
LOW-POWER STAIRCASE ENCODER IMPLEMENTATION FOR
HIGH-THROUGHPUT FIBER-OPTICAL COMMUNICATIONS

by

Shizhong Li

Submitted in partial fulfillment of the requirements
for the degree of Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

August 2019

© Copyright by Shizhong Li, 2019

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

List of Abbreviations Used . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Motivations . 1

1.2 Contributions . 3

1.3 Thesis Organization . 4

Chapter 2 Research Background . 5

2.1 Error-Correcting Codes . 5

2.2 Fiber-Optical Communication System 6

2.3 Finite Field . 7

2.4 BCH Codes . 8

2.5 Product Codes . 9

2.6 Convolutional Codes . 11

2.7 400G, 400ZR and FEC . 12

Chapter 3 Staircase Codes . 14

3.1 BCH Encoder . 14

ii

3.2 Staircase Codes . 18

Chapter 4 Staircase Encoder Implementation 24

4.1 Staircase Encoding process for Hardware Implementation 24

4.2 Staircase Encoder Design . 25

4.2.1 Bit-Matrix Multiplier . 27

4.2.2 Bit-Matrix Adder . 29

4.2.3 Data Formatter and Information Buffer 29

4.2.4 Parity Generation Units . 30

4.2.5 ROMs . 33

4.2.6 Cp1,k Registers and Multiplexer 34

4.2.7 Staircase Encoder Controller 35

4.3 Power Reduction of the Staircase Encoder 40

Chapter 5 Simulation and Synthesis Results 42

5.1 Testbench Setup . 42

5.2 Simulation Waveforms . 43

5.3 Synthesis Results . 48

Chapter 6 Conclusion . 51

6.1 Conclusion . 51

6.2 Future Work . 52

Bibliography . 53

iii

List of Tables

Table 2.1 Multiplication and Addition over GF (2m) 8

Table 3.1 Parts of the look-up table for binary representations of primitive

root, power of primitive root and their decimal values 17

Table 4.1 The output control signals of the Finite State Machine 39

Table 5.1 Synthesis Results of Proposed Staircase Encoder 48

Table 5.2 Synthesis Results of Staircase Encoder Blocks @909MHz 48

Table 5.3 Comparison of Staircase Encoder Architectures @909MHz . . . 49

iv

List of Figures

Figure 2.1 Fiber-optical communication system. 6

Figure 2.2 Structure of the product code. 10

Figure 2.3 Convolutional codes sliding window encoding. 11

Figure 2.4 The 400ZR concatenated FEC. 13

Figure 3.1 Visualization of a staircase code array representation. 19

Figure 3.2 Two adjacent staircase blocks. 20

Figure 3.3 Staircase encoding process. 21

Figure 3.4 The Matlab model of the staircase encoding process. 22

Figure 4.1 Architecture of the proposed staircase encoder. 26

Figure 4.2 The timing diagram for the pipelined operation of the staircase

encoder. 27

Figure 4.3 The architecture of the Bit-Matrix Multiplier. 28

Figure 4.4 Architecture of the Multiplier Unit 2 in the Parity Multiplier 2. 29

Figure 4.5 The parity generation unit. 30

Figure 4.6 The parity generation of Cp1,k+1. 31

Figure 4.7 Timing diagram of the parity generation. 32

Figure 4.8 The Pa and P T
b ROMs. 34

Figure 4.9 The connection between Cp1,k Registers and MUX. 35

Figure 4.10 The staircase encoder Controller. 36

Figure 4.11 The Finite State Machine of the Controller. 38

v

Figure 5.1 At the beginning of the first block encoding. 44

Figure 5.2 Between the first and the second block. 45

Figure 5.3 Simulation of 3 staircase blocks. 46

Figure 5.4 Simulation of 50 staircase blocks. 47

Figure 5.5 Layout of the proposed staircase encoder. 49

vi

Abstract

This thesis presents a very large scale integration (VLSI) architecture of a high-

throughput, low latency and power staircase forward error correction (FEC) encoder.

The designed encoder achieves low latency and memory overhead by splitting the

parity generation matrix and pre-computing partial parity bits for the next stair-

case block while generating the current staircase block. The proposed encoder is

designed with multistage pipelined architecture that enables high efficiency in terms

of throughput and area. The proposed staircase encoder was synthesized using 65nm

CMOS technology. The throughput of the encoder achieves 432Gbps when operating

at 909MHz, with the power consumption of 323mW.

vii

List of Abbreviations Used

BCH Bose-Hocquenghem-Chaudhuri

BER Bit Error Rate

DCI Data Center Interconnect

DWDM Dense Wavelength Division Multiplexing

FEC Forward Error Correction

FPGA Field-programmable Gate Array

GF Galois Field

HDL Hardware Description Language

ITU International Telecommunication Union

LCM Least Common Multiple

LSB Least Significant Bit

MSB Most Significant Bit

MUX Multiplexer

OIF Optical Internetworking Forum

RAM Random-access Memory

ROM Read-only Memory

RTL Register-transfer Level

VLSI Very-large-scale Integration

viii

Acknowledgements

I would like to express my sincerest gratitude to my supervisor Dr. Kamal El-Sankary

and Co-supervisor Dr. Dmitry Trukhachev for their continuous support, patience

and encouragement during my graduate study. I could not complete this thesis work

without all the valuable suggestions from them.

I would like to thank Dr. Jason Gu and Dr. William J. Phillips for reviewing my

thesis and being a part of my supervisory committee.

Many thanks to Mark Leblanc for providing technical supports. I am also grateful

to our department secretaries Nicole Smith and Rebecca Baccardax for their support

and paperwork preparations. I wish to thank my research group mates Abolfazl

Zokaei, Alireza Karami and Heba Sultana for their encouragement and suggestion.

I would also like to express my gratitude to Precise-ITC and Mitacs Accelerate

Program for providing financial support for this research work.

Special thanks to my girlfriend Bixin Chen for accompanying and supporting me

throughout my graduate study.

Finally, I would like to express my deepest gratitude to my parents: my mother

Dajun Nie and my father Qing Li, for their unconditional support and encouragement.

ix

Chapter 1

Introduction

1.1 Motivations

Driven by the increasing demands in higher internet bandwidth, the development

of high throughput optical-fiber communication system advanced rapidly. The 400G

long-reach optical network standard [1] has been established by International Telecom-

munication Union (ITU) and ready to be adopted. Besides that, a 400ZR implemen-

tation agreement is developed by Optical Internetworking Forum (OIF) for designing

pluggable optical modules for the data center interconnect (DCI). Due to the rapid

growth of cloud-based computations, the traffic between data centers increased dra-

matically each year [2]. The pluggable optical modules are implemented in the DCI

to increase the system bandwidth. In both the 400G and 400ZR optical network sys-

tems, the high-performance error-correction staircase codes are the key component to

ensure high performance [1, 3].

Staircase codes, presented in [4], emerged as a competitor to a group of codes

proposed for ITU-T G.975.1 standard dedicated to high-speed fiber-optical communi-

cation over submarine links. While the best G.975.1 code can guarantee ultra-reliable

communication 0.96dB away from the Shannon capacity limit, staircase code tight-

ened this gap and offered an improvement of 0.42dB over the best G.975.1 code. Stair-

case codes quickly gained a reputation of a low-complexity high-performance FEC for

1

2

optical links and were generalized into a class of spatially-coupled split-component

codes [5].

From the structural perspective staircase codes can be seen as a convolutional

version of product codes [6]. The encoding of information is best represented by a

staircase-shaped semi-infinite array (discussed in more detail in Chapter 3) where

vertical and horizontal component codes cross-check each other. Such component

code interconnection allows for use of low-complexity iterative decoding where hard

bit-flipping decoding of component codes is performed in alternating manner. At the

same time, the convolutional staircase-like structure creates a spatial graph coupling

effect in a semi-infinite Tanner graph [7] of a staircase code. Spatial graph coupling

allows the staircase decoder to benefit from the threshold-saturation phenomenon

exhibited by spatially-coupled codes [8,9] and deliver near-capacity performance using

iterative decoding [5].

The performance of the FEC codes and their capabilities to solve application-

specific problems are often limited by their hardware implementation. Therefore,

it is crucial to develop the optimal VLSI design for an FEC code. Unfortunately,

very few studies have been published in terms of VLSI implementation of staircase

codes with [10] addressing staircase encoding, and [11, 12] dedicated to the staircase

decoder. FPGA emulations were performed on the concatenated staircase and Ham-

ming code in [13]. The work [10] developed a parallel staircase encoder to achieve

the throughput of 100Gbps. However, the design presented in [10] is not focused on

energy-efficiency and the implementation presented there simply follows the math-

ematical steps of the encoding algorithm. As staircase codes make their way into

present and future communication systems [14,15] and standards the interest in effi-

cient hardware implantation of these codes is rapidly increasing.

3

1.2 Contributions

1. This thesis discusses the staircase encoding process for the 400ZR optical net-

work 400ZR optical network recommendation ITU-T 709.2/Y.1331.2 [1, 3] for

400Gpbs ethernet standard.

2. This thesis proposes a high-throughput and low-power VLSI design of a stair-

case encoder which fits the 400ZR optical network recommendation ITU-T

709.2/Y.1331.2 [1, 3] for 400Gpbs ethernet standard.

3. The proposed staircase encoder design achieves low latency and memory over-

head by splitting the parity generation matrix into two parts that allow to

pre-compute partial parity bits for the next staircase block while the current

staircase block is in process of its generation.

4. Enabling high throughput and area efficiency by implementing multistage pipelined

architecture on the staircase encoder.

4

1.3 Thesis Organization

The thesis is organized as follows:

1. Chapter 2 reviews different types of error-correcting codes that are related to

the staircase codes. The 400G and 400ZR optical network systems are also

discussed.

2. Chapter 3 presents the detailed encoding process of BCH and staircase codes

based on the ITU-T recommendations.

3. Chapter 4 shows the proposed staircase encoder design and its VLSI implemen-

tation.

4. Chapter 5 presents the simulation and synthesis results of the proposed staircase

encoder.

5. Chapter 6 concludes the thesis and discusses future work.

Chapter 2

Research Background

2.1 Error-Correcting Codes

With the advancement in the processing speed of electronics devices, the demands for

high throughput and bandwidth of digital communication systems are also increasing.

However, data can be corrupted when transferring in the channel of communication

systems due to channel noises. The corrupted data lowers the reliability of the com-

munication system. Therefore, it is crucial to implement error-correcting techniques

in communication systems to flip the erroneous bits in the data [16].

Forward error correction (FEC) code is a commonly applied error correction

method for digital communication systems. FEC codes assist the system to detect

and flip numbers of corrupted in the received data without the need for data retrans-

mission [16]. The technique of FEC coding is to first add redundant bits (parity bits)

to the information data through encoding to form a codeword at the transmitter side.

Then the codeword gets transmitted, and the receiver decodes the received codeword

for detecting errors and correcting the corrupted bits in the information bits.

There are two main types of FEC codes, block codes and convolutional codes. The

difference in the block and convolutional codes are in terms of the encoding process.

The block codes encoding is an information bits block with fixed length followed by

its parity bits block. The encoding of convolutional codes not only involves current

5

6

information bits but also a certain number of previous information bits [17].

The metrics to evaluate the FEC codes, including code rate, coding gain, complex-

ity and bit error rate (BER) requirement. The code rate is the ratio of information

bits to codeword bits, which can provide information about the number of useful bits

in the transmitted bits. The coding gain is the reduction of required signal to noise

ratio Eb

No
(Eb is energy per bit, No is spectral noise density) between the FEC coded

system and the uncoded system for achieving the same BER [16]. The powerful FEC

codes also use the difference in Eb

No
between the Shannon limit and the coded system

at a certain BER for performance measurement [18]. The Shannon limit defines the

maximum data rate in a communication channel. The required pre-FEC BER for

achieving the same post-FEC BER often used to compare different FEC codes.

2.2 Fiber-Optical Communication System

The fiber-optical communication system is a digital communication system, but un-

like the traditional system where data is transmitted through copper, the fiber-

optical communication system uses light to transmit data from transmitter to receiver

through the optical fiber channel. There are several advantages of fiber-optical sys-

Figure 2.1: Fiber-optical communication system.

tem compares to the traditional digital communication system, including much higher

7

bandwidth, faster transmission speed and lower cost. The fiber-optical channel is also

immune to the electromagnetic interference which is a common noise factor for the

copper system [19].

Figure 2.1 shows a simplified model of the fiber-optical communication system

which is similar to the traditional digital communication system in terms of FEC

encoder and decoder. The inputted information bits are encoded through FEC en-

coder to produce the corresponding codeword. Then the codeword is processed in the

light source transmitter and subsequently transmitted through a fiber-optical chan-

nel. The light receiver detects the received light sources which then are transformed

to codeword bits. The FEC decoder determines the correctness of received codeword,

and the decoder flips the certain number of erroneous bits in the codeword if there

are errors.

2.3 Finite Field

A finite field or Galois field is defined as a field that has a finite number of ele-

ments. The field is an algebraic structure which follows certain properties of addi-

tion, subtraction, multiplication and division. The finite field can be found in many

applications for error control coding [20].

If we use p to represent the prime number, then a Galois field can be defined and

denoted as GF (pm) for any m. The polynomial bm−1x
m−1 + . . .+ b1x

1 + b0 is used to

represent the field GF (pm) where the coefficient bk is in range of {0, 1, . . . , p−1} [16].

In terms of the implementation of Galois field on the error-correction codes, the

binary field GF (2m) is commonly applied. The multiplication and addition are two

frequently used arithmetic operations over GF (2m). Table 2.1 shows examples of

these operations.

8

Table 2.1: Multiplication and Addition over GF (2m)

× 0 1

0 0 0

1 0 1

+ 0 1

0 0 1

1 1 0

We can see that the multiplication over GF (2m) is the same as modulo-2 mul-

tiplication and XOR operation. The addition over GF (2m) is AND operation, or

equivalently, a modulo-2 addition.

Let α be the root of the primitive polynomial, the nonzero elements of GF (2m)

can then be represented by field elements {0, 1, α, α2, . . . , α2m−2}. The primitive poly-

nomials are defined as minimal polynomials for primitive elements in a finite field [17].

2.4 BCH Codes

The Bose, Chaudhuri, and Hocquenghem (BCH) codes are powerful multiple error-

correcting cyclic codes over the finite field (Galois field) [21]. The BCH codes quickly

become the common error-correction codes for digital communication systems since

the first introduction due to their robust and efficient coding mechanism. Besides

the excellent performance, the hardware-implementation-friendly algorithm also con-

tributes to the popularity of the BCH codes. BCH codes are implemented as compo-

nent codes in the staircase codes in the 400G recommendations [1, 3].

The basics of the binary BCH codes are briefly discussed by following [20]. Let

a be the primitive elements in GF(2m) where m is any positive integer with value

m ≥ 3. The t-error-correcting BCH codes can be constructed using generator poly-

nomial g(x) which is the lowest degree polynomial over GF(2). Then, the roots of

the generator polynomial are a, a2, a3, , . . . , a2t. Let pi(x) be the minimal polyno-

mial of αi where i is any positive integer. The g(x) can be found through g(x) =

LCM{p1(x), p2(x), . . . , p2t(x)}.

9

If we consider a message vector m with length k, the vector can be presented as

a polynomial m(x) = m0 + m1x + m2x
2 + · · · + mk−1x

k−1. Then the codeword can

be determined through

c(x) = xn−km(x) + xn−km(x) (mod g(x)) (2.1)

where n is the codeword length.

2.5 Product Codes

The idea of product codes is to obtain powerful error-correcting codes through mul-

tiple low error-correction-capability codes. The encoding of product codes usually

involves two component codes, one code is in charge of the horizontal encoding pro-

cess and the other code is responsible for the vertical encoding process. Each encoding

process generates one block of parity bits. After completion of vertical and horizontal

processes, a block which filled with parity of parity bits can be generated. This block

contains the most reliable parity bits [20].

We use Ch(n1, k1) and Cv(n2, k2) to represent two component codes used in the

product codes. The generator matrix for Ch(n1, k1) is Gh and Gv is for Cv(n2, k2).

The information block is represented as A. The product codes performs horizontal

encoding on A first by multiplying Gh with A to produce a block of row parity bits

Ph. Then the information block A is concatenated with Ph to form a block [A Ph].

The vertical encoding process then takes place by multiplying the [A Ph] with Gv

to get parity blocks Ph and Phv. The block Phv is the parity of parity bits. The

generated product code structure is illustrated in Figure 2.2. From this encoding

process, we can see that each bit in any codeword row of product code is covered by

both the horizontal and vertical parity bits. If the minimum distance of code Ch is dh

10

Figure 2.2: Structure of the product code.

and the minimum distance of Cv is dv, then the minimum distance of their product

codes is the dhdv [20].

The advantage of product codes is their high error-correcting ability on burst and

random errors [22]. Product codes also inspired the development of staircase codes [4].

11

2.6 Convolutional Codes

The operation of convolutional codes is different compares to block codes. In block

codes, the parity bits are directly appended to information bits and the parity bits

only relate to the present information bits. Convolutional codes apply a sliding-

window technique which features memory elements in the encoding process of the

information bit stream. The parity bits of convolutional codes not only depend on

the current information bit but also depend on the previous information bits [16].

Figure 2.3: Convolutional codes sliding window encoding.

One example of the convolutional sliding window encoding of the information bit

stream is illustrated in Figure 2.3. The gray rectangle box is the window which slides

from left to right one bit at a time on the information bit stream. If we use m to

represent the bits in the bit stream, then bits in the window are m(t), m(t − 1)

and m(t − 2) where m(t) is the current bit under encoding. Then two parity bits

P1 and P2 are computed through XOR-operation to encode the current bit m(t).

We can see that the previous bits are involved in the encoding of the current bit in

12

the convolutional codes. To implement the sliding window encoding of convolutional

codes, the memory elements of the codes are commonly implemented using linear

shift registers.

The staircase codes apply the similar concepts of convolutional coding by replacing

the bit in convolutional codes with the block of product codes [4]. The advantage

of convolutional codes is that they are easier to implement in hardware compares to

some linear block codes [23].

2.7 400G, 400ZR and FEC

400G (400Gbps) represents the technology of the next generation optical transport

network. 400G refers to the throughput of the data in the optical network between

hosts. The common interpretation of 400G is the single-carrier 400G [24].

400ZR or 400G ZR is a subset of single-carrier 400G technology and the imple-

mentation agreement of 400ZR is developed by OIF. The purpose of OIF 400ZR

is to layout design standards for pluggable optical transceivers in the short-range

(less than 120km) DWDM applications. The DWDM (Dense Wavelength Division

Multiplexing) applications are commonly found in the data center for increasing the

optical bandwidth through an adjustable number of optical transceivers. The design

requirements for the optical transceiver based on 400ZR include high throughput

(single-carrier 400G) and low power consumption (less than 15W when implementing

in 7nm CMOS technology). The key component for achieving single-carrier 400G is to

implement an efficient FEC to meet the performance requirements [3]. The algorithm

of FEC also needs to be hardware-friendly and the hardware implementation of the

FEC needs to be able to reach high throughput (400G) with low power consumptions.

13

Figure 2.4: The 400ZR concatenated FEC.

The FEC of 400ZR is concatenated FEC as illustrated in Figure 2.4 with hard-

decision staircase codes as outer codes and soft-decision hamming codes as inner

codes. With the concatenated FEC implementation, the BER error floor can reach

10−15 and the net coding gain is 10.8dB [25].

Chapter 3

Staircase Codes

This chapter describes the encoding process of the BCH code which used as compo-

nent code of staircase code based on the 400ZR optical network recommendation. In

addition, the encoding process of the staircase code is discussed. Prior to the hard-

ware implementation of staircase encoder, we need to build the staircase encoder in

software that met the specifications. Therefore, the staircase encoder is implemented

in Matlab before the Verilog implementation. The codewords outputs from the Mat-

lab version of the encoder can be used to verify the outputs of the Verilog version of

encoder. The Matlab implementation also assists with the hardware implementation

by finding the optimal implementation method.

3.1 BCH Encoder

The BCH code is used as the component code in staircase coding. The main task in

BCH encoding is to compute a generator matrix. Based on the 400ZR recommen-

dation [3], the generator and parity-check matrices of BCH (1022,990) are obtained

through the following steps. The equation (3.1) represents the primitive polynomial

for the finite field GF (210).

p(x) = 1 + x3 + x10 (3.1)

14

15

If α is the root of the primitive polynomial, then nonzero elements of GF (210) can be

represented as

GF (210) = {α0, α1, α2, . . . , α1022} (3.2)

where α0 = α1023 = 1. The binary representation of finite field elements is

αi = b9α
9 + b8α

8 + . . .+ b0, 0 ≤ i ≤ 1022 (3.3)

Since b9, b8, . . . , b0 are binary digits, the integer z can be applied to represent the

decimal value of these digits, where z = b92
9 + b82

8 + . . .+ b0. Then the function log

and its inverse exp function are defined to associate the integer z with i which is the

power of the primitive root.

log(z) = i, exp(i) = z (3.4)

Once the binary representations of finite field elements are generated, the column

vector f(k) of the parity-check matrix H can be constructed through

f(k) =



βk

β3
k

β5
k

D(βk)

D(βk)


, 1 ≤ k ≤ 1023 (3.5)

where

βk = αlog(k) (3.6)

and

D(βk) = b2b̄1b̄0 ∨ b̄2b1 ∨ b̄2b̄1b0 (3.7)

16

βk is a 10-bit binary representation of primitive root α with power log(k), and b

is the bit in the binary representation. The bits sequence in βk is the least significant

bit (LSB) b0 occupies the first row of the vector and the most significant bit (MSB)

b9 occupies the tenth row. b̄ is the complement of b. The size of f(k) is 32 bits. The

parity-check matrix H with size 32× 1022 is defined as

H = [f(1021) f(1022) f(1) . . .f(510) f(511 + π−1(0)) . . .f(511 + π−1(509))] (3.8)

where π−1(·) is the inverse of the permutation function π(·) as shown below:

π(0 : 7) = 478 : 485 π(8) = 0 π(9 : 11) = 486 : 488 π(12) = 1

π(13) = 489 π(14 : 16) = 2 : 4 π(17 : 19) = 490 : 492 π(20) = 5

π(21) = 493 π(22 : 24) = 6 : 8 π(25) = 494 π(26 : 32) = 9 : 15

π(33 : 35) = 495 : 497 π(36) = 16 π(37) = 498 π(38 : 40) = 17 : 19

π(41) = 499 π(42 : 48) = 20 : 26 π(49) = 500 π(50 : 64) = 27 : 41

π(65 : 67) = 501 : 503 π(68) = 42 π(69) = 504 π(70 : 72) = 43 : 45

π(73) = 505 π(74 : 80) = 46 : 52 π(81) = 506 π(82 : 128) = 53 : 99

π(129) = 507 π(130) = 100 π(131) = 508 π(132 : 256) = 101 : 225

π(257) = 509 π(258 : 509) = 226 : 477 (3.9)

The permutation function expression π(X : X + N) = Y : Y + N represents the

following functions, π(X) = Y , π(X+1) = Y +1,. . . ,π(X+N) = Y +N. The matrix

C consists the last 32 columns of H and the inverse of this matrix is C−1. Then,

C−1H = [PT | I] (3.10)

17

The BCH code is a systematic linear code, thus the generator matrix can always be

written as

G = [I | P] (3.11)

Finally, parity-generation matrix P with size 990 × 32 is obtained. The parity bits

of BCH codeword can then be computed by multiplying P matrix to the information

bits.

In terms of the Matlab implementation of BCH encoder which based on the pro-

cedures above, the first step is to generate 10-bit binary representations for all the

primitive roots (0 ≤ i ≤ 1022). The build-in Matlab function gftuple is applied here

to generate binary representations of field elements based on the primitive polynomial

p(x) = 1+x3+x10. The 1023 binary numbers are then converted to their correspond-

ing decimal values. A look-up table for log / exp functions which relates primitive root

power i to integer z is prepared. Table 3.1 shows a few results from the look-up table.

When computing the βk in the column vector, decimal value z in the look-up table

Table 3.1: Parts of the look-up table for binary representations of primitive root,
power of primitive root and their decimal values

Binary Representations
Power of primitive

root (i)
Decimal values (z)

0000000001 0 1

0000001001 10 9

1000010001 100 529

1111101010 500 1002

1000000100 1022 516

is replaced by k. Using column vector f(511 + π−1(0)) as an example. Based on the

permutation function, π−1(0) = 8. So the integer k = 511 + 8 = 519. We can then

obtain log(519) = 955 based on the look-up table. Therefore, the βk elements of the

column vector are βk = α955 = [1110000001]T (LSB to MSB), β3
k = α2865 = α819 =

18

[0111000110]T and β5
k = α4775 = α683 = [0001101110]T . With b2 = b1 = b0 = 1 (bits of

βk) and (3.7), we can get F (βk) = 0 and F (βk) = 1. Thus, the final result of column

vector f(511 + π−1(0)) is [11100000010111000110000110111001]T . The computation

of parity-generation matrix can then be completed after the parity-check matrix is

obtained.

3.2 Staircase Codes

The staircase encoding process is algorithmically represented using a semi-infinite two-

dimensional array given in Fig. 3.1. The array consists of blocks Bk, k = 0, 1, 2, . . .

that form a staircase pattern and are filled with information and parity-check symbols

throughout the encoding process.

The initial block B0 is filled with known symbols (zeros in our case) to initiate

the process of spatial graph coupling which is utilized at the receiver during the data

decoding process. The first group of information bits to be encoded is filled into the

left part of block B1. The corresponding positions are shaded in gray in Figure 3.1.

Once the information bits are filled in the rows of the two adjacent blocks (B0,B1),

they are encoded with component code encoders (the Bose-Chaudhuri-Hocquenghem

(BCH) codes commonly serve as component codes) and the resulting parity-check bits

are filled into the white area representing the right part of block B1. This is regarded

as a horizontal encoding operation. The next component code encoding operation is

vertical. The second group of the information bits is filled onto the gray area at the

top of block BT
2 . Then the columns of the matrix (B1,B

T
2)T are encoded vertically by

the component BCH codes and the resulting parity bits are filled into the white area

at the bottom of the block BT
2 . The process then continues with the third block B3

filled with new information bits and the parity bits resulting from horizontal encoding

and so on. The horizontal and vertical encoding steps are executed in alternating

19

Figure 3.1: Visualization of a staircase code array representation.

manner. Figure 3.2 shows two adjacent staircase blocks BT
k−1 (already encoded) and

Bk. By Ak we denote the new block of information filled in at stage k and Ck is

the parity block resulting from the component code encoding. A row in BT
k−1 block

concatenated with the corresponding row in Bk block forms a valid component code

codeword.

The construction of the staircase array specified in the recommendation [1] has two

minor differences with the classic staircase encoding. The shortened BCH (1022, 990)

codes are considered and, therefore, to form squared 512 × 512 staircase blocks two

rows of zeros are added at every step as described below. In addition, the encoding

is not precisely carried out row-wise and column-wise, but, instead, jth row in BT
k−1

(see Figure 3.2) is encoded together with ith row of Bk. The index j is generated

from i using a permutation matrix given in [1]. The precise encoding algorithm is

described mathematically by the following steps:

20

Figure 3.2: Two adjacent staircase blocks.

1. Select a 512× 512 all-zeros matrix as reference staircase block B0;

2. Compute the parity block C1 by using B0 and information matrix A1. The

staircase block B1 is formed by appending C1 to A1;

3. Insert two all-zeros rows to transposed B1 to change the block size to 512×512;

4. Apply the same process to compute C2 and B2 for information matrix A2. This

iterative process continues until all the information matrix Ak are encoded.

Figure 3.3 illustrates the steps of staircase encoding process. The parity blocks Ck

are generated through BCH encoding. A parity-generation matrix P (size 990× 32)

is pre-computed based on the BCH parity check matrix given in section 3.1. The

following steps are used to compute row i of Ck:

Ck(i) = [BT
k−1(i) Ak(i)]×P for 1 ≤ i ≤ 2 (3.12)

Ck(i) = [BT
k−1(π(i− 3)) Ak(i)]×P for 3 ≤ i ≤ 512 (3.13)

Figure 3.2 also shows a valid 1022-bit BCH codeword is formed by taking the row

j in BT
k−1 concatenated with row i in Bk, where j = π(i − 3). The bits in row j

are the leftside of BCH codeword and bits in row i corresponding to rightside of the

21

Figure 3.3: Staircase encoding process.

codeword. For example, if i = 50, then j = π(47) = 25. Therefore, a valid BCH code

is formed by concatenating row 25 from BT
k−1 and row 50 from Bk.

For the Matlab implementation of staircase encoder, random binary blocks with

size 512× 478 are generated to be applied as information blocks Ak to the staircase

encoder. Figure 3.4 shows the Matlab model of the staircase encoding process. When

an information block is transmitted to staircase encoder, the encoder will first de-

termine the index (k) of this block. If the block is the first block (k = 1), then the

encoder selects the reference staircase block B0 as the previous staircase block when

computing parity bits for the inputted information block. Otherwise, the encoder

uses previous staircase block Bk−1(k ≥ 2) to generate the parity bits. The permu-

tation π(·) look-up table is embedded in the staircase encoder which gives the index

of the corresponding row from the previous staircase block for the index of the row

of current staircase block. With equations 3.12 and 3.13, the parity bits matrix (size

22

Figure 3.4: The Matlab model of the staircase encoding process.

512 × 32) for the information block can be computed. The staircase block is then

a concatenation between information block and parity bits matrix. Once a staircase

block Bk (size 512 × 510) is ready, it gets transmitted immediately. After that, one

copy of the block Bk is transposed and stored in the memory of the staircase encoder

for computing the parity bits matrix for the next information block.

To verify the correctness of the generated staircase blocks, these blocks are tested

by re-computing the parity bits for the information vectors through BCH encoder.

By taking information vectors from current staircase block and their corresponding

rows of the previous block, the 990-bit information vectors (concatenated based on

23

permutation function) are formed and multiplied with the parity generation P matrix

to produce 32-bit parity bits. These bits are then being compared with the parity bits

of generated staircase blocks. If two results are equivalent, the generated staircase

blocks are valid.

Chapter 4

Staircase Encoder Implementation

In this chapter, the VLSI implementation of staircase encoder is presented. The

hardware design of staircase encoder is focused on low-power, high throughput and

low latency aspects. This chapter also discusses the adaptation of staircase encod-

ing process for the optimal hardware implementation. The design of the encoder is

implemented using Verilog hardware description language. With the pre-computed

parity generation matrix, the complexity of staircase encoder design can be reduced.

4.1 Staircase Encoding process for Hardware

Implementation

To adapt the staircase encoding process towards hardware implementation, the parity

generation matrix P is split into two sub-matrices: Pa of size 512× 32 and Pb of size

478 × 32 to allow pipelined computation with reduced memory size. The size of

Pa and Pb matrices are determined based on the size of the information block and

24

25

transposed previous staircase block.

P =



0 0 0 0 · · · 1 1

0 0 1 0 · · · 0 1

...
...

...
...

. . .
...

...

1 1 0 0 · · · 0 0

0 1 0 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1 1




Pa

Pb

Pb is used to compute parity bits of current staircase block Bk and Pa is involved

in computing parity bits of previous staircase block BT
k−1. Hence (4.1) and (4.2)

change to

Ck(i) = BT
k−1(i)×Pa + Ak(i)×Pb for 1 ≤ i ≤ 2 (4.1)

Ck(i) =

Cp1,k︷ ︸︸ ︷
BT

k−1(π(i− 3))×Pa +

Cp2,k︷ ︸︸ ︷
Ak(i)×Pb for 3 ≤ i ≤ 512 (4.2)

4.2 Staircase Encoder Design

To achieve high throughput and low latency, we have developed a parallel staircase

encoder design. The proposed architecture is shown in Figure 4.1, which includes a

Bit-matrix Multiplier, Bit-Matrix Adder, Parity Generation Units, Parity-Bit Regis-

ters, ROMs, Multiplexer, Controller, Information Buffer and Data Formatter. The

staircase encoder processes a 478-bit input data (one row of information block) at

each clock cycle and appends 32 parity bits to the input sequence in order to out-

put a 510-bit codeword. This is equivalent to the computation of one row of the

26

staircase block. The parity bits are computed in parallel and pipelined to achieve

high data throughput. The pre-computed Pa and PT
b matrices are stored in ROM of

the staircase encoder. Furthermore, Pa and PT
b matrices are involved in the parallel

computation of the parity bits in the current and previous staircase blocks. Instead

of storing the entire previous staircase block in order to compute parity bits for the

current staircase block, only 32 parity bits of the transposed previous staircase block

are computed and stored. As a result, the required memory size is reduced to the

minimum of information required to continue encoding. The 478-bit input data of

Figure 4.1: Architecture of the proposed staircase encoder.

the staircase encoder is denoted as Ak(i) in Figure 4.1, where k is the block index,

indicating the index of the staircase block. Furthermore, i is the row index of the

input data, e.g., input data A1(1) is located in the first row of staircase block B1. The

input data Ak(i) is passed to three parts of the encoder: the Bit Matrix Multiplier

27

the Information Buffer. Figure 4.2 presents a timing diagram showing the pipelined

operation of the staircase encoder. There are four pipelined stages in the hardware

implementation of the staircase encoder. The input data Ak(i) is first being processed

by Multiplication and Addition operations which take place in the Bit-Matrix Mul-

tiplier and Bit-Matrix Adder to compute parity bits Ck(i) for the input data. The

next operation is to combine the Ak(i) with Ck(i) in the Data Formatter to output

codeword Vk(i). After that, the Parity Generation processes the codeword in Parity

Generation Units to compute partial parity bits Cp1,k+1. When all the codewords in

one staircase block are processed, Cp1,k+1 becomes Cp1,k (complete parity bits) which

are used in the incoming information block. The staircase encoder contains a control

unit which is the Controller shown in Figure 4.1. The Controller assists the encoder

to schedule the encoding process by changing values of control signals. The following

subsections discuss each module of staircase encoder in more details.

Figure 4.2: The timing diagram for the pipelined operation of the staircase encoder.

4.2.1 Bit-Matrix Multiplier

In the Bit-Matrix Multiplier shown in Figure 4.3, the modulo-2 multiplication is

applied to Ak(i) and PT
B in parallel by ANDing and XORing of bits in Ak(i) with

28

rows in PT
b to produce 32 partial parity bits Cp2,k(i). The Bit-Matrix Multiplier

consists of 32 Parity Multipliers that compute the 32 parity bits of Cp2,k(i) at the

same time.

Figure 4.3: The architecture of the Bit-Matrix Multiplier.

Each Parity Multiplier computes one bit of Cp2,k(i). The parallel computation also

happens inside the Parity Multiplier by using 159 Multiplier Units. Each Multiplier

Unit shown in Figure 4.4 process 3 bits from a row of PT
b and Ak(i) respectively. The

number of input bits of Multiplier Units is selected to achieve high parallelization

level. The bits generated from Multiplier Units are XORed with the bits generated

by ANDing the last bit of Ak(i) with the last bit of row of PT
b . The final computed

value from a Parity Multiplier forms one of the bits in Cp2,k(i). The Bit-Matrix

Multiplier implemented purely combinational logic and there is no clock input to the

Multiplier, hence the power consumption is reduced.

29

Figure 4.4: Architecture of the Multiplier Unit 2 in the Parity Multiplier 2.

4.2.2 Bit-Matrix Adder

At the next step, the Cp2,k(i) adds to the 32 partial parity bits (pre-computed)

Cp1,k(j) through modulo-2 addition to generate 32 complete parity bits Ck(i) that are

concatenated to the input data Ak(i). The permutation function π determines the row

index j in Cp1,k(j) matrix corresponding to the row index i in Cp2,k(i) matrix. When

the parity bits Ck(i) for the current input data Ak(i) is computed, the Bit-Matrix

Adder outputs parity bits valid signal (Ck valid) to the staircase encoder Controller.

4.2.3 Data Formatter and Information Buffer

The parity bits are generated three clock cycles after the corresponding information

vector are inputted to the encoder. Therefore, the information vectors inputted dur-

ing this period need to be stored temporarily so the computed parity bits can be

concatenated with their matched information vectors to form codeword output. The

reading and writing orders of the Information Buffer are controlled by the read address

(Buffer raddr) and write address (Buffer waddr) signals provided by the Controller.

The controlling mechanism of the Buffer is discussed in details in Section 4.2.7.

The 510-bit codeword Vk(i) is formed by concatenating the input data Ak(i) with

the corresponding parity bits Ck(i) in the Data Formatter. The codeword Vk(i) is

30

then immediately transmitted. Two additional 0s are inserted before the MSB of

the current codeword Vk(i) and the length of the codeword is now 512 bits. The

extended codeword is inputted to the Parity Generation Units. Besides outputting

codeword, the Data Formatter also outputs codeword valid signal (Codeword valid) to

the Controller as well as the output port of the encoder to acknowledge the peripheral

components a valid codeword is presented.

4.2.4 Parity Generation Units

The Parity Generation Units compute the 32 partial parity bits Cp1,k+1, which are

used to compute the next staircase block. There are 512 32-bit Cp1,k+1 to be parallelly

computed; thus, the system requires 16,384 total Parity Generation Units. Figure 4.5

shows the Parity Generation Unit.

Figure 4.5: The parity generation unit.

Each Unit generates one parity bit in Cp1,k+1 once the system processes all 512

rows in one staircase block. The Units generate parity bits in parallel so that once

a staircase block is processed, the units complete the computation of all 512 Cp1,k+1

and these are prepared for use in the encoding of next staircase block. We denote

a bit in transposed Cp1,k+1 matrix by c(m,n) and the bit in the previous staircase

block Bk−1 with two additional all-zeros rows inserted by d(q, n) where q and m are

31

Figure 4.6: The parity generation of Cp1,k+1.

row indices and n is column index. Then c(m,n) can be computed as follows,

c(m,n) =
512∑
q=1

d(q, n)×Pa(q,m) (4.3)

The parity generation of Cp1,k+1 is presented in Figure 4.6. For every new row of data

inputted into the encoder, c(m,n) is partially updated with the relevant codeword

bit and its corresponding parity from Pa matrix. For example, when the codeword

Vk(1) is ready, the first row in Bk−1 block is also known and bits in the row are

denoted as d(1, 1),d(1, 2), . . . ,d(1, 512). We can then simultaneously compute the

first component d(1, n)×Pa(1,m) for every bit in Cp1,k+1 through parity generation

units. When the codeword Vk(2) is computed, the parity generation units compute

the second component d(2, n)×Pa(2,m) and the results are added to the first compo-

nent. Once the codeword Vk(512) is processed, all the bits are computed and ready

32

to be used for the next staircase block input. Equation (3.6) represents computation

of parity bit c throughout the clock cycles t where 1 ≤ t ≤ 512. Figure 4.7 depicts the

timing diagram of the parity generation based on (3.6). In this diagram, parity bits

ct([1 : 32], q), 1 ≤ q ≤ 512 are computed in parallel and are only partially computed

during 1 ≤ t ≤ 511.

Figure 4.7: Timing diagram of the parity generation.

33

ct([1 : 32], q) =
t∑

i=1

d(1, q)×Pa(i, [1 : 32]) (4.4)

= ct−1([1 : 32], q) + d(1, q)×Pa(i, [1 : 32])

At t = 512, the parity bits c([1 : 32], [1 : 512]) are completely computed. Then,

Cp1,k+1 become Cp1,k which are stored in 512 32-bit registers as illustrated in Fig-

ure 4.7. The value of Cp1,k registers will update again when the next staircase block

is processed. The staircase encoder processes one row in the staircase block at each

clock cycle. This requires 512 clock cycles to complete encoding of one staircase block.

4.2.5 ROMs

Pa and P T
b matrices are stored in the ROMs, which are hard-coded in the Verilog

implementation of the staircase encoder instead of using peripheral look-up tables.

The reason for this is to make the ROMs compatible with the Verilog synthesizer

that we used to obtain more accurate synthesis results. The memory of P T
b shown in

Figure 4.8 consists of 32 ROMs with each contains 478 bits and connected directly

to the fixed location on the Bit-Matrix Multiplier. For example, the content of ROM

P T
b (1) is connected to the first Parity Multiplier, therefore, the bit-matrix multipli-

cation can be applied directly to the inputted information vector with the P T
b (1). Pa

is stored in a 16,384 bits ROM with 512 read addresses and 32 bits per line. The

read address is provided by the staircase encoder Controller based on the index of the

row of the current staircase block which is processed in the Parity Generation Units.

The ROMs for Pa and P T
b matrices are combinational logic circuits, and the power

consumption is minimal.

34

Figure 4.8: The Pa and P T
b ROMs.

4.2.6 Cp1,k Registers and Multiplexer

The computed parity bits matrix Cp1,k is stored in 512 32-bit Registers. Each 32-bit

Register stores one column of the partial parity bits Cp1,k matrix. Although registers

occupy the larger area in the physical layout of VLSI circuits compare to RAM,

registers store and access data faster. Registers can parallelly access data stored in

various locations in the registers. Since the bits of Cp1,k are transmitted from Parity

Generation Units in parallel, 512 32-bit data need to be stored in parallel in the

memory at the same time. In this case, the registers are applied for the purpose of

reducing process time and allowing the parallel access to the partial parity bits Cp1,k.

The staircase encoder Controller sends enable signal to the Cp1,k Registers to

control when to update the content of the registers. The outputs of Cp1,k registers

are connected to a Multiplexer (MUX) and the connection orders are based on the

permutation function. For example, the output of Register 3 is connected to the

input position 10 of the MUX. Therefore, the value of selection signal (MUX sel)

of MUX can be determined by up counter (value of selection signal is from 0 to

511) for the corresponding row index of the previous staircase block. The connection

35

Figure 4.9: The connection between Cp1,k Registers and MUX.

between Cp1,k Registers and the MUX is illustrated in Figure 4.9. When the first

information block is being processed, the reference enable signal (Ref en) of the MUX

selects reference parity bits (all-zeros) as Cp1,k. The output Cp1,k(j) from the MUX is

transmitted to the Bit-Matrix Adder which is added with Cp2,k(i) to compute parity

bits CK(i) for the information vector AK(i).

4.2.7 Staircase Encoder Controller

The staircase encoder Controller schedules the encoding process by controlling the

processing sequences of the modules of the encoder. The Controller is designed to

have minimal instructions to save power. Figure 4.10 depicts the architecture of

the staircase encoder Controller. The Controller contains Block Counter, Codeword

36

Counter, Information Buffer Controller, Pa ROM Controller, MUX Controller and a

Finite State Machine.

Figure 4.10: The staircase encoder Controller.

The Block Counter keeps track of the staircase block index by counting the in-

putted information rows through info valid signal. When the counted info valid signal

presence equals to 512, the value of block count signal block index gets incremented

by one.

The Codeword Counter keeps the count (Codeword count) of the codewords being

processed in the staircase block through Codeword valid. The two signals Block index

and Codeword Count are inputted to the Finite State Machine, alongside the signals

Info valid and Ck valid.

The Information Buffer Controller outputs read address (Buffer waddr) and write

address (Buffer raddr) for the Buffer based on the Info valid and Ck valid signals.

37

When there are information vectors present (Info valid=1), Buffer waddr starts to

increment to let the Buffer store the vectors. After the computation of parity bits

(Ck valid=1) for the first information vector, the Buffer raddr starts to increment

to signal the Buffer to output the stored information vectors to the Data Formatter.

The depth of the Buffer is 3 which is selected to be the same as the latency between

the information vector and its corresponding parity bits.

The Pa ROM Controller determines read address (P a raddr) for accessing the

contents of Pa ROM. When the codeword is computed (Codeword valid=1), the Par-

ity Generation process starts. Therefore Pa ROM Controller begins to increment

P a raddr which value is the same as the index of the current codeword being pro-

cessed and obtained by Codeword valid signal. The value of the read address of Pa

ROM is reset to 0 once all the codewords (512) in one block are processed.

The MUX Controller outputs the inputs selection signal (MUX sel) for the Mul-

tiplexer. The value of MUX sel is determined by signal Info valid (delayed by two

clock cycles). The Info valid is delayed in order to be aligned with the beginning of

parity bits Ck computation. The MUX controller uses the number of occurrences of

Info valid as the value of MUX sel. The MUX sel is transmitted to the Multiplexer

to select the corresponding outputs from Cp1,k Registers. Since the Cp1,k are already

connected to the MUX in a permutated order, the partial parity bits Cp1,k(j) can be

selected directly for the current Cp2,k(i). The value of MUX sel is also being reset to

0 when the information vectors in one block are processed.

The last critical component of the staircase encoder Controller is the Finite State

Machine which generates control signals for different states. The Finite State Ma-

chine of the Controller has four states which are Start, Parity Bits Computation,

Codeword Computation and Parity Generation. Figure 4.11 shows the states and

their transitions of the Finite State Machine. Figure 4.11 also illustrated the value

of the control signals of each state for the state input. The descriptions of control

38

Figure 4.11: The Finite State Machine of the Controller.

signal outputs of the Finite State Machine are listed in Table 4.1. The Start state is

executed when the encoder starts the encoding process of a new information block.

Therefore, when the Information vector is inputted (Info valid=1), the next state is

Parity Bits Computation, otherwise, the next state is still the Start. The output

control signals of this state are Ref en and Unit start. The block index determines

the value of Ref en, and Info valid determines the results of Unit start

At the beginning of parity bits Ck computation, the state Parity Bits Computa-

tion is executed. When the Ck is computed (Ck valid=1), the next state is Codeword

Computation. If there are no valid parity bits, the state stays at Parity Bits Compu-

tation until valid parity bits are computed. This state has an output control signal

39

Table 4.1: The output control signals of the Finite State Machine

Control
Signal

Value Description

Ref en
0 The partial parity bits are selected from Cp1,k Registers.

1 All zero parity bits are selected as partial parity bits.

Unit start
0 The Units process the first codeword row of a block.

1 The Units process the rest codeword rows of a block.

Unit en
0 Keeps value of the registers of the Units.

1 Updates value of the registers of the Units.

Reg en
0 Keeps value of the Cp1,k Registers.

1 Updates value of the Cp1,k Registers.

Unit en which value is based on the Ck valid.

The state Codeword Computation is executed at the beginning of codeword con-

catenation (information vector and parity bits). When the first codeword of the

staircase block is ready (Codeword valid=1), the next state is the Parity Generation.

If the valid codeword is not present, the next state is still Codeword Computation.

Unit start is the output control signal of this state, the value of Unit start gets up-

dated for the value of Codeword valid.

The last state is the Parity Generation which involves Cp1,k+1 parity bits compu-

tation and updating values of the Cp1,k Registers. This state gets executed when the

first codeword is computed. Codeword count is used to keep track of the number of

processed codeword rows of one staircase block. When the codeword count reaches

512, the next state is the first state Start. Otherwise, the state stays at the Parity

Generation. The control signal output of this state is Reg en which value is updated

based on the value of Codeword count.

The Finite State Machine runs all four states to complete the encoding process of

one staircase block. When the next information block is inputted, the finite state ma-

chine will execute from the state Start to the state Parity Generation again. The main

40

functionality of the finite state machine is to control the parts of Parity Generation

Units and Cp2,k(i) Registers.

4.3 Power Reduction of the Staircase Encoder

Low power is one of the main design considerations for the staircase encoder VLSI

implementation, and it is crucial to find a suitable power reduction method for the

encoder. There are two types of power consumption in VLSI circuit, dynamic (switch-

ing) and static (leakage) power. The main part of dynamic power is dissipated through

charging and discharging the load capacitors of the circuits. Therefore, the dynamic

power consumption is proportional to the switching activities in VLSI circuits [26].

The static power is dissipated through leakage current which is continuous regardless

of the switching activities of the circuits. In terms of circuits system-level design,

the feasible power reduction method is to reduce the dynamic power consumption.

Since it is more effective to find ways to reduce the power of VLSI circuits in the

RTL design level instead of the implementation/physical design level. The most com-

mon techniques to reduce the dynamic power are clock gating and reducing clock

frequency. Since the high throughput aspect of the staircase encoder is critical, the

clock frequency reduction of the encoder is limited. The more pertinent approach to

reduce the power consumption is through clock gating.

The clock gating technique reduces the switching activity of the circuits by stop-

ping clock signals in certain regions of the design. The clock gating is a common

method to reduce the power in sequential circuits [27], because the dynamic power is

only consumed when switching activity occurs. By stopping the clock of the flip-flops

prohibited them to switch values, the dynamic power consumption of the flip-flops

goes to zero. The staircase encoder has a large number of registers located in the

Parity Generation Units and the Cp1,k Registers. Since the registers in the Parity

41

Generation Units are updated constantly during staircase encoding, the power re-

duction through clock gating on these registers is minimal. However, the values of

the Cp1,k registers do not require to update constantly. The valid value of Cp1,k+1

is computed once all 512 rows of the current staircase block are processed, therefore

the Cp1,k registers need to update their value only once at the end of the encoding

process. The clock signals of Cp1,k registers are enabled accordingly, thus reducing

the switching activity of the staircase encoder.

The Efficient front-end HDL coding style also contributes to the power reduction

of the staircase encoder. The Verilog codes of the encoder are designed to avoid

unnecessary data transitions by having the default value of the signals. The Counters

in the staircase encoder Controller are designed to have start and stop counting

commands to avoid the Counters keep counting after certain conditions are met.

Chapter 5

Simulation and Synthesis Results

In this chapter, the simulation and synthesis results of the proposed staircase encoder

design are presented. The testing setup to verify the outputs of staircase encoder

hardware implementation is discussed. The simulation waveforms of the encoder are

presented. The power consumption, area, throughput and operating frequency of the

staircase encoder are listed in the synthesis results.

5.1 Testbench Setup

The testbench is applied to verify the outputs from the staircase encoder Verilog

implementation. The codeword outputs generated from the Matlab version of the

staircase encoder are applied as reference output for the Verilog version of the en-

coder. The information vectors generated from the Matlab version are used as the

stimulus to the testbench. There are 50 information blocks which equivalent to 25,600

478-bit information rows to input to the encoder. The testbench reads from the in-

formation blocks one row per clock cycle. Information valid signal (info valid) is

inputted along with the information vector to the encoder by the testbench. The

testbench implements a self-checking technique which auto compares the Verilog gen-

erated codewords with the pre-computed reference codewords (codeword expected),

if there are differences occur, the signal codeword errors will increment.

42

43

5.2 Simulation Waveforms

The Verilog implementation of the staircase encoder is simulated using Modelsim SE.

Figure 5.1 shows the waveform of the encoder at the beginning of the first block

encoding process. Figure 5.2 presents the transitions of the signals of the staircase

encoder during the encoding of the first and second information blocks. Figure 5.3

illustrates the encoding of the first 3 blocks. Finally, the encoding of all the 50 blocks

is presented in Figure 5.4. The simulation output results (50 staircase blocks) of the

staircase encoder agree with the reference results.

44

Figure 5.1: At the beginning of the first block encoding.

45

Figure 5.2: Between the first and the second block.

46

Figure 5.3: Simulation of 3 staircase blocks.

47

Figure 5.4: Simulation of 50 staircase blocks.

48

5.3 Synthesis Results

The Verilog implementation of the proposed staircase encoder was synthesized using

Synopsys Design Compiler using a TSMC 65nm standard cell library. The target

clock rates are set to 500MHz, 909MHz and 1.25GHz, respectively. The static tim-

ing analysis is applied to the synthesized staircase encoder to check the setup and

hold timing violations. The encoder passed the timing analysis for the three clock

frequencies. Table 5.1 presents the simulation results of the staircase encoder imple-

mentation. The synthesis results of the components of the proposed staircase encoder

design at 909MHz are listed in Table 5.2.

Table 5.1: Synthesis Results of Proposed Staircase Encoder

Frequency 500MHz 909MHz 1.25GHz

Throughput 237Gbps 432Gbps 595Gbps

Power 193mW 323mW 435mW

Latency 8ns 4ns 3ns

Latency 4 clock cycles

Area 0.587mm2

Gate Count 407,916

Table 5.2: Synthesis Results of Staircase Encoder Blocks @909MHz

Blocks Power Power
Percent

Area Area
Percent

Parity Generation
Units and Cp1,k

registers

261mW 80.8% 0.446mm2 76.0%

Controller 5mW 1.5% 0.009mm2 1.6%

Bit-matrix multiplier 21mW 6.5% 0.073mm2 12.4%

Information buffer 17mW 5.3% 0.022mm2 3.8%

Total 323mW 100% 0.587mm2 100%

49

Table 5.3: Comparison of Staircase Encoder Architectures @909MHz

Architectures Storing column
parity bits

Storing the previous
staircase block

Throughput 432Gbps 432Gbps

Power 0.323W 1.914W

Area 0.587mm2 2.813mm2

Latency 4ns 4ns

Gate Count 407,916 1,953,472

Figure 5.5: Layout of the proposed staircase encoder.

The total power consumption of the staircase encoder is 323mW when operating

at 909MHz, and the encoder can achieve the throughput of 432Gbps. The Parity

Generation Units of Cp1,k+1 and Cp1,k registers consume 80.9% of the total power,

approximately 261mW. These parts occupy 75.8% of the total area of the encoder

50

design, and the total power consumption is reduced by 16% with clock gating imple-

mented at Cp1,k registers.

Figure 5.5 shows the proposed staircase encoder layout produced from Cadence

Encounter using 65nm CMOS standard cells. Table 5.3 shows simulation results

comparison between different staircase encoder architectures. The first architecture is

our proposed design which only stores the column parity bits of the previous staircase

block. The second architecture stores the entire previous staircase block with the

proposed parallel partial parity matrix pre-computing. From the results, we can see

that by only storing the column parity bits, the power is reduced by 6 times and the

area is reduced by 4.8 times, respectively.

Chapter 6

Conclusion

6.1 Conclusion

1. In this thesis, the BCH and staircase encoding process are presented based

on ITU-T recommendation G.709.2/Y.1331.2 and OIF-400ZR implementation

agreement.

2. The high-throughput and low-power VLSI design for a staircase encoder suitable

for the 400G FEC system based on the standards is implemented. The high

parallel level of the encoder design and operation, as well as pre-computing

partial parity bits, ensure high throughput, low latency and memory overhead.

3. The staircase encoder is synthesized using 65nm CMOS technology, and the

effective clock gating technique significantly reduces the power consumption of

the encoder. The throughput of staircase encoder can reach 432Gbps @909MHz

with the 323mW power consumption, and the latency of the encoder is four clock

cycles.

51

52

6.2 Future Work

1. The control logic of the staircase encoder can be further optimized to reduce

power consumption. Since some commands of the encoder Controller can be

combined.

2. VLSI implementation of staircase decoder which suits the OIF 400ZR imple-

mentation agreement. The implemented staircase decoder and staircase encoder

form a complete VLSI implementation of the staircase coding system.

3. FPGA emulations of staircase encoder and decoder to test the performance of

the staircase codes system on the real hardware environments.

Bibliography

[1] International Telecommunication Union, Recommendation ITU-T
G.709.2/Y.1331.2 OTU4 long-reach interface. 2018.

[2] M. H. Eiselt, A. Dochhan, and J. Elbers, “Data center interconnects at 400g
and beyond,” in 2018 23rd Opto-Electronics and Communications Conference
(OECC), pp. 1–2, July 2018.

[3] Optical Internetworking Forum, Implementation Agreement 400ZR. No. IA #
OIF-400ZR 0.6-Draft, 2018.

[4] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase
codes: FEC for 100 Gb/s OTN,” Journal of Lightwave Technology, vol. 30, no. 1,
pp. 110–117, 2012.

[5] L. M. Zhang, D. Truhachev, and F. R. Kschischang, “Spatially coupled split-
component codes with iterative algebraic decoding,” IEEE Transactions on In-
formation Theory, vol. 64, pp. 205–224, Jan 2018.

[6] P. Elias, “Error-free coding,” IRE Transactions on Information Theory,
vol. PGIT-4, pp. 29–37, 1954.

[7] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. on
Inf. Theory, vol. 27, pp. 533–547, Sept. 1981.

[8] M. Lentmaier, A. Sridharan, D. J. Costello, Jr., and K. Sh. Zigangirov, “Iterative
decoding threshold analysis for LDPC convolutional codes,” IEEE Trans. on Inf.
Theory, vol. 56, pp. 5274–5289, Oct. 2010.

[9] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via
spatial coupling: why convolutional LDPC ensembles perform so well over the
BEC,” IEEE Transactions on Information Theory, vol. 57, pp. 803–834, Feb.
2011.

[10] G. Hu, J. Sha, and Z. Wang, “Beyond 100Gbps encoder design for staircase
codes,” IEEE Workshop on Signal Processing Systems, SiPS: Design and Imple-
mentation, pp. 154–157, 2016.

[11] C. Fougstedt and P. Larsson-Edefors, “Energy-efficient high-throughput staircase
decoders,” in 2018 Optical Fiber Communications Conference and Exposition
(OFC), pp. 1–3, March 2018.

53

54

[12] C. Fougstedt and P. Larsson-Edefors, “Energy-efficient high-throughput VLSI
architectures for product-like codes,” Journal of Lightwave Technology, vol. 37,
no. 2, pp. 477–485, 2019.

[13] Y. Cai, W. Wang, W. Qian, J. Xing, K. Tao, J. Yin, S. Zhang, M. Lei, E. Sun,
H. Chien, Q. Liao, K. Yang, and H. Chen, “Fpga investigation on error-flare
performance of a concatenated staircase and hamming fec code for 400g inter-
data center interconnect,” Journal of Lightwave Technology, vol. 37, pp. 188–195,
Jan 2019.

[14] L. Zhang and F. R. Kschischang, “Low-complexity soft-decision concatenated
ldgm-staircase fec for high-bit-rate fiber-optic communication,” Journal of Light-
wave Technology, vol. 35, pp. 3991–3999, Sep. 2017.

[15] M. Barakatain and F. R. Kschischang, “Low-complexity concatenated ldpc-
staircase codes,” Journal of Lightwave Technology, vol. 36, pp. 2443–2449, June
2018.

[16] J. Moreira and P. Farrell, Essentials of Error-Control Coding. Wiley, 2006.

[17] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms.
New York, NY, USA: Wiley-Interscience, 2005.

[18] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: Turbo-codes. 1,” in Proceedings of ICC ’93 -
IEEE International Conference on Communications, vol. 2, pp. 1064–1070 vol.2,
May 1993.

[19] G. Agrawal, Fiber-Optic Communication Systems. Wiley Series in Microwave
and Optical Engineering, Wiley, 2012.

[20] S. Lin and D. Costello, Error Control Coding: Fundamentals and Applications.
Pearson-Prentice Hall, 2004.

[21] H. Burton, “Inversionless decoding of binary bch codes,” IEEE Transactions on
Information Theory, vol. 17, pp. 464–466, July 1971.

[22] C. Yang, Y. Emre, and C. Chakrabarti, “Product code schemes for error cor-
rection in mlc nand flash memories,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, pp. 2302–2314, Dec 2012.

[23] N. ul Hassan, M. Lentmaier, and G. P. Fettweis, “Comparison of ldpc block and
ldpc convolutional codes based on their decoding latency,” in 2012 7th Interna-
tional Symposium on Turbo Codes and Iterative Information Processing (ISTC),
pp. 225–229, Aug 2012.

[24] J. Yu and J. Zhang, “Single-carrier 400g transmission and digital signal pro-
cessing,” in 2015 Opto-Electronics and Communications Conference (OECC),
pp. 1–3, June 2015.

55

[25] I. Lyubomirsky, J. Riani, B. Smith, S. Bhoja, I. Corp, R. Baca, M. Corp,
B. Booth, and R. Yu, “Baseline Proposal for 400G / 80km,” 2018.

[26] N. Chabini and W. Wolf, “Reducing dynamic power consumption in synchronous
sequential digital designs using retiming and supply voltage scaling,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, pp. 573–
589, June 2004.

[27] Qing Wu, M. Pedram, and Xunwei Wu, “Clock-gating and its application to low
power design of sequential circuits,” IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, vol. 47, pp. 415–420, March 2000.

