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Abstract

Micro-organisms seem to flagellate about wherever they please, in our bodies and in

the natural and built environments, but they are more cunning than their meandering

behavior would suggest. By creating networks of biochemical pathways, communi-

ties of microbes are able to modulate the properties of their environment and even

biochemical processes within their hosts. Next-generation high-throughput sequenc-

ing has led to a new frontier in microbiology and microbial ecology which promises

the ability to leverage the microbiome for good in every facet of our lives, and the

stakes are high as global society hurtles toward several apocalyptic ecological crises.

However, along with the fascinating complexity of microbial community dynamics

comes equally complex data considerations for researchers: genomic data are high-

dimensional, sparse, noisy, and refuse to cooperate with authorities. In fact, they

will not even cooperate with each other, which prohibits the sorts of consensus-based

validation and meta-analysis that we rely on in science. In this thesis we propose an

ensemble approach for cross-study exploratory analyses of microbial abundance data,

in which we first estimate the variance-covariance matrix from each dataset assuming

Poisson sampling, and subsequently model these covariances jointly so as to find a

shared low-dimensional subspace of the feature space. By viewing the projection of

the latent true abundances onto this common structure, the variation is pared down

to that which is shared among all datasets, and is likely to reflect more generalizable

biological signal than can be inferred from an individual dataset. We investigate sev-

eral ways of achieving this, and demonstrate that they work well on simulated and

real metagenomic data in terms of signal retention and interpretability.
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Chapter 1

Introduction

Communities of microbes inhabit all areas of the environment, including the body

cavities and exterior surfaces of larger organisms. Each microbiome can be thought

of as a community of shared genes and metabolic pathways, which act as complex

systems in ways defined in part by their composition, or which microbial taxa are

present and in what abundance (Boon et al., 2014). These communities vary widely

in composition; in studies of microbial communities that inhabit the human skin or

within the human gastrointestinal tract, distributions of bacterial taxa are distinct

among individuals. However, certain patterns of colonization seem characteristic

across individuals, and analogously across environmental sites, given similar condi-

tions. In fact, mounting evidence suggests that micro-organisms comprising the gut

microbiome interact with host systems in myriad ways, and that understanding these

associations could have profound implications for our ability to predict, diagnose, or

treat pathologies. Similarly, the environmental microbiota, such as the communities

characterizing strata of the soil or water column in a particular geographic region, has

enormous influence on local physiochemical conditions with far-reaching implications

for ecology, agriculture, fisheries, and biotechnology. Moreover, the study of micro-

organisms, their community dynamics and emergent properties, and their interactions

with the complex cellular systems of animals (such as immunological pathways) con-

tinues to help researchers elucidate how the fabric of life on earth was woven by these

tiny puddles of protoplasm.

Although microbial communities are rife with all sorts of bundles of genetic material—

including archaea, microbial eukaryotes, helminths, and viruses—bacteria tend to be

given the most attention, perhaps because of their sheer abundance and diversity. Two
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of the most common ways to characterize the composition of the bacterial microbiome

involve the use of high-throughput next-generation sequencing technologies, which

have drastically widened the scope of genomics research in recent years. One of

these methods, shotgun metagenomics, sequences every DNA fragment found in a

sample regardless of its origin. Bioinformatic techniques are then used to assemble the

reads, infer which genes are present in the sample, and assign taxonomy, resulting in

counts of how many instances each taxon was sampled. The other method, called 16S

targeted-gene or amplicon sequencing, selectively sequences DNA fragments matching

the ubiquitously conserved gene encoding bacterial (16S) ribosomal RNA. Reads are

then clustered based on similarity, and finally one is left with counts of how many

instances each bacterial “taxon” was sampled. In the 16S case, these “taxa” are

called operational taxonomic units (OTUs) if determined by clustering thresholds,

or amplicon sequence variants (ASVs) if resolved exactly by correcting sequences for

run-specific error patterns (Callahan, 2017); with this understanding, for the sake of

simplicity we will henceforth use the terms taxon/taxa to describe micro-organisms

of ambiguous taxonomic level regardless of method.

With 16S sequencing, only the counts of bacterial constituents of the sample are

available, while metagenomics allows us to infer the full taxonomic profile and also

makes possible analysis of functional pathways in the community, since we have in-

ferred every gene in our sample. Of course, just like in macro-ecology, distribution

of functions, or niches of particular taxa, can be highly specific to the conditions

of an individual community, and things are further complicated in the microbiome

by the fact that genes are also laterally transferred between microorganisms. While

taxonomy may not be able to tell the whole story, in this thesis we have already

implicitly restricted our attention to analyzing the microbiome by taxonomic rather

than functional profiling. Let us now make that explicit: comparison of the utility of

metagenomic vs. 16S sequencing, especially with respect to taxonomy vs. function,

is beyond our scope. Suffice it to say that 1) while 16S (and hence taxonomy-based)

studies have some drawbacks, they also have benefits significant enough that they are

likely to remain popular for the foreseeable future (Langille, 2018), and 2) abundance

data from either 16S and metagenomic sequencing pose similar obstacles to classical

statistical analyses, and so the contents of this thesis apply to both.

Regardless of sequencing protocol, the output comprises sequences of base pairs from

a random sample of the total collection of genes in the community. This means

that we only observe a given count of each taxon, and not its true abundance in the
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community. In addition, the “depth” of sequencing, or the average number of reads

in a sample that align to a known reference, varies significantly by sample and is

thus a source of multiplicative error on the counts. Since many short fragments of

a sequence have to be read and aligned with each other in order for that sequence

to be recognizable, samples with lower sequencing depth have lower observed counts

and more uncertainty. Furthermore, thousands of microbial taxa can be present in a

single sample, many of which are present in extremely low numbers while the number

of samples is, as in any experiment, limited by cost. As a result, each dataset has far

more features than samples (Kurtz et al., 2015), and in a given sample there will be

zero instances of many taxa. The high dimension and sparsity of these data invalidate

most existing methods of inferring factors associated with large variation among con-

ditions (Sill, Saadati & Benner, 2015). There is also evidence that the “compositional

effects” arising from sampling can cause spurious correlations when distributions of

taxa are unbalanced. Despite the promise held by microbial abundance data, analysis

is so statistically challenging (Tsilimgras & Fodor, 2016) that scope for application is

currently limited.

As it happens, further complications arise when genomic samples from different stud-

ies are compared with one another. In order to sequence DNA, it first has to be

isolated from a sample, fragmented, and potentially amplified. Each of these pro-

cesses requires a number of laboratory techniques and reagents, and procedures vary

substantially between labs. Sequencing platforms also differ, and presumably there

are also machine calibration differences between two sequencers of the same model.

The result is that even when studies look at similar samples (for example, if two

independent European studies each extracted DNA from fecal samples of men and

women with or without colorectal cancer, and performed metagenomic sequencing

with Illumina HiSeq technology) or even when the exact same samples are sent to two

different labs for sequencing, the signal patterns are very different due to dominating

“batch effects” that arise from differences in reagents, sequencing platforms, machine

calibration, and other sources of technical variation. This noise persists even under

highly controlled conditions (Oytam et al., 2016) and can obscure the signal of in-

terest, such that machine learning classifiers enjoying good within-study performance

become grossly inaccurate when applied cross-study (Sze & Schloss, 2016). Batch

effects impair our ability to determine whether results generalize to other cohorts and

preclude meaningful cross-validation and meta-analysis (Buhule et al., 2016; Leek et

al., 2010; Miller et al., 2016).
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It is only because of this perfect storm of challenges that microbiologists eventu-

ally had no choice but to descend into darkness to seek counsel from statisticians,

who until this time were only known to emerge from their dank caverns under the

cover of night to feed on insects and tree-borne fruit. Microbial abundance has often

been modelled as continuous by computing proportions of observed counts to the

read depth of the sample (relative abundance), and some workflows involve rarefying

counts which sacrifices observed data in order to equalize read depth. Hence, two gen-

eral recommendations by statisticians for better statistical treatment of abundance

data are 1) that an appropriate discrete generating distribution be used to model

the sampling of counts, such as Poisson, negative binomial, or multinomial, and 2)

that sequencing depth error be treated within a statistical framework (McMurdie &

Holmes, 2014). Additionally, it is well supported in both microbial and macro-ecology

that the logarithmic scale can be useful when modeling populations of organisms in

a community (Oleson et al., 2016). However, the issue of batch effects has not been

as thoroughly investigated.

In the RNA microarray literature, several approaches to correcting batch effects have

been proposed, the most popular of which performs gene-wise Bayesian location-scale

adjustment (Johnson et al., 2007). Several methods that combine regression and

singular value decomposition (Leek et al., 2007; Gagnon-Bartsch et al., 2013) have

also been proposed, aiming to project away noise, which is determined as such based

on gene expression signatures gleaned from regression. However, microarray data is

very different from microbial abundance data; critically, we have no equivalent of

“housekeeping genes” with which to base inferences about signal source. With the

goal of pooling data across case-control microbial abundance studies, Gibbons et al.

(2018) proposed a within-study non-parametric normalization technique, in which

abundance of taxa in case samples are converted to percentiles of the abundance

of equivalent taxa in control samples. However, their results are based on naive

relative abundance models, which were run on a subset of taxa chosen in an ad hoc

fashion (i.e., those that occurred in at least one third of case or one third of control

samples).

This brings us to our purpose, which is to address the broadly meta-analytic difficul-

ties presented by batch effects or technical variation in high-throughput genomic data.

We will operate under the assumption that signal shared among different datasets on

the same variables is likely to represent biological variability of interest, whereas dis-

parate signal likely reflects variability attributable only to unimportant differences in
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experimental conditions. Accordingly, we propose that if the variances are estimated

reasonably well from individual datasets, then an existing multi-group method can be

applied to these estimates in a simultaneous fashion to remove unshared variation. We

assume Poisson sampling, estimate quantities on the logarithmic scale, and account

for sequencing depth in our models. We deal with sparsity and the high-dimensional

feature space by analyzing abundance at the genus level, which is a trade-off we make

in order to obtain high-quality variance estimates. Our overall approach is to 1) es-

timate the variance-covariance matrices Σ1, . . . ,ΣS from n1, . . . , nS observations of

counts on the same p variables from different experiments, accounting for Poisson

error and sequencing depth error, and then 2) use Σ̂1, . . . , Σ̂S to find a common low-

dimensional subspace of the original feature space. By projecting the latent vectors

of Poisson means, Λis, i = 1, . . . , ns, s = 1, . . . , S into this subspace, we can eliminate

most technical noise while retaining shared biological signal, which should facilitate

novel exploratory findings as well as improved machine learning prediction.

The rest of the thesis is organized as follows. In Chapter 2 we will review the candidate

statistical methods that will be used to perform each part of the two-step ensemble

method: Section 2.1 reviews the candidate methods for estimating the variance of

the latent Poisson means on the log scale, while Section 2.2 reviews the candidate

methods for estimating the common loadings from the variance estimates, and the

method we use to estimate the projections of the underlying microbial abundances

onto the new coordinate system defined by the estimated loadings. Chapter 3 presents

our simulation study designed to test the ability of each candidate ensemble method

to recover known signal, and provides the results of these experiments. Chapter 4

presents our analysis of two real metagenomic datasets, comparing the ability of each

candidate ensemble method to find a low-dimensional representation of the underlying

taxonomic abundances that preserves genuine biological signal. Finally, in Chapter

5, we discuss the implications of our findings and propose future work.
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Chapter 2

Review of Methods

2.1 Estimation of Variance

Before we can estimate the common signal among several datasets, we first have to

deal with the Poisson error in each dataset individually. In this work we will con-

sider two approaches for which the observations are conditionally Poisson-distributed.

Since our application is the analysis of microbiome composition, we are primarily in-

terested in treating the means on the logarithmic scale, which arises naturally in

the first method via the canonical link function, and in the second method can be

achieved by a transformation.

The first approach is to leverage the Poisson log-normal PCA (PLNPCA; Chiquet et

al., 2018), a fully parametric model that extends Tipping & Bishop’s (1999) prob-

abilistic PCA such that the emission layer is Poisson (or any natural exponential

family distribution) rather than normal. That is, the log of the Poisson mean is

a function of a latent variable which follows a multivariate normal distribution of

lower dimension than the feature space, and the observed counts are—given the log

Poisson mean—independently Poisson-distributed. Using this framework we have the

option of introducing row-wise sums as an offset to treat sequencing depth as observed

sampling effort, and can obtain an estimate of the variance-covariance matrix.

The second approach is to use Poisson PCA (PoissonPCA; Kenney et al. 2019) to

sidestep a complex likelihood-based model in favor of assuming only that the observed

counts are—given the latent Poisson means—independently Poisson-distributed, po-

tentially including sequencing depth as a nuisance random variable. The authors

derived an unbiased variance estimate for any non-linear transformation of the la-
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tent means, as well as a semi-parametric method for estimating the scores of the

transformed means that we will use in Section 2.

Poisson Log-Normal PCA

Let Xi ∈ Np, i = 1, . . . , n be a random vector of which we have observed n realiza-

tions. Tipping & Bishop (1999) showed that PCA can be cast as a parametric model

in which the Xi are conditionally independent given the iid latent variables wi ∈ R`

as follows:

Xi|wi ∼ N (βwi + µ, σ2Ip), with wi ∼ N (0`, I`), i = 1, . . . , n (2.1)

Clearly this resembles classical factor analysis in that normally distributed latent

variables wi are “loaded” by a p × ` matrix β so as to produce the observation Xi

along with some noise, although in contrast to factor analysis, the error variance

σ2 is constant. The marginal distribution of Xi is also normal, with mean µ and

variance ββT + σ2I, and so it can be shown fairly easily that the global maximum

of the likelihood is attained when the columns of β are the principal eigenvectors of

the sample covariance matrix, and that for this optimal β the maximum likelihood

estimate of σ2 is given by the average of the p− ` smallest eigenvalues.

Probabilistic PCA is of interest to us particularly because of its ability to create an

elegant covariance model of the data, since V̂ar(X) (where X is the n × p matrix

comprised of rows XT
i ) is defined entirely by the estimated loading matrix β̂ and the

residuals σ̂2. Since we are dealing with count data, we turn to the natural exponential

family extension to probabilistic PCA presented by Chiquet et al. (2018). We will

review their results and show more detailed derivations for the Poisson case, i.e.,

PLNPCA.

Now, note that equation (2.1) could be equivalently expressed as conditional on the

linear transformation Zi = βwi + µ, where Zi is multivariate normal with mean

µ ∈ Rp and variance Σ = ββT ∈ Rp×p, since wi has mean vector 0` and identity

variance. So, it is through Zi that β and wi characterize the data. PLNPCA inherits

this same latent structure, but we no longer have a multivariate normal distribution

for Xi|Zi. Instead each independent Xij, given Zij, is a realization from a Poisson

distribution with parameter Zij, j = 1, . . . , p. If each of these Poisson distributions

has mean Λij, then using the canonical parameterization for exponential families, we

have that η(Λij) = log Λij. Thus, in the case of PLNPCA, Zi = log Λi, where log is
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assumed to be applied element-wise whether we speak of log Λi ∈ Rp or the n × p

matrix log Λ. Since we are interested in log Λi as opposed to the noisy observed data,

we can find an estimator for Σ = Var(log Λ). Of course, like probabilistic PCA,

PLNPCA also provides the opportunity to estimate a low-rank covariance matrix

depending on the dimension chosen for the latent space, but since we wish only to

reduce dimension based on the common variation across all S datasets, we will be

using a rank-p estimate. Also, we are not interested in accounting for covariates, as

we want to avoid disrupting signal in a supervised fashion, so we replace the main

effects µ with ξi ∈ Rp to denote sample-wise offsets (i.e., ξi1 = ξi2 = · · · = ξip). In

the microbiome setting, we choose these offsets to correspond to log-total read count,

which is the closest we have to an observed value for sequencing depth. Should we

wish not to apply a sequencing depth correction, the following results in the rest of

this section hold as written for ξi = 0p. So, equivalently to probabilistic PCA, we

have latent wi ∈ R` iid N (0`, I`) and log Λi ∈ Rp, where

log Λi = ξi + βwi, i = 1, . . . , n (2.2)

or again equivalently, log Λi is multivariate normal with mean ξi and variance Σ =

ββT ∈ Rp×p. No uniqueness constraints are put on β. Observations Xij are generated

according to the Poisson distribution with mean Λij:

p(Xij| log Λij) =
1

Xij!
exp(Xij log Λij − exp(log Λij))

such that, for the canonical log link, log(E(Xij| log Λij)) = log(exp(log Λij)) = log Λij.

The complete log-likelihood of the observed data and the unobserved latent w is thus

given by

L(X,w; ξ, β) =
n∑
i=1

(
log p(Xi|wi; ξi, β) + log p(wi)

)
(2.3)

∝
n∑
i=1

[ p∑
j=1

(
Xij(ξij + βTj wi)− exp(ξij + βTj wi)

)
−
∑̀
r=1

1

2
w2
ir

]
(2.4)

We want to maximize the marginal likelihood L(X; ξ, β), but this isn’t necessarily

analytic for all choices from the natural exponential family. The authors suggest that

most numerical methods, even expectation-maximization, could be computationally

challenging, and so they propose integrating out w under a variational approximation
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of p(w|X). Variational inference uses the distribution that we have assumed for

the latent variable to construct a lower bound for the marginal distribution of the

data. We can then maximize this lower bound instead of the likelihood (Blei et al.,

2017).

Let p̃ρ(w|X) denote an approximation of p(w|X), where the former will be henceforth

written with its parameter(s) ρ left implicit. Let

KL[ p̃(w|X) || p(w|X) ] =

∫
w

p̃(w|X) log
p̃(w|X)

p(w|X)
≥ 0

denote their Kullback-Leibler divergence. Then we have

KL[ p̃(w|X) || p(w|X) ] =

∫
w

p̃(w|X) log
p̃(w|X)

p(w|X)

=

∫
w

p̃(w|X) log
p(X)p̃(w|X)

p(w,X)

=

∫
w

p̃(w|X)

[
log p(X) + log

p̃(w|X)

p(w,X)

]
=

∫
w

log p(X)p̃(w|X) +

∫
w

p̃(w|X) log
p̃(w|X)

p(w,X)

= log p(X)

∫
w

p̃(w|X) +

∫
w

p̃(w|X) log
p̃(w|X)

p(w,X)

= log p(X) +

∫
w

p̃(w|X) log
p̃(w|X)

p(w,X)
, (2.5)

since
∫
w
p̃(w|X) = 1. For a good approximation, p̃(w|X) and p(w|X) should be as

close to each other as possible, and so we want to minimize their Kullback-Leibler

divergence with respect to the parameters ρ of p̃. To do so, we need only minimize

the second term of the RHS of equation (2.5), since log p(X) is constant with respect

to ρ. The second term can be written as∫
w

p̃(w|X) log
p̃(w|X)

p(w,X)
= Ep̃ log

p̃(w|X)

p(w,X)

= Ep̃[log p̃(w|X)− log p(X,w)]

= Ep̃[log p̃(w|X)− log
(
p(X|w)p(w)

)
]

= Ep̃[log p̃(w|X)−
(

log p(X|w) + log p(w)
)
]

= Ep̃[log p̃(w|X)− log p(X|w)− log p(w)]
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where Ep̃[ · ] is shorthand for Ep̃ρ(w|X)[ · ]. So equivalently we can maximize

J(p̃, ρ) = Ep̃[− log p̃(w|X) + log p(X|w) + log p(w)], (2.6)

where the last two terms form the complete log-density that we used to compute the

log-likelihood in equation (2.3). Moreover, since the Kullback-Leibler divergence is

non-negative, it is clear from equation (2.5) that J(p̃, ρ) provides a lower bound for

log p(X), the marginal log-density of X, which provides the justification for maximiz-

ing J(p̃, ρ) instead of the marginal log-likelihood.

In the PLNPCA setting, the lower bound we seek is J(p̃, ξ, β,M, S) ≤ L(X; ξ, β).

Since in our case wi is multivariate normal, let p̃i = N (mi, diag(si ◦ si)), and so

p̃ =
∏n

i=1N
(
mi, diag(si◦si)

)
is the product distribution of the variational parameters

M and S (where M and S are n × ` matrices with rows mT
i and sTi respectively),

which act as the mean and standard deviation of our variational approximation to the

conditional density of w given X. Then, using equation (2.6) and equation (2.4), and

letting Y be an n× ` matrix of independent standard normal variates, the variational

lower bound is given by the following, omitting constant terms:

J(p̃, β,M, S) = Ep̃
[

log p(w) + log p(X|w; β)− log p̃(w)
]

=
n∑
i=1

Ep̃i
[

log p(wi) + log p(Xi|wi; β)− log p̃i(wi)
]

=
n∑
i=1

XT
i (ξi + βmi)−

1

2

(
||mi||22 + ||si||22

)
+ 1T` log si

− 1TpEp̃i [exp(ξi + βwi)]

= 1Tn
(
X ◦ (ξ +MβT )

)
1p −

1

2
1Tn (M ◦M + S ◦ S − 2 log S)1`

− 1TnEp̃
[

exp(ξ + wβT )
]
1p

= 1Tn
(
X ◦ (ξ +MβT )

)
1p −

1

2
1Tn (M ◦M + S ◦ S − 2 log S)1`

− 1TnE
[

exp(ξ + (M + S ◦ Y )βT )
]
1p

= 1Tn
(
X ◦ (ξ +MβT )

)
1p −

1

2
1Tn (M ◦M + S ◦ S − 2 log S)1`

− 1Tn exp
[
ξ +MβT +

1

2
(S ◦ S)(βT ◦ βT )

]
1p

since linear combinations of normals are normal, and a log-normal random variable Θ,

log Θi ∼ N (µi,Σ), has expectations of the form E[Θij] = exp(µij + 1
2
Σjj) (Aitchison
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& Ho, 1989). In the above equalities for J(p̃, β,M, S), Ep̃ denotes Ep̃M,S(w|X).

Under this framework, the variance over p̃i of log Λi is given by

Varp̃i(log Λi) =
1

n
Ep̃i
[
(log Λi − Ep̃i [log Λi])(log Λi − Ep̃i [log Λi])

T
]

=
1

n
Ep̃i
[
(ξi + βwi − (ξi + βmi))(ξi + βwi − (ξi + βmi))

T
]

=
1

n
Ep̃i
[
(βwi − βmi)(w

T
i β

T −mT
i β

T )
]

=
1

n
Ep̃i
[
βwiw

T
i β

T − βwimT
i β

T − βmiw
T
i β

T + βmim
T
i β

T
]

= βEp̃i [wiwTi ]βT − βmim
T
i β

T

= β
(
Varp̃i(wi) + Ep̃i [wi]Ep̃i [wi]T

)
βT − βmim

T
i β

T

= β
(

diag(si ◦ si) +mim
T
i

)
βT − βmim

T
i β

T

= β diag(si ◦ si)βT ,

using the fact that Var(Xi) = E(XiX
T
i ) − E[Xi]E[Xi]

T . So the estimator of Σ that

we seek is given by

Σ̂ =
1

n

n∑
i=1

Ep̃i
[
(log Λi − ξi)(log Λi − ξi)T

]
=

1

n

n∑
i=1

(
Ep̃i [log Λi log ΛT

i ]− ξiEp̃i [log ΛT
i ]− Ep̃i [log Λi]ξ

T
i + ξiξ

T
i

)
=

1

n

n∑
i=1

(
Varp̃i(log Λi) + Ep̃i [log Λi]Ep̃i [log Λi]

T − ξiEp̃i [log ΛT
i ]

− Ep̃i [log Λi]ξ
T
i + ξiξ

T
i

)
=

1

n

n∑
i=1

(
β diag(si ◦ si)βT + (ξi + βmi)(ξ

T
i +mT

i β
T )− ξi(ξTi +mT

i β
T )

− (ξi + βmi)ξ
T
i + ξiξ

T
i

)
=

1

n

n∑
i=1

(
β diag(si ◦ si)βT + βmim

T
i β

T
)

= β

(
1

n

(
diag(1Tn (S ◦ S)) +MTM

))
βT

again using the fact that Var(Xi) = E(XiX
T
i )− E[Xi]E[Xi]

T .

PLNPCA is implemented in the R package ‘PLNmodels’ (Chiquet et al., 2018).
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PoissonPCA

Let Xi ∈ Np, i = 1, . . . , n be a random vector of which we have observed n re-

alizations. PoissonPCA assumes that conditional on the latent Poisson means Λij,

the Xij are independently distributed as Poisson with parameter Λij. In contrast to

PLNPCA, the distribution of Λ itself is not parameterized. Using method of mo-

ments, we can find variance estimators for any non-linear transformation of Λ by

taking advantage of Taylor series (or truncated power series, in the case of the log

transformation). Since we are interested in log Λ, we will present the main results

from Kenney et al. (2019) for estimating Σ = Var(log Λ).

Finding an estimator for the variance of the log-transformed latent variables is contin-

gent on finding a corresponding (element-wise) transformation f for the data. First,

we derive the total variance Var(f(X)), which is

Var(f(X)) = E[f(X)f(X)T ]− E[f(X)]E[f(X)]T

= E
[
E[f(X)f(X)T |Λ]

]
− E

[
E[f(X)|Λ]

](
E
[
E[f(X)|Λ]

])T
= E

[
Var(f(X)|Λ) + E[f(X)|Λ]

(
E[f(X)|Λ]

)T ]
− E

[
E[f(X)|Λ]

](
E
[
E[f(X)|Λ]

])T
= E[Var(f(X)|Λ)] + Var(E[f(X)|Λ]), (2.7)

The PoissonPCA model specifies that conditionally on Λ, the mean of X is Λ, which

implies that we are looking for f(X) such that conditionally on Λ, the mean of f(X)

is log Λ. Accordingly, substituting log Λ for E[f(X)|Λ] in equation (2.7), we get the

formula

Σ = Var(log Λ) = Var(f(X))− E[Var(f(X)|Λ)] (2.8)

To find f(X), one might hope to make use of the fact that a Maclaurin series multi-

plied by e−Λij gives a Poisson conditional mean, since we know that our conditional

mean must equal log Λ to be unbiased, but this won’t work for us because the loga-

rithmic function is not analytic at zero. Instead PoissonPCA approximates log Λij for

small values with a Taylor series about a specified point and truncated at a specified

value, whereas for larger X it sets f(X) = logX since E[logX|Λ] ≈ log Λ.

Now that we have a way of computing f(X), in order to estimate Σ we just need to

estimate the conditional variance from equation (2.8). This is achieved in Poisson-

PCA by finding a function k(X) such that the average conditional mean of k(X) is
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approximately Var(logX|Λ).

Now, to address sequencing depth correction, we revisit the original PoissonPCA

model formulation but additionally consider sequencing depth ξi ∈ Rp as a random

variable such that Xij|(Λij, ξij) ∼ Poisson(ξijΛij), where Xi1, . . . , Xip are independent

given Λi and ξi. Unlike in PLNPCA, ξi is not considered to be observable, so under

this model we end up estimating Σ = Var(log Λ) = Var(log(ξ ◦ Λ∗)) when in fact

what we want is Σ∗ = Var(log Λ∗). Thus, in order to account for sequencing depth

error, we have to add constraints to the variance estimator given by equation (2.8) in

order to get the desired estimate Σ∗ for the true underlying Poisson means. Kenney

et al. (2019) suggest that the best method for correcting Σ is to imbue it with the

characteristic properties of a variance-covariance matrix of a compositional random

vector, which is to say that Σ∗ should be symmetric and contained in the orthogonal

complement of the vector 1. Obviously we want to preserve the map defined by Σ, and

so Σ∗ should have the same bilinear form as Σ in the orthogonal complement of the

vector 1. With these constraints, it can be proven that the sequencing depth-corrected

variance estimate is

Σ∗ = Σ− (pIp + 1p1
T
p )−1Σ1p1

T
p − 1p1

T
p ΣT ((pIp + 1p1

T
p )−1)T (2.9)

Note that the PoissonPCA variance estimate will be full rank if there is no sequencing

depth correction applied, while equation (2.9) gives rank(Σ̂∗) = p − 1. Nonetheless,

we will henceforth drop the notation Σ∗ and refer to either estimate as Σ, since in

the following chapters it should be clear from context whether or not a sequencing

depth correction has been applied. In addition, the construction of these estimators

makes no guarantee about the definiteness of the estimates, and in practice there can

be several negative terminal eigenvalues. Since multi-group analyses typically require

a variance-covariance matrix that is positive-definite, if any Σ̂s, s = 1, . . . , S com-

puted in our analyses was indefinite, we eigen-decomposed it, replaced the negative

eigenvalues with small decreasing positive values, and then used the eigenvectors to

reconstruct the variance.

PoissonPCA is implemented in the R package ‘PoissonPCA’ (Kenney et al., 2019).
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2.2 Multi-Group Analysis

We are ultimately interested in estimating the loadings that are common to all groups,

and projecting the estimated latent Poisson means from each group into a common

space spanned by the loadings. To achieve this, the natural choice would be to apply

multi-group extensions of PCA or of factor analysis to the Poisson-corrected estimates

from each group, since by dealing with abundance on the log scale we are able to

decompose our variance estimates under Wishart/multivariate normal assumptions.

Both PCA-based and factor analysis-based approaches allow us to find a common

space of low dimension, but the latter is prescriptive in this sense while the former

inherits the exploratory nature of PCA.

Perhaps the most direct multi-group generalization of PCA is common principal com-

ponents analysis (Flury, 1988), which assumes that there exists an orthogonal matrix

that can approximately diagonalize the covariance matrices of all S groups simulta-

neously. Using a generalized PCA approach, the dimension of the common space can

be chosen after estimating the full loadings matrix, based on which q loading vectors

are associated with the largest variances for all groups simultaneously. Unlike the

usual PCA, Flury’s common principal components analysis (FCPCA) assumes that

the sample covariance matrices follow a Wishart distribution, and so the common

loadings matrix is estimated in a maximum likelihood framework. More recently the

model was revisited by Trendafilov, who criticized the fact that FCPCA does not con-

strain the eigenvalues of each group to be simultaneously decreasing, which in some

cases could disallow its use as a dimension reduction strategy. Instead, Trendafilov

(2010) suggested the stepwise approach to common principal components analysis

(SCPCA), which finds the common loadings sequentially in order of variance ex-

plained. In the present study, we compared the performance of FCPCA and SCPCA

for simultaneously decomposing the S covariance matrices that have been estimated

using either PoissonPCA or PLNPCA.

The second model under consideration is De Vito’s (2019) multi-study factor analysis

(MSFA), which is an extension of classical factor analysis and likewise assumes that

the latent variables and measurement error are multivariate normal and hence that the

observations have a multivariate normal marginal distribution. However, in MSFA,

there are q latent common factors and `1, . . . , `S latent unique factors, and so S + 1

loadings matrices have to be estimated by maximum likelihood, which is a much more

difficult optimization problem than that posed by classical factor analysis. Also,

as with any factor analytic approach, dimensions of the latent subspaces must be
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considered a hyperparameter of the generative model.

Finally, after estimating the common loadings with either SCPCA, FCPCA, or MSFA,

we want to express the underlying abundances in each sample with respect to our

new common basis, and we will refer to these quantities as the scores.

Common Principal Components Analysis

Let Σs ∈ Rp×p be symmetric and positive definite and assume that each (ns− 1)Σ̂s is

independently distributed as Wp(ns− 1, Σs), s = 1, . . . S, where Wp is the p-variate

Wishart distribution. If there is a rotation matrix V ∈ O(p) for which

V TΣsV = Ds (2.10)

for all s, where Ds = diag(ds1, . . . , dsp), then the subspace spanned by the columns

of V is common to all groups; the assumption in CPCA is that V exists as such.

Hence, CPCA comes down to simultaneous diagonalization of the S sample covari-

ance matrices. Of course, positive definite real symmetric matrices are not neces-

sarily commutative, so we are not guaranteed that a set of covariance matrices will

be simultaneously diagonalizable, and thus CPCA requires that we find an optimal

approximation. However, for Σ̂1, . . . , Σ̂S positive definite, their quadratic forms are

strictly convex, and so the optimization problem posed in CPCA is highly tractable.

The objective function can be derived via maximum likelihood. The log-likelihood is

given by

L(Σ1, . . . ,ΣS) = log
S∏
s=1

p(Σ̂s; Σ1, . . . ,ΣS)

∝
S∑
s=1

(
− ns − 1

2
log |Σs| −

ns − 1

2
tr(Σ−1

s Σ̂s)
)

Assuming that the desired common rotation matrix V = (v1, . . . , vp) exists such

that equation (2.10) holds, we can substitute Σs = V DsV
T in both the determi-

nant and trace, and then cyclically permute V in the trace to rewrite tr(Σ−1
s Σ̂s) =

tr(D−1
s V T Σ̂sV ). Since V is an orthogonal matrix and Ds is diagonal, |V DsV

T | =

|Ds| =
∏p

j=1 dsj. Taking the log of
∏p

j=1 dsj, and using the definition of the trace and

again the fact that D−1
s is diagonal, we can write both terms as summations over j

15



of vj and dsj, j = 1, . . . , p, to get

L(Σ1, . . . ,ΣS) ∝
S∑
s=1

−ns − 1

2

( p∑
j=1

log dsj +

p∑
j=1

vTj Σ̂svj

dsj

)
and finally multiplying by −2 we arrive at an objective function g,

g(v1, . . . , vp, d11, . . . , d1p, d21, . . . , dsp) =
S∑
s=1

(ns − 1)
( p∑
j=1

(log dsj +
vTj Σ̂svj

dsj
)
)
,

with which to construct a minimization problem:

V̂ = argmin
vTh vj=0, h6=j
vTh vj=1, h=j

g(v1, . . . , vp, d11, . . . , d1p, d21, . . . , dsp)

= argmin
vTh vj=0, h6=j
vTh vj=1, h=j

S∑
s=1

(ns − 1)
( p∑
j=1

(log dsj +
vTj Σ̂svj

dsj
)
)
, (2.11)

Flury (1984) computed derivatives of g with respect to dsj and found that the optimal

unique eigenvalues are

dsj = vTj Σ̂svj, for j = 1, . . . , p, s = 1, . . . , S (2.12)

which implies that

p∑
j=1

vTj Σ̂svj

dsj
= p, for s = 1, . . . , S. (2.13)

SoDs = diag∗(V T Σ̂sV ) for all s = 1, . . . , S, which is to say thatDs is the diagonal p×p
matrix whose entries ds1, . . . , dsp are the diagonal entries of V T Σ̂sV . Differentiating

g with respect to vj shows that the solution satisfies

vTh
( S∑
s=1

(ns − 1)
dsj − dsh
dshdsj

Σ̂s

)
vj = 0 (2.14)

for h, j = 1, . . . , p and h 6= j, that is, that
∑S

s=1(ns − 1)(D−1
s V T Σ̂sV ) is symmet-

ric.

FCPCA uses the FG algorithm (Flury & Gautschi, 1986) to compute V̂ by approxi-
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mate simultaneous diagonalization of a set of S positive definite symmetric matrices

C1, . . . , CS given weights m1, . . . ,mS, as determined by a measure of simultaneous

diagonality,

Γ(C1, . . . , CS ; m1, . . . ,mS) =
S∏
s=1

[
| diagCs|
|Cs|

]ms
which leads to the same optimization problem as outlined above. In the FG algorithm,

all pairs of vectors of V are rotated in each iteration to satisfy equation (2.14), where

each rotation is determined by an inner cycle that computes the solutions to the 2-

dimensional analogs of equation (2.14). Using FCPCA we can reduce the basis to

v1, . . . , vq only provided that the last p−q eigenvalues are small for all S groups.

On the other hand, Trendafilov’s (2010) SCPCA starts with the same objective func-

tion, but performs minimization to find the optimal axes sequentially based on the

fact that if covariance matrices C1, . . . , CS share a common eigenvector e, then e is

also an eigenvector of the average of C1, . . . , CS weighted by their unique eigenval-

ues associated with e. Looking again to our CPCA minimization problem given by

equation (2.11), due to equations (2.12) to (2.14) we can write the same problem

compactly as

V̂ = argmin
vTh vj=0, h6=j
vTh vj=1, h=j

S∑
s=1

(ns − 1)
( p∑
j=1

log(vTj Σ̂svj)
)
. (2.15)

If the eigenvalues estimated by FCPCA for each estimated covariance matrix are all

simultaneously decreasing, then

vT1 Σ̂sv1 ≥ vT2 Σ̂sv2 ≥ · · · ≥ vTp Σ̂svp, for s = 1, . . . , S,

which implies that

S∑
i=1

(ns − 1) log(vT1 Σ̂sv1) ≥ · · · ≥
S∑
i=1

(ns − 1) log(vTp Σ̂svp), (2.16)

for s = 1, . . . , S. We can solve the corresponding sequence of minimization prob-
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lems,

vj = argmin
vT v=1

S∑
s=1

(ns − 1)
( p∑
j=1

log(vT Σ̂sv)
)
,

which gives the vj in ascending order of the minima, so we have v1, . . . , vp ∈ O(p)

starting with vp. Then obtaining the jth eigenvector associated with the jth largest

eigenvalue is equivalent to solving

v̂j = argmin
S∑
s=1

(ns − 1)
( p∑
j=1

log(vT Σ̂sv)
)

(2.17)

subject to vTv = 1, vT (vj+1, . . . , vp) = 0 (2.18)

which can be shown to be equivalent to taking

v̂j =
S∑
s=1

(ns − 1)
( p∑
j=1

log(vTj Σ̂svj)
)

(2.19)

which gives us the same result as FCPCA. However, if the FCPCA eigenvalues are not

simultaneously decreasing in all S groups, then the stepwise approach will not solve

equation (2.15). Trendafilov argues that despite this, the stepwise solution is useful:

since equation (2.16) holds for equations (2.17) and (2.19) by construction, applying

Jensen’s inequality to equation (2.16) and using the pooled sample covariance matrix,

he shows that the sum over s of the variances explained by each vj (weighted by

the ratio of each group’s degrees of freedom to the total) is greater than or equal

to the equivalent sum for vj+1. This means that equations (2.17) and (2.19) can

always be used to find a set of q ≤ p common principal component vectors forming a

basis for Rq, such that their variances ds1, . . . , dsq are approximately simultaneously

decreasing for all s = 1, . . . , S, and all d1j, . . . , dSj are as similar as possible for a

given j, j = 1, . . . , q.

FCPCA and SCPCA were implemented using code adapted and modified from source

code in the R packages ‘multigroup’ and ‘cpca’ respectively, as errors were found in

both functions.
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Multi-Study Factor Analysis

Let Xis ∈ Rp, i = 1, . . . , ns, s = 1, . . . , S be a random vector with ns realizations

in the sth group. MSFA assumes that there exist iid latent variables fis ∈ Rq and

wis ∈ R`s , which generate Xis by

Xis = Φfis + βswis + µs + εis, with fis ∼ N (0q, Iq), wis ∼ N (0`s , I`s)

for i = 1, . . . , ns, s = 1, . . . , S, where µs ∈ Rp is the mean vector, εis are iid with

εis ∼ N (0p,Ψs), where Ψs = diag(ψs1, . . . , ψsp), and εis is independent from the latent

factors fis and wis. Φ is a p×q matrix of common loadings, and βs is a p×`s matrix of

group-specific loadings, which provide structure to the latent factors. Alternatively,

we can say that each Xis is conditionally independent given the latent variables fis

and wis as follows:

Xis|fis, wis ∼ N (Φfis + βswis + µs,Ψs) with fis ∼ N (0q, Iq), wis ∼ N (0`s , I`s)

Since we have a multivariate normal distribution for Xis conditional on the multi-

variate normal latent variables, Xis has a multivariate normal marginal distribution

with E[Xis] = µs, so the covariance matrix Σs of Xs (the ns × p matrix of stacked

rows XT
is) is given by

Σs =
1

n
E
[
(Xs − µs)(Xs − µs)T

]
=

1

n
E
[
(Φfs + βsws + µs + εs − µs)(Φfs + βsws + µs + εs − µs)T

]
=

1

n

(
ΦE[fsf

T
s ]ΦT + βsE[wsw

T
s ]βTs + E[εsε

T
s ]
)

=
1

n

(
nΦIqΦ

T + nβsI`sβ
T
s + nΨs

)
= ΦΦT + βsβ

T
s + Ψs

So the marginal distribution is Xis ∼ N (µs,Σs = ΦΦT + βsβ
T
s + Ψs). Hence, the

log-likelihood is given by

L(Φ, βs,Ψs) = log
S∏
s=1

ns∏
i=1

p(Xis|Φ, βs,Ψs)

∝
S∑
s=1

(
− ns

2
log |Σs| −

1

2

ns∑
i=1

(Xi − µis)TΣ−1
s (Xi − µis)

)
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=
S∑
s=1

(
− ns

2
log |Σs| −

1

2

ns∑
i=1

tr
(
Σ−1
s (Xi − µis)T (Xi − µis)

))
=

S∑
s=1

(
− ns

2
log |Σs| −

1

2
tr
(
Σ−1
s

ns∑
i=1

(Xi − µis)T (Xi − µis)
))

=
S∑
s=1

(
− ns

2
log |Σs| −

ns
2

tr(Σ−1
s Σ̂s)

)

As identifiability constraints, the authors impose that Φ, β1, . . . , βS each be lower

triangular matrices, which is a typical of classical factor analysis and forces the first

loading to correspond to only the first axis of the factor space, the second loading

to the first and second axes, so on and so forth. An additional constraint that

rank
(
[Φ β1 . . . βS]

)
= q+

∑S
s=1 `s is needed to ensure uniqueness of the solution, since

we have to estimate S group-specific loadings plus the common loadings from the S

covariance matrices. Φ̂, β̂1, . . . , β̂S, and Ψ̂s are estimated by expectation-conditional

maximization (ECM).

Of course, we are interested only in Φ̂, the matrix which describes how the latent

factors characterizing the common signal are weighted to generate the observed data.

By projecting the unobserved Poisson means into a common subspace with dimension

q < p, we hope to remove much of the unique signal that may be obscuring signal of

interest. However, we are interested in the subspace spanned by a set of orthonormal

vectors in order of the variance on the common factors, and so what we seek are the

rotated loadings v1, . . . , vq, the first q columns of V ∈ O(p) computed from Φ̂Φ̂T by

the following spectral decomposition,

Φ̂Φ̂T = V AV T , (2.20)

where A is the diagonal matrix of eigenvalues.

MSFA was implemented using the source code from the R package ‘msfa’ (DeVito

et al., 2019), modified so as to obtain estimates from Σ̂1, . . . , Σ̂S instead of from

the standard sample covariance matrices 1
n1−1

(X1 − µ1)(X1 − µ1)T , . . . , 1
nS−1

(XS −
µS)(XS − µS)T .
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Computing Scores

Since we are interested in the scores of the unobserved log Λis, rather than the scores

of the observed Xis, we adopt the following procedure from Kenney et al. (2019).

To apply the classical PCA criterion of minimizing the squared reconstruction error

between the original points and their projections onto principal component space,

we would like to minimize the squared reconstruction error between log Λis and its

projection P q
is onto the q-dimensional common subspace spanned by the orthonormal

vectors v1, . . . , vq that we estimated using CPCA or MSFA. Since Σs is the variance

of log Λs, this error is given by the squared distance

D2 = (log Λis − µs − P q
is)

TΣ−1
s (log Λis − µs − P q

is), (2.21)

where, because the vj are orthonormal, the projection is P q
is =

∑q
j=1 vjv

T
j (log Λis−µs).

At the same time, since log Λis is unobserved, we need to maximize the likelihood

of the observed Xis. Whether we use PoissonPCA or PLNPCA to estimate Σs =

Varlog Λ, we assume that Xijs was generated by a Poisson distribution with mean

Λijs, and so the log-likelihood is

L(Λis) ∝ log
ns∏
i=1

ΛXis
is exp Λis =

ns∑
i=1

XT
is log Λis + 1TΛis (2.22)

So combining equations (2.21) and (2.22) we arrive at an objective function,

L(Λis) =
∑ns

i=1

(
XT
is log Λis + 1TΛis − (log Λis − µs − P q

is)
TΣ−1

s (log Λis − µs − P q
is)
)
,

which is optimized by Newton-Raphson iteration.

2.3 Ensemble Method

We have reviewed two very different ways of estimating the full- (or near full-) rank

variance-covariance matrix from a set of conditionally independent realizations of

Poisson sampling in which the Poisson means are subject to additional multiplicative

noise: PoissonPCA and PLNPCA, each of which can either be performed with a

sequencing depth correction or without. These methods are applied to each data

set X1, . . . , XS individually. We went on to explore two distinct methods that can

take a set of S estimated variance-covariance matrices and estimate a set of q < p

common vectors forming a shared orthogonal basis for Rq: CPCA (for which we have

a choice of two algorithms, SCPCA and FCPCA) and MSFA. Chapters 4 and 5 will
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Ensemble Methods

PoissonPCA + SCPCA PLNPCA + SCPCA
No SDC PoissonPCA + FCPCA PLNPCA + FCPCA

PoissonPCA + MSFA PLNPCA + MSFA

PoissonPCA + SCPCA PLNPCA + SCPCA
SDC PoissonPCA + FCPCA PLNPCA + FCPCA

PoissonPCA + MSFA PLNPCA + MSFA

Table 2.1: The twelve candidate ensemble methods.

therefore demonstrate simulation and real data analysis results for all twelve possible

combinations of methods, as given in Table 2.1, to compare their performance as

ensemble methods. ‘SDC’ in tables and figures henceforth refers to ‘sequencing depth

correction’.
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Chapter 3

Simulation Study

We performed simulation studies for two groups across several scenarios. These

scenarios differed on the true signal (whether the eigenvalues used to simulate the

variance-covariance matrices were simultaneously decreasing), the sample sizes n1 and

n2, whether or not the sample sizes were unbalanced, and whether or not sequencing

depth correction was performed in the Poisson modeling stage. For each simulation

experiment, the process of simulating Poisson log-normal data and applying each

method was performed 100 times. For each of the 100 replicates, synthetic data for

two “groups” were simulated as follows. Synthetic eigenvectors E1 were constructed

for Group 1 by spectral decomposition of a synthetic covariance matrix FF T where

each column Fj, j = 1, . . . , p was a normalized length-p vector of standard normal de-

viates. We then constructed the eigenvectors E2 for Group 2 so as to share the first q

columns of E1 for several values of q, while the remaining columns e2,q+1, . . . , e2,p were

replaced by vectors of standard normal deviates regressed on the preceding q columns

and normalized. These eigenvectors, along with a pre-determined set of eigenvalues

for each group, were used to construct variance-covariance matrices Σ1 and Σ2. Note

that with decreasing eigenvalues, for q << p, by this construction each shared eigen-

vector will be a principal eigenvector of the two covariance matrices, whereas with

non-decreasing eigenvalues some of the large variances will not be associated with the

shared axes. We performed simulation experiments for both scenarios. Next, these

covariance matrices Σ1 and Σ2 in turn were used to simulate the transformed latent

Poisson means log Λ1 and log Λ2 using the multivariate normal, with mean vectors for

each group consisting of p normal random variates (see Table 3.1). We then performed

scalar multiplication of Λ1 and Λ2 respectively by length-n1 and length-n2 vectors of

gamma random variates to simulate sequencing depth error, and finally these means
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Group 1 Group 2

log Λis ∼ N (µis,Σs) µij1 ∼ N (4, 3) µij2 ∼ N (3, 2)
Xijs ∼ Poisson(γisΛijs) γi1 ∼ Gamma(7, 1) γi1 ∼ Gamma(10, 1)

Table 3.1: Distributions used to simulate Poisson log-normal data.

were used to generate n1 × p and n2 × p synthetic data matrices of Poisson random

variates for each group respectively (see Table 3.1). Then, the candidate ensemble

methods listed in Table 2.1, and some single-group alternatives (PCA on the con-

catenated datasets, PCA on the log-transformed concatenated datasets, PoissonPCA

on the concatenated datasets, or PLNPCA on the concatenated datasets) were per-

formed on the synthetic data. Before log-transforming count or relative abundance

data for PCA, zero count were first imputed with 0.001.

In the case of SCPCA and FCPCA, the explained variances (eigenvalues) for each

estimated orthogonal loading vector were computed by

d̂sj = v̂j
TΣsv̂j, j = 1, . . . , p, s = 1, 2 (3.1)

where Σs is the true variance-covariance matrix of Λs. Cumulative sums of d̂11, . . . , d̂1p

and d̂21, . . . , d̂2p were divided by the true eigenvalues
∑p

j=1 d1j and
∑p

j=1 d2j respec-

tively to find the proportion of the true variance explained by each method.

In the case of MSFA, as the common loadings are not constrained to orthogonality,

the variance Φ̂Φ̂T of the common factors was computed and then eigen-decomposed as

described in equation (2.20). The resultant v̂1, . . . , v̂p (of which only the first q contain

signal, but all p are retained in this case for ease of visibility in plots) were used to

compute the estimated eigenvalues and the proportion of true variance explained as

according to equation (3.1). Representative results of the simulations are given by

Figures 3.1 and 3.12, where in each plot the true eigenvalues are given in black.

First, Figures 3.1 and 3.2 show results of the candidate ensemble methods in the de-

creasing eigenvalues case, where sequencing depth corrections were applied for Pois-

sonPCA and PLNPCA in the former but not the latter, and where the variance-

covariance matrices of Group 1 and Group 2 shared one eigenvector, and the sample

sizes n1 = 200 > n2 = 100 were unbalanced. Figure 3.3 shows the corresponding

results using each of the four naive PCA methods on the concatenated data, as well

as PoissonPCA or PLNPCA alone on the concatenated data with their respective
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sequencing depth corrections. Figures 3.5 to 3.6 show the analogous results for when

Σ1 and Σ2 shared five principal eigenvectors.

Then, Figures 3.8 to 3.9 again show results for the candidate ensemble methods with

sequencing depth correction, the candidate ensemble methods without sequencing

depth correction, and the single-group methods (where sequencing depth correction

was applied for PoissonPCA and PLNPCA), this time in the non-decreasing eigen-

values case. Thus, in these plots, principal eigenvectors of Σ1 and Σ2 were not nec-

essarily shared. Group 1 and Group 2 shared one eigenvector, and the sample sizes

n1 = 200 > n2 = 100 were again unbalanced. Figures 3.11 to 3.12 show the analo-

gous results for when Σ1 and Σ2 shared five common eigenvectors. In each of these

figures, the true and estimated eigenvalues corresponding to the q shared eigenvectors

were plotted in descending order (indicated by solid points for the true eigenvalues),

and subsequently the estimated eigenvalues corresponding to the unique eigenvec-

tors were plotted in descending order (indicated by outline-only points for the true

eigenvalues).

Results for balanced sample sizes and large sample sizes are provided in Supplemen-

tary Figures A.1 and A.24.

The simulations showed generally good performance by the ensemble methods and

by PoissonPCA or PLNPCA alone. This is especially clear in comparison to the

naive PCA methods on relative abundance or raw counts which were not able to

find good rotations for the data, and as a result showed very slow increases in their

cumulative explained variance and no improvement as a result of increasing the num-

ber of shared eigenvectors. In contrast, PCA on the log-counts performed decently.

While both variance estimation methods seem to do fairly well, PoissonPCA is seen

here to have consistently outperformed PLNPCA in terms of the reconstruction of

the dominant signal in each group. Interestingly, the difference in performance be-

tween PoissonPCA and PLNPCA on the first few common axes is negligible without

sequencing depth correction, which suggests that the PoissonPCA compositional cor-

rection to the variance estimate is superior to PLNPCA’s treatment of observed read

count as an offset. Incidentally PoissonPCA is also an order of magnitude faster to

run. However, regardless of which method was used to estimate the variance, in the

cases where no sequencing depth correction was applied, the first CPC explained very

little variance because that axis instead captured the unique variation from sequenc-

ing depth. The second CPC then usually explains a large proportion of common

variance, and thereafter the points track the true signal.
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Figure 3.1: Simulation results for decreasing eigenvalues and one common eigenvector,
with SDC; p=50, n1 = 200, n2 = 100.

26



Figure 3.2: Simulation results for decreasing eigenvalues and one common eigenvector,
with no SDC; p=50, n1 = 200, n2 = 100.
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Figure 3.3: Simulation results for decreasing eigenvalues and one common eigenvector,
using single-group methods (with SDC for P/PLN) on the concatenated data; p=50,
n1 = 200, n2 = 100.
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Figure 3.4: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, with SDC; p=50, n1 = 200, n2 = 100.
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Figure 3.5: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, with no SDC; p=50, n1 = 200, n2 = 100.
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Figure 3.6: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, using single-group methods (with SDC for P/PLN) on the concatenated data;
p=50, n1 = 200, n2 = 100.
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Figure 3.7: Simulation results for non-decreasing eigenvalues and one common eigen-
vector, with SDC; p=50, n1 = 200, n2 = 100.
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Figure 3.8: Simulation results for non-decreasing eigenvalues and one common eigen-
vector, with no SDC; p=50, n1 = 200, n2 = 100.
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Figure 3.9: Simulation results for non-decreasing eigenvalues and one common eigen-
vector, using single-group methods (with SDC for P/PLN) on the concatenated data;
p=50, n1 = 200, n2 = 100.
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Figure 3.10: Simulation results for non-decreasing eigenvalues and five common eigen-
vectors, with SDC; p=50, n1 = 200, n2 = 100.
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Figure 3.11: Simulation results for non-decreasing eigenvalues and five common eigen-
vectors, with no SDC; p=50, n1 = 200, n2 = 100.
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Figure 3.12: Simulation results for non-decreasing eigenvalues and five common eigen-
vectors, using single-group methods (with SDC for P/PLN) on the concatenated data;
p=50, n1 = 200, n2 = 100.
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As for the estimation of v1, . . . , vq, the two CPCA methods are very similar and both

did well. SCPCA appeared to outperform FCPCA when the signal was more diffi-

cult to resolve, such as when there were very few shared eigenvectors and the true

cumulative variance increased slowly (e.g., Group 2 with one shared eigenvector).

While technically SCPCA, FCPCA, and MSFA are all designed for positive-definite

symmetric matrices, in practice SCPCA performed well even when the covariance

matrix was indefinite, which was often true in the PoissonPCA case. SCPCA per-

forms almost indistinguishably from FCPCA when the eigenvalues are non-decreasing.

MSFA performed well, which is unsurprising, since MSFA assumes only q common

axes whereas CPCA assumes that all p axes are common, and furthermore we were

able to specify the true q. Interestingly, the difference in performance between MSFA

applied to PoissonPCA vs. PLNPCA variance estimates was often not large, whereas

SCPCA and FCPCA both performed much better on the PoissonPCA variance esti-

mate. However, when common signal was very low (q=1), MSFA struggled to capture

any variation on the first axis for Group 2 compared to SCPCA. Moreover, the MSFA

optimization routine failed so frequently that the simulation results for MSFA had

to be averaged over only the successful replicates (typically 80%-90%). In addition,

MSFA was by far the slowest method, and so from these simulations it would appear

that the CPCA approaches have more practical utility.

Finally, PoissonPCA or PLNPCA alone on the concatenated data performed similarly

to either method in combination with a common factor extraction method, with the

first axis capturing unique signal even with a sequencing depth correction, and the

second axis showing very good recovery. The fact that these methods alone can

adequately reconstruct the signal of the two groups while naive PCA methods fail to

do so suggests that misspecification of models with respect to sampling may pose a

larger obstacle to cross-study microbial abundance analyses than the heterogeneous

study-specific sources of variation in and of themselves. However, the CPCA methods

outperform PoissonPCA or PLNPCA alone when some of the large eigenvalues of

Σs are not associated with the shared eigenvectors. When the true eigenvalues are

non-decreasing, the cumulative variance explained by PoissonPCA or PLNPCA alone

tracks the same trajectory of the true cumulative variance, instead of loading as much

variance as possible on the first few axes like SCPCA, FCPCA, or MSFA.

Finally, Figure 3.13 contains scree plots for the estimated eigenvalues from Poisson-

PCA followed by SCPCA for each group, where Σ1 and Σ2 share either 5 or 10

common eigenvectors and the true eigenvalues are simultaneously decreasing. These
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Figure 3.13: Scree plots of estimated eigenvalues from PoissonPCA & SCPCA for
each group with 5 or 10 shared eigenvectors.

plots show that the differences between successive estimated eigenvalues drop to near

zero when the number of CPCs is larger than the true number of shared eigenvectors,

which provides evidence that we will be able to make a good choice of q when ap-

plying the method to real data for which we cannot know the true number of shared

eigenvectors.
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Chapter 4

Data Analysis

The communities comprising the human gut microbiome have been implicated in

processes such as drug metabolism (Blaser et al., 2013), immune system function

(Thais et al., 2016), energy balance (Nieuwdorp et al., 2014), and in numerous dis-

ease states (Blaser et al., 2013). It is not surprising, then, that many studies have

found links between the gut microbiota and cancer of the colon. To investigate the

performance of our candidate ensemble methods on real data, we re-analyzed the

metagenomic datasets from Feng et al. (2015) and Zeller et al. (2014), who each col-

lected fecal samples from participants diagnosed with colorectal carcinoma (CRC) or

non-malignant colorectal adenoma, and from controls (study and participant charac-

teristics are summarized in Table 4.1). Fecal samples were processed according to each

research team’s workflow, and samples underwent shotgun metagenomic sequencing

on the Illumina HiSeq platform. Although each team had their own bioinformatic

pipeline to process the raw reads, the taxonomy tables used for the present data

analysis were obtained from the R package ‘curatedMetagenomicData’ (Pasolli et al.,

2017), whose authors applied a standard pipeline for assembly, gene prediction, and

Zeller et al. (2014) Feng et al. (2015)

Number of samples 199 154
Country of origin France, Germany Austria
Sequencing technology Illumina HiSeq Illumina HiSeq
Number of CRC samples 91 46
Number of adenoma samples 42 47

Table 4.1: Comparison of Zeller et al. (2014) and Feng et al. (2015).
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taxonomic assignment to the raw files from each study.

The taxonomic abundance tables for each dataset included strain-level taxa from

all three domains of life, as well as viruses. Since our candidate methods do not

involve any regularization, we separately collapsed the data to the genus level and

removed features with near zero variance to reduce the number of taxa to p = 104 <

min(nZ = 199, nF = 154). We then subsetted the features to include only those

common to the two datasets, and ran the twelve candidate combinations of methods

listed in Table 2.1 just as we did for the simulations in Chapter 3. We then computed

the scores by projecting the latent means into the common space.

Figure 4.1 depicts selected score plots for each candidate ensemble method with se-

quencing depth corrections applied (see Supplemental Figure A.25 for the equivalent

plots with no sequencing depth correction) which show participants with CRC cluster-

ing distinctly from participants without CRC on the common axes. From Figure 4.2,

which shows several axes on each dataset separately for PoissonPCA & SCPCA with

sequencing depth correction, we can see that the Feng et al. (2015) data seem to

be better behaved than Zeller et al. (2014) in terms of clustering. In terms of lab-

specific signal, Supplemental Figure A.26 through Supplemental Figure A.36 show

score plots for each ensemble method colored by study of origin, with Supplemental

Figure A.37 through Supplemental Figure A.41 containing those for the single-group

and naive methods. While the sequencing depth correction does appear to create

some clustering by study on some axes, the CPCs that best discriminate disease state

do not show this. For example, for PoissonPCA with sequencing depth correction

followed by SCPCA, the best clustering of control vs. CRC samples is shown by

CPC 4 and CPC 3, and Figure 4.3 shows that lab-driven signal only appears in plots

of CPC 1 or CPC 6. This suggests that these axes indeed correspond to common,

generalizable CRC-related biological signal. In contrast, although PoissonPCA with

sequencing depth correction does show clustering by disease state on the selected PCs

in Figure 4.5, the score plots in Figure 4.4 show clustering by study on these and most

other PCs. Of the naive PCA methods, each one shows some clustering by disease

state (Figure 4.5). Supplemental Figure A.37 through Supplemental Figure A.41 do

not suggest pervasive clustering by study of origin, although this is expected since

the data were individually mean-centered by study.

We then investigated the predictive ability of these scores. Since we, like Zeller et

al. (2014), found that samples positive for colorectal adenoma tended to cluster with

control samples, we collapsed the two groups together. As a benchmark of the dis-
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Figure 4.1: Scores from ensemble methods with SDC by disease state.
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Figure 4.2: Score plots by disease state (PoissonPCA with SDC & SCPCA).
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Figure 4.3: Scores by study of origin (PoissonPCA with SDC and SCPCA).
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Figure 4.4: Scores from PoissonPCA alone with SDC by study of origin.
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Figure 4.5: Scores from single-group and naive methods (with SDC for PoissonPCA/
PLNPCA) by disease state.
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First 5 CPCs First 10 CPCs

Scores AUC Acc. AUC Acc.

No SDC

PoissonPCA + SCPCA 0.835 0.757 0.839 0.786
PLNPCA + SCPCA 0.877 0.800 0.885 0.814
PoissonPCA + FCPCA 0.826 0.771 0.832 0.786
PLNPCA + FCPCA 0.868 0.786 0.860 0.800
PoissonPCA + MSFA, q = 4 0.804 0.729 0.860 0.771
PLNPCA + MSFA, q = 3 0.811 0.786 0.858 0.757

SDC

PoissonPCA + SCPCA 0.860 0.814 0.848 0.771
PLNPCA + SCPCA 0.766 0.671 0.710 0.700
PoissonPCA + FCPCA 0.863 0.814 0.849 0.800
PLNPCA + FCPCA 0.780 0.771 0.779 0.743
PoissonPCA + MSFA, q = 4 0.843 0.771 0.860 0.786
PLNPCA + MSFA, q = 5 0.752 0.743 0.826 0.800
PoissonPCA alone 0.818 0.771 0.853 0.771
PLNPCA alone 0.744 0.629 0.756 0.714

Naive
PCA of Proportion 0.669 0.657 0.645 0.614
PCA of Log-Proportion 0.677 0.671 0.738 0.743
PCA of Count 0.637 0.643 0.628 0.614
PCA of Log-Count 0.822 0.743 0.816 0.771

AUC Acc.
All Genus-Level Features 0.828 0.771

Table 4.2: AUC and test set accuracy for classification of CRC samples.

criminating signal in the data, we trained random forest models on 80% of the full

genus-level concatenated data (in which training and testing sets were built using

stratified sampling by disease state) using five-times-repeated five-fold cross valida-

tion. We fit 5000 trees and selected the number of variables available for splitting at

each node based on classification accuracy. We used the final model to predict disease

state on the test set, and consider the performance of this nonlinear classifier to rep-

resent the extent to which the signal in these data can be used to discriminate CRC

samples. We then trained logistic regressions on the first five or ten common scores

(for all samples concatenated across the two studies) estimated by each method. The

results are summarized in Table 4.2; area under the receiver operating curve (AUC)

entries greater than 0.85 and test accuracy entries greater than 0.800 are in bold.

In general, the ensemble methods performed well with many obtaining high accuracy

using only five CPCs, insinuating that the biological signal characterizing CRC sam-
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ples across the two groups was captured in very few CPCs. In fact, the linear classifier

using the scores as predictors often performs better than the nonlinear classifier using

all genus-level taxa, suggesting that uninformative noise was reduced. Sequencing

depth correction does not appear to increase predictive ability of scores estimated by

CPCA, which may suggest that the sequencing depth noise is not complex enough

to throw the classifier off the scent of the CRC-related signal, which provides fur-

ther evidence that correcting estimates for Poisson error is the critical factor in these

analyses.

PoissonPCA on the concatenated data performed well with no common factor esti-

mation, as did PCA of the individually mean-centered log-count data. This is not

entirely surprising given their performances in simulation. Also, Figure 4.2 suggest

that the ability to discriminate disease state in Zeller samples may be the main deter-

minant of classification performance, and so the success of PoissonPCA and log-count

PCA on the concatenated data may be owed to some unique biological signal that is

relevant to CRC status in the Zeller data but missing or undetectable in Feng, which

would naturally give the single-group procedures an edge over the ensemble methods

for prediction. In general, unique signal could be helpful or unhelpful for machine

learning prediction of a given response, but in either case it could potentially obstruct

meaningful interpretation of the predictors. The results in Table 4.2 support our hy-

pothesis that the proposed ensemble methods are able to find a very low-dimensional

representation of the data that retains virtually all discriminating biological signal

that is shared among groups, which is our main interest.

To choose the optimal number of common principal components to describe the com-

mon signal on CRC status, we can choose q using scree plots of the estimated eigen-

values or by prediction such that the test set misclassification error is lowest. For

example, using PoissonPCA followed by SCPCA, scree plots in Figure 4.6 suggest

that the Feng data have a pronounced elbow, while the eigenvalues level off more

slowly in the Zeller data. However, in both datasets, the last large difference be-

tween successive eigenvalues occurs by about q = 11. In Figure 4.7, which shows the

cross-validation and test classification accuracies, it is apparent that after 6 CPCs

the misclassification error tends to increase with additional CPCs and so we choose

q = 6. The prediction results in Table 4.2 corroborate that in general, such parsimo-

nious models perform well.

Finally, we turn to biological interpretation of the common loadings, wherein lies

the strength of the ensemble method. Even assuming that single-group methods
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Figure 4.6: Scree plots of Zeller and Feng data.

Figure 4.7: Cross-validation and test accuracy for Zeller and Feng.
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were able to resolve some common underlying variation patterns, the resultant PCs

reflecting this would be indistinguishable from those capturing within-study variation

or contrasts between studies. However, we have been assured by our simulation results

and assessment of the CPC scores that the ensemble methods can yield q << p

common axes that load on fully shared factors with strong signal. Furthermore, since

our estimated loadings are related to the decomposition of variance on the log-scale,

we can interpret the values given by these loadings as log-ratios of geometric means

between groups of taxa with large magnitude values in opposite directions. The

following was observed from the common loadings estimated from SCPCA on the

PoissonPCA sequencing depth-corrected variance estimate.

Within our two CRC datasets, we found that on the two estimated common load-

ing vectors that appeared to differentiate between samples with and without CRC,

taxa with loading coefficient magnitudes in the 90th or greater percentile were often

described in other studies of CRC-associated microbiota. Peptostreptococcus, Bu-

tyrivibrio, Phascolarctobacterium, Fusobacterium, and Porphorymonas genera were

identified by our common loadings as well as by the analyses of Zeller et al. (2014),

while Acidaminococcus, Parvimonas, Gemella, and Peptostreptococcus were found

in common with Feng et al. (2015). Genera we identified that have been previously

associated with CRC include Fusobacterium (Purcell et al., 2017; Chen et al., 2012),

Parvimonas (Feng et al., 2015), Porphorymonas (Purcell et al., 2017; Chen et al.,

2012), Acidaminococcus (Feng et al., 2015; Azcarate-Peril et al., 2011), Phascolarc-

tobacterium (Weir et al., 2013), Enterococcus (Kong et al., 2019), Gemella (Wong et

al., 2017; Kong et al., 2019), Klebsiella (Chen et al., 2012), Prevotella (Purcell et al.,

2017) and the Siphoviridae viruses (Handley & Devkota, 2019). Of those highlighted

by our analyses, only Dialister (Weir et al., 2013), Butyrivbrio (Zeller et al., 2014)

and Flavonifractor (Ai et al., 2019) have been reported to be protective. Solobac-

terium has been observed to be enriched in CRC samples in some studies (Wong et

al., 2017) and decreased in others (Yang et al., 2019). Lastly, our loadings suggest

that Adlercreutzia contributes to distinguishing CRC samples, but this genus has not

yet been implicated in the literature, although it has been observed to participate

in the metabolism of flavonoids (Li et al., 2018), which are antioxidants generally

known to be anti-inflammatory and anti-tumorigenic. Moreover, on the loading in

which Butyrivibrio (a genus of butyrate producers) and Adlercreutzia have large

negative coefficients, all other large magnitude coefficients are positive. Flavonoids,

along with dietary fibre, are linked to butyrate production, all of which have been

linked to metabolic health and decreased risk of cancer (Jakobsdottir et al., 2013; Wu
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et al., 2018; Ohkawara et al., 2006), although little is known about how flavonoids

are metabolized. This loading vector may then represent a contrast between these

genera—which may be involved in some protective pathway related to the metabolic

intermediates of flavonoids—and the other genera dominating the loading. This is an

insight that neither Zeller et al. (2014) nor Feng et al. (2015) were able to resolve

from their single-group analyses.
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Chapter 5

Conclusion

We have demonstrated that by appropriate modeling of microbial abundance count

datasets so as to estimate their respective variances, followed by estimation of a

basis for a common low-dimensional subspace for the true underlying abundances,

we can remove unwanted variation while retaining shared variation patterns. Our

ensemble method performs well in simulation and appears to have utility for real

data analysis.

While we have demonstrated the method on data from two studies, in theory it can

be applied to any number of datasets. PoissonPCA and SCPCA, the constituent

methods showing the best performance, computation speed, and flexibility, can scale

up to handle estimation of a common basis for many groups. Hence, our next step is

to find a larger pool of similar datasets to determine whether strong common signal

can still be resolved, since the relative amount of common signal will presumably

drop with each additional dataset. We can also validate our findings by classification

prediction or graphically by applying leave-one-out cross-validation across the groups,

and comparing the projections of the estimated abundances for the held-out data and

the rest of the data onto the subspace common to all except the held-out set. If we

find that the ensemble method can indeed find common generalizable signal across

many groups, this will lead us closer to impactful meta-analysis and the translation

of research to application.

Similarly, we have shown the performance of our ensemble method on independent

genomic samples from different experiments with very similar characteristics, but it

remains to be investigated what range of common-signal-to-unique-noise ratios the

method can handle. In this thesis we assumed that the variation of interest is shared
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across samples, which is true at least in the sense that the common metadata col-

lected in all samples reflects what is of interest to us in a given exploratory analysis.

However, the common signal may be harder to differentiate from strong unique bi-

ological signatures than it is from technical noise, and in our analyses in Chapter 4

we avoided this issue by choosing datasets from Feng et al. (2015) and Zeller et al.

(2014), two clinical studies with very similar designs. That is, certain types of samples

may be presumed to have more constraints on their similarity than other types: two

independent fecal samples from different individuals are more similar than would be,

for instance, two independent water samples from different lakes, because we would

expect that the conditions within the human intestinal lumen are more constrained

across individuals (by physiology) than the conditions of lake water are constrained

across lakes. Because of the abundance of biomedical and clinical data available from

studies of human and animal gut microbiota which tend to investigate similar themes,

our method already has a solid basis of applicability based on our results. The next

step in our research is to investigate whether our proposed method can resolve the

common axes among different microbial abundance data even when there is presum-

ably large unique biological variation among groups, in addition to unique technical

noise and common biological variation. If so, the scope of our method could be ex-

tended to exploring commonalities in community structure that are conserved across

a diverse range of communities.

In other future work, we may develop a multi-group extension of PLNPCA, which

could make direct use of the dimension reduction capabilities of modeling counts as

conditional on linear combinations of common and unique factors lying in separate

low-dimensional subspaces, potentially removing the need for an ensemble method.

However, we would have to consider carefully how best to fit this model, as PLNPCA

and especially MSFA are already slow to optimize parameter estimates. We would

also need to consider whether the restrictive parameterization that these models share

might be inappropriate in general for exploratory analyses of metagenomic and 16S

data, and that in fact an ensemble method using semi-parametric approaches is prefer-

able, as was found in our analyses. Yet another option would be to build an equivalent

hierarchical Bayesian factor analysis model, although MCMC run times scale poorly

with dimension compared to likelihood methods. Even so, given the difficulty that

MSFA’s ECM algorithm had in achieving convergence in our simulations and data

analysis, it is possible that a Bayesian approach would be easier to implement.

In conclusion, the study of microbiota poses a number of challenges, and signal-
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obstructing noise is heterogeneous and will forever evade capture. We can only do our

best to treat these data in the most appropriate way possible for a given aim. In this

thesis, we addressed the lack of cross-study generalization in microbial abundance

data, and proposed a framework to “remove” some of the observed within-study

variation by seeking the latent structure that provides a scaffold for the common

variance.
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Appendix A

Supplementary Results

A.1 Additional Simulation Results

A.2 Additional Score Plots
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Figure A.1: Simulation results for decreasing eigenvalues and one common eigenvec-
tor, with SDC; p=50, n1 = 1000, n2 = 500.
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Figure A.2: Simulation results for decreasing eigenvalues and one common eigenvec-
tor, with no SDC; p=50, n1 = 1000, n2 = 500.
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Figure A.3: Simulation results for decreasing eigenvalues and one common eigenvec-
tor, with SDC; p=50, n1 = 1000, n2 = 500.
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Figure A.4: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, with SDC; p=50, n1 = 1000, n2 = 500.
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Figure A.5: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, with no SDC; p=50, n1 = 1000, n2 = 500.
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Figure A.6: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, with SDC; p=50, n1 = 1000, n2 = 500.
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Figure A.7: Simulation results for non-decreasing eigenvalues and one common eigen-
vector, with SDC; p=50, n1 = 100, n2 = 100.
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Figure A.8: Simulation results for non-decreasing eigenvalues and one common eigen-
vector, without SDC; p=50, n1 = 100, n2 = 100.
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Figure A.9: Simulation results single-group methods for non-decreasing eigenvalues
and one common eigenvector, with SDC for PoissonPCA/PLNPCA; p=50, n1 = 100,
n2 = 100.
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Figure A.10: Simulation results for non-decreasing eigenvalues and five common eigen-
vectors, with SDC; p=50, n1 = 100, n2 = 100.
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Figure A.11: Simulation results for non-decreasing eigenvalues and five common eigen-
vectors, without SDC; p=50, n1 = 100, n2 = 100.
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Figure A.12: Simulation results single-group methods for non-decreasing eigenvalues
and five common eigenvectors, with SDC for PoissonPCA/PLNPCA; p=50, n1 = 100,
n2 = 100.
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Figure A.13: Simulation results for decreasing eigenvalues and one common eigenvec-
tor, with SDC; p=50, n1 = 500, n2 = 500.
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Figure A.14: Simulation results for decreasing eigenvalues and one common eigenvec-
tor, with no SDC; p=50, n1 = 500, n2 = 500.
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Figure A.15: Simulation results for decreasing eigenvalues and one common eigenvec-
tor, with SDC; p=50, n1 = 500, n2 = 500.
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Figure A.16: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, with SDC; p=50, n1 = 200, n2 = 500.
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Figure A.17: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, with no SDC; p=50, n1 = 500, n2 = 500.
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Figure A.18: Simulation results for decreasing eigenvalues and five common eigenvec-
tors, with SDC; p=50, n1 = 500, n2 = 500.
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Figure A.19: Simulation results for non-decreasing eigenvalues and one common eigen-
vector, with SDC; p=50, n1 = 500, n2 = 500.
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Figure A.20: Simulation results for non-decreasing eigenvalues and one common eigen-
vector, without SDC; p=50, n1 = 500, n2 = 500.
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Figure A.21: Simulation results single-group methods for non-decreasing eigenvalues
and one common eigenvector, with SDC for PoissonPCA/PLNPCA; p=50, n1 = 500,
n2 = 500.
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Figure A.22: Simulation results for non-decreasing eigenvalues and five common eigen-
vectors, with SDC; p=50, n1 = 500, n2 = 500.
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Figure A.23: Simulation results for non-decreasing eigenvalues and five common eigen-
vectors, without SDC; p=50, n1 = 500, n2 = 500.
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Figure A.24: Simulation results single-group methods for non-decreasing eigenvalues
and five common eigenvectors, with SDC for PoissonPCA/PLNPCA; p=50, n1 = 500,
n2 = 500.
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Figure A.25: Scores from ensemble methods without SDC by disease state.
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Figure A.26: Scores from PoissonPCA (SDC) and MSFA by study of origin.
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Figure A.27: Scores from PLNPCA (SDC) and MSFA by study of origin.
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Figure A.28: Scores from PLNPCA (SDC) and SCPCA by study of origin.
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Figure A.29: Scores from PoissonPCA (SDC) & FCPCA by study of origin.
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Figure A.30: Scores from PLNPCA (SDC) and FCPCA by study of origin.
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Figure A.31: Scores from PoissonPCA (no SDC) & MSFA by study of origin.
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Figure A.32: Scores from PLNPCA (no SDC) and MSFA by study of origin.
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Figure A.33: Scores from PoissonPCA (no SDC) & SCPCA by study of origin.
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Figure A.34: Scores from PLNPCA (no SDC) & SCPCA by study of origin.
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Figure A.35: Scores from PoissonPCA (no SDC) & FCPCA by study of origin.
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Figure A.36: Scores from PLNPCA (no SDC) & FCPCA by study of origin.
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Figure A.37: Scores from PLNPCA alone with SDC by study of origin.
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Figure A.38: Scores from PCA of relative abundance by study of origin.
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Figure A.39: Scores from PCA of log relative abundance by study of origin.
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Figure A.40: Scores from PCA of counts by study of origin.
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Figure A.41: Scores from PCA of log counts by study of origin.
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