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Abstract

This research provides a finite element and reliability study of the in-plane behaviour of
masonry infilled reinforced concrete frames. In the first phase of the research, a reliability
analysis was conducted to advance the understanding of the effect of the randomness and
uncertainty of masonry materials on the lateral resistance of masonry infill walls from a
probabilistic approach. A computationally efficient and robust finite element model was
developed in OpenSees and validated using the experimental results obtained in the same
research group. Coupled with the Monte-Carlo simulation techniques, the model was used
to estimate the failure probability of infilled frames with a spatially varying random field
of masonry compressive strength. After 1000 simulations, the resulted failure probability
distribution of the infilled frames led to a new recommendation on the masonry resistance
reduction factor. Despite the efficiency of the OpenSees model, running simulations of the
random fields on the infilled frames on an advanced work station, with 40 Central Processing
Units (CPUs) and 128 GBs of memory, took three months to complete. It became evident
that a better performing computing technology was needed for any meaningful reliability
analysis of this magnitude. This motivated the second phase of the research.

In the second phase, an open-source and modular finite element library for estimating
the behaviour of infilled frames was developed. The main feature of the library was to
be able to significantly accelerate the numerical simulations for structural applications in
general and with a focus on masonry infilled RC frames. The specific algorithms, encoded
in C++, were developed for the library to be able to run on either central processing units
or graphical processing units (GPUs). The library adopted an advanced smeared crack
modeling technique, the Distressed Stress Field Method (DSFM), for modelling of the
masonry infilled RC frames. A comparison with the experimental results showed that the
DSFM was successfully incorporated in the analysis of masonry infilled RC frames. The
performance of the developed library in accelerating the model run speed was demonstrated
through comparisons of run speed using a CPU and several commercially available GPUs.
It was shown that GPU devices with adequate memory space can lead to significant model
run speedup compared with a CPU. The degree of speed-up was highly dependent on the
number of elements used in the finite element model and the number of processing core
available in the parallel architecture. The greater the number of elements used in the model,
the greater rate of acceleration will be achieved.
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Chapter 1

Introduction

1.1 General

Masonry infilled frames commonly refer to frame structures, made of either steel or Re-

inforced Concrete (RC), with masonry walls built inside. Either as partitions to separate

spaces or cladding to complete a building envelope, masonry infills are widely used in

modern construction including in seismic regions. Previous research has demonstrated that

the masonry infills can significantly increase the stiffness and strength of the infilled system.

Even after significant cracking, the infills were shown to be beneficial to the ductility and

energy dissipation of the infilled system when subjected to dynamic loading (Mehrabi et al.,

1996; Mosalam et al., 1997b; Steeves, 2017). The contribution of the infill to the frame

system is dependent on the interaction between the infill and its bounding frame. However,

to quantify the exact extent of the infill-to-frame interaction for various combinations of

infill and frame materials and geometries has remained a challenge. As a result, the research

findings obtained thus far have not been effectively translated into industry practice when

it comes to design of masonry infills in the North America. Despite a considerable amount

of physical evidence of the benefit of masonry infills, the common industry practice is still

to treat infills as non-structural elements and design frames for gravity and lateral loading.

1
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This seeming simplification by ignoring the infill presence does not lead to a safe or eco-

nomical design for the frame. On the contrary, when not designed and detailed properly,

the presence of infill has been shown to cause a catastrophic effect on the frame during an

earthquake event.

1.2 State of research of masonry infilled frames

There is a considerable amount of research conducted on the in-plane behaviour of concrete

masonry infilled steel or RC frames in the past six decades. An in-depth literature review

of the in-plane behaviour of masonry infilled frames can be found in studies conducted by

Moghaddam and Dowling (1987), Asteris et al. (2013), Chen (2016), and Nasiri (2019).

In general, previous studies have shown that the behaviour of masonry infilled frames is

complex and influenced by many factors such as geometric and material properties of both

the infill and its bounding frame, boundary conditions, and loading situations to just name a

few. Much effort has been dedicated to developing analytical models to accurately estimate

the infill effect on the stiffness and strength of the infilled frames. One such model is the

well-known “diagonal strut” method. The “diagonal strut” method considers the infill effect

by replacing the entire infill with an equivalent strut connecting two loaded compressive

corners. Once the width of the strut is known, a simple frame analysis can be performed to

obtain the system stiffness and the strength of the infill can also be related to the width of

the strut.

Since initial inception of the “diagonal strut” concept in 1960s by (Polyakov, 1960) and

(Holmes, 1961), much research has focused on the development of strut width formulations
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to consider effects of various potential parameters of the system as mentioned above. To

that end, several formulations have been proposed and reported in the literature (Stafford-

Smith and Carter, 1969; Mainstone, 1971; Paulay and Priestley, 1992; Flanagan and Bennett,

2001; Moretti et al., 2014). The diagonal strut method is also adopted for design of masonry

infills in the Canadian masonry standard (CSA S304, 2014) and in the American masonry

standard (TMS402, 2016).However, the proposed equations including those in the current

design standards were calibrated against test results of one or two studies with specimens

of specific material and geometric properties and often the variation in these properties was

limited. Hence, the evaluation of these equations against the existing test results has shown

disparity, in many cases, significant, between the analytical values and experimental results.

None of the proposed equations was found to be universally applicable for masonry infilled

frames of varying materials and geometries. Further, the proposed equations for calculating

diagonal strut width are only intended for simple infilled frame situations. Geometric

irregularities (for example, infill openings), frame-to-infill interfacial gaps, and/or presence

of vertical loading are not covered. However, these conditions are not uncommon in practical

application of the infills. These reasons are believed to attribute to the disconnect between

the research findings and the industry practice when it comes to infill design.

The CSA S304 standard committee recommends that more research is in need to better

quantify the interaction as affected by material and geometric properties of both infill and

frame and potential failure modes under different loading conditions. While the physical

testing of full-scale masonry infills under realistic loading conditions is the most reliable

way to gather more data, the feasibility of conducting tests to cover all potential combination
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of design parameters is low. With the advancement of computing technology in the past 20

years, using finite element modeling technique encoded in computers (for example, ANSYS,

ABAQUS) has become increasingly accepted as an effective tool to gather reliable data.

Thus, one common research approach undertaken by many researchers more recently is

experimental testing of physical specimens in tandem with a numerical study using finite

element modeling techniques. The experimental testing augments the existing data base of

infilled frames and more importantly provides test data for validation of the finite element

model. Once validated, the model is used in a comprehensive parametric study where

multiple combination of parameters can be studied and results are used to further supplement

the physical findings. With the computer technology to aid in structural behaviour simulation

becoming increasingly popular, some challenges however have been reported in various

studies (Lotfi and Shing, 1994; Stavridis and Shing, 2010; Minaie et al., 2010; Chen, 2016;

Nasiri, 2019). One is that the accuracy of the model is a tradeoff of computational cost,

which indicates as the complexity and sophistication of model increases, the accuracy of

the model may decrease in order to achieve computational efficiency. The second is that the

source codes of many commercial finite element packages, such as ANSYS and ABAQUS,

are not in public domain and algorithms are performed through so-called “black-box”

operations, which makes the modification of algorithms to achieve better simulation results

difficult.
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1.3 Motivation and methodology of the research

The existing research showed that the random and uncertain nature of masonry materials

is one of the key factors influencing the frame-to-infill interaction. The randomness and

uncertainty of masonry materials are characterized by probability distributions of masonry

compressive strength and its modulus of elasticity. This is partly a result of the fact that

masonry material is essentially a masonry assemblage consisting of different materials,

i.e., masonry units and mortar, and partly a result of the nature of masonry construction

which largely relies on workmanship. In previous studies, this randomness and uncertainty

has been studied in a mostly deterministic approach where the infill stiffness and strength

were determined based on a set of specific material properties of masonry. Even when the

masonry material properties were the variables, both numbers and degrees of variations

were limited. Few studies have addressed the strength of masonry infills as affected by the

randomness and uncertainty of masonry material properties from a probabilistic approach.

A number of studies using a probabilistic approach in the study of masonry infilled

frames included fragility analysis of masonry infilled frames due to seismic actions (Hwang

and Huo, 1994; Mosalam et al., 1997a; Dymiotis et al., 2001; Celarec et al., 2012; Jeon

et al., 2015). These studies were based on a few finite element simulations considering

uncertainties in the geometry, the material model, and/or the seismic loads. However, the

main limitations of these studies were that first, the number of simulations used was low,

which may lead to inaccurate results due to sampling errors. Secondly, the finite element

models used in these studies were based on either the equivalent diagonal strut model

(Mosalam et al., 1997a; Celarec et al., 2012) or the three-strut model (Jeon et al., 2015),
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neither of which can accurately capture infill cracking formation and development, and the

actual effect of infill on the frame. The uncertainty study of the variables was then restricted

by the simplified model of the infills.

In the first phase of this research, a random field of masonry material property was

applied to the entire area of the infill as opposed to applying on a simplified strut. The

theoretical backing of this implementation is the Random Finite Element Method (RFEM).

The RFEM, originally developed by (Fenton and Griffiths, 1993), employs continuous

variable random field models to study the effect of spatially varying properties. Coupling

Monte-Carlo simulations with numerical analysis, RFEM has been used to estimate the

failure probability of a structural component. The computerized finite element model made

the use of RFEM computationally viable. This research adopted the open source software

package, OpenSEES, for the development of the finite element model for the masonry

infilled RC frames. 27,000 finite element random field realizations were run in the course

of three months using 40 processors with an average runtime of 45.43 minutes for each

realization. The computational cost associated with any meaningful reliability analysis

becomes an important consideration to motivate the second phase of the research.

The second phase of this research was to develop an open-source and modular finite

element library with the goal that this finite element method can significantly accelerate the

numerical simulations for infilled frames. The main feature of the library was its ability to

parallelize the finite element process on parallel architectures such as Graphical Processing

Unit (GPU) devices. The modular nature of the library makes it a finite element simulation

tool for general structural applications, not limited to infilled frames.
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Concurrent with the finite element work, an experimental program was conducted on

concrete masonry infilled RC frames subjected to quasi-dynamic cyclic loading. The

results of the specimens were used to verify both the OpenSEES model and the model

self-developed at the second phase of the research. In this research, quasi-dynamic loading

refers to a type of loading where inertial effects are negligible.

1.4 Objectives

As described previously, this research had two main phases. One was the reliability-based

analysis pairing the finite element model using OpenSEES with the Random Finite Element

Method (RFEM) to study the effect of spatially varying masonry material properties on the

strength of masonry infilled RC frames. The second was the development of a nonlinear

finite element open source library for the analysis of the infilled RC frames under lateral

loading. The detailed objectives of this research are outlined as follows:

• Augment the experimental study of the in-plane behaviour of masonry infilled RC

frames under quasi-dynamic cyclic loading to the existing database.

• Provide reliability based design recommendations for the design of infill wall.

• Recommend a new resistance reduction factor for the design of of infilled walls.

• Develop an open-source and modular library for accelerating finite element processes

using parallel architectures.
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1.5 Document outline

In this document, Chapter 1 provides a brief introduction of the subject and objectives of the

research. Chapter 2 presents a detailed review of the literature on the numerical modeling,

reliability assessment and finite element package development. Chapter 3 to 5 consists of

three research papers. Chapter 3 illustrates the RFEM study of infilled frame using the

OpenSEES finite element model. Chapter 4 describes the development of a parallelized

finite element library. Chapter 5 presents further development of the parallelized finite

element library in estimating the in-plane behaviour of infilled frames. Finally, chapter 6

provides a summary of the research findings, conclusions and recommendations for future

work.



Chapter 2

Literature review

2.1 Introduction

This chapter provides background information and an overview of the existing literatures

on subjects related to this research. The following sections focus on the specific subjects of

reliability analysis and finite element modeling techniques.

2.2 Design approach

The first document dealing with masonry design was introduced in 1954 by the Ameri-

can Standards Association (ASA A41.1, 1954) which formed the basis for conventional

empirical design of masonry. With increasing knowledge of masonry behaviour, enabled

through more sophisticated testing in the following many decades, masonry evolved from

an empirically designed approach which was largely based on “rules of thumb”, to “en-

gineered masonry”, where forces, moments, and stresses were considered in elementary

design rules. During the 1980s and 1990s, the “engineered masonry” approach made use of

the Working Stress Design (WSD) approach, also known as Allowable Stress Design (ASD)

in both Canada and the US. In the ASD approach, the resistance of masonry structures was

calculated based on allowable stress limits. Although simple to use, the drawbacks of ASD

9



10

include the fact that all uncertainties were considered using a single factor of safety, and

the variabilities in load and resistance had inconsistent effect on the design. In 2004, the

CSA S304.1 (2004a) was published with significant technical changes. Limit States Design

(LSD) was adopted and the concept of load and resistance factor was introduced. In 2005,

the American Masonry Design Standard (MSJC, 2005) also adopted the LSD. In the case

of LSD, the load and resistance factors are calibrated for different materials and loading

conditions to achieve a specified safety margin.

2.2.1 Reliability assessment

A series of studies (Turkstra and Ojinaga, 1980; Turkstra et al., 1982, 1983; Hart et al., 1983;

Englekirk and Hart, 1984; Turkstra, 1989; Hart and Zorapapel, 1991) led to development

of the First Order Second Moment (FOSM) method which was widely used as a theoretical

basis for shifting from the ASD to the LSD approach. While FOSM analyses were performed

on masonry structures under the combination of dead load and live load, the effect of the

lateral loads, such as wind and earthquake, have not yet been considered in the reliability

assessment of masonry structures in CSA S304-14 (2014).

FOSM is a simple tool for the determination of the reliability index β for a specific

safety margin of a structural element. The safety margin (M) in structural applications is

defined as follows (assuming normally distributed load and resistance):

M = R − L (2.1)

where R is the structural resistance and L is the applied load. Failure occurs when M < 0,
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i.e. the load exceeds the resistance.

The reliability index, β, corresponding to the safety margin given by the Equation 2.1

may be defined, e.g. Cornell (1969), as follows (assuming that the load and resistance are

independent):

β =
µR − µL√
σ2R + σ

2
L

(2.2)

where µR and µL are the mean resistance and load, respectively, and σR and σL are the

resistance and the load standard deviations. From Equation 2.2 the failure probability can

be directly determined as:

P f = 1 − Φ (β) = Φ (−β) (2.3)

assuming that R and L are both normally distributed andΦ is the standard normal (Gaussian)

cumulative distribution function.

An alternative safety (Fenton and Griffiths, 2008) margin which is used for lognormally

distributed R and L is as follows:

M = ln

(
R
L

)
(2.4)

and the corresponding reliability will be expressed as:

β =
µln R − µln L√
σ2
ln R + σ

2
ln L

(2.5)
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Hasofer and Lind (1974) developed an improved approach, referred to as the First Order

Reliability Method (FORM). The FORM defines the reliability index using the shortest

distance from the mean point (µm) to the failure surface (M = 0) in the direction of the

gradient at the mean point. While accurate for linear failure functions, this solution has

limitations for non-linear failure functions having a large number of random variables, such

as in the case of masonry infilled frames where failure surface is nonlinear with multiple

local minimums with respect to the mean point.

The Random Finite Element Method (RFEM), which is not a first order approximation,

was selected as an alternative to the FORM in the reliability analysis. RFEM is based on

Monte-Carlo simulations of computerized numerical analysis based on one or more input

variables with determined distribution of each random field. RFEM then calculates results

over and over, each time using a different set of random values to produce distributions of

possible outcomes. These probability distributions are used to estimate the uncertainty in

variables of a reliability analysis.

2.2.2 Resistance factor

The Canadian masonry design standard S304.1-14 (2014) specifies a resistance factor, ϕm,

of 0.60, for masonry. This was increased from 0.55 specified in S304.1-94, the 1994 edition

of the standard. This increase was based on a study conducted by Drysdale in 1992 which

was published by Laird et al. (2005). This change was more or less influenced by the

resistance factor increase for cast-in-place concrete from 0.6 to 0.65 in 2004 (CSA A23.3,

2004b). The new resistance factor of 0.65 for the cast-in-place concrete corresponds to a
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reliability index in the range of 3.9 to 4.0. This range of target reliability index is suggested

for brittle materials with a normal importance factor by the Canadian standard S408 (CSA

S408, 2011) and can then be considered as a target reliability for masonry. While concrete

resistance factor change was based on considerable research conducted for cast-in-place

concrete, the change of resistance factor from 0.55 to 0.6 for masonry lacked sufficient

support of technical studies conducted on masonry structures.

2.3 Numerical modelling

As numerical modeling often implemented using commercial software such as ANSYS

and ABAQUS are increasingly used in the studies of masonry infilled frames, two main

categories of techniques, i.e., macro-modelling and micro-modelling, are summarized in

the following sections.

2.3.1 Macro-modelling

In a macro-modelling technique, the infill is considered to be a continuum with a defined

stress-strain relationship or in a more simplified version, as a discrete member represented

by a line element. The diagonal strut model is one such example of simplified macro

modelling technique. In this case, the effect of the entire infill is supposed to be simulated

in theory by a truss element. Several analytical equations have been proposed by various

researchers for determination of the strut width or strut configuration of the diagonal strut

model. The diagonal strut model, albeit with different strut width formulations, has been

adopted in the Canadian and American masonry design standards for design of masonry
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infills.

The Canadian design standard S304-14 (2014) adopts the diagonal strut model developed

by (Stafford-Smith, 1966), who suggests that the contact length between the infill wall and

frame column, αh, and between the infill wall and the frame beam, αl , can be calculated as

follows and as shown in Figure 2.1:

αh =
π

2
4

√
4 E f Ic h

Em te sin (2θs)
(2.6)

αl = π
4

√
4 E f Ib l

Em te sin (2θs)
(2.7)

where:

• E f is stiffness of the bounding frame.

• Em is modulus of elasticity of the masonry material.

• h, l are height and length of the infill wall, respectively.

• te is the effective thickness of the masonry.

• Ic, Ib are the moments of inertia of the column and the beam, respectively.

• θs is the angle between the diagonal strut and the horizontal axis.

Then the width of the strut, ws, is determined assuming a triangular stress distribution

along the strut width as follows:

ws =

√
α2h + α

2
l (2.8)
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To have a uniform stress distribution, σm, the effective width of the diagonal strut, we f f ,

is considered to be half of the diagonal strut width and it should not exceed one quarter of

the diagonal length.

Figure 2.1. Schematic view of the diagonal strut

Stiffness consideration

CSA S304-14 (2014) calculates the initial stiffness of the diagonal strut as:

Ein f ill =
ϕst we f f te Em

ld
(2.9)

where ld is the length of the strut and ϕst is a stiffness reduction factor taken as 0.5. This

factor was added to the recent edition of the Canadian standard S304-14 based on the

research conducted by Chen (2016).
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Strength consideration

Corner crushing in the diagonal strut is identified as the most common failure mode for a

masonry infilled RC frame of typical material and geometric properties (Hu, 2015; Chen,

2016; Steeves, 2017; Nasiri, 2019). The compressive strength of the diagonal strut is defined

using the equivalent masonry stress block calculated as 0.85 χ f ′m, uniformly distributed

over the compression zone of the cross-section. In this relation f ′m is the compressive

strength of the masonry prisms and the χ factor accounts for the effect of direction of the

compressive stress in a masonry member relative to the direction used in the masonry prism

compression test. The unfactored resistance of the diagonal strut is calculated as:

Pr =

(
l

√
h2 + l2

)
χ

(
0.85 f ′m

)
we f f tc (2.10)

where tc is the depth of the compression zone determined as:

tc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 t f − r, r ≤ t f

t f , r > t f & r ≤ t − t f

t − r, r > t − t f

(2.11)

where r is the distance from the edge of the block within the tension flange to the compressive

zone in the cross-section, and t f is the thickness of the face-shell. Also, the Canadian

standard (CSA S304-14, 2014) accounts for the slenderness effect of diagonal strut using

moment magnifier method.
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2.3.2 Micro-modelling

The micro-modelling technique models the individual blocks and mortar with their respec-

tively defined constitutive relationships. The drawback of this type of modelling is its high

computational cost and its accuracy is heavily dependent on the accuracy of material and

behaviour model of each component (block, mortar). Thus, a so-called “simplified micro-

modelling” technique has been used more commonly (Stavridis and Shing, 2010; Chen and

Liu, 2016; Nasiri and Liu, 2017) than the more detailed micro-modelling technique.

In the simplified version, the mortar joints are not physically modelled. Instead, the

mortar effect between blocks is represented using contact elements which can include the

nonlinear behaviour and failure models of the joints. These models were shown to be able

to capture crack initiation and propagation patterns, detailed stress distribution, and failure

mechanisms of infilled frames to some degree of success. However, there is commonly a

lack of information provided on the input material parameters of these models from various

studies. Coupled with “black-box” algorithms commercial software packages, it has been

difficult for others to reproduce the model and associated results. In addition, the high

computational cost and requirement of comprehensive expertise in finite element modelling

make the use of these models in industry design practice a challenge.

2.3.3 Modelling technique adopted for this study

The main problem with micro-modeling technique is the significant computational demand

especially in a reliability analysis with potentially thousands of model runs. In this study, a

macro-modelling technique, in which the infill is considered as a continuum with a defined
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stress-strain relationship was adopted. This type of analysis only requires a 2D model and

could be adequate if the interest of the study is to determine the global response of the

system. The smeared cracking model (Lotfi and Shing, 1991; Rahimi and Liu, 2017) was

used where masonry is modeled with material laws that consider the mechanical properties

and behavior of mortar joints and concrete blocks in a “smeared” fashion. The cracking

in the infill wall was considered by modifying the masonry material constitutive model

progressively to maintain the equilibrium and compatibility at the cracked location. The

modelling technique is more computational efficient than the micro-modeling technique

while being sufficiently accurate in estimating the lateral load vs. displacement behaviour,

cracking patterns and the failure modes of infilled frames.

2.4 Finite element library

One objective of this study was to develop a finite element method into an open-source

modular finite element library for simulation of masonry infilled RC frames in particular

but also capable of structural applications in general. Its main feature is to accelerate

the finite element simulations with the use of Graphical Processing Unit (GPU) devices.

Traditionally, the finite element models developed in the existing studies were usually

encoded on commercial workstations running on Central Processing Unit (CPU) device.

Most personally computers are examples of CPU devices. While the CPU architecture

is composed of a number of cores with large cache memory and high clock speed which

can handle a few software threads at a time, the advantage of GPU architecture is that

there are thousands of cores that can handle thousands of threads simultaneously. This
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feature of GPUs is explored to accelerate the finite element model run speed. At the

moment, there are more than a thousand open-source finite element repositories available

on GitHub (Rahimi et al., 2019). However, only a few of these repositories are actually

libraries that provide a clear instruction documentation. Examples of libraries which include

documentations are DEAL.ii (Alzetta et al., 2018), MFEM (Kolev and Dobrev, 2010), and

FEEL++ (Prud’Homme et al., 2012). However, to the author’s knowledge there are no

libraries that optimize the runtime of advanced finite element analyses on GPU devices.

The library developed in this study is available on GitHub (Wanstrath et al., 2008), a

public domain repository, and the library’s modular features allow for easy adoption and

implementation by others for their specific modeling needs.

2.4.1 Finite element process

One feature of this library was to parallelize the computationally expensive tasks in a finite

element process, such as stiffness matrix calculation, assembly and solving the system of

equations, to achieve acceleration. In a conventional serial approach to assembling the

stiffness matrix, a memory address is allocated to each non-zero entry in the global stiffness

matrix and values of entries sharing the same degree of freedom are accumulated at the

same memory address. However, this approach, if attempted to be parallelized, will cause a

so-called “race condition”, where two parallel processes attempt to write data to a specific

memory address at the same time. This is an undesirable situation as both processes are

“racing” to access/change the data. A solution, proposed by Smith et al. (2013) was to stack

entries in a shared memory space between processors. However, this solution cannot be
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realized using GPUs because the shared memory is not accessible by all the processing cores

available on a GPU device. Some other approaches were suggested for assembling stiffness

matrices using GPUs, such as graph colouring (Cecka et al., 2011), graph partitioning

(Klöckner et al., 2009) and reduction list (Komatitsch et al., 2009). The main disadvantage

of these approaches is that each requires some pre-calculations to determine a list of

overlapping elements (sharing the same nodes at the boundary) in the mesh diagram, which

is time-consuming and difficult to parallelize. To minimize the preprocessing required

for assembly, further studies suggested an approach using “atomic” operations (Fu et al.,

2014; Cui et al., 2018). In this approach, a preprocessing is first performed to identify

the degrees of freedom required in the global stiffness matrix. Secondly, a sparse matrix,

with a compressed sparse row format, is created. Then each entry of the stiffness matrix

is calculated and placed in the appropriate position in the global stiffness matrix. To avoid

the race condition,“atomic” operations are used to calculate the matrix entries followed by

a search procedure to find the relevant memory addresses. Atomic operations typically put

a lock on the shared data to ensure only one process can access/change the data at the same

time. While this approach minimizes the preprocessing, the serial nature of the “atomic”

operation and the following search procedure still increases the overall computational time

of the assembly process. Martínez-Frutos and Herrero-Pérez (2015) proposed the use of

matrix-free or assembly-free methods which attempt to solve the linear system of equations

without forming the global stiffness matrix. This approach maintains the memory at

the expense of increasing the load on the processor. While more suited for modeling the

overall behaviour of structures, it provides little computing advantage in simulating detailed,



21

complex, and localized behaviour.

In this study, parallel algorithms were developed to simultaneously run a single instruc-

tion on all available processing cores. This type of parallelization accelerates the stiffness

matrix calculation process due to the fact that the instructions for calculating the local stiff-

ness matrix remains the same for each integration point. The stiffness matrices then would

be stacked on top of each other to avoid race condition. For the assembly step, acceleration

is achieved by vectorization and parallelization of the process through the sparse-matrix

conversion from a coordinate format to a compressed format.

Solving the global stiffness matrix can be obtained by either the direct method, involving

inverting the stiffness matrix and multiplying it by the force vector, or the iterative method,

involving iteratively converging on the solution to the linear system of equations. Both

solution methods can be implemented on GPU devices using the sparse matrix format and

these solver techniques have been widely studied in the literature (NVIDIA Corporation,

2018a; Helfenstein and Koko, 2012; Sharma et al., 2013) and thus were adopted in this

study. One additional feature of the algorithm developed here for this process is that the

algorithm has the ability of either choosing between the available direct and iterative solvers

or looping through possible solvers to reach a desirable level of convergence.

2.4.2 General-purpose graphical processing units

Several recent studies have aimed to employ superior hardware devices and/or high-level

software development tools (Martínez-Frutos and Herrero-Pérez, 2015; Wong et al., 2015)
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to accelerate finite element analyses. One example (see, e.g., Martínez-Frutos and Herrero-

Pérez (2015)) was the development of multi-core technologies on Graphical Processing

Unit (GPU) architectures, which accelerates the analyses by employing a large number

of processing units for the simultaneous execution of parallelized instructions. A general

framework called General-Purpose computing on Graphical Processing Units (Harris, 2005;

Owens et al., 2007), for multiple processing cores, has gained considerable interest in the

implementation of parallelized numerical methods. However, all numerical simulations on

GPU devices require copying data back and forth between the Central Processing Unit (CPU)

and the GPU. The overhead of doing so diminishes the computing efficiency gained using

parallelization on the GPU and thus poses an obstacle to developing efficient finite element

algorithms on GPU devices (Smith et al., 2013). Modern GPU architectures, such as Pascal

(NVIDIA Corporation, 2016b) and Volta (NVIDIA Corporation, 2017), provide a solution

to this problem. They offer a new hardware capability for memory transfer between the CPU

and GPU which allows data synchronization between the GPU and CPU memory without

explicit copying between memory locations. The development of Compute Unified Device

Architecture (CUDA) by NVIDIA Corporation (2018b), along with a detailed Application

Program Interface (API) (NVIDIA Corporation, 2018a), made GPU programming much

easier and thus increased its popularity. CUDA is a parallel computing platform that enables

software engineers to use GPUs for general purpose computing. However, one drawback of

using CUDA is that it requires comprehensive and specific programming skills to be able

to efficiently utilize the GPU hardware (Brodtkorb et al., 2013).
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2.4.3 GPU architecture

In the past couple of decades, performance of GPU devices advanced rapidly due to the mar-

ket demand for 3D rendering and game development (Cai et al., 2013). The resulting GPU

devices have massive parallel architectures which can be employed in high-performance

computing. The concepts and terminologies pertaining to GPU architecture are defined as

follows:

• Kernel: an object composed of a scheduler and instructions to be scheduled. The

scheduler assigns the instructions to various threads.

• Thread: the sequence of program instructions that can be managed independently

and run simultaneously by the scheduler (Butenhof, 1997).

• Compute Unified Device Architecture (CUDA): A parallel programming environment

developed by NVIDIA for general computing on GPU devices.

• Streaming Multiprocessor (SM): a part of the GPU device that executes CUDA

instructions. Each SM contains execution units capable of performing math operations

on both integers and floating-point numbers, as well as a scheduler to organize and

assign the instructions to different threads (Wilt, 2013).

• Single Instruction Multiple Data (SIMD): a particular kernel instruction that runs on

all processing units in a streaming multiprocessor which can operate on different data

types, such as integer and floating-point values (Bolz et al., 2003).

• Block: a group of threads with shared memory space which are executed by a single
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multiprocessor.

• Grid: a collection of blocks executing a single instruction.

The GPU architecture utilizes a series of streaming multiprocessors (SMs) to enhance

the data-level parallelism using single instruction multiple data (SIMD) class of parallel

computing. Although SIMD was originally designed for intense graphical processing, e.g.

3D rendering, it has since been implemented in general purpose computing (Harris, 2005;

Owens et al., 2007).

Nvidia devices, combined with the CUDA programming platform, provide a compre-

hensive API for developing GPU accelerated applications using high-level programming

languages such as C, C++, Python and Fortran. The saving in computing time is achieved as

the result of running a single instruction through many CUDA threads simultaneously. The

kernel is responsible for both organizing the CUDA threads and commanding each thread

to run the kernel instruction. As shown in Figure 2.2a, the kernel arranges the available

CUDA threads into blocks and grids. Optimizing the number of blocks and grids is crucial

to the performance gain. If the number of running threads in each block exceeds the number

of multiprocessors multiplied by the number of threads available in each SM, a queue of

thread blocks would be left waiting to be executed on the GPU, which would result in a

relatively poor performance.

The CUDA threads benefit from a type of Dynamic Random-Access Memory (DRAM),

with a high bandwidth interface called Synchronous Graphics Random Access Memory

(SGRAM), as well as from on-chip memory devices. For the purposes of this research, the

memory types of a CUDA enabled device can be categorized into the following groups:
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global, local, shared and atomic. All CUDA threads have read/write access to the global

memory, which is typically the largest portion of memory. Local memory is on-chip

memory which holds the data for each thread. Although local memory is slightly faster than

global memory, its smaller size often limits its functionality. Shared memory is memory

which is accessible to a restricted number of threads, called a block. The size of the shared

memory can be a bottleneck when the kernel includes arrays too large to be stored in the

shared memory. The atomic memory holds the information queued to be used by operations

which must be sequential rather than parallel. Figure 2.2b presents the memory hierarchy

of kernel executions.
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Figure 2.2. GPU architectures’ (a) thread batching, and (b) memory hierarchy

The architecture named Pascal, developed by Nvidia and also called GP100, is one

of the latest GPU architectures for general purpose applications (NVIDIA Corporation,

2016a). Pascal includes High Bandwidth Memory 2 (HBM2) for its DRAM, which allows

a much wider interface (typically means faster access) than the traditional GDDR5 memory
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available in Maxwell and Kepler architectures. In their Pascal architecture, Nvidia added a

feature to their global memory, referred to as unified memory, allowing applications to have

access to the same managed memory allocations by both the CPU and GPU in a workstation.

The unified memory is an important asset in optimizing applications that require frequent

data transfers between CPU and GPU.

The use of SIMD instructions in parallel computing is best suited for GPU accelerated

applications. The main steps in developing a library of optimized and accelerated functions

using SIMD within the CUDA framework consist of (i) memory allocation on the GPU,

(ii) data transfer from the CPU to the GPU, (iii) running the kernel on the GPU, and (iv)

copying the results back to the CPU. Pascal chipsets have been optimized to synchronize

data transfer between the CPU and GPU using the unified memory capability. However,

the kernel execution still needs to be optimized to improve the GPU performance. The

relationship between the number of threads, blocks, grids, and the number of available

multiprocessors must be carefully chosen. To accomplish this, a sensitivity analysis was

performed in this study to determine the optimal combination of these parameters for

best performance of the library. Also, to avoid race conditions, an undesirable situation

where multiple processes are “racing” to access/change one data point, memory access was

checked using tools such as the racecheck function in CUDA (NVIDIA Corporation, 2018a)

during each kernel execution.



Chapter 3

Estimating the lateral resistance reduction factor for concrete masonry

infills using random field simulations

3.1 Abstract

This paper presents a reliability analysis of concrete masonry infilled frames using the

Random Finite Element Method (RFEM). The main objectives of this study were to develop

a fast yet reliable finite element model which can be adopted by the RFEM to estimate the

resistance factor required to target the design of masonry infill walls at acceptable reliability

levels. In this research, the compressive strength of masonry f ′m was selected as the input

random field. Based on f ′m, other mechanical properties of masonry, such as the elastic

modulus as well as the ultimate strain and the corresponding stress, were determined using

established relationships. The developed finite element model was used to analyze the

random field simulations and estimate the lateral resistance of masonry infill walls. The

lateral resistance distribution was then estimated using the Monte-Carlo simulation method

through a large number of realizations of lateral resistance of infill wall, over a range

of statistics (mean, standard deviation, and correlation length) of f ′m. To the authors’

best knowledge, there are no existing studies which employ continuous spatially variable

random field models of masonry compressive strength and study their effect on the lateral

27
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resistance of masonry infill walls. The simulation-based method was then used to calibrate

the subsequently developed analytical-based methods for predicting the lateral resistance of

infill walls. The analytical methods developed were based on the diagonal strut concept. The

predicted analytical-based resistance distribution was then used to estimate the resistance

factor for a wide range of target reliability indices.

keywords: reliability-based design, masonry infilled frames, resistance distribution,

resistance reduction factor

3.2 Introduction

Masonry walls built inside steel or RC frames are commonly referred to as masonry infills.

When built tight against the frame, they have been shown to significantly affect the stiffness,

strength, and dynamic characteristics of the frame system under in-plane lateral loading

(Moghaddam and Dowling, 1987; Asteris et al., 2013; Hu, 2015; Chen, 2016; Suzuki

et al., 2017; Nasiri and Liu, 2017; Rahimi and Liu, 2018). The magnitude of this effect

is believed to be dependent on the extent of interaction between the infill and the frame.

However, the frame, commonly made of steel or reinforced concrete materials, deforms in

a ductile and flexural mode while the masonry infill, made of brittle materials, tends to

deform in a non-ductile shear mode. This difference in behaviour, coupled with various

combinations of the geometric and material properties of both the frame and the infill,

makes it difficult to quantify the exact extent of the infill-frame interaction throughout the

entire loading history. Considerable research has been conducted in the past six decades

(e.g. Stafford-Smith, 1966, 1967; Mainstone, 1971; Liauw and Kwan, 1985; Flanagan and
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Bennett, 1999, 2001; Chen, 2016) in an effort to provide rational methods for considering

the infill contribution to the system stiffness and strength. The general observation of these

studies underscored the complexity of the infill-frame interaction and identified the masonry

compressive strength, frame-to-infill stiffness ratio and infill aspect ratio as being among

the most influential factors influencing the combined system behaviour.

For design, both the Canadian and American masonry design standards (CSA S304-

14, 2014; TMS 402/602, 2016) specify a “diagonal strut” approach for incorporating infill

contribution in the design of infilled frame systems. Conceptually, the approach replaces the

entire infill with a compressive strut in the diagonal direction connecting loaded corners.

Once the strut width and masonry strength are known, the frame stiffness can then be

determined using a frame analysis and the infill strength can be simply related to the strut

strength. While being simple to use, the replacement of a two-dimensional infill wall by a

one-dimensional strut may lead to loss of accuracy in capturing the effect of many variables

in an actual frame configuration. One such variable is the infill compressive strength f ′m,

which is identified as one of the most influential variables on the infill stiffness and strength.

While its effect on the infill lateral strength is self-evident, it also relates to the masonry’s

Young’s modulus and thus the masonry stiffness. In a realistic infill construction, masonry

strength will be different at different locations throughout the wall, due to differences in

workmanship, curing conditions, and inherent spatial variability in masonry block and

mortar properties. In the diagonal strut model, however, only one masonry strength is used,

which does not capture the randomness of masonry properties throughout the infill.

This study was then motivated to investigate the effect of spatially varying masonry
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properties on the lateral resistance of masonry infilled frames. The spatially varying

masonry properties were modeled by a lognormally distributed random field simulated

using the Local Average Subdivision method (LAS, Fenton and Vanmarcke, 1990). The

resistance of the resulting frame-infill system was then predicted using the Random Finite

Element Method (RFEM, see, e.g., Fenton and Griffiths, 2008) employing a finite element

model developed by the author. Although the research on the general topic of masonry

infilled frames is large in volume, to the authors’ best knowledge, there are no existing

studies which employ continuously varying random field models to study the effect of

spatially varying masonry properties on the lateral resistance of masonry infilled frames.

The methodology used in this study consisted of two components. First, a numerical

model to predict the in-plane behaviour of masonry infilled RC frames of varying material

and geometric properties subjected to lateral loading was developed and validated against

experimental results; secondly, the model was used in a parametric study over various

masonry compressive strength statistics using the RFEM to estimate the resistance factors

required to safely design the infilled frame system.

The finite element model used in this study implemented the smeared cracking model.

The smeared cracking model is commonly chosen to model the cracking behaviour of brittle

materials such as masonry infill walls and concrete shear walls (Lotfi and Shing, 1991; Lu

et al., 2013). In the smeared crack modeling technique, the effect of cracking is modeled by

progressively modifying the constitutive relationships of the material. The finite element

package OpenSees, available in the public domain, was used to develop the finite element

model. The finite element model was then validated against the test results, achieved in
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the experimental study conducted by the same research group (Hu, 2015; Rahimi and Liu,

2018), of masonry infilled RC frames tested under both static and quasi-dynamic cyclic

lateral loading.

The RFEM was originally developed by Fenton and Griffiths (Fenton and Griffiths, 1993;

Griffiths and Fenton, 1993). In this study, the masonry prism compressive strength, f ′m, was

assumed to be a random field having a lognormal distribution with mean values, standard

deviations and spatial correlation lengths varied in a parametric study. As mentioned

above, the Local Average Subdivision (LAS) method was employed to produce random

field realizations of masonry compressive strength over the infill walls. A total of 1,000

simulations were performed for each set of parameters in this study. The lateral resistance

of the masonry infilled frame for each realization was then estimated using the finite

element analysis developed herein. Subsequently, the analytical-based lateral resistance

distributions were estimated using the diagonal strut formulations and were calibrated using

the simulation-based distributions. The resulting suite of distributions were used to estimate

the probability of failure of infill wall systems designed using a range of resistance factors,

resulting in plots of failure probability vs resistance factor. These plots can then be used to

determine the resistance factor required to achieve a desired reliability.

3.3 Numerical modelling of the RC frame

A fibre element, available in the OpenSees element library, was employed to model the

reinforced concrete frame members. The fibre element is essentially a two-node, beam-

column element with 6 degrees of freedom at each node (three translational and three
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rotational degrees of freedom). The cross-section of each reinforced concrete frame member

was divided into three different regions including the concrete cover, concrete core and steel

reinforcement, as shown on Figure 3.1. Figure 3.1 also shows both the fibre discretization

and the number of fibres used in each region. The fibres are oriented in the longitudinal

direction of the frame member and were extended over the member’s full length. The fibers

were spaced 9 mm centre to centre. A sensitivity analysis was conducted on the number of

fibres required in each region and the number selected (Figure 3.1) was found to provide

sufficiently accurate results within a reasonable computational time. The rebars for the

steel reinforcement were also modeled using fibers with the “layered straight” command

available in OpenSees.
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Figure 3.1. Fibre discretization of reinforced concrete section

The static stress-strain model developed by Menegotto and Pinto (1973) and modified

by Filippou et al. (1983) was used to model the steel rebar behaviour, including strain

hardening. Pinching and softening, observed in the hysteretic load vs. displacement curves
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of reinforced concrete frames are believed to be associated with concrete cracking and

the bond-slip effect of steel rebar (Filippou et al., 1983). The bond-slip effect refers to a

phenomenon where a steel bar, when embedded in concrete, does not show a pronounced

yield plateau and the “apparent yield stress” is lower than the yield stress of a bare steel

bar. To simulate the bond-slip effect in the proposed model, the loading, unloading and

reloading paths in the steel rebar stress-strain relationship were adopted from work by Monti

and Spacone (2000). Figure 3.2a shows the material constitutive model used for the steel

rebars.
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Figure 3.2. Stress-strain relationships; a) steel b) concrete

The compressive stress-strain envelope for concrete was based on the model proposed by

Mander et al. (1988) for confined concrete (Figure 3.2b). In the case of cyclic loading, the

unloading and reloading responses defined by Karsan and Jirsa (1969) were implemented.

The concrete in tension was assumed to be linearly elastic prior to cracking. The falling

branch of the tensile response was assumed to follow an exponentially decaying curve, as
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depicted in Figure 3.2b.

3.3.1 Modelling the infill wall

The shell element, ShellMITC4 (Dvorkin et al., 1995), was used to model the masonry

infill wall. To simulate the stress distribution across the thickness of the masonry infill wall,

a multi-layer section, developed by Lu et al. (2013), was employed. By discretizing each

face-shell of the masonry block into multiple fully-bounded layers in the thickness direction,

the multi-layered approach was used to capture the three-dimensional stress distribution of

the masonry infill wall. A sensitivity analysis was conducted to determine the mesh size

and number of layers required to achieve reasonable accuracy with tolerable computational

effort. Figure 3.3 shows the number of layers used in a single block. The elements used in

this study had the width of 23.12 mm and the height of 22.5 mm.

Figure 3.3. Mesh size and number of layers used to model each masonry block

The smeared cracking concept was implemented in the masonry elements by modi-

fying the material constitutive relationship after cracking considering both compression

and tension softening effects. The compression softening is the mechanism that results in

decreasing the peak masonry compressive capacity due to cracking in the principal tensile

direction. The falling branch of the stress-strain curve would follow a linear descending path
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until the limit of 20% the peak stress, f ′m, is reached. In tension, the softening mechanism,

in a similar manner, occurs after cracking and decays the tensile capacity of the masonry

to zero. The ultimate strain ϵtu in the tension branch was calculated based on the Mode-I

fracture energy (Nasiri and Liu, 2017). Figures 3.4a and 3.4b show the constitutive models

used for masonry in tension and compression, respectively.

Figure 3.4. Stress-strain relationship for masonry and mortar materials; (a) tensile
behaviour; and (b) compressive behaviour

The mortar interface between the concrete frame and masonry infill wall was modelled

using the zero-length element available in OpenSees. The zero-length element was placed

at each point of contact between the masonry infill wall and the bounding frame, connecting

the fibre element and the shell element. The zero-length element is basically a spring with

a corresponding uniaxial behaviour defined for a degree of freedom. In this research, a

behaviour similar to the masonry material, as shown in Figure 3.4b was considered for the

mortar interface, where f j and ϵ0 are the stress and the corresponding strain at compressive

capacity of the mortar interface, respectively. The failure in compression was assumed to

occur when the mortar capacity reached the limit of 20% the peak stress f j . In tension the
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cracking stress ft is the mortar cracking strength and the ultimate strain ϵtu was determined

using the Mode-I fracture energy similar to the masonry material.

3.4 Calibration and validation of the numerical model

The model was validated using results of two experimental studies on laterally loaded con-

crete masonry infilled RC frames. One study was conducted by Hu (2015) with monotonic

loading and the other was by Rahimi and Liu (2018) with cyclic loading.

3.4.1 Experimental study

Test set-up

Both studies used a similar test set-up. Figure 3.5 shows a schematic view of the test set-up.

A hydraulic actuator with a capacity of 150 kN was used to apply the quasi-dynamic cyclic

or the monotonic lateral load. The term quasi-dynamic loading in this paper is referring

to the type of loading where the effect of inertial forces are negligible. The actuator was

housed in an independent frame which was then attached to the column of a reaction frame.

To realize the pulling and pushing action on the specimens subjected to cyclic load, two

threaded rods running the full length of the frame beam were used. The actuator head

was connected to the specimen through a steel plate and threaded rod assembly. At the

loading point between the steel plate and the RC frame, a rubber pad was used to ensure a

uniform stress distribution and prevent localized crushing of the concrete. The base beam

of the frame was clamped to the strong floor and braced using hydraulic jacks to prevent

potential in-plane movements. Linear Variable Displacement Transducers (LVDTs) were
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used to monitor the specimen displacement. As shown in Figure 1, LVDT 1 and LVDT

2 were used to measure the lateral displacement of the top beam and bottom beam of the

frame specimen, respectively. Another LVDT was used to measure the potential transverse

movement at the frame beam center (not shown).

Figure 3.5. Schematic view of the test set-up

Test specimens

Table 3.1 summarizes the specimens used in these two studies. Specimen IF-NG was tested

as a control specimen. The remaining infilled specimens incorporated different interfacial

gap scenarios, including: 1) at top beam-infill interface (Top Gap), 2) at two column-infill

interfaces (Side Gap), 3) at both beam and column-infill interfaces (Full Separation Gap).

In addition to the predefined gap, the specimens had a window opening accounting for 20%

of the infill area and with an opening aspect ratio of 1:1.5 (IF-W-SG12 and IF-W-TG12).

Figure 3.6 shows the dimensions and reinforcement details used for all specimens. The

infill had a height-to-length aspect ratio of 0.73. The half-scale standard 200 mm Concrete

Masonry Units (CMUs) were used in a running bond pattern to construct the masonry infill
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Table 3.1. Summary of the test specimens

Monatonic Loading Cyclic Loading
Hu (2015) Rahimi and Liu (2018)

Specimen
ID Gap Opening/Infill area

ratio
Specimen
ID Gap Opening/Infill area

ratio
BF N.A. N.A. BF N.A. N.A.

IF-NG N.A. - IF-FG12
12 mm Top Gap &
12 mm Side Gap
(6 mm each side)

-

IF-TG7 7 mm Top Gap - IF-W-TG12 12 mm Top Gap 20%
IF-TG12 12 mm Top Gap - IF-TG25 25 mm Top Gap

IF-SG7 7 mm Side Gap
(3.5 mm each side) - IF-W-SG12 12 mm Side Gap

(6 mm each side) 20%

IFSG12 12 mm Side Gap
(6 mm each side) - - - -

wall. All pre-defined gap magnitudes were achieved by adjusting mortar thickness with the

exception of specimen IF-TG25 in which case the height of the top layer of blocks was also

trimmed to achieve the desired gap size. The infills of all specimens were ungrouted while

for specimens IF-W-TG12 and IF-W-SG12 with openings, the block cells in the course

above the opening were grouted as per industry practice. The top beam and columns of the

RC frame were 180 mm by 180 mm square sections reinforced with four 10M deformed

steel rebars and 10M stirrups spacing at 100 mm center-to-center. The base beam was a 250

mm square section reinforced with four 15M rebars and 10M stirrups spacing at 100 mm

center-to-center. In addition, four 300 mm by 300 mm L-shaped rebars made from 10M

rebars were used to further reinforce the top beam-column corners.

Material properties

The mechanical properties of Concrete Masonry Units (CMUs), mortar, and masonry

prisms for the infill and those of concrete and reinforcement of the frame were obtained

experimentally in accordance with ASTM specifications. Table 3.2 presents the average
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Figure 3.6. Details of test specimens (unit: mm)

strength and stiffness observed during the material tests. The coefficient of variation of the

average for each material was below 15% for masonry components, indicating a relatively

consistent level of properties.

Table 3.2. Material properties of the test specimens

Monatonic Loading Cyclic Loading
Hu (2015) Rahimi and Liu (2018)

Elastic Compressive Tensile Yield Elastic Compressive Tensile Yield
modulus strength strength strength modulus strength strength strength
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

Concrete 29295 43.8 3.5 - 12710 29.2 1.7 -
CMUs - 25.0 1.6 - - 25.0 1.6 -
Mortar - 21.3 1.7 - - 22.1 1.3 -
Masonry prisms 14535 17.1 - - 2980 10.5 1.04 -
Reinforcement 247357 - 665 446 247357 - 665 446

Loading protocol

During the static test, the lateral load was applied gradually at a rate of 6 kN per minute

to the frame top beam until failure of the specimen. In the cyclic loading protocol, a

sequential phased displacement technique was used to apply the displacement to the infilled



40

frame based on the procedure specified by the Applied Technology Council (ATC-24 1994)

for cyclic load test. Figure 3.7 shows the lateral quasi-dynamic loading protocol where

the peak amplitude for each set of cycles is defined based on the yield deformation, ∆y.

Testing begins with six elastic cycles with at least three of which are performed at 0.75 ∆y.

Following the elastic cycles, three cycles at ∆y, 2 ∆y, and 3 ∆y. respectively are performed.

If the specimen has not failed by 3 ∆y cycles, the loading would continue with sets of two

cycles starting at 4 ∆y increasing by increments of ∆y until failure. The calculated ∆y for

the RC frame in this study is 7 mm, which occurs at approximately 34 kN of the in-plane

lateral force. The displacement amplitudes were applied at a rate of 10 mm per minute to

reduce the effect of inertial forces.

Figure 3.7. Loading protocol for quasi-dynamic loading

3.4.2 Numerical results

Table 3.3 summarizes experimental and numerically predicted results on the strength and

stiffness of each specimen in the two studies. The experimental strength was determined

to be the maximum load obtained from either the static or hysteretic response curves, and
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Table 3.3. Summary of the numerical results vs. experimental data
Monotonic test Cyclic test

Hu (2015) Rahimi and Liu (2018)
Strength Stiffness Strength Stiffness

ID (kN) (kN/mm) ID (kN) (kN/mm)
Fexp FFE Fexp/FFE Kexp KFE Kexp/KFE Fexp FFE Fexp/FFE Kexp KFE Kexp/KFE

BF 58.5 59.1 0.99 1.7 1.7 0.99 BF 60.5 59.8 1.04 1.19 1.16 1.02
IF-NG 133.6 134.9 0.99 12.2 10.2 1.20 IF-FG12 79.5 72.1 1.10 2.52 2.65 0.95
IF-TG7 129.0 133.3 0.97 8.4 8.3 1.02 IF-W-TG12 71.8 64.2 1.12 2.68 2.66 1.04
IF-TG12 102.0 109.1 0.93 3.6 3.5 1.04 IF-TG25 74.5 74.3 1.00 5.54 6.80 0.81
IF-SG7 134.0 129.5 1.04 7.9 6.6 1.19 IF-W-SG12 66.9 70.0 0.96 2.13 1.92 1.11
IF-SG12 114.0 119.6 0.95 2.5 3.1 0.85 - - - - - - -
AVG 0.98 1.04 AVG 1.04 0.98
C.O.V(%) 3.6 12.7 C.O.V(%) 6.7 11.1

the stiffness is determined as the secant stiffness connecting the maximum load point and

the origin. In both loading cases, the experiment-to-numerically-predicted ratios for both

strength and stiffness values were close to unity, indicating good agreement. The COV

for the stiffness ratio is higher than the COV for the strength ratio, but both were less than

15%, which can be considered relatively low from a practical standpoint for masonry. This

suggests that the numerical finite element model is capable of providing accurate values

for the important response indicators of masonry infill wall systems, including those with

interfacial gaps and infill openings.

The finite element model was further validated by comparing load vs. displace response

curves. Figure 3.8 compares the load vs. displacement response of the monotonically

loaded infilled frame specimens using IF-NG as an example. It shows that the finite element

model accurately estimated the rising branch of the static response of the masonry infilled

frame. If the initial stiffness is compared, the experimental-to-numerically-predicted ratio

would be even closer to 1.0 than seen for the secant stiffness ratio presented in Table

3.3. The difference observed in the post-ultimate portion of the curves is believed to be

associated with the inaccuracies in the modeling of residual strength of masonry beyond

its ultimate strain. In the model, this residual strength was considered to be zero while in
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the experiment, the masonry material retained residual strength after the ultimate load was

reached.

Figure 3.8. Load vs. displacement response of masonry infilled frame under monotonic
loading

Figure 3.9 compares the numerical and experimental hysteretic as well as the backbone

curves for the cyclically loaded specimens using IF-TG25 as an example. The cyclic loading

was applied as quasi-dynamic and thus the effect of time and inertial forces were irrelevant.

Again, the numerically predicted hysteresis and backbone curves compare reasonably well

with the experimental results.

One important feature of hysteresis response is the degradation of stiffness as loading

and unloading progress. Figures 3.10a and 3.10b compare the loading and unloading

stiffness of specimen IF-TG25 in each cycle. The loading and reloading stiffness is defined

as the secant stiffness from the origin to the peak load at each cycle. The unloading stiffness

is defined as the secant stiffness from the peak load to zero load within the half cycle.

The degradation of stiffness as loading progressed is seen to be accurately captured by the

numerical model.
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Figure 3.9. Load vs. displacement response of masonry infilled frame under
quasi-dynamic cyclic loading; (a) hysteretic response, (b) backbone curve

Figure 3.10. Stiffness vs. cycle numbers; (a) loading stiffness, (b) unloading stiffness

The failure mode of all specimens, as predicted by the finite element model, was

corner crushing, which was in agreement with the experimental observations. Figure 3.11

shows the comparison of failure modes for specimen IF-TG25, noting that failure in the

finite element model (Figure 3.11b) is indicated through the normal stress contours at the

ultimate load. In Figure 3.11b the maximum normal stress is shown in dark blue, which

coincides with the corner crushing locations at the top left and bottom right corners of the

infill. The high normal stresses forming a strip from the top left corner to the bottom right
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corner of the infill shown in Figure 3.11b, agreed well with the diagonal cracking pattern

observed during the experimental test. It is noted that however, the presented finite element

model is not capable of simulating the shear sliding failure as in this smeared model where

mechanical behaviour of blocks and mortar joints are “smeared” over the entire infill, the

shear behaviour is not explicitly modeled.

Figure 3.11. Failure mode of specimen IFTG25; (a) experimental observation (b) stress
distribution contour of simulated model

3.5 The random finite element method

In this study, the lateral resistance distribution of masonry infills is estimated by modeling

the masonry compressive strength, f ′m, as a spatially variable random field. The compressive

strength, f ′m, of the masonry prisms was assumed to be lognormally distributed with mean

µ f ′m , standard deviation σ f ′m , and spatial correlation length θln f ′m . The spatial correlation

length is a parameter for describing the spatial variability of the masonry compressive

strength over the infill, f ′m. A “low” spatial correlation length means that f ′m, varies

significantly from point to point within the infill whereas a “high” spatial correlation length

indicates a more gradual variation of f ′m from point to point within the infill. The lognormal

distribution was assumed because the compressive strength values are non-negative and
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so positively skewed, not symmetric like a normal distribution (i.e. as shown in the next

section, the lognormal distribution fits well to the histograms of the resistance of infilled

frame). Most engineering problems are low-strength dominated (for instance, compressive

strength is dominated by the weak zones in the material) and a low-strength dominated

average is a geometric average which tends to follow a lognormal distribution by the central

limit theorem (Fenton and Griffiths, 2008). Lognormal random fields are fully specified by

their mean and covariance structure. A lognormally distributed random field is obtained

from a normally (Gaussian) distributed random field, Gln f ′m , having zero mean, unit variance

and spatial correlation length, θln f ′m , according to:

f ′m ( ®p) = exp
{
µln f ′m + σln f ′m Gln f ′m ( ®p)

}
(3.1)

where ®p is the spatial position. The mean and standard deviation of the lognormal distribu-

tion are obtained through the transformations:

σ2ln f ′m
= ln

(
1 + v2f ′m

)
(3.2)

µln f ′m = ln µ f ′m −
σ2
ln f ′m

2
(3.3)

where v f ′m is the coefficient of variation of masonry compressive strength. An exponentially

decaying (Markovian) correlation function was employed to specify the correlation coeffi-

cient between the ln f ′m at a point ( ®p1) and any other point ( ®p2) as expressed in the following
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(Fenton and Griffiths, 2008):

ρln f ′m (τ) = exp

(
−
2 |τ |

θln f ′m

)
(3.4)

where τ is the distance between the spatial positions, ®p1 and ®p2. The spatial correlation

length, θln f ′m , is loosely defined as the distance within which two values of ln f ′m are

significantly correlated. In this random field model, the correlation structure was assumed

to be isotropic, so that the correlation length was assumed to have the same value in any

direction. The Monte-Carlo simulation was then conducted to produce realizations of the

random field of masonry compressive strength. Figure 3.12 shows examples of different

random field realizations of the f ′m field, over the masonry infill, where dark colours imply

higher masonry compressive strength. As shown in the Figure 3.12 every random field is

different in term of the variation of the strength over the wall as expected on a real wall.

Figure 3.12. Random field simulation of the masonry prism compression strength
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3.6 Lateral resistance distribution

3.6.1 Simulation-based

In this study the lateral resistance distribution of masonry infilled RC frames was determined

using Monte-Carlo simulation. The lateral resistance of the masonry infilled frame, denoted

as R′, is defined as the ultimate in-plane strength of the infilled frame under monotonic

loading. The primed notations here refers to the simulation-based results. In this study,

the f ′m field was assumed to have a mean of 17 MPa, representing an average compressive

strength of a typical hollow masonry wall construction with Type S mortar. A total of 27

random field simulation runs, comprising of 1000 realizations each, were performed for

each of a variety of spatial correlation lengths θln f ′m , and coefficients of variation v f ′m of

the f ′m field. Table 3.4 summarizes the parameters varied. For each run, one thousand

random fields of f ′m over the infill (one example is shown in Figure 3.12) were generated.

The lateral resistance of the infilled frame for each realization of f ′m was then calculated

using the numerical model described in the previous section. The mean of f ′m (µ f ′m = 17

MPa) was held fixed for all random field simulations. The coefficients of variation of f ′m

considered were 7.6%, 9.4%, 10.8%, 13.2%, and 17.1% and so both above and below the

value (15%) suggested by the CSA S304-14 (2014). For each coefficient of variation, the

correlation length was also varied from 0.1 to 10 m to study the effect of correlation length

on the distribution of the lateral resistance.

In each realization the lateral resistance of the infill wall was determined by deducting

the RC frame resistance from the infilled frame resistance at the failure point. After 1000

realizations for each simulation set, or random field ID 1 through 27, a resistance histogram
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Table 3.4. Summary of the random fields

Random θln f ′m v f ′m random θln f ′m v f ′m random θln f ′m v f ′m
field ID (m) field ID (m) field ID (m)

1 0.20 0.076 10 10.0 0.094 19 1.00 0.132
2 1.00 0.076 11 0.10 0.108 20 2.00 0.132
3 2.00 0.076 12 0.20 0.108 21 5.00 0.132
4 5.00 0.076 13 1.00 0.108 22 10.0 0.132
5 10.0 0.076 14 2.00 0.108 23 0.20 0.171
6 0.20 0.094 15 5.00 0.108 24 1.00 0.171
7 1.00 0.094 16 10.0 0.108 25 2.00 0.171
8 2.00 0.094 17 0.20 0.132 26 5.00 0.171
9 5.00 0.094 18 0.50 0.132 27 10.0 0.171

Table 3.5. Summary of the random fields results

Random µR′ σR′ random µR′ σR′ random µR′ σR′

field ID (kN) (kN) field ID (kN) (kN) field ID (kN) (kN)
1 91.77 3.31 10 90.32 6.95 19 90.42 6.88
2 91.74 4.40 11 90.75 3.32 20 90.13 8.01
3 91.35 4.98 12 90.63 4.10 21 90.33 9.59
4 90.85 5.81 13 90.09 5.66 22 90.65 10.34
5 92.10 6.23 14 89.79 6.60 23 90.79 6.60
6 90.51 3.78 15 90.22 8.07 24 89.86 8.96
7 90.23 4.88 16 90.39 8.11 25 89.26 10.64
8 90.43 5.68 17 90.00 4.82 26 89.23 12.42
9 90.75 6.71 18 90.97 6.12 27 89.61 14.24

was constructed to which a lognormal distribution was fit. Examples of fitted lognormal

distributions to the histograms of some of the simulation sets are depicted in Figure 3.13.

The figure shows the effect of both the correlation length and the coefficient of variation of

the masonry compressive strength on the distribution of the lateral load resistance of infill

walls.

For each simulation run, the resulting estimated mean, µR′, and standard deviation, σR′,

of the lateral resistance, R, are shown in Table 3.5. The results show how the mean and

standard deviation of the resistance changes with different choices of correlation length and

coefficient of variation.
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Figure 3.13. Histogram vs. the fitted lognormal distribution for lateral load resistance; (a)
random field ID 8, (b) random field ID 7, (c) random field ID 9, (d) random field ID 26, (e)

random field ID 27, (f) random field ID 17.

Figures 3.14a and 3.14b show the mean values and the standard deviations of the lateral

resistance achieved in each simulation set versus the spatial correlation length for different

sets of coefficient of variation, respectively. Figure 3.14a indicates that for a given µ f ′m (in
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this case 17 MPa), changes in the coefficient of variation v f ′m and spatial correlation length

θln f ′m , did not significantly alter the mean of the lateral resistance distribution but did change

the standard deviation of the lateral load resistance as shown in Figure 3.14b. The latter

figure demonstrates that an increase in the coefficient of variation and spatial correlation

length of f ′m results in an increase in the standard deviation σR′ of the lateral resistance of

the infill wall. The higher the coefficient of variation of f ′m, the greater standard deviation

of σR′ as well as greater effect of spatial correlation of f ′m on σR′. Assuming. then, that the

lateral load resistance is normally distributed, the probability of failure for the masonry infill

wall can then be calculated once the mean, µR′, and standard deviation, σR′, are known.

Figure 3.14. Effects of the random filed simulation of f ′m on the lateral resistance of the
infill wall; (a) mean value of the lateral resistance µR′ and (b) standard deviation of the

lateral resistance σR′ vs. the spatial correlation length of f ′m
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3.6.2 Analytical-based formulation

To compare with the finite element simulation-based results, an analytical approach was

used to estimate the distribution of the lateral resistance of infill walls without the need

for Monte-Carlo simulations. For evaluating the masonry infill strength, the diagonal strut

model as specified in the Canadian masonry design standard (CSA S304-14, 2014) was

used. According to CSA S304-14, for masonry infills of typical geometric and material

properties, corner crushing is the predominant failure mode of masonry infills. The S304-14

also provides an equation for calculating the corner crushing strength as follows:

Pr = χ
(
0.85 f ′m

)
we f f tc (3.5)

where Pr is the capacity of the diagonal strut in the direction of the strut. we f f is the

effective width which is half of width of the diagonal strut ws. The factor χ is to account

for the direction of the compressive stress in a masonry member relative to the direction

used during the material test, in this case, the masonry prism compression test. The factor

0.85 is to account for the equivalent stress block over the cress-section of the diagonal strut

(CSA S304-14, 2014). In Equation 3.5 tc is the depth of compression zone determined as:

tc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 t f − r, r ≤ t f

t f , r > t f & r ≤ t − t f

t − r, r > t − t f

(3.6)

where r is the distance from the edge of the block within the tension flange to the compressive

zone in the cross-section, and t f is the thickness of the face-shell.



52

The capacity of the diagonal strut is dependent on the masonry compressive strength

f ′m. The masonry compressive strength is, in reality, an averaged strength. In this research,

geometric averaging was selected as opposed to arithmetic averaging due to the fact that

geometric averaging more strongly weights the lower values of f ′m which are crucial in

determining the resistance of the diagonal strut (both arithmetic and geometric averaging

are discussed by Fenton and Griffiths (2008) in detail). Therefore, the geometric averaging

of the masonry compressive strength over the volume of the diagonal strut was determined

as follows:

ln f ′m (v) =
1

V

∫
V
ln f ′m ( ®p) d ®p (3.7)

where ln f ′m(v) is the local average of ln f ′m(x) over the volume of the diagonal strut V .

ln f ′m(x) is the natural logarithm of the masonry compressive strength at any point, ®p, in the

continuum of the diagonal strut. The following relation shows that the local averaging does

not change the mean µln f ′m as the expected value of µln f ′m does not change by averaging

over the volume of the diagonal strut.

E
[
ln f ′m (v)

]
= E

[
1

V

∫
V
ln f ′m ( ®p) d ®p

]
=

1

V

∫
V

E
[
ln f ′m ( ®p)

]
d ®p = E

[
ln f ′m ( ®p)

] (3.8)
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However, averaging would affect and reduce the variance of the resistance as follows:

Var
[
ln f ′m (v)

]
= E

[(
1

V

∫
V
ln f ′m ( ®p1) d ®p1

) (
1

V

∫
V
ln f ′m ( ®p2) d ®p2

)]
=

1

V2

(∫
V

∫
V

E
[ (
ln f ′m ( ®p1) − µln f ′m

) (
ln f ′m ( ®p2) − µln f ′m

) ]
d ®p1 d ®p2

)
= Var

[
ln f ′m (v)

]
γ (V)

(3.9)

where γ(V) is the variance reduction function. Vectors ®p1 and ®p2 are two independent

points in the volume of the diagonal strut. The variance reduction function is the integral of

the correlation function (Equation 3.4) over the volume of the diagonal strut. In this study,

the compressive resistance of the masonry was considered to be random in the plane of

the wall. Therefore, the resistance reduction function can be calculated using the following

quadruple integral:

γ (V) =
1

(w ld)2

∫ ld

0

∫ w

0

∫ ld

0

∫ w

0

exp
©«
−2

√
(x1 − x2)2 + (y1 − y2)

2

θln f ′m

ª®®¬ dx1 dy1 dx2 dy2

(3.10)

where x1, y1, x2 and y2 are the coordinates of the physical points ®p1 and ®p2 in the in-plane

continuum of the diagonal strut. Also, ld is the length of the diagonal strut.As the result

of averaging, the averaged mean, µln f ′mV
, and standard deviation σln f ′mV

of the masonry
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compressive strength in logarithmic space is calculated as:

µln f ′mV
= µln f ′m

σln f ′mV
=
√
γ(V)σln f ′m

(3.11)

The averaged mean and standard deviation of f ′m was then calculated using Equations

3.2 and 3.3. To find the mean and standard deviation of the infill wall strength, the strength

equation presented in Equation 3.5 was reformulated in the following to relate the lateral

resistance distribution of the infill wall in terms of its mean µR and standard deviation

σR with the averaged mean µ f ′mv
and standard deviation σ f ′mv

of the masonry compressive

strength f ′m.

µR =

(
l

√
h2 + l2

)
χ

(
0.85 µ f ′mv

)
we f f tc (3.12)

σR =

(
l

√
h2 + l2

)
χ

(
0.85 σ f ′mv

)
we f f tc (3.13)

where h and l are the height and width of the infill wall, respectively.

3.6.3 Calibration of the analytical prediction using the simulated-based estimate

The analytical resistance Pr of the masonry infill in the horizontal direction was calculated

to be 95.8 kN according to the Equation 3.5, which is in a good agreement with the

experimental result. The lateral resistance of the masonry infill in the experimental study
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for the control specimen (IF-NG) was determined to be 94.3 kN (the system strength minus

the bare frame load at failure). The χ factor was found to be 0.54 in this calibration which is

in agreement with the S304-14 suggestion. Assuming χ = 0.54, the mean resistance µR and

resistance standard deviation σR are calculated using Equations 3.12 and 3.13, respectively.

Figure 3.15 compares the analytical- and simulation-based, mean and standard deviation

of the infill wall for different coefficient of variations of masonry compressive strength, f ′m.

In Figures 3.15a and 3.15b, the mean and standard deviation of the infill wall resistance

are plotted against the correlation length of f ′m. Figure 3.15 shows that the analytical-based

results agree with the simulation-based results and can be adopted to estimate the failure

probability of the infill wall.

Figure 3.15. The analytical- and simulation-based standard deviation of the infill wall
resistance vs. the correlation length
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3.7 Estimating the design resistance factor

The resistance factor is a reduction factor which applies a safety margin to the design. The

resistance factor is defined by the Load and Resistance Factor Design (LRFD) methodology

(Fenton and Griffiths, 2008). Based on LRFD, a successful design of an infill wall should

satisfy the following relation:

ϕmi R̂ ≥ αL̂ (3.14)

where L̂i and R̂ are the characteristic values for the load and the resistance, respectively. α

is the load factor and ϕmi is the infill wall’s resistance factor. In this research, as the masonry

infill walls are mainly lateral load resisting systems, the seismic load was considered as

the loading to be designed for. It was assumed that the design load is deterministic and

resistance has a lognormal distribution. The design load was based on a deterministic

earthquake load with a known return period (ie. see Naghibi and Fenton, 2019). The

resistance factor required to achieve a target failure probability for infill walls was estimated

to be dependent on the return period of the earthquake. The mean value of the lateral load

µL is assumed to be defined in terms of the characteristic load, L̂, as follows:

µL = kL L̂ (3.15)

where kL is the bias factor. The bias factor is used to provide margin of safety by

decreasing the probability of load being higher than the characteristic load. The mean value
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of resistance is also defined using the characteristic resistance as follows:

µR = kR R̂ (3.16)

where kR is the bias factor defined as the ratio of the mean resistance to the characteristic

resistance. Normally kR is less than or equal to 1.0. In this research, as the mean resistance

µR is known, through both simulation and analytical prediction, the equivalent design load

can be calculated using Equations 3.14, 3.15, and 3.16 as follows:

µL =

(
kL

kR

) (
ϕmi

α

)
µR (3.17)

In Equation 3.17, both kL and kR are assumed to be 1.0. The load factor, α for seismic

loading was considered 1.0 according to the National Building Code of Canada (NBCC,

2015). The next step is to determine the resistance factor, ϕmi, for a target reliability index

β. The reliability index is determined from the maximum allowable probability of failure,

pm, as follows:

pm = p
[

R
L
< 1

]
= Φ

(
ln µL − µln R

σln R

)
= Φ (−β) (3.18)

from which the target reliability can be expressed as follows:

β =
µln R − ln µL

σln R
(3.19)

The target reliability index β for each limit state is available in CSA S408 (2011).
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Figure 3.16 plots the target reliability index, β, vs. the resistance reduction factor, ϕmi, for

infill walls. For instance, considering the coefficient of variation of 15% for the masonry

compressive strength, as suggested by CSA S304-14 (2014), results in ϕmi = 0.80 for the

target reliability of β = 3. The resistance factor currently specified by CSA S304-14 for

masonry is 0.60. This study indicates that the current resistance factor may be conservative.

Figure 3.16. The target reliability index vs. the resistance reduction factor

It should be noted that the recommended ϕmi was determined based on random field

simulation of only one parameter, the masonry compressive strength f ′m, and the seismic

load was considered to be deterministic. While studies on other parameters are needed for

a comprehensive recommendation, the study provides a framework for using the RFEM for

reliability assessment of masonry infilled frames.

3.8 Conclusions

This paper presents the implementation of the Random Finite Element Method (RFEM)

in estimating the resistance factor for designing the masonry infill walls. The masonry

compressive strength was treated as a spatially variable random field to generate different
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realization sets of masonry infills with varying standard deviations and correlation lengths.

Each realization was numerically analyzed using the developed finite element model. The

good agreement of the ultimate load and stiffness as well as the load vs. displacement

response between the numerical and experimental results suggested that the model can

successfully be incorporated in the RFEM simulations. The lognormal distributions fitted to

the histogram of lateral load resistances of masonry infills revealed that the mean resistance

remains the same while the resistance standard deviation depends on the correlation length

and the coefficient of variation of masonry compressive strength. The successful calibration

of the proposed analytical formulations using the simulation-based distributions resulted in

proposing a resistance factor of 0.80 for reducing the lateral resistance of infill walls when

designing for the target reliability index of 3.
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4.1 Abstract

This paper presents the development of a finite element algorithm using a vectorized and

parallelized finite element method as a modular and open-source framework for finite el-

ement applications in structural engineering. Encoded in C++, the unique feature of the

algorithm is its use of the Data-oriented Design (DoD) paradigm with the single instruction

multiple data (SIMD) class of parallel computing to accelerate the stiffness matrix calcula-

tion and assembly of the global stiffness matrix. The algorithm is also designed to utilize

the compressed sparse matrix format for data storage to achieve memory efficiency for finite

element simulations. This parallel computing algorithm can run finite element models on

either central processing units (CPUs) or graphical processing units (GPUs). Numerical

examples of both linear and non-linear engineering problems are provided to show that

the algorithm is capable of providing accurate results. The comparison of finite element

60
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runtimes on CPU’s vs GPU’s demonstrates that current GPU’s can easily outperform even

the most advanced current CPU’s.

Keywords: Finite element methods, GPU accelerated applications, Stiffness matrix

calculations, Global stiffness matrix assembly, Data-oriented design.

4.2 Introduction

The Finite Element modeling technique has been widely used as an effective analysis tool

in the prediction of structural behaviour for both research and design practice. In recent

years, advancements in computing technology and hardware have enabled the use of finite

element techniques in increasingly sophisticated and complex predictions of structural be-

haviour incorporating material and geometric non-linearities and large numbers of elements.

However, the accuracy of these sophisticated structural models are often at the expense of

increased computing time and cost due to the simulation complexity. For example, while

the Modified Compression Field Theory (MCFT, Vecchio and Collins, 1986; Sadeghian and

Vecchio, 2018) is an efficient non-linear finite element technique used to model the detailed

cracking behaviour of brittle materials such as masonry and concrete, the implementation

of such a method is computationally expensive due to the large number of iterations needed

to achieve a specified level of precision in the non-linear solution process. Another example

of computationally expensive problems is reliability analysis using stochastic methods, such

as the Random Finite Element Method (RFEM) developed by Fenton and Griffiths (2008),

to evaluate the failure probability of structural systems. RFEM employs the Monte Carlo

simulation technique to determine the reliability index of a structural system as influenced
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by a range of material, geometric, and loading characteristics of the system. This type of

analysis typically involves thousands of random field realizations, each of which involves a

finite element analysis (see, e.g., Rahimi et al., 2017), which has been taking a considerable

computing time on conventional computers.

In an effort to develop more computationally efficient finite element analysis packages,

the Object Oriented Programming (OOP) paradigm has been carefully studied (McKenna

et al., 2010; Prud’Homme et al., 2012; Alnæs et al., 2015; Abhyankar et al., 2018; Alzetta

et al., 2018) where the key features in the OOP design, such as abstraction, encapsulation,

modularity and code reuse have been shown to increase computational efficiency (Mckenna,

1999). The OOP programming is based on grouping data and their functionalities in an

class. Objects are instances of classes and can interact with each other. The key advantage

of OOP is polymorphism which allow grouping objects with similar functionalities. For

instance in a finite element code two different types of elements could be two different objects

while still having similar functionalities inherited from the element class. The drawbacks

of the OOP paradigm are that first, the functions are restricted to pieces of data and second,

accessing an object, such as an element object in a finite element code, results in “cache

pollution”, a situation in which unnecessary data is loaded into the CPU cache while the

useful data is moved to a lower level in the memory hierarchy (Fabian, 2013). However, the

main limitation of OOP design is in parallel processing due to the risk of multiple threads

of the processor attempting to concurrently access the same data. One solution to this

problem is to arrange the data in contiguous blocks which allows the data to be sequentially

processed. The resulting programming method is referred to as the data-oriented design
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(DoD) paradigm, where the focus is on the arrangement of the data in memory to increase

performance. In DoD the data could be structured close to the desired output so a minimum

amount of operations is needed to be preformed through the functions. DoD has gained a

considerable amount of interest in the game design industry (Fabian, 2013). Another key

feature of the DoD algorithms the development of parallel algorithms using SIMD class of

parallel computing as the functions and data are septate, and the functions can be applied

on any piece of data. Such features enable the DoD algorithms to be implemented on

the massively parallel structures available on modern graphical processing units (GPUs) to

increase the computational efficiency of finite element analyses.

Recent developments in parallel processing algorithms on GPU devices have been

focused on either optimizing the linear algebraic operations, such as sparse matrix-vector

multiplications (Wong et al., 2015), or on porting the source code developed for the CPU to

the GPU device (e.g., Komatitsch et al., 2009). Several recent studies have aimed to employ

such algorithms to accelerate finite element analyses. One example is the work conducted

by Bui et al. (see, e.g. Bui et al., 2017, 2019) for real-time surgical simulations where

finite element analyses were greatly accelerated by employing a large number of processing

units for the simultaneous execution of parallelized instructions. Many of the available

finite element packages which run on GPU devices focus on solving the linear system of

equations in parallel (Georgescu et al., 2013; Tian et al., 2015) while leaving the rest of the

finite element process (stiffness matrix calculation and assembly) on the CPU device. The

main limitations of such finite element applications are the serial assembly step and the high

overhead associated with copying data back and forth from CPU memory to GPU memory.
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The main objective of this study was then to design data-oriented algorithms to take

advantage of modern GPU parallel architectures for the entire finite element analysis pro-

cess, specifically utilizing parallelization capabilities available on CPU and GPU devices

to accelerate finite element simulations. The DoD algorithms were developed to allow

simultaneous execution of a single instruction on all available processing cores to achieve

acceleration. For the stiffness matrix calculation step, the instructions for calculating the

local stiffness matrix remains the same for each integration point. For the matrix assembly

step, acceleration was achieved by vectorization and parallelization of the process through

the sparse-matrix conversion from a coordinate format to a compressed format. For solv-

ing the linear system of equations, both direct and iterative methods were implemented in

the code. Both solution methods have been widely studied in the literature and their im-

plementation using DoD programming can be found in CUDA documentations (NVIDIA

Corporation, 2018a), Helfenstein and Koko (2012) and Sharma et al. Sharma et al. (2013).

Another goal of this study was to develop the above-mentioned algorithms of an entire

finite element process into an open-source modular finite element library available in the

public domain. At the moment, there are more than a thousand open-source finite element

repositories available on GitHub (Wanstrath et al., 2008). However, only a few of these

repositories are libraries that actually provide clear instruction documentation. Examples

of libraries which include documentation are MFEM (Kolev and Dobrev, 2010), FEEL++

(Prud’Homme et al., 2012), DEAL.ii (Alzetta et al., 2018), and FEniCS (Alnæs et al., 2015).

A plate and shell finite element model simulated using FEniCS (Alnæs et al., 2015) indicates

that such libraries are capable of solving complex finite element problems. Both DEAL.ii



65

and FEniCS libraries are built on top of the PETSc library (Abhyankar et al., 2018) to

parallelize the finite element process. However, PETSc lacks the capability of assembling

matrices on GPU devices. The main application of the above-mentioned libraries is to

solve general differential equation problems such as Laplace, Poisson, etc., using the finite

element method. However, structural analysis finite element models involve a variety of

specific solutions to differential equation models of structural elements in one-, two-, and

three-dimensions which are not provided by the MFEM, FEEL++, DEAL.ii and FEniCS

libraries.

The few structural analysis finite element packages which employ parallel architectures

are summarized by Georgescu et al. (2013). These packages are all proprietary, including

names such as ANSYS, ABAQUES, etc., and are all expensive with high maintenance

costs. Despite these parallelized proprietary packages, to the authors’ knowledge, there are

no finite element packages that actually optimize the runtime of advanced finite element

analyses, in particular with respect to the stiffness matrix calculation and assembly steps,

on multiple CPU and GPU devices for structural analysis purposes.

The algorithms developed in this paper were encoded using the C++ programming

language and they can be run on a single CPU core, multiple CPU cores or GPU threads. The

primary application for the algorithms is to accelerate structural finite element simulations,

especially important for cases where running the finite element models numerous times is

required. This is often encountered in parametric studies or random field simulations where

a finite element analysis needs to be performed multiple times with different geometric or

material parameters.
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4.3 GPU architecture

The detailed explanation of GPU architecture is available in several recent studies (Kirk

et al., 2007; Lindholm et al., 2008; NVIDIA Corporation, 2016a). For easy reference, the

key terminologies and their definitions pertaining to this paper are summarized as follows:

• Kernel: an object composed of a scheduler and instructions to be scheduled. The

scheduler assigns the instructions to various threads.

• Thread: the sequence of program instructions that can be managed independently

and run simultaneously by the scheduler (Butenhof, 1997).

• Compute Unified Device Architecture (CUDA): A parallel programming environment

developed by NVIDIA for general computing on GPU devices.

• Streaming multiprocessor (SM): a part of the GPU device that executes CUDA

instructions. Each SM contains execution units capable of performing math operations

on both integers and floating-point numbers, as well as a scheduler to organize and

assign the instructions to different threads (Wilt, 2013).

• Single instruction multiple data (SIMD): a particular kernel instruction that runs on

all processing units in a streaming multiprocessor which can operate on different data

types, such as integer and floating-point values (Bolz et al., 2003).

• Block: a group of threads with shared memory space which are executed by a single

multiprocessor.

• Grid: a collection of blocks executing a single instruction.
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4.4 Data-oriented design of the finite element method

The algorithm developed in this study is referred to as the Vectorized and Parallelized

Finite Element Method (VPFEM) (Rahimi et al., 2019), https://github.com/vpfem. The

method vectorizes and parallelizes finite element processes by transforming matrices into

column vectors and optimizing the algorithm for running on multiple processing cores. This

data-oriented algorithm shifts the focus in finite element programming from the elements

to the data. In particular, the global stiffness matrix is now viewed in terms of its data,

rather than as a series of elements. Figure 4.1 presents the difference in data management

by DoD and OOP techniques in finite element modeling of a structural shear wall as an

example. Figure 4.1a, and Figure 4.1b show the example shear wall under lateral loading

and its two-dimensional finite element model, respectively. Figure 4.1c represents the data

arrangement used in DoD algorithms which groups the data based on their usage while

Figure 4.1d depicts the data arrangement into different objects (elements) to be used by

OOP designed algorithms. The algorithms developed herein utilized the SIMD techniques

which can be implemented on GPU devices through their massively parallel architecture to

achieve acceleration. In this study, since the DoD algorithms are less modular than OOP

designed algorithm, only the most computationally expensive steps, such as the stiffness

matrix calculation and assembly, and solving the system of equations, were designed using

the DoD technique while the rest of the finite element code, such as input geometry and

material behaviour, was designed with OOP to utilize its modularity.

A class hierarchy of the system, presented in Figure 4.2, was designed to allow the

use of different modules (such as higher-order elements or advanced constitutive material
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Figure 4.1. Data representation in DoD vs OOP programing styles a) an example shear
wall subjected to lateral loading b) a 2-dimensional finite element presentation of the shear

wall c) data arrangement in DoD algorithms d) data arrangement in OOP designed
algorithms

models) and the choice of processor type (e.g., single CPU, multiple parallelized CPUs,

or GPUs). These choices can be made by choosing objects from the relevant classes

rather than by writing specific instructions for each processor. The entire source code of

the VPFEM algorithm is available in the GitHub repository (Rahimi et al., 2019) along

with multiple applications, which are test/examples of a finite element analysis using the

VPFEM algorithm. The following subsections describe the details of the class hierarchy

system used and the algorithms developed in the VPFEM to build a parallelized finite

element framework.
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Figure 4.2. VPFEM flowchart for running nonlinear finite element analysis

4.4.1 Geometry and material classes

The input variables relating to the geometry, loads, and boundary conditions of a structure

for finite element analyses are categorized under the Geometry Class. In particular, these
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variables are the coordinates, forces, and boundary conditions at each node, as well as the

list of nodes composing each element. These variables are managed using the functions

Node, Fix, Load and Mesh, which use dynamic arrays to store the data. The main role of

the Geometry Class is to organize the data so that they can be efficiently loaded into the

processor’s cache memory for the stiffness matrix calculation step. The data are constructed

of low-level arrays containing structures consisting of coordinates, free Degrees of Freedom

(DOFs), mesh, and material stiffness matrices as seen in Figure 4.1c.

The Material Class is responsible for filling in the material stiffness matrices. The

Material Class assigns material behaviour through child classes, such as elasticMaterial,

elasticPerfectlyPlasticMaterial and parabolicMaterial. The modular feature of the library

allows the user to add as many material model child classes as required. This Class calculates

the material stiffness matrix using the material constitutive model and updates the material

stiffness matrix if the analysis requires an iterative process, as in some non-linear finite

element methods (see, e.g., Vecchio, 2000). The Material Class also sorts the material

stiffness matrices according to the element numbers and stacks them into an array to be

used by the DoD algorithms in the Stiffness Matrix Class (Figure 4.1c), as discussed next.

4.4.2 Stiffness matrix class

The Stiffness Matrix Class is responsible for both creating a sparse matrix that stores all of

the local stiffness matrices (Figure 4.3a) and assembles the local stiffness matrices into the

global stiffness matrix (Figure 4.3b). The formulation used to calculate a fully populated

stiffness matrix is described in the literature (Vecchio, 2000; Bathe, 2006). In this study, the
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equations used to calculate the stiffness matrix were simplified and encoded to minimize the

number of math operations required at each integration point. The stiffness matrix of each

integration point can be calculated by any available thread. Therefore, the total number of

instructions which can be run in parallel is equal to the total number of integration points

in the finite element model. For example, a finite element model having n quadrilateral

elements, each having m = N × N integration points, can run n×m instructions in parallel

using the algorithm developed herein.

Figure 4.3. DoD algorithms used in a) calculating b) assembly of the global stiffness
matrix

For the assembly step, the conventional serial approach consists of allocating a memory

address to each non-zero entry in the global stiffness matrix and accumulating values of

entries sharing the same degree of freedom at that memory address. However, this approach,

if attempted to be performed in parallel, will result in a so-called “race condition”, where

two parallel processes attempt to write data to a specific memory address at the same time.
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This is an undesirable situation as both processes are “racing” to access/change the data.

Different solutions have been proposed by several researchers, such as graph colouring

(Cecka et al., 2011), graph partitioning (Klöckner et al., 2009), reduction list (Komatitsch

et al., 2009), atomic operation (Fu et al., 2014; Talebi et al., 2014; Cui et al., 2018), and

matrix-free or assembly-free methods (Margetts, 2002; Smith et al., 2013; Martínez-Frutos

and Herrero-Pérez, 2015; Shterenlikht et al., 2018). The main drawback of these suggested

methods is the overhead cost by preprocessing to identify the DOFs required in the global

stiffness matrix.

This study addressed the overhead problem by converting the global stiffness matrix

from a coordinate format (COO) to a Compressed Sparse Row format (CSR), as illustrated

in Figure 4.3b. The CSR format focuses on the data which allows the algorithm to be

parallelized. The theory and algorithms required to convert a COO format matrix into a

CSR matrix are discussed in detail in the next several subsections.

Parallelization of the local stiffness matrix on GPU devices

On GPU devices, a kernel function is used to schedule tasks amongst the GPU threads

and separate them into blocks and grids. The number of threads that form a block and

the number of blocks that form a grid are dependent on the number of streaming multi-

processors available in the GPU architecture. The GPU scheduler used for this study is

the CUDA scheduler (NVIDIA Corporation, 2018b). The local element stiffness matrices

were calculated at all the integration points of an element and were locally added in shared

memory to form the element stiffness matrix. Algorithm 4.1 shows the instruction used to
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calculate the local stiffness matrices.

Algorithm 4.1. Instructions for parallelizing the stiffness matrix calculation
Data: x,y, D and mesh (vectors)
Result: k (COO sparse matrix)
Operations← number of elements × number of integration points
Kernel parallelStiffnessMatrixCalculation(Operations)
/* divide the Operations between available threads */

stiffnessMatrixCalculation(x(e), y(e),D(e),mesh(e)) // SIMD instruction

Function stiffnessMatrixCalculation(x(e), y(e),D(e),mesh(e))
/* Initialize the local matrix to zero */

K ← 0

/* Find the natural coordinate values and the integration

weights integral at each integration point */

set ξi, η j, wi j

/* calculate the Jacobian and the strain matrix */

calculate J and B

/* calculate the entries of the local stiffness matrix */

ki j ← Σ wi j |J | (BT D B)i j

For CPU devices, a task manager was developed in the VPFEM algorithm to schedule

instructions as a series of tasks to be executed on the available threads in a CPU device.

Each task is basically a group of instructions required to calculate the stiffness matrix of

an element, and each task stacks the instructions required to be run for all the integration

points in each element on a single thread. Each thread sums the local stiffness matrices of

all element integration points in the local memory and stores the resultant local stiffness

matrix into the global memory. Because of the high speed of the local memory, adding the

stiffness matrix of different integration points in the local memory results in an accelerated

process and improved efficiency in memory use. To accomplish this, the task manager first
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creates a pool of parallel threads based on either the user defined number of threads or

the maximum number of threads available in the system. Then the task manager creates a

queued system of jobs, which holds a certain number of tasks depending on the size of the

finite element model, waiting to enter the thread pool. Also, the task manager constantly

monitors the threads in the parallel pool to ensure that all the threads are running at full

potential.

Storing local stiffness matrices

The next step for both the CPU and GPU algorithms is to stack the resultant local stiffness

matrices of all elements into global memory using a sparse matrix format COO (Algorithm

4.1). The key advantages of the algorithm developed herein, compared to OOP designed

algorithms, are first that the stiffness matrices are not parts of different objects, such as

element objects. Therefore, loading the data into the processor memory would not pollute

the cache. Secondly, the process can be performed in parallel as instructions and the data

are independent, allowing the use of SIMD class of parallel computing.

The resulting COO matrix consists of three vectors of equal length containing the DOFs

and values of each non-zero entry of the global stiffness matrix. The length of the vectors

is the number of non-zero entries of the global stiffness matrix, which corresponds to the

number of DOFs. The first two vectors, called DOFi and DOFj , store the DOFs associated

with each entry of the global stiffness matrix. The third vector, called the data vector, holds

the stiffness value of each entry.
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Parallelization of the global stiffness matrix assembly

The instructions for assembling the global stiffness matrix using a parallel algorithm are

depicted in (Algorithm 4.2). As can be seen, the parallel algorithm first requires the entries

in the data vector to be sorted numerically according to both the DOFi and DOFj vectors.

The next step is to add duplicate entries in the sorted vectors, setting the extra entries to zero

and separating non-zero and zero entries. Each thread in the parallel algorithm is responsible

for adding the duplicates in each row of the global stiffness matrix simultaneously. The

algorithm finally updates the Number of Non-Zero (NNZ) entries upon completion. The

non-zero entries are then used to form the row pointer and column indices vectors in a

stiffness matrix having a CSR format. The steps in the algorithm are discussed in more

details as follows.

Algorithm 4.2. Assembly step
Data: k .DOFi, k .DOFj, k .data, NN Z

Result: K // global stiffness matrix in CSR format

Function Assemble(matrix)
/* sort local stiffness matrix */

K = sort(k, compare(m, n))
/* Add duplicates in the local stiffness matrices */

K = addDuplicates(K)
/* separate the local stiffness matrices into non-zero and

zero entries */

K = partition (K)
/* convert the COO matrix to CSR format */

K = csrRow(K)



76

Sorting algorithm The output of the stiffness matrix calculation step is a COO matrix

which is the bundle of local stiffness matrices of all elements. The matrix needs to be sorted

row-by-row to be converted to a CSR format. The sorting methodology adopted herein

uses a comparison operation that determines which of the two entries of the stiffness matrix

should occur first in the global stiffness matrix. The comparison function sorts both the

rows and entries in each row of the sparse coordinate format matrix by reordering the DOFi

and DOFj vectors in an ascending order (Algorithm 4.3). Depending on either single or

multiple processors, different sorting algorithms were used in this study to convert the stack

of local stiffness matrices to a global stiffness matrix.

Algorithm 4.3. Comparison sort algorithm

Function Compare(m, n)
if k .DOFim == k .DOFin then

boolean← k .DOFjm < k .DOFjn

else
boolean← k .DOFim < k .DOFin

end
return boolean

For a single CPU core, the serial comparison sorting algorithm, IntroSort (Musser,

1997), was adopted to sort the stiffness matrix. IntroSort is a hybrid sorting algorithm

which combines Quicksort, Heapsort and insertion sort to minimize the runtime. The time

complexity of the IntroSort algorithm in worst case is O(N log N) when sorting N values.

For multi CPU or GPU cores, a parallel sorting algorithm based on the MergeSort (invented

by Neumann in 1945, i.e. see Knuth, 1998) algorithm, was developed in this study. To

parallelize the MergeSort algorithm, the stack of local stiffness matrices was first divided
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into sub-matrices, as shown in Figure 4.4. A vector of unsigned integer numbers was created

to hold the address of the first and last entry of each sub-matrix. The task manager and

scheduler discussed in the stiffness matrix calculation step was used to manage the parallel

processes on CPU and GPU devices, respectively. The goal was to create a thread pool and

send each of the sub-matrices to a separate thread for sorting.
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Figure 4.4. Dividing the stiffness matrix into sub-matrices for parallel sorting

In this study, the sorting algorithm used in each thread was IntroSort (Algorithm 4.4).

After sorting sub-matrices, the next task was to merge the sorted sub-matrices into a

sorted global stiffness matrix. The merge function inputs two vectors of the same size,

then picks a pivot and uses a rotate function available in Standard Template Library (STL,

2017) to rearrange the data into an ordered set of elements. The merge instruction can then

be performed recursively on subranges of the input vectors to achieve a sorted vector with



78

Algorithm 4.4. Parallel sort algorithm

Function ParallelSort()
for all sub-matrices do

EachSort(sub-matrix[i])
end

Kernel EachSort(k, sub-matrix[i], Compare(m,n))
IntroSort(k.begin() + sub-matrix[i][0], k.begin() + sub-matrix[i][1],
compare(m,n))

twice the size of the input vectors. The merge is usually a serial operation and difficult

to parallelize. The VPFEM algorithm parallelized the merge process by merging adjacent

pairs of sub-matrices using separate threads. The merged sub-matrices are twice the size

of the original sub-matrices and are referred to as updated sub-matrices. Then, the task

manager recursively repeats the process until the global stiffness matrix is fully merged and

sorted.

Figure 4.5 illustrates the successive merging steps required to achieve the final sorted

global stiffness matrix. For example, sub-matrices 1 and 2 in the left hand column of the

figure are merged into the larger submatrix in the central column of the figure. The merge

process involves secondary sorting process so that the larger sub-matrix is also properly

sorted (see STL , 2017). The maximum number of merges required is M − 1 where M is

the total number of sub-matrices in the left hand column of Figure 4.5.

The VPFEM algorithm sorts the matrices in-place which only involves moving indices

so that no data copying is required. Using moves considerably decreases the computational

expense of the sorting process. As mentioned above, the time complexity of the MergeSort

algorithm is O(N log N) when sorting N values on a single serial processor. If both the
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Figure 4.5. Different steps in merging the sorted sub-matrices to a sorted matrix

sort and merge algorithms are done in parallel using many processors the time complexity

changes to O((log N)3) (Cormen et al., 2009). In other words, parallelizing the sorting

algorithm on GPU devices with many available processors can result in a substantial reduc-

tion in runtime. For instance, the time complexity of a case where N = 1000 in the serial

approach is O(3000) while it could be reduced to O(27) if parallelized using many core

architectures.

Adding duplicate entries After the stiffness matrix has been sorted, the next task is

to remove the duplicate entries. Duplicate entries in a sparse COO format of a stiffness
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matrix are the entries with identical DOFi and DOFj values. Duplicate entries occur in

the stack of local stiffness matrices whenever there is at least one node shared amongst two

or more elements in the finite element model. The stiffness values of these shared entries

must be added together, then the duplicate entries can be removed. This process, if done

using a serial algorithm, is generally computationally expensive. The algorithm developed

herein parallelizes the process of removing duplicate entries using the instructions shown

in Algorithm 4.5 using the SIMD class of parallel computing. After adding the duplicate

entries, the duplicate value is set to zero to be removed from the stiffness matrix later. The

main reason for not removing the duplicate values now is it might cause race conditions if

attempted in parallel. In Algorithm 4.5, each thread is to go through a row of the global

stiffness matrix and find the duplicates, add the value to the original entry, and set the

duplicate value to zero.

Upon completion of Algorithm 4.5 for the entire stiffness matrix, the zeroes are then

removed from the matrix to optimize for the solution step. Erasing an entry from a dynamic

array in C++ is a computationally expensive task, since the remainder of the array must

be shifted by one index which involves many copy operations. The time complexity of the

erase operation is the linear distance between the first and last iterator in a vector. The

solution, developed for the VPFEM algorithm, was to partition the stiffness matrix so that

all the zeros were placed at the end of the array rather than deleting them one by one. A

stable partitioning algorithm, called Stable Partition Position, was developed in this study

to reorder the global stiffness matrix and put all the zeros at the end of the array. This

algorithm travels through the array to find the zeros and reorders the array using the rotate
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Algorithm 4.5. Instructions for removing the duplicate entries

Function addDuplicate(rowNumber, rowPtr, Do f j , value)
while counter < rowPtr [rowNumber +1] do

increment← 1
while col[counter] == col[counter + increment] do

value[counter] += value[counter + increment]
value[counter + increment] = 0
increment++

end
counter += increment

end
Kernel addDuplicateKernel(TotalRow, rowPtr, Do f j , value)

int i = blockDim.x * blockIdx.x + threadIdx.x
if i < TotalRow then

addDuplicate(i, row, col, value)
end

function. The rotate function, available in STL, (2017), is an instruction that rotates the

order of entries in a range using a circular shift operation. The circular shift operation

avoids having to re-order the entire vector on each zero removal. While the complexity

of the rotate function is also the linear distance between the first and the last iterator, the

implementation is more efficient as it performs a move rather than a copy assignment, where

in C++, move is more efficient than copy because the move operation casts the reference of

an object instead of cloning the object.

To convert the sorted global stiffness matrix from COO to CSR, the DOFi and DOFj

vectors were simply changed to row pointer and column index vectors. The row pointer

vector is of size rp + 1 where rp is the number of rows in the matrix. The last entry of the

row pointer vector contains the NNZ entries in the matrix. The column index vector is of
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size NNZ and stores the column index of each non-zero entry in the global stiffness matrix.

4.4.3 Solving the system of equations

Once the global stiffness matrix is formed, the next step is to solve the linear system of

equations. The global stiffness matrix is usually a Hermitian, positive-definite matrix.

Direct and iterative solvers were adopted in the VPFEM library to solve the linear system

of equations (e.g. see Martínez-Frutos and Herrero-Pérez, 2015; Vetterling et al., 1999;

Chandrupatla et al., 2002). Direct methods are more useful for small sized stiffness matrices

but would likely fail for larger sized stiffness matrices. It is difficult to define an exact upper

bound for the size of the stiffness matrix for direct solvers as they are dependent on the shape

and condition number of the stiffness matrix, which in turn depend on the specific finite

element problem. As the main goal of the algorithm developed herein was to accelerate

the finite element analysis for parametric and random field studies where finite element

simulation needs to be repeated numerous times, the first run of the finite element model is

used to investigate the efficiency of the various solvers. Then the algorithm can choose the

most efficient solver for the subsequent simulations.

Figure 4.6 shows the efficiency of different solvers versus the number of elements

in a nonlinear finite element problem. It can be seen that the direct solver (Cholesky

decomposition) was the fastest up to about 2500 elements. Above 2500 elements iterative

conjugate gradient methods became more efficient. These approximate “rules” were built

into the VPFEM library to choose a solver in the event that the solver type was not specified.

If the selected solver is unable to reach convergence, the next fastest solver would be tried.
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Figure 4.6. Performance of different solvers versus number of elements used in a nonlinear
finite element example

It should be noted that the results in Figure 4.6 are highly dependent on the type and size

of the finite element problem as well as on the computing system configuration. Iterative

methods may require less memory but at the cost of increased computations, depending

on the convergence behaviour. For example, if the convergence is only achieved in a large

number of iterations then the iterative method may require more computations than the

direct method.

4.5 Implementation example

The VPFEM algorithms discussed in this paper are encoded in C++ as a static library called

the VPFEM library. The library, including example applications, is available in the public

domain (Rahimi et al., 2019) at https://github.com/vpfem. Two examples of structural

problems, one linear and one nonlinear, are presented as follows.
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4.5.1 Linear elastic modeling of a cantilever beam

To demonstrate the performance of the algorithms developed in the VPFEM library, an

example application was constructed consisting of a finite element model of a cantilever

beam as shown in Figure 4.7.
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Figure 4.7. Geometry and mesh discretization of the example cantilever beam

First, the accuracy of the numerically estimated tip deflection, ∆n, provided by the

VPFEM library was compared to the analytical solution of the tip deflection, ∆a. Figure

4.8 presents the results of ∆n/∆a as a function of the number of elements used in the

model. In this example four node isoparametric quadrilateral elements, each having four

integration points, were used to model the cantilever beam. Also, in the figure, the results

obtained using OpenSees (McKenna, 2011), are shown for comparison. OpenSees is a

modular, open-source framework for developing finite element modeling of structural and

geotechnical systems. Note that “Ex” and “Ey” in the figure represent the number of

elements used in the beam in the x and y directions, respectively. It can be seen that the

VPFEM library provides more accurate displacement estimate with fewer elements than
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OpenSees.

Figure 4.8. Numerical displacement vs. number of elements obtained in the VPFEM
library and OpenSees

Next, the example cantilever was analyzed using the VPFEM library on different pro-

cessor configurations including multiple CPUs, GPU devices, and a single CPU. In this

example, 10 million quadrilateral elements having 16 integration points each were used to

model the cantilever beam. The resulting finite element model has 20,022,002 degrees of

freedom and 160 million local stiffness matrices. At the assembly stage the input COO

matrix, which is the stack of calculated local stiffness matrices, has approximately 5.76

billion entries. It is recognized that this level of complexity is not necessary to calculate

the behaviour of a cantilever beam. However, a large finite element analysis such as this

allows the speed of the developed parallel algorithms to be properly tested against serial
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Table 4.1. Details of the processing devices used to test the VPFEM library

Name Device Cores
in use

Clock
speed (GHz) Memory (GB) Memory

type
Memory

speed
Price
ratio*

CPU(1) Intel Xeon CPU E5-2630 v4 1 2.20 128 DDR4 2400 (MHz) 1
CPU(4) Intel Xeon CPU E5-2630 v4 4 2.20 128 DDR4 2400 (MHz) 1
CPU(8) Intel Xeon CPU E5-2630 v4 8 2.20 128 DDR4 2400 (MHz) 1
CPU(10) Intel Xeon CPU E5-2630 v4 10 2.20 128 DDR4 2400 (MHz) 1
CPU(20) Intel Xeon CPU E5-2630 v4 20 2.20 128 DDR4 2400 (MHz) 2
GT 1030 Nvidia GPU 384 1.47 2 DDR5 3 (Gbps) 0.06
GTX 1050 Nvidia GPU 640 1.46 2 DDR5 7 (Gbps) 0.09
GTX 1060 Nvidia GPU 1152 1.71 6 DDR5 8 (Gbps) 0.16
GTX 1070 Nvidia GPU 1920 1.68 8 DDR5 8 (Gbps) 0.18
Titan Xp Nvidia GPU 3840 1.58 12 DDR5 11.4 (Gbps) 0.8

* The price ratios (GPU cost divided by cost of a 10 core Xeon CPU) are calculated based on the prices of the CPU and GPU devices
in Canada at the time of writing the paper, not including the price of other components of the host computer.

algorithms. The hardware specifications of the CPUs and GPUs used in this comparison

are presented in Table 4.1.

The computational runtime ratio of the VPFEM library using different processor con-

figurations is compared in Figure 5.15. The runtime ratio, R, is defined as

R =
single CPU runtime

multiple CPU or GPU runtime
(4.1)

Figures 5.15a and 5.15b plot the runtime ratio, R, of different hardware configurations in

calculating and assembling the stiffness matrix, respectively. The runtime ratios calculated

here are the result of running the example application multiple times and averaging the

various runtimes to estimate the true execution time. This averaging removes variability

due to operating system scheduling. Figure 5.15 shows that the parallel instructions and task

managers implemented in the stiffness and assembly classes have the potential to improve

the performance of the library significantly, depending on the hardware used. In the

stiffness matrix calculation, the parallel instructions resulted in up to 189 times acceleration

comparing to the serial instruction on a single CPU whereas the acceleration was up to 122
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times for the assembly process. The better improvement achieved for the stiffness matrix

calculation was due to the fact that the stiffness matrix algorithm was fully parallelized

while the assembly algorithm was only partially parallelized due to the limitations caused

by race conditions.

Figure 4.9. Runtime ratio of different hardware configuration in a) calculating local
stiffness matrices b) assembling the global stiffness matrix

Figure 4.10 compares the total combined runtime of stiffness and assembly steps vs.

the number of cores in a CPU device (Figure 4.10a) and a GPU device (Figure 4.10b).

Both Figure 4.10a and Figure 4.10b show an approximately linear relationship between the

runtime ratio and the number of CPU or GPU CUDA cores used. On average, the runtime
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ratio using x number of CPU cores (threads) is estimated to be:

R = 0.74 x + 0.2 (4.2)

while the runtime ratio using c CUDA cores on a GPU device is approximately

R =
1

30
c + 3.38 (4.3)

Comparing Equations 4.2 and 4.3 reveals that for a specific number of cores a CPU

could out perform a GPU device. However, at time of writing the paper the most advanced

CPU devices have up to 256 processing cores while GPU devices can have thousands of

processing cores. Also, it should be noted the price per core for GPU devices is much less

than the price per core ratio for CPU devices 4.1.

Note that the run time ratios of the GPU devices GTX1030 and 1050 (384 and 640

CUDA cores, corresponding to first and second dots on the horizontal axis of Figure 4.10b)

do not well fit the linear trend of the more advanced GPU devices because of their limited

memory capacities, which becomes the bottleneck in their total execution time.

It can be seen in Figure 5.15 that the finite element process experiences considerably

more speed-up using the GPU device GTX 1060 (1152 CUDA cores, R = 44) than the

CPU device with 20 processing cores (two Intel Xeon E5-2630 v4 processors, 20 cores, 40

threads, R = 15). In addition, the price of a CPU device is much higher than that of a GPU

device. Table 4.1 shows the price ratios of GPU devices divided by the price of the 10 core

Xeon CPU device used in this research. It is clear that utilizing a GPU device not only
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Figure 4.10. Runtime ratio vs. the number of cores in a) CPU devices and b) GPU devices

results in much faster runtimes, but also considerably decreases the computational cost of

finite element simulations.

Next the cantilever example was used to test the performance of the VPFEM library

against OpenSees and the results are shown in Figure 4.11. In this test, OpenSees 3.0.3

was used to run the model on a single CPU core. The VPFEM library was used to run the

model on both a single CPU core (serial algorithm) and a GPU device (parallel algorithm).

The CPU had the base clock speed of 2.2 GHz, 128 GBs of Error-Correcting Code (ECC)

Random Access Memory (RAM) with a clock speed of 2400 MHz whereas the GPU device

used houses 3840 CUDA cores with 12 GB RAM (Table 4.1). Figure 4.11 compares the

runtime vs. number of elements obtained by the VPFEM library and OpenSees in simulating

the cantilever beam example. It shows that the overall computational time of the VPFEM

library is increasing much more slowly, if at all, than OpenSees, as the number of elements

increases. At 841,000 elements, the VPFEM library parallel algorithm was able to run the
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simulation of the cantilever beam 117 times faster than OpenSees. Even in the case of the

VPFEM library run on a single CPU (serially), the 841,000 elements simulation achieved

by the VPFEM library was still approximately 4 times faster than OpenSees.

Figure 4.11. Performance comparison of the VPFEM library and OpenSees

4.5.2 Nonlinear modeling of a reinforced concrete shear wall

A reinforced concrete panel shear wall (specimen PB21 in Bhide, 1987) was used to test

the performance of the parallelized algorithms in a nonlinear finite element problem. The

material properties of the panel are presented in Table 4.2.

Table 4.2. Material properties of the reinforced concrete panel (Vecchio, 1990)

Material property Value
Modulus of elasticity of steel 200,000 MPa
Yield stress of steel 402 MPa
Modulus of elasticity of concrete 24200 MPa
Compressive strength of concrete cylinder 21.8 MPa
Concrete cracking stress 1.54 MPa
Poisson’s ratio 0.3
Strain in concrete cylinder at peak stress 0.0018

The geometry, loading and boundary conditions of the model is depicted in Figures
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Figure 4.12a and 4.12b, respectively. The nonlinear behaviour of the reinforced concrete

was modeled using the MCFT technique (Vecchio and Collins, 1986) which is based on

an iterative secant stiffness formulation. The shear wall was also numerically modeled by

Vecchio (1990).

(a) (b)

Figure 4.12. Details of the reinforced concrete panel PB21 a) specimen properties (Bhide,
1987), b) finite element model (Vecchio, 1990) (simplest four element case only shown)

Table 4.3 compares strain values computed using the VPFEM library and by Vecchio

(1990) for each iteration of the nonlinear simulation where ϵx , ϵy and γxy are the normal

strains in x and y directions and shear strain, respectively. The strains were calculated at

each integration point then averaged to find the element strain. The max error is defined as

the maximum percentage difference among the three strain values obtained by the VPFEM

library and Vecchio (1990). The table shows that for all iterations, the VPFEM simulation

results compare well with the results obtained by Vecchio (1990) with a maximum error of

less than 1 percent.

The nonlinear example was then used to test the performance of the VPFEM library

implemented on GPU devices. In this comparison, a single CPU (serial algorithm) with the
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Table 4.3. Comparison of strain values obtained by VPFEM library and Vecchio (1990)

Iteration
number

(Vecchio, 1990) VPFEM library Max
ϵx ϵy γxy ϵx ϵy γxy error

10−3 10−3 10−3 10−3 10−3 10−3 (%)
1 0.128 -0.038 0.107 0.128 -0.038 0.107 0.000
2 0.234 0.018 0.189 0.234 0.018 0.189 0.000
3 0.355 0.057 0.345 0.355 0.057 0.345 0.000
4 0.458 0.122 0.540 0.459 0.123 0.540 0.000
5 0.530 0.207 0.736 0.530 0.209 0.736 0.000
6 0.579 0.299 0.908 0.579 0.300 0.908 0.000
7 0.613 0.383 1.048 0.614 0.385 1.045 0.286
8 0.638 0.455 1.159 0.638 0.457 1.155 0.345
9 0.656 0.514 1.245 0.656 0.515 1.240 0.402
10 0.669 0.560 1.310 0.669 0.561 1.300 0.763
15 0.698 0.672 1.462 0.698 0.672 1.457 0.342
20 0.704 0.669 1.497 0.705 0.701 1.494 0.200
25 0.706 0.705 1.505 0.706 0.704 1.500 0.332
30 0.706 0.706 1.507 0.706 0.706 1.501 0.398
35 0.706 0.707 1.507 0.706 0.706 1.502 0.332

base clock speed of 2.2 GHz (Table 4.1) and the TITAN Xp GPU (parallel algorithm) (Table

4.1) were considered. The results are shown in Figure 4.13. As the number of elements used

to model the wall increases, the acceleration of the simulation using a GPU device becomes

increasingly pronounced. For example, at 235,225 elements, the respective model runtime

was 6901.3 s on the single CPU device and 280.1s on the GPU device resulting in 24 times

acceleration by the latter. The improvement in computational time shown by both examples

suggests that the VPFEM library is capable of producing accurate simulation results as well

as accelerating a simulation process significantly when implemented on GPU devices. The

low cost of GPU devices and demonstrated computational savings make VPFEM a viable

solution for engineering finite element problems, especially where numerous finite element

model runs for multiple parameters are required.

It should be noted that the VPFEM library is open-source and an evolving project. At
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the time of writing the paper the library can only perform finite element analysis under

monotonic loading.

Figure 4.13. Performance of the VPFEM library in modeling the nonlinear behaviour of
the reinforced concrete panel

4.6 Conclusions

This paper presents the development of parallelized algorithms for a modular, open source

finite element library, VPFEM, to accelerate structural finite element simulations using

parallelization capability on CPU and GPU devices. Encoded in the C++ programming

language, the unique feature of the algorithm is its use of the Data-oriented Design (DoD)

paradigm with the single instruction multiple data (SIMD) class of parallel computing to

accelerate the stiffness matrix calculation and assembly of the global stiffness matrix. The

algorithm also provides the flexibility of running finite element simulations on a single CPU

core, multiple CPU cores, or multiple GPU threads. The performance of the developed

algorithm was assessed through two numerical examples of structural engineering problems,

one linear, the other non-linear. The results of both examples suggest that the VPFEM library
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is capable of producing accurate simulation results and, when implemented on GPU devices,

results in a significant acceleration of the finite element analysis. While this paper focuses

on the development of a finite element library which can be run on multiple processor

configurations, especially GPU devices, the benefits of clustering GPU devices, also in

combination with CPUs to form a network for large finite element simulations, are being

considered for future research.
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Chapter 5

Study of the in-plane behaviour of concrete masonry infilled RC
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distressed stress field method
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5.1 Abstract

This paper presents further development of the Vectorized and Parallelized Finite Element

Method (VPFEM) for modelling the in-plane behaviour of masonry infilled RC frames

using the Distributed Stress Field Method (DSFM). The main objectives of the study

were to implement the DSFM using the VPFEM library for masonry infilled frames, and

to further develop algorithms specifically for this implementation to accelerate the finite

element model run speed. In this study, the DSFM is used to model the three components

of masonry infilled RC frames, i.e. the bounding frame, infill wall and mortar interface.

The equilibrium and compatibility conditions, as well as material constitutive models, for

each component, are discussed in the paper. The iterative analysis process of the DSFM

in the VPFEM library was carried out using the Single Instruction Multiple Data (SIMD)

95
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class of parallel computing techniques at each element level to achieve acceleration. A

comparison with the experimental results showed that the DSFM is able to accurately

model the behaviour of masonry infilled RC frames. The predicted ultimate load, load

vs. displacement response and the cracking pattern were in a reasonably good agreement

with the experimental results. The performance of the VPFEM library in accelerating the

model run speed was demonstrated through comparisons of run speeds obtained using a

single CPU and several commercially available GPUs. It was shown that GPU devices with

adequate memory space can accelerate up to six times the model run speed when compared

with a CPU and the degree of speed-up was highly dependent on the number of elements

used in the finite element model.

Keywords: Finite element method, masonry infilled frame, VPFEM, GPU, Distributed

stress field method, Secant stiffness approach, SIMD.

5.2 Introduction

The previous paper by Rahimi et al. (2020) described the development of a finite element

library aiming to accelerate finite element simulations in structural engineering applica-

tions. Referred to as the Vectorized and Parallelized Finite Element Method (VPFEM),

the algorithms of the library were developed to utilize the massively parallel architectures

available in Graphical Processing Units (GPUs) to accelerate the key steps of a finite element

simulation. The paper showed the library’s capability of accurately predicting structural

behaviour as well as its performance in accelerating the model run speed when implemented

on GPUs. Building upon the previous paper, this paper employs the VPFEM library to be
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used in a numerical study of in-plane behaviour of masonry infilled Reinforced Concrete

(RC) frames.

Finite element modelling has been increasingly used as an effective tool in studies of

in-plane behaviour of masonry infilled frames (Madan et al., 1997; Shing and Mehrabi,

2002; El-Dakhakhni et al., 2003; Hashemi, 2007; Mohebkhah et al., 2008; Stavridis and

Shing, 2010; Nasiri and Liu, 2017; Rahimi and Liu, 2017). Due to the numerous possible

combinations of various geometric, material, as well as loading parameters for the infilled

frame system, the finite element modelling technique is a viable alternative for analyses

to supplement physical data. Two main categories of modelling techniques, i.e., micro-

modelling and macro-modelling, are commonly used to model masonry infilled frames. The

micro-modelling technique models the individual blocks and mortar with their respective

constitutive relationships. While capable of capturing the localized stress and failure

patterns, the accuracy of this type of modelling is often at the expense of high computational

cost (Mohebkhah et al., 2008; Sarhosis et al., 2014). On the other hand, in a macro-

modelling technique, the infill is considered to be a continuum with a defined stress-strain

relationship. The smeared cracking model is an example of a macro-model (Lotfi and Shing,

1991; Rahimi and Liu, 2017) where masonry is modeled with material laws that consider

the mechanical properties and behavior of mortar joints and concrete blocks in a “smeared”

fashion. This modelling technique is computational efficient and is reasonably accurate in

modelling structures when the effect of local shear stress is negligible (Lu et al., 2013).

However, for masonry infilled frames where shear behaviour is critical, this technique may

be inadequate in capturing cracking patterns and thus potential failure modes. To overcome
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these limitations, this paper implemented the Distributed Stress Field method (DSFM),

originally developed by Vecchio (2000), to model the in-plane behaviour of infilled frames.

The DSFM is an advanced smeared cracking model based on the rotating crack concept.

It has been used to model the in-plane behaviour of concrete and masonry shear walls

(Sadeghian and Vecchio, 2018) and was shown to result in better simulation of cracking

patterns and post-crack behaviour than conventional smeared cracking models (Vecchio,

2000; Facconi et al., 2014). The DSFM applies the rotating crack concept to the average

macroscopic representation of the material behaviour with local shear stress. The method

is also capable of incorporating the local rigid body movements, such as shear slip and

mortar joint slip, and thus is believed to be a suitable modelling technique for simulation of

masonry infilled frames. To the best knowledge of the authors, this study represents the first

effort in implementing the DSFM in the numerical study of in-plane behaviour of masonry

infilled frames.

This study has two main objectives. One is to implement the DSFM to model the in-

plane behaviour of concrete masonry infilled RC frames. The second is to further develop

the VPFEM library (Rahimi et al., 2020) to allow modelling masonry infilled RC frames

using the DSFM. One key characteristic of the DSFM is that the material stiffness matrix

of each element is modified progressively, as a result of the change in crack orientation,

to achieve convergence in the joint displacement field. The process of updating stiffness

matrix needs to be repeated at each iteration and as the number of iterations increases, the

DSFM becomes computationally expensive. The parallelized algorithms of the VPFEM

library can provide a significant acceleration of the DSFM in a finite element simulation
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and achieve computational efficiency. Hence, the ultimate goal of this study is to develop

a computationally efficient and technically reliable finite element modelling package for

predicting the in-plane behaviour of masonry infill RC frames.

5.3 Finite element formulation of DSFM

In this study, the three components of an infilled frame, i.e. the bounding frame, infill

wall, and infill-frame mortar interface were all modeled using the DSFM technique. Figure

5.1 illustrates the general state of stress (Figure 5.1a) as well as the specific local state

of stress in a typical element (Figures 5.1b, 5.1c and 5.1d) for the aforementioned three

components. The subscript c, m, and j, denote the stresses in the concrete bounding frame,

the masonry infill, and the infill-frame mortar interface, respectively. As shown in Figure

5.1a, an element subjected to tensile and compressive stresses may experience cracking in

the principal stress direction. In the DSFM method, the net strain field of the element is

converted to the principal stresses which are used to estimate the direction of the cracked

surface and determine the new secant stiffnesses for each load increment. Then, the secant

stiffnesses are used to update the net strain field. The process continues until a desired level

of convergence in either the displacements or the secant stiffnesses is achieved. Also, in

each component region, appropriate constitutive laws need to be defined and equilibrium

and compatibility conditions need to be satisfied over the element as well as at the cracked

surface. The equilibrium and compatibility conditions, and constitutive laws for each

component are discussed in the following section.
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Figure 5.1. State of stress representation in an infilled frame: a) general stress field in a
typical element; local stress field in b) concrete, c) masonry, and d) mortar interface

elements

5.3.1 Equilibrium and compatibility conditions

In the RC frame (Figure 5.1b), the external force is assumed to be resisted by internal stress

fields in the concrete and the strut and tie forces in the rebars. In the smeared crack model,

the equilibrium within an element in the RC frame is achieved in an averaged smeared
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condition as follows:

[ fc] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

fcx

fcy

fcxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
= [Dc]

[
ϵn

c
]
+

N∑
k=1

[
Dsk

] [
ϵsk

]
(5.1)

where [ fc] is the stress vector in the global coordinates, [Dc] is the material stiffness matrix,

and [ϵn
c ] is the net strain vector. The term [Dsk ][ϵsk ] is the average stress field acting on the

k th reinforcement bar and N is the total number of bars. It should be noted that the average

stress in the rebars is considered to be smeared throughout the element.

When cracking occurs, the cracked surface is estimated to be aligned perpendicular to

the direction of the principal tensile stresses fc1 (Figure 5.1b). After cracking, the loss in

concrete tensile capacity causes the average stress in the rebars fsk to increase by fscrk at

the crack surface to ensure that the equilibrium condition is satisfied using the following

relation:

fc1 =
N∑

k=1

ρk

(
fscrk − fsk

)
cos2 θsk (5.2)

where ρk is the reinforcement ratio of the k th rebar and θsk is the angle between the

orientation of the reinforcement and the crack. The increase in the local stress of the steel

rebars results in a shear stress vs at the crack surface, as shown in Figure 5.1b. The shear

stress vs can then be used to estimate the amount of crack slippage in the crack direction

(Vecchio, 2000).

The compatibility condition also needs to be satisfied for all the elements in the RC

frame. The deformation of each element in the RC frame is a combination of the continuum
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straining and the discrete slip along the cracked surface. While the continuum strain is

calculated using the constitutive laws of the material, the slip strains are calculated using

shear stress vs along the cracked surface within each cracked element. While the detailed

calculation is described in Vecchio (2000), a simple summarization is that the average slip

strain can be calculated as the ratio of the slip along the cracked surface to the average crack

spacing.

In the masonry infill wall (Figure 5.1c) the external force is resisted by the masonry

assemblage consisting of Concrete Masonry Units (CMUs) and mortar joints. Similar to

concrete, each masonry element subjected to a principal stress field cracks when the tensile

stress reaches its limit. At the cracked surface, the local shear (vmbj
, vmhj

) and normal

stresses ( fmbj
, fmhj

) acting along the mortar head and bed joints, as shown in Figure 5.1c,

can be derived based on the equilibrium of internal and external forces. The local shear

stresses may cause a rigid body slip in the direction of the mortar head and bed joints. In

this study, only the shear slip along mortar bed joints was considered. This assumption

was supported by the experimental observation on masonry infilled RC frames under lateral

loading (Rahimi and Liu, 2018) where shear sliding was observed to be only pronounced

in mortar bed joints.

In the frame-infill mortar interface region (Figure 5.1d), the interface element, acting as

the contact between the frame and infill, transfers forces applied from the frame to the infill

wall. Such a contact element has not been considered in DSFM shear wall applications in

previous studies and its modelling using the DSFM technique needs special consideration.

This study proposes the following method for modelling contact elements using the DSFM
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technique. As shown in Figure 5.2, the contact elements crack due to the tensile stresses and

the crack propagates under both tensile and shear stresses with an average crack spacing s j

(Figure 5.2b) and crack width w j (Figure 5.2c). The shear stress in the interface elements

causes a discrete slip δs
j . The average slip strain γs

j in the interface element is then calculated

by the following equation:

γs
j =
δs

j

s j
(5.3)

As a result, the orthogonal components of the slip strain (Figure 5.2d), with reference to

global coordinates, are calculated using Mohr’s circle (Figure 5.2e) as follows:

[
ϵ s

j

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
γsj
2 sin 2α

γsj
2 sin 2α

γs
j cos 2α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.4)

where α is the angle between the direction of the thickness and the global x direction. For

the modelling purposes of this paper the angle α is either 0 or 90 degrees for either the

infill-column or infill-beam interactions, respectively.

One additional point to note is that the presence interfacial gap between the masonry

infill and the bounding frame can be a common occurrence in infilled frame construction.

The effect of the presence of such gap can be considered by including an elastic strain offset

in combination with net and shear slip strains in the compatibility equations.



104

Figure 5.2. Rigid body movement in the mortar interface contact element

5.3.2 Constitutive models

Concrete

The compressive behaviour of the concrete used in this study was based on the model

suggested by Vecchio and Collins (1986) and further refined by Vecchio and Collins (1993).

The latter study showed that transverse cracking causes a softening effect on the compression

capacity of the concrete which can be captured using a factor, βcd , expressed as a function

of principal strains (ϵc1 , ϵc2) in a crack as follows:

βcd =
1

1 + 0.193
(
−
ϵc1
ϵc2
− 0.28

)0.8 ≤ 1.0 (5.5)
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The βcd factor is used to modify both the peak stress f ′c and the corresponding strain

ϵc0 in the compressive behaviour obtained from a standard concrete cylinder test. Adopting

βcd , the compressive behaviour of the cracked concrete in terms of principal stress-strain

relationship is shown in Figure 5.3a as a solid line, which can be expressed as follows:

fc2 = fcp
n
ϵc2
ϵcp

n − 1 +
(
ϵc2
ϵcp

)nk (5.6)

where

n = 0.80 −
fcp
17

(5.7)

and

k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1.0, ϵcp < ϵc2 < 0

0.67 − fcp/62, ϵc2 < ϵcp

(5.8)

Figure 5.3. Stress-strain relationship of a) concrete in compression and b) concrete in
tension

In Figure 5.3a, w corresponds to the point where the crack width exceeds a limit beyond

which the compressive capacity of the concrete drops to zero. In this study the maximum
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crack width was assumed to be 5 mm, as suggested by Vecchio (2000).

The response of the concrete in tension is depicted in Figure 5.3b. In tension, the concrete

behaves linearly elastically up to the cracking stress f ′tc , which is the tensile strength of the

concrete. The tensile strength of the concrete can be estimated to be a function of its

compressive strength using an empirical relation suggested by Vecchio (2000).

f ′tc = 0.65
(
f ′c
)0.33 (5.9)

After cracking, the concrete can follow two independent paths, i.e., tension softening or

tension stiffening. While tension softening refers to the decrease in concrete tensile stress

with increase in crack width, tension stiffening refers to the contribution of the bond between

the reinforcement and the concrete in transferring the tensile stress at the crack to uncracked

segments of the concrete. The tension softening was assumed to be linear in this study

as several finite element models (Vecchio, 2000; Facconi et al., 2014) revealed that linear

formulation is sufficiently accurate. Tension softening can occur in elements with or without

reinforcements. However, tension stiffening is due to interactions between the reinforcement

bars and the concrete and thus can only occur in elements containing reinforcement. The

tensile response of the concrete after cracking is governed by the greater of the stress

determined by either the tension softening fc1a or tension stiffening fc1b .

The path for tensioning softening is dependent on the ultimate strain ϵcts . In this study,

the ultimate strain was calculated as follows based on the fracture energy concept.

ϵcts = 2.0
G fc

f ′tc Lrc
(5.10)
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where G fc is the fracture energy parameter and Lrc is the characteristic length (Darwin and

Pecknold, 1977). The fracture energy was considered to be 75 N/m for concrete in this

study.

The path for tension stiffening was determined using the following:

fc1b =
f ′tc

1 +
√ctc ϵc1

(5.11)

where ctc is the degree of stiffening which is dependent on the reinforcement ratio ρ, and

rebar diameter db (Bentz, 1999).

Steel

The stress-strain model developed by Menegotto and Pinto (1973) and modified by Filippou

et al. (1983) was used to model the behaviour of steel reinforcement bars. Both strain hard-

ening and bond-slip effects were considered. The bond-slip effect refers to a phenomenon

where a steel bar, when embedded in concrete, does not show a pronounced yield plateau

and the “apparent yield stress” is lower than the yield stress of the bare steel bar. This phe-

nomenon was mimicked by reducing both the elastic modulus and yield stress of the steel

bars. Figure 5.4 shows the stress-strain constitutive model used to predict the behaviour of

steel rebars, where the dotted line incorporates both bond-slip and strain hardening effects,

which can be expressed as follows:

fs = b ϵs βs Es +
(1 − b) ϵs βs Es[
1 +

(
ϵs
ϵsy

)Rs
] 1

Rs

(5.12)
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where Es is the elastic modulus, Fy and ϵsy in Equation 5.12 and Figure 5.4 denote the

yielding stress and strain of the steel, respectively. The reduction factor βs, used to account

for the bond-slip effect, was assumed to have a value of 0.6 based on a study conducted

by Dehestani and Mousavi (2015). The strain hardening ratio b was considered to be 0.01

based on the experimental coupon test. Rs is a parameter that effects the shape of the

transition curve and a value of 18 was used, as suggested by Filippou et al. (1983).

Figure 5.4. Stress-strain relationship of the steel

Masonry

Figure 5.5 shows the constitutive models used for the masonry in both compression and

tension, expressed as principal stress-strain relationships. For masonry in compression,

similar to the concrete model, the principal stress in compression fm2 is calculated based

on the principal compressive strain ϵm2 using the following relation (Facconi et al., 2014):

fm2 = ϵm2Em

�����1 − 1

n

(
ϵm2

ϵmp

)n−1
����� (5.13)
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where n is

n =
Em

Em −
fmp

|ϵmp |

(5.14)

and fmp and ϵmp are the peak stress and strain in the compressive constitutive model for

the masonry, respectively. They can be determined through the compressive strength f ′m,

and the corresponding strain from a uniaxial compression test on sample masonry prisms

considering compression softening effect and the orthotropic nature of masonry.

Figure 5.5. Stress-strain relationship of masonry a) in compression b) in tension

The compression softening effect due to tensile strains in the transverse direction (Lotfi

and Shing, 1991) can be considered in a similar manner as in concrete and Equation 5.5

still applies. The effect of biaxial stress field in concrete masonry units of orthotropic

nature on the calculation of the principal stresses was considered using a factor βm. The

concept of βm was proposed by Facconi et al. (2014), and the formulation was developed

in this study based on the modified Mohr Coulomb’s yield criteria. As suggested by the

Canadian masonry design standard S304-14 (2014), the compressive strength of masonry

in the direction parallel to the bed joints, fmx , is approximately 50% of the strength in
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the direction perpendicular to the bed joints, fmy . Using this assumption, the maximum

compressive strength in the cracking direction was then derived as follows and the associated

failure surface is plotted in Figure 5.6.

fm2max
=

1

2

(
fmy + fmx

)
+
1

2

(
fmy − fmx

)
cos 2θbj (5.15)

where θbj is the angle between the direction of the principal stresses and the bed joint,

and fm2max
is the compressive capacity of the masonry in the direction of the principal

stresses.

The βm factor is then calculated to be:

βm =
fm2max

fmy

(5.16)

Figure 5.6. Modified Mohr-Coulomb yield criteria

The falling branch of the stress-strain curve would follow a linear descending path until

20% of the peak stress, fmp , is reached. The slope of the descending branch is calculated as
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follows (Priestley and Elder, 1983):

Zm =
1(

3+ 0.29 fj
145 fj − 1000

− 0.0002
) (5.17)

where f j is the mortar compressive strength.

For masonry in tension (Figure 5.5b), a linearly elastic behaviour was considered before

cracking, where fm1 and ϵm1 are the masonry principal tensile stress and strain, respectively.

Similar to concrete, the effect of the compressive principal stress fm2 on tensile strength can

be considered negligible, according to Facconi et al. (2014). The tension softening portion

of the masonry was also considered to be linear, following a path based on the fracture

energy G fm . The ultimate strain is calculated as follows:

ϵmu = 5.136
G fm

f ′tmLrm
(5.18)

where Lrm is the characteristic length and f ′tm is the tensile capacity of the masonry prisms.

The value of the fracture energy, G fm , was considered to be 40 N/m for the masonry infilled

frames, as suggested by Nasiri and Liu (2017).

Mortar interface

Figure 5.7 plots the constitutive models used for the mortar interface between the frame and

the infill for both compression and tension. The mortar interface in compression follows a



112

parabolic path until failure as follows (Vecchio and Collins, 1986):

f j2 = f j2max

[
2

(
ϵ j2
ϵ j0

)
−

(
ϵ j2
ϵ j0

)2]
(5.19)

where f j2max and ϵ j0 are the stress and strain at the compressive capacity of the mortar inter-

face, which can be estimated using mortar cube samples tested under uniaxial compression

with the compression softening effect included. The compression softening due to cracking

in the principal tensile direction was again considered using the same reduction factor as

defined in Equation 5.5. The ultimate failure was assumed to occur when the crack width,

w, reached 4 mm.

Figure 5.7. Stress-strain relationship for the mortar interface in a) compression and b)
tension

In tension, the stress-strain relationship was considered to be linearly elastic up to the

cracking stress (Figure 5.7b). After cracking the falling branch of the response was assumed

to be linear until the ultimate strain ϵ jtu . Equation 5.18 was also adopted to calculate the

ultimate strain.

A bi-linear shear stress-strain relationship of the mortar interface was assumed as shown
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in Figure 5.8. To determine the maximum shear stress v jmax of the mortar interface element,

the Drucker-Prager yield criteria was employed as depicted in Figure 5.8b and also expressed

as follows.

v jmax =

√(
f jnµ + c j

)2
−

(
f ′jt µ − c j

)2
(5.20)

where µ = tan β j is the slope of the hyperbola (Figure 5.8b), β j is the friction angle, c j

is the cohesion, f jn is the normal stress at the surface of the mortar interface element, and

f ′jt is the tensile capacity of the mortar. Once v j exceeds v jmax , the Mohr-Coulomb friction

rule governs the shear behaviour and the shear slip over the element width t was calculated

based on the following:

δs
j =
µ f jn

G j
t (5.21)

Figure 5.8. Drucker-Prager yield criterion
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5.4 Finite element implementation

In a previous paper (Rahimi et al., 2020), the algorithms of the VPFEM library (github.

com/vpfem) were developed to focus on key steps of the finite element analysis, i.e. stiffness

matrix calculation, assembly, and solving the linear system of equations that are common

to all structural problems. This study further develops the VPFEM library algorithms to

incorporate the DSFM technique for modelling the in-plane behaviour of masonry infilled

frames. Figure 5.9 shows the flow chart which the library follows in the nonlinear analysis

of masonry infilled frame systems. As mentioned earlier, the uniqueness of the DSFM is

that, at each load increment, the material stiffness matrix of each element is checked, based

on principal stresses and strains, and modified progressively to reflect the change in crack

orientation. The process needs to be carried out for each element at each iteration of each

load increment, which leads to very high computational costs. To achieve computational

efficiency of the DSFM, the algorithms the steps 2 through 8 (Figure 5.9) are the focus of

this study, where parallelization is achieved using the framework developed in the VPFEM

library. This is, to the authors’ best knowledge, a first effort to parallelize the DSFM

technique.

Figure 5.10 shows the discretization of a representative portion of the infilled frame. In

this study, bilinear four-node quadrilateral elements were used to mesh all three components,

i.e. the RC frame, the masonry infill wall, and the mortar interface between the two. All the

elements were considered to be elastic, isotropic, and in a plane stress state. The VPFEM

library mesh tool enables the discretization so that the elements of each component at the

boundary are aligned as shown in Figure 5.10b. A sensitivity analysis was conducted at the

github.com/vpfem
github.com/vpfem


115

Figure 5.9. Flowchart for nonlinear analysis of masonry infilled frames

outset of modeling and it was found that on average 11 x 11 mm for the RC frame, 10 x 10

mm for the infill wall and 3 x 3 mm for the mortar interface were the optimal mesh sizes in

order to converge to an acceptable level of accuracy.

This research employed a load controlled iterative secant-stiffness approach. At each

load increment the material stiffness matrix [D], and consequently the element stiffness
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Figure 5.10. Mesh discretization of the infilled frame

matrix [K], were continuously modified until an acceptable level of convergence in dis-

placement was achieved (see step 12 in Figure 5.9). Convergence was considered to be

achieved when the relative difference in displacements was less than 10−5. The iterative pro-

cess involved steps 2 to 8 in Figure 5.9. As the operations in steps 2 to 8 is been performed

for each element with specific input data stored for that element and thus independent from

other elements, this process can be parallelized using GPU architectures. A kernel function

was designed to schedule the task between the available threads (Algorithm 5.1). Since the

data is separate for each element while the instructions for updating the element stiffness

matrix is the same, the process was parallelized through the Single Instruction Multiple

Data (SMID) class of parallel computing.

The detailed step algorithms for steps 2 to 8 can be found in Appendix A. To summarize,

the kernel inputs the structured data including the element information, the global displace-

ment and element nodal forces and outputs a coordinate format (COO) sparse matrix of

stacked stiffness matrices and a vector of updated nodal forces. The VPFEM library takes

the output of the kernel function and assembles the stack of local stiffness matrices into the
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Algorithm 5.1. Parallel algorithm for updating the element stiffness matrix and
nodal forces

Data: dglobal: global displacement, ElementDetails: element information
Result: k: stack of stiffness matrices, F∗: updated nodal forces
Kernel UpdateStiffnessMatrix(dglobal , ElementDetails, ϵ)
/* Divide the operations between available threads */
ElementNumber ← T hreadId.x
/* SIMD instructions */
ϵ ← ElementDisplacementToStrain(ElementNumber ,dglobal) // step 2

ϵn ← ElementStrainToNetStrain(ϵ) // step 3

f ← ElementStrainToStress(ϵn) // step 4

ϵ s ← ElementShearStrain(γs) // step 5

D← ElementMaterialMatrix( f ) // step 6

K ← stiffnessMatrixCalculation(ElementDetails) // step 7 (Rahimi et al., 2020)

F∗ ← ElementNodalForces(ϵ s) // step 8

return k F∗

global stiffness matrix in a Compressed Sparse Row (CSR) format, and solves the system

of equations using the updated nodal force vector (steps 10 and 11 in Figure 5.9). After the

system of equations is solved, the convergence of the displacement is checked by comparing

relatively to the displacement achieved in the previous iteration. If the desired level of

convergence was achieved, the current state is recorded, and the application moves to the

next load increment.

5.5 Performance of the VPFEM library

The efficacy of the VPFEM library in achieving the objectives of this study is demonstrated

through 1) its performance in predicting the behaviour of masonry infilled RC frames in

comparison with test results; and 2) its performance in accelerating the model run speed
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when implemented on GPUs.

First, the finite element model was validated against experimental results of an infilled

frame specimen tested by Rahimi and Liu (2018). The geometry and reinforcement details of

the infilled frame specimen are presented in Figure 5.11. The masonry infill was constructed

using custom-made, half-scale 200 mm standard concrete masonry units laid in a running

bond. The RC frame was designed according to CSA A23.3 (2004b) and reinforcement

detailing, including size, spacing, arrangement of longitudinal bars and stirrups, complied

with code requirements to provide ductility and avoid brittle shear failure.

Figure 5.11. Geometry and reinforcement details of the specimen

The experimental set-up is illustrated in Figure 5.12. The specimen was connected to the

strong floor through high strength bolts and the lateral load was applied at the top beam level

using a hydraulic actuator with a capacity of 250 kN. Two Linear Variable Displacement

Transducers, LVDTs, (LVDT 1 and 2) were mounted at the centerline of the top and bottom

beam respectively to measure the in-plane lateral displacements. Another two LVDTs (not
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shown) were positioned at the mid-height of the masonry infill wall and at the central point

of the top beam respectively, both on the back side, to monitor any possible out-of-plane

movements of the infill wall and the frame, respectively.

Figure 5.12. Schematic view of test set-up

The mechanical properties of Concrete Masonry Units (CMUs), mortar, and masonry

prisms for the infill and those of the concrete and reinforcement for the frame were obtained

experimentally in accordance with ASTM specifications. A summary of the material

properties is presented in Table 5.1.

Table 5.1. Material properties of the specimens

Elastic Compressive Tensile Yield
modulus E strength strength strength

(MPa) (MPa) (MPa) (MPa)
Concrete 12710 29.2 1.7 -
CMUs 3500 25.0 1.6 -
Mortar 2600 22.1 1.3 -
Masonry prisms 2980 10.5 1.04 -
Reinforcement 247357 - 665 446

Figure 5.13 compares the load vs. lateral displacement response obtained using the

VPFEM application with the experimental results. It can be seen that the VPFEM predicted
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an ultimate load of 98.9 kN, which is within 2% of the experimental value of 100.7 kN.

Overall, the VPFEM curve compares very well with the experimental response. The slightly

stiffer behaviour in the rising branch of the finite element curve is believed to be attributed

to the use of first order elements. It is also noted that the VPFEM model showed marked

accuracy in predicting the post-ultimate behaviour.

Figure 5.13. Comparison of load vs. displacement behaviour of the masonry infilled
frame specimen

Figure 5.14 shows the cracking pattern observed at the ultimate load in the experimental

program and the finite element simulations, respectively. The experimental cracking was

predominately in the diagonal direction and corner crushing was the mode of failure. In

Figure 5.14b the shaded elements are those with yielded reinforcements. The lines in

the elements indicate cracking and the direction of the line is the crack direction. The

elements with darker solid lines are the ones that have reached the maximum crack width

limit (failed). The cracking pattern resulted from the finite element simulations shows

pronounced diagonal cracking and compression failure at the corners as well as frame
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cracking, all of which are in agreement with the test observations.

Figure 5.14. Comparison of cracking pattern a) experimental observations b) numerical
simulations

The runtime of the VPFEM analysis using different GPU devices was compared to a

single CPU device for modeling the infilled frame. One comparison is presented in Figure

5.15 where the runtimes associated with the analysis of one load increment in the DSFM

technique are compared. The CPU device in Figure 5.15 refers to a single core in the Intel

Xeon CPU E5-2630 v4. The GPU devices are consumer grade GPU devices with Compute

Unified Device Architecture (CUDA) capabilities, ranging from low-end (GT 1050) to

high-end (GTX TITAN Xp). These GPU devices are proved to be cost efficient for finite

element simulations (Rahimi et al., 2020). All the GPU devices were hosted in the same

workstation. The details of the workstation are provided in Rahimi et al. (2020).

The runtimes presented in Figure 5.15 were the finite element results based on 5144

elements for the infilled specimen. It shows that the GPU device (TITAN Xp) could run

up to 6 times faster than a CPU. However, it is noted that the GPU devices, GT 1030 and

GTX 1050, were not able to speed-up the process due to their limited memory capacity and

speed. The low memory capacity in a GPU device results in the scheduler to cut the global
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data into smaller pieces and copy the data when seemed necessary. The computational costs

associated with transferring data results in a runtime penalty for the mentioned devices.

The model discussed in this paper required twice the memory capacity available in the GPU

devices GT 1030 and GTX 1050. The GPU devices GTX 1060, GTX 1070 and TITAN xp,

on the other hand, were able to accelerate the process due to the higher capacity and speed

in their memory modules. Also, to note that the comparison was conducted on the model

with 5144 elements. If the number of elements were to increase significantly for modeling

a more sophisticated or complex structure, the acceleration as a result of using parallel

algorithm could be more pronounced. For example, for a two-bay, two-storey infilled frame

system with 20160 elements, the run speed in GPU device TITAN Xp would be more than

18 times faster than the CPU device.

Figure 5.15. Runtime vs. the processing device employed in the VPFEM library for
simulating the in-plane behaviour of the masonry infilled frame
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5.6 Conclusions

This paper presents the implementation of the Distributed Stress Field Method (DSFM)

in a self-developed finite element library VPFEM for modelling the in-plane behaviour

of masonry infilled RC frames. Extending application of the DSFM to the analysis of

masonry infilled frames, the paper further developed the mortar interface contact element

between the infill wall and the bounding frame with a shear slip model capable of capturing

the rigid body movement at the cracked surface. When implementing the DSFM in the

VPFEM library, the Single Instruction Multiple Data (SMID) class of parallel computing

technique was used to parallelize the iterative analysis process at each element level to

achieve acceleration. The good agreement of the ultimate load as well as the load vs.

displacement response between the finite element and experimental results suggested that

the DSFM was successfully incorporated in the analysis of masonry infilled RC frames.

Further, the DSFM was also shown to be capable of predicting with a reasonable accuracy

the cracking pattern of the infill. The performance of the VPFEM library in accelerating

the model run speed was demonstrated through comparisons of using a CPU and several

configurations of GPUs. It was shown that GPU devices can accelerate up to six times the

model run speed when compared with a CPU for simulating an infill wall. The degree of

speed-up is highly dependent on the number of elements. The greater number of elements,

the more significant speed-up can be expected.
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Chapter 6

Summary and conclusions

This research consisted of two distinctive objectives. In phase one, a reliability analysis was

conducted which implemented the Random Finite Element Method (RFEM) in estimating

the resistance factor for designing the masonry infill walls. The randomness of masonry

materials was considered by random field simulation of masonry compressive strength

over masonry infills. A total of 1000 random field realizations for each set of statistical

parameters of masonry compressive strength was generated. A numerical model developed

in OpenSees software was used to produce a histogram of lateral load resistance of masonry

infills by numerically analyzing each random field realization. A lognormal distribution was

fitted to the histogram of each parameter set which results in a total of 27 simulation-based

distributions of lateral load resistance of masonry infills. The simulation-based distributions

were used to calibrate the analytically-based formulation for design strength of masonry

infills. The calibrated analytical simulations were then used to derive the lateral resistance

factor of masonry infills. In phase two, parallelized algorithms for a modular, open source

finite element library were developed to accelerate structural finite element simulations,

using parallelization capability on CPU and GPU devices. The library was encoded in

the C++ programming language, the unique feature of the algorithm is its use of the data-

oriented design (DoD) paradigm with the single instruction multiple data (SIMD) class of

125
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parallel computing to accelerate the finite element process i.e. stiffness matrix calculation,

assembly of the global stiffness matrix and solving the system of equations. The algorithm

also provides the flexibility of running finite element simulations on a single CPU core,

multiple CPU cores, or multiple GPU threads. The finite element library also implemented

the Distressed Stress Field Method (DSFM) for modelling the in-plane behaviour of masonry

infilled RC frames. Extending application of the DSFM to the analysis of masonry infilled

frames, the study further developed the mortar interface contact element between the infill

wall and the bounding frame with a shear slip model capable of capturing the rigid body

movement at the cracked surface. When implementing the DSFM in the library the SIMD

class of parallel computing technique was again used to parallelize the iterative analysis

process at each element level to achieve acceleration. The ultimate load as well as the load vs.

displacement response between the finite element and experimental results were compared

and discussed. The performance of the library in accelerating numerical simulations of

masonry infilled RC frames was examined. The conclusions drawn from this study are

listed in the following.

6.1 Reliability analysis

• The two-dimensional finite element model developed in OpenSees was shown to

produce a good agreement of the ultimate load and stiffness as well as the load vs.

displacement response against the experimental results under both static and cyclic

loading.

• The macro-modeling technique was selected to be a more suitable tool when compared



127

with the micro-modeling technique in reliability analyses of infilled frames with

potentially thousands of numerical-model runs.

• Random field simulation of masonry compressive strength using lognormal distribu-

tions was shown to be a good choice when fitting distributions to the histograms of

the lateral load resistance of masonry infills.

• Geometric averaging of the masonry compressive strength over the areal of the

diagonal strut was essential in accurately calibrating the analytical-based distributions

of the lateral load resistance.

• The analytical formulations for estimating the lateral resistance distribution of ma-

sonry infills were successfully calibrated using the simulation-based distributions.

• The resistance factor of 0.8 for the target reliability index of 3 was achieved for

strength design of masonry infills.

6.2 Finite element library

• The data-oriented design (DoD) paradigm along with the single instruction multiple

data (SIMD) class of parallel computing allowed running finite element analysis on

devices with massive parallel architecture.

• The finite element library developed in this study, VPFEM, can accelerate the finite

element process up to 122 times using a consumer level GPU device, GTX TITAN

Xp.
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• The VPFEM library is available in public domain.

• The VPFEM library is encoded using C++ programming language.

• The Distressed Stress Field Method (DSFM) used to model the in-plane behaviour

of infilled frames for the first time in the developed library showed good agreement

between the numerical and experimental results.

• The developed finite element for modeling the in-plane behaviour of infilled frames

using the VPFEM library was shown to accelerate the finite element runtime signifi-

cantly.

• The degree of acceleration in the VPFEM library is highly dependent to the number

of elements in the finite element model and the number of cores in the parallel device.

The greater number of elements and the number of cores, the more significant speed-

up can be expected.

6.3 Recommendations for future work

The following is recommended for future research:

• All the experimental studies used to calibrate the finite element models were on spec-

imens made with half-scaled CMUs and one set of material properties. Experimental

investigations on full-scaled specimens as well as varying material properties for both

masonry and concrete would provide valuable information on the behaviour masonry

infilled RC frames.
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• Reliability analysis used in this study was based on a random field simulation of the

masonry compressive strength and the focus was on the masonry infills. Parameters

such as such as masonry unit geometry might be of interest. Further, studying the

reliability of infilled frames by introducing the randomness of the frame member

properties, such as concrete compressive strength, would afford a reliability analysis

from a system point of view.

• In this study the lateral load was considered to be deterministic seismic load. Con-

sidering both the randomness and type of the lateral loads would result in a more

reliable resistance factor.

• This research focused on developing a finite element library that can be run on

multiple processor configurations, especially GPU devices. A study on the benefits

of clustering GPU devices, also in combination with CPUs to form a network for

large finite element simulations can be a topic of future work.
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Appendix A

Detailed overview of the kernel function

This section describes some of the data oriented algorithms used in the kernel function

(Algorithm 5.1). For each step in the flowchart depicted in Figure 5.9 there is a function in the

kernel function. In step 2, the total strain in an element is determined using the deformation

vector [d] and the element strain matrix [B]. As the same element type was used for all

three continuum spaces, the process is the same for all elements. Algorithm A.1 shows the

procedure for calculating the strain at each element. The input data of the procedure are

the element number, the global displacement vector, and the element information such as

the coordinates of the nodes and integration points. First, the displacement at each node

of the element is extracted from the displacement vector. Then, the strain matrix [B] of

the element is calculated using the element information (Bathe, 2006). The strain matrix is

then multiplied by the element displacement vector to calculate the element strain [ϵ].

Algorithm A.1. Casting the global displacement to element strain, step 2.
Data: dglobal: global displacement ,ElementDetails: information on Integration points and

coordinates
Result: ϵ : strain field at each element
Function ElementDisplacementToStrain(ElementNumber ,dglobal)
/* Find element displacement using global degrees of freedoms */
d ← ElementDisplacement(ElementNumber ,dglobal)
/* Find strain matrix using the element shape function */
B← StrainMatrix(ElementNumber , ElementDetails)
/* Calculate the element strain using the following relation */
ϵ ← Bd

return ϵ
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In step 3, the element net strain is determined, while preserving the compatibility

conditions (Algorithm A.2):

Algorithm A.2. Calculating the net strain field, step 3.
Data: ϵ : element total strain, ϵ s: element slip strain, ϵ0: element elastic strain offset, ϵ p: element

plastic strain offset
Result: ϵn: element net strain
Function ElementStrainToNetStrain(ϵ , ϵ s , ϵ0, ϵ p)
[ϵn] ← [ϵ] −

(
[ϵ s] + [ϵ p] +

[
ϵ0
] )

return ϵn

In step 4, the principal strains are calculated from the net strain field [ϵ in]. Then, the

principal stresses are evaluated and the cracked surface is determined (Algorithm A.3).

Algorithm A.3. Calculating the principal stresses, step 4.
Data: ϵn: element net strain, constitutive relations
Result: f : element principal stresses
Function ElementStrianToStress(ϵn)
/* Calculate the principal strains using Mohr circular formulation */
/* Translate strains to stress using the constitutive relations */

return f

In Step 5, the shear slip strain is recalculated, as the crack reorients, based on the

instruction discussed for each continuum space. In step 6, the material stiffness matrix

is constructed based on the secant stiffness method. As the element stiffness matrix of

each element is defined in the global coordinates directions the material stiffness matrix is

transformed by the inclination angle of the principal stresses (Algorithm A.4).

In step 7, as discuss by Rahimi et al. (2020), the element stiffness matrix [k] is constructed

through numerical integrations. To consider the strain offset into account the pre-strain nodal

forces need to be evaluated (Vecchio, 1992, 1990). In step 8, slip strain offset is calculated.

The nodal forces caused by shear slip is refined at each iteration. The element nodal forces

caused by shear slip is determined by multiplying element stiffness matrix by the free nodal
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Algorithm A.4. Calculating the material stiffness matrix, step 6.
Data: f : element principal stresses
Result: D: element Material matrix
Function ElementMaterialMatrix( f )
/* Calculate the secant moduli at the principal stress direction */

[Dp] ←

⎡⎢⎢⎢⎢⎢⎢⎢⎣
E i
1 =

f i1
ϵ i1

0 0

0 E i
2 =

f i2
ϵ i2

0

0 0 Gi =
E i

1E
i
2

E i
1+E

i
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
/* Transformation matrix */

[T] ←
⎡⎢⎢⎢⎢⎣

cos2 θσ sin2 θσ cos θσ sin θσ
sin2 θσ cos2 θσ − cos θσ sin θσ

−2 cos θσ sin θσ 2 cos θσ sin θσ cos2 θσ − sin
2 θσ

⎤⎥⎥⎥⎥⎦
// θσ is inclination of principal stresses

/* Calculate the material matrix */
[D] ← [T]T [Dp][T]

return D

displacement. The free nodal displacement was determined by integrating the element slip

strain over the area of the element (Algorithm A.5).

Algorithm A.5. Calculating the pre-strain nodal forces, step 8.
Data: ϵ s: element slip strain
Result: Fs: pre-strain nodal forces
Function ElementNodalForces(ϵ s)
/* Calculate the free nodal displacement */

[rs] ←
∫
[ϵ s]dA

/* Calculate the pre-strain nodal forces */
[Fs] ← [k][rs]

return Fs

In step 9, the pre-strain forces are assembled then added to the nodal force vector

from the last loading step (Algorithm A.6). The pre-strain nodal forces caused by elastic

and plastic strain offsets are calculated at onset of each load increment using the similar

procedure described in Algorithm A.5.
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Algorithm A.6. Updating the nodal force vector
Data: F: Nodal forces from the current loading step, F∗s, F∗0, F∗p: Nodal forces due to strain

offsets
Result: F ′: updated nodal force vector
Kernel NodalForcesAssembly(F, F∗s, F∗0, F∗p)
/* Assemble pre-strain nodal forces */
F∗ ← F∗s + F∗0 + F∗p

/* update the force vector */
F ′← F∗ + F

return F ′
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