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Abstract

A new conjecture for geometric horizons has been introduced which may provide a

potential alternative to using apparent horizons and related surfaces for analyzing the

dynamics of black hole spacetimes. In particular, using two examples of black hole

formation in a collapsing universe in the Szekeres spacetime, the formation, evolution,

and detection of geometric horizons are shown. In addition, a function for detecting

apparent horizons in the Szekeres spacetime is also considered, and it is shown that

the apparent horizon in the Szekeres model, is in fact, a geometric horizon. The

Cartan-Karlhede algorithm for determining local equivalences of spacetimes is used

to compute an invariant frame in the Newman Penrose frame formalism, and Cartan

invariants derived from the spacetime in this frame are shown to detect the geometric

horizons under various conditions on the curvature tensors of the spacetime. One

model for primordial black hole formation and another for galactic black hole forma-

tion are considered with non-zero cosmological constants, generalizing work published

previously on these models with zero cosmological constant. Future work utilizing ge-

ometric horizons may provide benefits in gravitational wave research involving black

hole mergers.
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Chapter 1

Introduction

1.1 General Relativity

The development of Einstein’s general theory of relativity rests heavily on top of the

framework of differential geometry and the language of tensor mechanics. The man-

ifolds here are 4-dimensional Pseudo-Riemannian. Einstein’s field equations (EFEs)

have the form [10]

Gµν + Λgµν = κTµν , (1.1)

where Gµν is the Einstein tensor, which is characterized by the Ricci curvature tensor,

the Ricci scalar and the spacetime metric. This term encodes all of the geometrical

properties of the spacetime according to the metric.

Gµν ≡ Rµν −
R

2
gµν (1.2)

κ is a constant depending on the value of the speed of light c, the universal

gravitation constant G, and the unit system used, defined by κ = 8πG
c2

. Conventionally

in relativity, the units are such that c = G = 1, so κ = 8π is commonly used. The

quantities Rµν and R are the Ricci tensor and scalar respectively, which are the trace

of the Riemann curvature tensor, and the trace of the Ricci tensor. The last term in

(1.1), Tµν is the stress-energy tensor, and is where is encoded all of the physics of the

models. This term essentially is the mass and energy term in the field equations.

The physical intuition for the equations here is that the properties of matter in

the spacetime will induce a change in the manifold structure, which then responds by

causing the matter and energy to move around the spacetime dynamically. Overall,

the effect of gravitation is exactly this process of translating energy to curvature to

motion.

Given a base assumption on the geometrical properties of a spacetime, the solution

1
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to the field equations is a metric that describe all of the properties of the spacetime

including the matter and energy. Solving the field equations for a particular metric

allows us to model the dynamics of a physical system, and analyze properties of the

solution within that framework, in our case it pertains to analyzing specific types of

black hole dynamics.

1.1.1 Stress-Energy Tensor for a Perfect Fluid

The stress energy tensor for a perfect fluid can be given by [9]:

Tµν = (ρ+ p)uµuν + pgµν (1.3)

where ρ = ρ(xµ) is the energy density of the system, p = p(xµ) is the pressure term,

gµν is the metric of the spacetime, and uµ is the comoving velocity on the manifold.

For some cases it is useful to set the pressure term to zero in the perfect fluid equa-

tion, resulting in the stress energy tensor for a pressureless dust field. In cosmology

this makes sense on the largest scales of the universe where there is no effective pres-

sure interaction between galaxies for example. The usefulness of a dust solution for

black holes may not be fully compatible with a more realistic model, though analysis

with dust solutions still remains a reasonable toy for the context of this work.

1.1.2 Coordinate Frame and Comoving Frame

A common coordinate frame used in relativity is the spherical coordinate system

eµ = {dt, dr, dθ, dϕ} (1.4)

For the stress energy tensor, u is taken to be a comoving timelike covector

u = uµe
µ = dt (1.5)

This form for the covector was used to quantify the stress energy tensor for all exam-

ples. The Einstein summation convention on the indices in (1.5) is assumed for all

future equations.
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Szekeres Coordinate Frame

For the Szekeres models examined here, the coordinate frame used is a projective

coordinate system, with a time component, a position coordinate, and two projective

coordinates. The coordinate system is the projection mapping from spherical coordi-

nates on each spherically symmetric shell. The coordinates have the form (t, z, x, y),

where (x, y) are the projection coordinates, (t, z) are shell position coordinates. Each

shell at position (t, z) is also spherically symmetric. A greater detailed analysis of the

geometry of Szekeres models is given by Buckley [4].

1.1.3 Spacetime Metric

In GR, the type of metric used is Pseudo-Riemannian, and like Riemannian met-

rics, they define the line element operator on the space in an analogous way. This

means that the signature of the metric diagonal elements is {−1,+1,+1,+1} or

{+1,−1,−1,−1}. The only rule for the signature is that the temporal and spatial

terms in the diagonal will have opposite signs. The pseudo-Riemannian convention

on the metric signature is what defines the notion of causality in the spacetime. Each

spacetime metric is an exact solution to the EFEs, and fully characterizes all of the

curvature properties of the spacetime, and other interesting things like where all the

curvature singularities occur.

1.1.4 Example Spacetime Metrics

Schwarzschild

The Schwarzschild metric was the first exact solution to Einstein’s equations, deter-

mined by Karl Schwarzschild in 1915, a short time before his death in 1916. The

Schwarzschild metric given in its full form is: [22]

g = −
(︃
1− 2M

r

)︃
dt⊗ dt+

(︃
1− 2M

r

)︃−1

dr ⊗ dr + r2
(︁
dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ

)︁
(1.6)

where the units are such that c = G = 1, M is the gravitational mass of a point mass

in the spacetime, and (r, θ, ϕ) are the standard spherical coordinates. This metric
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describes a spacetime with a single point mass, is static, has spherical symmetry, and

is asymptotically flat.

In this solution, we see that there are points in the metric where some terms

become singular, at r = 0 and r = 2M . The interesting feature here is the surface

defined by r = 2M , and what is now conventionally known as an event horizon for a

Schwarzschild black hole [22].

Kerr

The Kerr metric is an exact solution to the field equations that is stationary, rotating

and asymptotically flat. This type of model is one of the most common models used

for simulating gravitational waves, as the end state of a black hole merger for example.

The Kerr model is widely used in astronomy for characterizing accretion disks and

X-ray emission from around supermassive black holes. Modern gravitational wave

research also applies a lot of properties of the Kerr model in modelling the interactions

between two or more black holes, and modelling gravitational wave emission from

these systems.

Friedmann-Lemâıtre-Robertson-Walker

This metric is used for most modern forms of cosmology, and is built out of the

initial assumptions of a spacetime that is spatially homogeneous and isotropic . The

assumption of homogeneity in the universe is relaxed by the Szekeres model.

Szekeres

Generalized Szekeres models were developed to relax the spatial homogeneity condi-

tion in cosmological models [25]. There are two classes of Szekeres models, with a

slightly different condition on the metric functions that change the behaviour of the

solutions. The loss of homogeneity in the Szekeres models gives a much more reason-

able, though much more complicated way to determine the cosmological dynamics of

the universe, assuming that the universe is inhomogeneous on cosmological scales. It

seems most relevant to compare Szekeres models to FLRW type cosmologies, where

Szekeres models are a generalization of FLRW models.
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1.1.5 Horizons

Einstein’s field equations admit solutions in general that contain singularities. In fact

this is a prominent feature of manifolds in general relativity [13]. Colloquially, certain

types of singularities in spacetime solutions of Einstein’s field equations are called

black holes. Black holes are characterized by surfaces, typically called event horizons.

There are a handful of types of horizons depending on what information you need to

know about your system. The apparent horizon for a black hole is characterized by

the surface for which the null expansion is zero, physically this means that its the

surface where light is not falling into or radiating away.

Another way to characterize these objects conceptually, is by thinking of them

physically as a subregion of space where the gravitational field is strong enough that

even the motion of light out from that space on the horizon is not possible. The

definition of a horizon in general depends on what property of the spacetime defines

the surface. Apparent and event horizons are some of the different types of horizons,

though are distinctly different types of objects.

1.1.6 General Types of Horizons

Event Horizon

The event horizon generally is thought of first when picturing the idea of what a black

hole is supposed to be. This surface is defined as the boundary of the causal past of

future null infinity. In other words, any signals sent from the interior of this region

will never escape [2]. In general, to determine the location of event horizon, the global

behaviour of the spacetime must be known (this means that the full time evolution

of the universe must be determined!), and this idea of an event horizon presents a

problem when we are trying to talk about black holes as local phenomena. We would

like to propose alternative surfaces that are analogous to the event horizon in some

way, yet are able to be determined locally, rather than globally.

Trapping Surfaces and Apparent Horizons

Starting with the idea of a trapping surface, a trapping surface is a closed two-surface

that has the ingoing and outgoing null expansions are negative everywhere. Thus, for
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a two-surface, with outgoing and ingoing directions ℓa and na:

θ(ℓ) ≡ qab∇aℓb < 0

θ(n) ≡ qab∇anb < 0,
(1.7)

Where qab = gab + 2ℓ(anb) is the projection operator of the metric restricted to the

outermost trapping surface, typically called the marginally outer trapping surface

(MOTS) [3].

A surface in the spacetime that is characterized by the outgoing null expansion

vanishing (θ(ℓ) = 0) is the MOTS. This idea of a trapping surface is also commonly

called an apparent horizon in numerical relativity. If the spacetime can be foliated

by asymptotically flat spacelike three-surfaces, then the boundary of these trapped

surfaces is called the apparent horizon [12]. The apparent horizon is also defined by

the foliation of the spacetime, and is not unique. Assuming we have a well defined

vector for the outgoing null rays, the expansion of the null rays is zero at the MOTS.

A surface foliated entirely by MOTS is referred to as a marginally outer trapped tube

(MOTT) [3] . From here on, the apparent horizon will be explicitly defined apart

from any other MOTS that appears.

Dynamical Horizons

The definition of a dynamical horizon [1, 3] is a smooth three-dimensional spacelike

submanifold that is foliated by a preferred family of 2-surfaces such that on each

2-surface, the expansion of the outgoing null normal is zero, and the expansion of

the ingoing null normal is strictly negative. So compared to the above definition of

marginally trapped surfaces, a dynamical horizon is a manifold that is foliated by

marginally trapped spatial 2-surfaces. Dynamical horions are also quasi-local objects

like apparent horizons, and thus do not require full global knowledge of the spacetime.

Geometric Horizon

Due to the foliation dependent nature of the apparent horizon, it is important to

determine another type of surface defined invariantly, such as the geometric horizon

[6]. The geometric horizon is a hypersurface defined by the vanishing of certain Cartan

invariants in the spacetime. For a spacetime with some algebraic type, the geometric
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horizon is an invariant surface that is algebraically more special than the exterior

spacetime. In a properly defined invariant frame, the existence of a geometric horizon

can be determined by placing conditions on various scalar curvature invariants that

define an algebraically special region [6, 5]. Having a way to invariantly characterize

these surfaces allows us to describe special geometric surfaces analogous to the event

horizons for stationary black hole solutions, or apparent horizons for dynamical black

hole solutions that characterize black holes. The benefit is that the geometric horizons

are intended be able to be extended to dynamical black hole solutions [6], and have

already been shown to work on a number of exact solutions [19].

Cosmological Horizon

The cosmological horizon is the farthest distance in which a light ray can travel since

the beginning of the universe (i.e. the big bang), this makes the cosmological horizon

closely related to the apparent horizon. Since light has a finite upper limit on its

velocity, objects that are too far apart cannot have interacted if the light travel time

between them is less than the age of the current universe. Simply put, things beyond

the cosmological horizon have not had enough time to interact with anything inside

of it. This surface also defines the notion of the current ‘observable universe’. Inside

this surface, the expansion of outgoing null rays would be negative, relating this to

the apparent horizon idea.

In general, not all of the solutions studied will contain astrophysical black holes,

i.e. black holes for which the physics describing the equations is actually possible

in the known universe. Though there is much mathematical interest in studying the

dynamics of all systems resulting from the EFEs regardless of physicality.

1.1.7 Physical Simulations of Black Hole Interactions

A common method for determining the location of apparent horizons in simulations of

black hole mergers and interactions is to use a null vector in the spacetime and locate

the surface where the expansion of the null vector is zero. The main problem with

this method is that the definition of a null vector in a spacetime intrinsically depends

upon the foliation of the spacetime. This leads to a problem where the apparent

horizon is not uniquely defined for a spacetime. We would like in general, to define a
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surface that is characterized by invariants in the spacetime, and thus isn’t dependent

on the foliation. Utilizing the geometric horizon idea defined previously, using the

Cartan-Karlhede algorithm to develop Cartan invariants for the spacetime allows us

to define certain invariants related to the null expansion and use the vanishing of this

particular curvature invariant to define the geometric horizon, and rather than the

apparent horizon, use the geometric horizon for analysis. In the examples here, for

a Quasispherical Szekeres spacetime, it turns out that the geometric and apparent

horizons coincide, so the analogy here is rather useful for defining alternative methods

for determining the special surfaces.

1.2 Newman-Penrose Formalism and the Frame Approach

Moving aside from the standard coordinate basis approach to writing down our equa-

tions for the metric and the curvature tensors and scalars, a method developed by

Newman and Penrose [20] transforms the field equations into a larger set of first or-

der differential equations by using an alternative to a coordinate basis to encode the

curvature information.

1.2.1 The Null Frame

Moving into a frame formalism and away from coordinates like {t, x, y, z}, Newman

and Penrose [20] opted to use a set of four null vectors, two real null vectors and

two complex null vectors to replace the standard coordinate frame. The four frame

vectors, called the tetrad, are typically denoted:

{ℓ, n,m, m̄} (1.8)

where ℓ = ℓµ, n = nµ, m = mµ, m̄ = m̄µ and where each of the frame vectors has

the following properties:

ℓµℓµ = nµnµ = mµmµ = m̄µm̄µ = 0

−ℓµnµ = 1 = mµm̄µ

(1.9)
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as well as all other inner products between the vectors being zero. The corresponding

dual basis to the null tetrad is then easily seen to be

Θi = {−n,−ℓ, m̄,m} (1.10)

These tetrad vectors can be used to construct the null metric in the following way

gµν = −2ℓ(µnν) + 2m(µm̄ν) (1.11)

where the brackets around the indices denote the symmetrization of those products:

ℓ(µnν) =
1

2
(ℓµnν + ℓνnµ) (1.12)

In this frame, since the basis is the set of four null vectors, now the metric has

components

gµν =

⎡⎢⎢⎢⎢⎢⎣
0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ (1.13)

The four directional derivative operators along the tetrad vectors are:

D ≡ ∇ℓ = ℓa∇a

∆ ≡ ∇n = na∇a

δ ≡ ∇m = ma∇a

δ̄ ≡ ∇m̄ = m̄a∇a

(1.14)

The curvature information that is usually stored in the connection coefficients is now

redefined as a set of twelve spin coefficients:

κ = −maDℓa

σ = −maδℓa

τ = −ma∆ℓa

ρ = −maδ̄ℓa

π = m̄aDna

ν = m̄a∆na

µ = m̄aδna

λ = m̄aδ̄na

ϵ = −1

2
(naDℓa − m̄aDma)

γ = −1

2
(naDℓa − m̄a∆ma)

β =
1

2
(naδℓa − m̄aδma)

α =
1

2

(︁
naδ̄ℓa − m̄aδ̄ma

)︁
(1.15)
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1.2.2 Constructing a Null Frame from an Orthonormal Frame

From a standard coordinate frame, an inverse transformation (of the metric) to an

orthonormal frame will give a set of orthogonal basis vectors which can be used then

to construct the null frame in the following way

ℓ =
e0 + e1√

2

n =
e0 − e1√

2

m =
e2 − ie3√

2

m̄ =
e2 + ie3√

2

(1.16)

where {ea} are the basis elements of the orthonormal frame.

1.3 Curvature Tensors in the Null Frame

It is useful to talk about the Riemann curvature tensor, and its traceless part, the

Weyl tensor in terms of their complex coefficients in the null frame. Where the Weyl

tensor has the following components, given a null frame {l, n,m, m̄}, defined by

Ψ0 = Cabcdℓ
ambℓcmd

Ψ1 = Cabcdℓ
anbℓcmd

Ψ2 = Cabcdℓ
ambm̄cnd

Ψ3 = Cabcdℓ
anbm̄cnd

Ψ4 = Cabcdn
am̄bncm̄d

(1.17)

The values of these 5 complex Weyl scalars encode the 10 independent components

of the Weyl tensor and will determine the Petrov type of the spacetime, which will

be used to put the null tetrad in a canonical form. For Petrov type D spacetimes,

the Weyl scalars in a canonical frame take the form where

Ψ0 = Ψ1 =Ψ3 = Ψ4 = 0

Ψ2 ̸= 0
(1.18)

Having the Weyl tensor in its canonical form will allow the construction of the

preferred null frame for deriving Cartan invariants. And choosing a canonical frame
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where we can determine the algebraic type of the spacetime allows us to further put

conditions on these curvature invariants to locate the algebraically special geometric

horizons. The Ricci tensor components are encoded into the set of complex scalars

given by

Φ00 =
1

2
Rabℓ

aℓb, Φ11 =
1

4
Rab(ℓ

anb +mam̄b)

Φ22 =
1

2
Rabn

anb, Φ01 = Φ10 =
1

2
Rabℓ

amb

Φ02 = Φ20 =
1

2
Rabm

amb

Φ12 = Φ21 =
1

2
Rabm

anb

Λ =
R

24

(1.19)

where R is the Ricci scalar.

1.4 Lorentz Transformations

The set of Lorentz transformations that describe all transformations of the null frame

includes null rotations about ℓ and n, spins about m and m̄ and boosts on ℓ, n. The

null rotations about ℓ (swapping ℓ←→ n gives the transformation for n):

ℓ′ = ℓ

n′ = n+ Em++Ēm̄+ |E|2ℓ

m′ = m+ Ēℓ

m̄′ = m̄+ Eℓ

(1.20)

where the rotation parameter E is complex, we can define a separate complex param-

eter B for null rotations about n. The spin and boost transformations, generalized

as a spin-boost are

ℓ′ = λℓ

n′ =
n

λ

m′ = eiθm

m̄′ = e−iθm̄

(1.21)
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The spin and boost parameters λ and θ are real. These transformations will be used to

set the null frame in a canonical form. In total, the Lorentz group of transformations

has 6 elements, two real parameters λ and θ, and four components of the E and

B complex null rotation parameters. The number of elements of the Lorentz group

that leaves a frame in its invariant form will be necessary for the procedure in the

Cartan-Karlhede algorithm.



Chapter 2

Numerical Analysis

2.1 Root Finding

Various root finding methods were used according to the needs of each problem in this

work. Overall a combination of two methods was often used. The main method for

localizing roots to equations in one, two or three dimensions is the bracketing method.

Where the easiest way to bracket the roots (not necessarily the most optimal, but was

the most robust in all cases tested) was to check the product F (x,C)F (x+h,C) < 0,

C = const along sections of the surfaces in each dimension. This was the first step in

all root finding problems over a subgrid spanning each dimension on the main grid

for numerical analysis. It is noted that this method does not scale well with larger

solution grids, though runtimes were not significant in the grand scheme (on the order

of 1-5 minutes). The follow up method to refine the root locations depended upon

the form of the equations given. The secant method was used for its robust nature

and fast convergence, and to avoid situations where the derivatives of the functions

became too high or too low for the Newton-Raphson method to be as effective as

possible. The functions necessary for root finding in the examples all were functions

of two variables.

2.2 Methods, Libraries and Software

The open source, peer reviewed C++ development libraries from Boost [21] were

used mainly for the ordinary differential equation (ODE) integrator libraries, and

the multiprecision library. Some of the research required numerical precision higher

than the standard double floating point number, which only carries up to 16 decimal

digits of precision. Typically calculations were done using 100 digits of precision

for root finding on analytical solution surfaces due to the high number of significant

figures required for the high degree polynomial function evaluated. Custom software

13
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was written using the Boost C++ libraries for development of this work. Numerical

integrations all used double precision variables. The computer algebra system Maple

[18] was used for all tensor calculations, invariant calculations and transformations.

A public repository of the code developed for this work is hosted on github [17].

2.3 ODE Integration

For the numerical problems considered, there were a set of integrators used to ana-

lyze the error properties of each solution. For all problems, the most robust numerical

method used was the Dormand-Prince Runge-Kutta 4(5) step integrator with adap-

tive step size control and dense output.

The Dormand-Prince Runge-Kutta 4(5) (RKDP5) method was used for its error

control properties, which give it a suitable stability for integrating all of the problems

in this work [8]. The RKDP method is a Runge-Kutta family ODE solver in which the

constants of all terms were chosen to minimize the error in the 5th order solutions. The

4th and 5th order solutions are then differenced to quantify the error of the method

to the 4th order. This allows for convenient step-size control and grid resizing for all

problems done here.

The overall method used for numerical analysis in this work employs use of the

RKDP5 method, using adaptive step sizing to keep the error in control, then interpo-

lating the solution points to a desired grid. The details of the internal workings of the

interpolation method are given by the Boost organization [21], and are referred to as

dense output steppers, as they can produce a continuous solution curve by numerical

interpolation between solution points to any desired precision. The error order of this

integrator is kept with absolute and relative tolerances at ϵ = 10−6.



Chapter 3

Quasi-spherical Szekeres Models

3.1 General Model

The general metric considered by Szekeres [25] is given by

ds2 = dt2 − e2αdz2 − e2β(dx2 + dy2) (3.1)

where α = α(t, z, x, y) and β = β(t, z, x, y) are subject to the field equations. This

metric describes a family of metrics that represent perfect fluid dust models, with

zero pressure, and with cosmological constant Λ [25].

3.2 Quasi-spherical Szekeres Models

The quasi-spherical (QS) Szekeres models are forms of the Szekeres metric 3.1 where
∂β
∂z
̸= 0. With the parameterization given by Hellaby [14], and used in Bolejko [16, 24]

the metric can be written in the form

ds2 = −dt2 + (R,z −RH,z/H)2

1 + 2E
dz2 +

R2

H2
(dx2 + dy2) (3.2)

the notation (),z denotes the partial derivative with respect to z, and where H is

defined as

H ≡ S

2

[︄(︃
x− P

S

)︃2

+

(︃
y −Q

S

)︃2

+ 1

]︄
(3.3)

and P (z), Q(z), S(z), E(z) are arbitrary functions and R(t, z) is determined by solving

the Einstein field equations. The function H(z, x, y) is the term that breaks the

spherical symmetry of the spacetime. The conditions where S ′(z) = Q′(z) = P ′(z) =

0 will bring the spacetime back to a spherically symmetric state.

15
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3.2.1 Singularities in Szekeres Models

There are multiple types of singularities that can appear in Szekeres models, ac-

cording to the description of the shells that make up the spacetime. Shell focussing

singularities exist where R(t, z) = 0, and shell crossing singularities appear where

HR,z − RH,z = 0. Both types of these singularities will be shown to be invariant

features of the quasi-spherical Szekeres spacetime.

3.3 Lemâıtre - Tolman - Bondi Approximation

Reducing the Szekeres metric in (3.2), by applying the following definitions for S, P,Q

S(z) = 1

P (z) = 0

Q(z) = 0

(3.4)

we get the Lemâıtre-Tolman-Bondi (LTB) metric

ds2 = −dt2 +
R2

,z

1−K(z)
dr2 +R2(dx2 + dy2) (3.5)

Imposing the field equations with a dust source, this metric produces two field equa-

tions

2M,z = 8πρR2R,z

R2
,t =

2M

R
−K +

ΛR2

3

(3.6)

where M = M(z), K = K(z), R = R(t, z), ρ is the energy density of the dust, and Λ

is the cosmological constant. Thus we have an evolution equation for the dynamics of

each shell, which are independent of each other, and another equation to determine

the energy density.
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3.4 Full Quasi-spherical Szkeres Field Equations

In analogy to the LTB solution, the Szekeres field equations can be written in the

form [24]

2M̄ ,z = 8πρY 2Y,z

Y 2
,t =

2M̄

Y
− K̄ +

ΛY 2

3

(3.7)

where Y ≡ R
H
, M̄ ≡ M

H3 , K̄ ≡ 2K
H2 . Also note that substituting the relation for Y

back into the evolution equation gives us the exact same equation as in the LTB

solution evolution equation for R (second part of equation (3.7)). An additional

equation necessary for the analysis of shell crossings can be determined by taking the

z derivative of the evolution equation (3.7)

Ṙ,z ≡ u̇ =
1

Ṙ

(︃
Mz

R
− Mu

R2
+ Ez +

ΛRu

3

)︃
(3.8)

where u ≡ R,z, and the dot notation ( ̇ ) denotes partial derivatives with respect to

time. The solution to this equation gives R,z(t, z) and will be used for establishing

shell crossing regions in the spacetime.

3.5 QS Szekeres Null Frame

Using the quasi-spherical metric for Szekeres, a null frame is developed for use in the

Cartan-Karlhede algorithm. Starting with an orthonormal frame

e0 = −dt

e1 = W (t, z, x, y)dz

e2 = Y (t, z, x, y)dx

e3 = Y (t, z, x, y)dy

(3.9)
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where W = (R,z−RH,z/H)√
1+2E(z)

, Y = R(t,z)
H(z,x,y)

, the null frame has the form

ℓ =
e0 + e1√

2
=
−dt+Wdz√

2

n =
e0 − e1√

2
=
−dt−Wdz√

2

m =
e2 − ie3√

2
=

Y dx− iY dy√
2

m̄ =
e2 + ie3√

2
=

Y dx+ iY dy√
2

(3.10)

and i is the imaginary component. The frame vectors m and m̄ are complex null

vectors, while ℓ and n are real null vectors.

3.6 Apparent Horizon Detection

A method of detecting the apparent horizon in the quasispherical Szekeres model by

Debnath et al [7], was given in terms of a cubic function of the areal radius. The

zeroes of this cubic function define the apparent and cosmological horizon, depending

on the number of roots:

ΛR3 + 3F (z)− 3R = 0 (3.11)

where F (z) = 2M(z) for this work. The number of and type of horizons that form in

the spacetime are in terms of various conditions on F and Λ, also given by Debnath

[7].

Table 3.1: Table of solutions to the horizon detector in equation (3.11), from Debnath
et al.

Condition Horizon Locations

1. Λ = 0 R = 2M
2. F (z) = 0 R = 0, R = ± 1√

Λ

R1 =
2√
Λ
cos(θ/3)

3. F (z) < 2
3
√
Λ

R2 =
1√
Λ

(︁
− cos(θ/3) +

√
3 sin(θ/3)

)︁
cos(θ) = −3

2

√
ΛF (z)

4. F (z) = 2
3
√
Λ

R = 1√
Λ

5. F (z) > 2
3
√
Λ

No Horizon
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For the examples in this work, specifying Λ gives situations where sections of the

spacetime satisfy one or more of the conditions in Table (3.1). This results in multiple

types of horizons forming. This behaviour will be examined further in Chapter 5.



Chapter 4

Cartan-Karlhede Algorithm

The method for constructing the set of Cartan invariants that characterize the space-

time involves defining a canonical frame for the system, then employing the Cartan-

Karlhede algorithm [23]. This algorithm is used to determine the local equivalences

of spacetimes, by comparing the Cartan invariants from each in a proper frame.

4.1 The Cartan-Karlhede algorithm

The algorithm involves computing the qth-order derivative of the curvature tensor,

and record the number of functional independent Cartan invariants at the qth order,

tq. Then computing the dimension of the linear isotropy group, Hq. The linear

isotropy group consists of the Lorentz transformations that leave up to the qth order

of the curvature tensor invariant.

The Cartan-Karlhede algorithm defined by MacCallum et al [23] , has the follow-

ing procedure:

1. Start with the order of differentiation set to q = 0.

2. Calculate the derviatives of the Riemann tensor up to the qth order.

3. Find the canonical form of the Riemann tensor and its covariant derivatives.

4. Fix the frame using the canonical form and noting the residual frame freedom,

compute the dimension of Hq.

5. Find the number tq of independent functions in the components of the Riemann

tensor and covariant derivatives in the canonical frame.

6. If dim(Hq) = tq, the algorithm stops. Else let q = q+1 and continue from step

2.

20
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4.2 Employing the Algorithm for the Szekeres Dust Spacetime

Zeroth Order

The zeroth order step of the algorithm starts with q = 0, and our null frame given

by (3.10). Computing the Weyl tensor complex coefficients and the Ricci tensor

components gives a set of independent functions. The isotropy group that leaves

the weyl tensor invariant at zeroth order contains spins only, thus dim(H0) = 1.

In general there are two functionally independent Cartan invariants at this order.

These are given by the scalars Φ00 and Ψ2, the definitions of these terms are given

in equations (1.17) and (1.19). The two scalars are functionally independent because

they satisfy the following relation [5]

dΦ00 ∧ dΨ2 ̸= 0 (4.1)

At the end of the zeroth order step, we have dim(H0) = 1 and t0 = 2.

First Order

At first order, we set q = 1 and continue the algorithm. The covariant derivative of

the Weyl tensor contains the following algebraically independent quantities:

DΨ2, ∆Ψ2, δΨ2, δ̄Ψ2, ρ, µ, κ, τ (4.2)

The Ricci tensor also has the following independent scalars:

DΦ22 + 4ϵΦ22, ∆Φ22 − 4ϵΦ22, δΦ22, δ̄Φ22 (4.3)

The dimension of the isotropy group at first order is dim(H0) = 0, because spins

will effect the form of the spin coefficients ρ, κ, τ and anything that depends on the

directional derivatives δ and δ̄. Choosing the frame where ϵ is real, using a spin, we

are now in an invariant coframe, and the spin coefficients and frame derivatives of

Ψ2 and Φ22 can be worked with directly for establishing the set of Cartan invariants.

From the sets of scalars above, we pick the largest set of independent functions, which

is four, taking ϵ and π̄ as our remaining functions and show that they are functionally
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independent by the quadruple wedge product:

dΦ22 ∧ dΨ2 ∧ dϵ ∧ dπ̄ ̸= 0 (4.4)

The end of the second step of the algorithm concludes with dim(H1) = 0 and

t1 = 4.

Second Order

At the second order, the second derivative of the weyl tensor admits the same size

set of independent functions and dimension of the isotropy group as the previous

step. Thus the algorithm concludes with dim(H2) = 0 and t2 = 4. The remaining

Cartan invariants derived in this step are used as classifying functions that fully

characterize the Szekeres dust models. For the purposes of the work here, these

classifying functions are not necessary to detect geometric horizons. The appendix

at the end of this work will contain an example of the computed set of invariants in

terms of the metric functions in the QS Szkeres model.

4.3 Horizon Detection using Cartan Invariants

For the Λ = 0 case, the QS Szekeres models contain an apparent horizon, analogous

to the Schwarzschild horizon, defined by the surface R = 2M . For Λ ̸= 0, this

can be generalized to the cubic function in equation (3.11). From the set of Cartan

invariants, the spin coefficients ρ and µ will be used as generalized apparent horizon

detectors. These spin coefficients will be shown to have the same zero sets as R = 2M

and (3.11).

Using the Bianchi identities to simplify, the non zero components of the covariant

derivative of the Weyl tensor are given in terms of the scalars:

C1214;3 = C1434;3 = C1213;4 = C1334;4 = 3ρΨ2

2C1423;1 = C1212;1 = C3434;1

C3434;1 = =
−2∆Φ11 − 32ϵΦ11 − 4µΦ11 + ρ(18Ψ2 + 4Φ11)

3

(4.5)

The terms ρ and µ are related to the ingoing and outgoing null expansions, and
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the surface where ρ ≤ 0 and µ = 0 (for the collapsing phase vice-versa for the expand-

ing phase) define the geometric horizon. In terms of comparing the geometric and

apparent horizons, in this case they coincide, but in general the surfaces are distinct.

[5] From the terms in the covariant derivative of the Weyl tensor, we see that having

ρ = 0 (µ = 0 in collapsing phase) makes the Weyl tensor more algebraically special,

and this means we can use ρ (µ) to locate the geometric horizon. The condition for

the geometric horizon changing from ρ = 0 to µ = 0 for the collapsing phase can be

seen by comparing the functional forms (see Appendix equations 6.11, 6.12) of these

spin coefficients, and noting that the change from the expanding to collapsing phases

results in a sign change of R,t, meaning that only one of these spin coefficients will

have a zero set at a time in this spacetime.

Properties of the Spacetime in terms of Cartan Invariants

Since any function constructed by the set of Cartan invariants is also a Cartan in-

variant, there are a set of properties of the metric that can be realized as invariants.

Taking the Ricci and Weyl scalars from the zeroth order step of the algorithm, we

can define

C0 = Ψ2 −
κρ̄

12
=
−M
2R3

(4.6)

Now using the spin coefficients ρ and µ, and defining two more Cartan invariants

C1 = −
√
2
(ρ+ µ)

2
=

√
1 + 2E

R
(4.7)

C2 = −
√
2
(ρ− µ)

2
=

Rt

R
(4.8)

Using the evolution equation (3.7), we combine the Cartan invariants

−4C0 + C2
1 − C2

2 =
1

R2
(4.9)

Showing that the areal radius is an invariantly defined function.
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The mass and energy functions M and E are also Cartan invariants since they

can be defined in terms of Cartan invariants in the following way:

M = −2C0R
3 (4.10)

E =
C2

1R
2 − 1

2
(4.11)

In addition, the quantity C2 (4.8) defines the expansion and contraction of spacetime,

analogous to the Hubble parameter.

4.4 Shell Crossing Detectors as Cartan Invariants

Shell crossing singularities appear in these models where the metric function

√
gzz =

R,z − RH,z

H√
1 + 2E

(4.12)

has a vanishing numerator. This condition also corresponds to the divergence of the

density, since from the field equations (3.7),

ρ̃ =
M,z

4πY 2Y,z

(4.13)

So to find a suitable detector for the shell crossings, it seems useful to consider the

inverse of the density:

C3 =
1

ρ̃
=

4πY 2Y,z

M,z

(4.14)

This function is defined in terms of Cartan invariants, and also vanishes when shell

crossings occur. In general this property will be used for detecting shell crossing

singularities in the spherical and quasi-spherical cases.



Chapter 5

Numerical and Analytic Models of Black Hole Formation

5.1 Field Equations for a Dust Model

The Quasi-spherical Szekeres field equations are given by (3.7)

2M̄ z = 8πρ̃Y 2Yz

Ṙ
2
=

2M

R
−K +

ΛR2

3

(5.1)

where the functions M(z) and K(z) are arbitrary functions to be defined for each

example, and the dot notation refers to the time derivative, and Y ≡ R(t,z,x,y)
H(z,x,y)

.

ρ̃(t, z, x, y) is the energy density of our dust source, and R(t, z) is the areal radius of

each shell of matter in the spacetime. The positive root of the Ṙ equation describes

the expanding phase of the solution, and the negative root describes the collapsing

phase. In the remaining work, the coordinate r has been relabelled to z.

5.2 Primordial Black Hole Formation

Here we are extending a model by Harada and Jhingan [11] for primordial black hole

(PBH) formation, and introducing a non-zero cosmological constant, and utilizing

the Cartan invariants derived for the Szekeres spacetime, and including the apparent

horizon detector from Debnath to analyze formation of the geometric horizons, and

how they compare to the apparent horizons.

Choosing M(z) and K(z)

The arbitrary functions M(z) and K(z) are chosen to correspond to the choices by

[11, 16], where K(z) ≡ −2E(z) and M(z) given by model D in the work of [11], which

was developed mainly for having shell crossings appearing interior to the apparent

horizons for primordial black holes in Szekeres spacetimes with zero cosmological

25
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constant.

M(z) =
z3

2

E(z) =
1

2

(︃
z

rc

)︃2(︃
1 +

(︃
z

rw

)︃n1

− 2

(︃
z

rw

)︃n2
)︃4 (5.2)

with n1 = 8, n2 = 10, rc = 10, rw = 1, and z restricted to the domain z ∈ (0, 1).

E(z) has been chosen such that E(z) < 0 ∀z ∈ (0, 1). The choices of M(z) and E(z)

above will not qualitatively change the dynamics of the shells on their own, but will

affect where and when shell crossings appear in the system. Modifying the n1 and

n2 parameters in (5.2) changes the time at which shell crossings start to occur in the

spacetime. The effect of these parameters changing is shown in figure (5.12).

Deviation from Spherical Symmetry

The quasispherical condition for this problem was chosen by setting S(z) =
√
2z,

keeping P = Q = 0. The shells of matter with these conditions are still concentric,

but no longer spherically symmetric, as S ′ ̸= 0 [4]. Setting the function S(z) = 1

recovers an LTB seed solution [5], with full spherical symmetry. This spherically

symmetric condition will be used for some of the shell crossing images for viewing in

two dimensions.

5.2.1 Exact Solution

For the field equations in (5.1), with Λ = 0 we have an exact solution for R(t, z)

that is parameterized by η(t, z) for the case with E(z) < 0, whose solution is written

explicitly by [24, 16], in the elliptic case

R = −M(z)

2E(z)
(1− cos(η))

η − sin(η) =
(−2E)3/2

M
(t− tB(z))

(5.3)

where η(t, z) ∈ [0, 2π] parameterizes time, and tB(z) is an arbitrary function that

defines the time locus of the big bang for each point in space. For this problem

tB(z) = 0, to model primordial black hole formation just after the time of the big

bang.
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The proper time parameterization functions for each phase of the solution are given

by [24, 15, 16]

t = tB(z) +
M

(−2E)3/2
(︁
cos−1(u)− sin(cos−1(u))

)︁
(5.4)

where u is defined by

u ≡ 1 +
2ER

M
(5.5)

This simplifies for the expanding phase to

t = tB(z) +
M

(−2E)3/2

(︂
cos−1(u)−

√
1− u2

)︂
, η ∈ [0, π] (5.6)

And similarly for the collapsing phase

t = tB(z) +
M

(−2E)3/2

(︂
π + cos−1(−u) +

√
1− u2

)︂
, η ∈ [π, 2π] (5.7)

Initial Conditions

From the expressions in equations (5.6) and (5.7), setting t = tB = 0 gives an ex-

pression to solve for R when t = 0. This was done numerically using the tools and

methods described in Chapter 2.

Shell Crossing Formation

For shell crossings to occur in this model, we require the term Rz−RHz/H to vanish,

this also corresponds to a state where the density of the matter is divergent. Because

of the spherical symmetry for each individual shell, when neighbouring shells cross,

one would expect some circular type of surface to form. Taking the equation for

the shell crossings, noting that there is a Cartan invariant (C0) that detects this

behaviour, we can derive the conditions on the equations to form a shell crossing,

given the dipole terms S, P,Q.

Rz −
RHz

H
= 0 (5.8)
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Given the full form of the H term, generalized with the dipole terms P = Q = 0,

and using a prime in place of the z derivative subscript, this equation can be written

HR′ −RH ′ =
R′S

2

[︃
1− x2 + y2

S2

]︃
− RS ′

2

[︃
1 +

x2 + y2

S2

]︃
= 0 (5.9)

and solving for (x2 + y2) results in the equation for a circle in the projective plane,

for a given z

x2 + y2 =
S2(S ′R− SR′)

SR′ + S ′R
(5.10)

This shows that the shell crossings in the projective plane appear as circles, with

radius

RSC =

√︃
S2(S ′R− SR′)

SR′ + S ′R
(5.11)

with the condition that S > 0, this gives a condition to check to see if at any point in

the time solutions, shell crossings appear, and when they do, what radius they have

in the projective plane.

S ′R− SR′ > 0 (5.12)

equation (5.12) is the condition where shell crossings will appear in the system. For

a particular choice of dipole term, we can see that this relation can also be rewritten

as

R′

R
<

S ′

S
(5.13)

Introducing the other dipole terms P,Q will of course change the behaviour of

the shell crossings here, by shifting the center of the shell in the projective plane to

(−P,−Q). The behaviour on the form of the shell crossings is still circular, though

the center of the shell crossing center depends on the values of P,Q, P ′, Q′. For a set

of initial conditions, this condition on the shell crossing formation was used to check

where shell crossings appear in the domain. If we turn back to spherical symmetry,

S ′ = P ′ = Q′ = 0, we can see that the condition for shell crossings happens to be

R,z ≤ 0, as expected when comparing to an LTB seed solution. Both conditions will
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be used for checking the formation of shell crossings in the LTB seed and the full

quasispherical problem.

Apparent and Cosmological Horizon Formation

Following the analysis done with the Cartan-Karlhede algorithm, the geometric hori-

zons are detected on the algebraically special surface defined by µ = 0 in the collapsing

phase, the apparent horizons are detected by the cubic function for R given by Deb-

nath [7]. The cosmological horizon in these cases is a special case solution satisfying

specific conditions given by Table 3.1. The zero sets for these horizons were calculated

numerically following the methods described in Chapter 2.

5.2.2 Numerical Solutions

Initial Conditions

From the exact solution for R(t, z) in the Λ = 0 case, it can be seen that the maximum

shell radius for each point in space occurs at the parameter value η = π, which

corresponds to the start of the collapsing phase of the problem. This condition results

in the maximum areal radius given by

Rmax = −M(z)

E(z)
(5.14)

This particular choice of R(z) also happens to be a critical point for the Λ = 0

problem, so numerical analysis done on that problem for comparison cannot utilize

the same initial conditions. This point for R is not a critical point in the Λ ̸= 0 case

due to the introduction of the ΛR2

3
term. This initial condition was a choice in the

numerical work to be somewhat relevant as compared to the exact solution, and other

initial conditions will be employed further on in the analysis.

For the Rz(t) evolution equation (3.8), the initial conditions were simply the z

derivative of the R(0, z) condition above.

Rz(0, z) = u(0, z) = −Mz(z)

E(z)
+

M(z)Ez(z)

E(z)2
(5.15)

where the functional forms of E(z) and M(z) are given in equation (5.2).
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Figure 5.1: Shell evolution of the PBH Model. Shells corresponding to initial condi-
tions in equation 5.14.

Shell Evolution and Horizon Formation

Since all horizon detectors (ρ, µ, and the apparent horizon detector by Debnath [7])

only depend on the areal radius R(t, z), the formation and growth of the horizons

can be shown simply in two dimensions. The figures (5.1, 5.2, 5.3, 5.4) show the

contraction of the shells towards the shell focussing singularity, from their initial

conditions, for various values of Λ.
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Figure 5.2: Shell evolution of the PBH Model. Shells corresponding to initial condi-
tions in equation 5.14.
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Figure 5.3: Shell evolution of the PBH Model. Shells corresponding to initial condi-
tions in equation 5.14.
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Figure 5.4: Shell evolution of the PBH Model. Shells corresponding to initial condi-
tions in equation 5.14.
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Figure 5.5: Collapse time for a shell with initial radius R(t = 0, z). Also shown are
the time until formation of the cosmological and apparent horizons from each initial
condition.

Collapse Time and Surface Formation Time

Plotting the time for a shell with initial areal radius R(t = 0, z) to collapse is shown

in figures (5.5) and (5.6). The time until each shell has passed through the cosmo-

logical and apparent horizons is also shown. Because of the horizons merging and

disappearing after a finite time, not every shell in the spacetime will pass through a

horizon before merging into the shell focus at R = 0.

Comparing Curvature Invariants with the Apparent Horizon Detector by

Debnath

The apparent horizon detector given by Debnath [7] in equation (3.11), with exact

solutions in Table (3.1) and numerical solutions, compared with the zero set of the

Cartan invariant µ gives a way to compare the effectiveness of the Cartan invariants

in detecting horizons. And also shows that the apparent horizon is also a geometric

horizon [6, 5].
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Figure 5.6: Collapse time for a shell with initial radius R(t = 0, z). Also shown
are the time until formation of the cosmological and apparent horizons from each
initial condition. Zoomed in near the formation of the shell focussing singularity, the
apparent horizon forms shortly before the shells have collapsed fully from the inner
region of the initial spacetime.
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For cases where there is a cosmological horizon and an apparent horizon in the

solution, the zero sets of µ and equation (3.11) reflect the formation of this extra

surface. Setting Λ = 1, with the initial condition given by equation (5.14)

Some values of Λ admit up to three separate horizons that exist for finite periods

of time in these solutions, here is an example with Λ = 1.695, initial conditions as in

(5.14). For situations where there is a second (or sometimes third) MOTS forming at

a particular time, the smallest MOTS that collapses down to the singularity is distinct

from the apparent horizon and cosmological horizon, and in general is a temporary

MOTS that always disappears in a finite time after the apparent horizon forms.

Shell Crossing Formation and Initial Conditions

In the LTB seed solution, which is the reduction from QS Szekeres to LTB by letting

S = 1, P = 0, Q = 0, the condition for shell crossings simplifies to

R,z = 0 (5.16)

Using this condition, we can visualize shell crossings in the LTB solution, as a reference

for the QS Szekeres model, before moving on to the full inhomogeneous model.

For the initial conditions chosen in equation (5.14), the shells initially are crossing

if we apply a dipole term S(z) =
√
2z to deviate from spherical symmetry. This can

be easily seen by checking the inequality (5.13). The inequality is shown in Figure

(5.11).

A modification to the E(z) function given by Jhingan and Harada [11] model D

will put the models in a better initial position with no immediate shell crossings.

Modifying the n2 parameter provides another set of initial conditions where there

is at least no shell crossing initially. These updated initial conditions are shown in

Figure (5.12).

Moving up to the full QS Szkeres solution, visualizing the shell crossings becomes

much more of a difficult task, the following figures show the shell crossings in the

solution for a single shell, in the projective plane (x, y), defined by the shell crossing

condition in equation (5.13). Using the condition (5.8), plotting for a shell at location

z, with areal Radius R(t, z) at time t, the shell crossings can be seen where there are

roots of this function.
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5.3 Galactic Black Hole Formation

An extension of the galactic black hole model by [16], introducing a non-zero cos-

mological constant. The model is a generalization of LTB like models, and here is

used to describe the formation of a galactic black hole. Parameters and functions

are chosen so that no shell crossings appear in any of the models, at least for the

Λ = 0 case, and will be shown to also not contain shell crossings if this constraint on

Λ is lifted. Choosing coordinates where z̄ = M(z), we essentially let the z coordinate

be the mass of the shell. Setting z = M , and defining the bang and crunch time

arbitrary functions from the exact solution:

tB(M) = −bM2 + tB0 , tC(M) = aM3 + T0 + tB0
(5.17)

where tB and tC are the bang and crunch time functions respectively, a, b, tB0 , T0 are

arbitrary constants. T0 is the measure of time between the big bang and the big

crunch along the line M = 0, and tB0 is the time coordinate for the central point of

the big bang. Using these functions, the function E(M) can be written simply as:

2E(M) = − (8πM)2/3

42/3(aM3 + bM2 + T0)2/3
(5.18)

Initial Conditions

The initial conditions determined for this problem utilize the exact solution 5.3, plug-

ging in the functions defined above, and solving for R when t = 0 numerically, using

a bracketing-secant method. The exact solutions for this problem were difficult to

solve for initial conditions numerically on standard double precision, due to the sharp

asymptotic behaviour of the function near t = 0. Using higher precision floating point

type numbers helped overcome the issue with root finding on the exact solution, and

it was determined that 100 decimal digits of floating point precision were enough to

properly work the root finding methods.

The results shown in figure 5.14 show that the apparent horizon and geometric

horizon also coincide in this example. As established before, it turns out that the

apparent horizon in this model is also a geometric horizon. This feature is not gener-

alized to other models, because of the difference in the way the horizons are defined,
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they aren’t necessarily going to coincide.

Adding a non-zero cosmological constant to this system yields some interesting

results. Similar to the primordial black hole example, certain ranges of values for

the cosmological constant will result in no horizons forming in certain regions of the

spacetime, and horizons that will disappear after a finite time.
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(a)

(b)

Figure 5.7: PBH example. Cosmological and Apparent horizon formation, satisfying
in with case 3 in Table 3.1. The horizons in this case start to merge after the formation
of the apparent horizon. In Table 3.1, the spacetime is covering different cases where
different numbers of horizons appear. The value of Λ satisfies the condition that the
horizons merge at a location inside the domain z ∈ (0, 1). Numerical resolution from
choices of initial conditions were particularly hard to choose to find the right shell
that is on the horizon near the merger times. on the lower figure, zoomed in to the
apparent horizon, the upper branch of the curve is the apparent horizon, and the
lower branch that falls into the singularity is another MOTS in the spacetime.
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Figure 5.8: PBH formation. Λ = 1.695 model zoomed in to a region showing three
horizon surfaces for a finite time. These surfaces collapse down to the shell focus.
During times where there are three MOTS in the spacetime, the largest MOTS is
the cosmological horizon, the middle MOTS is the apparent horizon, and the inner
surface is just an interior MOTS that collapses to the singularity.
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Figure 5.9: PBH formation. The solution space satisfies the case where there are
always two horizons. The larger (top red/black line) one corresponds to the cos-
mological horizon, and the smaller (bottom red/black line) is the apparent horizon
surround the shell focussing singularity. For a short time after the apparent hori-
zon forms, there is a third MOTS that collapses down quickly into the singularity.
Λ = 0.443 chosen so that the horizons would merge just beyond the domain. The
horizons asymptote together over time.
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Figure 5.10: PBH formation. Shell crossing region when reduced to the LTB solu-
tion, plotting the zero set of the shell crossing detector. In this image, 200 shells
were evolved to achieve the resolution necessary on the zero set of the shell crossing
detector. Clearly it shows that the shell crossing detector surrounds the entire shell
crossing region.
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Figure 5.11: PBH formation. Initial conditions in (5.14). Parts of the curve above
the y = z line are shells which currently have shell crossings, following the condition
in (5.13).

Figure 5.12: PBH example with modified energy function E(z), for the quasispherical
case with rc = 10, rw = 1, n1 = 8, n2 = 6. Parameters chosen so that at least
initially, there are no shell crossings in the model. There is a lot of control left to
choosing a shell distribution so that shell crossings won’t occur for some time



44

Figure 5.13: PBH formation example. A plot of |Y,z | in the projective plane. The
shell crossing appears as a circle in the projective plane;. The colour bar corresponds
to the height of the function |Y,z |. Roots of this function are locations where the
density is infinite. The shell crossing appears as a ring (in dark blue), and has a
radius corresponding to the shell crossing radius condition in (5.13). The central
region interior to the shell crossings has Y,z < 0.
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Figure 5.14: Galactic black hole formation. Apparent and geometric horizon forma-
tion indicated by the zero set of the Cartan invariant µ (solid red line), and addition-
ally, the surface R = 2M (black dashed line) which is the location of the MOTS in
this model. No shell crossings appear for Λ = 0. The apparent horizon is the upper
branch of the dashed line that is increasing in size over time, and the inner branch is
a secondary MOTS that collapses into the singularity.
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Figure 5.15: Galactic black hole formation, there are two horizons initially that end
up merging together after a finite time, and then disappearing. No shell crossings
exist for this non-zero Λ model. The gap between the horizons is a result of the
initial condition resolution not being fine enough. Fine tuning of the grid of initial
conditions is needed to capture a shell moving through certain parts of the horizon
at the correct times in these models.
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Conclusion

The Cartan-Karlhede method for determining the equivalence of spacetimes is also

an effective tool for invariantly characterizing various physical properties of models in

a relativistic framework. The notion of a geometric horizon is an alternative way to

characterize black holes in an invariant way which has a lot of utility in the modern

day where most systems must be calculated numerically. The numerical efficiency of

this method over alternatives such as using scalar polynomial invariants is quite use-

ful when computing much more complicated systems. The Cartan invariants derived

here are more simple from a computational standpoint than the SPI analogues. From

a Szekeres model perspective, these scalar invariants are simple enough to show a

correspondence between the apparent and geometric horizons. A future development

of this method for locating horizons may prove useful in modern gravitational wave

research, where locating horizons is a paramount concern. Previous work in show-

casing this method for utilizing geometric horizons has been done for a plethora of

models with exact solutions.

The Szekeres spacetime provides an effective model for formation of galactic black

holes, as the Cartan invariants that detect shell crossings can be used as a diagnostic

to determine when the models are appropriate. Similarly, the shell crossing detectors

are also effective for developing primordial black hole models to determine when these

models are valid in the astrophysical context, in the early universe. The physics of the

final stages of collapse of GBH or PBH models may be called in to question considering

that these QS Szkeres models ignore pressure, which may not necessarily be a good

assumption for either of these cases. Future work in the generalized Szekeres-Szafron

models that include pressure may be worth studying when it comes to PBH and GBH

formation, to get a fuller analysis on the physical aspects of the models. Future work

in the generalized Szekeres models with non-vanishing pressure is being considered

for the formation of primordial black holes.

47
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Appendix

Derivation of the Field Equations for the Szekeres metric

We can construct the field equations for a dust source with non-zero cosmological

constant as follows

The non-zero Einstein Tensor components corresponding to this metric are

G00 =
R2

tRr + 2RrtRRt +RrK

R2Rr

G11 =
R2

r(2RRtt +R2
t +K)

(K − 1)R2

G22 = −R
2Rt,r,tR + 2Rt,tRr + 2Rr,tRt +Kr

2Rr

G33 = G22

(6.1)

The subscript notation here corresponds to partial derivatives with respect to the

respective variable. With a dust source, the stress-energy tensor Tab is given by

T00 = ρ (6.2)

where ρ is the energy density of the dust fluid. Using this model, the Einstein field

equations (1.1) can be constructed for this spacetime

G00 + Λg00 = 8πρ

Gii + Λgii = 0
(6.3)

where i = 1, 2, 3

For the first equation in (6.3), the field equation becomes

R2
tRr + 2RrtRRt +KRr +KrR

R2Rr

− Λ = 8πρ

R2
tRr + 2RrtRRt +KRr +KrR− ΛR2Rr = 8πρR2Rr

(R2
tR)r + (KR)r −

(︃
ΛR3

3

)︃
r

= 8πρR2Rr

(6.4)

The first field equation then can be written as(︃
R2

tR +KR− ΛR3

3

)︃
r

= 8πρR2Rr (6.5)
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From the second equation in (6.3), take the a = 1 case

G11 + Λg11 = 0 (6.6)

R2
r(2RRtt +R2

t +K)

(K − 1)R2
+

ΛR2
r

1−K
= 0

2RRtt +R2
t +K − ΛR2 = 0

(6.7)

Multiplying both sides of (6.7) by Rt and integrating gives

2RRtRtt +R3
t +KRt − ΛR2Rt = 0(︃

R2
tR +KR− ΛR2

3

)︃
t

= 0
(6.8)

From this we get a first integral to the second field equation

R2
tR +KR− ΛR2

3
= 2M (6.9)

Where M(r) is an arbitrary function of integration, and the particular form is chosen

to be similar to the mass function in the spacetime. This term is analogous to the mass

of a shell of matter with radius r. Using (6.9) to simplify (6.5), the field equations

are thus

2Mr = 8πρR2Rr

R2
t =

2M(r)

R
−K(r) +

ΛR2

3

(6.10)
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Curvature Scalars for the QS Szekeres Solution

The forms of these scalars is left in terms of R,H,K so that these terms can fit on

the page.

µ = −1

2

√
2
(︂
R,t +

√︁
1−K (r)

)︂
R

(6.11)

ρ =
1

2

√
2
(︂
R,t −

√︁
1−K (r)

)︂
R

(6.12)

τ =

(︂
−
(︂

∂2

∂x∂r
H
)︂
H − i

(︂
∂2

∂y∂r
H
)︂
H +

(︂
i ∂
∂y
H + ∂

∂x
H
)︂

∂
∂r
H
)︂√

2

4R ∂
∂r
H − 4

(︁
∂
∂r
R
)︁
H

(6.13)

κ = −

(︂
−
(︂

∂2

∂x∂r
H
)︂
H − i

(︂
∂2

∂y∂r
H
)︂
H +

(︂
i ∂
∂y
H + ∂

∂x
H
)︂

∂
∂r
H
)︂√

2

4R ∂
∂r
H − 4

(︁
∂
∂r
R
)︁
H

(6.14)

γ =

(︂(︁
∂
∂t
R
)︁

∂
∂r
H −

(︂
∂2

∂t∂r
R
)︂
H
)︂√

2

4R ∂
∂r
H − 4

(︁
∂
∂r
R
)︁
H

(6.15)

λ = 0 (6.16)

α =
−i/4

(︂
i ∂
∂x
H + ∂

∂y
H
)︂√

2

R
(6.17)

ϵ =

(︂(︂
∂2

∂t∂r
R
)︂
H −

(︁
∂
∂t
R
)︁

∂
∂r
H
)︂√

2

4R ∂
∂r
H − 4

(︁
∂
∂r
R
)︁
H

(6.18)

β =
i/4

(︂
i ∂
∂x
H − ∂

∂y
H
)︂√

2

R
(6.19)

σ = 0 (6.20)
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ν = −

(︂(︂
∂2

∂x∂r
H
)︂
H − i

(︂
∂2

∂y∂r
H
)︂
H +

(︂
i ∂
∂y
H − ∂

∂x
H
)︂

∂
∂r
H
)︂√

2

4R ∂
∂r
H − 4

(︁
∂
∂r
R
)︁
H

(6.21)

π =

(︂(︂
∂2

∂x∂r
H
)︂
H − i

(︂
∂2

∂y∂r
H
)︂
H +

(︂
i ∂
∂y
H − ∂

∂x
H
)︂

∂
∂r
H
)︂√

2

4R ∂
∂r
H − 4

(︁
∂
∂r
R
)︁
H

(6.22)
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