
 

 

STUDYING SOURCE CONTRIBUTIONS TO AMBIENT FINE 

PARTICULATE MATTER AND ESTIMATING ITS HISTORICAL 

CONCENTRATIONS  

 
 
 
 

by 
 
 
 
 

Jun Meng 
 
 

Submitted in partial fulfilment of the requirements 
for the degree of Doctor of Philosophy 

 
 

at 
 
 

Dalhousie University 
Halifax, Nova Scotia 

September 2020 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by Jun Meng, 2020 
 

 

  



 

 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 iii 

TABLE OF CONTENTS 

 

LIST OF TABLES ................................................................................ vii

LIST OF FIGURES .............................................................................. viii

ABSTRACT ......................................................................................... xi

LIST OF ABBREVIATIONS AND SYMBOLS USED ..................................... xii

ACKNOWLEDGEMENTS ....................................................................... xiv

CHAPTER 1 INTRODUCTION ............................................................ 1

1.1 ATMOSPHERIC AEROSOLS .............................................................. 1

1.1.1 Sources and Chemical Compositions of PM2.5 .................... 3

1.1.2 PM2.5 and Human Health ................................................ 4

1.2 MONITORING OF ATMOSPHERIC AEROSOLS .......................................... 5

1.2.1 Ground-based Measurements ......................................... 5

1.2.1.1 Total Aerosol Mass Concentration      

Measurements ................................................. 5

1.2.1.2 Aerosol Chemical Composition Mass   

Concentration Measurements ............................ 6

1.2.1.3 Aerosol Optical Depth Measurements .................. 7

1.2.2 Satellite Remote Sensing ............................................... 7

1.3 MODELING OF ATMOSPHERIC AEROSOLS ............................................. 8

1.4 GOALS OF THIS WORK .................................................................. 9

CHAPTER 2 ESTIMATED LONG-TERM (1981-2016) CONCENTRATIONS 

OF AMBIENT FINE PARTICULATE MATTER ACROSS NORTH AMERICA 

FROM CHEMICAL TRANSPORT MODELING, SATELLITE REMOTE  

SENSING AND GROUND-BASED MEASUREMENTS ............................ 11

2.1 ABSTRACT ............................................................................. 12

2.2 INTRODUCTION ........................................................................ 12

2.3 MATERIALS AND METHODS ........................................................... 14

2.3.1 Historical Particulate Matter Monitoring Data .................. 15



 

 iv 

2.3.2 Estimated Historical Gridded PM2.5 Data ......................... 16

2.3.2.1 GEOS-Chem Chemical Transport Model ............. 16

2.3.2.2 Creation of Historical Gridded PM2.5 Dataset ...... 17

2.4 RESULTS AND DISCUSSION .......................................................... 20

2.5 DATA AVAILABILITY ................................................................... 28

2.6 ACKNOWLEDGEMENTS ................................................................ 28

2.7 SUPPLEMENTAL INFORMATION ....................................................... 29

2.7.1 Description of Prediction of Historical PM2.5 from Measured 

PM10 and TSP ............................................................. 29

2.7.2 Description of Estimated PM2.5 Data without Satellite   

Remote Sensing Information ........................................ 31

2.7.3 Description of Population Data ...................................... 32

2.7.4 Population-weighted PM2.5 Trend Discussion ................... 32

2.7.5 AOD Representativeness .............................................. 32

CHAPTER 3 SOURCE CONTRIBUTIONS TO AMBIENT FINE    

PARTICULATE MATTER FOR CANADA ............................................. 42

3.1 ABSTRACT ............................................................................. 43

3.2 INTRODUCTION ........................................................................ 43

3.3 MATERIALS AND METHODS ........................................................... 45

3.3.1 GEOS-Chem Simulations .............................................. 45

3.3.2 North American Emissions for Baseline Simulation ........... 47

3.3.3 Sector Sensitivity Analyses .......................................... 48

3.3.4 Sectoral Contribution Trend Analysis ............................. 49

3.3.5 Ground-based Measurements of PM2.5 and Its Chemical 

Components .............................................................. 50

3.4 RESULTS AND DISCUSSION .......................................................... 51

3.4.1 Sectoral Contributions of Emissions to PM2.5    

Concentrations over Canada ......................................... 51



 

 v 

3.4.2 The Trend of Sectoral Contribution in the Last Two   

Decades across Canada ............................................... 58

3.4.3 Variability in Wildfires Contribution ................................ 59

3.4.4 Perspective ................................................................ 60

3.5 ACKNOWLEDGEMENT .................................................................. 60

3.6 SUPPORTING INFORMATION .......................................................... 61

3.6.1 Description of Ground-based Measurements of PM2.5 and   

Its Chemical Components ............................................ 61

3.6.2 Description of Simulated PM2.5 and Chemical      

Components .............................................................. 62

CHAPTER 4 GRID-INDEPENDENT HIGH RESOLUTION DUST    

EMISSIONS FOR CHEMICAL TRANSPORT MODELS: APPLICATION TO 

GEOS-CHEM ............................................................................... 76

4.1 ABSTRACT ............................................................................. 76

4.2 INTRODUCTION ........................................................................ 77

4.3 MATERIALS AND METHODS ........................................................... 79

4.3.1 Description of Observations .......................................... 79

4.3.2 Dust Mobilization Module ............................................. 80

4.3.3 Offline Dust Emissions at Native Meteorological     

Resolution ................................................................. 81

4.3.4 GEOS-Chem Chemical Transport Model and Simulation 

Configurations ............................................................ 81

4.4 RESULTS AND DISCUSSION .......................................................... 82

4.4.1 The Spatial and Seasonal Variation of Offline Dust   

Emissions .................................................................. 82

4.4.2 The Performance of AOD Simulations over Desert      

Regions ..................................................................... 86

4.4.3 Discussion of the Dust Source Strength ......................... 89



 

 vi 

4.4.4 Advantages of High Resolution Offline Dust Emissions for 

Model Development .................................................... 90

4.5 SUMMARY AND CONCLUSION ........................................................ 90

4.6 ACKNOWLEDGEMENT .................................................................. 91

4.7 SUPPLEMENTAL MATERIALS .......................................................... 92

CHAPTER 5 CONCLUSION ........................................................... 101

5.1 SUMMARY OF THIS PRESENT WORK ............................................... 101

5.2 STUDIES UTILIZING THIS PRESENT WORK ....................................... 104

5.3 OUTLOOK ............................................................................ 105

REFERENCES .................................................................................. 107

 

 

  



 

 vii 

LIST OF TABLES 

 

Table 2–S1. Summary of available monitoring PM data for selected years during 1981 -         
2016 ......................................................................................................................... 33

Table 2–S2. Transformation functions for Canadian monitoring methods by region. ............. 34

Table 2–S3. Predicting PM2.5 from PM10 in Canada, summary of model predictors fixed  
effect contributions .................................................................................................. 34 

Table 2–S4. Predicting PM2.5 from PM10 in the United States, summary of model predictors 
fixed effect contributions ......................................................................................... 35

Table 2–S5. Statistics of back-casted PM2.5 against estimated PM2.5 in years 2001-2008 ....... 35

Table 3–S1. Percentage contribution of diesel sector to the Canadian transport sector ........... 63

 

 
 
 
 
 
 

  



 

 viii 

LIST OF FIGURES 

Figure 2-1. Overview of estimation method. ............................................................................ 15

Figure 2-2. Comparison over 2004-2008 of mean PM2.5 estimates with in situ     
measurements before (top left) and after GWR adjustment using all sites (top 
right), using cross validation sites using 50% random holdout (bottom left), and 
using PM2.5 sites present over 1989-1997 (bottom right) . ...................................... 22

Figure 2-3. Comparison over 1992-1996 of mean PM2.5 estimates with in situ     
measurements before (top left) and after GWR adjustment using all sites (top 
right), using cross validation using 50% random holdout (bottom left), and using 
only PM2.5 sites (bottom right)  ................................................................................ 22

Figure 2-4. Statistics (R2 and RMSD) of estimated PM2.5 against ground-based   
measurements from year 1981 to 2016 . .................................................................. 24

Figure 2-5. Estimated fine particulate matter annual means in 1985, 1995, 2005 and 2015  
over North America ................................................................................................. 25

Figure 2-6. Time series of population-weighted average annual PM2.5 concentrations across 
North America ......................................................................................................... 27

Figure 2-S1. Predictive models of monthly PM2.5 from co-located PM10 measurements in 
Canada (top panels) and the United States (bottom panels) .................................... 36

Figure 2-S2. Predictive models of annually PM2.5 from co-located TSP measurements in 
Canada ..................................................................................................................... 37

Figure 2-S3. Predictive models of annual PM2.5 from co-located TSP measurements in the 
United States  ........................................................................................................... 37

Figure 2-S4. Domain of six regions in North America (NA) ................................................... 38

Figure 2-S5. Population-weighted annual mean PM2.5 concentrations in different regions 
defined in Figure 2-S4  ............................................................................................ 38

Figure 2-S6. Relative percentage change in population-weighted PM2.5 using 2016 as the 
reference year . ......................................................................................................... 39

Figure 2-S7. Time series of population-weighted average PM2.5 in this study and our most 
recent dataset (van Donkelaar et al., 2019) .............................................................. 40

Figure 2-S8. Aerosol optical depth (AOD) for different time periods from the MODIS 
MAIAC product  ...................................................................................................... 41

Figure 3-1. Contribution of emission sectors to PM2.5 concentrations for 2013 ...................... 52



 

 ix 

Figure 3-2. Fractional contribution of different sectors to population-weighted average     
PM2.5 concentrations over different regions in Canada for 2013 ............................. 54 

Figure 3-3. Population-weighted annual mean concentrations of chemical components         
(μg m-3) attributed to different sectors (including the contribution from U.S.)  
across Canada for 2013 . .......................................................................................... 56

Figure 3-4. Population-weighted sectoral fractional contribution versus population-     
weighted PM2.5 over Canada for 2013  .................................................................... 57

Figure 3-5. Contribution of different sectors to population-weighted average PM2.5 
concentrations over Canada in 1990, 2000 and 2010  ............................................. 59

Figure 3-S1. Annual mean PM2.5 concentrations for 2013  ...................................................... 63

Figure 3-S2. Annual mean chemical components in baseline downscaled simulation (left)   
and ground-based measurements (middle) .............................................................. 64

Figure 3-S3. Fractional contribution of different chemical components to total annual mean 
PM2.5 concentrations ................................................................................................ 65

Figure 3-S4. Contribution of individual emission sector to PM2.5 concentrations in winter 
(December, January, February) ................................................................................ 66

Figure 3-S5. As in Figure 3-S4 but in summer (June, July, August). ....................................... 67

Figure 3-S6. Domain of regions in Canada .............................................................................. 67

Figure 3-S7. Fractional contribution of different sectors to population-weighted average  
PM2.5 concentrations over different regions in Canada in winter (December, 
January, February) ................................................................................................... 68

Figure 3-S8. As in Figure 3-S7 but in summer (June, July, August). ....................................... 69

Figure 3-S9. Fractional contribution of different sectors to population-weighted average  
PM2.5 concentrations over different provinces in Canada .. ..................................... 70

Figure 3-S10. As in Figure 3-S9 but averaged over winter (December, January, 
February)… .............................................................................................................. 71

Figure 3-S11. As in Figure 3-S9 but averaged over summer (June, July, August). ................. 71

Figure 3-S12. Population-weighted annual mean concentration of chemical components      
(μg m-3) attributed to different sectors over Atlantic, Northern, Central and   
Western Canada ....................................................................................................... 73

Figure 3-S13. Population-weighted sectoral fractional contribution versus population-
weighted PM2.5 mass over the United States . .......................................................... 74



 

 x 

Figure 3-S14. Annually total dry matter over Canada from wildfire emission inventories in  
the simulation (1990 to 1996 from ground-based North America fire emission 
database;1997 to 2015 from GFED)  ....................................................................... 75

Figure 4-1. Annual and seasonal mean dust emission flux rate for the offline high       
resolution dust emissions with updated dust source function and updated annual 
total dust emissions of 2,000 Tg. ............................................................................. 84

Figure 4-2. Annual mean dust emission flux rate for 2016 ...................................................... 85

Figure 4-3. Annual and seasonal mean simulated dust optical depth (DOD) fraction (left 
column) and aerosol optical depth (AOD) (middle column) from GEOS-Chem 
simulations for 2016, and AERONET measured AOD at sites where the ratio of 
simulated DOD and AOD exceeds 0.5, which are shown as filled circles in the 
middle column ......................................................................................................... 88

Figure 4-4. Scatter plots and statistics of comparing GEOS-Chem simulated AOD with 
satellite AOD over desert regions annually (the first column) and seasonally       
(the right four columns) ........................................................................................... 89

Figure 4-S1. The original and updated versions of the dust source function. .......................... 93

Figure 4-S2. The same as Figure 4-2 but averaged over MAM (March, April and May). ....... 94

Figure 4-S3. The same as Figure 4-2 but averaged over JJA (June, July and August). ........... 95

Figure 4-S4. The same as Figure 4-2 but averaged over SON (September, October and 
November). .............................................................................................................. 96

Figure 4-S5. The same as Figure 4-2 but averaged over DJF (December, January and 
February). ................................................................................................................. 97

Figure 4-S6. Annual and seasonal satellite AOD from MODIS Deep Blue (DB) and     
MAIAC algorithms. ................................................................................................. 98

Figure 4-S7. Scatter plots and statistics of comparing GEOS-Chem simulated annual mean 
AOD with satellite AOD over desert regions. ......................................................... 99

Figure 4-S8. Annual mean simulated AOD from GEOS-Chem simulations for 2016 for 
simulations with total annual dust emissions of 1,500 Tg, 2,000 Tg and 2,500     
Tg, and the comparison against AERONET measured AOD ................................ 100

 
 
  



 

 xi 

ABSTRACT 

Long-term exposure to ambient fine particulate matter (PM2.5) is a major health concern. This 

thesis presents three projects that take advantage of chemical transport modeling, ground-based 

monitoring and satellite remote sensing to advance the understanding of historical concentrations, 

source contributions, and chemical composition of PM2.5. 

Historical PM2.5 concentrations across North America from 1981 to 2016 were estimated by 

fusing satellite derived PM2.5 data and ground-based measurements with GEOS-Chem chemical 

transport model simulations. Comparison with ground-based PM2.5 measurements indicates 

consistency of the estimated PM2.5 concentrations with observations, especially in the later years with 

extensive PM2.5 monitoring. The estimated population-weighted annual average PM2.5 over North 

America decreased from 22 ± 6.4 μg m-3 in 1981 to 7.9 ± 2.1 μg m-3 in 2016, with an overall trend of -

0.33 μg m-3 yr-1 (95% CI: -0.35 -0.30), reflecting the significant reduction of anthropogenic emissions 

over the past decades.  

Sensitivity simulations were conducted using the GEOS-Chem chemical transport model to 

investigate the sectoral contribution to PM2.5 for Canada. We found that annually about 70% of 

population-weighted PM2.5 originates from Canadian sources and about 30% from the contiguous 

United States, with wildfires, transportation and residential combustion as the leading sectors in 2013. 

The relative contribution to population-weighted PM2.5 of different sectors varied regionally and 

seasonally. Sectoral trend analysis showed that the contribution from anthropogenic sources to 

population-weighted PM2.5 decreased from 7.1 μg/m3 in 1990 to 3.4 μg/m3 in 2013.  

Offline grid independent dust emissions driven by native high resolution meteorological fields 

were generated to harmonize dust emissions across simulations of different resolutions. The updated 

offline dust emissions can better resolve weak dust source regions, such as southern South America, 

southern Africa and the southwestern United States. We find that the performance of simulated aerosol 

optical depth (AOD) versus measurements from the Aerosol Robotic Network (AERONET) network 

and satellite remote sensing improves significantly when using the updated offline dust emissions with 

the total global annual dust emission strength of 2,000 Tg yr-1. The offline high resolution dust 

emissions are easily implemented in chemical transport models, with potential to promote model 

development and evaluation. 
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CHAPTER 1 INTRODUCTION 

1.1 ATMOSPHERIC AEROSOLS  

Atmospheric aerosols are a complex and dynamic mixture of solid and liquid particles with 

a wide range in size from a few nanometers (nm) to tens of micrometers (μm) in diameter. 

Atmospheric aerosol consists of many chemical components, commonly including sulfates, 

ammonium compounds, elemental carbon (soot), organic compounds, dust particles, and sea salt 

particles, rising from natural and anthropogenic sources. Atmospheric aerosol can either be 

primary particles that emitted directly into the atmosphere or secondary particles that formed by 

chemical reactions of precursor gases in the atmosphere, such as sulfur dioxide (SO2), nitrogen 

oxides (NOX), ammonia (NH3), and volatile organic compounds (VOC) (Seinfeld & Pandis, 

2016).  

The dynamic processes of atmospheric aerosols change the particle size distribution and 

ultimately determine the fate of the aerosols. Newly emitted or formed aerosols are 

predominantly in the ultrafine size range with an aerodynamic diameter less than 0.1 μm 

(nucleation mode). Then particles can rapidly grow to accumulation mode (aerodynamic 

diameter in 0.1 – 2.5 μm) through condensation of vapor species, coagulation with other 

particles, and activating in the presence of water supersaturation to cloud droplets. The further 

growth from accumulation mode particles to coarse mode particles (aerodynamic diameter larger 

than 2.5 μm) is slow due to the low condensation and coagulation rates in large particles 

(Seinfeld & Pandis, 2016). Atmospheric aerosols are eventually removed from the atmosphere 

by two mechanisms: dry deposition and wet deposition. Dry deposition is the settling of aerosol 

particles without precipitation through Brownian diffusion for nucleation mode particles and 

gravitational settling for coarse mode particles. Wet deposition is the process that aerosol 
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particles are removed through precipitation, including washout by incorporating into cloud 

droplets and below-cloud rainout. Thus, residence times of aerosol particles in the troposphere 

vary from a few days to a few weeks (Seinfeld & Pandis, 2016). 

Atmospheric aerosol has a profound impact on earth system since the composition and 

mass concentration of aerosol have been changed significantly during the past century due to 

anthropogenic emissions. Aerosol plays a significant role in atmospheric radiation and climate 

change by scattering and absorbing solar radiation and serving as condensation nuclei for cloud 

droplet formation and ice nucleation (Lohmann & Feichter, 2005; Ramanathan et al., 2001; 

Seinfeld & Pandis, 2016). The estimated aerosol effective radiative forcing (ERF) excluding 

black carbon on snow and ice is -0.9 (5 to 95% confidence interval, -1.9 to -0.1) W m-2 (IPCC, 

2013). The negative ERF indicates an overall cooling effect to the climate system. However, the 

large uncertainties in aerosol ERF contributes dominantly to the uncertainties in overall net 

anthropogenic forcing (IPCC, 2013). Besides, aerosol could affect the environment, such as 

causing the soil and surface water acidification by acid rain (Eney & Petzold, 1987; Glass et al., 

1980), nourishing the rainforest by dust deposition (H. Yu et al., 2015) and impairing human 

health by degrading air quality (Fairlie et al., 2007). A more advanced understanding of the 

sources, chemical composition, and dynamic processes of aerosol will benefit the quantifying of 

the effect of aerosol on earth system with a small uncertainty. 

Fine aerosol with an aerodynamic diameter smaller than 2.5 μm (PM2.5), especially, has 

adverse effects on human health due to the fact that it is small enough to penetrate into human 

lungs and consequently cause cardiovascular and respiratory diseases (Beelen et al., 2014; Boldo 

et al., 2006; Caiazzo et al., 2013; Pope et al., 2009). This thesis will focus primarily on PM2.5 and 

aim to shed more light on PM2.5 historical concentrations and sources contributions. 
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1.1.1 Sources and Chemical Compositions of PM2.5 

PM2.5 consists of several chemical compositions from both natural and anthropogenic 

sources. Secondary inorganic aerosol (SIA) species, including sulfuric acid, ammonium sulfate 

and ammonium nitrate, are the dominant components of PM2.5 over industrial regions (R.-J. 

Huang et al., 2014; D. Wang et al., 2014). SIA forms from their precursor gases, including SO2, 

NOx and NH3, through chemical oxidation (Aksoyoglu et al., 2017; Squizzato et al., 2013). SO2 

and NOx are mostly from human activities, such as combustion engines, solid-fuel (coal, heavy 

oil and biomass) combustion for energy generation in households and industry, and other 

industrial activities (i.e. mining, building, and manufacture) (Qu et al., 2016). They also have 

natural origins, such as volcanic eruption (Carn et al., 2016; Wallace, 2001) and marine dimethyl 

sulfide (DMS) conversion (Amouroux et al., 2002) for SO2 and lightning emitted NOx (Hudman 

et al., 2018; Murray et al., 2012). NH3 is mostly from the agriculture sector (Behera et al., 2013).  

Carbonaceous aerosols, including organic carbon (OC) and black carbon (BC), are 

another important component of PM2.5. OC includes both primary and secondary OC. The 

primary organic carbon (POC) and BC are emitted directly from incomplete combustion of fossil 

fuels (e.g., coal, heavy oil, and gasoline) and biomass (e.g., wood, grass, and crop residues) 

(Briggs & Long, 2016; Y. Huang et al., 2015). The sectoral contributions vary over regions, for 

example the OC and BC emission from residential combustion for home heating and cooking is 

profound in developing countries or rural regions; while the emission from vehicle engine 

combustion is significant in developed urban regions (Bond et al., 2004). The secondary OC 

(SOC), also called secondary organic aerosol (SOA), formed in the atmosphere through chemical 

oxidation of VOC from both fossil sources and non-fossil sources (e.g. household biomass 

burning and wildfires) (Carlton et al., 2009; Jacobson et al., 2000; Kroll & Seinfeld, 2008). The 
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understanding of SOA is still limited due to the complexities of the formation pathways and 

large numbers of precursor chemical species.  

Sea salt and mineral dust aerosol are primary particles emitted from natural sources. Fine 

mode sea salt aerosol emitted from sea spray is the dominant component of PM2.5 over coastal 

and remote ocean region (Jaeglé et al., 2011) . Soil and fine mode dust particle re-suspension is 

also a contributing component of PM2.5, particularly in desert regions, arid areas or during 

episodes of long-range transport of dust (Claiborn et al., 2000). Besides the natural emission 

source of mineral dust, dust aerosol can also be emitted from anthropogenic source, such as the 

anthropogenic fugitive, combustion and industrial dust in urban area (Philip et al., 2017). Both 

sea salt and mineral dust emissions are related to meteorological parameters, such as wind speed 

(Gillette & Passi, 1988; Grythe et al., 2014). The uncertainties of emission estimation for sea salt 

and dust are quite large due to poor understanding of their emission mechanism. 

 

1.1.2 PM2.5 and Human Health 

PM2.5 has been recognized as the leading environmental risk factor for the global burden 

of disease (GBD) with an estimated over 4 million attributable deaths globally in 2016 (Gakidou 

et al., 2017). Numerous epidemiological studies have linked PM2.5 to heart disease (Amsalu et 

al., 2019; Du et al., 2016), lung cancer (Tomczak et al., 2016), and even neurological disorders 

(Fu et al., 2019). Although air quality has been improved significantly in developed countries in 

the last decades due to the large anthropogenic emission reduction. Adverse effects were still 

reported from long-term exposure to PM2.5 levels even below the World Health Organization 

(WHO) guideline of annual average 10 μg m-3 (Crouse et al., 2012; Hales et al., 2012; Schwartz 
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et al., 2017). The historical PM2.5 concentrations study could benefit the investigations of the 

long-term health effects at low level PM2.5 environments (Brauer et al., 2019). 

 

1.2 MONITORING OF ATMOSPHERIC AEROSOLS 

Observations of aerosol concentrations and optical properties are significantly important to 

better understand aerosol sources, chemical processes, and spatial and vertical distributions. 

Besides, these in situ measurements are the best resources to use as truth to evaluate and improve 

numerical models (see Section 1.3), even though they can have their own biases. This section 

will present two most common atmospheric aerosol monitoring systems, ground-based (in situ) 

monitoring and satellite remote sensing. 

 

1.2.1 Ground-based Measurements 

Ground-based observations provide comprehensive samplings of aerosol mass, chemical 

composition and optical properties. The measurements of aerosol mass concentrations are 

generally performed through an inlet that transports the aerosol particles to a collector or detector 

(filter). The measured aerosol size can be determined by controlling the inlet airflow. Besides 

mass concentrations, the aerosol optical properties, such as aerosol optical depth (AOD), are 

retrieved from ground-based sunphotometers network, such as the global Aerosol Robotic 

Network (AERONET) (Giles et al., 2019; Holben et al., 1998), which can provide valuable 

information for model validation and satellite retrieving constraints. 

 

1.2.1.1 Total Aerosol Mass Concentration Measurements 
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The aerosol total mass concentrations can be determined by weighing the filter that has 

collected aerosol particles below specific size before and after sampling under controlled 

temperature and humidity conditions. This method is known as Federal Reference Method 

(FRM). Another common approach is by measuring the attenuation of β-radiation through a 

particle-laden filter. Because the attenuation, caused by electron scattering in the filter media, is 

proportional to the total number of atomic electrons, this can provide information about the total 

mass density of the sample. This technique is also called beta attenuation monitoring (BAM).   

There have been several aerosol monitoring networks across North America since 1980s, 

mostly measuring the concentrations of PM10 and total suspended particles (TSP). Those PM10 

and TSP measurements in the earlier years could be very useful to help to estimate the historical 

PM2.5 concentrations. The PM2.5 monitoring network across U.S. was established in the late 

1990s (Solomon et al., 2014). These aerosol monitoring networks are very helpful to investigate 

the health impact of long-term exposure to air pollution. 

 

1.2.1.2 Aerosol Chemical Composition Mass Concentration 

Measurements 

The mass contributions of aerosol chemical composition can be measured by collecting 

particles on filters and then analyzing the filter substrate. This analysis can be done by aqueous 

or organic extraction, in which the chemical species are dissolved. The composition of the liquid 

sample is then determined by various techniques. For the non-volatile species, such as non-

volatile elemental carbon, a thermal method, in which the filter is heated to evaporate volatile 

organic carbon out of total carbon, is used to determine the mass concentration. The chemical 

composition data sets are great resources to infer the aerosol source and chemical processes. 
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1.2.1.3 Aerosol Optical Depth Measurements 

Ground-based aerosol remote sensing is based on the extinction of solar radiation by 

aerosol reflecting and absorbing, which can be described by Beer-Lambert extinction law as, 

 Iλ = I0λ exp(-τλ/cosθ)                        (Equation 1–1) 

where Iλ is the solar intensity observed by a ground-based instrument at wavelength λ, I0λ is the 

solar intensity at the top of the atmosphere, τλ is the total atmospheric optical depth at 

wavelength λ, and θ is the solar zenith angle. Aerosol optical depth is then determined by 

excluding the optical depth contributing from ozone, NO2 and Rayleigh scattering from the total 

atmospheric optical depth (Chance & Martin, 2017).  

 

1.2.2 Satellite Remote Sensing 

Satellite remote sensing is a monitoring technique that can retrieve aerosol abundance 

based on the collection of spectroscopic data along a selected atmospheric path by remote 

sensing instruments on board satellites. The high spatial and temporal resolution of satellite 

remote sensing data are unprecedented valuable for estimating long-term high resolution surface 

air pollutants concentration (van Donkelaar et al., 2010), and constraining emission inventories 

(Goldberg et al., 2017).  

AOD is one of the most common aerosol optical properties that can be retrieved from 

satellite remote sensing, which measure the reflectance of the solar backscatter radiation at 

different wavelengths. The total measured reflectance R at a specific wavelength are 

approximately the sum of the reflectance due to molecular scattering Rm, the reflectance due to 

aerosol scattering Ra and the surface reflectance Rs. This can be described as  
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 R(Θ) = Rm (Θ) + Ra (Θ)  + Rs (Θ)     (Equation 1–2) 

where Θ is the satellite viewing angle. The reflectance due to aerosol scattering Ra is a function 

of aerosol optical depth τa , the aerosol single-scattering albedo ϖ that quantifies the scatter 

fraction of incident radiation, and the aerosol scattering phase function P describing the angular 

distribution of radiation scattered by aerosol. Then AOD is approximately proportional to the 

aerosol reflectance,  

 τa ≈  
Θ

Θ ϖ
   (Equation 1–3) 

The above relationship is more accurate when the surface reflectance Rs estimation has 

higher accuracy (Chance & Martin, 2017). Therefore, evaluations and error quantifications are 

needed before using specific satellite remote sensing product, such as evaluating models using 

satellite AOD products over bright surface regions. 

 

1.3 MODELING OF ATMOSPHERIC AEROSOLS 

Ground-based observations are usually too sparse for a large research domain and also 

have errors themselves. The satellite retrievals exhibit systematic uncertainties due to their 

retrieval algorithms. Modeling can cover large research domains at fine resolution and offer 

additional information with the independent knowledge of mathematical representations of the 

physical atmosphere. Besides, models could be used to interpret the measurements to understand 

aerosol sources or processes (Weagle et al., 2018) that observations alone could not be possible. 

Models, such as the GEOS-Chem chemical transport models (CTM) used in this thesis, 

solve differential equations that describe the evolution of atmospheric chemistry on space and 

time scale. CTMs, in particular, solve continuity equations that express mass conservation within 

an elemental volume of air. The local mass concentration for a specific chemical component will 
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be affected by many processes in the atmosphere, such as emission, meteorological transport, 

chemistry production and loss, and deposition. The sources and processes of atmospheric aerosol 

can be inferred by conducting sensitivity simulations under specific assumed scenarios, such as 

the study presented in Chapter 3 of this thesis. 

  

1.4 GOALS OF THIS WORK  

Chemical transport modeling, satellite remote sensing and ground-based monitoring can 

help us to understand many aspects of PM2.5, such as its historical concentration, source 

contribution and its chemical composition distribution. This thesis brings together research that 

interprets the satellite and ground-based measurements using a chemical transport model to 

better understand the source and distribution of PM2.5 in relatively low level PM2.5 environments 

and its human health impact. 

The shape of the concentration-response function at low PM2.5 concentrations remains 

uncertain. Accurate data concerning historical PM2.5 concentrations are needed to assess long-

term changes in exposure and associated health risks. In Chapter 2, we estimate the historical 

surface PM2.5 concentrations across North America from 1981 to 2016 by combining information 

from chemical transport modeling, satellite remote sensing and ground-based monitoring. These 

estimates can be used to investigate the long-term health impacts associated with low levels of 

PM2.5. This work was published in Environmental Science and Technology in 2019. 

A better understanding of the sources contributing to PM2.5 concentrations could inform 

future air quality management and help to investigate the association of health outcomes with 

different emission sectors. In Chapter 3, we study the contributions of different emission sectors 

to PM2.5 across Canada from both Canadian and U.S sources using a chemical transport model 
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GEOS-Chem. We also investigate the trend of the sectoral contributions of different sectors to 

PM2.5 concentrations across Canada. This work was also published in Environmental Science and 

Technology in 2019. 

Mineral dust, as the most abundant aerosol in the atmosphere in terms of mass, has 

significant impacts on climate, weather, and air quality (Querol et al., 2019; Kerstin Schepanski, 

2018). However, dust emissions are highly uncertain because of the lack of direct dust emission 

observation and poor understanding of the emission processes. Models are usually used to 

estimate the dust emissions in a large scale. In the last part of this thesis, an offline dust emission 

dataset is calculated by running a dust module driven by the native resolution meteorological 

fields and then use these offline dust emissions in GEOS-Chem simulations. The goal of this 

work is to assess the availability and strengths of using offline high resolution dust emissions in a 

chemical transport model. 
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2.1 ABSTRACT 

Accurate data concerning historical PM2.5 concentrations are needed to assess long-term 

changes in exposure and associated health risks. We estimated historical PM2.5 concentrations 

over North America from 1981-2016 for the first time by combining chemical transport 

modeling, satellite remote sensing and ground-based measurements. We constrained and 

evaluated our estimates with direct ground-based PM2.5 measurements when available and 

otherwise with historical estimates of PM2.5 from PM10 measurements or TSP measurements. The 

estimated PM2.5 concentrations were generally consistent with direct ground-based PM2.5 

measurements over their duration from 1988 onward (R2 = 0.6-0.85) and to a lesser extent with 

PM2.5 inferred from PM10 measurements from 1985 to 1998 (R2 =0.5-0.6). The collocated 

comparison of the trends of population-weighted annual average PM2.5 from our estimates and 

ground-based measurements were highly consistent (RMSD = 0.66 μg m-3). The population-

weighted annual average PM2.5 over North America decreased from 22 ± 6.4 μg m-3 in 1981, to 

12 ± 3.2 μg m-3 in 1998, and to 7.9 ± 2.1 μg m-3 in 2016, with an overall trend of -0.33 μg m-3 yr-

1 (95% CI: -0.35 -0.30). 

 

2.2 INTRODUCTION  

PM2.5 is recognized as the leading environmental risk factor for the global burden of disease 

with an estimated 4.1 million [3.6 million to 4.6 million] attributable deaths in 2016 (Gakidou et 

al., 2017). Long-term exposure to high PM2.5 adversely affects human health (Beelen et al., 2014; 

Boldo et al., 2006; Caiazzo et al., 2013; Pope et al., 2009; Schwartz, 2000; Weichenthal et al., 

2014; Y. Zhang et al., 2018). Several epidemiological studies reported adverse effects from long-

term exposure at levels of PM2.5 concentrations (Crouse et al., 2012; Hales et al., 2012; Schwartz 
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et al., 2017; Shi et al., 2016) below the WHO guideline (10 μg m-3 annual average), the U.S. 

standard (12 μg m-3 annual average) and the Canadian standard (10 μg m-3 annual average, to be 

reduced to 8.8 μg m-3 in 2020). However, the shape of the concentration-response function at 

these low PM2.5 concentrations remains uncertain. Information about historical PM2.5 

concentrations across Canada and the United States is needed to understand long-term changes in 

exposure and their implications for health effects research.  

Understanding historical long-term exposure is complicated by the paucity of PM2.5 

monitoring sites across North America before the late 1990s and by the spatial variation of 

monitoring sites over time. Ground-based monitoring provides historical time series at specific 

points for PM2.5, PM10, and TSP. Several cohort studies have attempted to infer historical PM 

estimates using monitoring data for urban areas in later years (Beelen et al., 2008; Caiazzo et al., 

2013; Lepeule et al., 2012). A recent study by Kim et al. (2017) demonstrated that historical 

measurements of PM10 and TSP offer valuable information for prediction of historical PM2.5 

concentrations across the continental United States. 

Additional sources of data are available to inform estimates of historical PM2.5 spatial and 

temporal variations to improve the overall representativeness. Chemical transport modeling 

offers additional valuable information about historical PM2.5 concentrations through the 

representation of atmospheric processes with historical emission inventories (Hoesly et al., 2018; 

C. Li et al., 2017; U.S. EPA, 2018). Satellite remote sensing offers a powerful additional 

constraint on PM2.5 spatial distributions (van Donkelaar et al., 2015; Z. Ma et al., 2016) 

especially after 2002 when both the Terra and Aqua satellites were in orbit. Some studies (Lall et 

al., 2004; Parkhurst et al., 1999) have developed prediction models to estimate historical PM2.5 

by back-casting using the ratio between PM2.5 and PM10 or TSP observations. Other studies 
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(Beckerman et al., 2013; Eeftens et al., 2012; L. Li et al., 2017; Z. Ma et al., 2016) use land-use 

regression, which included predictor variables derived from geographic information systems, or 

combine information from other particulate matter (PM) measurements or satellite data. 

However, those studies either focused on smaller regions (L. Li et al., 2017; Parkhurst et al., 

1999) or shorter durations (Z. Ma et al., 2016).  

In this paper, we present historical estimates of PM2.5 across North America by combining 

information from chemical transport modeling, satellite-derived PM2.5 estimates and ground-

based monitoring from 1981-2016. These estimates can be used to assess long-term health 

impacts associated with low levels of PM2.5 throughout North America.  

 

2.3 MATERIALS AND METHODS  

Figure 2-1 provides an overview of our method to develop estimates of historical PM2.5 

concentrations across North America by incorporating information from ground-based 

monitoring, chemical transport modeling, and satellite-derived PM2.5. We started with a fine 

resolution chemical transport model (GEOS-Chem) simulation with reliable anthropogenic 

emission inventories across North America for 1989–2016. We downscaled the simulation to 

0.01° x 0.01° using a satellite-derived PM2.5 dataset (van Donkelaar et al., 2015). We applied 

geographically weighted regression (GWR) to the downscaled simulation to incorporate 

information from ground-based measurements into the estimates. For the years 1981-1988, we 

relied on information on interannual variation from ground-based measurements to backcast the 

gridded PM2.5 concentrations. Each step is described further below. 
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Figure 2-1. Overview of estimation method. 

 

2.3.1 Historical Particulate Matter Monitoring Data 

We collected ground-based measurements for 1981-2016 across Canada and the United 

States. Canadian particulate matter data were obtained from the National Air Pollutant 

Surveillance (NAPS) (http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en). This database 

includes continuous PM measurement data, dichotomous sampler (dichot, PM10 and PM2.5) data 

and TSP data. Instrument-specific calibrations were applied as recommended by the Canadian 

Council of Ministers of the Environment (CCME) (Canadian Council of Ministers of the 

Environment (CCME), 2011). Daily PM data for the United States were obtained from the US 
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Air Quality System Data Mart for PM10 and PM2.5 

(https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html). In addition, data from the 

inhalable particle network (IPN) which consisted of PM2.5 measurements in the early 1980’s 

were included. Table 2-S1 summarizes available monitoring data by measurement type in 

selected years (1981-2016). In Canada, dichot PM2.5 and PM10 sampling began in the mid 1980s, 

followed by continuous PM2.5 monitoring in the late 1990s. In the United States, most PM10 

sampling began in the late 1980s, followed by widespread PM2.5 monitoring in 1999. Limited 

PM2.5 measurements were available prior to 1999. Separate predictive models based on uniform 

method were created for Canada and US monitoring data since the larger number of monitoring 

stations in the US would overwhelm the Canadian dataset. Detailed information about the 

predictive models of inferring monthly PM2.5 concentrations from the historical PM10 and TSP 

measurements is provided in section 2.7.  

 

2.3.2 Estimated Historical Gridded PM2.5 Data 

2.3.2.1 GEOS-Chem Chemical Transport Model 

We use the GEOS-Chem chemical transport model (version 11-01, http://www.geos-

chem.org), with updated historical emissions inventories and meteorological data to consistently 

simulate PM2.5 concentrations across North America for 1989-2016. GEOS-Chem includes 

detailed aerosol-oxidant chemistry (Bey et al., 2001; Park et al., 2004). The simulation of 

concentrations of PM2.5 components includes the sulfate-nitrate-ammonium (SNA) aerosol 

system (Fountoukis & Nenes, 2007; Park et al., 2004), mineral dust (Fairlie et al., 2007), sea salt 

(Jaeglé et al., 2011), and carbonaceous aerosol (Park et al., 2003) with updates to black carbon 

(Q. Wang et al., 2014), and SOA (Marais et al., 2016; Pye et al., 2010) including an aqueous-
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phase mechanism for SOA from isoprene (Marais et al., 2016). Our simulation used a relative 

humidity dependent and composition dependent fixed size distribution following Martin et al. 

(2003) with updates to organics (Drury et al., 2010) and mineral dust (Ridley et al., 2012). We 

drove the simulation using MERRA-2 meteorological data from NASA’s Global Modeling and 

Assimilation Office (GMAO) with a nested resolution at 0.5˚ × 0.625˚ over North America for 

1989-2016 for which updated historical emissions were available. Anthropogenic emissions over 

North America were from the 2011 National Emissions Inventory (NEI2011, 

http://ww.epa.gov/air-emissions-inventories) for the US and the Criteria Air Contaminants 

(CAC, http://www.ec.gc.ca/inrp-npri/) for Canada with historical scale factors applied to each 

simulating year. OC and BC emissions were calculated by applying sector-specific OC and BC 

to PM2.5 emission ratios (C. Li et al., 2017; Reff et al., 2009; Ridley et al., 2018). Open fire 

emissions were from GFED4 (Giglio et al., 2013) for years 1997-2016 and from the RETRO fire 

emission inventory (Schultz et al., 2008) for earlier years. 

 

2.3.2.2 Creation of Historical Gridded PM2.5 Dataset  

Given our objective of a consistent dataset over the entire 1989-2016 period, and the lack of 

satellite AOD for the entire period, we used the 5-year average from near the middle of the 

period (2004-2008) of geophysical satellite-based PM2.5 estimates (referred to as PMsat) (van 

Donkelaar et al., 2015), derived from both the Terra and Aqua satellites, to downscale GEOS-

Chem model simulation (1989-2016) to a resolution relevant for exposure at 

We calculated the ratio between PMsat and the 5-yr average (2004-

2008) of GEOS-Chem simulations. Then, we used this ratio to downscale simulations in all the 

years from 1989 to 2016. The downscaling process does not change the simulated relative 
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temporal variation of PM2.5, since the same scale factor was applied to all years. This downscaled 

estimate (referred to as PMscl) contained fine-scale spatial information from satellite-derived 

PM2.5 estimates (PMsat) and long-term temporal information from the GEOS-Chem simulation. 

We evaluate the approach by excluding the satellite-based estimates. 

Ground-based monitoring offers reliable information on PM2.5 when and where available. We 

used this information to constrain our estimates. We included monitor information across both 

the US and Canada to produce a continuous surface for North America. Following van 

Donkelaar et al. (2015), we applied GWR to PMscl over 1989-2016 using available PM2.5 

observations, and PM2.5 concentrations inferred from PM10 observations. GWR (Brunsdon et al., 

1996) is a multiple regression, an extension of least-squares regression, to allow predictor 

coefficients to vary by choosing different spatial weighting function at several geographic 

locations according to their inverse-squared distance from individual observation sites. We used 

GWR to regress the spatial relationship between multiple predictors and the bias between PM2.5 

estimates and PM2.5 measurements. Our predictors in GWR include urban land cover, sub-grid 

elevation difference, and aerosol chemical composition from GEOS-Chem simulation. We fit the 

GWR model at the same resolution (0.01o x 0.01o) as the downscaled PM2.5 estimates, which was 

scaled by satellite-driven PM2.5, following the  Equation 2–1 below:  

(Measured PM2.5 – Estimated PM2.5)  

 =  α1ULC + α2SED + α3SUL + α4NIT + α5PrC + α6SOA + α7DST + ε         Equation 2–1 

where α1 to α7 represented the spatial weighted predictor coefficients for each predictor, and ε is 

the error. ULC was the percent of urban land cover from the 500-m spatial resolution MODIS 

land cover type product (Friedl et al., 2010). SED was the sub-grid elevation difference, which is 

the difference between the site elevation, which is from the ETOPO1 Global Relief Model of the 
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National Geophysical Data Center (Information (NCEI)), and the annual mean elevation of the 

GEOS-Chem grid cell. SUL, NIT, PrC, SOA and DST are sulfate, nitrate, primary carbon, 

secondary carbon and dust respectively as simulated with GEOS-Chem. We conducted 

sensitivity tests by changing the weight of PM10 observations in the GWR regression and found 

that a reduction by 75% of the weight of PM10 best represented its uncertainty compared to direct 

PM2.5 measurements from ground-based measurements, GEOS-Chem transport model 

simulations and satellite remote sensing. 

For years 1981-1988, reliable emission inventories were not available for GEOS-Chem 

simulation. Instead we used the information on inter-annual variation from ground-based 

measurements to back-cast the gridded PM2.5 concentrations following previous studies (Lall et 

al., 2004; Parkhurst et al., 1999). Ground-based measurements include TSP measurements, PM10 

measurements and PM2.5 measurements. Ground-based PM2.5 concentrations inferred from TSP 

measurements were included for this time period since fewer than 200 PM10 sites existed before 

1986 and even fewer PM2.5 monitoring sites existed. For each year (e.g. 1988), we calculated the 

ratio between the annual mean PM2.5 of this year and the following 3-year mean PM2.5 (e.g. 

1989-1991) for each ground-based monitoring site. We used the ratios from TSP sites as the 

basis, which were overwritten by the ratios from PM10 sites, and then by the ratios from PM2.5 

sites. This ratio field from ground-based measurements was then interpolated to other grids using 

distance weighted interpolation. Finally, we applied this gridded ratio field to the following 3-

year mean PM2.5 estimates to get the estimated PM2.5 for each year. The process is described by 

Equation 2–2 below:  

 Y(t)= γ [Y(t+1) + Y(t+2) + Y(t+3)]/3  Equation 2–2 

where Y(t) represents the PM2.5 estimates in year t, and γ is the gridded ratio field.  
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We evaluated the backcasting method by repeating the procedure for the years 2001-2008 

using measurements for the years 2001-2011, for comparison with our estimates for 2001-2008 

(Table 2-S5).  

We calculated the overall root mean square difference (RMSD) between the estimates and 

measurements for each year over 1981-2016 as a measure of uncertainty.  

 

2.4 RESULTS AND DISCUSSION  

We first evaluated the approach in the years when only PM2.5 stations were used for 

GWR adjustment to statistically incorporate information from ground-based observations into 

the downscaled model results. Figure 2-2 shows scatter plots of 2004-2008 mean PM2.5 from the 

downscaled simulation (PMscl) before and after GWR adjustment, versus in situ PM2.5. As 

found by van Donkelaar et al. (2015), the GWR model significantly reduces the mean bias (MB) 

and RMSD over both Canada and the US. Out-of-sample cross validation using 50% of 

randomly selected sites to train the GWR model exhibits significantly improved performance 

(R2 = 0.69; RMSD = 2.3 μg m-3) (bottom left panel) compared with the base case (R2 = 0.52; 

RMSD = 3.1 μg m-3). In such a holdback analysis, GWR parameter coefficients are trained 

using only 50% of available ground-based monitors. The withheld sites provide an independent 

dataset with which to evaluate the quality of fused PM2.5 estimates in areas without ground-

based observation. The improvement at these independent sites suggests improvement in the 

GWR adjusted surface even at locations away from ground-based observation. The bottom right 

panel of Figure 2-2 shows the 2004-2008 mean performance of GWR-adjusted values made 

using only the PM2.5 sites that were also available before 1998 (< 70 sites in total), consisting 

mostly of remote and rural U.S.-based sites. Limiting the GWR-based adjustment to only these 
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earlier-available PM2.5 sites provided no improvement in agreement compared to the initial 

estimates without GWR. The negative MB in PMscl (-1.00 μg m-3) (top left panel) is not 

corrected in the adjusted estimates (-0.83 μg m-3) (bottom right panel), due to a lack of 

representative urban and eastern sites which generally have higher PM2.5 levels. Complementary 

information from PM10 sites that are representative of urban environments is necessary for early 

years. 

  

  



 

 22 

Figure 2-2. Comparison over 2004-2008 of mean PM2.5 estimates with in situ 
measurements before (top left) and after GWR adjustment using all sites (top right), using 
cross validation sites using 50% random holdout (bottom left), and using PM2.5 sites 
present over 1989-1997 (bottom right). Open circles are Canadian sites and crosses are 
US sites. Number of sites are shown in brackets. Statistics shown are mean bias (MB, in 
μg m-3), coefficient of determination (R2) and root mean square difference (RMSD, in μg 
m-3). 

Figure 2-3. Comparison over 1992-1996 of mean PM2.5 estimates with in situ 
measurements before (top left) and after GWR adjustment using all sites (top right), using 
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cross validation using 50% random holdout (bottom left), and using only PM2.5 sites 
(bottom right). Open circles are Canadian sites and crosses are US sites. No. of sites are 
shown in brackets. Comparison for PM2.5 (black) and PM10 (red) sites are shown 
separately. Statistics shown are mean bias (MB, in μg m-3), coefficient of determination 
(R2) and root mean square difference (RMSD, in μg m-3). 

 

Figure 2-3 shows scatter plots for the 1992-1996 time period to evaluate the performance 

of PM2.5 inferred from PM10. The top panels show that the performance of the scaled geophysical 

estimate is promising with an R2 versus PM2.5 monitors of 0.69 that increases to 0.86 after GWR 

adjustment. The RMSD decreases from 2.7 to 1.5 μg m-3 over ~100 PM2.5 sites in the adjusted 

estimates. For ~2000 PM10 sites, significantly improved agreement is also found after GWR 

adjustment. Cross validation with 50% out-of-sample sites (bottom left) further confirms the 

overall robustness of the approach. As found in the 2004-2008 period, using only PM2.5 sites for 

GWR modeling does not improve the overall representation of the estimates, especially for PM10 

sites in urban areas. 

Figure 2-4 shows the R2 and RMSD for each year (1981-2016) of the estimates versus 

ground-based measurements to provide an overall assessment of uncertainty. Only PM2.5 data are 

used over 1999-2016 since sufficient PM2.5 measurements are available after 1999.  Since the 

number of PM10 sites reduces significantly prior to 1989 (~1000 in 1989, ~600 in 1988, ~400 

sites in 1986 and < 50 sites in 1984), the back-casting from 1985 to 1981 is based primarily on 

the trend information from TSP-based estimates, and expected to be more uncertain. The R2 

increases with the increase of PM10 sites for years 1985-1990. The R2 is around 0.8 for years 

1989-2005 compared to PM2.5 sites. The relative RMSD at only PM2.5 sites drops from 30% in 

the early 1990s to below 20% prior to 1999 when the PM2.5 measurements became more 

widespread. The decrease in R2 after 2008 reflects weaker spatial PM2.5 gradients in recent years 
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as PM2.5 levels decline across North America. Higher RMSD errors are expected before 1999 due 

to more uncertainties in emission inventories as well as larger uncertainties in the monitor data 

used in GWR adjustments. Overall, the GWR-adjusted PM2.5 estimates yield an estimated error 

of less than 20% since 1999 and, less than 30% from 1981-1998. 

 

Figure 2-4. Statistics (R2 and RMSD) of estimated PM2.5 against ground-based 
measurements from year 1981 to 2016. Solid lines indicate performance of base 
estimates. Dashed lines indicate performance of sensitivity estimates that exclude 
satellite remote sensing information (no blue dashed line). Numbers at the top of each 
figure indicate the number of monitors of direct PM2.5 (black), PM2.5 inferred from PM10 
(green) and PM2.5 inferred from TSP (blue). 

 

Figure 2-5 shows the distribution of PM2.5 estimates and ground-based measurements for 

1985, 1995, 2005 and 2015 from this study. Enhancements in both the GWR adjusted estimates 

and ground-based measurements are apparent across eastern US and California. The estimated 

PM2.5 is generally consistent with ground-based measurements (Figure 2-4), especially with the 

direct PM2.5 measurements. PM2.5 concentrations decrease dramatically during the last three 

decades, especially in eastern United States.  
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Figure 2-5. Estimated fine particulate matter annual means in 1985, 1995, 2005 and 
2015 over North America. Left panels are estimated PM2.5. Inset values in the left panel 
are the population-weighted average PM2.5 mass. Right panels indicate PM2.5 derived 
from ground-based measurements of PM2.5, PM10 and TSP. 

 

Figure 2-6 shows the time series of population-weighted annual average PM2.5 

concentrations across North America. We used gridded population estimates from the 

Socioeconomic Data and Applications Center (“Global Population Count Grid Time Series 
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Estimates, v1: Population Dynamics | SEDAC,” n.d.; “Gridded Population of the World (GPW), 

v4, SEDAC,” 2018) for calculating population-weighted average (section 2.7.3). The population-

weighted annual average PM2.5 over North America decreased from 22 ± 6.4 μg m-3 in the year 

1981 to 7.9 ± 2.1 μg m-3 in the year 2016. The linear tendency over this period is -0.33 μg m-3 yr-

1 ± 0.2 μg m-3 yr-1. Both time series of the in-situ measurements and estimates of population-

weighted annual mean PM2.5 exhibit minor peaks in 2005 and 2007. The collocated comparison 

of the trends of population-weighted annual average PM2.5 from our estimates and ground-based 

measurements are highly consistent (RMSD=0.66 μg m-3) over 1985-1995. Population-weighted 

annual average PM2.5 calculated from direct PM2.5 sites is 20% lower than that calculated from 

all in-situ sites, illustrating the effects of changes in monitor placement over time when assessing 

long-term changes in ambient PM2.5, and the value of spatiotemporally continuous PM2.5 

estimates from this work. Larger error bars prior to 1990 reflect greater uncertainty in the TSP 

dataset. 
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Figure 2-6. Time series of population-weighted average annual PM2.5 concentrations 
across North America. Error bars are included for population-weighted annual mean 
estimated PM2.5 concentrations.  

 

Figure 2-S5 shows regional time series of population-weighted annual average PM2.5. 

Figure 2-S6 shows regional time series of relative percentage change of population-weighted 

annual average PM2.5 concentrations using 2016 as the reference year. Northwestern North 

America has the most dramatical decline for population-weighted average PM2.5 concentrations 

with a factor of 2.7 decrease over 1981-2016, followed by southeastern and northeastern North 

America with a factor of 2.4 decrease over 1981-2016. The relative changes in northcentral, 

southcentral and southwestern North America are similar with a factor of 1.6–2.0 decrease in 

population-weighted PM2.5 over 1981-2016. Overall the spatially resolved historical PM2.5 data 
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set across North America reveals a factor of 1.7 decrease in population-weighted PM2.5 over 

1981-2016. 

Comparison with previous estimates of historical PM2.5 concentrations is instructive. Our 

estimated historical PM2.5 concentrations during 1982-1991 in the southeastern US indicate a 

decrease of 3.9 μg m-3, similar to the reported decline of 3-5 μg m-3 found by Parkhurst et al. 

(1999). We find similar large-scale reductions in historical PM2.5 concentrations during 1981-

2000 as Lall et al. (2004), albeit with smoother temporal trends in the present study that are more 

consistent with Kim et al. (2017). The primary difference with our prior historical PM2.5 

estimates (Boys et al., 2014; van Donkelaar et al., 2015, 2019) is that our current study spans a 

time period (1981-2016) about twice as long as our prior work by including more trend 

information from our GEOS-Chem simulation, and includes historical ground-based 

measurements prior to 1999. Nonetheless the population-weighted trends from our current 

dataset remain within 0.03 μg m-3 yr-1 of our prior work, indicating overall consistency as further 

discussed in section 2.7.4. 

 

2.5 DATA AVAILABILITY  

The annual mean estimated PM2.5 for 1981-2016 across North America dataset has been 

deposited in the Zenodo Digital Repository (DOI: 10.5281/zenodo.2616769) (Meng et al., 

2019b). 
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2.7 SUPPLEMENTAL INFORMATION  

2.7.1 Description of Prediction of Historical PM2.5 from Measured PM10 and 

TSP  

We collect ground-based measurements over Canada and the United States. All Canadian 

PM data were downloaded from the NAPS website (http://maps-cartes.ec.gc.ca/rnspa-

naps/data.aspx?lang=en). Data included all continuous PM measurement data, dichotomous 

sampler data and TSP data. Continuous PM2.5 was measured using a range of monitoring 

methods and there are known biases with certain methods, which were corrected using the 

equations in Table 2-S2 (provided by NAPS). Once data were corrected the average of all 

continuous PM2.5 data measured at a single site (if present) was calculated to represent the 

monitor average. PM data for the United States were downloaded from the US Air Quality 

System Data Mart using the pre-generated daily data files for PM10 and PM2.5 

(https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html). For TSP, only annual files 

were available.  In addition, data from the IPN (Hinton et al., 2002) was included, which 

consisted of PM2.5 measurements in the early 1980’s.  

Historical estimates of monitoring PM2.5 concentrations from the PM10 and TSP 

measurements were created using models developed from co-located PM2.5, PM10 and TSP 
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measurements. Models were developed for pre-2000 concentrations when PM2.5 measurement 

data were sparse. The unit of analysis was monthly concentrations for PM2.5 and PM10 models 

and yearly concentrations for TSP models. Separate models were created using Canada and US 

data to maximize use of the Canadian specific data, which would be swamped by the larger 

numbers of US monitoring data if pooled together. Each model included monthly PM10 or yearly 

TSP measurements, year, month, region (Province or State), interactions terms for PM10 or TSP 

and month and region and a random intercept for monitoring station. A random effects model is 

used to account for station-specific effects when multiple monitors exist at a single station. 

Monthly PM10 models in Canada and the US were able to predict a large portion of measured 

PM2.5. In Canada, 323 stations operating prior to the year 2000 were used to build the model, 

representing 2,706 monitor months. The fixed effects model alone predicted 75% of the 

measured PM2.5 and when monitor random effects were included the model explained 95% of 

measured PM2.5 (Figure 2-S1).  

Table 2-S3 summarizes the model fixed effects contributions to the model. This increase 

in model performance is expected as most PM stations in Canada measure both PM10 and PM2.5 

using dichotomous samplers. In the United States, 3,403 stations were used to build the model, 

representing 10,802 monitor months. The fixed effects model predicted 62% of measured PM2.5 

variations and the random effects model explained 70%. (Figure 2-S1).  Table 2-S4 summarizes 

the model fixed effects. 

During the 1980’s there were limited PM10 measurements. We therefore included TSP to 

further predict annual PM2.5 concentrations. Annual models were created to predict PM2.5 due to 

the annual TSP data availability in the United States. In Canada, the fixed effects model 

predicted 82% of the measured PM2.5 annually and the RMSE improved when monitor random 
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effects were included the model (Figure 2-S2). In the United States, the fixed effects model 

predicted 76% of measured PM2.5 variations and the random effects model explained 91% 

(Figure 2-S3).  

The value of the random effects model reflects how many air monitor stations are used in 

the model building process (i.e. monitors that have both PM10 and PM2.5 monitoring data at some 

point) and thus have best linear unbiased prediction (BLUP) of the random effects in the model 

prediction. In Figure 2-S1 (Canada), most monitors had some overlap between measured PM2.5 

and PM10.  While in the US, there were more monitors that had only PM10 measurements, which 

result in the random effects model not having as large of an influence on improving R2.  For the 

TSP and PM2.5 models the opposite is true, where in Canada there are very few monitors (in 

total) and even less that had both TSP and PM2.5 measures.  In the US there were more co-located 

TSP and PM2.5 monitors which leads to a better prediction with the random effects included. 

 

2.7.2 Description of Estimated PM2.5 Data without Satellite Remote Sensing 

Information 

In order to test the effect of the satellite remote sensing information on our dataset, we 

generated a sensitivity dataset which does not contain satellite remote sensing information. 

Instead of downscaling the GEOS-Chem simulation with satellite-derived PM2.5, we applied 

GWR directly to the GEOS-Chem simulation (1989-2016) following van Donkelaar et al. (2015) 

using available PM2.5 observations, and PM2.5 concentrations inferred from PM10 observation. 

For years 1981-1988, we used the information on inter-annual variation from ground-based 

measurements to back-cast the gridded PM2.5 concentrations as described in section 2.3.  
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2.7.3 Description of Population Data 

We downloaded population data from the National Aeronautics and Space 

Administration Socioeconomic Data and Application Center (SEDAC) for the years 1980, 1990, 

2000, 2005, 2010 and 2015. Then we used linear interpolation and extrapolation to generate the 

population data in each year over 1980 to 2016. 

 

2.7.4 Population-weighted PM2.5 Trend Discussion 

Figure 2-S7 shows the time series of population-weighted average PM2.5 of this study and 

our most recent satellite-derived PM2.5 (van Donkelaar et al., 2019). Our estimates are consistent 

with our most recent work with a RMSD of  0.4 μg/m3 during 2000-2016. The trend over 2000-

2016 of our estimate is -0.30 μg/m3/yr (CI 95%: -0.33, -0.27), which is within the uncertainty of 

-0.27 μg/m3/yr (CI 95%: -0.30, -0.25) reported in van Donkelaar et al. (2019). Our earlier work 

exhibits similar trends for North America (van Donkelaar et al., 2015) (-0.30 μg/m3/yr (CI 95%: 

-0.34, -0.26)) using 1998-2012. Overall, the trend of PM2.5 estimates in this study is consistent 

with our prior datasets during the same years. 

 

2.7.5 AOD Representativeness 

For insight into the representativeness of the 2004-2008 time period, Figure 2-S8 shows 

the spatial distribution of AOD for the time periods 2001-2005, 2004-2008 and 2012-2016 from 

the MODIS MAIAC product at 1km resolution (Lyapustin, Martonchik, et al., 2011; Lyapustin, 

Wang, et al., 2011). The spatial structure of the 2004-2008 dataset exhibits a high degree of 

consistency with the two time periods with an R2 of 0.93 versus the 2001-2005 time period, and 

of 0.81 versus the 2012-2016 time period. Additional insight is offered by the spatial distribution 
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of a recent satellite derived PM2.5 dataset (van Donkelaar et al., 2019) as shown in Figure 2-S9. 

The spatial structure of the 2004-2008 dataset is highly consistent with that for the 2001-2005 

time period (R2 = 0.97) and the 2012-2016 time period (R2 = 0.77). The change in PM2.5 across 

these time periods exhibits a large scale reduction over the eastern United States, driven by 

emission controls, and a large scale increase over northern Canada, driven by fire activity. These 

regional changes motivate our use of the GEOS-Chem model to represent the long-term 

evolution of the spatial distribution of PM2.5. 

 

Table 2–S1. Summary of available monitoring PM data for selected years during 1981 - 2016. 

Country/Region  Type 1981 1985 1990 1995 2000 2005 2010 2015 

Canada TSP 117 90 78 50     

 PM10  3 20 62 46 24 22  0 

 PM2.5 (dichot)  11 10 18 19 27 28 22 

 PM2.5 (continuous)    1 50 158 90 94 

United States TSP 325 2403 587 302 97 55 51 0 

 PM10  373 1363 1664 761 595 451 349 

 PM2.5   44 68 1212 1355 1329 1330 
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Table 2–S2. Transformation functions for Canadian monitoring methods by region. 

Name Season Region Slope Intercept 
TEOM_30  Cold East 1.44 0.47 
TEOM_30  Warm East 0.98 1.24 
TEOM_30  Cold West 1.36 1.27 
TEOM_30  Warm West 1.01 1.42 
TEOM_40  Cold West 1.30 0.94 
TEOM_40  Warm West 0.94 1.72 
BAM  Cold East 0.88 0.00 
BAM  Warm East 0.88 0.15 
FDMS  Cold East 0.87 -0.48 
FDMS  Warm East 0.92 -0.09 
*East= Provinces Ontario and East ; West= Provinces West of Ontario 
** Cold=November-March; Warm=April-October 

Table 2–S3. Predicting PM2.5 from PM10 in Canada, summary of model predictors fixed 
effect contributions 

Type III Tests of Fixed Effects 
Effect Num DF1 Den DF2 F-Value3 Pr > F4 

PM10 1 202 1188.75 <.0001 
Years prior to 2000 1 202 58.76 <.0001 
PM10_avg*Years prior to 2000 1 202 18.36 <.0001 
Month 11 202 1.86 0.0458 
PM10*Month 11 202 10.39 <.0001 
Region 4 202 11.12 <.0001 
PM10*Region 4 202 90.97 <.0001 
Years prior to 2000*Region 4 202 3.00 0.0195 
1Numerator degrees of freedom   

            2Denominator degrees of freedom   
            3Observed value of the F statistic test   
            4Probability of the F statistic test         
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Table 2–S4. Predicting PM2.5 from PM10 in the United States, summary of model 
predictors fixed effect contributions 

Type III Tests of Fixed Effects 
Effect Num DF1 Den DF2 F-Value3 Pr > F4 

PM10 1 10160 1290.16 <.0001 
Years prior to 2000 1 10160 23.05 <.0001 
State 50 10160 7.85 <.0001 
PM10*State 50 10160 17.19 <.0001 
Month 11 10160 13.35 <.0001 
PM10*Month 11 10160 60.51 <.0001 

1Numerator degrees of freedom   
              2Denominator degrees of freedom   
              3Observed value of the F statistic test   
              4Probability of the F statistic test 

 

Table 2–S5. Statistics of back-casted PM2.5 against estimated PM2.5 in years 2001-2008  

 2001 2002 2003 2004 2005 2006 2007 2008 
R2 0.94 0.92 0.93 0.81 0.87 0.82 0.86 0.85 

RMSE(μg/m3) 0.82 0.84 0.83 1.3 1.2 1.4 1.3 1.1 
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Figure 2-S1. Predictive models of monthly PM2.5 from co-located PM10 measurements in 
Canada (top panels) and the United States (bottom panels). The left panels are models 
without random effects and the right panels are models with random effects. 
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Figure 2-S2. Predictive models of annually PM2.5 from co-located TSP measurements in 
Canada. The left panels are models without random effects and the right panels are 
models with random effects. 

 

 

Figure 2-S3. Predictive models of annual PM2.5 from co-located TSP measurements in 
the United States. The left panels are models without random effects and the right panels 
are models with random effects. 
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Figure 2-S4. Domain of six regions in North America (NA), including northeastern North 
America (NE-NA) (Cyan), southeastern North America (SE-NA) (Red), northcentral 
North America (NC-NA) (Blue), southcentral North America (SC-NA) (Yellow), 
northwestern North America (NW-NA) (Green) and southwestern North America (SW-
NA) (Magenta). 

 

Figure 2-S5. Population-weighted annual mean PM2.5 concentrations in different regions 
defined in Figure 2-S4.     
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Figure 2-S6. Relative percentage change in population-weighted PM2.5 using 2016 as the 
reference year. Regions are defined in Figure 2-S4. 
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Figure 2-S7. Time series of population-weighted average PM2.5 in this study and our 
most recent dataset (van Donkelaar et al., 2019). 
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Figure 2-S8. Aerosol optical depth (AOD) for different time periods from the MODIS 
MAIAC product. White indicates gaps in the availability of the regional MODIS MAIAC 
product. 
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3.1 ABSTRACT  

Understanding the sectoral contribution of emissions to PM2.5 offers information for air 

quality management, and for investigation of association with health outcomes. This study 

evaluates the contribution of different emission sectors to PM2.5 in 2013 for Canada using the 

GEOS-Chem chemical transport model, downscaled with satellite-based PM2.5. Despite the low 

population-weighted PM2.5 concentrations of 5.5 μg m-3 across Canada, we find that over 70% of 

population-weighted PM2.5 originates from Canadian sources followed by 30% from the 

contiguous United States. The three leading sectoral contributors to population weighted PM2.5 

over Canada are wildfires with 1.0 μg m-3 (17%), transportation with 0.96 μg m-3 (16%) and 

residential combustion with 0.91 μg m-3 (15%). The relative contribution to population-

weighted PM2.5 of different sectors varies regionally with residential combustion as the leading 

contributor in Central Canada (19%); while wildfires dominate over Northern Canada (59%), 

Atlantic Canada (34%) and Western Canada (18%). The contribution from U.S. sources is larger 

over Central Canada (33%) than over Western Canada (17%), Atlantic Canada (17%) and 

Northern Canada (< 2%). Sectoral trend analysis showed that the contribution from 

anthropogenic sources to population-weighted PM2.5 decreased from 7.1 μg/m3 to 3.4 μg/m3 over 

the last two decades. 

 

3.2 INTRODUCTION  

PM2.5 adversely affects human health (Baccarelli et al., 2009; R. D. Brook et al., 2010; 

Hamra et al., 2014; Krewski et al., 2009; Lepeule et al., 2012). PM2.5 is recognized as the leading 

environmental risk factor for the global burden of disease (Gakidou et al., 2017) with recent 

estimates of annual attributable deaths worldwide of 4 million (Cohen et al., 2017) to 9 million 
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(Burnett et al., 2018). Air quality in North America has improved dramatically during the last 

three decades by reducing emissions (Environment and Climate Change Canada, 2018; U.S. 

EPA, 2018) with national mean PM2.5 concentrations across Canada below the WHO air quality 

guideline (10 μg/m3) (van Donkelaar et al., 2015; Pinault et al., 2017). Thus Canada is attractive 

to study the health effects of low-level PM2.5. Several studies report adverse effects of long-term 

exposure to the low-level PM2.5 concentration environment (Crouse et al., 2012; Hales et al., 

2012; Pinault et al., 2016; Shi et al., 2016), but none have examined the relationship with 

specific sources. A better understanding of the sources contributing to PM2.5 could inform 

national air quality management, and inform studies on the association of health outcomes with 

PM2.5 concentrations at low levels (Pinault et al., 2016, 2017). 

A number of studies have investigated the relative contribution of multiple sectors to PM2.5 

globally (Lelieveld et al., 2015; Silva et al., 2016; Weagle et al., 2018). Most previous studies on 

sectoral contributions to ambient PM2.5 over Canada either focused on a single emission sector or 

a specific regional area. Additionally, most of those studies used a top-down source attribution 

method based on statistical analyses of measured chemical composition, including studies on the 

contribution of regional transport in southeast Canada and urban areas (J. R. Brook et al., 2002; 

J. R. Brook, Graham, et al., 2007; J. R. Brook, Poirot, et al., 2007), dust in British Columbia 

(Hong et al., 2017), industry in Ontario (Barker, 2012), coal-fired power plants (Goodarzi, 2006), 

wildfires (Landis et al., 2018; Sofowote & Dempsey, 2015) and biomass burning (Jeong et al., 

2008; Weichenthal et al., 2017). A few studies have used a bottom-up approach based on 

emission inventories and chemical transport modeling to study the sector contributions to gas 

phase pollutants or to specific regions of Canada. For example, Pappin & Hakami (2013) 

examined the source attribution to nitrogen oxides and volatile organic compounds across North 



 

 45 

America. Cho et al. (2012) investigated the contribution of oil sands development to PM2.5 and 

ozone using an air quality model.  

In this study, we used the GEOS-Chem chemical transport model at its finest resolution 

of 0.25° x 0.31° to investigate the contributions of different emission sectors to PM2.5 across 

Canada from both Canada and the United States sources. We evaluated the performance of the 

baseline simulation and examine the contributions of different sectors to PM2.5 concentrations 

across Canada. We also investigated the trend of the sectoral contribution to PM2.5 

concentrations across Canada over the last two decades.  

 

3.3 MATERIALS AND METHODS  

3.3.1 GEOS-Chem Simulations   

GEOS-Chem (http://www.geos-chem.org) includes detailed aerosol-oxidant chemistry 

(Bey et al., 2001; Park et al., 2004; Parrella et al., 2012). Gas-aerosol partitioning is performed 

by the ISORROPIA II thermodynamic scheme (Fountoukis & Nenes, 2007) as implemented into 

GEOS-Chem by Pye et al. (2009). The interaction between aerosols and gas-phase chemistry 

includes the effects of aerosol extinction on photolysis rates (Martin et al., 2003), brown carbon 

(Hammer et al., 2016), heterogeneous chemistry (Jacob, 2000) with dinitrogen pentoxide (N2O5) 

uptake by aerosol (Evans & Jacob, 2005) and hydroperoxyl radical (HO2) uptake by aerosol 

(Mao et al., 2013).  

The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium (SNA) 

aerosol system (Fountoukis & Nenes, 2007; Park et al., 2004), mineral dust (Fairlie et al., 2007), 

sea salt (Jaeglé et al., 2011), and carbonaceous aerosol (Park et al., 2003) with updates to black 

carbon (Q. Wang et al., 2014), semi-volatile SOA formation from isoprene (Pye et al., 2010) and 
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SOA formed from isoprene with an irreversible aqueous scheme (Marais et al., 2016). The ratio 

between organic mass and organic carbon (OM/OC) is spatially resolved (Philip et al., 2014). 

Nitric acid concentrations are reduced following Heald et al. (2012). The mineral dust simulation 

includes updates to the aerosol size distribution (L. Zhang et al., 2013) and dust optics (Ridley et 

al., 2012). We include recent updates in dry and wet deposition (Amos et al., 2012; Fisher et al., 

2011; Q. Wang et al., 2011; Q. Wang et al., 2014). 

GEOS-Chem uses assimilated meteorological data from the Goddard Earth Observation 

System (GEOS) of NASA’s Global Modeling and Assimilation Office (GMAO). We used 

GEOS Forward Processing (GEOS-FP) meteorological data archived at a native horizontal 

resolution of 0.25° x 0.3125°, roughly 25km x 25km, with 72 vertical levels. 

We used the nested-grid capability (P. S. Kim et al., 2015; Y. X. Wang et al., 2004) of the 

GEOS-Chem chemical transport model (version 11-02c) at 0.25° x 0.3125°, to simulate PM2.5 

concentrations across North America. We first conducted global simulations at coarse resolution 

of 2° x 2.5° to archive boundary conditions. Then, we conducted regional (nested-grid) 

simulations at fine resolution of 0.25° x 0.31° over North America. The operator time steps in the 

simulation followed previous recommendations (Philip et al., 2016). We used a 1-month spin up 

to remove the effects of initial conditions. We used the lowest layer of the model to represent the 

ground-level aerosol concentrations. We calculated simulated PM2.5 concentrations at 35% 

relative humidity (RH) and chemical composition at dry conditions for consistency with the 

measurement protocols over North America. We downscaled our simulations to better represent 

spatial variation of population density using satellite-derived PM2.5 gridded at 1 km resolution 

across North America (van Donkelaar et al., 2019). We calculated the ratio between the annual 

mean satellite-derived PM2.5 and baseline simulated PM2.5. We applied this ratio to both the 



 

 47 

baseline simulation and sector sensitivity simulations to downscale all simulations to 1 km 

resolution.  

We used population data from the National Aeronautics and Space Administration 

Socioeconomic Data and Application Center (SEDAC, version4) (“Gridded Population of the 

World (GPW), v4, SEDAC,” 2018) to calculate population weighted average PM2.5 

concentrations regionally and provincially in Canada. 

 

3.3.2 North American Emissions for Baseline Simulation 

GEOS-Chem emissions were configured via the HEMCO module (Keller et al., 2014). 

Anthropogenic emissions were provided by regional emission inventories. We used the Criteria 

Air Contaminants (CAC) over Canada (http://www.ec.gc.ca/inrp-npri/), the 2011 U.S. National 

Emissions Inventory (NEI2011, http://ww.epa.gov/air-emissions-inventories) over the United 

States and the Big Band Regional Aerosol and Visibility Observational study (BRAVO) over 

Mexico (Kuhns et al., 2005). We used annual scale factors obtained from other available datasets 

to scale the emission inventories to our simulation year. For CAC, we calculated annual scale 

factors over 1990 to 2016 from Canada’s Air Pollutant Emission Inventory (APEI) (Environment 

and Climate Change Canada, 2015). For NEI2011, we calculated annual scale factors for 2013 

from the national annual total trends from EPA (http://www.epa.gov/ttnchie1/trends/). We 

calculated BC and OC emissions by applying the sector-specific OC and BC to PM2.5 emission 

ratios reported in the EPA SPECIATE database (Reff et al., 2009) following recent studies (C. Li 

et al., 2017; Ridley et al., 2018). 

Other emissions were default in GEOS-Chem. Wildfire emissions at 3-hour resolution 

were from the fourth-generation global fire emissions database (GFED-4) (Giglio et al., 2013). 



 

 48 

Aircraft emissions were from the AEIC inventory (Stettler et al., 2011). Ship emissions were 

from ICOADS (Lee et al., 2011). Lighting NOx emissions were also included (Murray et al., 

2012). Biogenic VOC emissions were from the MEGAN v2.1 inventory (Guenther et al., 2012; 

Tai et al., 2013). Biogenic soil NOx emissions were from Hudman et al. (2012). Volcano 

emissions were implemented by Fisher et al. (2011). Marine DMS emissions were from Breider 

et al. (2017). 

 

3.3.3 Sector Sensitivity Analyses  

We conducted a baseline simulation for the year 2013 using the emissions described 

above over North America. We quantified the impact of individual sectors by conducting 

sensitivity simulations that individually exclude each emission sector from the baseline 

simulation. This method had been extensively used in previous studies to evaluate the 

contribution of different sectors or regions to PM2.5 concentrations or health impacts (Caiazzo et 

al., 2013; Lelieveld et al., 2015; Y. Li et al., 2016; Silva et al., 2016; Weagle et al., 2018). This 

method may lead to uncertainty due to the non-linear response to emission changes. We studied 

five anthropogenic emission sectors (Power Generation, Agriculture, Transportation, Industry 

and Residential Combustion), as well as wildfires, sea salt, and other sources (mineral dust, 

biogenic secondary organic aerosol, DMS, volcanos, and long-range transport). We also 

investigated the diesel sector, which is a sub-sector of the transportation sector. 

The sectoral emissions for our sensitivity simulations were from APEI for Canada and 

from the U.S. NEI 2011 v6.3 (Tzompa Sosa et al., 2019) for the United States. The power 

generation sector included coal burning for electric power generation. The agriculture sector 

primarily included ammonia from livestock and agricultural soils. The transportation sector 
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contained mobile sources and dust from paved and unpaved roads. The diesel sector, which 

included emissions from diesel engine vehicles and trucks and off-road use of diesel, was a sub-

sector of the transportation sector. The industry sector contained multiple industrial sources 

including the petroleum industry, chemical industry, mineral product industry, pulp and paper 

industry, and aluminum industry. The residential combustion sector included residential fuel and 

wood combustion emissions.  

We individually excluded each sectoral emission from the baseline simulation by 

applying the sectoral scale factor from APEI and the U.S. NEI 2011 v6.3 to baseline emission 

inventories (CAC and NEI2011) respectively. For the five major anthropogenic sectors, we also 

further separated the contribution from U.S emissions by performing five extra sensitivity 

simulations that only exclude the emissions from the Canadian sources.  

 

3.3.4 Sectoral Contribution Trend Analysis 

We conducted sectoral sensitivity analyses for selected years (1990, 2000 and 2010) over 

the last two decades to investigate trends in the sectoral contributions across Canada. We 

conducted GEOS-Chem baseline and sectoral sensitivity simulations for the years 1990, 2000 

and 2010, driven by assimilated meteorology data from the Modern-Era Retrospective analysis 

for Research and Application, version 2 (MERRA-2), which included updates in both the 

Goddard Earth Observing System Model and the assimilation system back to 1980 (Molod et al., 

2015). We first conducted global simulations at coarse resolution of 2° x 2.5° to archive 

boundary conditions. Then, we conducted regional (nested-grid) simulations at the finest 

resolution available for MERRA-2 (0.5° x 0.625°) over North America.  
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For baseline simulations, we used the Criteria Air Contaminants (CAC) over Canada 

(http://www.ec.gc.ca/inrp-npri/) and the Community Emissions Data System (CEDS) (Hoesly et 

al., 2018) historical emission inventory over the United States. We used annual scale factors 

obtained from other available datasets to scale the emission inventories to our simulation year. 

For CAC, we calculated annual scale factors from Canada’s Air Pollutant Emission Inventory 

(APEI) (Environment and Climate Change Canada, 2015), which had a time span from 1990 to 

2016. We used the 3-hour resolution of GFED4 (Giglio et al., 2013) for wildfire emissions for 

2000 and 2010 simulations. We implemented a ground-based North America fire emission 

database (Yue et al., 2013) into GEOS-Chem for wildfire emissions in the 1990 simulation. 

For sectoral sensitivity simulations, we quantified the impact of individual sectors by 

conducting simulations that individually exclude each sectoral emission from the baseline 

simulation for each year (1990, 2000 and 2010). We grouped APEI into 5 sectors, which include 

the agricultural, power generation, surface transport, industrial and residential combustion 

sectors. CEDS had eight sectors, which included agricultural, energy transformation and 

extraction, industrial combustion and process, surface transport, residential combustion, solvents, 

waste disposal and handling, and international shipping sectors. We individually excluded each 

sector emission from the baseline simulations.  

 

3.3.5 Ground-based Measurements of PM2.5 and Its Chemical Components 

We collected ground-based measurements of PM2.5 concentrations and its chemical 

components from several networks across North America in 2013 to evaluate our baseline 

simulation. Detailed information on network selection and data processing are provided in the 

Supporting Information. Monitor locations are in Figure 3-S1. Numerous studies have described 
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and evaluated these ground-based measurements (Dabek-Zlotorzynska et al., 2011; Hand et al., 

2012). We treated these ground-based measurements as “truth” to evaluate model performance, 

even though these datasets do have uncertainties (Hand et al., 2012).  

We compared the baseline simulated PM2.5 and its chemical components with ground-

based measurements using reduced major axis linear regression. We reported root mean square 

error (RMSE), correlation (r), intercept as well as slopes. Details about the performance of the 

baseline simulation in 2013 are provided in section 3.6.2.  

 

3.4 RESULTS AND DISCUSSION  

3.4.1 Sectoral Contributions of Emissions to PM2.5 Concentrations over 

Canada 

Figure 3-1 shows the annual mean contributions of individual emission sectors to PM2.5 

concentrations. For Canada, the wildfires sector is the leading contributor, responsible for 1.0 μg 

m-3 of  the total population-weighted PM2.5 with the largest influences across northern Canada. 

The transportation sector (0.96 μg m-3) follows closely with large contributions across populated 

regions of southern Canada. The residential combustion sector (0.91 μg m-3), the third largest 

contributor, is most important in rural British Columbia and southern Quebec where wood is 

used for residential heating. The industry (0.86 μg m-3) and agriculture (0.63 μg m-3) sectors are 

most important in Alberta. The biogenic SOA sector (0.54 μg m-3) most influences Ontario and 

southern Quebec reflecting both isoprene and terpene sources. The power generation sector (0.44 

μg m-3) is most important along the southern border of central Canada where advection from US 

sources is prevalent.  
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The relative contribution of different emission sectors varies seasonally across Canada. In 

winter (Figure 3-S4), residential combustion (1.6 μg m-3) is the leading contributor due to home 

heating. Both of the transportation (1.4 μg m-3) and agriculture (1.2 μg m-3) sectors are important 

in winter due to the seasonal increase in ammonium nitrate. In summer (Figure 3-S5), the 

importance of the wildfires and biogenic SOA sectors increases across both Canada and the 

United States. The contribution from the agriculture sector in summer is negative due to 

nonlinearities in which there is enhanced PM2.5 formation with decreasing aerosol acidity as 

ammonia emissions increase (Q. Ma et al., 2017; Marais et al., 2016; Silva et al., 2016; Weagle 

et al., 2018). 

 

Figure 3-1. Contribution of emission sectors to PM2.5 concentrations for 2013. Other 
Sources include volcano, dimethyl sulfide (DMS), and long-range transport (LRT) from 
Asia, Europe and Alaska. Inset values are population-weighted annual mean PM2.5 
concentrations attributable to each sector across the U.S. (red) and Canada (blue). 
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Figure 3-2 shows the fractional contribution of different sectors to population weighted 

annual mean PM2.5 concentrations over different regions (defined in Figure 3-S6) of Canada. 

Over 80% of the population-weighted PM2.5 of 5.5 μg m-3 across Canada arises from the five 

anthropogenic sectors and the wildfires sector. The wildfires sector is the largest contributor 

across Canada, responsible for 17% of population-weighted PM2.5, followed closely by the 

transportation sector (16%), the residential combustion sector (15%) and the industry sector 

(14%). The agriculture and power generation sectors account for 10% and 7% of population-

weighted PM2.5 respectively. Other sources, including sea salt, dust, DMS, volcanos, biogenic 

secondary organic aerosol and long-range transport, explain the remaining contribution. The 

leading anthropogenic contribution of the transportation sector in Canada is consistent with 

recent findings for the United States (Caiazzo et al., 2013) however, differs from regions such as 

India where residential burning dominates (Venkataraman et al., 2018), China where coal 

burning dominates (Q. Ma et al., 2017), and globally where residential burning dominates (Philip 

et al., 2014; Weagle et al., 2018). 

The diesel sector is a specified subsector of the transportation sector, which is the leading 

anthropogenic contributor across Canada in 2013 (Figure 3-2). Table 3-S1 in section 3.6 shows 

the fractional annual contribution of diesel to the transportation sector from Canadian sources 

across different Canadian regions in 2013. The diesel sector accounts for 35% of population-

weighted mean PM2.5 attributed to transportation sector with little variation (± 2%) regionally. 

The relative contribution of different emission sectors varies regionally across Canada. In 

Central Canada, with the highest population-weighted PM2.5 (5.9 μg m-3) among all the Canadian 

regions, about 70% of population-weighted PM2.5 arises from five anthropogenic sectors. The 

residential sector is the leading contributor (19%) followed closely by the transportation sector 
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(17%). In Western Canada, the wildfires sector is the largest contributor accounting for 18% of 

population-weighted PM2.5 followed by the agriculture (15%) and transportation (15%) sectors. 

In the Atlantic Canada region with low population-weighted PM2.5 (3.3 μg m-3), the wildfires 

sector accounts for 34% of total population-weighted PM2.5 followed by secondary organic 

aerosol (13%) and then the transportation, industry, power generation and residential combustion 

sectors (~7% - 9%). Northern Canada has the lowest level of PM2.5 concentration with 

population-weighted PM2.5 of 1.4 μg m-3 of which over half (59%) arises from the wildfires 

sector. 

 

Figure 3-2. Fractional contribution of different sectors to population-weighted average 
PM2.5 concentrations over different regions in Canada for 2013. The number under each 
bar represents the total population-weighted annual mean PM2.5 concentrations over that 
region. The hatched part in each sector represents the fractional contribution from the 
United States. Others include dimethyl sulfide (DMS), volcano, and long-range transport 
(LRT) from Asia, Europe and Alaska. 
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The relative contribution of different emission sectors over each region in Canada also 

varies seasonally as shown in Figure 3-S7 for winter and Figure 3-S8 for summer. The 

percentage contribution from the five anthropogenic emission sectors increases in winter to 95% 

for Central Canada, 78% for Western Canada, 70% for Atlantic Canada and 30% for Northern 

Canada. In summer, the percentage contribution from wildfires is the largest over all regions 

(78% over Northern Canada, 55% over Atlantic Canada, 38% over Western Canada and 36% 

over Central Canada). The seasonality of dominant sources (i.e. anthropogenic emissions in 

winter vs. wildfires in summer) is similar across provinces (Figure 3-S9 – 3-S11). 

We separate the contributions from the United States out of the five primary 

anthropogenic emission sectors as shown in the hatched bars in Figure 3-2. We find that 27% of 

population-weighted PM2.5 in Canada is from anthropogenic U.S. sources. The U.S. agriculture, 

transportation and power generation sectors each account for 6% of population-weighted PM2.5 

across Canada followed by the U.S. residential combustion (4%) and industry (4%) sectors. The 

fractional contribution from the U.S. sources varies regionally. In Central Canada, 33% of 

population-weighted PM2.5 is from the U.S. with the U.S. power generation source accounting for 

9% of PM2.5 followed closely by the U.S. transportation sector (8%). In western Canada, 17% of 

population-weighted PM2.5 is from the U.S. with the U.S. agriculture sector as the largest 

contributor (6%). In Atlantic Canada, 17% of population-weighted PM2.5 is from U.S. sources 

with the power generation sector as the largest contributor among U.S. sectors accounting for 6% 

of PM2.5. The effects of U.S. emissions to PM2.5 in northern Canada is less than 2%. The 

fractional contribution from the U.S. sources also varies seasonally with 46% from the U.S. 

sources in winter and only 12% from the U.S. sources in summer.  
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Figure 3-3. Population-weighted annual mean concentrations of chemical components 
(μg m-3) attributed to different sectors (including the contribution from U.S.) across 
Canada for 2013. Other includes dimethyl sulfide (DMS), volcano, biogenic secondary 
organic aerosol (SOA) and long-range transport (LRT) from Asia, Europe and Alaska. 
Figure was created using MATLAB_R2016b. 

Figure 3-3 shows the Canadian population-weighted annual mean concentration of 

chemical components attributable to different sectors. PM2.5 from the wildfires sector is 

dominated by OM (94%). The main components of PM2.5 mass arising from the transportation 

sector are OM (0.46 μg m-3) and nitrate (0.32 μg m-3), reflecting the NOx and VOC emissions 

from traffic (Environment and Climate Change Canada, 2015). The contribution of sulfate 

attributable to the transportation sector is slightly negative due to nonlinear chemistry because 

the oxidation efficiency of SO2 to sulfate increases as the emission of NOx significantly 

decreases (Holt et al., 2015; Shah et al., 2018) when eliminating the transportation sector. The 

residential combustion population-weighted mean PM2.5 concentration of 0.91 μg m-3 is driven 

by OM (87%). PM2.5 from the industry sector includes contributions from OM (39%) and sulfate 

(31%). PM2.5 from the power generation sector is driven by sulfate (61%) followed by 
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ammonium (24%). The population-weighted PM2.5 from the agriculture sector is dominated by 

nitrate (64%) and ammonium (34%). The concentration of organic matter increases when 

emissions from the agriculture sector are excluded due to the increase of aerosol acidity (Fisher 

et al., 2011; Marais et al., 2016; Weagle et al., 2018). The remaining other sectors include 

biogenic SOA, sulfate from DMS and volcanos, and sea salt. Figure 3-S12 shows the population 

weighted annual mean concentration of chemical components attributed to different sectors over 

different regions in Canada. The relative contributions of different chemical components remain 

similar across regions as the source magnitude varies.  

 

Figure 3-4. Population-weighted sectoral fractional contribution versus population-
weighted PM2.5 over Canada for 2013. Stacked bar plots show percentage of each sector 
in different PM2.5 levels. Other includes dimethyl sulfide (DMS), volcano, and long-range 
transport (LRT) from Asia, Europe and Alaska. 

Figure 3-4 shows the sectoral contribution to population weighted average PM2.5 as a 

function of PM2.5 concentration levels in Canada. The importance of different sectors remains 



 

 58 

similar for different PM2.5 concentration levels. Wildfires have a larger fractional contribution at 

locations with smaller annual population weighted average PM2.5 concentrations. The percentage 

contribution from the five primary anthropogenic emission sectors increases with the ambient 

annual population weighted average PM2.5 concentrations. The sectoral contribution to PM2.5 in 

the U.S. is similar to that in Canada albeit with a weaker wildfire contribution and a stronger 

anthropogenic contribution in the US (Figure 3-S13).  

 

3.4.2 The Trend of Sectoral Contribution in the Last Two Decades across 

Canada 

Figure 3-5 shows the contributions of different sectors to population-weighted average 

PM2.5 concentrations across Canada in 1990, 2000 and 2010. The population-weighted average 

PM2.5 concentration across Canada decreased from 8.9 μg m-3 in 1990 to 7.4 μg m-3  in 2000, and 

to 7.0 μg m-3 in 2010. These values are close (within 16%) to observational constrained estimates 

for these years (Meng et al., 2019a), supporting the PM2.5 trends from the simulations. The 

power generation sector was the largest contributor to population-weighted average PM2.5 

concentrations in 1990 (2.4 μg m-3) and 2000 (1.9 μg m-3); while the wildfires sector has the 

largest contribution in 2010 (1.6 μg m-3) followed by the power generation sector (1.3 μg m-3). 

The total contribution from the five anthropogenic sectors decreased from 7.1 μg m-3 in 1990 to 

3.4 μg m-3  in 2013, reflecting the success of air quality control over the last three decades across 

North America. The contribution from the power generation sector decreased from 2.4 μg m-3 in 

1990 to 1.3 μg m-3 in 2010, while the contribution from industry sector decreased from 1.4 μg m-

3 in 1990 to 0.7 μg m-3 in 2010, both of which reflect the successful controls on emissions 

(Environment and Climate Change Canada, 2015; U.S. EPA, 2018) reductions in coal burning. 
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PM2.5 from the power generation sector continues to decrease dramatically after 2010 (Figure 3-

2) driven by a decrease in total SO2 emissions over 2010 to 2013 of 20% for Canada and of 42% 

for the United States nationally. The relative sectoral contribution from the U.S. sources remains 

similar during the last two decades, with the largest fraction from U.S. source from power 

generation followed by agriculture.  

 

Figure 3-5. Contribution of different sectors to population-weighted average PM2.5 

concentrations over Canada in 1990, 2000 and 2010. The number under each bar 
represents the total population-weighted annual mean PM2.5 concentrations in that year. 
The hatched part in each sector represents the fractional contribution from the United 
States. Others include dimethyl sulfide (DMS), volcano, and long-range transport (LRT) 
from Asia, Europe and Alaska. 

 

3.4.3 Variability in Wildfires Contribution 
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We examined how wildfire variability could affect the trends in section 3.4.2. Figure 3-

S14 shows the annual total dry matter time series from 1990 to 2015 in our wildfires emission 

inventories across Canada. The total dry matter emitted in 2013 is 25 Tg, which is about the 

average during 1990 to 2015, while lower than average in recent years given that the total dry 

matter burnt time series from 1990 to 2015. Thus wildfires may play a proportionally larger role 

in other years, or in a warmer climate in the future (Hurteau et al., 2014; Randerson et al., 2012). 

 

3.4.4 Perspective 

This assessment found that the contributions to PM2.5 at the low population-weighted PM2.5 

concentrations across Canada of 5.5 μg m-3 is primarily (81%) from five major anthropogenic 

sectors and the wildfires sector. The regionally-varying relative contribution of different 

emission sectors across Canada implies that mitigation strategies will benefit from regional 

policies. For example, across Central Canada, around 70% population-weighted PM2.5 arises 

from five major anthropogenic sectors with the residential combustion sector as the leading 

contributor (19%) followed closely by the transportation sector (17%). The notable PM2.5 

contributions from the contiguous United States (~30%) implies benefits from international 

coordination. The leading U.S. contributors of the agricultural, transportation and power 

generation sectors are also important contributors to PM2.5 in the United States implying mutual 

benefits from reducing the emissions from these sources. The increasing contributions of 

anthropogenic sectors with increasing PM2.5 found here may have implications for the shape of 

the concentration-response function. 
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3.6 SUPPORTING INFORMATION 

3.6.1 Description of Ground-based Measurements of PM2.5 and Its Chemical 

Components 

We collected ground-based measurements of PM2.5 concentrations and its chemical 

components from several networks across North America in 2013. The PM2.5 mass 

measurements included the Canadian National Air Pollution Surveillance Network (NAPS, 

http://www.ec.gc.ca/rnspa-naps/ ), the U.S. Environmental Protection Agency (EPA) federal 

reference method (EPA-FRM, http://www.epa.gov/outdoor-air-quality-data/ ) and the 

Interagency Monitoring of Protected Visual Environments (IMPROVE, 

http://views.cira.colostate.edu/fed/DataWizard/ ). The networks for ground-based measurements 

of chemical composition included the EPA chemical speciation network (EPA-CSN, 

http://www.epa.gov/ttn/airs/airaqs/ ), IMPROVE, NAPS and the Clean Air Status and Trends 

Network (CASTNET, http://www.epa.gov/castnet/ ). The NAPS network provided 24-hr average 

composition data every third day across Canada (Dabek-Zlotorzynska et al., 2011). The 

IMPROVE network provided 24-hr average composition data every third day over the national 

parks in the United States. The EPA-CSN network located sites mainly in urban or suburban 

areas, with reported 24-hr average composition data every three or six days. The CASTNET 

network provided weekly average inorganic ion measurements. We calculated ammonium 
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concentrations from sulfate and nitrate measurements of the IMPROVE network by assuming the 

aerosol is in neutral state. We calculated OM from measured OC using a spatially and seasonally 

varying OM/OC ratio (Philip et al., 2014).  

 

3.6.2 Description of Simulated PM2.5 and Chemical Components 

Both the measurements and the downscaled simulation exhibited enhanced PM2.5 

concentrations across the eastern United States extending into southern Ontario. Regional 

enhancements across northern Canada reflect wildfire influence as discussed further below. We 

found a high degree of consistency of the downscaled simulation with in situ PM2.5 

concentrations, with a RMSE of 1.79 μg m-3 and r of 0.77 over North America (Figure 3-S1).  

The downscaled simulation was most consistent with measured chemical components for 

sulfate (r=0.76, slope=0.88), ammonium (r=0.74, slope=1.12), nitrate (r=0.69, slope=0.75) and to 

a lesser extent OM (r=0.68, slope=0.88). The enhanced concentrations of sulfate-nitrate-

ammonium aerosols south of the Great Lakes were reproduced by the simulation, albeit with a 

slight underestimate of sulfate and nitrate. The measured enhancement of OM over the 

southeastern U.S. was well represented in the simulation. The simulation exhibited hotspots of 

BC concentration associated with major urban areas (Figure 3-S2).  

Figure 3-S3 showed the fractional contribution of different chemical components to total 

annual mean PM2.5 concentrations. OM accounts for more than 40% of the total PM2.5 

concentrations over many regions in North America. SNA were major components of total PM2.5 

over North America contributing 44% of population-weighted PM2.5 over Canada and 51% over 

the United States. Sulfate had a major influence on population-weighted PM2.5, accounting for 

22% over Canada and 25% over the United States. Nitrate and ammonium contribute similarly 
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over Canada and the United States, accounting for roughly 12% of population-weighted PM2.5 

mass respectively. BC, dust and sea salt typically accounted for a small fraction (less than 5%) of 

total PM2.5 concentrations over North America, with the exception of mineral dust in the 

southwest. 

Table 3–S1. Percentage contribution of diesel sector to the Canadian transport sector 

 Canada Atlantic 

Canada 

Northern 

Canada 

Western 

Canada 

Central 

Canada 

Percentage  35% 37% 37% 36% 35% 

 

 

Figure 3-S1. Annual mean PM2.5 concentrations for 2013. The top-left panel shows the 
baseline downscaled simulation. The bottom-left panel shows ground-based 
measurements. The right panel shows the corresponding scatter plot with root mean 
square error (RMSE), correlation coefficient(r) and slope calculated with reduced major 
axis linear regression. N is the number of valid ground-based monitoring records. The 
best fit line is dashed. The 1:1 line is solid. Figure was created using MATLAB_R2016b. 
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Figure 3-S2. Annual mean chemical components in baseline downscaled simulation (left) 
and ground-based measurements (middle). The right column contains scatter plots 
between simulated and observed species concentrations using reduced major axis linear 
regression. Slope, root mean square error (RMSE) and correlation coefficient (r) are 
reported. The best fit line is dashed. The 1:1 line is solid. Figure was created using 
MATLAB_R2016b. 
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Figure 3-S3. Fractional contribution of different chemical components to total annual 
mean PM2.5 concentrations. Aerosol water is associated with each chemical component at 
35% RH. Abbreviations are sulfate-nitrate-ammonium (SNA), organic mass (OM) and 
black carbon (BC). Inset values are population-weighted annual mean PM2.5 
concentrations resulting from each chemical component over the U.S. (red) and Canada 
(blue). Figure was created using MATLAB_R2016b. 
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Figure 3-S4. Contribution of individual emission sector to PM2.5 concentrations in winter 
(December, January, February). Other Sources includes volcano, dimethyl sulfide 
(DMS), and long-range transport (LRT) from Asia, Europe and Alaska. Inset values are 
population-weighted annual mean PM2.5 concentrations attributing to each sector over 
the U.S. (red) and Canada (blue). Figure was created using MATLAB_R2016b. 
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Figure 3-S5. As in Figure 3-S4 but in summer (June, July, August). Figure was created 
using MATLAB_R2016b. 

 

Figure 3-S6. Domain of regions in Canada. Figure was created using MATLAB_R2016b. 
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Figure 3-S7. Fractional contribution of different sectors to population-weighted average 
PM2.5 concentrations over different regions in Canada in winter (December, January, 
February). The number under each bar represents the total population-weighted annual 
mean PM2.5 concentrations over that region. The hatched part in each sector represents 
the fractional contribution from the United States. Others include dimethyl sulfide 
(DMS), volcano, and long-range transport (LRT) from Asia, Europe and Alaska. 
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Figure 3-S8. As in Figure 3-S7 but in summer (June, July, August). 
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Figure 3-S9. Fractional contribution of different sectors to population-weighted average 
PM2.5 concentrations over different provinces in Canada. The number under each bar 
represents the total population-weighted annual mean PM2.5 concentrations over that 
region. The hatched part in each sector represents the fractional contribution from the 
United States. Others include dimethyl sulfide (DMS), volcano, and long-range transport 
(LRT) from Asia, Europe and Alaska. 
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Figure 3-S10. As in Figure 3-S9 but averaged over winter (December, January, 
February). 

 

Figure 3-S11. As in Figure 3-S9 but averaged over summer (June, July, August). 
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(a) 

 

(b) 

 

 

 

 



 

 73 

(c) 

 

(d) 

 

Figure 3-S12. Population-weighted annual mean concentration of chemical components 
(μg m-3) attributed to different sectors over Atlantic, Northern, Central and Western 
Canada. Other includes dimethyl sulfide (DMS), volcano, biogenic secondary organic 
aerosol (SOA) and long-range transport (LRT) from Asia, Europe and Alaska. Figure 
was created using MATLAB_R2016b. 
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Figure 3-S13. Population-weighted sectoral fractional contribution versus population-
weighted PM2.5 mass over the United States. Stacked bar plots show percentage of each 
sector in different PM2.5 levels. Other includes dimethyl sulfide (DMS), volcano, and 
long-range transport (LRT) from Asia, Europe and Alaska. 
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Figure 3-S14. Annually total dry matter over Canada from wildfire emission inventories 
in the simulation (1990 to 1996 from ground-based North America fire emission 
database;1997 to 2015 from GFED). Figure was created using MATLAB_R2016b. 
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The material in this chapter will be submitted to Earth System Science Data journal.  

 

4.1 ABSTRACT  

The nonlinear dependence of the dust saltation process on wind speed poses a challenge for 

models of varying resolutions. This challenge is of particular relevance for the next generation of 

chemical transport models with nimble capability for multiple resolutions. We develop and apply 

a method to harmonize dust emissions across simulations of different resolutions by generating 

offline grid independent dust emissions driven by native high resolution meteorological fields. 
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We implement into the GEOS-Chem chemical transport model a high resolution dust source 

function to generate updated offline dust emissions. These updated offline dust emissions based 

on high resolution meteorological fields can better resolve weak dust source regions, such as in 

southern South America, southern Africa and the southwestern United States. Identification of an 

appropriate dust emission strength is facilitated by the resolution independence of offline 

emissions. We find that the performance of simulated AOD versus measurements from the 

AERONET network and satellite remote sensing improves significantly when using the updated 

offline dust emissions with the total global annual dust emission strength of 2,000 Tg yr-1rather 

than the standard online emissions in GEOS-Chem. The offline high resolution dust emissions 

are easily implemented in chemical transport models, with potential to promote module model 

development and evaluation.  

 

4.2 INTRODUCTION 

Mineral dust, as one of the most important natural aerosols in the atmosphere, has 

significant impacts on weather and climate by absorbing and scattering solar radiation (Bergin et 

al., 2017; Kosmopoulos et al., 2017), on atmospheric chemistry by providing surfaces for 

heterogeneous reaction of trace gases (Chen et al., 2011; Tang et al., 2017), on the biosphere by 

fertilizing the tropical forest (Bristow et al., 2010; H. Yu et al., 2015), and on human health by 

increasing surface PM2.5 concentrations (De Longueville et al., 2010; Fairlie et al., 2007). Dust 

emissions are primarily controlled by surface wind speed, vegetation cover and soil water 

content. The principal mechanism for natural dust emissions is saltation bombardment (Gillette 

& Passi, 1988; Shao et al., 1993), in which sand-sized particles creep forward and initiate the 

suspension of smaller dust particles when the surface wind exceeds a threshold. The nonlinearity 
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of this process introduces an artificial dependence of simulations upon model resolution (Ridley 

et al., 2013). For example, dust emissions in most numerical models are parameterized with an 

empirical method (e.g. Ginoux et al., 2001; Zender et al., 2003), which requires a critical wind 

threshold to emit dust particles. Methods are needed to address the artificial dependence of 

simulations upon model resolution that arises from this nonlinearity in dust emissions.  

Addressing this nonlinearity is especially important for the next generation of chemistry 

transport models that is emerging with nimble capability for a variety of resolutions at the global 

scale. For example, the high performance version of GEOS-Chem (GCHP) (Eastham et al., 

2018) currently offers simulation resolutions from C24 (~ 4°x5°) to C360 (~0.25°), with progress 

toward even finer resolution and toward a variable stretched grid capability. Resolution-

dependent mineral dust emissions would vary by a factor of 3 from C360 to C24, and inhibit 

interpretation (Ridley et al., 2013). Grid-independent high resolution dust emissions offer a 

potential solution to this concern.  

An important capability in global dust evaluation is ground-based and satellite remote 

sensing. AERONET, a global ground-based remote sensing aerosol monitoring network of Sun 

photometers (Holben et al., 1998), has been widely used to evaluate dust simulations. Satellite 

remote sensing provides additional crucial information across arid regions where in-situ 

observations are sparse (Hsu et al., 2013). Satellite aerosol retrievals have been used extensively 

in previous studies to either evaluate the dust simulation (Ridley et al., 2012, 2016) or constrain 

the dust emission budget (Zender et al., 2004). Satellite aerosol products have been used to 

identify dust sources worldwide (Ginoux et al., 2012; K. Schepanski et al., 2012; Y. Yu et al., 

2018), especially for small-scale sources (Gillette, 1999).  
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The objective of this study is to develop a method to mitigate the inconsistency of total 

dust emissions across different resolution of simulations by generating and archiving an offline 

dust emissions using native high resolution meteorological fields. We apply this method to 

GEOS-Chem chemical transport model. As part of this effort, we implement an updated high 

resolution satellite-identified dust source function into the dust mobilization module of GEOS-

Chem to better represent the spatial structure of dust sources. We apply this new capability to 

assess the source strength that best represents observations. 

 

4.3 MATERIALS AND METHODS  

4.3.1 Description of Observations 

We use both ground-based and satellite observations to evaluate our GEOS-Chem 

simulations. AERONET is a global ground-based remote sensing aerosol monitoring network of 

Sun photometers with direct sun measurements every 15 minutes (Holben et al., 1998). We use 

Level 2.0 Version 3 data that has improved cloud screening algorithms (Giles et al., 2019). AOD 

at 550 nm is  interpolated based on the local angstrom exponent at the 440 nm and 670 nm 

channels.  

Twin Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments were 

launched aboard both on the Terra and Aqua NASA satellite platforms and provide near daily 

measurements globally. We use the AOD at 550 nm retrieved from Collection 6.1 (C6) of 

MODIS product (Sayer et al., 2014). We use AOD from the Deep Blue (DB) retrieval algorithm 

(Hsu et al., 2013; Sayer et al., 2014) designed for bright surfaces, and the Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) algorithm (Lyapustin et al., 2018), which 
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provides global AOD retrieved from MODIS C6 radiances at a resolution of 1 km. The MAIAC 

AOD used in this study is interpolated to the AOD value at 550 nm. 

We compare the simulated fine AOD with measurements using reduced major axis linear 

regression. We report root mean square error (E), correlation (R) and slope (M). 

4.3.2 Dust Mobilization Module 

We use the dust detrainment and deposition (DEAD) scheme (Zender et al., 2003) in the 

GEOS-Chem model to calculate dust emissions. The saltation process is dependent on the critical 

threshold wind speed, which is determined by surface roughness, soil type and soil moisture. We 

use a fixed soil clay fraction of 0.2 as suggested in Zender et al. (2003). Dust aerosol is 

transported in four size bins (0.1-1.0, 1.0-1.8, 1.8-3.0, and 3.0-6.0 μm radius). Detailed 

description of the dust emission parameterization is in section 4.7.  

The fractional area of land with erodible dust is represented by a source function. The 

dust source function used in the dust emission module plays an important role in determining the 

spatial distribution of dust emissions. The standard GEOS-Chem model (version 12.5.0) uses a 

source function at 2° x 2.5° resolution from Ginoux et al. (2001) as implemented by Fairlie et al. 

(2007). We implement an updated high resolution version of the dust source function in this 

study at 0.25° x 0.25° resolution. Figure 4-S1 shows a map of the original and updated version of 

the dust source function. The updated source function exhibits more spatially resolved 

information due to its finer spatial resolution resulting in a higher fraction of erodible dust over 

in the eastern Arabian Peninsula, the Bodélé depression, and the central Asian deserts. The dust 

module dynamically applies this source function, together with information on soil moisture, 

vegetation, and land use to calculate hourly emissions using the HEMCO module described 

below.  
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4.3.3 Offline Dust Emissions at Native Meteorological Resolution 

HEMCO (Keller et al., 2014) is a stand-alone software module for computing emissions 

in global atmospheric models. We run the HEMCO standalone version using native 

meteorological resolution (0.25° x 0.3125°) data to archive the offline dust emissions at the same 

resolution as the meteorological data. In this study, we generate two offline dust emission 

datasets at 0.25° x 0.3125° resolution. One, referred to as the default offline dust emissions, uses 

the existing dust source function in the dust module; the other, referred to as the updated offline 

dust emissions, uses the updated dust source function implemented here.  Both datasets are at the 

hourly resolution of the parent meteorological fields. The archived native resolution offline dust 

emissions can be an input emission inventory for chemical transport models with scalable dust 

source strengths. We use the GEOS-Chem model to evaluate the dust simulations and the 

emission strength.  

 

4.3.4 GEOS-Chem Chemical Transport Model and Simulation Configurations 

GEOS-Chem (The International GEOS-Chem User Community, 2019) is a three-

dimensional chemical transport model driven by assimilated meteorological data from the 

Goddard Earth Observation System (GEOS) of the NASA Global Modelling and Assimilation 

Office (GMAO). The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium 

(SNA) aerosol system (Fountoukis & Nenes, 2007; Park et al., 2004), carbonaceous aerosol 

(Hammer et al., 2016; Park et al., 2003; Q. Wang et al., 2014), secondary organic aerosols 

(Marais et al., 2016; Pye et al., 2010), sea salt (Jaeglé et al., 2011) and mineral dust (Fairlie et al., 

2007) with updates to aerosol size distribution (Ridley et al., 2012; L. Zhang et al., 2013). We 
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include dry and wet deposition (Liu et al., 2001) processes in the model. Gravitational settling 

for dust is from Fairlie et al. (2007).  

The original GEOS-Chem simulation used online dust emissions by coupling the dust 

mobilization module online. We develop the capability to use offline dust emissions based on the 

archived fields described in Section 4.3.3 as input emission inventory. We conduct global 

simulations with GEOS-Chem (version 12.5.0) at a horizontal resolution of 2° by 2.5° for the 

year 2016. Simulations using the online and offline dust emissions are conducted to evaluate the 

offline dust emissions. We conduct two simulations using online dust emissions with different 

dust source functions. The first is with the original version of dust source function. The other one 

is with the updated version of source function. The annual total emissions for the online dust 

emissions are at the original value of 909 Tg yr-1. We conduct another two sets of simulations 

using offline dust emissions. The first uses the default offline dust emissions with the annual 

total dust emissions of 909 Tg yr-1. The second uses the updated offline dust emissions with the 

annual total dust emissions scaled to 2,000 Tg yr-1, which is in the range of the current dust 

emission estimates of over 426 - 2726 Tg yr-1 (Huneeus et al., 2011) and better represents 

observations as will be shown below. 

We calculate AOD at 550 nm in the model with the assumption of lognormal size 

distributions of externally mixed aerosols as a function of local relative humidity. Aerosol optical 

properties are based on the Global Aerosol Data Set (GADS) as implemented by Martin et al. 

(2003) with updates based on measurements (Drury et al., 2010; Latimer & Martin, 2019). 

 

4.4 RESULTS AND DISCUSSION  

4.4.1 The Spatial and Seasonal Variation of Offline Dust Emissions 
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Figure 4-1 shows the spatial distribution of the annual and seasonal dust emission flux 

rate for the updated offline dust emissions. The annual dust emission flux rate is high over major 

deserts, such as the northwestern Sahara, the Bodélé Depression in northern Chad, eastern 

Arabian Peninsula and central Asian Taklimakan and Gobi deserts. There are also hotspots of 

dust emission flux rate over relatively smaller deserts, such as the Mojave Desert of the 

southwestern United States, the Atacama Desert of southern South America, the Kalahari Desert 

on the west coast of southern Africa and the deserts in central Australia. Those features reflect 

the fine resolution of the updated dust source function and of the offline dust emissions. 

Seasonally, the dust emission flux rate resembles the annual distribution, however, with a lower 

dust emission flux rate over the Bodélé Depression in northern Chad in summer and higher dust 

emission flux rate over the Middle East and central Asian deserts in spring and summer.  
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Figure 4-1. Annual and seasonal mean dust emission flux rate for the offline high 
resolution dust emissions with updated dust source function and updated annual total 
dust emissions of 2,000 Tg. 
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Figure 4-2. Annual mean dust emission flux rate for 2016. (a), The original online dust 
emissions with original dust source function and annual total dust emissions of 909 Tg. 
(b), Online dust emissions with updated dust source function. (c), Difference of flux rate 
between online dust emissions using original and updated dust source functions. (d), 
Offline dust emissions with updated dust source function. (e), Offline dust emissions with 
updated dust source function and updated annual total dust emissions of 2,000 Tg. (f), 
Difference of flux rate between offline and online dust emissions. The online dust 
emissions are in 2° x 2.5° resolution. The offline dust emissions shown in (b), (d), (f) are 
regridded from 0.25° x 0.3125° resolution for comparison with online dust emissions. 

Figure 4-2 shows the spatial distribution of the annual dust emission flux rate for the 

online and offline dust emissions with the original and updated dust source functions with 

original and updated global total dust source strengths. All simulations exhibit high dust 

emission flux rate over major desert regions, such as the Sahara, Middle East and Central Asian 

deserts, with local enhancements over the western Sahara and northern Chad. The simulation 
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with the updated source function exhibits stronger emissions in the Sahara and Persian Gulf 

regions (Figure 4-2c). The difference between the online and offline dust emissions, shown in 

Figure 4-2f, indicates that the offline dust emissions based on native resolution meteorological 

fields have lower dust emission flux rates over northwest Africa, but higher dust emission flux 

rates over the Middle East and Central Asia. Higher annual dust emission flux rates over the 

southwestern United States, southern South America, west coast of southern Africa and central 

Australia in the offline dust emissions reflect that the native resolution offline dust emissions are 

strengthened over relatively weaker dust emission regions. Generally, coastal and minor desert 

regions emit more dust when calculating emissions at the native meteorological resolution.  

Figures 4-S2 – S5 show the seasonal variations of dust emission flux rates for online and 

offline emissions. The offline dust emissions have lower emission flux rates than the online dust 

emissions during spring (March, April and May) (MAM) and winter (December, January and 

February) (DJF) over the Sahara Desert. The offline dust emission flux rate is higher than the 

online dust emission flux rate over the Middle East and Central Asian deserts during spring and 

summer (June, July and August) (JJA). Emission flux rates are low over Central Asian deserts 

during winter. The strengthening of offline dust emissions over weaker dust emitting regions 

persists throughout all seasons. 

 

4.4.2 The Performance of AOD Simulations over Desert Regions 

Figure 4-3 shows simulated AOD using the original online and updated offline dust 

emissions. We select for evaluation the AERONET sites where the ratio of simulated dust optical 

depth (DOD) to simulated total AOD exceeds 0.5 in the simulation using the updated offline dust 

emissions. Annually, the simulated DOD has the highest value over the Bodélé Depression. This 
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feature persists in all seasons except summer when DOD has the highest values over the western 

Sahara and eastern Arabian Peninsula. The scatter plots show that annually the simulated AOD 

from both simulations are highly correlated with AERONET measurements across the dust 

regions (R= 0.86 – 0.88). The simulation with updated offline dust emissions has an improved 

slope and smaller root mean square error than the simulation using the original online dust 

emissions. AOD from the simulation with updated offline dust emissions are also more 

consistent with the measurements in different seasons, especially in the spring (MAM) and fall 

(SON) with slopes close to unity and R exceeding 0.9.  

We further evaluate the performance of simulated AOD over major desert regions using 

the MODIS DB and MAIAC AOD products. Figure 4-4 shows annual and seasonal scatter plots 

comparing GEOS-Chem simulated AOD using original online dust emissions and updated 

offline dust emissions against retrieved AOD from MODIS DB and MAIAC satellite products 

over the three major desert regions outlined in Figure 4-3. Figure 4-S6 shows the annual and 

seasonal AOD distribution from MODIS DB and MAIAC. Annually, the simulation using 

updated offline dust emissions exhibits greater consistency with satellite AOD than does the 

simulation using original online dust emissions across all three desert regions. The simulation 

using updated offline dust emissions performs better across all three desert regions and in all four 

seasons except for the Sahara in summer, during which AOD is overestimated. Both simulations 

underestimate AOD over central Asian deserts during winter when dust emissions are low and 

other sources may be more important. Overall, the simulation using original online dust 

emissions underestimates AOD over all three major desert regions, especially over the Middle 

East and central Asian deserts. The simulation using updated offline dust emissions exhibits 

greater consistency with satellite observations with higher slopes and correlations. 
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Figure 4-3. Annual and seasonal mean simulated dust optical depth (DOD) fraction (left 
column) and aerosol optical depth (AOD) (middle column) from GEOS-Chem 
simulations for 2016, and AERONET measured AOD at sites where the ratio of simulated 
DOD and AOD exceeds 0.5, which are shown as filled circles in the middle column. 
Boxes in the left top panel outline the three major deserts examined in Figure 4-4. The 
right column shows the corresponding scatter plot with root mean square error (E), 
correlation coefficient(R) and slope (M) calculated with reduced major axis linear 
regression. N is the number of valid ground-based monitoring records. The results for the 
simulation using the original dust emissions are shown in black; the results for the 
simulation using updated dust emissions are shown in red. The best fit lines are dashed. 
The 1:1 line is solid. 



 

 89 

 

Figure 4-4. Scatter plots and statistics of comparing GEOS-Chem simulated AOD with 
satellite AOD over desert regions annually (the first column) and seasonally (the right 
four columns). The results for Sahara, Middle East and Central Asia deserts are shown in 
the top, middle and bottom rows respectively. The results for the simulation using the 
original dust emissions are shown in black; the results for the simulation using updated 
dust emissions are shown in red. Dots represent the comparison with MODIS Deep Blue 
(DB) AOD; the plus signs represent the comparison with MAIAC AOD. Correlation 
coefficient(R), root mean square error (E), and Slope (M) are reported, in which R1, E1 
and M1 show the results of the comparison with MODIS DB AOD; R2, E2 and M2 show 
the results of the comparison with MAIAC AOD. The best fit lines are dashed lines with 
corresponding marker signs and colors. The 1:1 line is solid black line. 

 

4.4.3 Discussion of the Dust Source Strength  

One of the advantages of the offline dust emissions is that the dust source strengths are 

scalable. We have found that the simulation with global total annual dust emissions scaled to 

2,000 Tg better represents observations than does the default simulation with global total annual 
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dust emissions of 909 Tg. We also evaluate simulations with global total annual dust emissions 

scaled to 1,500 Tg and 2,500 Tg. Figure 4-S7 indicates that the simulation with global total 

annual dust emissions scaled to 2,000 Tg is more consistent with satellite observations over the 

Sahara and Middle East. Although the central Asian deserts and regions with AERONET 

observations (Figure 4-S8) are better represented by the simulation with global total annual dust 

emissions scaled to 2,500 Tg, since the Sahara has highest dust emissions (Huneeus et al., 2011), 

and AOD over the Sahara is most likely dominated by dust, we scale global total annual dust 

emissions to best match this source region. Additional development and evaluation should be 

conducted to further narrow the uncertainty of dust emissions, especially at the regional scale.  

 

4.4.4 Advantages of High Resolution Offline Dust Emissions for Model 

Development 

Uncertainty remains in the estimated global annual total dust emissions. Direct dust 

emission flux observations are few. Current atmospheric and chemical transport models apply a 

global scale factor to optimize with a specific set of ground observations. Because of the non-

linear dependence on resolution of the dust emissions, the source strength has historically 

depended upon model resolution, which inhibits general evaluation. The native resolution offline 

dust emissions facilitate consistent evaluation and application across all model resolutions.  

 

4.5 SUMMARY AND CONCLUSION  

The nonlinear dependence of dust emission parameterizations upon model resolution poses 

a challenge for the next generation of chemical transport models with nimble capability for 

multiple resolutions. In this paper we have developed and tested a method to calculate offline 



 

 91 

dust emissions at the native meteorological resolution to promote consistency of dust emissions 

across different model resolutions. We take advantage of the capability of HEMCO standalone 

module to calculate dust emission offline at native meteorological resolution using DEAD dust 

emission scheme combined with an updated high resolution dust source function. We evaluate 

the performance of the simulation with native resolution offline dust emissions and an updated 

dust source function with source strength of 2,000 Tg/yr. We find better agreement with 

measurements, including satellite and AERONET AOD. The offline fine resolution dust 

emissions better resolve smaller desert regions. The independence of source strength from 

simulation resolution facilitates evaluation with observations. Further work should continue to 

develop and evaluate the representation of dust emissions. 

Code availability: Codes calculating offline dust emissions can be obtained by contacting the 

leading author.   

Data availability: The offline dust emissions dataset with updated dust source function can be 

accessed freely from 

(http://geoschemdata.computecanada.ca/Transfers/OFFLINE_DUST/v2020-05/0.25x0.3125). 
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4.7 SUPPLEMENTAL MATERIALS 

This section includes the description of DEAD dust emission scheme and supplemental figures 

described in the main text.  

The dust detrainment and deposition (DEAD) scheme (Zender et al., 2003) is based on a theory 

studying the transport of dust by winds on Mars to calculate horizontal dust saltation flux H:  

                               H =                                     (1) 

where C is a global tuning factor determining the total dust strength, ρ is the air density, g is the 

acceleration of gravity,  is the friction velocity and  is the threshold friction velocity. The 

vertical dust flux, F, is proportional to the horizontal saltation flux. F is parameterized as:  

      F = AmSαH,      (2) 

where α is the sandblasting mass efficiency, which is a function of the clay fraction in the soil. 

We use a fixed soil clay fraction of 0.2 as suggested in Zender et al. (2003). S is dust source 

function, which is an effective factor that favors emissions from specific geographic features. We 

updated S with a fine resolution dataset without vegetation mask (Ginoux et al., 2001). Am is a 

factor that suppresses dust emission from snow covered land (As), wetlands (Ai) and water 

bodies (Aw) and vegetated area (Av),  

                  Am = (1-As)(1-Ai-Aw)(1-Av)     (3) 

The vegetation effect Av is represented by monthly mean leaf plus stem area index (LAI) 

following Zender et al. (2003). This feature enables seasonal dust mobilization in the dust 

emisison scheme. We have not investigated the annual vegetation variation in this study.  
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 Figure 4-S1. The original and updated versions of the dust source function. 
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Figure 4-S2. The same as Figure 4-2 but averaged over MAM (March, April and May). 
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Figure 4-S3. The same as Figure 4-2 but averaged over JJA (June, July and August). 
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Figure 4-S4. The same as Figure 4-2 but averaged over SON (September, October and 
November). 
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Figure 4-S5. The same as Figure 4-2 but averaged over DJF (December, January and 
February). 
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Figure 4-S6. Annual and seasonal satellite AOD from MODIS Deep Blue (DB) and 
MAIAC algorithms. 
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Figure 4-S7. Scatter plots and statistics of comparing GEOS-Chem simulated annual 
mean AOD with satellite AOD over desert regions. Three columns represent three 
simulations with total annual dust emissions scaled to the value of 1,500 Tg, 2,000 Tg 
and 2,500 Tg respectively. The results for the Sahara, Middle East and central Asian 
deserts are shown in the top, middle and bottom rows respectively. Dots represent the 
comparison with MODIS DB AOD; the plus signs represent the comparison with MAIAC 
AOD. Correlation coefficient (R), root mean square error (E), and Slope (M) are 
reported, in which R1, E1 and M1 show the results of the comparison with MODIS DB 
AOD; R2, E2 and M2 show the results of the comparison with MAIAC AOD. The best fit 
lines are lines with corresponding marker signs. The 1:1 line is solid black line. 
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Figure 4-S8. Annual mean simulated AOD from GEOS-Chem simulations for 2016 for 
simulations with total annual dust emissions of 1,500 Tg, 2,000 Tg and 2,500 Tg, and the 
comparison against AERONET measured AOD. Sites, shown as filled circles are chosen 
by where the ratio of simulated DOD and AOD exceeds 0.5. Corresponding statistics, 
including root mean square error (E), correlation coefficient(R) and slope (M), are inset. 
Blue, black and red in the scatter plot represent simulations with total annual dust 
emissions of 1,500 Tg, 2,000 Tg and 2,500 Tg, respectively. 
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CHAPTER 5 CONCLUSION 

5.1 SUMMARY OF THIS PRESENT WORK  

PM2.5 exposure is a major health concern. Long-term exposure to PM2.5 is associated with 

increased mortality, even at low PM2.5 concentrations. Long-term historical PM2.5 concentration 

estimates are needed to investigate concentration-response functions. An enhanced 

understanding of sectoral contributions to PM2.5 is needed to guide future air quality management 

and inform studies about the health outcomes associated with specific emission sectors. This 

thesis included three research projects that applied the combination of observations and a 

chemical transport model to advance understanding of historical PM2.5 concentrations and source 

contributions.  

In Chapter 2, we estimated historical PM2.5 concentrations over North America from 1981 

to 2016 by using the information from different platforms, including chemical transport 

modeling, satellite remote sensing, and ground-based measurements. We included long-term 

historical emission inventories in the model simulation. We downscaled the simulation to a 

resolution of 1km x 1km using a satellite derived PM2.5 data set. We constrained the downscaled 

simulation with ground-based measurements. We evaluated the estimates with direct ground-

based PM2.5 measurements when available and otherwise with historical estimates of PM2.5 

inferred from PM10 or TSP measurements. The estimated annual mean PM2.5 concentrations were 

generally consistent with direct ground-based PM2.5 measurements with R2 ranging from 0.6 to 

0.85 over the comparison period from 1988 onward. The relative RMSD at direct PM2.5 sites 

drops from 30% in the early 1990s to below 20% prior to 1999 when the direct PM2.5 

measurements became more widespread. The R2 versus PM2.5 data inferred from PM10 
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measurements increases with the increase of PM10 sites for the years 1985-1990 indicating the 

importance of the historical PM10 measurements in the estimates.  

The population-weighted annual average PM2.5 estimates over North America decreased 

from 22 ± 6.4 μg m-3 in 1981, to 12 ± 3.2 μg m-3 in 1998, and to 7.9 ± 2.1 μg m-3 in 2016, with 

an overall trend of -0.33 μg m-3 yr-1 (95% CI: -0.35 -0.30). The population-weighted trends from 

our current dataset remain within 0.03 μg m-3 yr-1 of our prior work (Boys et al., 2014; van 

Donkelaar et al., 2015), with an advantage that our current study spans a time period (1981-

2016) about twice as long by including more trend information from our GEOS-Chem 

simulation, and includes historical ground-based measurements prior to 1999. The collocated 

comparison of the trends of population-weighted annual average PM2.5 from our estimates and 

ground-based measurements were highly consistent with RMSD of 0.66 μg m-3. 

In Chapter 3, we investigated the sectoral contribution to PM2.5 in 2013 for Canada using 

the GEOS-Chem chemical transport model. We conducted sensitivity simulations by zeroing out 

each emission sector and downscaled the simulations with satellite-based PM2.5 to an exposure-

relevant resolution (1 km x 1km). We found that the contributions to PM2.5 at the low population-

weighted PM2.5 concentrations across Canada of 5.5 μg m-3 is primarily (81%) from five major 

anthropogenic sectors and the wildfires sector. The three leading sectoral contributors to 

population weighted PM2.5 over Canada are wildfires with 1.0 μg m-3 (17%), transportation with 

0.96 μg m-3 (16%) and residential combustion with 0.91 μg m-3 (15%). The relative contribution 

to population-weighted PM2.5 of different sectors varies regionally with residential combustion as 

the leading contributor in Central Canada (19%); while wildfires dominate over Northern Canada 

(59%), Atlantic Canada (34%) and Western Canada (18%). The regionally-varying relative 
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contribution of different emission sectors across Canada implies that mitigation strategies will 

benefit from regional policies. 

We evaluated the contribution from U.S. sources. We found that over 70% of population-

weighted PM2.5 originates from Canadian sources followed by 30% from the contiguous United 

States. The agricultural, transportation and power generation sectors from U.S. sources are the 

leading contributors. The contribution from U.S. sources is larger over Central Canada (33%) 

than over Western Canada (17%), Atlantic Canada (17%) and Northern Canada (< 2%). The 

notable PM2.5 contributions from the contiguous United States (~30%) implies benefits from 

international coordination.  

Sectoral contribution analysis for 1990, 2000 and 2010 showed that the contribution from 

anthropogenic sources to population-weighted PM2.5 decreased from 7.1 μg/m3 to 3.4 μg/m3, 

which reflects the successful controls on emissions over the last two decades. The contributions 

of anthropogenic emission sectors decreased with decreasing PM2.5 concentrations. This finding 

could shed light on the investigation of the shape of the concentration-response function for low-

level PM2.5.  

In Chapter 4, we developed a method to calculate and archive offline dust emissions at the 

native meteorological resolution to promote consistency of dust emissions across different model 

resolutions, which will benefit the next generation of chemical transport models, such as GCHP, 

with nimble capability for multiple resolutions. The offline dust emissions based on high 

resolution meteorological fields can better resolve weak dust source regions, such as southern 

South America, southern Africa and the southwestern United States. In terms of model 

development, the offline high resolution dust emissions are expected to ease the evaluation 

process for global total dust emissions. The native resolution offline dust emissions facilitate 
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evaluation by scaling according to observations before coupling with the model rather than 

testing scale factors for different resolutions. We have found that simulation with global total 

annual dust emission scaled to 2,000 Tg yr-1 generally represents observations of AOD from 

satellite and AERONET. 

 

5.2 STUDIES UTILIZING THIS PRESENT WORK 

The estimated historical PM2.5 concentration data set in Chapter 2 provides long-term 

continuous PM2.5 information at an exposure-relevant resolution across North America. This data 

set is being used to study the shape of concentration-response relationship at low PM2.5 

concentrations. Pappin et al. (2019) linked this dataset with the mobility and mortality data in 

three Canadian Census Health and Environment Cohorts (CanCHEC) and found that PM2.5 was 

associated with non-accidental mortality at concentrations as low as 5 μg m-3. Similarly, a 

research report (Brauer et al., 2019) from Health Effects Institute (HEI) provided evidence that 

the relationship between PM2.5 and non-accidental mortality was supralinear without apparent 

threshold. Crouse et al. (2020) used this data set as one of PM2.5 exposures to evaluate the 

sensitivity of PM2.5-mortality associations to the temporal and spatial scale of the PM2.5 

exposures. The results in this study not only further supported the previous relationship between 

PM2.5 and non-accidental mortality in Pappin et al. (2019) and Brauer et al. (2019), but also 

highlighted the importance of longer-exposure window and more exposure-relevant spatial 

resolution of the exposure data in characterizing the relationship. In addition, Muller (2020) 

applied this dataset in the economy field assessing the long-term air pollution damage in the U.S. 

economy. 
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The sectoral contribution analysis for Canada in Chapter 3 provides detailed information 

about the annual source contributions from each emission sectors in 2013 and selected years in 

the past three decades (1990, 2000 and 2010). Chen et al. (in prep) are applying the sectoral 

PM2.5 data to a national level epidemiological analysis using the CanCHEC cohort to examine 

the relationship between sector attributed PM2.5 concentrations and cardiovascular disease 

deaths.  

 

5.3 OUTLOOK  

The GEOS-Chem chemical transport model used in this thesis has utility for understanding 

PM2.5 and its chemical compositions. However, model uncertainty remains. Uncertainty could be 

reduced in the future through development to emission inventories and chemical mechanisms. 

Contemporary and sophisticated emission inventories will help to identify more reliable and 

detailed source contribution information. The emission inventories we used in Chapter 3 

investigating the sectoral contribution to PM2.5 for Canada were updated until 2014. 

Contemporary emission inventories with detailed subsectors and fuel type information 

(McDuffie et al., 2020) will benefit future source contribution studies in the global and national 

level. 

Model resolution also plays an important role in reducing uncertainties. As presented in 

Chapter 2 and Chapter 3 of this thesis, we leveraged the nested grid capability of GEOS-Chem to 

capture the small-scale variations obtained from fine resolution simulations. However, this 

feature sacrifices the model resolution elsewhere. The high performance version of GEOS-Chem 

(GCHP), which enables massive parallelization by using a distributed-memory framework 
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(Eastham et al., 2018), is expected to overcome this bottleneck with the capability of conducting 

global simulations with resolutions ranging from C24 (~4°x5°) to C360 (~0.25°).  

The offline high resolution grid independent dust emissions developed in Chapter 4 

advance the implementation of dust emissions for the next generation of CTMs, such as GCHP, 

with the capability for multiple resolutions. However, uncertainty remains in the estimated global 

annual total dust emissions. We have used satellite AOD and AERONET AOD measurements in 

Chapter 4 to constrain the total dust emissions. Further analyses should be conducted to further 

narrow the uncertainty gap of the global annual total dust emissions. Additional evaluation with 

measurements from other platforms, such as vertical profile measurements, should be useful to 

further constrain the dust emissions at regional scales. Additionally, the parameterization of the 

dust emission scheme should receive more attention in future development. 

Advanced understanding of sectoral contributions to PM2.5 and its historical 

concentrations can be of benefit for the future air quality standards regulation and management. 

Additionally, it can inform concentration-response relationship and sectoral health outcomes 

studies. As the Earth system continues to evolve, the impact of climate change on air quality and 

human health deserves attention. Scientific knowledge in this research field is enhancing the 

ability of understanding the interrelationships between air quality, human health and climate 

change.  
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