving the general differences between wind, rain, and shipping sources, are likely 

not the optimal frequencies for resolving all sources. If the spectral effect of the source is not 

contained within the bands between 8 kHz and 20 kHz, then it cannot be resolved. As such the 

identification capability of the spectral component method is highly dependent on the 

frequencies chosen. Bandwidth of the 8 kHz and 20 kHz bins would also have an effect on 

resolving capacity. 

The environmental fitting process provided an opportunity to evaluate the soundscape 

and its environmental contributors at Station S and compare it to generally accepted ocean sound 
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levels like the Wenz Spectrum (Wenz 1962). The Wenz spectrum predicts that the ambient noise 

field in the deep ocean will become sea state dominant above approximately 1 kHz without 

heavy surface traffic, with the frequency increasing as traffic increases. The wind driven R2 

spectra begins to show strong wind dependance above 2.5 kHz, with an R2 increasing to 0.58, 

which is in relatively close agreement with accepted values considering the heavy commercial 

traffic present in the Salish Sea. The rain terms show generally lower R2 for two reasons, they 

were fit on the remaining portion of the unexplained variation, and fewer number of rain events 

resulting in a larger spread of data.  

While wind and rain may be corelated as environmental forcing agents as apparent in the 

effect of wind on raindrop grazing angle, their sound signatures are not, as the mechanism for 

noise generation are different. Wind can generate noise via breaking waves, as accounted for in 

section 3.42, while rain scaled by wind can only make noise if it is actively precipitating. Thus, 

scaling the precipitation rate rain by the wind is acceptable because it is still the rain that is 

wholly making the sound, while the wind is moderating the mechanics of the creation through its 

impact on grazing angle. 

The a posteriori application of tidal regression is not truly predictive modelling, however 

the author felt it was justified given that the mechanics of the tidally mediated system are 

unknown in that it may be a source, modulation, or transmission loss term, or some combination 

thereof, suggesting that the phase could vary month to month, artificially inducing higher 

residuals. Thus, to assess predictive performance in light of this variation, its removal was 

deemed necessary. Further ambient noise modelling efforts should make the tidal component and 

its effect on the sound an area of primary investigation. 
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The criterion for success for this environmental ambient noise level model is the 

achievement of a  better than 3 dB, representing a better than factor of two agreement 

with the observed noise levels. By such criterion, higher frequencies (> 25 kHz) were well 

characterized by the model, while lower frequencies (< 25 kHz) were less well characterized 

with a  between 3.25 and 6. This is likely due in part to the presence of contamination 

by distant shipping sources (Kuperman and Ferla 1985; Nystuen et al. 2010) in a constrained 

environment at lower frequencies. A significant removal of contaminated sources reduced the 

number of training records from 6993 to 350, producing a model trained, ideally, against only 

meteorologically driven noise.  In the Salish Sea however, it is rare to have ambient sound free 

of ship generate noise which reduces the performance of a model that has no ship noise 

component.  The addition of such a component driven by Automated Identification System (AIS) 

data is another avenue for future research. 

 generally shows a decreasing trend with increased frequency in Figure 28. 

Practically speaking, this is due to the lower dynamic range found in the spectra at higher 

frequencies and is driven by the fact that  is proportional to the total variation at 

frequency . Thus, as the dynamic range in spectral levels decrease with frequency, so too 

does . Frequency dependent transmission loss may also play a role in this trend. Higher 

frequencies are attenuated more readily from distant sources, and thus can be better characterized 

by local expressions of the environmental forcing terms used in the model. Conversely, lower 

frequencies resist attenuation and are therefore products of distant expressions not accounted for 

in the model. A secondary feature visible in most  spectra (Figure 21, Figure 24, Figure 

28) is the presence of plateau between 10 and 20 kHz, where it remains constant as frequency 

continues to decrease. This is likely attributable to the initial appearance of the noise floor in the 
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acoustic power series (Figure 19), and its change through time. This change may be due to the 

use of different recorders throughout the time period, or by a noise source in the environment 

that was not directly considered. Seasonality, while apparent in the 3 dB contour, cannot be 

concluded decisively because March is absent, and the dataset is not long enough to rule out 

stochastic variations. However, this preliminary indication of seasonality warrants further 

investigation into the seasonal variations of the ambient noise field in the Strait of Juan de Fuca 

and the Salish Sea.  

 
5.2 Environmental and Assumptive Error 
 

Taking a linear approach to fitting a combination of source terms to the acoustic model 

(Eq. 12), while simple, does have some drawbacks including the introduction of artificial 

residuals in the data due to potential correlation of higher order terms neglected in this analysis. 

The assumption that these sources are fully mechanically separable is likely not true, given the 

acoustic differences in rain accounted for by drop grazing angle under storm conditions, or that 

heavy rain can impact wave breaking characteristics (Ma and Nystuen 2005). Wind direction was 

not included in the model because the sample area was in a strait and it was assumed that in 

general there are only two reciprocal wind directions aligning within the straight, yielding 

consistent, relatively infinite fetch, as observed in a time series of wind direction (Figure 6).   

 A source of variation in the errors present is likely due to the assumed coupling between 

the soundscape at Station S and the source of the wind time series, Race Rocks light station. 

While relatively well co-located in the Strait of Juan de Fuca (Figure 1), the deployment location 

is located deeper into the strait while the light station is located at junction with the Salish sea, a 

comparatively more exposed region with greater fetch in multiple directions. It is likely that 

seasonal changes to the larger regional circulation patterns will change the relative coupling 
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between the two locations, ultimately accounting for part of the month-to-month differences in 

 (Figure 28) 

Furthermore the ability of the model to extrapolate noise levels at windspeed beyond the 

training set is poor, given the observed reduction in radiated sound during extreme wind events 

due to bubble mediated attenuation in the upper ocean (Farmer and Lemon 1984). The model 

was parameterized in early summer, it did not include the full range of wind speeds possible 

throughout the year, especially the extreme events possible in winter when bubble attenuation is 

observed. As such, there was no way for the model to predict the intense attenuation of wind 

generated sound at extreme wind speeds, likely resulting in over estimation of the soundscape. 

While modelling the minimum sound level does provided some room for error, it is likely not 

sufficient to fully account for these bubble mediated attenuation effects.    

The time series of rain rate is also a potential source of environmental error in the model 

as it was created from the radar images, which can contain many different false return anomalies 

(ECCC). While significant effort to account for radar anomalies were made, through both spatial 

averaging and the hysteretic filtering algorithm, it is still likely that some were present in the 

time series. It has been presented that under certain conditions, ocean surface waves may 

generate false returns (ECCC). In this region, it is possible that these would show correlation 

with other forcing terms like wind speed or tidal induced wave breaking. 

Tidal signals represent another source of environmental error, partially accounted for by 

harmonic regression. The mechanics of the tidally modulated sound level amplitude are difficult 

to fully disentangle and may range from source modulation through the proposed wind-wave tide 

mechanic of differential wave breaking under different current regimes, or it may be sediment 

transport and saltation noise. Tidal currents creating turbulence on bathymetric features and 
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altering the propagation environment may also be implicated. While performing a simple 

harmonic regression at know tidal frequencies is a first order approximation, improvements are 

expected if the mechanics can be better parameterized. Flow noise directly on the hydrophone 

occurs at lower frequencies (below 300 Hz in a tidal channel with flow speed ~ 2 m/s (Auvinen 

et al. 2019)) but may cause noise at higher frequencies due to motion of mooring components. 

However, because the harmonic regression shows best fit as a modulation term rather than a 

linear source term, it is likely that the tidal currents are modulating an existing noisescape in the 

Salish rather than adding to it.  

Lastly, a source of error in the model-data comparisons is due to the total exclusion of 

vessel presence in the model.  Since the waters near our receiver are so well travelled, persistent 

background noise due to ships is likely degrading model performance.  The model, which seeks 

to only predict the natural components of the underwater soundscape, would require some 

additional noise element to capture the variable but relatively persistent ship noise contribution 

to the sound field in the region. 

 
5.3 Comparison with previous studies 
 
 Previously, empirical ambient noise models have been developed and parameterized from 

acoustic recordings made in shallow and deep-water environments (Kuperman and Ferla 1985; 

Vagle et al. 1990; Ma and Nystuen 2005). In this study, rather than considering single 

environmental sources like wind, or rain, an effort is made to account for multiple sources 

making up the environmental ambient noise field in an acoustically complex environment like 

the near shore region. The wind parameterization utilized within this model took the form of a 

second order piecewise continuous relationship, with a wind speed breakpoint of 5 m/s (Eq. 35), 

with a second order term fit at higher windspeeds.   
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Kuperman and Ferla 1985 show a similar parametrization using second order polynomials 

to fit wind to sound level over a lower frequency band (50 Hz – 3.2 kHz) and noted that at wind 

speeds below 7 knots (3.6 m/s) had little effect on sound levels. It is likely that the higher critical 

frequency found in this study is a combination of increased surface traffic to major ports in the 

region, and the increased variability in noise levels at lower wind speeds.   

Conversely, in a deep water study carried out by Vagle (Vagle et al. 1990), a linear fit 

between wind and sound levels was used, noting that higher order polynomials are less likely to 

be predicted by simple physical models in comparison to power laws, and that a marginal 

improvement in fit at high wind speeds did not warrant extra complexity. More complex 

formulations are available for rain formulations exist beyond this model, like that of Ma et al 

2005, considering the spectral characteristics of different drop sizes, rain rate, and grazing angle, 

although they do recommend an exponential relationship for a first approximation (Nystuen et al. 

2010).  By fitting a model by frequency, and scaling rain rate by the wind speed, our simple 

model shows some agreement with their findings. 

 Kewley et al. (Kewley et al. 1990) made an estimate of the source level per unit area 

from an ensemble of results collected by other authors in deep and shallow water environments 

from many different regions, including Kuperman and Ferla’s study site in the Mediterranean. 

All studies focused on frequencies below 3 kHz.  The characteristic source level per unit area 

curves they produced are compared against our estimate of  at wind speeds of 10, 

20, 30 and 40 knots, shown in Figure 31.  For windspeeds above 20 knots, the source spectrum 

levels estimated in this thesis are underestimated relative to the historical data, suggesting that 

that , the modelled surface receive sensitivity integrated over the listening area of our 

sensor, may have been overestimated in the model domain.  Small errors in transmission loss 
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may result in significant errors in estimating  Though sources at distant ranges undergo 

large transmission loss, the area over which they cover increase as r2.  Since  is the 

product of the transmission loss and the element of area , distant sources (> 10 km) can 

still add significant energy to the noise field.  The effect of persistent ship noise also plays a role 

in our results.  For wind speeds below 10 knots, our source level is overestimated, likely due to 

the contamination of ship noise in our noise model training set. 

 
Figure 31: Source level spectrum computed by Kewley (black lines) and in this study (blue lines) 
for 10, 20, 30, and 40 knot wind speeds. 

 
5.4 Future recommendations  
 
 Depending on the scale of the data set, fitting by frequency represents significant 

computation time and so it is recommended that method to collapse spectra about particular 



73 
 

indicator frequencies be implemented to speed up analysis, after which the spectra can be 

reconstructed. However, developing a frequency specific model allows for frequency specific 

sensitivity analysis, and may highlight seasonal effect in the model not previously considered, 

represented in Figure 27. The acoustic filtration process provided herein to better resolve the 

ambient soundscape at lower frequencies can likely also be further optimized. Rather than 

choosing a single metric, like the minimum, to represent the ambient soundscape at all 

frequencies, a frequency dependent descriptor, likely some form of percentile, may improve 

detection. Furthermore, rather than using two frequencies to classify sources in a spectral 

component plot, the use of more frequencies would improve the resolving capability of this 

system, behaving increasingly like a PCA grouping method. To begin determining the mechanics 

behind the impact of tides and currents on this system, it is recommended that wind and wave 

and current direction be included in future version of this model. Calculation of source strength 

per area of other existing source level models is recommended to improve model 

intercomparison.  
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6 Conclusions 
 
 This model was a parameterized with the express goal of modelling the baseline 

environmental soundscape in coastal waters in time, frequency, and space, based on available 

environmental parameters like wind speed, rain rate, and tidal currents. Acoustic 

parameterization data was collected in the Strait of Juan de Fuca, BC, between April 18th and 

May 12th, 2018, and tested against acoustic records from April 18th 2018 to February 27th 2019.  

In doing so, it was successfully demonstrated that:  

 
1. The received soundscape, heavily contaminated by anthropogenic sources, can be 

successfully filtered by decimation to hourly minimum levels and spectral component 

analysis to isolate the for the environmental ambient soundscape.  

2. The environmental ambient sound scape can be used to parameterize an environmental 

noise model, represented as a linear combination of wind, rain, and unknown source 

terms, modulated by tidal forcing. Model data comparison until February 27th showed 

good fit, <3dB  at frequencies above 20 kHz, and <6dB  at frequencies 

below 20 kHz.  

3. The modelled soundscape can be made independent of model training location through 

calculation of the spectral source level based on calculations of local transmission loss, 

and that estimated spectral source level compare favorably with other estimates of Ma et 

al 2005, and Kuperman and Ferla 1980.
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Appendix 1: Hydrophone deployment locations, durations, and notes 
 

Location 
Location 
coordinates 

Water 
depth 

Deployment 
Date 

Retrieval 
Date Comments 

Haro Strait 48° 29.750'N 
123° 11.567'W 235 m 

Jan 31 2018 Apr 14 2018  

Apr 14 2018 Jun 19 2018  

Jun 19 2018 Aug 20 2018  

Aug 20 2018 Oct 14 2018  

Oct 14 2018 Nov 28 2018  

Nov 28 2018 Mar 6 2019 Stopped recording Feb 27 

Mar 6 2019 May 31 2019  

May 31 2019 Aug 18 2019  

Aug 18 2019 Nov 24 2019  

Nov 24 2019 July 16 2020 stopped recording Mar 21 2020 

July 16 2020     

Sooke 48° 17.365'N 
123° 39.137'W 165 m 

Feb 1 2018 Apr 15 2018 
Stopped recording Feb 6 to Mar 6 
2018 

Apr 15 2018 Jun 19 2018  

Jun 19 2018 Aug 17 2018  

Aug 17 2018 Oct 12 2018  

Oct 12 2018 Nov 29 2018  

Nov 29 2018 Mar 5 2019 Stopped recording Feb 27 

Mar 5 2019 May 31 2019 Stopped recording May 18 

May 31 2019 Aug 17 2019 Stopped recording Aug 9 

Aug 17 2019 Nov 25 2019 Stopped recording Nov 3 

Nov 25 2019 May 14 2020 stopped recording Feb 11 

May 14 2020 Sep 10 2020  

Sep 10 2020     

Port Renfrew 48° 30.274'N 
124° 31.016'W 170 m 

Feb 1 2018 April 15 2018  

Apr 16 2018 Jun 20 2018  

Jun 20 2018 Aug 19 2018 stopped recording after 7 seconds 

Aug 19 2018 Oct 11 2018  

Oct 11 2018 Nov 29 2018  

Nov 29 2018 Mar 4 2019 Stopped recording Feb 28 

Mar 4 2019 May 30 2019  

May 30 2019 Aug 16 2019  

Aug 16 2019 Nov 26 2019  

Nov 26 2019 June 21 2020 stopped recording March 24 2020 

June 21 2020 Sep 12 2020  

Sep 12 2020     

Jordan River 48° 23.793'N 
124° 07.976'W 120 m Feb 1 2018 Apr 16 2018  

Apr 16 2018 Jun 19 2018  
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Location 
Location 
coordinates 

Water 
depth 

Deployment 
Date 

Retrieval 
Date Comments 

Jun 20 2018 Aug 17 2018  

Aug 17 2018 Oct 12 2018  

Oct 12 2018 Nov 30 2018  

Nov 30 2018 Mar 4 2019  

Mar 4 2019 May 30 2019  

May 30 2019 Aug 17 2019  

Aug 17 2019 Nov 25 2019  

Nov 25 2019 May 14 2020 stopped recording Mar 19 

May 14 2020 Sep 12 2020  

Sep 12 2020     

Boundary Pass 48° 44.014'N 
123° 08.741'W 180 m 

Feb 5 2018 Apr 14 2018  

Apr 14 2018 Jun 21 2018  

Jun 21 2018 Aug 20 2018  

Aug 20 2018 Oct 14 2018  

Oct 14 2018 Nov 27 2018  

Nov 27 2018 Mar 6 2019 stopped recording Feb 23 

Mar 6 2019 Jun 1 2019  

Jun 1 2019 Aug 18 2019 stopped recording Jul 2 

Aug 18 2019 Nov 24 2019 stopped recording Nov 3 

Nov 24 2019 May 12 2020 stopped recording Feb 9 

May 12 2020 Sep 14 2020  

Sep 14 2020     

Swiftsure MEQ 48° 30.924'N 
124° 56.156'W 75 m 

Jul 13 2017 Apr 15 2018  

Apr 15 2018 Aug 16 2018 stopped recording Jul 29  

Aug 16 2018 Oct 11 2018  

Oct 11 2018 Nov 30 2018  

Nov 30 2018 Mar 3 2019  

Mar 3 2019 May 30 2019  

May 30 2019 Aug 15 2019  

Aug 15 2019 Nov 26 2019  

Nov 26 2019 Jun 21 2020 stopped recording Mar 18 2020 

Jun 21 2020 Sep 11 2020  

Sep 11 2020     

Turn Point 

48° 42.099'N 
123° 16.654'W 195 m 

June 1 2019 Aug 18 2019   

Swanson Channel 48° 44.340'N 
123° 15.340'W 75 m 

Aug 18 2019 Nov 23 2019  

Nov 24 2019 May 12 2020 stopped recording Mar 20 2020 

May 12 2020 Sep 14 2020  

Sep 14 2020     

Swiftsure ISZ 40 m Feb 7 2020 Jun 21 2020 stopped recording Jun 17 
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Location 
Location 
coordinates 

Water 
depth 

Deployment 
Date 

Retrieval 
Date Comments 

48° 33.120'N 
125° 00.432'W 

Jun 21 2020 Sep 11 2020  

Sep 11 2020     

East Point 48° 46.566'N 
123° 04.156'W 85 m May 12 2020 Sep 14 2020  

Sep 14 2020     

La Perouse Bank 48° 23.085'N 
125° 48.326'W 150 m 

May 31 2019 June 23 2020 stopped recording Jun 15 2019 

June 23 2020     

Strait of Georgia 
South 

48° 58.862'N 
123° 24.303'W 240 m 

Aug 9 2020     

Strait of Georgia 
North 

49° 11.568'N 
123° 20.788'W 190 m 

Aug 9 2020     

 



 
 

 

Appendix 2: Comparison between recorded and predicted hourly 
minimum spectrograms  

 
A2 Figure 1: Comparative Spectrograms. Top) Received level spectrogram from June 2018. 
Missing data on the 18th are due to the mooring being removed for servicing. Middle) 
Spectrogram predicted by Eq. 34 over the same time period. Bottom) Spectrogram of the 
difference in dB between the observed and predicted spectrograms. Red represents positive 
residuals (model underestimation) while blue represent negative residuals (model 
overestimation). 
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A2 Figure 2: Comparative Spectrograms. Top) Received level spectrogram from July 2018. 
Middle) Spectrogram predicted by Eq. 34 over the same time period. Bottom) Spectrogram of 
the difference in dB between the observed and predicted spectrograms. Red represents positive 
residuals (model underestimation) while blue represent negative residuals (model 
overestimation). 
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A2 Figure 3: Comparative Spectrograms. Top) Received level spectrogram from August 2018. 
Missing data on the 16th are due to the mooring being removed for servicing. Middle) 
Spectrogram predicted by Eq. 34 over the same time period. Missing data in the predicted 
spectrogram are attributed to incomplete wind and rain information. Bottom) Spectrogram of the 
difference in dB between the observed and predicted spectrograms. Red represents positive 
residuals (model underestimation) while blue represent negative residuals (model 
overestimation). 
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A2 Figure 4: Comparative Spectrograms. Top) Received level spectrogram from September 
2018. Middle) Spectrogram predicted by Eq. 34 over the same time period. Missing data in the 
predicted spectrogram are attributed to incomplete wind and rain information. Bottom) 
Spectrogram of the difference in dB between the observed and predicted spectrograms. Red 
represents positive residuals (model underestimation) while blue represent negative residuals 
(model overestimation). 
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A2 Figure 5: Comparative Spectrograms. Top) Received level spectrogram from October 2018. 
Middle) Spectrogram predicted by Eq. 34 over the same time period. Bottom) Spectrogram of 
the difference in dB between the observed and predicted spectrograms. Red represents positive 
residuals (model underestimation) while blue represent negative residuals (model 
overestimation). 
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A2 Figure 6: Comparative Spectrograms. Top) Received level spectrogram from November 
2018. Missing data on the 16th are due to the mooring being removed for servicing. Middle) 
Spectrogram predicted by Eq. 34 over the same time period. Missing data in the predicted 
spectrogram are attributed to incomplete wind and rain information. Bottom) Spectrogram of the 
difference in dB between the observed and predicted spectrograms. Red represents positive 
residuals (model underestimation) while blue represent negative residuals (model 
overestimation). 
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A2 Figure 7: Comparative Spectrograms. Top) Received level spectrogram from December 
2018. Middle) Spectrogram predicted by Eq. 34 over the same time period Missing data in the 
predicted spectrogram are attributed to incomplete wind and rain information. Bottom) 
Spectrogram of the difference in dB between the observed and predicted spectrograms. Red 
represents positive residuals (model underestimation) while blue represent negative residuals 
(model overestimation). 
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A2 Figure 8: Comparative Spectrograms. Top) Received level spectrogram from January 2019. 
Middle) Spectrogram predicted by Eq. 34 over the same time period. Bottom) Spectrogram of 
the difference in dB between the observed and predicted spectrograms. Red represents positive 
residuals (model underestimation) while blue represent negative residuals (model 
overestimation). 
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A2 Figure 9: Comparative Spectrograms. Top) Received level spectrogram from February 2019. 
Middle) Spectrogram predicted by Eq. 34 over the same time period. Bottom) Spectrogram of 
the difference in dB between the observed and predicted spectrograms. Red represents positive 
residuals (model underestimation) while blue represent negative residuals (model 
overestimation). 


