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Abstract 

 

Traditional underwater communication technology includes either the propagation of 

energy in the form of acoustic pressure waves or extremely low frequency 

electromagnetic radiation. Although today’s acoustic technology is mature and robust, it 

is not able to transmit information across the air-water interface without the aid of 

additional electronics hardware. Extremely Low Frequency (ELF) electromagnetic 

radiation technology overcomes this problem; however, the low frequencies (30 - 300 

Hz) require the use of very large antenna structures. The size of the ELF antenna makes 

this RF-based technology impractical for many applications requiring compact antenna 

structures including subsea oil and gas exploration, military, Underwater Internet of 

Things (UIoT) sensor networks, marine animal tracking, search and rescue, fishing, and 

environmental surveying, amongst others.  

 

In this thesis, a simulation tool is developed to evaluate an underwater communication 

system which includes an air-water interface. The simulator evaluates Maxwell's 

equations using the Finite-Difference Time-Domain (FDTD) method. The custom FDTD 

simulator is designed using a 2D geometry for increased computational time, and is easily 

configurable such that the medium properties, coil position and orientation, and problem 

geometry can be user-defined. The simulator also considers the circuit properties of the 

transmitter and receiver using the lumped parameters of an RLC circuit model. Because 

the FDTD is a time domain simulation, it allows for a variety of input signals including 

single tones, broadband pulses, and modulated signals. Stability and convergence are 

successfully confirmed by running the simulation with decreasing cell size using a built-

in convergence test feature. The accuracy has also been validated by comparing it against 

existing analytical models. The simulation tool predicts feasible transmitter depths up to 

3 meters, with a receiving coil 1 meter above the air water interface, with channel 

capacities above several tens of kilobits per second. 
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1 Introduction 

 

Underwater sensor networks are used in many real-world applications including oil and 

gas, military, underwater internet of things (UIoT), animal tracking, search and rescue, 

fishing, environmental surveying, and more. The underwater sensors collect and store 

application-specific data which is retrieved by engineers and scientists for further 

processing. The transmission of this data from underwater to above the water’s surface 

may take one of several forms. One common method is the use of electromagnetic 

radiation; however, in order to avoid large signal attenuation due to the water’s 

conductivity, very low carrier frequencies must be employed sometimes on the order of 

tens of Hz (Gulbahar and Ozgur, 2012). To maintain a suitable radiation efficiency of the 

radiating antenna, this results in impractically large transmitters for use in many 

applications requiring small electronic hardware. Another method often used is the 

deployment of underwater unmanned vehicles which dive down to the submerged data 

acquisition system and retrieve the data often by use of acoustic or optical 

communication links (Kao et al, 2017). The cost of this option can be inhibitory and does 

not allow for applications requiring real time monitoring. This thesis investigates the use 

of a magnetic inductive link as an alternative means of wirelessly transmitting 

information across an air-water interface for use in an underwater sensor network. 

 

This chapter will introduce the engineering challenges on which this thesis is based and 

the manner in which it is addressed. Next, the contributions of this research to the 

engineering and oceans technology communities will be highlighted. This chapter will 

also discuss the progress of research into magnetic induction in underwater applications 

over the past few decades. This literature review will be comprehensive; the papers and 

texts with the most significant impact on this thesis will be discussed. Finally, an outline 

of the organization of this thesis will be provided. 
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1.1 Problem Statement 

An underwater senor network is being developed by researchers and students at 

Dalhousie University’s UW-Stream Laboratory in partnership with Ultra Electronics 

Maritime Systems. To transmit data from under water into the air, existing systems often 

employ the use additional hardware to convert the acoustic pressure waves into RF 

energy for transmission into the air. An example of his type of system is shown in Figure 

1. Underwater acoustics are prone to environmental noise, multipath effects, and high 

latency resulting in notoriously low data rates. Systems employing hydrophones like this 

can cost thousands of dollars. Further, acoustic signals run the risk of being intercepted 

and cause undesired acoustic noise which can be disruptive to the marine environment. 

 

 

Figure 1: Traditional systems (modified from esrl.noaa.gov) 
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The underwater sensors may be used to collect data in various ocean applications. The 

amount of data to be collected would vary and could be very high. To simplify and 

reduce the costs associated with the collection of this information, and to keep the 

location of the underwater network discrete, wireless communication across the air-water 

interface is the preferred method for data transmission. To decrease the time required for 

data collection, a communication link with a suitable bandwidth must be developed with 

bitrates on the order of several tens of kilobits per second. Further, the sensor network 

may be located deep below the water’s surface; therefore, targeted underwater transmitter 

depths are on the order of several metres. Finally, for system compactness, the size of the 

transmitter must be kept as small and as low power as possible. These are the engineering 

challenges addressed as part of this thesis. 

 

1.2 Proposed Solution 

Magnetic Induction (MI) could be a suitable technology for this application because it 

has the potential to address each of the engineering and design challenges discussed in 

the preceding section. The study of electromagnetic radiation for use in underwater 

applications dates to the early 1900s; however, MI has received greater attention lately 

due to its potential to provide a low latency and its potential for a relatively high 

bandwidth communication link in comparison with traditional underwater acoustics (Guo 

et al, 2017) (Domingo, 2012). MI-based systems utilize electrically small coils with low 

radiation resistance and are based on the mechanism of near-field inductive coupling 

(Gibson, 2003). Compared with other wireless communication standards, the bandwidth 

of a MI-based system is inherently narrow; however, bitrates on the order of several 

hundred kilobits per second may be achievable (Akyildiz et al, 2015). This thesis 

investigates the use of MI as a means of wireless data transmission across the air-water 

interface through the use of a custom simulation tool based on the finite-difference time-

domain method. 
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Figure 2: An example of an MI application (modified from geosoft.com) 

 

1.3 Research Contributions 

The aim of this thesis is to develop practical analytical and simulation models of 

magnetic coupling and/or electromagnetic radiation across an air-water interface. The 

primary focus is the development and evaluation of a Finite-Difference Time-Domain 

(FDTD) simulation tool that allows users to characterize sinusoidal tones, pluses, as well 

as the potential for wideband modulated signals. The simulation tool is flexible and takes 

takes into account the effect of the hardware front ends. The coil geometries and 

orientations can be modified by the user, and the underwater channel and air-water 

interface can be configured to any application. Using this, the optimal frequency at which 

a set of coils provides maximum capacity for given system level parameters can be 

obtained. The FDTD simulation tool is compared and validated against existing analytical 

models. 

 

There were three works that occurred during the development of this thesis that would be 

deemed significant enough to be classified as being contributions to the relative scientific 

space: two accepted conference papers and the choice to make the FDTD simulation tool 

available for collaboration with other researchers on the www.uwstream.com website. It is 

the intention of both the author and supervisor that the field experiments will be 

conducted in late Summer or early Fall and the results put into at least one paper. It 

http://www.uwstream.com/
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should be noted that both conferences were postponed due to the global COVID-19 

pandemic. 

 

1.1.1 OCEANS 2020 Singapore 

Mark Watson was the main author of the conference paper entitled “Magnetic Induction 

for Communication Across the Air-Water Boundary”. This paper was written and 

submitted early in the development of the FDTD simulator and was accepted into the 

regular Technical Program at OCEANS 2020 Singapore on January 25, 2020. The paper 

describes the development of the FDTD simulation tool along with Adam Forget’s 

analytical model and proceeds to describe the plan for the eventual field experiments. 

Forget’s model will be discussed later in this thesis. 

 

1.1.2 UCOMMS 2020 (Non-acoustic Underwater Communication) 

Mark Watson was the main author of the conference paper entitled “Evaluating the 

Feasibility of Magnetic Induction to Cross the Air-Water Boundary”. This paper includes 

the results discussed in this thesis and was accepted into the Non-acoustic Underwater 

Communication Session at UCOMMS 2020 on June 8, 2020. Following the peer review 

process, the paper was revised, and the final version submitted on July 31, 2020. The 

paper presents the development of a custom FDTD simulation tool, shows the validation 

of the FDTD simulator using the Wait’s Sommerfeld integral, and predicts the induced 

voltages, signal-to-noise ratios, and channel capacities for several coil orientations. 

 

1.1.3 FDTD Tool Available Online 

Although the FDTD simulation in its current form is intended for one specific use case, it 

is still quite configurable with the potential to be adapted to other problems or modified 

to include additional features. For example, the conductivity and permittivity of the water 

can be disabled, and the coils miniaturized and brought closer together to simulate RFID 

tags. The input can be modified to be a modulated digital signal and the throughput and 

Bit Error Rates (BER) evaluated with the appropriate demodulation scheme. Another 

application may be to wireless power transfer problems or almost any other problem 

involving coupled coils or loop antennas. As such, the FDTD simulator will be made 
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available, open-source, at www.uwstream.com. The tool may be used by students or 

anyone interested in learning a relatively straight-forward implementation of the FDTD 

method. Researchers may see applications of the FDTD tool to their research and choose 

to apply it to their work with appropriate reference to Mark Watson at the UW-Stream 

Lab, Dalhousie University. 

 

1.4 Literature Review 

The problem of mathematically modelling electromagnetic (EM) fields in a domain 

which includes an air-water interface is very challenging and has been studied since the 

early 1900s. Early pioneers on the study of EM fields in conductive media were A. 

Sommerfeld, H. Weyl, K. A. Norton, and C. T. Tai who were primarily interested in 

studying fields in an infinite conductive medium. Most of their work occurred at or 

around the time of the first world war prior to the 1950’s. In the 1950’s and 60’s, scientist 

and engineers began to study the problem of a non-infinite conductive medium. Much of 

the work used to validate the FDTD simulator is based on the Sommerfeld integral. 

 

In 1961, R. K. Moore and W. E. Blair studied electric and magnetic dipole radiation in a 

conductive half-space. The resulting mathematical expressions are quite complex and 

involve the evaluation of Sommerfeld integrals. Moore and Blair were not interested in 

communication from underwater to air, but rather they developed their analysis on point-

to-point underwater communication. Moore appears to be the first to describe what is 

later called the “up-and-over” path which includes the generation of surface EM waves. 

Further, Moore’s work also assumes that since the conductivity of seawater is relatively 

high, the displacement current is negligible compared to the conductive current. This 

assumption produces an interesting result: the damped wave equation derived from 

Maxwell’s equations can be approximated by a diffusion equation. This is discussed in 

other literature and is one of the interesting phenomena observed in this thesis. 

 

In a discussion on submerged antennas in a lossy medium, the purpose of the 1962 work 

of R. C. Hansen is to give engineers tools which obscure the complicated Sommerfeld 

integrals, Bessel functions, etc. associated with the analysis of Maxwell’s equations 
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applied to EM fields in a conductive medium. Hansen looks at approximate field 

solutions for the cases of quasi-static, near field, intermediate field, and far field for the 

case where both antennas are submerged either underground or underwater. The analytics 

are mostly focused on electric dipoles; however, figures of merit are presented for the 

case of the loop antenna including radiation resistance. Hansen’s heuristic description of 

the physics of submerged antenna coupling is insightful. 

 

Moore again discusses radio communication in oceans applications in a 1967 paper 

published in IEEE Spectrum. As is common in much of the analytical work, the analysis 

is based upon plane waves in a conductive medium. He differentiates the attenuation 

effects of high versus low frequency signals. When the frequency is high enough such 

that the displacement current is large compared to the conduction current, the skin depth 

of a wave in a conductive medium becomes negligible for most communication systems. 

This results in the damped wave equation being approximated by the undamped wave 

equation. For low frequency signals, Moore states approximate attenuations of 8.7 dB per 

skin depth, or 55 dB per wavelength. However, since this derivation is based on the use 

of plane waves, the fields are already assumed to be radiating rather than coupled via 

capacitive or magnetic induction. Moore discusses the propagation of EM plane waves 

from air to underwater; however, he is mostly concerned with the transverse mode of 

propagation which allows for longer subsea communication distances. Moore’s 

formulation is based upon matching the boundary conditions at the air-water interface. 

The result is that the Poynting vector reduces by a factor of 1/1000 due to the electric 

field component decreasing by the same amount (the magnetic field component is 

unchanged). 

 

In an interesting and practical 1987 paper, L. Butler discusses underwater radio 

communication and provides simple frequency and conductivity dependent algebraic 

expressions for estimating losses due to the propagation of fields underwater and across 

the air-water interface. Butler also discusses, briefly, atmospheric noise and provides 

some rule of thumb estimates. Originally, the intention was to use Butler’s equations as a 

means of validating the FDTD simulator; however, the origin of Butler’s equations were 
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not found; instead, other more accurate ways to accomplish this, so Butler’s methodology 

was not used. 

 

In 1998, R. H. Tyler, T. B. Sanford, and M. J. Unsworth published a paper on the study 

of the propagation of electromagnetic fields in the costal ocean. Tyler et al derive 

expressions from Maxwell’s equations for the damped wave equation and differentiate 

between the manifestation of wavelike behaviour due to large displacement currents and 

diffusive properties when conduction currents dominate (i.e. as in the case of 

electromagnetic fields in a good conductor).  

 

The 2003 PhD dissertation by D. Gibson is one the main pieces of work used in this 

thesis. Although not focused on underwater communication, Gibson characterizes a 

subsurface channel and designs a system based on magnetic induction for subsurface 

communications for mining applications. Gibson uses analytical models of varying 

complexity to derive an optimum system frequency and antenna orientations. Gibson 

provides MATLAB code for his numerical evaluation of the complicated Sommerfeld 

integrals, and his code is modified for this application and included in this thesis. Gibson 

presents a model for atmospheric noise, and his noise model is also used in this thesis. 

Gibson describes the design of a wide-band low-frequency channel sounder used to 

characterize and evaluate a given channel. Apart from the specific contributions made by 

Gibson which have been applied to this thesis, Gibson does an excellent job at providing 

insight on numerous relevant topics some of which will be discussed in this thesis. These 

topics include near vs far fields effects, quasi-static diffusion vs radiation, and important 

loop antenna parameters, just to name a few. 

 

A 2005 paper by L. O. Loseth, H. M. Pedersen, B. Ursin, L. Amundsen, and S. Ellingsrud 

discusses the diffusion of electromagnetic fields in a conductive medium. 

Mathematically, the damped wave equation includes a damping term which is a function 

of the conductivity of the medium. If the damping term dominates, as is the case at low 

frequency, the wave equation becomes a diffusion equation. As a result, electromagnetic 

pulses become distorted. This paper was published in the Society of Exploration 



9 

 

Geophysics, so the work is focused on the use of magnetic induction in underground 

applications; therefore, crossing of an air-water interface is not included. 

 

C. Uribe and W. Grote wrote a paper in 2009 on the development of a radio 

communication model for underwater wireless sensor networks. Although not focused 

solely on magnetic induction, their aim is to develop models for high bandwidth systems 

using electromagnetics underwater. They indicate attenuation occurs primarily in the near 

fields of transmitting antennas with little loss occurring thereafter. They propose a model 

for the attenuation factor which is a function of distance and matches measurements in 

both the near and far fields. 

 

In a fascinating 2011 paper published by the Swedish Defence Research Agency – 

Division of Defence and Security, Systems, and Technology, L. Abrahamsson develops 

both analytical and FDTD based models of electromagnetic fields crossing the air-water 

interface. Abrahamsson’s attention is mostly on the analysis of the lateral wave 

component for the purpose of extending transmission distance. Abrahamsson touches on 

the diffusion of the electromagnetic fields underwater and the propagation in air. The 

analytical model is developed using the damped wave equation and applying appropriate 

boundary conditions using reflection and transmission coefficients then applying Green’s 

function and arriving at the Sommerfeld integral. Abrahamsson concludes the FDTD 

method is capable of accurately reproducing air-water interface effects with good fidelity. 

He touches on the importance of making the computational domain large enough to avoid 

the interaction between the absorbing boundary condition with the interior fields, which 

is something observed in this thesis and cannot be understated. 

 

In 2012, B. Gulbahar and O. B. Akan develop and analyze a model of a magneto-

inductive underwater channel. They use the approach of developing an equivalent circuit 

model based on the mutual inductance between two coils. They do not study the effects 

of crossing the air-water interface.  
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The 2012 work by M. C. Domingo is a study of the use of magnetic induction for an 

underwater wireless communication network. Again, her approach is the development of 

an equivalent circuit model based on the mutual inductance between two coils. She 

derives an expression of the path loss which includes one term representing losses due to 

the loading of the coupled system on the transceiver and another term representing the 

skin depth effects. She compares this model with other models based on the use of 

acoustic and RF energy. Domingo also proposes a relay system based on the use of a 

string of passive coils for the purpose of extending the range of an MI-based system. 

 

H. Wang, K. Zheng, K. Yang, and Y. Ma derive expressions for electromagnetic fields in 

air produced by a magnetic dipole immersed in the sea in a 2014 paper published in the 

IEEE Transactions on Antennas and Propagation. Their results are tested experimentally 

at a frequency near 19 kHz. This paper provided the inspiration for the approach of this 

thesis: to develop a model to predict the performance of a MI-based system crossing the 

air-water interface and then to perform experiments to validate the results of the model. 

The objective in the paper by Wang, Yang, and Ma is to maximize the lateral distance at 

a given transmitter depth, operating frequency, and receiver height where as the purpose 

of this thesis is to maximize transmitter depth with the receiver coil located directly 

overhead, at a fixed height in air, while maintaining sufficient bandwidth and data rates. 

 

A 2015 paper by H. Guo and Z. Sun describes the development of an underwater channel 

model based on the use of magnetic induction. They argue that the previous work of 

Domingo neglects the effects of the lossy medium on the mutual inductance between the 

two coils. This paper treats the transmitting coil as a magnetic dipole. They show how a 

tri-directional coil radiates like an isotropic radiator. In this paper, Guo and Sun do not 

study the case where the receiving coil is in air, but the air-water interface is included 

such that reflected and lateral waves are included in their model. They use the analytical 

models of the radiated fields to find the mutual and self inductance between the two sets 

of coils which is then use it to develop an equivalent circuit model of the channel. This is 

a common approach for analytical models. 
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Y. Wang, A. Dobbin, and J.F. Bousquet from Dalhousie University were able to 

demonstrate, in a 2016 paper, magnetic induction used in the development of a low-

power underwater modem capable of achieving data rate of 8 kbps at 22.5 kHz over a 

distance of 10 meters in seawater at just 1 Watt. Their circuit model is based on the work 

of Domingo which includes a term that represents mutual inductance between the two 

sets of coils, and losses are modelled based on skin depth. The system is completely 

underwater and does not consider the effects of fields crossing the air-water interface. 

 

The 2016 textbook Antenna Theory: Analysis and Design (4th edition) by C. A. Banalis 

develops fundamental tools for analyzing loop antennas. The fields from a current 

carrying circular loop are provided in this thesis and based on the derivation 

demonstrated by Banalis. 

 

2018 S. Zhang, X. Tu, K. Zheng, M. Yang, and L. Xu study the radiation of 

electromagnetic fields across the air-water interface using the FDTD method. Their 

approach is quite different from the method used in this thesis. Zhang et al use what is 

called a Total-Field Scatter-Field source (TFSF-FDTD) which simplifies the model and 

reduces the number of time steps required to complete the simulation. The FDTD method 

used in this thesis is a direct numerical evaluation of Maxwell’s equations over the entire 

computational space resulting in long run times. The TFSF-FDTD approach is a newer 

more modern technique which consists of applying TFSF boundary conditions at the 

water’s surface - which are called the scatter-fields and are derived using analytical 

expressions - and then modelling the total-fields in air only. They compare their TFSF-

FDTD results with that of the Sommerfeld integral which is part of the validation used in 

this thesis as well. 

 

In 2018, B. Chai, X. Zhang, and J. Wang published a paper describing experiments of a 

magnetic induction-based communication system across an air-water interface. Their 

tests consisted of transmitting energy from air into the water. They transmitted data using 

Frequency Shift Keying (FSK) modulation from 4 to 40 Hz. At a transmitter height of 2 

meters and a receiver located up to a depth of 35 meters, they were able to achieve error 
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free communication. The system studied and tested in this thesis is intended to operate at 

a much higher frequency range (~ 100 kHz) resulting in a much larger bandwidth. 

 

Finally, an interesting 2018 paper by F. Tonolini and F. Adib describes the development 

of an alternative technology for transmission of information across an air-water interface. 

The system is called Translational Acoustic RF Communication (TARF). The technology 

is rather new and quite immature but is fascinating nonetheless. The system works by 

using acoustic energy to vibrate the water’s surface. A radar system then analyzes the 

ripples on the surface and uses signal processing methods to extract the phase changes in 

the vibrations to decode them and recover the transmitted data. 

 

1.5 Organization of Thesis 

Chapter 2 will provide a review of fundamental electromagnetic theory, communication 

system evaluation, and important loop antenna parameters. Maxwell’s equations are 

fundamental to this branch of physics and electrical engineering; in fact, the FDTD 

simulation tool developed here is based on the finite-difference form of two of Maxwell’s 

four equations. Maxwell’s equations are used to derive expressions intended to facilitate 

a better understanding of the physics of electromagnetic fields underwater and across the 

air-water interface. This thesis is based on the use of magnetic induction as a means to 

reduce the attenuation of electromagnetic fields underwater. To support this, the 

theoretical framework is developed to distinguish important characteristics of the fields 

as they develop and change around the transmitting loop antenna.  

 

Chapter 3 provides a thorough description of the simulation tool developed for this thesis. 

The tool consists of three main functional blocks, and the operation and implementation 

of each part will be described in detail. The channel model is perhaps the most important 

functional block, and it certainly involves the most complicated algorithms based on the 

FDTD method; therefore, the FDTD method will be introduced and described in detail. 

 

Chapter 4 will explain how other analytical models and field experiments are be used to 

compare with the results of the simulation tool developed as part of this thesis. In an 
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attempt to validate the base FDTD algorithm, a test is performed to measure and compare 

the frequency content of a pulse generated inside a cavity. Another test used to evaluate 

the application of FDTD in cylindrical coordinates is to simulate the fields around a 

single loop of wire, with no water present, to be compared with the simple analytic 

model. The final validation is based on the work of Wait and Forget. The analytical work 

of Wait and Forget will be explained and used to show how fields decay in the 

transmitting antenna’s near-field in the presence of an air-water boundary.  

 

Chapter 5 will explain how the FDTD simulation results compare with the other models 

described in Chapter 4. The performance of MI system is then hypothesized. 
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2 Review of Theory 

 

The purpose of Chapter 2 is twofold: first, to provide interested readers with an 

introduction to the fundamental physics and mathematical formulations necessary to 

understand these works; and second, to present the important elements on which this 

thesis is based. Reading the works of other researchers was extremely satisfying, 

insightful, and instrumental throughout the development of this thesis, so it is very 

important to be able to potentially do the same for future students working in the field of 

magnetic induction based underwater communication systems, the development of 

FDTD-based computational electromagnetics simulation tools, or electromagnetic 

phenomenon in general. In addition, there are important distinctions to be made here 

which relate to the fundamental physics of electromagnetic interactions which have direct 

consequences on the communication system performance. This chapter will attempt to 

emphasize these points.  

 

This chapter will begin by reviewing Maxwell’s equations and then their application to 

loop antennas and electromagnetic fields in seawater. This will be followed by methods 

for evaluating the communication system based on noise, signal to noise ratio, and 

channel capacity. Next, since the communication system studied here is based on the use 

of loop antennas, the basic theory of RLC circuits will be briefly reviewed. Finally, an 

introduction to finite differences will be presented. 

 

2.1 Maxwell’s Equations 

Maxwell’s equations are a set of four equations which describe the behaviour of electric 

and magnetic fields 𝐸⃑  and 𝐻⃑⃑ , respectively. This set of equations consist of Gauss’ law for 

electric and magnetic fields, Faraday’s law, and Ampere’s law. While Maxwell’s 

equations are fundamental to understanding the physics of electromagnetic fields, this is 

not the only approach to this field of study. Quantum Electrodynamics (QED) is said to 

be the most accurate physical model in all of physics; however, the QED branch of 

modern physics views electromagnetism as the interaction between fundamental fields 
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and particles rather than as continuous fields, as is the case in the more traditional 

electromagnetic field theory described by Maxwell’s equations. It is the traditional 

electromagnetic field theory described by Gauss, Faraday, Ampere, and Maxwell used 

throughout this thesis, so Maxwell’s equations will be reviewed here.  

 

Maxwell’s equations can be expressed in integral or differential form. The differential 

form is presented below in Equations 2.1 through 2.4. It should also be noted that this 

representation of Maxwell’s equations is for isotropic, homogeneous, non-dispersive, 

time invariant, and linear material; otherwise the constitutive relations 𝐷⃑⃑ = 𝜀𝐸⃑  and 𝐵⃑ =

𝜇𝐻⃑⃑  and more complicated expressions for 𝜀 and 𝜇 would need to be used. While the 

inclusion of 𝐷⃑⃑  and 𝐵⃑  represent a broader set of problems, the simpler expressions shown 

below are sufficient for the purpose of this work and are used throughout this thesis. 

 

 ∇ ∙ 𝐸⃑ =
𝜌𝑣

𝜀
 2.1 

 

 ∇ ∙ 𝐻⃑⃑ = 0 2.2 

 

 
∇ × 𝐸⃑ = −𝜇

𝜕𝐻⃑⃑ 

𝜕𝑡
 2.3 

 

 
∇ × 𝐻⃑⃑ = 𝐽 + 𝜀

𝜕𝐸⃑ 

𝜕𝑡
 2.4 

 

Equations 2.1 and 2.2 are known as Gauss’ laws for electric and magnetic fields, 

respectively. Simply put, the former describes how the divergence of electric field lines 

depends on the existence of charged particles (𝜌𝑣 can be positive, negative, or zero), 

respectively, while the latter states the opposite for magnetic fields. More specifically, the 

amount of electric flux through an arbitrary Gaussian surface may be non-zero depending 

on if an electric charge is contained within the volume enclosed by the surface. The same 

cannot be said for magnetic fields since magnetic monopoles do not exist.  
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Equations 2.3 and 2.4 show the coupling between electric and magnetic fields and are the 

basis of the full-wave FDTD simulation tool described in this thesis. Equation 2.3 is 

known as Faraday’s law. Faraday’s law describes the relationship between electric fields 

and time-varying magnetic fields. Equation 2.4 is known as Ampere’s law which 

describes how magnetic fields are related to current sources, 𝐽 , and/or time-varying 

electric fields, 
𝜕𝐸⃑ 

𝜕𝑡
 (also called displacement current). An important distinction which will 

be expanded upon later, is the case where the medium is conductive, with conductivity 𝜎, 

such that the moving charges are the result of the electric field itself, which in such a case 

is 𝐽 = 𝜎𝐸⃑ . 

 

2.1.1 Magnetic Induction 

Magnetic induction is a physical phenomenon which illustrates the coupling of electric 

and magnetic fields. In 1831, Michael Faraday made an observation that would forever 

change the landscape of science and engineering. Faraday, a keen experimentalist, 

noticed that by moving a magnet near a stationary piece of wire, the changing magnetic 

field could generate a voltage in the wire. The mathematical formulation of this 

phenomenon can be expressed in a few ways; Equation 2.5 is commonly known as 

Faraday’s law and represents one such form. Faraday’s law describes how electric fields, 

𝐸⃑ , are generated by time-varying magnetics fields, 𝐻⃑⃑ . 

 

 
∇ × 𝐸⃑ = −𝜇

𝜕𝐻⃑⃑ 

𝜕𝑡
 2.5 

 

Another common representation of Faraday’s law is shown in Equation 2.6. This 

formulation is more intuitive as it excludes the use of the electric and magnetic field 

vectors which are generally not known in practice. Equation 2.6 relates the induced 

voltage, 𝑉𝑒𝑚𝑓, with a time-varying magnetic flux, Ψ. 
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𝑉𝑒𝑚𝑓 = −

𝑑Ψ

𝑑𝑡
 2.6 

 

Both forms of Faraday’s law presented here are used at various points in this thesis, 

depending on the application, as will be explained in Chapter 3. Further, Equation 2.5 can 

be derived from 2.6 by using 
𝑑Ψ

𝑑𝑡
= 𝜇 ∬

𝜕𝐻⃑⃑ 

𝜕𝑡
∙ 𝑑𝑆 

 

𝑆
 and 𝑉𝑒𝑚𝑓 = ∮ 𝐸⃑ ∙ 𝑑𝑙 

 

𝑙
 and then applying 

Stokes’ theorem: ∮ 𝜓⃑ ∙ 𝑑𝑙 
 

𝑙
= ∬ (∇ × 𝜓⃑ ) ∙ 𝑑𝑆 

 

𝑆
. 

 

Magnetic induction is the working principle in the operation of electrical transformers. In 

the simplest sense, transformers are, of course, two coils of wire coupled by a magnetic 

interaction. An alternating current in one coil generates magnetic fields which cross the 

cross-sectional area of the secondary coil. According to Faraday’s law, there will be 

voltages and currents induced in the second coil. This is the basis of the magnetic 

induction communication system discussed in this thesis. The mutual induction between 

two coils will be described next. 

 

2.1.2 Mutual Inductance 

When the magnetic fields generated by currents flowing in one coil result in an induced 

current in a secondary coil, and if the induced current results in a magnetic field which 

interacts with the primary coil, then it can be said that the two coils have become 

coupled. This coupling can be quantified by a parameter called mutual inductance, 𝑀. 

The mutual inductance describes the magnetic interaction between the two coils. Mutual 

inductance is not a fundamental property, rather it is a mathematical construct defined by  

 

 𝑀12 =
Ψ12

𝐼2
 2.7 

 

where 𝑀12, Ψ12, and 𝐼2 are shown in Figure 3. 𝑀12 describes the magnetic coupling of 

secondary coil (on the right) on the primary (left) due to the induced current 𝐼2. Ψ12 

represents the magnetic flux through the primary coil due to the secondary coil. 
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Figure 3: Mutual inductance of two coils 

 

Similarly, the ratio of the magnetic flux linking the secondary coil due to the primary to 

the driving current in the primary is defined as  

 

 𝑀21 =
Ψ21

𝐼1
 2.8 

 

Where Ψ21 represents the magnetic flux through the secondary coil due to the primary, 

and 𝑀21 describes the magnetic coupling of the primary coil on the secondary due to the 

driving current 𝐼1. The term “mutual inductance” comes from the equivalence of the 

ratios. 

 

 
Ψ12

𝐼2
=

Ψ21

𝐼1
⟶ 𝑀12 = 𝑀21 = 𝑀 2.9 

 

The two circuits shown in Figure 3 are coupled and this can be expressed mathematically 

by applying Kirchoff’s voltage law to the two circuits resulting in the following system of 

equations which are coupled through the terms which include the parameter 𝑀 (Grainger 

and Stevenson, 1994). 

 

 𝑉𝑠 − 𝐿1

𝑑𝐼1
𝑑𝑡

− 𝑀
𝑑𝐼2
𝑑𝑡

= 0 2.10 
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 𝑉𝑖𝑛𝑑 − 𝐿2

𝑑𝐼2
𝑑𝑡

− 𝑀
𝑑𝐼1
𝑑𝑡

= 0 2.11 

 

The reason mutual inductance is being presented in this way is because much of the 

literature uses 𝑀 when developing analytical channel models and expressions of the 

electromagnetic fields. The FDTD model in this thesis does not use this approach, but 

two of the analytical models used for validating the FDTD simulation results do.  

 

2.1.3 Boundary Conditions 

As is the case with any problem involving differential equations, the problem is not 

considered well-posed unless boundary conditions are defined (and initial conditions 

where appropriate). The field quantities 𝐸⃑ , 𝐷⃑⃑ , 𝐻⃑⃑ , and 𝐵⃑  will be discontinuous at a 

boundary of two media or if there exists surface charge 𝜌 or surface current 𝐽  (Sadiku, 

2010). The integral equation form of Maxwell’s equations can be obtained by applying 

Green and Stokes’ laws to the differential counterparts. The integral forms are often used 

to derive the boundary conditions for electromagnetic problems. The integral form of 

Maxwell’s equations are shown in Equations 2.12 to 2.15. 

 

 
∯𝐷⃑⃑ 

 

𝑆

∙ 𝑑𝑆 = ∭𝜌𝑣𝑑𝑉
 

𝑉

 2.12 

 

 
∯𝐻⃑⃑ 

 

𝑆

∙ 𝑑𝑆 = 0 2.13 

 

 
∮𝐸⃑ 

 

𝑙

∙ 𝑑𝑙 = −
𝑑

𝑑𝑡
∬𝐵⃑ ∙ 𝑑𝑆 

 

𝑆

 2.14 

 

 
∮𝐻⃑⃑ 

 

𝑙

∙ 𝑑𝑙 = 𝐼 +
𝑑

𝑑𝑡
∬𝐷⃑⃑ ∙ 𝑑𝑆 

 

𝑆

 2.15 
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Using Figure 4 as a reference, consider the interface of two media with media 1 

containing 𝐸⃑ 1 and media 2 containing 𝐸⃑ 2. We can construct a rectangle that contains part 

of it in media 1 and part in media 2 with side lengths ∆𝑤 and ∆ℎ. Each side of the 

rectangle is numbered 1 to 4. We can apply Faraday’s law in the form ∮ 𝐸⃑ 
 

𝑙
∙ 𝑑𝑙 = 0, 

where we are assuming the fields are static. Applying the line integral to the rectangle 

yields (𝐸𝑥,2 − 𝐸𝑥,1)∆𝑤 + (𝐸𝑦,1 + 𝐸𝑦,2 − 𝐸𝑦,1 − 𝐸𝑦,2)
∆ℎ

2
= 0 which simplifies to 

Equation 2.16 which says that the components of 𝐸⃑  tangential to the boundary of media 1 

and 2 are continuous. 

 

 𝐸𝑥,2 − 𝐸𝑥,1 = 0 2.16 

 

 

Figure 4: Electric field boundary conditions 

 

Another way to state this is by considering a unit vector, 𝑛̂, perpendicular to the 

boundary, Ω. If 𝐸𝑥,2 = 𝐸𝑥,1, then 𝐸⃑ 1 − 𝐸⃑ 2 = (𝐸𝑦,1 − 𝐸𝑦,2)𝑦̂ which is a vector parallel to 

𝑛̂. Therefore, their cross product vanishes resulting in Equation 2.17. A similar procedure 

can be used to find an expression for the magnetic field which is shown in Equation 2.18. 

This equation says that 𝐵⃑ 1 − 𝐵⃑ 2 results in a vector perpendicular to the boundary, Ω, 

which indicates 𝐵𝑦,2 = 𝐵𝑦,1. 

 

 𝑛̂ × (𝐸⃑ 1 − 𝐸⃑ 2)|Ω = 0⃑  2.17 
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 𝑛̂ ∙ (𝐵⃑ 1 − 𝐵⃑ 2)|Ω = 0 2.18 

 

This is an incomplete picture of boundary conditions, but the interested reader can find 

the complete derivation in any undergraduate textbook on electromagnetism (see 

Elements of Electromagnetics by Matthew N.O. Sadiku). The boundary conditions 

presented here are sufficient for - and was used in - the development of the FDTD 

simulator and will be discussed again in Chapter 3. 

 

2.1.4 Magnetic Fields Around a Wire 

As will be discussed in Chapter 3, the FDTD tool must convert the current in the 

transmitting coil into a magnetic field to be injected into the FDTD-based channel model. 

To this end, let us briefly discuss how the magnetic field is obtained. The magnetic fields 

produced around a current carrying wire can be found using Ampere’s law, repeated here 

in Equation 2.19, where 𝐼 = ∬ 𝐽 ∙ 𝑑𝑎 
 

𝑆
 and 𝐽  is the current density. Figure 5 shows the 

cross-section of a wire of radius 𝑟 carrying a current 𝐼 into the page. Note: cylindrical 

coordinates (𝜌, 𝜙, 𝑧) are used here and in the FDTD simulator. 

 

 
∮ 𝐻⃑⃑ 

 

𝑙

∙ 𝑑𝑙 = ∬𝐽 ∙ 𝑑𝑎 
 

𝑆

 2.19 
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Figure 5: Magnetic fields around a current carrying wire 

 

In order to find an analytic expression for 𝐻⃑⃑ , this problem must be broken down into two 

parts based on if the position vector 𝜌  is inside or outside of the wire. When the position 

vector 𝜌  is less than 𝑟, the left-hand side of Ampere’s law becomes 

 

 
∮𝐻⃑⃑ 

 

𝑙

∙ 𝑑𝑙 = 𝐻𝜙 ∬𝑑𝑙 = 𝐻𝜙2𝜋𝜌
 

𝑙

 2.20 

 

because the magnetic field is constant on the curve 𝑙 due to the cylindrical symmetry. The 

right-hand side becomes 

 

 
∬𝐽 ∙ 𝑑𝑎 

 

𝑆

=
𝐼

𝜋𝑟2
∫ ∫ 𝜌𝑑𝜙𝑑𝜌 =

𝐼𝜌2

𝑟2

2𝜋

0

𝜌

0

 2.21 

 

resulting in the following expression for 𝐻𝜙 when 0 < 𝜌 < 𝑟.  

 

 
𝐻𝜙 =

𝐼𝜌

2𝜋𝑟2
 2.22 
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This shows how the magnetic field strength increases linearly inside the wire, from the 

center to the outside surface. Outside of the wire, when 𝜌 > 𝑟, the right-hand side of 

Ampere’s law is simply 𝐼, and the left-hand side is the same as before. Therefore, when  

𝜌 > 𝑟, Ampere’s law becomes 

 

 
𝐻𝜙 =

𝐼

2𝜋𝜌
 2.23 

 

It is Equation 2.23 which is used in this thesis to inject the magnetic field into the FDTD-

based channel model. 

 

2.1.5 The Fresnel Equations 

The Fresnel equations describe the degree of reflection and transmission of a plane wave 

as it moves from a medium with intrinsic impedance 𝜂1 into a second medium with an 

impedance 𝜂2. If the two impedances are matched, then there will be no reflection. The 

reflection coefficient is used later in this thesis to develop the Absorbing Boundary 

Conditions (ABC) in the form of a Perfectly Matched Layer (PML). The conditions used 

to define a state where the reflection is zero are used in the construction of a tensor 

matching the impedance of the interior computational space with that of the PML. This 

will be discussed further in Chapter 3. Since this thesis focuses on minimizing the 

reflections from the PML, a derivation of the reflection coefficient will be presented here. 

The setup is shown in Figure 6 where the incident (denoted with a subscript 𝑖) and 

reflected (𝑟) components are in medium 1 and the transmitted components (𝑡) are in 

medium 2. The interface is at 𝑦 = 0 in the xy-plane. Note that this is the Transverse 

Electric (TE) mode as the electric field in perpendicular to the xy-plane which is the 

plane of incidence in this case. 
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Figure 6: Plane wave behaviour at a boundary 

 

The setup involved carefully constructing expressions for each of the plane waves shown 

in Figure 6. Take the incident fields for example. There will be a wave vector, 𝑘⃑ , which 

describes the direction of the plane wave and is defined as 𝑘⃑ = 𝐸⃑ 𝑖 × 𝐻⃑⃑ 𝑖. Further, for this 

case, 𝑘⃑ = 𝑘𝑥𝑥̂ + 𝑘𝑦𝑦̂. Therefore, the incident planes waves can be defined as 

 

 𝐸⃑ 𝑖 = 𝐸𝑖,0 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)𝑧̂ 2.24 

 

 
𝐻⃑⃑ 𝑖 =

𝐸𝑖,0

𝜂1
cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)(− cos 𝜃𝑖 𝑥̂ + sin 𝜃𝑖 𝑦̂) 2.25 

 

Similarly, plane waves describing the reflected and transmitted fields can be found as 

 

 𝐸⃑ 𝑟 = 𝐸𝑟,0 cos(𝑘𝑥𝑥 − 𝑘𝑦𝑦 − 𝜔𝑡)𝑧̂ 2.26 
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𝐻⃑⃑ 𝑟 =

𝐸𝑟,0

𝜂1
cos(𝑘𝑥𝑥 − 𝑘𝑦𝑦 − 𝜔𝑡)(cos 𝜃𝑟 𝑥̂ + sin 𝜃𝑟 𝑦̂) 2.27 

 

 𝐸⃑ 𝑡 = 𝐸𝑖,0 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)𝑧̂ 2.28 

 

 
𝐻⃑⃑ 𝑡 =

𝐸𝑡,0

𝜂2
cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)(− cos 𝜃𝑡 𝑥̂ + sin 𝜃𝑡 𝑦̂) 2.29 

 

At the interface where 𝑦 = 0, the conditions of continuity are expressed as 𝐸⃑ 𝑖 + 𝐸⃑ 𝑟 = 𝐸⃑ 𝑡 

and 𝐻⃑⃑ 𝑖 + 𝐻⃑⃑ 𝑟 = 𝐻⃑⃑ 𝑡. The former results in  

 

 𝐸𝑖,0 + 𝐸𝑟,0 = 𝐸𝑡,0 2.30 

 

and the latter 

 

 1

𝜂1
[(𝐸𝑟,0 cos 𝜃𝑟 − 𝐸𝑖,0 cos 𝜃𝑖)𝑥̂ + (𝐸𝑟,0 sin 𝜃𝑟 − 𝐸𝑖,0 sin 𝜃𝑖)𝑦̂] = ⋯ 

… =
𝐸𝑡,0

𝜂1

(− cos 𝜃𝑡 𝑥̂ + sin 𝜃𝑡 𝑦̂) 

2.31 

 

We can equate, for example, the x-components of Equation 2.31 and make the 

substitution 𝜃𝑟 = 𝜃𝑖  (from basic optics) resulting in 

 

 1

𝜂1
(𝐸𝑖,0 − 𝐸𝑟,0) cos 𝜃𝑖 =

𝐸𝑡,0

𝜂1
cos 𝜃𝑡 2.32 

 

After making the substitution 𝐸𝑡,0 = 𝐸𝑖,0 + 𝐸𝑟,0 and rearranging, the resulting expression 

for the TE reflection coefficient can be readily obtained and is shown in Equation 2.33. 

 

 
Γ𝑇𝐸 =

𝐸𝑟,0

𝐸𝑖,0
=

𝜂2 cos 𝜃1 − 𝜂1 cos 𝜃2

𝜂2 cos 𝜃1 + 𝜂1 cos 𝜃2
 2.33 
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Similarly, for the TM case, the associated reflection coefficient, Γ𝑇𝑀, is 

 

 
Γ𝑇𝑀 =

𝜂2 cos 𝜃2 − 𝜂1 cos 𝜃1

𝜂2 cos 𝜃2 + 𝜂1 cos 𝜃1
 2.34 

 

A similar procedure can be followed for deriving the other part of the Fresnel equations 

(i.e. the transmission coefficient); but this is not relevant here. Again, as derivations are 

explained, one does not want to lose focus of the greater picture. The purpose of showing 

the reflection coefficient will become apparent when the development of the PML is 

shown in Chapter 3. 

 

2.1.6 Dispersion 

A very important aspect in the setup of the FDTD method involves selecting the 

appropriate time step. There is a limit on how large the time step can be, and this limit is 

called the Courant stability criterion. The limit is derived from something called the 

numerical dispersion relation, which is inherent in the FDTD algorithm. Therefore, it is 

necessary to provide a review of dispersion as it relates to physical EM plane waves. The 

Courant stability criterion will be discussed in Chapter 3. 

 

Dispersion describes the relationship between the speed, frequency, and wave number of 

an EM plane wave (Sadiku, 2010). If the electric and magnetic fields are assumed to be in 

free space and consist of plane waves of the form 𝐸⃑ = ℛ {𝐸̃𝑒𝑗(𝑘⃑ ∙𝑟 −𝜔𝑡)} and 𝐻⃑⃑ =

ℛ {𝐻̃𝑒𝑗(𝑘⃑ ∙𝑟 −𝜔𝑡)}, where 𝑘⃑ = 𝑘𝑥𝑥̂ + 𝑘𝑦𝑦̂ and 𝑘 = √𝑘𝑥
2 + 𝑘𝑦

2
, then Maxwell’s equations 

can be written in the frequency domain as  

 

 𝑘⃑ ∙ 𝐸̃ = 0 2.35 

 

 𝑘⃑ ∙ 𝐻̃ = 0 2.36 
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 𝑘⃑ × 𝐸̃ = −𝜔𝜇0𝐻̃ 2.37 

 

 𝑘⃑ × 𝐻̃ = 𝜔𝜀0𝐸̃ 2.38 

 

The last two equations can be combined to produce a complex valued wave equation by 

taking the cross-product of Equation 2.37 with 𝑘⃑  and then substituting the expression for 

𝑘⃑ × 𝐻̃ from 2.38. 

 

 𝑘⃑ × (𝑘⃑ × 𝐸̃) = −𝜔𝜇0(𝑘⃑ × 𝐻̃) 2.39 

 

 𝑘⃑ × (𝑘⃑ × 𝐸̃) = −𝜔2𝜇0𝜀0𝐸̃ 2.40 

 

Next, we can apply the definition of the Laplacian of a vector field to the left-hand side of 

Equation 2.40 (i.e. k2𝜓⃑ = 𝑘⃑ (𝑘⃑ ∙ 𝜓⃑ ) − 𝑘⃑ × 𝑘⃑ × 𝜓⃑  for arbitrary 𝜓⃑ ) such that 

 

 𝑘⃑ (𝑘⃑ ∙ 𝐸̃) − k2𝐸̃ = −𝜔2𝜇0𝜀0𝐸̃ 2.41 

 

And since 𝑘⃑ ∙ 𝐸̃ = 0, we have the equation (k2 − 𝜔2𝜇0𝜀0)𝐸̃ = 0 which implies 

 

 k2 = 𝜔2𝜇0𝜀0 2.42 

 

This is the dispersion relation for plane waves in free space. It relates the wave number, 

𝑘, to frequency and speed, where the speed of light in a vacuum is given by 

 

 
𝑐0 =

1

√𝜇0𝜀0

 2.43 

 

Note that since 𝜆0 = 𝑐0 𝑓⁄ , the wave number can also be expressed as 𝑘 = 2𝜋 𝜆0⁄ . The 

dispersion relation given by Equation 2.42 does not take into account a lossy medium, 
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which is the case for the electromagnetic fields underwater. If the fourth Maxwell 

equation is re-written to include the conductivity of the material, 𝜎, we have 

 

 𝑘⃑ × 𝐻̃ = (𝜎 + 𝜔𝜀0)𝐸̃ 2.44 

 

And by following the same procedure as before, Equation 2.41 becomes 

 

 𝑘⃑ (𝑘⃑ ∙ 𝐸̃) − k2𝐸̃ = −𝜔𝜇0(𝜎 + 𝜔𝜀0)𝐸̃ 2.45 

 

And since 𝑘⃑ ∙ 𝐸̃ = 0, we have the equation (k2 − 𝜔𝜇0(𝜎 + 𝜔𝜀0))𝐸̃ = 0 which implies 

another dispersion relation describing plane waves in a lossy material. 

 

 k2 = 𝜔𝜇0(𝜎 + 𝜔𝜀0) 2.46 

 

The dispersion relation for lossy material shown in Equation 2.46 reverts to the 

expression found for dispersion relation in free-space when 𝜎 = 0 S/m. The dispersion 

relation is a physical phenomenon which reflects the physics of electromagnetic waves. 

The concept of numerical dispersion is somewhat abstract and only applies to the 

numerical computation of Maxwell’s equations: not the physics (Taflove and Hagness, 

2005). This introduces a source of error. In Chapter 3, the numerical dispersion will be 

shown to be similar to the dispersion shown here, except that the relationship between the 

wave number, speed, and frequency will have other dependencies on the temporal and 

spatial discretization which are necessary for the numerical approximation of Maxwell’s 

equations. This will lead to an important result which effects the stability of the 

simulation. 

 

2.2 Loop Antennas 

In the independent works of researchers like M. C. Domingo, H. Guo, B. Gulbahar, and 

others, the topic of magnetic induction-based communication systems often refers to the 

principles of electric transformer action as the main principle of operation (although, less 

so in Guo). Although this formulation may yield somewhat satisfactory first-order 
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models, depending on the application, this thesis does not take this approach. In this 

thesis, the transmitting and receiving coils are viewed as loop antennas, and a full wave 

analysis is performed on the electric and magnetic fields through a conductive medium. A 

review of basic loop antenna theory is presented here. The following section will show a 

derivation of the fields radiated by a loop antenna. As a convenient intermediary step, the 

concept of a magnetic vector potential will be introduced in this section, and the vector 

potential will be derived using Maxwell’s equations. The vector potential will then be 

used to find the radiated fields next. These analytical expressions are then used in 

Chapter 4 as part of the validation of the FDTD model. 

 

2.2.1 Magnetic Vector Potential 

Since the divergence of the curl of a vector field is zero (i.e. ∇ ∙ (∇ × 𝜓⃑ ) = 0 for arbitrary 

𝜓⃑ ), with regards to Equation 2.2, let 

 

 𝜇𝐻⃑⃑ = ∇ × 𝐴  2.47 

 

where 𝐴  is defined as the magnetic vector potential. Substitute Equation 2.47 into 

Maxwell’s equations 2.3 and 2.4 to yield 

  

 
∇ × 𝐸⃑ = −

𝜕  

𝜕𝑡
(∇ × 𝐴 ) 2.48 

 

 
∇ × (

1

𝜇
∇ × 𝐴 ) = 𝐽 + 𝜀

𝜕𝐸⃑ 

𝜕𝑡
 2.49 

 

Using reasoning similar to that above, since the curl of the gradient of a scalar field is 

zero (i.e. ∇ × (∇ψ) = 0 for arbitrary ψ), let  

 

 
𝐸⃑ = −

𝜕  𝐴 

𝜕𝑡
− ∇𝑉 2.50 
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such that Equation 2.48 still holds, and 𝑉 is some scalar potential function. Before 

substituting Equation 2.50 into 2.49 and 2.1, apply the Laplace transformation (resulting 

in 
𝜕

𝜕𝑡
→ 𝑗𝜔) to obtain 

 

 ∇ × (∇ × 𝐴 ) = 𝜇𝐽 + 𝜔2𝜇𝜀𝐴 − 𝑗𝜔𝜇𝜀∇𝑉 2.51 

 

 𝑗𝜔∇ ∙ 𝐴 + ∇2𝑉 =
𝜌𝑣

𝜀
 2.52 

 

Applying the definition of the Laplacian of a vector field to Equation 2.51 (i.e. ∇2𝜓⃑ =

∇(∇ ∙ 𝜓⃑ ) − ∇ × ∇ × 𝜓⃑ ) yields 

 

 ∇2𝐴 + 𝜔2𝜇𝜀𝐴 = 𝜇𝐽 + ∇(∇ ∙ 𝐴 + 𝑗𝜔𝜇𝜀𝑉) 2.53 

 

Now by equating the bracketed term on the right-hand side of Equation 2.53 to zero 

(commonly referred to as the Lorentz gauge, i.e. ∇ ∙ 𝐴 + 𝑗𝜔𝜇𝜀𝑉 = 0), then we arrive at 

what are called the Helmholtz wave equations: 

 

 ∇2𝐴 + 𝜔2𝜇𝜀𝐴 = 𝜇𝐽  2.54 

 

 ∇2𝑉 + 𝜔2𝜇𝜀𝑉 =
𝜌𝑣

𝜀
 2.55 

 

Of particular interest here is Equation 2.54, specifically, because it describes the wave 

nature of the magnetic vector potential, 𝐴 . This equation can be solved to find 𝐴 , which 

gives 𝐻⃑⃑  using 𝜇𝐻⃑⃑ = ∇ × 𝐴 . In the next section, the radiated 𝐸⃑  and 𝐻⃑⃑  fields of the loop 

antenna will be derived from 𝐴 , but first, the magnetic vector potential will be found from 

Equation 2.54.  

 



31 

 

To this end, assume 𝐴 = [𝐴𝑥, 𝐴𝑦, 𝐴𝑧], we are away from the source such that 𝐽 = 0, and 

consider only the z-component of 𝐴  in Equation 2.54. Then, Equation 2.54 becomes 

 

 ∇2𝐴𝑧 + 𝜔2𝜇𝜀𝐴𝑧 = 0 2.56 

 

At a distance far away, assume 𝐴𝑧 is a function of 𝑟 only, then in spherical coordinates, 

Equation 2.56 is reduced to 

 

 𝑑2𝐴𝑧

𝑑𝑟2
+

2

𝑟

𝑑𝐴𝑧

𝑑𝑟
+ 𝜔2𝜇𝜀𝐴𝑧 = 0 2.57 

 

For the static case, when 𝜔 = 0, 𝐴𝑧 =
𝐶

𝑟
 solves Equation 2.57. For the non-static case 

above, 𝐴𝑧 =
𝐶𝑒−𝑗𝜔2𝜇𝜀𝑟

𝑟
 is a solution. Comparing these two solutions, one can see they 

differ by the multiplication of a 𝑒−𝑗𝜔2𝜇𝜀𝑟 term. Keeping this in mind, consider first the 

static case of Equation 2.54 when 𝐽 ≠ 0, then 

 

 ∇2𝐴𝑧 = 𝜇𝐽𝑧 2.58 

 

Which can be shown to have the solution 𝐴𝑧 =
𝜇

4𝜋
∭

𝐽𝑧

𝑟
𝑑𝑣

 

𝑣
. Using the logic described 

above, multiplying this solution by the 𝑒−𝑗𝜔2𝜇𝜀𝑟 term should yield the desired non-static 

case. Assuming this procedure holds true for the other x- and y-components, we arrive at 

the expression for the magnetic vector potential shown in Equation 2.59. 

 

 
𝐴 =

𝜇

4𝜋
∭ 𝐽 

𝑒−𝑗𝜔2𝜇𝜀𝑟

𝑟
𝑑𝑣

 

𝑣

 2.59 

 

Sometimes the loop current, 𝐼 , is preferable to work with rather than the volumetric 

current density, 𝐽 . As such, the expression for 𝐴  can be rewritten in terms of a line 
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integral as shown in Equation 2.60 which will be used in the next section to derive the 

radiated 𝐸⃑  and 𝐻⃑⃑  fields. 

 

 
𝐴 =

𝜇

4𝜋
∫ 𝐼 

𝑒−𝑗𝜔2𝜇𝜀𝑟

𝑟
𝑑𝑙

 

𝑙

 2.60 

 

2.2.2 Radiated Fields 

The radiated electric and magnetic fields of a loop antenna will be derived here using the 

magnetic vector potential discussed in the preceding section. The fields obtained here 

will be used distinguish the near and far field zones in the following section. The 

geometry used for this derivation is shown in Figure 7 (Balanis, 2016). 

 

 

Figure 7: The geometry of a circular loop (source: Balanis) 

 

Balanis uses coordinate transformations to write 𝐼  in a mixed-coordinate form which 

includes both cylindrical and spherical coordinate terms because the loop is best 

represented in cylindrical coordinates, and the radiating fields are best expressed in terms 

of spherical coordinates. These transformations will be omitted here. The resulting 

expression is then simplified by noting 𝐼 = 𝐼𝜙𝜙̂ which results in an expression for the 
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loop current,  𝐼 = 𝐼𝜙[sin 𝜃 sin(𝜃 − 𝜃′) 𝑟̂ + cos 𝜃 sin(𝜙 − 𝜙′) 𝜃 + cos(𝜙 − 𝜙′) 𝜙̂]. 

Further, using the geometry in Figure 7, the line integral in Equation 2.60 can be 

rewritten as shown in Equation 2.61. 

 

 
𝐴𝜙 =

𝑎𝜇𝐼

4𝜋
∫ cos𝜙′

𝑒−𝑗𝜔2𝜇𝜀√𝑟2+𝑎2−2𝑎𝑟 sin𝜃 cos𝜙′

√𝑟2 + 𝑎2 − 2𝑎𝑟 sin 𝜃 cos𝜙′

2𝜋

0

𝑑𝜙′ 2.61 

 

Next, the term 𝑔(𝑎) =
𝑒

−𝑗𝜔2𝜇𝜀√𝑟2+𝑎2−2𝑎𝑟 sin𝜃cos𝜙′

√𝑟2+𝑎2−2𝑎𝑟 sin𝜃 cos𝜙′
 in Equation 2.61 can be simplified by 

using the first two terms of a Maclaurin series 𝑔(𝑎) ≈ 𝑔(0) +
𝜕𝑔(0)

𝜕𝑎
𝑎, which is a 

common simplification in the analysis of nonlinear terms. To this end, this term in the 

integrand can be simplified to that shown in Equation 2.62. 

 

 
𝑔(𝑎) ≈ [

1

𝑟
+ 𝑎 (

𝑗𝜔2𝜇𝜀

𝑟
+

1

𝑟2
) sin 𝜃 cos𝜙′] 𝑒−𝑗𝜔2𝜇𝜀𝑟 2.62 

 

After using this expression for 𝑔, and completing the integral in Equation 2.61, an 

expression for 𝐴  is found and shown in Equation 2.63. 

 

 
𝐴 = 𝜙̂𝑗

𝜔2𝜇2𝑎2𝜀𝐼 sin 𝜃

4𝑟
[1 +

1

𝑗𝜔2𝜇𝜀𝑟
] 𝑒−𝑗𝜔2𝜇𝜀𝑟 2.63 

 

where 𝜔 = 2𝜋𝑓 is in radians/sec. Equation 2.63 can then be used together with Equation 

2.47 (𝜇𝐻⃑⃑ = ∇ × 𝐴 ) to obtain the magnetic field components shown in Equations 2.64 to 

2.66. 

 

 
𝐻𝑟 = 𝑗

𝜔2𝜇𝜀𝑎2𝐼 cos 𝜃

2𝑟2
[1 +

1

𝑗𝜔2𝜇𝜀𝑟
] 𝑒−𝑗𝜔2𝜇𝜀𝑟 2.64 

 



34 

 

 
𝐻𝜃 = −

𝜔4(𝜇𝜀𝑎)2𝐼 sin 𝜃

4𝑟
[1 +

1

𝑗𝜔2𝜇𝜀𝑟
−

1

(𝜔2𝜇𝜀𝑟)2
] 𝑒−𝑗𝜔2𝜇𝜀𝑟 2.65 

 

 𝐻𝜙 = 0 2.66 

 

These are the well-known magnetic field components for a radiating loop antenna (of a 

single turn) in spherical coordinates. The electric field can then be found using the 

Maxwell-Ampere equation (∇ × 𝐻⃑⃑ = 𝐽 + 𝜀
𝜕𝐸⃑ 

𝜕𝑡
) but will be omitted for now since the 

focus of this thesis is on the magnetic coupling (although, the electric field is important 

when considering the attenuation due to the conductivity of the water, which will be 

discussed later). 

 

Finally, in order to directly compare these analytical expressions with the results of the 

FDTD simulation, 𝐻𝑟 and 𝐻𝜃 are transformed to cylindrical coordinates using the 

transformations 𝜌 = 𝑟 sin 𝜃, 𝜙 = 𝜙, and 𝑧 = 𝑟 cos 𝜃 resulting in plots of 𝐻𝜌 and 𝐻𝜃 for 

the case where 𝜃 = 0° and it is assumed that as 𝜌̂ ⟶ 0, 𝑟̂ ⟶ 𝑧̂; that is, we are assessing 

𝐻⃑⃑  along the axis of the coil (i.e. the z-axis). Figure 8 shows 𝐻𝜌 and 𝐻𝜃 evaluated along 

the z-axis, with 𝑓 = 50 MHz, 𝑎 = 10 cm, and 𝐼 = 1 A. 
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Figure 8: Plots of 𝐻𝜌 and 𝐻𝜃 along the z-axis 

 

2.3 Electromagnetic Fields Underwater 

Compared to air, electric and magnetic fields behave quite different in seawater because 

of the electrical conductivity of the medium. Probably the most important effect - which 

likely has the most practical ramifications - is the attenuation of the electromagnetic 

fields as they travel through the medium. From an engineering perspective, this obviously 

affects the overall system performance in terms of the received power, signal to noise 

ratio, and data throughput. The fields also travel quite a bit slower is seawater which 

results in a dramatically decreased wavelength. This also has a great impact on the 

overall system performance, as it effects the antenna size. It also impacts the transition 

from the near to far field zones which determines how power is transferred and by which 

means (i.e. through inductive coupling or electromagnetic radiation). The air-water 

interface, which is a major point of emphasis in this work, causes reflection back into the 

incident medium, which also contributes to overall power loss.  

 

It is a common approach to treat propagating electromagnetic fields as plane waves 

because the mathematical analysis becomes much simpler. The argument is such that at 

distances far enough away from the source, an outward traveling spherical wave can be 
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approximated by a flat wave front similar to how the ground you are standing on appears 

flat despite being on the surface of a sphere.  

 

The general form of the common scalar wave equation is ∇2𝜓 = 𝑘2 𝜕𝜓

𝜕𝑡
, where 𝜓 is some 

scalar function of space and time, and 𝑘 is called the propagation constant. Maxwell’s 

equations can be used to derive a similar expression for the electric and magnetic fields. 

In a conductive media, the propagation constant is a complex quantity. The derivation  is 

based on the textbook Electromagnetic Waves, by Umaran and Aziz Inan, and begins 

with the time-harmonic form of Maxwell’s equation shown in Equations 2.67 and 2.68. 

 

 ∇ × 𝐸⃑ = −𝑗𝜔𝜇𝐻⃑⃑  2.67 

 

 ∇ × 𝐻⃑⃑ = 𝜎𝐸⃑ + 𝑗𝜔𝜀𝐸⃑  2.68 

 

Taking the curl of Equation 2.67 and applying the definition of the Laplacian of a vector 

field (i.e. ∇2𝜓⃑ = ∇(∇ ∙ 𝜓⃑ ) − ∇ × ∇ × 𝜓⃑  for arbitrary 𝜓⃑ ) yields ∇ × ∇ × 𝐸⃑ = ∇(∇ ⋅ 𝐸⃑ ) −

∇2𝐸⃑ = −𝑗𝜔𝜇∇ × 𝐻⃑⃑ . Using this and ∇ ⋅ 𝐸⃑ = 0 from Gauss’ law, Equation 2.67 can be 

rewritten as 

 

 ∇2𝐸⃑ = 𝑗𝜔𝜇∇ × 𝐻⃑⃑  2.69 

 

Substituting Equation 2.68 into 2.69 results in Equation 2.70 which is the desired vector 

wave equation for the electric field. A similar equation can be derived using the magnetic 

field. 

 

 ∇2𝐸⃑ = 𝑗𝜔𝜇(𝜎 + 𝑗𝜔𝜀)𝐸⃑  2.70 

 

Defining the complex propagation constant as 𝛾, and comparing with the general form of 

the scalar wave equation discussed above, results in an expression for 𝛾 shown in 

Equation 2.71. 
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 𝛾 = √𝑗𝜔𝜇(𝜎 + 𝑗𝜔𝜀) 

 
2.71 

If we let 𝛾 = 𝛼 + 𝑗𝛽, then 𝛾2 = (𝛼 + 𝑗𝛽)2 = 𝛼2 − 𝛽2 + 𝑗2𝛼𝛽. From Equation 2.71, we 

also have 𝛾2 = −𝜔2𝜀𝜇 + 𝑗𝜔𝜇𝜎. Equating the real and imaginary parts of these two 

expressions for 𝛾2 results in the equalities  𝛼2 − 𝛽2 = −𝜔2𝜀𝜇 and 2𝛼𝛽 = 𝜔𝜇𝜎. Solving 

for 𝛼 and 𝛽 can be achieved by squaring and adding the two equations for the real and 

imaginary parts resulting in 𝛼4 + 2𝛼2𝛽2 + 𝛽4 = 𝜔4𝜇2𝜀2 + 𝜔2𝜇2𝜎2; which, after 

completing the square on the left hand side, can be written as 𝛼2 + 𝛽2 =

𝜔2𝜀𝜇√1 + (
𝜎

𝜔𝜀
)
2

. Finally, by adding the expressions for 𝛼2 + 𝛽2 and 𝛼2 − 𝛽2, 

Equations 2.72 and 2.73 are achieved. 

 

 

𝛼 = 𝜔√
𝜇𝜀

2
[√1 + (

𝜎

𝜔𝜀
)
2

− 1]

1
2⁄

 2.72 

 

 

𝛽 = 𝜔√
𝜇𝜀

2
[√1 + (

𝜎

𝜔𝜀
)
2

+ 1]

1
2⁄

 2.73 

 

Here, 𝛼 is defined as the attenuation constant, and 𝛽 the phase or propagation constant. 

Underwater, due to the conductivity of the medium, small Eddy currents are generated 

which result it magnetic dipole moments which oppose the transmitted fields resulting in 

energy loss (Akyildiz et al, 2015) (Domingo, 2012). The fields decay as 𝑒−𝛼𝑥, where it is 

assumed that 𝑥 > 0 is the distance underwater. Further, when 𝑥 = 𝛿, which is called the 

skin depth, the fields fall off to 𝑒−1 when  

 

 
𝛿 =

1

𝛼
 2.74 

 

The phase constant has an important effect on the wavelength where the relationship is 

shown in Equation 2.75. 



38 

 

 

 
𝜆 =

2𝜋

𝛽
 2.75 

 

Figure 9 shows the dramatic effect of sea water on wavelength. For example, at 100 kHz, 

a water conductivity of 4 S/m and a relative permittivity of 81, the wavelength in air is 

approximately 3 km while in seawater is closer to 5 m. 

 

 

Figure 9: Comparing wavelengths in seawater to air 
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2.4 Communication System Evaluation 

In this section, an expression for the channel capacity is presented based on predicted 

thermal and atmospheric noise conditions, and the voltage signal induced in the receiver. 

The communication system being evaluated in this thesis will be characterized based 

primarily on the channel capacity. The channel is assumed to be influenced by simple 

models of atmospheric and thermal noise. Further, the channel is assumed to experience 

no signal distortion. Of course, a more in-depth analysis can be performed in terms of 

channel characterization; however, that is outside of the scope of this thesis. This section 

will discuss the noise models used as part of this evaluation. Next, the signal to noise 

ratio will be determined. Finally, the well-known Shannon’s formula will be presented in 

its final form. 

 

2.4.1 Atmospheric and Thermal Noise 

It is recognized that atmospheric noise produces significant interference at low frequency. 

According to Gibson, the atmospheric noise temperature ratio, 𝐹𝑎𝑡 = 𝑇𝑎𝑡 𝑇𝑜⁄ , reaches 

several hundred dBs below 10 kHz, which is well below our frequency of interest. 

Further, the random motion of the atoms due to heat inside the electrical components of 

the communication system contributes to noise in the form of thermal noise (Blake, 

2002). In this work, the contribution of the thermal noise voltage, 𝑉𝑡ℎ, in the load 

resistance, 𝑅, at the receiver is added to the atmospheric noise,  𝑉𝑎𝑡, in the radiation 

resistance,  𝑅𝑟, for the transmitter to assess the MI link capacity. The expression for 

thermal noise is shown in Equation 2.76 and the equation for the atmospheric noise is 

shown in Equation 2.77. 

 

 𝑉𝑡ℎ = √4𝑘𝑇𝑜𝐵𝑅 2.76 

 

 𝑉𝑎𝑡 = √4𝑘𝑇𝑜𝐵𝐹𝑎𝑡𝑅𝑟 2.77 

 

Note that 𝑘 is the Boltzmann's constant (~1.3807𝑥10−23  J/K), 𝐵 is the system 

bandwidth, and 𝑇𝑜 is the ambient noise temperature. The total noise voltage at the 

receiver is assumed to be due to the contributions of both the thermal and atmospheric 
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noises. The total noise voltage, 𝑉𝑡𝑜𝑡, is determined by taking the square root of the sum of 

the squares of 𝑉𝑡ℎ and 𝑉𝑎𝑡 since these quantities are given in RMS terms. 

 

 
𝑉𝑡𝑜𝑡 = √𝑉𝑡ℎ

2 + 𝑉𝑎𝑡
2 2.78 

 

 𝑉𝑡𝑜𝑡 = √4𝑘𝑇𝑜𝐵(𝑅 + 𝐹𝑎𝑡𝑅𝑟) 2.79 

 

Where the final expression for the total noise voltage is shown in Equation 2.80. 

 

 

𝑉𝑡𝑜𝑡 = √4𝑘𝑇𝑜𝐵𝑅 (1 +
𝐹𝑎𝑡𝑅𝑟

𝑅
) 2.80 

 

The bandwidth, 𝐵, is inversely proportional to the quality factor of the coils, 𝑄, as shown 

in Equation 2.81, where 𝑓𝑜 is the resonant frequency of the coils. The quality factor was 

assumed to be in the range of 5 to 10. 

  

 
𝐵 = 

𝑓𝑜
𝑄

 2.81 

 

2.4.2 Signal to Noise Ratio 

To assess the channel capacity, the results of the analytical and FDTD models are used to 

determine the induced voltage, 𝑉𝑒𝑚𝑓, and the bandwidth, 𝐵. To obtain the Signal-to-

Noise Ratio (SNR) at the receiver, the induced voltage is used together with the thermal 

and atmospheric noise voltages and is expressed by Equation 2.82. This approach is 

based on the work of Gibson. 

 

 
𝑆𝑁𝑅 =

𝑉𝑒𝑚𝑓

√4𝑘𝑇𝑜𝐵𝑅 (1 +
𝑇𝑎𝑡𝑅𝑟

𝑇𝑜𝑅
)

 
2.82 
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In this work, since the coil is small compared to the wavelength, it is assumed radiation is 

not the main mechanism of energy transport; therefore, the radiation resistance, 𝑅𝑟, is 

assumed to be much smaller than the load resistance, 𝑅. For example, the receiver coil 

has a total load resistance of 𝑅 = 𝑁𝑙 𝜎𝛼⁄ + 50 Ω ≈ 50 Ω, where the first term represents 

the resistance due to the coil wire, and the second term is the load resistor assumed to be 

50 Ω (and 𝑙 is the length of the coil, 𝑁 is the number of turns, 𝜎 is the wire conductivity, 

and 𝛼 is the cross-sectional area of the wire). By comparison, 𝑅𝑟 = 𝑁2𝜂
8

3
𝜋3 (

𝐴

𝜆2
)
2

, 

which is small because the efficiency, 𝜂, is assumed small due to radiation not being the 

main mechanism of signal transmission, and the term (
𝐴

𝜆2)
2

 is also small. Using the 

parameters of interest in this paper,  𝑅𝑟 ≈ 0.3 𝑚Ω ≪ 𝑅. With this approximation, the 

main mechanism of noise is thermal noise. Finally, a minimum SNR of 10 dB is used in 

this work as it is often used to define the limits of barely intelligible speech (Blake, 

2002). 

 

2.4.3 Channel Capacity 

The expression used to estimate the channel capacity is the well-known Shannon's 

formula expressed by 𝐶̃ = 𝐵 ∙ 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅). Using the equations and methodology 

described above, the formula used to estimate the channel capacity is Equation 2.83. 

 

 
𝐶̃ ≈ 𝐵 ∙ 𝑙𝑜𝑔2 (1 +

𝑉𝑒𝑚𝑓

√4𝑘𝑇𝑜𝐵𝑅
) 2.83 

 

Shannon's formula assumes an Additive White Gaussian Noise (AWGN) channel with no 

distortion (Blake, 2002), so this is considered a first-order approximation. As mentioned, 

a more in-depth analysis can be performed in terms of channel characterization; however, 

that type of detailed channel analysis is outside of the scope of this thesis. 

 

2.5 Frequency Modes in a Cavity 

The frequency content of 𝐸𝑧 can be predicted from basic electromagnetic theory for fields 

in a waveguide. A brief derivation of the theoretical frequencies will be included here 
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with some details omitted (see Sadiku, 1994). In phasor form (time-dependence 

removed), Maxwell’s equations can be converted to wave equations for 𝐸 and 𝐻. That is, 

for 𝐸𝑧: 

 

 𝜕2𝐸𝑧

𝜕𝑥2
+

𝜕2𝐸𝑧

𝜕𝑦2
+

𝜕2𝐸𝑧

𝜕𝑧2
+ 𝑘2𝐸𝑧 = 0 

 

2.84 

where 𝑘 = 2𝜋𝑓√𝜀𝜇. The method known as separation of variables can be used to solve 

this Partial Differential Equation (PDE), analytically, and the results will be used later 

when validating the FDTD simulation algorithm. To this end, let 𝐸𝑧(𝑥, 𝑦, 𝑥) =

𝑋(𝑥)𝑌(𝑦)𝑍(𝑧), then the PDE becomes 

 

 𝑋′′

𝑋
+

𝑌′′

𝑌
+

𝑍′′

𝑍
= −𝑘2 

 

2.85 

Since each of the derivatives are with respect to their independent variables (i.e. 𝑋′′ =

𝑑2𝑋

𝑑𝑥2 , etc.), and since the sum equals a constant, each of the 𝜓′′ terms must too equal a 

constant (this is a key step in the separation of variables method).  

 

Using this, let 
𝑋′′

𝑋
= −𝑘𝑥

2,
𝑌′′

𝑌
= −𝑘𝑦

2, and 
𝑍′′

𝑍
= 𝛾2; thus, the PDE is now converted to 

three ordinary differential equations which can be readily solved. This is the advantage of 

using separation of variables. Substituting these solutions for 𝑋, 𝑌, and 𝑍 into 

𝐸𝑧(𝑥, 𝑦, 𝑥) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) yields  

 

 
𝐸𝑧(𝑥, 𝑦, 𝑥) = (𝑐1 cos(𝑘𝑥𝑥) + 𝑐2 sin(𝑘𝑥𝑥))(𝑐3 cos(𝑘𝑦𝑦) + 𝑐4 sin(𝑘𝑦𝑦))𝑒−𝛾𝑧 

 
2.86 

Imposing the Dirichlet boundary conditions results in  

 

 𝐸𝑧(𝑥, 𝑦, 𝑥) = 𝐸0 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 𝑒−𝛾𝑧 

 

2.87 
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The theoretical frequency modes follow and are shown in Equation 2.88. 

 

 

𝑓𝑚𝑛 =
𝑐

2√𝜇𝑟𝜀𝑟

√(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

 2.88 

 

where 𝑎 > 𝑏 are the physical dimensions of the cavity. This equation for the frequency 

modes will be used in the subsequent validation of the FDTD algorithm. 

 

2.6 RLC Circuits 

The transmitter and receiver coils used in this project are configured as series resistor-

inductor-capacitor (RLC) circuits, where the inductor represents the loop antenna, the 

capacitor is selected to allow resonance at a specific frequency of interest, and the resistor 

limits the coil current to avoid the potential for damage in the transmitter, and acts as a 

load resistor in the receiver. Since the transmitter and receiver coils are represented in 

this way, the basic mathematical model of the RLC circuit topology will be reviewed 

here. Figure 10 shows a series RLC circuit with the inclusion of a voltage source, 𝑉𝑖𝑛.  

 

 

Figure 10: A series RLC circuit 

 

The series RLC circuit shown above can be modelled using Kirchhoff’s voltage law, 

∑ 𝑉𝑖
 
𝑖 = 0, defining the voltages across the resistor, inductor, and capacitor as 𝑉𝑅 = 𝑅𝐼𝐿, 
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𝑉𝐿 = 𝐿
𝑑𝐼𝐿

𝑑𝑡
, and 𝑉𝐶 =

1

𝐶
∫ 𝐼𝐿𝑑𝑡

𝑡

0
, respectively, and differentiating once. Equation 2.89 

shows the resulting second order, linear, constant coefficient, differential equation which 

describes the dynamics of the RLC circuit in terms of 𝑉𝑖𝑛 and  𝐼𝐿. 

 

 𝑑2𝐼𝐿
𝑑𝑡2

+
𝑅

𝐿

𝑑𝐼𝐿
𝑑𝑡

+
1

𝐿𝐶
𝐼𝐿 =

1

𝐿

𝑑𝑉𝑖𝑛

𝑑𝑡
 2.89 

 

The impulse response of the RLC circuit exhibits damped oscillations due to the transfer 

of energy between the inductor and capacitor and the dissipation of energy due to the 

circuit resistance. The frequency response of the system can be either low-pass, high-

pass, or band-pass. The specific frequency response is a result of the system transfer 

function. The transfer function depends which signals are defined as the input and output 

signals. For the purpose of this thesis, the input signal is 𝑉𝑖𝑛, and the output signal is 𝐼𝐿, 

the inductor current. The frequency response of this RLC circuit is band limited. In fact, 

the system shown above acts as a passband filter and has a resonant frequency, 𝑓𝑜, shown 

in Equation 2.90. 

 

 
𝑓𝑜 =

1

2𝜋√𝐿𝐶
 2.90 

 

2.7 Finite Differences 

Our aim to find mathematical formulations for first and second order derivatives suitable 

for numerical computation on a computer. This section will present the approaches used 

to find the finite difference representations for first and second order derivatives. 

 

2.7.1 First Order Derivatives 

We begin by looking for a way to evaluate continuous first order derivatives on a 

computer. To this end, we begin with the Taylor series approximation of the function 

𝑓(𝑥 + ∆𝑥) as shown in Equation 2.91. 
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𝑓(𝑥 + ∆𝑥) ≈ 𝑓(𝑥) + 𝑓′(𝑥)∆𝑥 +

1

2
𝑓′′(𝑥)(∆𝑥)2 + 𝑂((∆𝑥)3) 2.91 

 

One way to approximate 𝑓′(𝑥), is by neglecting the terms of order 𝑂((∆𝑥)2) and simply 

solving for 𝑓′(𝑥) resulting in Equation 2.92. 

 

 
𝑓′(𝑥) ≈

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
+ 𝑂((∆𝑥)2) 2.92 

   

This is considered a perfectly valid approximation to a first order derivative. This 

approximation is of order 𝑂((∆𝑥)2) meaning that if the higher order terms are neglected, 

the error will decrease proportional to (∆𝑥)2 as ∆𝑥 decreases. Although this approach is 

valid, we can improve upon the accuracy. First, we derive another Taylor series 

approximation, this time for the function 𝑓(𝑥 − ∆𝑥). 

 

 
𝑓(𝑥 − ∆𝑥) ≈ 𝑓(𝑥) − 𝑓′(𝑥)∆𝑥 +

1

2
𝑓′′(𝑥)(∆𝑥)2 − 𝑂((∆𝑥)3) 2.93 

 

Subtracting Equation 2.93 from Equation 2.91 results in Equation 2.94. 

 

 𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥) ≈ 2𝑓′(𝑥)∆𝑥 + 𝑂((∆𝑥)3) 2.94 

   

Solving for 𝑓′(𝑥) results in the central difference form of the first derivative as shown in 

Equation 2.95. 

 

 
𝑓′(𝑥) ≈

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥)

2∆𝑥
+ 𝑂((∆𝑥)3) 2.95 

   

If the higher order terms are neglected, this approximation is of order 𝑂((∆𝑥)3) meaning 

the error will decrease proportional to (∆𝑥)3. This is a big improvement over the initial 

approach of (∆𝑥)2 for small ∆𝑥. The central difference form for first order derivatives is 

the method used through out this work. 



46 

 

 

2.7.2 Second Order Derivatives 

The approach for finding the finite difference form of second order derivatives is similar 

to the method presented in the previous section. We begin with the Taylor series forms of 

𝑓(𝑥 + ∆𝑥) and 𝑓(𝑥 − ∆𝑥) as shown in Equations 2.93 and 2.91, respectively. Adding 

these two equations results in Equation 2.96. 

 

 𝑓(𝑥 + ∆𝑥) + 𝑓(𝑥 − ∆𝑥) ≈ 2𝑓(𝑥) + 𝑓′′(𝑥)(∆𝑥)2 + 𝑂((∆𝑥)3) 2.96 

   

Solving for 𝑓′′(𝑥) results in the central difference form of the second derivative as shown 

in Equation 2.97. 

 

 
𝑓′′(𝑥) ≈

𝑓(𝑥 + ∆𝑥) − 2𝑓(𝑥) + 𝑓(𝑥 − ∆𝑥)

(∆𝑥)2
+ 𝑂((∆𝑥)3) 2.97 

   

If the higher order terms are neglected, this approximation is also of order 𝑂((∆𝑥)3), and 

we have the approximation for second order derivatives used in this thesis.  

 

2.7.3 Discretization 

Finally, rather than working with continuous functions 𝑓(𝑥) and continuous independent 

variables 𝑥, where 𝑥 can take on any value over the domain of interest, let us restrict 𝑥 

such that 𝑥 = {𝑥𝑜 , 𝑥1, … , 𝑥𝑁−1}. With this formulation, 𝑥 has been discretized to a set of 

𝑁 discrete numbers, and 𝑓(𝑥𝑖) can take on any number limited only by the resolution of 

the computer. 

 

As an example, refer to Figure 11. To find the central difference approximation of 𝑓(𝑥) 

at 𝑥 = 𝑥1 (i.e. the blue dotted line), Equation 2.95 can be thought of as the average of the 

slopes of the red and green lines. The red line has a slope from the points (𝑥0, 𝑓(𝑥0)) and 

(𝑥1, 𝑓(𝑥1)). It has the same form as the equation describing the forward difference 

approximation of the derivative at 𝑓(𝑥0). The green line has a slope connecting the points 

(𝑥1, 𝑓(𝑥1)) and (𝑥2, 𝑓(𝑥2)). It has the same form as the equation describing the backward 
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difference approximation of the derivative at 𝑓(𝑥2). Taking the average of these two 

expressions yields the expression describing the slope of the blue line. 

 

 

Figure 11: Central differences in approximating derivatives 
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3 Development of the FDTD-based Simulation Tool 

 

The simulation tool developed in this thesis is based on the Finite-Difference Time-

Domain (FDTD) method. The entire simulation tool was developed using Mathwork’s 

MATLAB. Although some parts of the simulator do not involve FDTD, the FDTD 

method is a significant portion, and the channel model is based entirely upon it. The 

simulation tool is intended to be highly configurable for different problems involving 

loop antennas - using either inductive coupling or radiation mechanisms - with or without 

the presence of water and/or an air-water interface. Of course, the focus of this thesis is 

the evaluation of a magneto-inductive communication channel across an air-water 

interface for use in an underwater sensor network, so the focus of the development was 

based primarily upon this application. 

 

This chapter will begin by providing a comprehensive overview of the general 

functionality of the FDTD-based simulation tool and then will expand upon the 

development of each of the main system components.  

 

3.1 Overview 

The FDTD simulator developed in this thesis consists of three main functional blocks: the 

transmitting coil, the channel, and the receiving coil. This is depicted in Figure 12. Each 

functional block will be introduced here and then elaborated upon in the sections that 

follow. 

 

 

Figure 12: Block diagram of model 
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The transmitting coil is modelled using a series RLC circuit using finite-differences. It 

has the ability to simulate an arbitrary input signal including monochromatic tones and 

modulated signals; however, the current version of the software (Version 0.10.1) only 

allows for single tones using either voltage or current sources. In the case of an input 

voltage signal, the difference equation is solved, numerically, for the coil current. The 

interface between the transmitting coil and the channel model is the injection of a 

magnetic field into the channel. The coil current is used to calculate the magnetic field 

around the coil wire, as was discussed in Chapter 2. 

 

The channel is modelled using a full-wave analysis of Maxwell’s equations using the 

FDTD method. The material properties of the water and air are accounted for, and the 

resulting electric and magnetic fields are solved, numerically, throughout the entire 

computational space. To avoid undesirable reflections off the boundaries of the 

computational space, a Perfectly Matched Layer (PML) has been added to absorb the 

electromagnetic energy as the fields reach the edge of the domain. 

 

Again, to interface the channel with the receiving coil, the magnetic field component 

perpendicular to the plane of the receiving coil is sampled, and the flux of the magnetic 

field through the receiving coil is calculated via numerical integration resulting in the 

generation of an induced voltage. This induced voltage is then used to find the current 

generated in the receiving coil’s series RLC circuit using finite differences similar to the 

transmitting coil. The output voltage is the voltage generated across a load resistor. 

 

When being used to evaluate a given problem, the simulation tool is meant to be used by 

interfacing with one MATLAB script called setup.m. In the setup file, the user can define 

the frequency, input voltage/current, coil orientation (horizontal/vertical), coil 

coordinates (𝑥, 𝑦), water depth, domain size, water conductivity and permittivity, RLC 

circuit parameters, grid resolution, and more. When the user runs main.m a series of 

windows pop up which are used for debugging, viewing various simulation results, and 

convergence testing information. Figure 13 shows one such debug window. Figure 13 

shows the setup of a problem involving two horizonal coaxial loops both with 10 cm 
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radii. The transmitter is located 0.5 m below the water’s surface, and the receiver is 0.5 m 

above. The grid resolution is set to 50 mm using 𝑁𝑑𝑖𝑚 = 2, for illustrative purposes only. 

Other debug windows show how the material properties are defined, the size of the 

perfectly matched layer, and other information including the calculated wavelength 

underwater and skin depth. 

 

 

Figure 13: Setup of FDTD simulation with horizontal coaxial loops 

 

Another configuration with can be turned on or off in the setup.m file is an animation of 

the simulation. When enabled, an .mp4 video file is generated and a screenshot of one 

such video is shown in Figure 14 below. The screenshot shows the problem geometry on 

the left - with the transmitting coil at position (𝜌, 𝑧) = (0,2) (in meters), the air-water 

boundary at 𝑧 = 3 meters, and a receiving point located at (0,4) above the water - and a 

view of the air-water interface with the magnitude of the magnetic field component 𝐻𝑧 

increased by a factor of 1000 (which can be configured in setup.m) to allow better 

visibility of the attenuated field as it enters the air. Note that the simulation runs much 

faster when the animation is switched off. 
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Figure 14: Screenshot of FDTD animation 

 

Figure 15 shows another output of the simulator which appears during runtime. The top 

graph is the current in the transmitting coil, but if configured to have a voltage input, the 

input voltage would be plotted as well. The bottom plot is blank during runtime, but 

following the conclusion of the program, the induced voltages and current in the 

receiving coil is displayed. 

 

 

Figure 15: Input and output signals generated in the Tx and Rx coils 



52 

 

Figure 16 shows one of the most important outputs which appears at the end of the 

simulation. This data is used to validate the results of the FDTD simulation, as will be 

discussed in Chapter 4, for given test conditions (depth of transmitting coil, placement of 

coils, etc.). The graph shows the FDTD results (red circle) plotted against the results of 

numerically integrating Wait’s Sommerfeld integral, which is one of the analytical 

models used to validate the FDTD-based simulation tool. 

 

 

Figure 16: Output of FDTD validation using Wait/Gibson 

 

Finally, when enabled, Figure 17 shows an example of running a convergence test. 

Convergence is tested by running the simulation many times at ever decreasing gird 

resolutions. The user defines the pass criteria and a threshold level in terms of the change 

is the calculated induced voltage (shown as ∆ in the figure below) from one simulation 

result to the next. The convergence test can take a very long time if it must run through 

many simulations; therefore, it is up to the user to determine the acceptable level of 

uncertainty or error for a particular application. 
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Figure 17: Example of convergence testing 

 

3.2 Introduction to the FDTD Method 

The channel model used in this thesis takes into account the material properties of the 

medium and the geometry of the problem, and it is based upon the numerical evaluation 

of Maxwell’s equations over the entire two dimensional (2D) computational domain and 

utilizes cylindrical symmetry to simplify the implementation and to decrease the 

simulation time. The FDTD algorithm was developed in cylindrical coordinates, but the 

Cartesian coordinate system will be discussed in this introduction. 

 

3.2.1 Update Equations in Cartesian Coordinates 

Maxwell’s equations are a set of four equations that describe electromagnetic 

phenomenon and were discussed in a previous section. The two equations that describe 

the interaction between time-varying electric and magnetic fields (𝐸⃑  and 𝐻⃑⃑ , respectively) 

are shown in Equations 3.1 and 3.2. Note that Equation 3.2 includes a 𝜎𝐸⃑  term, where 𝜎 

represents the conductivity of the medium. In water, this term is set to the commonly 

used value of 4 S/m (i.e. the conductivity of seawater), and in air is set to zero. 
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𝛻 × 𝐸⃑ = −𝜇

𝜕𝐻⃑⃑ 

𝜕𝑡
 3.1 

 

 
𝛻 × 𝐻⃑⃑ = 𝜎𝐸⃑ + 𝜀

𝜕𝐸⃑ 

𝜕𝑡
 3.2 

 

With the cross-products expanded, the resulting six equations can be simplified by setting 

𝜕ψ

𝜕𝑧
= 0 meaning ψ does not change in the z-direction. This substitution converts the 3D 

problem to the desired 2D case. The resulting system of partial differential equations are 

shown in Equations 3.3 through 3.8.  

 

 𝜕𝐻𝑥

𝜕𝑡
= −

1

𝜇

𝜕𝐸𝑧

𝜕𝑦
 3.3 

 

 𝜕𝐻𝑦

𝜕𝑡
=

1

𝜇

𝜕𝐸𝑧

𝜕𝑥
 3.4 

 

 𝜕𝐸𝑧

𝜕𝑡
=

1

𝜀
(
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
− 𝜎𝐸𝑧) 3.5 

 

 𝜕𝐸𝑥

𝜕𝑡
=

1

𝜀
(
𝜕𝐻𝑧

𝜕𝑦
− 𝜎𝐸𝑥) 3.6 

 

 𝜕𝐸𝑦

𝜕𝑡
= −

1

𝜀
(
𝜕𝐻𝑧

𝜕𝑥
+ 𝜎𝐸𝑦) 3.7 

 

 𝜕𝐻𝑧

𝜕𝑡
=

1

𝜇
(
𝜕𝐸𝑥

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑥
) 3.8 

 

Equations 3.3, 3.4, and 3.5 are decoupled from 3.6, 3.7, and 3.8; thus, each set of three 

coupled equations can be considered independently. For this thesis, Equations 3.3, 3.4, 
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and 3.5 are considered. This set is referred to as the TE modes (Transverse Electric) 

because the electric field component 𝐸𝑧 is completely transverse to the plane of 

incidence, which is assumed here to be the xy-plane.  

 

The derivatives in time and space are approximated using finite differences. For example, 

the time derivative of 𝐻𝑥 is shown in Equation 3.9, and the derivative of 𝐸𝑧 with respect 

to 𝑦 is shown in Equation 3.10. 

 

 
𝜕𝐻𝑥

𝜕𝑡
≈

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
− 𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗

∆𝑡
 

3.9 

 

 𝜕𝐸𝑧

𝜕𝑦
≈

𝐸𝑧|𝑡
𝑖,𝑗+1

− 𝐸𝑧|𝑡
𝑖,𝑗

∆𝑦
 3.10 

 

The resulting update equations are shown in Equations 3.11 through 3.13. This is the 

two-dimensional FDTD form of the TE mode of Maxwell’s equations. These are the 

update equations implemented in the FDTD algorithm used in this thesis. 

 

 
𝐻𝑥|

𝑡+
∆𝑡
2

𝑖,𝑗
= 𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗
−

∆𝑡

∆𝑦𝜇|𝑖,𝑗
(𝐸𝑧|𝑡

𝑖,𝑗+1
− 𝐸𝑧|𝑡

𝑖,𝑗
) 3.11 

 

 
𝐻𝑦|𝑡+∆𝑡

2

𝑖,𝑗
= 𝐻𝑦|𝑡−∆𝑡

2

𝑖,𝑗
+

∆𝑡

∆𝑥𝜇|𝑖,𝑗
(𝐸𝑧|𝑡

𝑖+1,𝑗
− 𝐸𝑧|𝑡

𝑖,𝑗
) 3.12 

 

 

𝐸𝑧|𝑡+∆𝑡
𝑖,𝑗

= 𝐸𝑧|𝑡
𝑖,𝑗

−
∆𝑡

𝜀|𝑖,𝑗
(𝜎|𝑖,𝑗 [

𝐸𝑧|𝑡+∆𝑡
𝑖,𝑗

+ 𝐸𝑧|𝑡
𝑖,𝑗

2
] +

𝐻𝑦|𝑡+∆𝑡
2

𝑖,𝑗
− 𝐻𝑦|𝑡+∆𝑡

2

𝑖−1,𝑗

∆𝑥
−

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
− 𝐻𝑥|

𝑡+
∆𝑡
2

𝑖,𝑗−1

∆𝑦
) 3.13 

 

Although not initially apparent, the spatial derivatives in the above equations are 

approximated using finite-differences of the order 𝑂(ℎ3). For example, Equation 3.12 

shows an approximation of the derivate of 𝐸𝑧 with respect to the spatial variable 𝑥, where 
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𝑥 = (𝑗 − 1)∆𝑥. Equation 3.12 looks similar to an order 𝑂(ℎ2) forward difference 

formulation of, 𝑓′, where 𝑓′(𝑥) ≈
𝑓(𝑥+∆𝑥)−𝑓(𝑥)

∆𝑥
; however due to how the grid is arranged, 

the approximation of  
𝜕𝐸𝑧

𝜕𝑥
  is indeed order 𝑂(ℎ3) in the FDTD method. 

 

 𝜕𝐸𝑧

𝜕𝑥
≈

𝐸𝑧|𝑡
𝑖+1,𝑗

− 𝐸𝑧|𝑡
𝑖,𝑗

∆𝑥
 3.14 

 

As an illustration of the order 𝑂(ℎ3) of the spatial derivatives, consider the equation 

𝐻𝑦|𝑛+
1

2

𝑖
= 𝐻𝑦|𝑛−

1

2

𝑖
+ 𝛼 (

𝐸𝑧|𝑡
𝑖+1,𝑗

−𝐸𝑧|𝑡
𝑖,𝑗

∆𝑥
), similar to Equation 3.12 but modified to be one 

dimensional along the x-axis, and the computational cells are shown in Figure 18. 

 

 

Figure 18: Central differencing on a 1D Yee cell 

 

The 𝐻 and 𝐸 terms are staggered in space such that 𝐻 is located a distance of  
Δ𝑥

2
  from 𝐸, 

and the next cell (𝑖 + 1) is a distance Δ𝑥 from the previous cell (𝑖). The term 𝐻𝑦|𝑛+
1

2

𝑖
 is 

being evaluated in the 𝑖-th cell, and if an order 𝑂(ℎ3) central difference formula like  

𝑓′(𝑥) ≈
𝑓(𝑥+∆𝑥)−𝑓(𝑥−∆𝑥)

2∆𝑥
  is used to approximate 

𝜕𝐸𝑧

𝜕𝑥
, then indeed  

𝜕𝐸𝑧

𝜕𝑥
≈

𝐸𝑧|𝑡
𝑖+1,𝑗

−𝐸𝑧|𝑡
𝑖,𝑗

∆𝑥
. 

 

3.2.2 The Yee Cell 

With the discretization of Maxwell’s equations over the problem space, the electric and 

magnetic fields are evaluated at discrete points throughout the domain. Kane Yee 

developed an algorithm in 1966 which is still popular today. Yee’s algorithm places each 
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component of 𝐸⃑  inside a cell surrounded by 4 circulating 𝐻⃑⃑  components, and vice vera. 

For the 2D case, in Cartesian coordinates, the cell is known as a “Yee cell” and has 

dimensions ∆𝑥 by ∆𝑦. The 𝐸𝑧 , 𝐻𝑥, and 𝐻𝑦 components are shown Figure 19 for the 

(𝑖, 𝑗)′th Yee cell. 

 

 

Figure 19: The 2D Yee cell defined for this problem 

 

The computational domain is discretized into 𝑁𝑥 × 𝑁𝑦 cells. Figure 20 shows the case 

where 𝑁𝑥 = 𝑁𝑦 = 2. The electric field at node (𝑖 + 1, 𝑗 + 1) has 4 magnetic field 

components circulating around it, the circulation depicted in Figure 20 as a red circle. 

This arrangement lends itself well to Maxwell’s equations which involve the curl 

operator, for example in Ampere’s equation: 𝛻 × 𝐻⃑⃑ = 𝜀
𝜕𝐸⃑ 

𝜕𝑡
. It is easy to image the curl of 

𝐻⃑⃑  resulting in a changing electric field,  
𝜕𝐸⃑ 

𝜕𝑡
. 
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Figure 20: Yee cells and 𝛻𝑥𝐻⃑⃑  

 

3.2.3 Spatial Discretization 

In the course EE5303-EM Analysis using FDTD, Professor Dr. Raymond C. Rumpf of 

the University of El Paso recommends discretizing the smallest physical dimension by a 

factor of at least one to four Yee cells. The smallest physical dimension was resolved by 

a factor of 𝑁𝑑𝑖𝑚  =  3 for the simulations performed in this thesis. The smallest physical 

dimension is 10 cm, the radius of the coil, so each Yee cell is 𝑑𝜌 × 𝑑𝑧 = 33. 3̅  × 33. 3̅ 

mm. The resulting spatial discretization can be seen in Figure 21. 
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Figure 21: Grid resolution with 𝑁𝑑𝑖𝑚 = 3 

 

3.2.4 Numerical Dispersion 

Numerical dispersion occurs as a result of the discretization of the derivatives in 

Maxwell’s equations and are inherent in the FDTD method but not present in real 

electromagnetic waves (Taflove and Hagness, 2005). As discussed in Chapter 2, in a 

physical system, dispersion describes the relationships between the wave number, speed 

of propagation, and frequency. In the FDTD algorithm, additional dispersive effects 

occur due to the fact that the distance from one corner of a Yee cell to the opposite 

corner, across the diagonal, is further than corners on the same side, so wave traveling 

from one cell to adjacent cells travels at different speeds due to the different distances 

travelled per timestep. The speed of the numerical EM waves can differ from 𝑐𝑜 by an 

amount dependant upon the frequency, direction of propagation in the Yee lattice, and the 

grid discretization (Taflove and Hagness, 2005). Further, numerical instability can occur 

as a result of this numerical dispersion. From the numerical dispersion relation, an 
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expression can be derived, called the Courant stability criterion (see the next section), 

which places a limit on the relationship between the temporal and spatial resolutions. To 

this end, consider the FDTD update equations in free space. 

 

 
𝐻𝑥|

𝑡+
∆𝑡
2

𝑖,𝑗
= 𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗
−

∆𝑡

∆𝑦𝜇|𝑖,𝑗
(𝐸𝑧|𝑡

𝑖,𝑗+1
− 𝐸𝑧|𝑡

𝑖,𝑗
) 3.15 

 

 
𝐻𝑦|𝑡+∆𝑡

2

𝑖,𝑗
= 𝐻𝑦|𝑡−∆𝑡

2

𝑖,𝑗
+

∆𝑡

∆𝑥𝜇|𝑖,𝑗
(𝐸𝑧|𝑡

𝑖+1,𝑗
− 𝐸𝑧|𝑡

𝑖,𝑗
) 3.16 

 

 

𝐸𝑧|𝑡+∆𝑡
𝑖,𝑗

= 𝐸𝑧|𝑡
𝑖,𝑗

−
∆𝑡

𝜀|𝑖,𝑗
(

𝐻𝑦|𝑡+∆𝑡
2

𝑖,𝑗
− 𝐻𝑦|𝑡+∆𝑡

2

𝑖−1,𝑗

∆𝑥
−

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
− 𝐻𝑥|

𝑡+
∆𝑡
2

𝑖,𝑗−1

∆𝑦
) 3.17 

 

Using an approach similar to the one used in Chapter 2, assume the field components can 

be defined by plane waves of the form 𝐸𝑧|𝑛
𝐼,𝐽 = 𝐸𝑧,0𝑒

𝑗(𝜔𝑛Δ𝑡−𝑘𝑥𝐼Δ𝑥−𝑘𝑦𝐼Δ𝑦), 𝐻𝑥|𝑛
𝐼,𝐽 =

𝐻𝑥,0𝑒
𝑗(𝜔𝑛Δ𝑡−𝑘𝑥𝐼Δ𝑥−𝑘𝑦𝐼Δ𝑦), and 𝐻𝑦|𝑛

𝐼,𝐽
= 𝐻𝑦,0𝑒

𝑗(𝜔𝑛Δ𝑡−𝑘𝑥𝐼Δ𝑥−𝑘𝑦𝐼Δ𝑦). Following Taflove and 

Hagness, substituting these expressions into the FDTD form of Maxwell’s equations 

results in 

 

 

𝐻𝑥,0 =
𝐸𝑧,0Δt

𝜇0Δ𝑦

sin (
𝑘𝑦Δ𝑦

2 )

sin (
𝜔Δt
2 )

 3.18 

 

 

𝐻𝑦,0 = −
𝐸𝑧,0Δt

𝜇0Δx

sin (
𝑘𝑥Δx

2 )

sin (
𝜔Δt
2 )

 3.19 

 

 

𝐸𝑧,0 sin (
𝜔Δt

2
) =

Δ𝑡

𝜀0
[
𝐻𝑥,0

Δ𝑦
sin (

𝑘𝑦Δ𝑦

2
) −

𝐻𝑦,0

Δx
sin (

𝑘𝑥Δx

2
)] 3.20 
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After the first two equations are substituted into the third, we have the desired 

 

 

[
√𝜇0𝜀0

Δ𝑡
sin (

𝜔Δ𝑡

2
)]

2

= [
1

Δx
sin (

𝑘𝑥Δx

2
)]

2

+ [
1

Δy
sin (

𝑘𝑦Δy

2
)]

2

 3.21 

 

This is the general dispersion relation of the Yee algorithm for the TE case (it is assumed 

the plane of incidence is in the xy-plane). The implication of this is the introduction of 

numerical error which is inherent in the FDTD algorithm. In the limit where Δx, Δy, and 

Δt go to zero, the numerical dispersion relation reduces to the relation developed in 

Chapter 2 (i.e. k2 = 𝜔2𝜇0𝜀0). Decreasing the spatial and temporal resolution to zero is 

analogous to converting the discrete domain to a continuum, so we expect the real 

dispersion relation to have some connection to the numerical counterpart. In the next 

section, the numerical dispersion relation will be used to derive a condition for numerical 

stability. This is an extremely important concept in numerical computing. 

 

3.2.5 The Courant Stability Criterion 

The method used to find the Courant stability criterion is from the 2005 textbook called 

Computational Electrodynamics: The Finite-Difference Time-Domain Method, by 

Taflove and Hagness. This is considered the “bible” of the FDTD method. It begins by 

defining the frequency as a complex quantity 𝜔̃ = 𝜔𝑟𝑒𝑎𝑙 + 𝑗𝜔𝑖𝑚𝑎𝑔 and substituting into 

the equation describing the numerical dispersion developed in the last section. 

 

 
[

1

𝑐0Δ𝑡
sin (

𝜔̃Δ𝑡

2
)]

2

= [
1

Δx
sin (

𝑘𝑥Δx

2
)]

2

+ [
1

Δy
sin (

𝑘𝑦Δy

2
)]

2

 3.22 

 

Equation 3.22 can then be solved for 𝜔̃ resulting in 

 

 
𝜔̃  =

2

Δt
sin−1(𝜉) 3.23 
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𝜉 = 𝑐0Δ𝑡√[
1

Δx
sin (

𝑘𝑥Δx

2
)]

2

+ [
1

Δy
sin (

𝑘𝑦Δy

2
)]

2

 3.24 

 

Where from the second equation, the term 𝜉 is bounded such that 

 

 

0 ≤ 𝜉 ≤ 𝑐0Δ𝑡√[
1

Δx
]
2

+ [
1

Δy
]
2

 3.25 

 

To avoid complex values of sin−1(𝜉) (and thus 𝜔̃ which give rise to numerical 

instability), we need to ensure 𝜉 < 1. Therefore, we want 𝑐0Δ𝑡√[
1

Δx
]
2

+ [
1

Δy
]
2

 to be less 

than one. This results in the Courant stability criterion which places limits on the 

relationship between Δ𝑡 and the spatial discretization defined by Δx and Δy. The temporal 

resolution is calculated using the Courant stability criterion shown in Equation 3.26. 

 

 
∆𝑡 <

1

𝑐0√(
1
∆𝑥)

2

+ (
1
∆𝑦)

2

 

3.26 

 

Throughout this work, the time step is calculated such that the Courant stability criterion 

is always satisfied. This has important implications on the FDTD simulation runtimes. 

When the frequency of operation is low, the long wavelengths are divided into very small 

sections of width ∆𝑡. Since this is determined by the grid resolution - which is the same 

for all test conditions - this can result in very long computational times. 
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3.2.6 Applying Boundary Conditions 

The boundary conditions 𝑛̂ × (𝐸⃑ 1 − 𝐸⃑ 2) = 0⃑  and 𝑛̂ ∙ (𝐵⃑ 1 − 𝐵⃑ 2) = 0 were derived in 

Chapter 2 and now these expressions will be applied in the FDTD algorithm. A Perfectly 

Matched Layer (PML) was implemented in the FDTD simulator, but the details will be 

saved for later. The PML is not a substitute for boundary conditions; rather, the PML acts 

to absorb outgoing electromagnetic fields to simulate the fields traveling out to infinity. 

Boundary conditions must be defined in order for the mathematical problem to be 

considered well posed. The three main choices are Dirichlet, Neumann, and periodic 

boundary conditions. Dirichlet boundary conditions were used in the FDTD simulator 

and were defined at the edges of the computational space. This is equivalent to the walls 

acting as Perfect Electric Conductors (PEC), where the fields are assumed to decay 

rapidly to zero.  

 

From 𝑛̂ × (𝐸⃑ 1 − 𝐸⃑ 2) = 0⃑  and 𝑛̂ ∙ (𝐵⃑ 1 − 𝐵⃑ 2) = 0, if we assume the interior domain is 

defined by the fields with the subscript one, 𝐸⃑ 1 and 𝐵⃑ 1, then applying the Dirichlet 

boundary conditions to region 2 results in 𝐸⃑ 2 = 𝐵⃑ 2 = 0 so we have 

 

 𝑛̂ × 𝐸⃑ 1 = 0⃑  and 𝑛̂ ∙ 𝐵⃑ 1 = 0 3.27 

 

That is, 𝐸⃑  is parallel to 𝑛̂ on the boundary which means its perpendicular component 

must be zero (i.e. 𝐸𝑧 = 0 at the edge of the boundary). Similarly, 𝐻⃑⃑  is perpendicular to 𝑛̂ 

on the boundary which means its parallel component must be zero (that is, 𝐻𝑥 = 0 along 

one wall, and 𝐻𝑦 = 0 along the other). Using this logic, the boundary conditions were 

implemented in code as 

 

 𝐸𝑧 = 𝐻𝑥 = 0 for 𝑖 = 1,𝑁𝑥 + 1 

 

𝐸𝑧 = 𝐻𝑦 = 0 for 𝑗 = 1,𝑁𝑦 + 1 

 

3.28 
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These are easily implemented in the FDTD algorithm by avoiding the edge nodes when 

applying the field update equations as shown in the pseudo-code snippet below. 

 

     

    for j = 1:Ny-1  

        for i = 2:Nx  

            % update equation for Hx  

        end  

    end  

    % apply BC for Hx at j = Ny  

    for j = 2:Ny  

        for i = 1:Nx-1 

            % update equation for Hy  

        end  

    end 

    % apply BC for Hy at i = Nx 

    for j = 2:Ny  

        for i = 2:Nx  

            % update equation for Ez  

        end  

    end 

      

 

3.3 Transmitting and Receiving Coils 

The transmitting and receiving coils are both modelled using a series RLC circuit. The 

methods used for each circuit are nearly identical, except for one extra and very 

important step in the receiving coil. Each circuit will be discussed individually, here. 

 

3.3.1 The Transmitter 

The input signal, into the transmitting coil, can be selected as either a voltage or current. 

If the input signal is a current, the magnitude and frequency is defined, and the resulting 

magnetic fields are found directly, as will be discussed later. The magnetic field in then 

injected into the FDTD channel model. However, if the input signal is defined as a 

voltage, the coil current is found by numerically solving the differential equation 

describing the current in a series RLC circuit, as was discussed in Chapter 2. The second 

order equation is repeated here in Equation 3.29 for convenience. 
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 𝑑2𝐼𝐿
𝑑𝑡2

+
𝑅

𝐿

𝑑𝐼𝐿
𝑑𝑡

+
1

𝐿𝐶
𝐼𝐿 =

1

𝐿

𝑑𝑉𝑖𝑛

𝑑𝑡
 3.29 

 

This equation can be solved analytically for simple cases of 𝑉𝑖𝑛 (for example, if 𝑉𝑖𝑛 =

sin(2𝜋𝑓𝑡)); however, to allow the possibility of arbitrary input waveforms, this equation 

is solved numerically. One way to solve this equation on the computer is by 

approximating each term in the differential equation by a finite-difference representation. 

This is the basic approach taken for every differential equation encountered in this work. 

The derivation of these discrete approximations was discussed in Chapter 2. Applied to 

this equation, the following central difference is used to approximate the send order term. 

 

 𝑑2𝐼

𝑑𝑡2
≈

𝐼𝑛+1 − 2𝐼𝑛 + 𝐼𝑛−1

(∆𝑡)2
 3.30 

 

where it is implied 𝐼 = 𝐼𝐿, for the purposes of simplifying the notation. The first order 

terms are also discretized using central differences: 

 

 𝑑𝜓

𝑑𝑡
≈

𝜓𝑛+1 − 𝜓𝑛−1

2∆𝑡
 3.31 

 

where 𝜓 is 𝐼𝐿 and 𝑉𝑖𝑛. Finally, assuming the initial conditions 𝐼1 = 𝐼0 = 0, for 𝑛 ≥ 2 

Equation 3.32 is used to find the current in the transmitting coil when the input is a 

voltage signal. 

 

 𝐼𝑛+1 = 𝐴𝐼𝑛 + 𝐵𝐼𝑛−1 + 𝐶(𝑉𝑛+1 − 𝑉𝑛−1) 3.32 

 

where the 𝐴, 𝐵, and 𝐶 terms are constants defined by 

 

 

𝐴 =
(

2
(∆𝑡)2 −

1
𝐿𝐶)

(
1

(∆𝑡)2 +
𝑅

2𝐿Δ𝑡)
 3.33 
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𝐵 =
(

𝑅
2𝐿Δ𝑡 −

1
(∆𝑡)2)

(
1

(∆𝑡)2 +
𝑅

2𝐿Δ𝑡)
 3.34 

 

 

𝐶 =

1
2𝐿Δ𝑡

(
1

(∆𝑡)2 +
𝑅

2𝐿Δ𝑡)
 3.35 

 

3.3.2 The Receiver 

For the receiving RLC circuit model, the equations are identical, except that 𝑉𝑖𝑛 is 

replaced with 𝑉𝑒𝑚𝑓, which is the voltage included in the receiving coil. As discussed in 

Chapter 2, the induced voltage is found by taking the time derivative of the magnetic 

flux, Ψ, through the coil, as shown below. 

 

 
𝑉𝑒𝑚𝑓 = −𝑁𝑅𝑥

𝑑Ψ

𝑑𝑡
 3.36 

 

As before, the first order term is discretized using central differences: 

 

 𝑑Ψ

𝑑𝑡
≈ −𝑁𝑅𝑥 (

Ψ𝑛+1 − Ψ𝑛−1

2∆𝑡
) 3.37 

 

The flux term is found by sampling 𝐻𝑧 at each grid point located along the line 

representing the receiving coil and averaging it, 𝐻𝑧,𝑎𝑣𝑔. The cross-sectional area of the 

receiving coil is assumed to be 𝜋𝑟2; thus, the flux is approximated using Equation 3.38. 

 

 Ψ ≈ 𝜋𝑟2𝜇𝑜𝐻𝑧,𝑎𝑣𝑔 3.38 

 

3.4 Injecting the Source Signal 

After the current in the transmitting coil has been determined, the next step is to 

determine the electromagnetic field source terms to inject into the FDTD computational 

domain for direct numerical evaluation of Maxwell’s equations. In early versions of the 
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simulation tool (pre-V0.10.1), the conversion from current to electromagnetic fields was 

based on the point form of Ohm’s law, as shown in Equation 3.39. 

 

 𝐸⃑ = 𝜎𝐽  3.39 

 

where the current density, 𝐽 , was calculated using either 𝐽 =
𝐼

𝜋𝑏2, where 𝑏 is the radius of 

the coil wire, or by using 𝐽 =
𝐼

𝜋
(

1

𝑏2
−

1

𝛿2
), where 𝛿 = √

1

2𝜋𝑓𝜇𝜎
 is the skin depth of the 

currents flowing on the outer surface of the coil wire. This approach was determined to 

be incorrect. The main issue observed was the high sensitivity to the 𝑏 term. Further, 

preliminary validation checks - which included finding the radiated magnetic field 

components for simple cases where analytical expressions exist - yielded poor and 

inconsistent results. 

 

As an alternative method, the decions was made to use Ampere’s law in its integral form 

as shown in Equation 3.40. 

 

 
∮𝐻⃑⃑ 

 

𝑙

∙ 𝑑𝑙 = 𝐼 3.40 

 

Figure 22 shows a cross section of the coil wire with its center corresponding to the union 

of four Yee cells. Rather than injecting the electric field into the domain at the location of 

the wire, the integral form of Ampere’s law was solved analytically and the 𝐻𝜙 and 𝐻𝜌 

components of 𝐻⃑⃑  are determined at a distance of  
Δ𝜌

2
  and used as source terms. 
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Figure 22: Geometry of source injection 

 

In Figure 22, the 𝐻𝜙 terms are calculated using Equation 3.41 where, in this case, 𝜌 =
Δ𝜌

2
 

and 𝜌 ≥ 𝑏. This equation was derived in Chapter 2. The components of 𝐻⃑⃑  are related 

such that 𝐻𝜙|𝑖+1,𝑗+1 = −𝐻𝜙|𝑖,𝑗+1 and 𝐻𝜌|
𝑖+1,𝑗+1 = −𝐻𝜌|

𝑖+1,𝑗 where we take advantage 

of cylindrical symmetry about the 𝑧-axis and 𝐻𝜙 = 𝐻𝜌. 

 

 
𝐻𝜙 = 

𝐼

2𝜋𝜌
 3.41 

 

To account for the case where the transmitting coil is constructed using multiple turns of 

wire, the expressions for 𝐻𝜙 and 𝐻𝜌 are scaled by the factor 𝑁𝑇𝑥 representing the number 

of turns. 

 

3.5 The Uniaxial Perfectly Matched Layer 

The purpose of a Perfectly Matched Layer (PML) is to provide the ability to truncate the 

computational domain by simulating outgoing electromagnetic waves. The PML greatly 
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reduces the amount of reflection at the boundary by introducing a fictitious lossy material 

along the border of the domain. The material must be reflectionless to all incoming 

traveling waves regardless of their angle of incidence, so to accomplish this, the PML is 

defined as a uniaxial tensor: where the material’s impedance depends on the direction the 

wave is traveling. This allows the simulation to run faster by decreasing the size of the 

domain. The derivations of the equations describing the Uniaxial PML (UPML) will be 

described here.  

 

3.5.1 Matching Impedances 

When two regions have mismatched impedances, an electromagnetic wave incident upon 

the boundary will be partially transmitted and partially reflected. The transmitted wave 

will undergo refraction according to Snell’s law. Snell’s law is shown in Equation 3.42. 

 

 𝜂1 sin 𝜃1 = 𝜂2 sin 𝜃2 3.42 

 

The reflected wave will behave according to the Fresnel reflection coefficient equations. 

Fresnel equations are shown in Equations 3.43 and 3.44 and were derived in Chapter 2. 

 

 
Γ𝑇𝐸 =

𝜂2 cos 𝜃1 − 𝜂1 cos 𝜃2

𝜂2 cos 𝜃1 + 𝜂1 cos 𝜃2
 3.43 

 

 
Γ𝑇𝑀 =

𝜂2 cos 𝜃2 − 𝜂1 cos 𝜃1

𝜂2 cos 𝜃2 + 𝜂1 cos 𝜃1
 3.44 

 

The goal is to eliminate reflections completely; therefore, we want Γ𝑇𝐸 = Γ𝑇𝑀 = 0, but 

inspection of the Fresnel equations shows that doing so results in the conditions  

 

 𝜂2 cos 𝜃1,2 = 𝜂1 cos 𝜃2,1 3.45 
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which are in addition to Snell’s law. These conditions suggest that if the impedance of the 

UPML matches that of the interior domain, then both the refraction and reflections will 

be eliminated. To this end, the impedance is given by Equation 3.46. 

 

 
𝜂 = √

𝜇

𝜀
 3.46 

 

For the case of 𝜂 = 𝜂0 (i.e. air), if we equate the permittivity and permeability of the 

medium and define them as anisotropic tensors, then the impedance of the UPML will be 

that of air. To this end, let  

 

 
[𝜇𝑟] = [𝜀𝑟] = [

𝑎 0 0
0 𝑏 0
0 0 𝑐

] 3.47 

 

According to Rumph, with the permittivity and permeability defined like this, for a wave 

travelling in the 𝑧-direction, Snell’s law can be rewritten as Equation 3.48 

 

 sin 𝜃1 = √𝑏𝑐 sin 𝜃2 3.48 

 

and the Fresnel equations can be rewritten as Equations 3.49 and 3.50. 

 

 
Γ𝑇𝐸 =

√𝑎 cos 𝜃1 − √𝑏 cos 𝜃2

√𝑎 cos 𝜃1 + √𝑏 cos 𝜃2

 3.49 

 

 
Γ𝑇𝑀 =

√𝑏 cos 𝜃2 − √𝑎 cos 𝜃1

√𝑏 cos 𝜃2 + √𝑎 cos 𝜃1

 3.50 

 

By choosing √𝑏𝑐 = 1 , Snell’s law shows 𝜃1 = 𝜃2 so there is no refraction. With this, 

and by setting Γ𝑇𝐸 = Γ𝑇𝑀 = 0 which is the desired case, the Fresnel equations yield 𝑎 =

𝑏. Therefore, for a wave travelling in the 𝑧-direction 
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[𝜇𝑟] = [𝜀𝑟] = [

𝑎 0 0
0 𝑎 0
0 0 𝑎−1

] 3.51 

 

Next, these results will be used to derive the uniaxial tensor, [𝑆], defining the UPML. 

 

3.5.2 Final UPML Equation 

The idea here is to put the formulation for impedance matching on the parameter [𝑆] 

rather than on the permittivity and permeability. Therefore, for a wave travelling in the 𝑧-

direction, let [𝜇𝑟] = 𝜇[𝑆𝑧] and [𝜀𝑟] = 𝜀[𝑆𝑧] and we define [𝑆𝑧] such that 

 

 

[𝑆𝑧] = [

𝑠𝑧 0 0
0 𝑠𝑧 0

0 0 𝑠𝑧
−1

] 3.52 

 

Using similar reasoning, expressions for waves travelling in the 𝑥- and 𝑦-directions 

(represented using [𝑆𝑥,𝑦]) can be obtained 

 

 

[𝑆𝑥] = [
𝑠𝑥

−1 0 0
0 𝑠𝑥 0
0 0 𝑠𝑥

] 3.53 

 

 

[𝑆𝑦] = [

𝑠𝑦 0 0

0 𝑠𝑦
−1 0

0 0 𝑠𝑦

] 3.54 

 

Finally, we define [𝑆] = [𝑆𝑥][𝑆𝑦][𝑆𝑧] in Equation 3.55 

 

 

[𝑆] =

[
 
 
 
 
 
𝑠𝑦𝑠𝑧

𝑠𝑥
0 0

0
𝑠𝑥𝑠𝑧

𝑠𝑦
0

0 0
𝑠𝑥𝑠𝑦

𝑠𝑧 ]
 
 
 
 
 

 3.55 
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which is the form of the uniaxial tensor defining the UPML used in this FDTD simulator. 

The idea is to introduce loss into the UPML material similar to how a complex relative 

permittivity accomplishes this: 𝜀𝑟̃ = 𝜀𝑟 +
𝜎

𝑗𝜔𝜀0
. Using this, we define the UPML 

parameters as shown in Equation 3.56. 

 

 𝑠𝑖 = 1 +
𝜎𝑖

𝑗𝜔𝜀
 3.56 

 

for 𝑖 = 𝑥, 𝑦, and 𝑧. The next section will show how [𝑆] is incorporated into the update 

equations for the FDTD algorithm for the case of a Cartesian coordinate system. 

 

3.6 FDTD Update Equations with a UPML 

With the UPML fully defined, this section will derive the resulting update equations for 

the FDTD algorithm in continuous and discrete form. The development of the update 

equations requires long and messy looking formulae, so a summary will be provided at 

the end of this section. The formulation in Cartesian coordinates will be presented first, 

and then the necessary modification for implementation in cylindrical coordinates will 

follow. The FDTD simulations are performed in cylindrical coordinates. 

 

3.6.1 Update Equations: Continuous Form 

The UPML tensor is introduced in Maxwell’s equations according to Equations 3.57 and 

3.58. 

 

 ∇ × 𝐸⃑ = −𝑗𝜔𝜇[𝑆]𝐻⃑⃑  3.57 

 

 ∇ × 𝐻⃑⃑ = 𝜎𝐸⃑ + 𝑗𝜔𝜀[𝑆]𝐸⃑  3.58 

 

Further, we rewrite the UPML tensor as shown in Equation 3.59. 
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[𝑆] = [

𝑠𝑥𝑥 0 0
0 𝑠𝑦𝑦 0

0 0 𝑠𝑧𝑧

] 3.59 

 

where, for ease of notation, we will use the following expressions for 𝑠𝑖𝑖, 𝑖 = 𝑥, 𝑦, and 𝑧. 

 

 𝑠𝑥𝑥 =
𝑠𝑦𝑠𝑧

𝑠𝑥
 3.60 

 

 𝑠𝑦𝑦 =
𝑠𝑥𝑠𝑧

𝑠𝑦
 3.61 

 

 𝑠𝑧𝑧 =
𝑠𝑥𝑠𝑦

𝑠𝑧
 3.62 

 

It was shown earlier that the TM and TE modes are decoupled in 2D, and since we will 

only be focusing on the TE mode, the associated update equations are shown in 

Equations 3.63 to 3.65. 

 

 1

𝜇

𝜕𝐸𝑧

𝜕𝑦
= −𝑗𝜔𝑠𝑥𝑥𝐻𝑥 3.63 

 

 1

𝜇

𝜕𝐸𝑧

𝜕𝑥
= 𝑗𝜔𝑠𝑦𝑦𝐻𝑦 3.64 

 

 𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝜎𝐸𝑧 + 𝑗𝜔𝜀𝑠𝑧𝑧𝐸𝑧 3.65 

 

Using the definitions for 𝑠𝑖𝑖 and 𝑠𝑖, where 𝑖 = 𝑥, 𝑦, or 𝑧, the update equations become 

 

 1

𝜇

𝜕𝐸𝑧

𝜕𝑦
= −𝑗𝜔 (1 +

𝜎𝑥

𝑗𝜔𝜀
)
−1

(1 +
𝜎𝑦

𝑗𝜔𝜀
) (1 +

𝜎𝑧

𝑗𝜔𝜀
)𝐻𝑥 3.66 
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 1

𝜇

𝜕𝐸𝑧

𝜕𝑥
= 𝑗𝜔 (1 +

𝜎𝑥

𝑗𝜔𝜀
) (1 +

𝜎𝑦

𝑗𝜔𝜀
)
−1

(1 +
𝜎𝑧

𝑗𝜔𝜀
)𝐻𝑦 3.67 

 

 𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝜎𝐸𝑧 + 𝑗𝜔𝜀 (1 +

𝜎𝑥

𝑗𝜔𝜀
) (1 +

𝜎𝑦

𝑗𝜔𝜀
) (1 +

𝜎𝑧

𝑗𝜔𝜀
)
−1

𝐸𝑧 3.68 

 

which can be rewritten as 

 

 1

𝜇

𝜕𝐸𝑧

𝜕𝑦
(1 +

𝜎𝑥

𝑗𝜔𝜀
) = −(𝑗𝜔 +

𝜎𝑦 + 𝜎𝑧

𝜀
+

𝜎𝑦𝜎𝑧

𝑗𝜔𝜀2
)𝐻𝑥 3.69 

 

 1

𝜇

𝜕𝐸𝑧

𝜕𝑥
(1 +

𝜎𝑦

𝑗𝜔𝜀
) = (𝑗𝜔 +

𝜎𝑥 + 𝜎𝑧

𝜀
+

𝜎𝑥𝜎𝑧

𝑗𝜔𝜀2
)𝐻𝑦 3.70 

 

 
(
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
) (1 +

𝜎𝑧

𝑗𝜔𝜀
) = 𝜎 (1 +

𝜎𝑧

𝑗𝜔𝜀
)𝐸𝑧 + (𝑗𝜔 +

𝜎𝑥 + 𝜎𝑦

𝜀
+

𝜎𝑥𝜎𝑦

𝑗𝜔𝜀2
) 𝜀𝐸𝑧 3.71 

 

Next, the equations are converted back into the time domain using the inverse Fourier 

transform operations 𝑗𝜔 →
𝜕

𝜕𝑡
 and 

1

𝑗𝜔
→ ∫ 𝑑𝜏

𝑡

−∞
 

 

 
1

𝜇

𝜕𝐸𝑧

𝜕𝑦
+

𝜎𝑥

𝜇𝜀
∫

𝜕𝐸𝑧

𝜕𝑦
𝑑𝜏

𝑡

−∞

= −
𝜕𝐻𝑥

𝜕𝑡
−

𝜎𝑦 + 𝜎𝑧

𝜀
𝐻𝑥 −

𝜎𝑦𝜎𝑧

𝜀2
∫𝐻𝑥𝑑𝜏

𝑡

−∞

 3.72 

 

 
1

𝜇

𝜕𝐸𝑧

𝜕𝑥
+

𝜎𝑦

𝜇𝜀
∫

𝜕𝐸𝑧

𝜕𝑥
𝑑𝜏

𝑡

−∞

=
𝜕𝐻𝑦

𝜕𝑡
+

𝜎𝑥 + 𝜎𝑧

𝜀
𝐻𝑦 +

𝜎𝑥𝜎𝑧

𝜀2
∫𝐻𝑦𝑑𝜏

𝑡

−∞

 3.73 

 

 𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
+

𝜎𝑧

𝜀
∫(

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
)𝑑𝜏

𝑡

−∞

= ⋯ 

⋯ = (𝜎 + 𝜎𝑥 + 𝜎𝑦)𝐸𝑧 + 𝜀
𝜕𝐸𝑧

𝜕𝑡
+ (

𝜎𝑧

𝜀
+

𝜎𝑥𝜎𝑦

𝜀2
) ∫𝐸𝑧𝑑𝜏

𝑡

−∞

 

3.74 
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Equations 3.72 through 3.74 are the continuous form of the update equations for the 

FDTD algorithm which include the effects of a uniaxial tensor describing the UPML. The 

next section will show the discrete form of these equations which were implemented in 

the FDTD simulation. 

 

3.6.2 Update Equations: Discrete Form 

In order to discretize Equations 3.72 through 3.74 for implementation on the computer, 

each term must be approximated using numerical approximations. The derivatives were 

approximated using finite differences, and the integrals were done so using numerical 

integration. Earlier in this chapter, the finite difference form of the derivatives was 

shown. Here, the numerical approximation of the other terms will be presented.  

 

As an example, take the integral term involving 𝐻𝑥. Because of the leap-frog method 

being employed, careful consideration must be given to when each term is being 

evaluated (that is, if either at 𝑡 or 𝑡 +
∆𝑡

2
). Equation 3.72 is for 𝐻𝑥|

𝑡+
∆𝑡

2

𝑖,𝑗
, however, 𝐻𝑥 at the 

next half-time step is being evaluated based on terms at time 𝑡 (the curl of 𝐸𝑧). Therefore, 

the integrals must go to 𝑡 and the 𝐻𝑥 term must be approximated at time 𝑡 using an 

average since it only exists at 𝑡 ±
∆𝑡

2
. The average value of 𝐻𝑥 at 𝑡 was taken to be  

 

 

𝐻𝑥|𝑡
𝑖,𝑗

≈

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
+ 𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗

2
 

3.75 

 

The numerical integration relies on taking the average value of 𝐻𝑥 like this because the 

integral is supposed to go to 𝑡. Ideally, with sufficiently small ∆𝑡, the integral of 𝐻𝑥 

would be approximated using 

 

 

∫𝐻𝑥𝑑𝜏

𝑡

−∞

≈ ∑ 𝐻𝑥|𝑛
𝑖,𝑗

𝑡

𝑛=
∆𝑡
2

∆𝑡 3.76 
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However, since 𝐻𝑥|𝑡
𝑖,𝑗

 does not exist (i.e. the last term in the summation), it is pulled out 

of the integral and approximated over half of a time step, and the result is shown in 

Equation 3.77. 

 

 

∫𝐻𝑥𝑑𝜏

𝑡

−∞

≈ (

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
+ 𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗

2
)

∆𝑡

2
+ ∑ 𝐻𝑥|𝑛

𝑖,𝑗

𝑡−
∆𝑡
2

𝑛=
∆𝑡
2

∆𝑡 3.77 

 

Additionally, for ease of notation, and using the nomenclature used by Rumph, we define 

the term 𝐶𝑥
𝐸|𝑡

𝑖,𝑗
 to mean the x-component of the curl of E, the term 𝐶𝑦

𝐸|
𝑡

𝑖,𝑗
 to mean the y-

component of the curl of E, and the term 𝐶𝑧
𝐻|𝑡

𝑖,𝑗
 to mean the z-component of the curl of H. 

So again, focusing on discretizing Equation 3.72 only for now,  

 

 
𝐶𝑥

𝐸|𝑡
𝑖,𝑗

≡
𝜕𝐸𝑧

𝜕𝑦
≈

𝐸𝑧|𝑡
𝑖,𝑗+1

− 𝐸𝑧|𝑡
𝑖,𝑗

∆𝑦
 3.78 

 

Putting all of this together, Equation 3.72 is discretized according to Equation 3.79. 

 

 
1

𝜇|𝑖,𝑗
𝐶𝑥

𝐸|𝑡
𝑖,𝑗

+
𝜎𝑥|

𝑖,𝑗∆𝑡

𝜇|𝑖,𝑗𝜀|𝑖,𝑗
∑ 𝐶𝑥

𝐸|𝑛
𝑖,𝑗

𝑡

𝑛=
∆𝑡
2

= −(

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
− 𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗

∆𝑡
) − ⋯ 

⋯− (
𝜎𝑦|

𝑖,𝑗
+ 𝜎𝑧|

𝑖,𝑗

𝜀|𝑖,𝑗
)(

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
+ 𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗

2
) − ⋯ 

⋯− (
𝜎𝑦|

𝑖,𝑗
𝜎𝑧|

𝑖,𝑗∆𝑡

(𝜀|𝑖,𝑗)2
)

(

 
 

(

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
+ 𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗

4
) + ∑ 𝐻𝑥|𝑛

𝑖,𝑗

𝑡−
∆𝑡
2

𝑛=
∆𝑡
2

)

 
 

 

3.79 
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Finally, after rearranging and solving for 𝐻𝑥|
𝑡+

∆𝑡

2

𝑖,𝑗
, the resulting discretized update 

equation for Equation 3.72 is 

 

 

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
= (𝐴)𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗
+ (𝐵)𝐶𝑥

𝐸|𝑡
𝑖,𝑗

+ (𝐶) ∑ 𝐶𝑥
𝐸|𝑛

𝑖,𝑗

𝑡

𝑛=
∆𝑡
2

+ (𝐷) ∑ 𝐻𝑥|𝑛
𝑖,𝑗

𝑡−
∆𝑡
2

𝑛=
∆𝑡
2

 3.80 

 

where the constant terms 𝐴, 𝐵, 𝐶, and 𝐷 are defined as  

 

 

𝐴 =

1
∆𝑡 −

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|
𝑖,𝑗

2𝜀|𝑖,𝑗
−

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.81 

 

 

𝐵 =
−

1
𝜇|𝑖,𝑗

1
∆𝑡 +

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.82 

 

 

𝐶 =
−

𝜎𝑥|
𝑖,𝑗∆𝑡

𝜇|𝑖,𝑗𝜀|𝑖,𝑗

1
∆𝑡 +

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.83 

 

 

𝐷 =
−

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.84 

 

Finally, the terms representing the conductivity of the UPML are tapered from the start of 

the PML interior to the domain outwards to the boundary. 
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𝜎𝑥|

𝑖,𝑗 = (
𝜀|𝑖,𝑗

2∆𝑡
) (

𝑖′

𝑙
)

3

 3.85 

 

 
𝜎𝑦|

𝑖,𝑗
= (

𝜀|𝑖,𝑗

2∆𝑡
) (

𝑗′

𝑙
)

3

 3.86 

 

 
𝜎𝑧|

𝑖,𝑗 = (
𝜀|𝑖,𝑗

2∆𝑡
) (

1

𝑙
)
3

 3.87 

 

where 𝑖′ and 𝑗′ are not to be confused with 𝑖 and 𝑗 (which represent grid coordinates); 

rather 𝑖′ and 𝑗′ are inside the UPML only, such that 1 ≤ 𝑖′  ≤ 𝑙 and 1 ≤ 𝑗′  ≤ 𝑙, where 𝑙 

is the length of the PML in number of grids. Note that 𝜎𝑧|
𝑖,𝑗 is set to a constant since the 

simulator is in 2D and there are no waves incident from the 𝑧-direction. Equations 3.80 

through 3.84 were implemented in the FDTD simulator developed for this thesis. The 

next section will provide a summary of all three update equations for 𝐻𝑥|
𝑡+

∆𝑡

2

𝑖,𝑗
, 𝐻𝑦|𝑡+∆𝑡

2

𝑖,𝑗
, 

and 𝐸𝑧|𝑡
𝑖,𝑗

. 

 

3.6.3 Summary of Update Equations 

The update equation for 𝐻𝑥 is shown in Equation 3.88. This represents Equation 3.72. 

 

 

𝐻𝑥|
𝑡+

∆𝑡
2

𝑖,𝑗
= (𝐴)𝐻𝑥|

𝑡−
∆𝑡
2

𝑖,𝑗
+ (𝐵)𝐶𝑥

𝐸|𝑡
𝑖,𝑗

+ (𝐶) ∑ 𝐶𝑥
𝐸|𝑛

𝑖,𝑗

𝑡

𝑛=
∆𝑡
2

+ (𝐷) ∑ 𝐻𝑥|𝑛
𝑖,𝑗

𝑡−
∆𝑡
2

𝑛=
∆𝑡
2

 3.88 

 

where the constant terms 𝐴, 𝐵, 𝐶, and 𝐷 are defined as  

 

 

𝐴 =

1
∆𝑡 −

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|
𝑖,𝑗

2𝜀|𝑖,𝑗
−

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.89 
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𝐵 =
−

1
𝜇|𝑖,𝑗

1
∆𝑡 +

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.90 

 

 

𝐶 =
−

𝜎𝑥|
𝑖,𝑗∆𝑡

𝜇|𝑖,𝑗𝜀|𝑖,𝑗

1
∆𝑡 +

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.91 

 

 

𝐷 =
−

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝑦|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑦|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.92 

 

The update equation for 𝐻𝑦 is shown in Equation 3.93. This represents Equation 3.73. 

 

 

𝐻𝑦|𝑡+∆𝑡
2

𝑖,𝑗
= (𝐸)𝐻𝑦|𝑡−∆𝑡

2

𝑖,𝑗
+ (𝐹)𝐶𝑦

𝐸|
𝑡

𝑖,𝑗
+ (𝐺) ∑ 𝐶𝑦

𝐸|
𝑛

𝑖,𝑗
𝑡

𝑛=
∆𝑡
2

+ (𝐻) ∑ 𝐻𝑦|𝑛
𝑖,𝑗

𝑡−
∆𝑡
2

𝑛=
∆𝑡
2

 3.93 

 

where the constant terms 𝐸, 𝐹, 𝐺, and 𝐻 are defined as  

 

 

𝐸 =

1
∆𝑡 −

𝜎𝑥|
𝑖,𝑗 + 𝜎𝑧|

𝑖,𝑗

2𝜀|𝑖,𝑗
−

𝜎𝑥|
𝑖,𝑗𝜎𝑧|

𝑖,𝑗∆𝑡
4(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝑥|
𝑖,𝑗 + 𝜎𝑧|

𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑥|
𝑖,𝑗𝜎𝑧|

𝑖,𝑗∆𝑡
4(𝜀|𝑖,𝑗)2

 3.94 

 

 

𝐹 =

1
𝜇|𝑖,𝑗

1
∆𝑡 +

𝜎𝑥|𝑖,𝑗 + 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑥|𝑖,𝑗𝜎𝑧|𝑖,𝑗∆𝑡
4(𝜀|𝑖,𝑗)2

 3.95 
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𝐺 =

𝜎𝑦|
𝑖,𝑗

∆𝑡

𝜇|𝑖,𝑗𝜀|𝑖,𝑗

1
∆𝑡 +

𝜎𝑥|𝑖,𝑗 + 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑥|𝑖,𝑗𝜎𝑧|𝑖,𝑗∆𝑡
4(𝜀|𝑖,𝑗)2

 3.96 

 

 

𝐻 =

𝜎𝑥|
𝑖,𝑗𝜎𝑧|

𝑖,𝑗∆𝑡
(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝑥|𝑖,𝑗 + 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑥|𝑖,𝑗𝜎𝑧|𝑖,𝑗∆𝑡
4(𝜀|𝑖,𝑗)2

 3.97 

 

Finally, the update equation for 𝐸𝑧 is shown in Equation 3.98. This represents Equation 

3.74. 

 

 

𝐸𝑧|𝑡+∆𝑡
𝑖,𝑗

= (𝐼)𝐸𝑧|𝑡
𝑖,𝑗

+ (𝐽)𝐶𝑧
𝐻|𝑡

𝑖,𝑗
+ (𝐾) ∑ 𝐶𝑧

𝐻|𝑛
𝑖,𝑗

𝑡

𝑛=
∆𝑡
2

+ (𝐿) ∑ 𝐸𝑧|𝑛
𝑖,𝑗

𝑡

𝑛=
∆𝑡
2

 3.98 

 

where the constant terms 𝐼, 𝐽, 𝐾 and 𝐿 are defined as  

 

 

𝐼 =

1
∆𝑡 −

𝜎𝑥|
𝑖,𝑗 + 𝜎𝑦|

𝑖,𝑗
+ 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
−

𝜎𝑥|
𝑖,𝑗𝜎𝑦|

𝑖,𝑗
∆𝑡

4(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝑥|𝑖,𝑗 + 𝜎𝑦|
𝑖,𝑗

+ 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑥|𝑖,𝑗𝜎𝑦|
𝑖,𝑗

∆𝑡

4(𝜀|𝑖,𝑗)2

 3.99 

 

 
𝐽 =

1

1
∆𝑡 +

𝜎𝑥|𝑖,𝑗 + 𝜎𝑦|
𝑖,𝑗

+ 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑥|𝑖,𝑗𝜎𝑦|
𝑖,𝑗

∆𝑡

4(𝜀|𝑖,𝑗)2

 
3.100 

 

 

𝐾 =
−

𝜎𝑧|
𝑖,𝑗∆𝑡

𝜀|𝑖,𝑗

1
∆𝑡 +

𝜎𝑥|𝑖,𝑗 + 𝜎𝑦|
𝑖,𝑗

+ 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑥|𝑖,𝑗𝜎𝑦|
𝑖,𝑗

∆𝑡

4(𝜀|𝑖,𝑗)2

 3.101 
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𝐿 =
−

𝜎𝑥|
𝑖,𝑗𝜎𝑦|

𝑖,𝑗
∆𝑡

(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝑥|𝑖,𝑗 + 𝜎𝑦|
𝑖,𝑗

+ 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝑥|𝑖,𝑗𝜎𝑦|
𝑖,𝑗

∆𝑡

4(𝜀|𝑖,𝑗)2

 3.102 

 

3.7 FDTD in Cylindrical Coordinates 

The formulation of the FDTD update equations in the preceding section are valid for a 

2D geometry in Cartesian coordinates. A 2D formulation like this assumes 
𝜕𝜓

𝜕𝑧
= 0 which 

states there is no variation of 𝜓 in the 𝑧-direction. This type of assumption is justified if 

the problem of interest has this type of symmetry (for example, a long straight wire). 

However, the problem of modelling a coil does not contain this type of symmetry; rather, 

this problem possesses cylindrical symmetry. This section will show how the FDTD 

update equations were modified and implemented in cylindrical coordinates. 

 

3.7.1 Cylindrical Symmetry 

Since a coil of wire exhibits cylindrical symmetry about the 𝑧-axis, if the 𝑧-axis is placed 

in the center of the transmitting coil, then the problem of solving for the fields being 

radiated by the transmitting coil will also have cylindrical symmetry. The benefit of 

taking this approach is the reduction in computational effort since only half of the domain 

needs to be included in the computational space (since the rest of the space is obtained by 

simply revolving the fields around the 𝑧-axis). 

 

Figure 23 shows a sketch of the portion of the 𝜌, 𝑧-plane required by the FDTD algorithm 

in cylindrical coordinates. The circles above and below the water’s surface are cross-

sections of the receiving and transmitting coils, respectively, represented here as a single 

turn of wire. Following the computation of the electromagnetic fields in this half of the 

𝜌, 𝑧-plane, at each time step, the fields obtained in this portion of the domain are simply 

copied to the hidden half of the 𝜌, 𝑧-plane for inclusion in the 2D algorithm. Rather than 

iterating through 𝑁𝜌 × 𝑁𝑧 Yee cells, the problem is reduced to 
𝑁𝜌

2
×

𝑁𝑧

2
. 
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Figure 23: The 2D problem space in cylindrical coordinates 

 

Note: with this implementation of cylindrical coordinates, since the cylindrical symmetry 

is dependant upon the horizontal orientation of the transmitting coil, the transmitting coil 

must be horizontal. This was not the case for earlier versions of the simulator prior to the 

application of cylindrical coordinates. 

 

3.7.2 Maxwell’s Equations in Cylindrical Coordinates 

To take advantage of the inherent cylindrical symmetry, Maxwell’s equations must be 

written in cylindrical coordinates. The curl operator for cylindrical coordinates is shown 

in Equation 3.103. 

 

 
∇ × 𝜓⃑ = (

1

𝜌

𝜕𝜓𝑧

𝜕𝜑
−

𝜕𝜓𝜑

𝜕𝑧
) 𝜌̂ + (

𝜕𝜓𝜌

𝜕𝑧
−

𝜕𝜓𝑧

𝜕𝜌
) 𝜑̂ +

1

𝜌
(
𝜕(𝜌𝜓𝜑)

𝜕𝜌
−

𝜕𝜓𝜌

𝜕𝜑
) 𝑧̂ 3.103 

 

Cylindrical symmetry about the 𝑧-axis is obtained by setting  
𝜕

𝜕𝜑
= 0. Maxwell’s 

equations become 
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 𝜕𝐸𝜑

𝜕𝑧
= 𝑠𝜌𝜌𝜇

𝜕𝐻𝜌

𝜕𝑡
 3.104 

 

 1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝜌
= −𝑠𝑧𝑧𝜇

𝜕𝐻𝑧

𝜕𝑡
 3.105 

 

 𝜕𝐻𝜌

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝜌
= 𝜎𝐸𝜑 + 𝜀𝑠𝜑𝜑

𝜕𝐸𝜑

𝜕𝑡
 3.106 

 

Equations 3.104 and 3.106 can be approximated using finite differences, as before, in a 

straight forward manner; however, Equation 3.105 is converted into its nonconservative 

form using the product rule of differentiation as shown in Equation 3.107.  

 

 1

𝜌

𝜕(𝜌𝐸𝜑)

𝜕𝜌
=

1

𝜌
𝐸𝜑 +

𝜕𝐸𝜑

𝜕𝜌
= −𝑠𝑧𝑧𝜇

𝜕𝐻𝑧

𝜕𝑡
 3.107 

 

The terms 𝑠𝑗𝑗, 𝑗 =  𝜌, 𝜑, and 𝑧, are the cylindrical counterparts of 𝑠𝑖𝑖, 𝑖 =  𝑥, 𝑦, and 𝑧, as 

described in the preceding sections. 

 

3.7.3 Update Equations in Cylindrical Coordinates 

The update equation for 𝐻𝜌 is shown in Equation 3.108. This represents Equation 3.104. 

 

 

𝐻𝜌|𝑡+∆𝑡
2

𝑖,𝑗
= (𝐴′)𝐻𝜌|𝑡−∆𝑡

2

𝑖,𝑗
+ (𝐵′)𝐶𝜌

𝐸|
𝑡

𝑖,𝑗
+ (𝐶′) ∑ 𝐶𝜌

𝐸|
𝑛

𝑖,𝑗
𝑡

𝑛=
∆𝑡
2

+ (𝐷′) ∑ 𝐻𝜌|𝑛
𝑖,𝑗

𝑡−
∆𝑡
2

𝑛=
∆𝑡
2

 3.108 

 

where the constant terms 𝐴′, 𝐵′, 𝐶′, and 𝐷′ are defined as  
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𝐴′ =

1
∆𝑡 −

𝜎𝜑|
𝑖,𝑗

+ 𝜎𝑧|
𝑖,𝑗

2𝜀|𝑖,𝑗
−

𝜎𝜑|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝜑|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜑|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.109 

 

 

𝐵′ =
−

1
𝜇|𝑖,𝑗

1
∆𝑡 +

𝜎𝜑|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜑|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.110 

 

 

𝐶′ =
−

𝜎𝜌|
𝑖,𝑗

∆𝑡

𝜇|𝑖,𝑗𝜀|𝑖,𝑗

1
∆𝑡 +

𝜎𝜑|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜑|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.111 

 

 

𝐷′ =
−

𝜎𝜑|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

(𝜀|𝑖,𝑗)2

1
∆𝑡

+
𝜎𝜑|

𝑖,𝑗
+ 𝜎𝑧|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜑|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.112 

 

The update equation for 𝐻𝑧 is shown in Equation 3.113, and it includes the effects of the 

modified curl term, 𝐶𝑧
𝐸 . This represents Equation 3.107. 

 

 

𝐻𝑧|
𝑡+

∆𝑡
2

𝑖,𝑗
= (𝐸′)𝐻𝑧|

𝑡−
∆𝑡
2

𝑖,𝑗
+ (𝐹′)𝐶𝑧

𝐸|𝑡
𝑖,𝑗

+ (𝐺′) ∑ 𝐶𝑧
𝐸|𝑛

𝑖,𝑗

𝑡

𝑛=
∆𝑡
2

+ (𝐻′) ∑ 𝐻𝑧|𝑛
𝑖,𝑗

𝑡−
∆𝑡
2

𝑛=
∆𝑡
2

 3.113 

 

where the constant terms 𝐸′, 𝐹′, 𝐺′, and 𝐻′ are defined as  
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𝐸′ =

1
∆𝑡 −

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝑧|
𝑖,𝑗

2𝜀|𝑖,𝑗
−

𝜎𝜌|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝜑|
𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜌|
𝑖,𝑗

𝜎𝜑|
𝑖,𝑗

∆𝑡

4(𝜀|𝑖,𝑗)2

 3.114 

 

 

𝐹′ =

1
𝜇|𝑖,𝑗

1
∆𝑡 +

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝜑|
𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜌|
𝑖,𝑗

𝜎𝜑|
𝑖,𝑗

∆𝑡

4(𝜀|𝑖,𝑗)2

 3.115 

 

 

𝐺′ =

𝜎𝑧|
𝑖,𝑗∆𝑡

𝜇|𝑖,𝑗𝜀|𝑖,𝑗

1
∆𝑡 +

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝜑|
𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜌|
𝑖,𝑗

𝜎𝜑|
𝑖,𝑗

∆𝑡

4(𝜀|𝑖,𝑗)2

 3.116 

 

 

𝐻′ =

𝜎𝜌|
𝑖,𝑗

𝜎𝜑|
𝑖,𝑗

∆𝑡

(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝜑|
𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜌|
𝑖,𝑗

𝜎𝜑|
𝑖,𝑗

∆𝑡

4(𝜀|𝑖,𝑗)2

 3.117 

 

and the curl term is now represented as shown in Equation 3.118. This is the main 

difference between the cylindrical and Cartesian formulations in terms of the effects on 

the update equations. 

 

 

𝐶𝑧
𝐸|𝑡

𝑖,𝑗
=

1

𝑖∆𝜌
𝐸𝜑|

𝑛

𝑖,𝑗
+

𝐸𝜑|
𝑡

𝑖+1,𝑗
− 𝐸𝜑|

𝑡

𝑖,𝑗

∆𝜌
 3.118 

 

Finally, the update equation for 𝐸𝜑 is shown in Equation 3.119. This represents Equation 

3.106. 

 

 

𝐸𝜑|
𝑡+∆𝑡

𝑖,𝑗
= (𝐼′)𝐸𝜑|

𝑡

𝑖,𝑗
+ (𝐽′)𝐶𝜑

𝐻|
𝑡

𝑖,𝑗
+ (𝐾′) ∑ 𝐶𝜑

𝐻|
𝑛

𝑖,𝑗
𝑡

𝑛=
∆𝑡
2

+ (𝐿′) ∑ 𝐸𝜑|
𝑛

𝑖,𝑗
𝑡

𝑛=
∆𝑡
2

 3.119 
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where the constant terms 𝐼′, 𝐽′, 𝐾′ and 𝐿′ are defined as  

 

 

𝐼′ =

1
∆𝑡 −

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝑧|
𝑖,𝑗 + 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
−

𝜎𝜌|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗 + 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜌|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.120 

 

 
𝐽′ =

1

1
∆𝑡 +

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗 + 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜌|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2
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𝐾′ =
−

𝜎𝜑|
𝑖,𝑗

∆𝑡

𝜀|𝑖,𝑗

1
∆𝑡 +

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗 + 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜌|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.122 

 

 

𝐿′ =
−

𝜎𝜌|
𝑖,𝑗

𝜎𝑧|
𝑖,𝑗∆𝑡

(𝜀|𝑖,𝑗)2

1
∆𝑡 +

𝜎𝜌|
𝑖,𝑗

+ 𝜎𝑧|𝑖,𝑗 + 𝜎|𝑖,𝑗

2𝜀|𝑖,𝑗
+

𝜎𝜌|
𝑖,𝑗

𝜎𝑧|𝑖,𝑗∆𝑡

4(𝜀|𝑖,𝑗)2

 3.123 

 

3.8 Increasing the Speed of Simulation 

FDTD based simulations are notorious for their long runtimes. Since the time step, ∆𝑡, is 

chosen based on the Courant stability criterion, with a fixed grid resolution, the time step 

is on the order of nano to pico-seconds. Further, for continuous tone signals, given the 

phase delay between the transmitter and receiver due to the propagation of the 

electromagnetic fields, it is desirable to allow several periods of the input signal to be 

injected into the computational space. For low frequency signals, this results in a total 

number of time steps in the thousands and even millions. 
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In an effort to decrease the runtime of the FDTD simulations, two different approaches 

were taken in terms of the FDTD algorithm and each approach was benchmarked in 

terms of the total runtime (which includes other aspects of the simulation, not just the 

FDTD channel model), the time per time step, and the total FDTD algorithm time over all 

the time steps. The times measured using the two approaches are shown in Table 1. 

 

Table 1: Data obtained using different FDTD algorithms 

Vectorized MATLAB For-Loops 

Tot [s] Per Step [ms] Full [s] Tot [s] Per Step [ms] Full [s] 

22.4 0.71 14.7 16.7 0.37 9.4 

20.0 0.67 13.8 17.6 0.38 10.0 

22.1 0.77 14.7 17.1 0.36 9.8 

21.9 0.69 14.2 17.4 0.40 9.9 

21.8 0.69 14.3 17.1 0.36 9.9 

 

The FDTD algorithm was implemented two different ways. The first method was by 

utilizing the matrix nature of data in MATLAB by using vectorized MATLAB since 

MATLAB is optimized for operations involving matrices and vectors. The second 

approach was by using nested for-loops to evaluate the fields at each point in the domain. 

The vectorized MATLAB approach was assumed to be the faster approach, but 

surprisingly, this was not the case. It is believed that in this application, the vectorized 

implementation requires significant memory which is not required in the alternative 

approach. 

 

One simulation configuration was implemented and ran five times each using both FDTD 

algorithm methods. The average total runtimes were 21.6 and 17.8 seconds for the 

vectorized and for-loop approaches, respectively. The average times required to run 

through the 80 x 80 grid was 0.71 and 0.37 milliseconds with the nested for-loop method 

nearly twice as fast. Finally, the full FDTD component of the simulation, consisting of 

14133 time steps, took an average time of 14.3 and 9.8 seconds, with the nested for-loop 

approach being nearly 31 % faster than the vectorized method. 
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4 Validating the Simulation Tool 

 

This section provides methods used to validate the results of the simulation tool. First, 

comparisons of simulation results with several analytical models will be discussed. Next, 

COMSOL Multiphysics simulation results are presented and compared with the custom 

FDTD simulation tool. Finally, experimental results will be provided.  

 

4.1 Analytical Models 

This section will present three analytical models used to validate the FDTD-based 

simulation tool developed in this thesis. All three models consider the effects of the 

water’s conductivity on the electromagnetic fields and the presence of the air-water 

interface. First, the simplest model described by Butler will be introduced. Butler’s model 

provides an estimate of the signal attenuation due to two effects: the first being the 

propagation of the fields in a conductive medium and the second being attenuation due to 

reflection at the air-water interface. The second analytical model used here is based on 

the work of Wait but was implemented based on the work of Gibson. Gibson presents a 

model of a magnetic dipole submerged in a good conductor with a receiver position 

located above the interface in a semi-infinite medium. Finally, the third model is the 

result of the work of my colleague Adam Forget, MSc. Forget has developed an integral 

equation similar to that of Gibson, with a lot of the same numerical challenges; however, 

Forget’s model also includes the effects of the hardware of the transmitting and receiving 

coils, so it can potentially be of very practical use. 

 

4.1.1 Frequency Modes in Cavity 

As an early means of evaluating the FDTD algorithm, the analytical expressions for the 

frequency modes inside a cavity (discussed in Chapter 2) were used together with the 

FDTD simulation results. A cavity surrounded by a perfect electric conductor was 

constructed and a Gaussian pulse injected into the domain. The z-component of the 

electric field, 𝐸𝑧, was sampled at the center of the cavity and a Discrete Fourier transform 

performed, as shown in Equation 4.1.  
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 ℱ{𝐸𝑧} = ∑ 𝐸𝑧[𝑛]𝑒−𝑗2𝜋𝑓𝑘
𝑛
𝑁

𝑁−1

𝑛=0

 4.1 

 

Figure 24 shows 𝐸𝑧 as it propagates through the cavity. The cavity dimensions used here 

are 30 mm wide by 20 mm tall. The perfect electrically conducting walls were achieved 

using Dirichlet boundary conditions. 

 

 

Figure 24: Testing the FDTD algorithm by measuring frequency content in cavity 

 

ℱ{𝐸𝑧} was then plotted against 𝑓𝑚𝑛 and the result is shown in Figure 25. The frequency 

components of 𝐸𝑧 perfectly match those predicted by 𝑓𝑚𝑛. Since the theoretical frequency 

modes have been confirmed, the basic FDTD algorithm used here appears valid. 
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Figure 25: FFT of 𝐸𝑧 (blue) and theoretical frequency modes (red) 

 

4.1.2 Field Expressions for Circular Loop 

The next method used to validate the FDTD tool was to simulate the magnetic field 

strength generated by a single turn circular loop of wire, in the absence of water, at 

varying distances from 40 cm to 3 m. The analytical equations for the radiated fields from 

a circular loop were discussed in Chapter 2. Since the magnetic field was sampled 

coaxially, the relevant equation is repeated here for convenience except that it has been 

converted to cylindrical coordinates using the transformations 𝜌 = 𝑟 sin 𝜃, 𝜙 = 𝜙, and 

𝑧 = 𝑟 cos 𝜃 where 𝜃 = 0° thus 𝑧 = 𝑟.  

 

 
𝐻𝑧 = 𝑗

𝜔2𝜇𝜀𝑎2𝐼

2𝑧2
[1 +

1

𝑗𝜔2𝜇𝜀𝑧
] 𝑒−𝑗𝜔2𝜇𝜀𝑧 4.2 

 

The test was performed at 𝑓 = 100 MHz with a grid size of 10/3 cm (𝑁𝑑𝑖𝑚 = 3). The PML 

was set to more than one wavelength away. The result is shown in Figure 26. 
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Figure 26: Comparing FDTD results with H-field expressions 

 

As shown in the figure above, the results of this test were very promising thus increasing 

my confidence further that the FDTD simulator is able to generate accurate results. 

 

4.1.3 Wait’s Sommerfeld Integral 

Based on the 1969-1971 work of Wait, Gibson presents an alternative form for a 

transmitting coil submerged in a good conductor and a receiver located above the 

interface in a semi-infinite medium. The magnetic field at the receiver is expressed as  

 

 𝐻⃑⃑ =
𝑚𝑑

2𝜋ℎ3
[𝑃𝜌̂ + 𝑄𝑧̂] 4.3 

 

where 𝑃 and 𝑄 are based on Wait’s Sommerfeld integral involving the Bessel functions, 

𝐽1 and 𝐽0, and expressed as 

 

 

(𝑃, 𝑄) = ∫
𝑥3𝑒−𝑥𝑍

𝑥 + 𝑈
𝑒−𝑈(𝐽1(𝑥𝐷), 𝐽𝑜(𝑥𝐷))

∞

0

𝑑𝑥 4.4 
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Where the parameters 𝑈2 = 𝑥2 + 𝑗2 (
ℎ

𝛿
)
2

, 𝐷 =
𝜌

ℎ
, 𝑍 =

𝑧

ℎ
, 𝛿 = √

1

𝜋𝑓𝜎
, and 𝑚𝑑 = 𝑁𝐼𝜋𝑟2 

are used to simplify the integral expression. 

 

Gibson provides details on how to numerically evaluate the Sommerfeld integral; doing 

so, the magnitude of the magnetic field component 𝐻𝑧 can be evaluated at the receiver for 

different transmitter depths. Figure 27 shows the magnitude of 𝐻𝑧 at a few depths. 

 

 

Figure 27: Magnetic field strength using Wait's Sommerfeld integral 

 

Further, from the results shown above, additional information can be extracted and then 

used for validation of the FDFD simulation. From the definition of Faraday’s law, 

𝑉𝑒𝑚𝑓 = 𝜇
𝑑

𝑑𝑡
∬ 𝐻⃑⃑ ∙ 𝑑𝑆 

 

𝑆
, if we assume 𝐻⃑⃑  is nearly constant across the plane of the 

receiving antenna (with respect to the space variables), then  𝑉𝑒𝑚𝑓 ≈ 𝜇
𝑑

𝑑𝑡
𝐻⃑⃑ ∬ 𝑑𝑆 

 

𝑆
. Since 

∬ 𝑑𝑆 
 

𝑆
 is just the surface area of the receiving antenna, 𝑟2𝜋, where 𝑟 is the radius of the 

receiving coil, then 𝑉𝑒𝑚𝑓 ≈ 𝜇𝜋𝑟2 𝑑

𝑑𝑡
𝐻⃑⃑ . Taking the Fourier transform of this expression 

results in 𝑉𝑒𝑚𝑓(𝑓) ≈ 𝑗2𝑓𝜇𝜋2𝑟2𝐻⃑⃑ (𝑓), where finally we have Equation 4.5.  

 

 |𝑉𝑒𝑚𝑓(𝑓)| ≈ 2𝑓𝜇𝑁𝜋2𝑟2|𝐻⃑⃑ (𝑓)| 4.5 
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Using the values for |𝐻⃑⃑ (𝑓)| obtained from evaluating the Sommerfeld integral and shown 

in Figure 27, a plot can be produced for |𝑉𝑒𝑚𝑓(𝑓)| which shows a decrease in the induced 

voltage at low frequencies which agrees with Faraday’s law. Figure 28 shows the 

Sommerfeld integral evaluated at various transmitter depths from 1.5 to 15 meters with a 

receiving coil 1 meter above the water’s surface. The expected bandpass effects of the 

channel are visible in Figure 28 and a suitable channel bandwidth can be approximated. 

 

 

Figure 28: Calculating the induced voltage from |H| 

 

The FDTD simulations were run with the receiver coil fixed horizontally at heights of 0.5 

and 1 meter above the water's surface, the transmitter aligned horizontally and coaxial 

with the receiver, and at transmitter depths of 0.5, 1, 2, and 3 meters. Wait's Sommerfeld 

integral was evaluated numerically using MATLAB's built-in quad1() function which 

uses adaptive Gauss/Lobatto quadrature. A comparison of the results of these two models 

is shown in Figure 29. The coils are assumed to have a 10 cm radius, the transmitting coil 

having 5 turns, the receiving coil having 5 turns, and the driving current having a 

maximum amplitude of 1 A. 
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Figure 29 shows a good match between the FDTD simulation results and Wait's 

analytical expression in terms of cut-off frequencies, but the solutions diverge at the 

lower frequencies in terms of the magnitude of the induced voltage. If we define a limit 

for the magnitude of the induced voltage, based on the sensitivity of the measurement 

equipment, of around -120 dBV (~1 𝜇V), then for a depth of 2 m, both models predict a 

center frequency of around 100 kHz. Both models show an induced voltage magnitude of 

around -100 to -80 dBV (10 to 100 𝜇V) at 100 kHz. 

 

 

Figure 29: Validating the FDTD simulations using Wait’s Sommerfeld integral 

 

4.1.4 Forget’s Analytical Model 

An analytical model was developed by a colleague, Adam Forget, as part of his M.A.Sc. 

thesis in Electrical Engineering. Forget was part of the team studying the use of magnetic 

induction to cross the air-water interface with a focus on the development of an analytical 

model. Forget’s analytical model was used as part of the validation process. 

 

The geometry used by Forget is shown in Figure 30. Forget’s approach consists of two 

key steps: 1) solving for the magnetic field produced by the transmitting coil for the case 
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of infinitely deep water, and 2) applying the appropriate boundary conditions at the air-

water interface. Where Wait’s approach using the Sommerfeld integral focus on the 

magnetic dipole moment of the transmitting coil, Forget’s model is based on the mutual 

inductance between the transmitting and receiving coils. 

 

 

Figure 30: Forget's geometry setup (source: Forget) 

 

Forget’s analytical model is in the frequency domain, with the transmitting coil current 

modelled as an impulse allowing the frequency response of the system to be determined. 

Forget uses the definition of the magnetic vector potential, 𝐻⃑⃑ =
1

𝜇
∇ × 𝐴 , and solves the 

wave equation in terms of 𝐴  

 

 ∇2𝐴 + 𝑘2𝐴 = −𝜇𝐽  4.6 

 

which, in cylindrical coordinates, takes the form 

 

 𝜕2𝐴

𝜕𝑠2
+

1

𝑠

𝜕𝐴

𝜕𝑠
−

1

𝑠2
𝐴 +

𝜕2𝐴

𝜕𝑧2
+ 𝑘2𝐴 = −𝜇0𝑁𝐼𝛿(𝑠 − 𝛼)𝛿(𝑧 + 𝑑) 4.7 
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Forget uses a Fourier transform in the spatial variable 𝑧 followed by a first-order Hankel 

transform in 𝑠 to solve Equation 4.7 for 𝐴. Boundary condition for the electric and 

magnetic fields are then applied to the air-water interface resulting in the an expression 

for 𝐻⃑⃑  as shown in Equation 4.8. 

 

 
𝐻⃑⃑ = 𝑁𝐼𝛼 ∫

𝑘

𝐾𝑤 + 𝐾0
𝐽1(𝑘𝛼)𝑒𝑗𝐾𝑤𝑑[𝐾0𝐽1(𝑘𝑠)𝑒

𝑗𝐾𝑜𝑧𝑠̂ + 𝑗𝑘𝐽0(𝑘𝑠)𝑒
𝑗𝐾𝑜𝑧𝑧̂]

∞

0

𝑑𝑘 4.8 

 

where 𝐾𝑤 = √(2𝜋𝑓)2𝜀𝑤𝜇0 − 𝑘2 and 𝐾0 = √(2𝜋𝑓)2𝜀0𝜇0 − 𝑘2 are the wave numbers 

under water and in air, respectively. The induced voltage in the receiving coil is found 

using Faraday’s law resulting in Equation 4.9. 

 

 

𝑉(𝑓) = 𝑉0Ω∫
𝑥𝐽1

2(𝑥)𝑒
𝑗(

ℎ
𝛼
√Ω2−𝑥2+

𝑑
𝛼
√𝜀𝑟,𝑤Ω2+𝑗ΣΩ−𝑥2)

√Ω2 − 𝑥2 + √𝜀𝑟,𝑤Ω2 + 𝑗ΣΩ − 𝑥2

∞

0

𝑑𝑥 
4.9 

 

where 𝑥 = 𝑘𝛼 is a dimensionless variable of integration, 𝜀𝑟,𝑤 =
ℛ𝑒{𝜀𝑤}

𝜀0
 is the dielectric 

constant of water, Ω =
2παf

𝑐
 is a dimensionless frequency parameter, Σ = 𝜇0𝑐𝛼𝜎 is a 

dimensionless conductivity parameter, and 𝑉0 = 2𝜋𝜇0𝑁
2𝐼𝑐 is a voltage parameter in 

volts. 

 

The FDTD simulator was run with the transmitting coil located at depths 1, 2, and 3 

meters, with the receiving coil located at 1 m above the water’s surface. The results were 

plotted with that of Forget and are shown in Figure 31. The results show a good match in 

terms of the general trend of the frequency response. 
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Figure 31: Validating the FDTD tool using Forget 

 

4.2 Test Apparatus for Experiments 

The original plan was to design and build an underwater test apparatus intended to test 

and validate the results of the analytical and FDTD models discussed above early in the 

Summer of 2020; however, due to the recent social and political ramifications of the 

COVID-19 virus, the scheduling for these activities have been delayed. At the time of 

this writing, we expect to be able to test the magnetic induction link some time in late 

Summer or Fall, 2020. Unfortunately, this timeframe is just outside that of this thesis, so 

the results of those tests will not be included here. The results of those field experiments 

will be included in future work. This section will describe the development of the test 

platform to date and describe, potentially, how the tests will be conducted later this year. 

 

4.2.1 Transmitter Design 

The transmitter was designed and is being built by my colleagues Cole Ferguson and 

Adam Forget. A block diagram of the main system components is shown in Figure 32.  
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Figure 32: Block diagram of transmitter 

 

The input voltage will be supplied by a 24 V battery pack. Two DC/DC voltage 

regulators will be used to supply the positive and negative voltage rails for system power. 

The positive voltage rail will be supplied by the R-735.5P and the negative rail by the 

PTN78020A. The transmit signals are generated using a Zybo z7-20 development board 

which includes a 667 MHz dual-core ARM Cortex-A9 processor and a Xilinx 7-series 

FPGA. The power amplifier is the PA162u capable of 1.5 A output current and a 

bandwidth above 1 MHz. The tuning multiplexer block (Tuning MUX) consists of a 

capacitor bank and Single-Pole Double-Throw (SPDT) relays capable of withstanding the 

expected operating conditions and are intended to tune the transmitting coil to each of the 

frequencies of interest. The coil itself consists of three perpendicular coils intended to 

eliminate the dependence on the transmitter coil’s orientation. This is a common 

approach in the literature. 

 

4.2.2 Receiver Design 

The author was responsible for the development of the receiver platform. A block 

diagram of the main system components is shown in Figure 33. The receiving coil and 

tuning circuits are identical to that of the transmitter. The Low Noise Amplifier (LNA) is 

the LT1167 which has an easily adjustable gain, 𝐺, determined by the resistor between 

the two Rg pins and is given by 𝐺 ≈ 1 + 49.4𝑘Ω/𝑅𝑔. The Data Acquisition System 
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(DAQ) is the NI-PCIe-6321 by National Instruments, which can sample at near 250 kHz 

which means our frequency of operation is limited by the Nyquist sampling criterion to 

around 125 kHz. 

 

 

Figure 33: Block diagram of receiver 

 

It was decided that a resonating tank circuit would be used to tune the receiving network, 

and LTspice simulations verify the need for this tuning. Figure 34 and Figure 35 show the 

setup in LTspice and the simulation results, respectively. The transmitting circuit 

(consisting of V1, R1, C1, and L1) is tuned for near 25 kHz. The resonating tank circuit 

consists of L2 and C2 in the figure below. The value of C2 takes on values above, below, 

and at the capacitance value necessary for tuning the receiving coil for 25 kHz, which in 

this case is 270 nF for a 150 𝜇H coil. 

 

https://www.ni.com/documentation/en/multifunction-io-device/latest/specs-pcie-6321/specs/
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Figure 34: LTspice simulation of resonating tank circuit in receiver 

 

In Figure 35, the Fourier transforms of the signals induced in the receiving coil for each 

value of C2 is presented when a wideband pulse is injected into the transmitting circuit. It 

is clear the largest induced voltage occurs when the value for C2 equals 270 nF (the blue 

curve, run 2/3). The difference is as much as 15 dB, which translates to an increase in the 

size of the induced voltage on the order of 25 for these particular capacitor values. We 

want to ensure the received signal level is well above the noise floor, so having the ability 

to tune the receiving circuit for our frequency of operation is paramount. 
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Figure 35: FFT of induced voltage in receiving coil 

 

4.2.3 Preliminary Test Plan 

The test will begin by lowering the transmitting coil, in its corresponding pressure case 

and attached to a vertical member, into the water to a depth of 3 meters. The receiving 

coil will be fixed at the top the vertical member at a height of 1 meter above the water 

with the coil plane parallel to the water’s surface. The control boxes for both the 

transmitting and receiving coils will be located outside of the water on a floating 

platform. The vertical member will be fixed to the floating platform such that it remains 

vertical and the two coils are coaxially oriented. The transmitting coil will be set to 

transmit a continuous wave signal adjustable from 10 to about 150 kHz. The receiving 

coil will measure and record the resulting induced voltage for comparison with the 

analytical and FDTD models. 

 

Next, the transmitting coil will be lowered to depths of 4, 5, 6, 7, 8, 8, and 10 meters and 

the frequency of the transmitted signal at each depth will be adjusted such that the 
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maximum induced voltage in the receiving coil is obtained. This data will be used in 

additional models and simulations for comparison. Finally, the transmitting coil will be 

lowered deeper until the Signal-to-Noise (SNR) ratio reaches the level of 10 dB which is 

a typical SNR used to define the limits of barely intelligible speech (Blake, 2002). The 

associated depth will be assumed to be the maximum practical depth. 

  



103 

 

5 Discussion of Results and Conclusion 

 

This chapter will provide a discussion of the simulation results followed by the final 

closing remarks. 

 

5.1 Simulation Results 

Before the simulation results are presented, a description of the FDTD simulation setup 

will be discussed. The FDTD simulation setup is very sensitive to the parameters 

mentioned here, so these important details will be provided first. The FDTD simulation 

results will be presented and compared with the results of numerically integrating Wait’s 

Sommerfeld, according to the work of Gibson, as was discussed in the preceding chapter. 

The FDFD results will then be used to evaluate the communication system, as was 

discussed in Chapter 2. Finally, issues with the FDTD simulator (for example: long 

runtime, sufficient computational domain size, etc.) will be discussed.  

 

5.1.1 Setup of the FDTD Simulations 

The simulations performed during this analysis were configured according to the 

parameters listed in Table 2. These parameters are important in terms of repeatability, as 

the FDTD simulations are sensitive to them. 
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Table 2: FDTD simulation configuration parameters 

Parameter Value 

Number of Turns (Both Coils) 5.0 

Transmit Coil Current 1.0 A 

Coil Radius (Both Coils) 10.0 cm 

Water Conductivity 4.0 S/m 

Water Permittivity 81.0 

Air Conductivity 0.0 S/m 

Air Permittivity 1.0 

FDTD Grid Size 3.333 cm 

Receiver Heights 0.5, 1 m 

Transmitter Depths 0.5, 1, 2, 3 m 

Periods of Input Signal 1.5 to 6.0 

Distance from Tx Coil to Domain Edge > 𝜆𝐻2𝑂 

Frequency Range 50 to 5000 kHz 

 

5.1.2 Comparing FDTD Results with Wait/Gibson 

Wait’s Sommerfeld integral was the main tool used to validate the FDTD simulation 

results. The induced voltage determined by the Sommerfeld integral, as described in the 

previous chapter, was used to troubleshoot the FDTD simulator throughout the 

development process. Since the work of Wait and Gibson directly relates to the problem 

of magnetic fields crossing the interface of air with a conductive medium (not necessarily 

water), it seems fitting that the FDTD results should be compared directly with that of 

Wait/Gibson. This comparison is repeated in Figure 36 for convenience. 
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Figure 36: Results using FDFD and Wait’s Sommerfeld integral 

 

The first impression one gets by comparing the FDTD results with that of Wait/Gibson in 

Figure 36 is how closely the red curves match the location and shape of the black curves. 

One of the main goals of this project was to determine the optimum center frequency at 

varying transmitter depths. The results show the local maxima for each pair of curves 

(corresponding to each height/depth configuration) matches well. This iss perceived as a 

very good indication that the FDTD simulator does a good job at accurately representing 

the physics of the problem. 
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Table 3: Comparing key results of FDTD with Wait/Gibson 

 
Maximum Induced Voltage /  

Optimal Center Frequency 

Rx Height / Tx Depth Wait/Gibson FDTD 

0.5 m / 0.5 m -40.6 dBV / 1 MHz -43.0 dBV / 1 MHz 

1 m / 1 m -70.6 dBV / 300 kHz -72.2 dBV / 300 kHz 

1 m / 2 m -90.4 dBV / 100 kHz -92.1 dBV / 100 kHz  

1 m / 3 m -103.7 dBV / 50 kHz -106.2 dBV / 80 kHz 

 

5.1.3 Communication System Evaluation 

The results of the FDTD simulations were used to predict the Signal-to-Noise Ratios 

(SNR) and theoretical channel capacities for three specific coil orientations. The SNR 

and capacities included here were calculated using the methods described in the section 

on the communication system evaluation in Chapter 2. The results are shown in Table 4. 

Note: the final row in Table 4 includes the results of Wait/Gibson because the validity of 

the datapoint obtained using the FDTD model at 50 kHz is questionable. This is an effect 

seen at very low frequencies and will be explained in the next section. Unfortunately, 

simulations involving transmitter depths more than a few meters deep require very low 

frequencies, so this FDTD tool in its current form is not able to simulate these scenarios. 

 

Table 4: Predictions of SNR and capacity 

Rx Height 

[m] 

Tx Depth 

[m] 

Optimal Center 

Frequency 

[kHz] 

Induced 

Voltage 

[dBV] 

SNR 

[dB] 

Capacity 

[kbps] 

0.5 0.5 1000 -43.0 85.6 1421.8 

1 1 300 -72.2 61.6 307.1 

1 2 100 -92.1 46.5 77.3 

1 3 80 -106.2 33.4 44.6 

1 3 50 [1] -103.7 37.9 31.6 

Note [1]: This datapoint is from the results of Wait/Gibson 
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The MI link has been shown to have the potential to have a relatively high throughput 

when compared to traditional underwater acoustic communication systems which 

obviously do not have the ability to cross the air-water interface. Even with the 

transmitter located at a depth of 3 m, with the receiver at a height of 1 m, operating at an 

optimal center frequency of 80 kHz, a SNR near 33 dB may be possible resulting in a 

channel capacity near 44 kbps. The TARF system described by researchers at MIT could 

only support data-rates from 100 to 400 bps with average SNR values from about 10 to 

25 dB while transmitting at 75 W at 150 Hz from a depth of 0.9 to 3.6 m using various 

forms of modulation including BPSK, QPSK, and 16-QAM. Further, the TARF system 

shows a decrease in SNR with depth from 25 dB at 0.9 m to 14 dB at 3.6 m. The 

performance of TARF is comparable to traditional underwater acoustic systems (Tonolini 

and Adib, 2018). The simulation results show MI has great potential as a means for 

crossing the air-water interface while maintaining relatively high throughput. 

 

5.1.4 Peculiarities of the FDTD Simulator 

There are several important phenomena which have the potential to dramatically affect 

the FDTD simulation results, and these should be noted. First, the test signal must be 

allowed sufficient time to reach a steady state before the simulation can be determined to 

be finished and valid. For example, a higher frequency such as 2 MHz may need six 

periods of oscillation to achieve a steady state whereas a lower frequency of say 200 kHz 

may only need three. In practice, some of the FDTD simulations used to obtain a single 

data point had to be run more than once with increasing run-times after the user post-

processed the results and made the determination that a steady state was not achieved. 

 

Next, the FDTD results are sensitive to the proximity of the absorbing boundary 

conditions and this phenomenon was also described by Abrahamsson, in which he states 

that if air is included in the computational domain, considering the relatively long 

wavelengths, the air layer must be sufficiently large (Abrahamsson, 2011). The result will 

show a value for the induced voltage that can be several dBs too high if the domain is too 

small. Simulation ran at lower frequencies require larger computational domains due to 

the increased wavelengths. 
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The FDTD runtime increases as the frequency decreases because the timestep is based on 

the Courant stability criterion thus is fixed at a very small value on the order of 70 ps. 

Since the FDTD simulator should be run for two to six periods of oscillation, this results 

in a very high number of time steps. For the case where the frequency is set to 50 kHz 

and the number of periods of oscillation are set to 1.5, the number of timesteps is 

423,971. Using a computer with an adequately air-cooled AMD Ryzen 7 - 2700X CPU 

with 8 cores and 16 threads, 32 GB of RAM, a NVIDIA GeForce RTX 2060 graphics 

card, and a 500 Watt power supply, this simulation takes around four hours. 

 

Probably the most significant bug discovered during the testing of the FDTD simulator, is 

the behaviour when the number of time steps is very large (over ~425,000). There seems 

to be an accumulation of energy in the PML which after a sufficient number of iterations 

begins to seep into the computational domain effecting the simulation results. The fields 

in the region of interest begin to increase and do not resemble a sinusoidal form. This is 

why the FDTD simulator was not run at frequencies below 50 kHz. This appears to be the 

lower limit of usability of the simulator at this time (V10.0.1). It is not obvious if this 

result is due to fields accumulating in the PML or a numerical artifact of the FDTD 

scheme used to model damped waves as discussed next. It is thought that this result does 

not accurately represent the physics of the problem as low frequency signals have been 

shown to be effective forms of MI communication across the air-water interface (for 

example, in 2018, Chai et al demonstrated error-free communication over 35 m in the 

frequency range of tens of Hz). 

 

Possibly related to the previous point, this thesis would not be complete without at least 

mentioning the concept of diffusion when discussing low-frequency electromagnetic 

fields in conductive media. The simulations indicate that this phenomenon does occur. 

This topic is interesting and deserves discussion. As discussed in the separate works of 

Moore and Blair (1961), Tyler et al (1998), Gibson (2003), and Loseth et al (2006) the 

equations describing electromagnetic waves in conductive media appear non-wavelike 
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and exhibit a diffusive behaviour. Mathematically, this can be seen by considering the 

damped wave equation: 

 

 
∇2𝜓⃑ = 𝜇𝜎

𝜕𝜓⃑ 

𝜕𝑡
+ 𝜇𝜀

𝜕2𝜓⃑ 

𝜕𝑡2
 5.1 

   

When the medium has no conductivity then 𝜎 = 0 S/m and the damped wave equation 

becomes the familiar undamped wave equation ∇2𝜓⃑ = 𝜇𝜀
𝜕2𝜓⃑⃑⃑ 

𝜕𝑡2 . However, if the conditions 

are such that the first term on the right-hand side dominates the second, we have the well 

known homogeneous diffusion equation ∇2𝜓⃑ = 𝜇𝜎
𝜕𝜓⃑⃑⃑ 

𝜕𝑡
. This becomes apparent for low-

frequency signals in conductive materials (Loseth et al, 2006). The stability of the FDTD 

algorithm, which depends on the choice of the timestep Δ𝑡 and is related to the grid 

discretization, is known for EM fields which obey Maxwell’s equations, but perhaps this 

stability criteria differs when the governing equations become more diffusion-like. 

Walter A. Strauss discusses numerical evaluation of the diffusion equation (Strauss, 

2008). Strauss speaks on the accumulation of error due to the incorrect mesh resolution in 

time and space; although, the stability criterion he presents appears to be satisfied using 

Courant. This effect of the FDTD results at low frequencies needs to be addressed before 

the FDTD simulator can be used reliably to study the MI-link at greater depths which 

require lower and lower frequencies. 

 

5.2 Closing Remarks 

In this work, the accuracy of a custom FDTD simulator was demonstrated, and the 

feasibility of using MI to cross the air-water boundary was confirmed. The FDTD 

simulations presented here indicate magnetic induction has great potential in applications 

involving the transmission of data across an air-water interface. The simulations indicate 

a MI-based communication system has the potential to provide a relatively high data-rate 

for near-surface communication across the air-water interface: over 30 kbps for a MI 

transmitter located up to 3 meters deep, and for the case where the transmitter and 

receiver are close to the air-water boundary, a throughput over 1 Mbps may be possible. 
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With a driving current of only 1 A, radiuses of just 10 cm, and only 5 turns, both the 

transmitting and receiving coils are low power and compact, especially compared with 

traditional RF-based systems which are known to require high power and large antenna 

geometries. The transmission range may be extended by use of larger coil geometries, 

higher power, or with an underwater MI waveguide consisting of a series of relay coils 

(Akyildiz, et al, 2015). This is an active area of research by our research team at UW-

Stream Lab. 

  



111 

 

 

Bibliography 

 

Abrahamsson, L. Modelling of Air-seawater Interaction in Marine Electromagnetics. 

Swedish Research Agency: Division of Defence and Security, Systems, and Technology. 

Stockholm. (2011). 

 

Akyildiz, I. Wang, P. Sun, Z. Realizing Underwater Communication through Magnetic 

Induction. Underwater Wireless Communications and Networks: Theory and 

Application. IEEE Communications Magazine. (November 2015). 

 

Balanis, C. A. Antenna Theory: Analysis and Design. (2016). Fourth Edition. Wiley. 

Hoboken, New Jersey. 

 

Blake, R. Electronic Communication Systems. (2002). Second Edition. Delmar Cengage 

Learning. Clifton Park, New York. 

 

Butler, L. Underwater Radio Communication. Amateur Radio. (April 1987). 

 

Chai, B. Wang, J. Zhang, X. A Test of Magnetic Induction from Air to Sea. 2018 

OCEANS - MTS/IEEE Kobe Techno-Oceans. (May 2018). 

 

Chew, W. C. Waves and Fields in Inhomogeneous Media. (1995). IEEE Press. New 

York, New York. 

 

Domingo, M. C.  Magnetic Induction for Underwater Wireless Communication 

Networks. IEEE Transactions on Antennas and Propagation. Vol 60. No 6. (June 2012). 

 

Gibson, D. Channel Characterization and System Design for Sub-Surface 

Communication. (2003). Published by David Gibson in Lulu Enterprises Inc.. Leeds, 

Great Britain. 



112 

 

 

Grainger, J. J. Stevenson Jr, W. D. Power System Analysis. (1998). McGraw-Hill 

Electrical and Computer Engineering Series. McGraw-Hill Inc.. USA. 

 

Gulbahar, B. Akan, O. A Communication Theoretical Modeling and Analysis of 

Underwater Magneto-Inductive Wireless Channels. IEEE Transactions on Wireless 

Communications. Vol 11. No 9. (September 2012). 

 

Guo, H. Sun, Z.  Channel Modeling of MI Underwater Communication using Tri-

directional Coil Antenna. 2015 IEEE Global Communications Conference. (December 

1015). 

 

Inan, U. S. Inan, A. S. Electromagnetic Waves. (2000). Prentice Hall. Upper Saddle 

River, New Jersey.  

 

Loseth, L. Pedersen, H. Ursin, B. Amundsen, L. Ellingsrud, S. Low-frequency 

Electromagnetic Fields in Applied Geophysics: Waves or Diffusion? Society of 

Exploration Geophysicists. Geophysics. Vol 71. No 4. Pages W29 – W40. (July 2006). 

 

Maxwell, J. C. A Treatise on Electricity and Magnetism. (1954 reprint from original from 

1873). Dover Publications INC. New York, New York. 

 

Rumpf, R. C. Online course called EE5303 – Electromagnetic Analysis Using Finite-

Difference Time-Domain. University of Texas El Paso. Retrieved in Fall 2019. 

https://empossible.net/academics/emp5304/. 

 

Sacks, Z. S. Kingsland, D. M. Lee, R. Lee, J. A Perfectly Matched Anisotropic Absorber 

for Use as an Absorbing Boundary Condition. IEEE Transactions on Antennas and 

Propagation. Vol 43. No 12. (December 1995). 

 

https://ieeexplore-ieee-org.ezproxy.library.dal.ca/xpl/conhome/7414714/proceeding
https://empossible.net/academics/emp5304/


113 

 

Sadiku, M. N. O. Elements of Electromagnetics. (2010). Fifth Edition. Oxford University 

Press. New York, New York. 

 

Sadiku, M. N. O. Numerical Techniques in Electromagnetics with MATLAB. (2015). 

Third Edition. CRC Press. Boca Raton, Florida. 

 

Strauss, W. Partial Differential Equations. (2008). Second Edition. John Wiley & Sons 

Inc.. Hoboken, New Jersey. 

 

Taflove, A. Hagness, S. Computational Electrodynamics: The Finite-Difference Time-

Domain Method. (2005). Third Edition. Artech House. Boston, Massachusetts. 

 

Tyler, R. H. Boyer, T. P. Minami, T. Zweng, M. M. Reagan, J. R. Electrical Conductivity 

of the Global Ocean. Earth, Planets, and Space. Springer Open. (2017). 

 

Uribe, C. Grote, W. Radio Communication Model for Underwater WSN. 2009 3rd 

International Conference on New Technologies, Mobility and Security. (December 

2009). 

 

Wang, Y. Dobbin, A. Bousquet, J.F. A Compact Low-power Underwater Magneto-

inductive Modem. WUWNET. (October 2016). 

 

Wang, H. Zheng, K. Yang, K. Ma, Y. Electromagnetic Field in Air Produced by a  

Horizontal Magnetic Dipole Immersed in Sea: Theoretical Analysis and Experimental 

Results. IEEE Transactions on Antennas and Propagation. Vol 62. No 9. (September 

2014). 

 

Yee, K. S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s 

Equations in Isotropic Media. IEEE Transactions on Antennas and Propagation. Vol 14. 

Pages 302 to 307. (1966). 

 



114 

 

Zhang, S. Tu, X. Zheng, K. Yang, M. Radiation Fields Across Sea-air Interface from 

Underwater Magnetic Dipole Source. Electronic Information and Communication 

Technology 2019 IEEE 2nd International Conference. pages 728-731. (2019). 

 

 


