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Bonds between, and to, transition-metal atoms often involve strong electron correla-

tion which cannot be handled by conventional density-functional-theory approxima-

tions. The recent “B13” functional of Becke [J. Chem. Phys. 138, 074109 and 161101

(2013)] models dynamic, static, and strong correlation in an exact-exchange-based

framework. We test B13 on bond energies of transition-metal diatomics in this work,

with promising results.
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Inclusion of strong correlation is necessary for quantitative prediction of binding energies

in transition-metal systems involving multiple metal-metal bonds, such as Cr2.
1–5 In this

molecule, there is formally a hextuple bond between the Cr atoms. One bond involves

overlap between the diffuse 4s orbitals, and five involve the more compact 3d orbitals.1 Since

there is little overlap between the 3d orbitals, the situation is similar to stretched H2,
3,6,7 the

prototypical case of strong correlation.8,9 Although most significant in metal-metal bonds,

strong correlation may also stabilize transition-metal oxides and nitrides where there are

multiple metal-heteroatom bonds.

Furche and Perdew2 have compiled a benchmark set of bond energies for diatomic

molecules containing 3d transition-metal atoms. The set includes transition-metal hydrides,

fluorides, nitrides, oxides, and homonuclear dimers. We expect strong correlation to be im-

portant in the latter three classes, thus posing difficult challenges for conventional density-

functional theory (DFT) approximations. The hydrides and fluorides, however, involve only

single bonds between the heteroatom and the 4s transition-metal orbital, and should be well

described by conventional functionals. This is generally the case for organometallic metal-

ligand bond energies also.4,10 Furche and Perdew found2 that the TPSS11 “meta-generalised

gradient approximation” (meta-GGA) gave the best performance of those tested, yet none

provided good across-the-board accuracy.

Wilson et al.5 performed extensive tests of density functionals for bond energies of

transition-metal diatomics as well, dividing their benchmark set into systems with either

single-reference or multi-reference character. While they ultimately recommended the B97-

1 functional,12,13 they found, like Furche and Perdew, that no functional offered consistently

accurate performance, and all gave large errors for Cr2. Others have used transition-metal

bond energies as stringent tests for density-functional theory and wavefunction theory,14 dif-

fusion quantum Monte-Carlo (DQMC),15 DFT augmented with a Hubbard-model approach

(DFT+U),16 and the random-phase approximation (RPA).17,18

In this work, Furche and Perdew’s benchmark set of transition-metal diatomics2 is used to

assess the recent “B13” density functional of Becke8,9 in particular. This functional explicitly

models strong correlation in real space, capturing the spin-restricted dissociation limits

of molecular bonds. Furthermore, it is based on 100 percent exactly-computed exchange,

thereby obviating the often frustrating task of parametrizing exchange GGAs and meta-

GGAs.
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The B13 exchange-correlation energy has the form

EB13
XstrongC = Eexact

X + EB13
C + ∆EB13

strongC , (1)

where Eexact
X is the exactly-computed Kohn-Sham (or Hartree-Fock depending on the imple-

mentation) exchange energy, EB13
C is the following sum of opposite- and parallel-spin static

and dynamic potential energies of correlation:

EB13
C = aoppstatCU

opp
statC + aparstatCU

par
statC + aoppdynCU

opp
dynC + apardynCU

par
dynC , (2)

and ∆EB13
strongC is a strong-correlation correction given by

∆EB13
strongC =

N∑
n=2

cn

∫
xnuCd

3r. (3)

The four prefactors in Eq. 2 are, to a very good approximation, all equal to each other with

optimum value 0.62 (see Ref. 8). Greater accuracy can be achieved, however, by fitting these

independently8,9 with resulting optimum values close to 0.62. In Eq. 3, uC is the sum of the

integrands of the four terms in Eq. 2:

uC = uoppstatC + uparstatC + uoppdynC + upardynC (4)

i.e., the static + dynamic correlation potential-energy density, and x is a dimensionless pa-

rameter measuring the relative importance of the static correlation potential-energy density

to the total:

x =
uoppstatC + uparstatC

uc
. (5)

The cn (n = 2 → N) are polynomial expansion coefficients fit to strong-correlation test

sets.8,9 Only one or two terms in Eq. 3 are necessary in practice.

We assess the B13 functional with and without the strong correlation correction. Expan-

sion coefficients for the former (the full functional, denoted B13) and the latter (without the

strong correlation correction, hereafter denoted B13-0) are as published in Refs. 9 and 8,

respectively. All B13 and B13-0 calculations were performed with the grid-based NUMOL

program19 and orbitals from the local-spin-density approximation (LSDA) in the PW91
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parameterization;20 i.e., “post-LSDA”. Calculations using the BPBE21,22 GGA were also per-

formed post-LSDA with NUMOL for direct comparison. The bond lengths were optimized

numerically with each of these functionals by varying their values in 0.01 Å increments.

Additional calculations (see Table III) were performed with the Gaussian 09 program23

using two GGA functionals, BLYP21,24 and PBE,22 two meta-GGA functionals, TPSS11

and M06-L,25 two hybrid functionals, B3LYP24,26,27 and PBE0,28 and two range-separated

functionals, LC-ωPBE29 and HSE06.30 The 6-311+G(2d,2p) basis set was employed in all

cases. In both the NUMOL and Gaussian 09 calculations, atomic d-orbital occupations are

as given in Ref. 31. For d1 configurations, the single electron (or hole) occupies the dz2

orbital. For d2 configurations, the two electrons occupy the dz2 and dx2−y2 orbitals, which

are the “e” orbitals in octahedral symmetry.

First, the performance of B13 and B13-0 is assessed on s-d transfer energies of the

free transition-metal atoms. These are excitation energies for the atomic transitions

dmsn →dm+1sn−1. As shown by Furche and Perdew,2 accurate prediction of s-d transfer

energies is particularly challenging for DFT approximations due to the significant difference

in exchange-correlation energies between the ground-state and excited-state configurations.

Table I lists B13, B13-0, and BPBE GGA s-d transfer energies. Like other GGAs, BPBE

severely underestimates s-d transfer energies,2 even predicting the incorrect ground state

for Ti, V, Fe, and Co. Furche and Perdew found that inclusion of some exact exchange

improves the results. In particular, B3LYP gave the lowest MAE (mean absolute error) of

the functionals considered in that work (0.36 eV) and recovers the correct ground state for

Ti. B3LYP still incorrectly favours the s1 configuration for V, Fe, and Co however.2 In the

present work, we also find that the exact-exchange-based functionals give improved results,

with B13 providing the lowest MAE of 0.35 eV. Both B13 and B13-0 recover the correct

ground states for Ti and Fe, but only B13 predicts the correct ground state for Co. Other-

wise there is very little difference between the two B13 variants. This is as expected, since

there is minimal strong electron correlation in isolated atoms having a single-determinant

reference configuration.

Bond energies for the full set of 3d transition-metal diatomics are given in Table II for the

BPBE, B13-0, and B13 functionals. The lowest-energy configuration of each free transition-

metal atom, obtained with each functional as in Table I, was used in evaluating the bond

energies. The experimental ground-state multiplicity, as reported in the work of Furche
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TABLE I: Calculated s-d transfer energies, in eV, for the 3d transition-metal atoms. All
calculations were performed using the NUMOL program. Experimental data taken from

Reference 2 is included for comparison. The mean absolute error (MAE), mean error
(ME), and maximum error (MaxE) are given for each functional.

Atom Excitation BPBE B13-0 B13 Expt.
Ca d0s2 →d1s1 1.40 2.03 1.88 2.44
Sc d1s2 →d2s1 0.22 0.85 0.71 1.33
Ti d2s2 →d3s1 -0.46 0.27 0.11 0.69
V d3s2 →d4s1 -1.03 -0.26 -0.42 0.11
Cr d4s2 →d5s1 -2.24 -1.47 -1.64 -1.17
Mn d5s2 →d6s1 0.69 1.25 1.52 1.97
Fe d6s2 →d7s1 -0.37 0.11 0.43 0.65
Co d7s2 →d8s1 -0.70 -0.27 0.14 0.17
Ni d8s2 →d9s1 -0.99 -0.66 -0.25 -0.33
Ni d9s1 →d10s0 1.41 1.36 1.64 1.57
Cu d9s2 →d10s0 -2.28 -1.95 -1.64 -1.85

MAE 0.90 0.39 0.35 –
ME -0.90 -0.39 -0.28 –

MaxE -1.28 -0.72 -0.62 –

and Perdew,2 was assumed for each molecule. All calculations on singlet species were spin-

restricted. The results in Table II show that BPBE strongly over-binds the majority of

these diatomics, the largest errors occurring for the oxides (particularly MnO and FeO) and

for Ni+2 . The last result is understandable, since Ni+2 involves a positive charge delocalized

over both atoms, and will hence be overly stabilized by local functionals such as the LSDA

and GGAs.7,32–35 This is analogous to the well-known H+
2 dissociation-curve disaster.6,7 Con-

versely, B13-0 tends to under-bind the nitrides and oxides, and severely under-binds many

of the homonuclear dimers (V+
2 and V2). Some are not even bound (Cr2, Fe2, Co2, and Ni2).

All the failures of B13-0 occur for multiple bonds involving both s and d orbitals of

the transition-metal atoms, the cases where strong correlation plays a role. Thus B13,

which explicitly models strong correlation, gives the lowest MAE of the three functionals in

Table II, with no systematic over-binding or under-binding tendency. Figure 1 illustrates

the behaviour of B13 and B13-0 for the different classes of diatomics, showing MAE and

ME (mean error) values for the transition-metal hydrides, fluorides, oxides, nitrides, and

homonuclear dimers. Both functionals perform similarly for the hydrides and fluorides where

there is only a single bond to the diffuse s orbital of the metal atom. Where strong correlation

is important, however, in the oxides, nitrides, and especially the homonuclear dimers, B13-0
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TABLE II: Computed binding energies, in kcal/mol, for the complete set of 3d
transition-metal diatomics. All calculations were performed using the NUMOL program.

Experimental data obtained from Reference 2 is included for comparison. The mean
absolute error (MAE) and mean error (ME) are given for each functional.

Diatomic BPBE B13-0 B13 Expt.
KH 40.9 41.6 44.3 42.2
CaH 47.7 39.9 41.0 41.0
ScH 56.0 56.9 57.9 47.5
TiH 57.2 52.7 57.9 50.0
VH 56.7 56.9 58.3 51.4
CrH 50.3 48.5 48.8 46.8
MnH 47.9 41.4 37.5 31.1
FeH 53.5 46.9 37.5 39.2
CoH 59.8 56.4 52.1 48.4
NiH 65.2 65.2 67.3 61.3
CuH 63.8 67.2 66.0 63.4
KF 120.1 120.4 119.7 117.5
CaF 138.9 132.2 132.9 127.2
ScF 148.3 146.4 147.7 143.3
TiF 143.3 133.5 139.1 137.0
CrF 115.6 112.7 110.8 106.3
CuF 98.7 102.0 96.3 102.8
ScN 120.1 93.7 100.8 113.0
TiN 132.7 116.2 127.4 124.0
VN 124.9 108.0 117.3 117.0
CrN 99.9 73.2 82.8 97.0
CaO 124.2 102.8 110.6 110.8
ScO 181.7 161.6 171.1 163.0
TiO 177.0 158.8 171.2 161.0
VO 162.8 142.2 153.0 150.0
CrO 115.8 95.2 101.6 103.0
MnO 126.9 92.1 93.8 89.5
FeO 127.9 96.2 99.1 97.4
CoO 110.4 70.5 87.6 92.1
NiO 109.0 59.2 82.4 90.4
CuO 74.4 51.4 57.8 66.6
K2 9.5 11.7 14.2 12.0
Ti2 59.8 23.4 56.1 36.1
V+

2 85.4 40.0 86.5 73.2
V2 66.9 30.3 71.6 64.3
Cr2 20.0 -10.1 55.0 33.9
Fe2 58.2 -18.7 10.4 26.9
Co2 54.3 -43.5 21.0 39.4
Ni+2 101.3 45.1 66.5 52.2
Ni2 57.0 -10.1 33.5 48.1
Cu2 46.5 52.7 47.3 46.7
MAE 12.0 13.6 6.9 –
ME 10.9 -9.8 1.7 –
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FIG. 1: Mean absolute errors (solid lines) and mean errors (dashed lines) in the computed
B13-0 and B13 bond energies for each sub-class of the 3d transition-metal diatomic set.
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clearly under-binds. The strong-correlation term in B13 nicely corrects this error.

To place the performance of B13 in a wider context, we compare with some popular GGA,

hybrid, and range-separated hybrid functionals in Table III. This is not an exhaustive survey,

rather a reflection of the effect of differing degrees of exact-exchange mixing on the bond

energies. More extensive tests can be found in the papers of Wilson et al.5 and of Truhlar et

al.14 Table III reveals that all of the functionals involving exact exchange, excepting B13, give

large MAEs and systematically under-estimate the bond energies. GGAs and meta-GGAs

(without exact exchange) also give large MAEs, but with an over-binding tendency. M06-L

is the best performing of these, but note that 3d transition-metal diatomics, including Cr2,

are part of the extensive parametrization set used in its fitting.25 For most of the considered

functionals, the greatest over-binding occurs in Ni+2 due to the large delocalization error

mentioned earlier. The effect of this error is largest for the GGAs and meta-GGAs, but is

reduced through exact-exchange mixing in the hybrids and range-separated hybrids. B13-0

and B13 both use 100 percent exact exchange and exhibit the lowest Ni+2 errors.

Cr2 is typically the most problematic under-bound system, due to neglect of strong cor-

relation in conventional functionals. All functionals that under-bind Cr2 also greatly under-

estimate its bond length. The errors are largest for the hybrid and range-separated hybrid
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TABLE III: Bond-energy error statistics for the complete set of 3d transition-metal
diatomics obtained with selected density functionals. Max+ indicates the maximum

positive error (over-binding) and Max− indicates the maximum negative error
(under-binding). All quantities are in kcal/mol. The B13-0 and B13 calculations were

performed with NUMOL. All other calculations were performed with Gaussian 09 using
the 6-311+G(2d,2p) basis set.

Method MAE ME Max + Max −
B13-0 13.6 -9.8 10.3 MnH -82.9 Co2

PBE0 13.5 -9.2 21.2 Ni+2 -111.6 Cr2
HSE06 13.1 -8.8 21.4 Ni+2 -108.7 Cr2
LC-ωPBE 14.8 -5.8 21.8 Ni+2 -113.1 Cr2
B3LYP 10.4 -4.4 26.1 Ni+2 -74.4 Cr2
B13 6.9 1.7 21.1 Cr2 -18.4 Co2

M06-L 8.1 5.3 44.9 Ni+2 -30.9 Cr2
TPSS 11.3 10.3 48.0 Ni+2 -16.5 Cr2
BLYP 13.0 12.8 49.3 Ni+2 -4.2 CuF
PBE 14.3 13.8 53.0 Ni+2 -7.3 Cr2

TABLE IV: Bond-energy error statistics for the subset of homometallic diatomics obtained
with selected density functionals using either spin-symmetic or broken-symmetry

calculations. Max− indicates the maximum negative error (under-binding). All quantities
are in kcal/mol. The B13-0 and B13 calculations were performed with NUMOL. All other

calculations were performed with Gaussian 09 using the 6-311+G(2d,2p) basis set.

Method Spin-symmetric Broken-symmetry
MAE ME Max − MAE ME Max −

B13-0 32.4 -31.2 -82.9 Co2 – – – –
LC-ωPBE 33.5 -29.2 -113.1 Cr2 19.6 -14.0 -62.8 V2

PBE0 32.2 -28.1 -111.6 Cr2 17.6 -13.4 -55.6 V2

HSE06 30.5 -26.2 -108.7 Cr2 16.9 -12.6 -53.0 V2

B3LYP 22.7 -17.5 -74.4 Cr2 13.0 -7.7 -37.7 V2

B13 12.8 2.9 -18.4 Co2 – – – –
M06-L 14.1 6.2 -30.9 Cr2 12.1 10.3 -5.9 V+

2

TPSS 14.4 11.1 -16.5 Cr2 13.2 12.5 -3.6 Cr2
BLYP 17.5 17.5 0.0 Cu2 18.1 18.1 0.0 Cu2

PBE 19.1 17.6 -7.3 Cr2 18.5 18.4 -0.4 Cr2

functionals, up to 0.158 Å with LC-ωPBE. B13, on the other hand, gives a reasonably

accurate bond length of 1.65 Å compared to the experimental value of 1.68 Å.

In the past, many computations on homometallic diatomics have used broken spin sym-

metry to simulate strong correlation (i.e. localization of excess α-spin density on one nucleus
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and excess β-spin density on the other). The effect of symmetry breaking on the homometal-

lic bond energies is shown in Table IV. Among the systems studied here, symmetry breaking

gives lower energies for Cr2 and Ni2 with all functionals, and also for Fe2, V2, and V+
2 for

those functionals with exact-exchange mixing. A variational broken-symmetry analysis is

not possible for the B13 and B13-0 functionals because of their non-self-consistent implemen-

tation. Note, however, that B13 is fundamentally designed not to favor spin polarization.

The results in Table IV reveal that symmetry breaking significantly reduces the extent of

under-binding in hybrid functionals, particularly for Cr2, but a systematic under-binding

tendency still remains.

Overall, B13 substantially outperforms all the other functionals in Table III, having the

lowest MAE. Moreover, its ME is nearest to zero, indicating that it neither systematically

over-binds or under-binds. Self-consistent (SC) implementation of B13 is highly challenging,

as it requires not only the local density, the gradient and Laplacian of the density, and the

kinetic-energy density, but the exact local exchange-energy density as well.8,9 Despite these

complications, SC implementation of an earlier and related functional, “B05”,36 has been

accomplished.37 We therefore hope the present results will encourage ongoing development

of B05 and B13 technology.
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