
DETECTION OF DDOS ATTACKS BASED ON DENSE NEURAL
NETWORKS, AUTOENCODERS AND PEARSON

CORRELATION COEFFICIENT

by

Junhong Li

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2020

© Copyright by Junhong Li, 2020

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vi

List of Abbreviations Used . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

Chapter 2 Background . 4

2.1 Signature-based Techniques . 4
2.1.1 Prior Works . 5
2.1.2 Snort and its Rules . 6

2.2 Traditional Machine Learning Techniques 8
2.2.1 Naive Bayes Classifier . 8
2.2.2 Support Vector Machine . 8
2.2.3 Decision Tree . 9
2.2.4 Random Forest . 9

2.3 Deep Learning Techniques . 11
2.3.1 Dense Neural Network . 11
2.3.2 Convolutional Neural Network 11
2.3.3 Recurrent Neural Network . 12
2.3.4 AutoEncoder . 13

2.4 Hybrid Techniques . 14
2.4.1 Rule Based Techniques . 14
2.4.2 NN-based Hybrid Technique 16

Chapter 3 Methodology . 18

3.1 CIC-FlowMeter . 19

3.2 Dataset . 20

3.3 Traditional Machine Learning Approaches Exploration 28
3.3.1 Results from the dataset creators 31

ii

3.3.2 Decision Tree . 31
3.3.3 Random Forest . 32
3.3.4 Logistic Regression . 33
3.3.5 Naive Bayes . 34

3.4 Feature Compressing . 35

3.5 Pandas-profiling . 38

3.6 Classifiers . 42
3.6.1 DNN Classifier . 43
3.6.2 AutoEncoder . 43
3.6.3 Pearson Correlation Coefficient 45

3.7 Metrics . 45

Chapter 4 Experiment . 47

4.1 Hardware configuration . 47

4.2 Generate New CSVs . 47

4.3 Data preprocessing . 49
4.3.1 Rebalance Data . 49
4.3.2 Data Cleaning . 50
4.3.3 Data Normalization . 51
4.3.4 Data Split . 52

4.4 Dimension Reduction Techniques . 53
4.4.1 PCA . 53
4.4.2 ANOVA . 54
4.4.3 Auto Encoder . 54

4.5 Training Auto Encoder . 56

4.6 DNN Training . 58
4.6.1 Architecture of the Dense Neural Network 58
4.6.2 Training Details and Results 58

4.7 Discussion of the results . 64

Chapter 5 Conclusion and Future Work 67

5.1 Conclusion . 67

5.2 Future work . 68

iii

List of Tables

Table 3.1 Second Day . 23

3.2 Features in CICDDoS2019 [8], [11]. 23

Table 3.3 Feature selection for detection [8] 29

Table 3.4 Detail of Sampled Dataset . 30

Table 3.5 The results from Sharafaldin et al [8] 31

Table 3.6 Features to be dropped . 42

Table 4.1 Regenerated First Day Dataset Details 50

Table 4.2 Regenerated Second Day Dataset Details 50

Table 4.3 Data split on each attack type 53

Table 4.4 Training Confusion Matrix of PCA 53

Table 4.5 Testing Confusion Matrix of PCA 54

Table 4.6 Training Confusion Matrix of ANOVA 54

Table 4.7 Testing Confusion Matrix of ANOVA 55

Table 4.8 Training Confusion Matrix of Auto Encoder 55

Table 4.9 Testing Confusion Matrix of Auto Encoder 55

Table 4.10 validation loss of different dimensions 57

Table 4.11 DNN results . 60

Table 4.12 AE-DNN results . 60

Table 4.13 PCC-AE-DNN results . 61

4.14 CM . 61

Table 4.15 Model Selection . 65

iv

List of Figures

Figure 3.1 Confusion Matrix for Decision Tree 32

Figure 3.2 Confusion Matrix for Random Forest 33

Figure 3.3 Confusion Matrix for Logistic Regression 35

Figure 3.4 Confusion Matrix for Naive Bayes 36

Figure 3.5 Auto Encoder representation 37

Figure 3.6 Snapshot of Pandas-profiling 40

Figure 3.7 Pearson correlation coefficient 41

Figure 3.8 Illustration of DNN . 44

Figure 4.1 Running CIC-FlowMeter . 48

Figure 4.2 MinMaxScaler Loss . 52

Figure 4.3 MinMaxScaler Loss . 52

Figure 4.4 ROC of PCA . 54

Figure 4.5 ROC of ANOVA . 55

Figure 4.6 ROC of Auto Encoder . 55

Figure 4.7 Train loss and test loss over epochs 57

Figure 4.8 DNN accuray over epochs . 58

Figure 4.9 DNN loss over epochs . 59

Figure 4.10 ROC of DNN . 59

Figure 4.11 SNMP AE loss . 65

v

Abstract

Distributed Denial of Service (DDoS) is a set of frequent cyber attacks used against

public servers. Because DDoS attacks can be launched remotely and reflected by legit-

imated users on networks, it is hard for victims to detect and prevent them. The ob-

jective of this thesis is to explore the detection of DDoS attacks, especially those that

have arisen in recent years, by a combination of dense neural networks, autoencoders

and Pearson Correlation Coefficient. Three different classification models are de-

signed, trained and tested. In order to gain information about the most recent DDoS

attack types, the CICDDoS2019 dataset is selected as the training and testing set.

This dataset contains Microsoft SQL Server(MSSQL), Simple Service Discovery Pro-

tocol(SSDP), Network Time Protocol(NTP), Trivial File Transfer Protocol(TFTP),

Domain Name System(DNS), Lightweight Directory Access Protocol(LDAP), Net-

work Basic Input/Output System(NetBIOS), Simple Network Management Proto-

col(SNMP), SYN flood, User Datagram Protocol(UDP) flood and UDP-Lag. To

imitate the real network environment, the data used in this thesis is raw PCAP files.

CIC-FlowMeter, a packet analysis tool, will be used to convert the raw packets into

features. Three different deep-learning models are proposed to be used in DDoS

detection. The models consist of DNN, Auto Encoder and Pearson Correlation Coef-

ficient, in which the autoencoder works as a feature compressor. The performance of

each model on different types of attacks is compared. The thesis also set up a bench-

mark using traditional machine learning models. The proposed models outperform

the traditional machine learning classification models. Furthermore, the F1-score of

the proposed models is higher than other approaches.

vi

List of Abbreviations Used

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

MSSQL Microsoft SQL

SSDP Simple Service Discovery Protocol

NTP Network Time Protocol

TFTP Trivial File Transfer Protocol

DNS Domain Name Server

LDAP Lightweight Directory Access Protocol

NetBIOS Network Basic Input/Output System

SNMP Simple Network Management Protocol

UDP User Datagram Protocol

DNN Dense Neural Network

AE Auto Encoder

PCC Pearson Correlation Coefficient

vii

Acknowledgements

Thanks to Professor Srini Sampalli’s significant effort and help in the process of

building this thesis. He is a professional, patient and warm-hearted man who makes

all of this happen. I also want to thank Professor Nur Zincir-Heywood and Professor

Malcolm Heywood to be my readers. I got much help from MyTechLab members,

such as Robbie MacGregor, Reetam Taj, Amin Nemati and Darshana Upadhyay,

during my experimentation phase. Last but not least, I want to thank my friends,

Xuhui Liu, Zhonghui Liu, Yichao Liang and Yang Guo. They didn’t leave me alone

during the marathon and encouraged me when I was down.

Hope we all stay safe from COVID-19.

viii

Chapter 1

Introduction

Distributed Denial of Service (DDoS) attacks are a class of frequent cyber attacks

used against public servers. There are many different types of DDoS attacks that

have been widely used in the past decades. Researchers from all over the world

have explored many potential ways to detect, prevent and mitigate DDoS attacks.

The techniques used to detect DDoS attacks can be mainly divided into two types:

rule-based approaches and case-based approaches.

One of the well-known applications that use the rule-based approach is Snort,

a packet filter tool developed by Roesh[1]. This tool can filter packets by analyzing

many characteristics of each packet that flows on a server or host. For example, it can

filter by source IP, destination IP, port number, protocols, packet size and content.

Many researchers have enhanced this tool or integrated this tool into their design.

Because Snort filters the packets using rules, the false alarm rate is low. In comparison

with machine learning strategies, rule-based approaches do not need training, which

makes them faster.

Machine learning approaches can be mainly classified into two areas: traditional

machine learning and deep learning. Traditional machine learning techniques contain

Decision Tree, Random Forest, Logistic Regression, Support Vector Machine and

Naive Bayes. These traditional techniques do not have neural networks in the model.

In deep learning, training is done by neural network models. There are many types

of neural networks used in DDoS detection, such as convolutional neural network,

recurrent neural network, dense neural network, autoencoder and hybrid neural net-

work. In recent years, many researchers explored ways to utilize neural networks to

detect DDoS attacks. The significant advantage of machine learning approaches is

that they can give a higher detection rate than rule-based approaches, especially for

unknown attack types[2].

Many researchers have found that rule-based approaches are fast and machine

1

2

learning approaches can provide higher detection rate[3]–[5]. A couple of hybrid

Network Intrusion Detection frameworks have been proposed. The most common

approach is using signature-based tools such as Snort to filter the known attacks and

feeding the filtered packets into machine learning models to do further detection. By

doing this, the framework can easily filter the known attacks using Snort and leave

the remaining traffic to machine learning models. Machine learning models focus

on detecting the unfiltered attacks in the remaining traffic. In this type of hybrid

framework, the signature-based part can relieve the load of machine learning part

and detection time can be saved. However, the remaining traffic is determined by

machine learning models later to ensure a high detection rate.

The Snort team provides a package that contains Snort software and rules, and the

users can install Snort and download the rules from the Snort website[6]. After proper

configuration, Snort can filter the live traffic or offline PCAP files. For researchers

who have an intrusion dataset in PCAP format, the best practice is to use offline

mode.

Machine learning models are the main focus of this thesis. The big challenge of

using machine learning models is how to get a higher detection rate and keep the false

alarm rate low. Traditional machine learning techniques such as Decision Tree and

Random Forest can reach a moderate Detection Rate around 70%, which is shown in

Section 3.3. In this thesis, a novel way of combing Dense Neural Networks, autoen-

coders and Pearson Correlation Coefficient is designed, trained and tested. Pearson

Correlation Coefficient can calculate to what extent two features are correlated, and

in experimentation, one of the features are dropped to avoid redundant training. Au-

toencoders work as feature compressor, the uncorrelated features are compressed into

a lower dimension, and the major features are kept at the same time. Ideally, the

hybrid model can save detection time and improve F1-scores.

Before training the machine learning models, an important step is extracting fea-

tures from the raw PCAP file into readable CSV files. There are many popular

DDoS datasets used by researchers, such as CAIDA UCSD[7] and CICDDoS2019[8].

However, Canadian Institute for Cybersecurity, which published CICDDoS2019, pro-

vides an analytical tool for researchers to extract features. The tool is called CIC-

FlowMeter[9]. It can extract 84 features from raw PCAP files. In this thesis, the

3

CIC-FlowMeter is used to generate CSV files. The CICDDoS2019 dataset is used as

training and testing data as well.

CICDDoS2019 is a DDoS attack dataset. It is extracted from CICIDS2018[10].

The dataset has two versions. The first version is CSV files, which contain 12 different

DDoS attacks such as SNMP, TFTP and SYN. There are 84 features provided in the

CSV files. Another version is raw PCAP files. The PCAP files are captured by

Sharafaldin[8] and his colleagues in a two-day attack session. They launch different

attacks at different time ranges. The CSV files already have labels, while the PCAP

files need to be manually labelled. They also provide the attack schedule on their

website[11]. The timestamp from the PCAP files can be used to determine the attack

types.

In this thesis, some traditional learning methods are trained and tested as bench-

marks. The hyper-parameters and training process are remained default by sklearn.

Traditional learning models are trained on a sampled dataset extracted from CICD-

DoS2019 CSV files. Then, the PCAP files from CICDDoS2019 are converted to CSV

files using CIC-FlowMeter. After that, three different deep learning approaches are

introduced and tested. The first is a Dense Neural Network. The second is a hy-

brid neural network, consisting of an autoencoder and a DNN. In the model, the

autoencoder works as a feature compressor. In the third model, there is also an

autoencoder and a DNN. However, the difference between the third model and the

second model is that before feeding the data into the model, the data features are

selected by Pearson Correlation Coefficient[12]. These three models are trained and

tested on CICDDoS2019 dataset, and the results are compared with the results of

Sharafaldin et al.[8] and the benchmarks.

This chapter is followed by another four chapters: In chapter 2, different tech-

niques used to detect DDoS attacks and other intrusions are introduced. The tech-

niques include signature-based detection and machine learning approaches. In chapter

3, all the approaches used in this paper are introduced, including tools, algorithms,

datasets, models and metrics. In chapter 4, all results generated using the method-

ologies from chapter 3 and analysis of the results are discussed in detail. In chapter

5, the conclusions derived from the whole procedure are discussed, and the potential

future work is also discussed. At the end of this thesis, references are given.

Chapter 2

Background

As is always a hot topic in the area of network security, DDoS attack and intru-

sion detection techniques for such attacks are explored by some researchers[13]. The

threat of network attacks has risen sharply in the past few decades[13]. DDoS attacks

are a significant challenge that most big companies face. For Internet users, DDoS

attacks aim to ultimately bring down the accessibility of different Internet-based ser-

vices to legitimate users[14]. For companies, a DDoS attack uses many computers

to launch a significant volume of requests to attack one or more victims[15], and the

nature of distribution makes it more difficult to detect them[16]. However, many

researchers proposed different approaches to detect, respond and mitigate DDoS at-

tacks. The techniques used to detect the DDoS attacks can be divided into three

types:(1) Signature-based or rule-based techniques to examine the headers or content

of network packets.[17], [18]. (2) Case-based techniques such as machine learning

or statistical models to classify the traffic by examining the headers or behaviour of

the packets[19]. (3) Integration of multiple classifiers or techniques to build a hybrid

classification model[20].

In this chapter, the three types of detection approaches will be introduced. More-

over, the prior work that has been done by other researchers will be discussed.

2.1 Signature-based Techniques

Signature-based methods supporting real-time intrusion detection have been estab-

lished as an effective way to identify attacks. Rule-based processes and tools being fed

data from a signature database can quickly identify a variety of attempts to gather in-

formation about open ports and available services to create buffer overflows to execute

CGI attacks[1], [3]. These tools principally rely upon protocol analysis to accomplish

network intrusion detection tasks but are capable of doing a more detailed analysis

of raw packets to identify attacks of interest in the present such as DoS, brute force,

4

5

and browser-based attacks.

The designers of network intrusion detection systems face the unique challenge of

having to balance the need to efficiently detect intrusions in real-time against the need

to be flexible in responding to attacks with unknown or novel characteristics. Fre-

quently, they employ methods that leverage efficient, signature-based approaches to

the detection of misuse and conventional attacks, leaving the identification of network

traffic patterns not easily categorized by these tools to classification algorithms[21]–

[24].

2.1.1 Prior Works

Ficco et al.[25] approach uses a set of components hierarchically organized to accu-

mulate streams of information at different levels (hypervisor, infrastructure, platform

and application). The consolidated data is correlated and used to distinguish whether

monitored activities are due to malicious behaviours. This strategy assists in identi-

fying compromised virtual components and distributed attacks.

Considering numerous vulnerabilities in networks, Chiba et al.[23] have catego-

rized them into two types of threads; Insider attacks and outsider attacks. An inte-

grated and cooperative NIDS framework is deployed at the frontend on the controller

and back end on every processing server to identify both classifications of intrusions.

All the NIDS placed on the servers work cooperatively to update their signature

database by receiving alerts stored in the central log. This makes it possible for cor-

relation in the central registry and hence, detection of unknown attack is possible.

The cognitive module in this design uses Snort to classify an attack by detecting

intrusions based on the misuse detection database. Snort tries to determine the na-

ture of the attack and transmits the information to the Alert System, and the packet

will be refused. This technique allows the researchers to easily update the misuse

database without any alteration of the existing rules.

A protocol-based network intrusion detection system is designed by Patil et al.[4]

to detect DoS/DDoS attacks in networks. In this system, Incoming packets are dis-

tributed according to the protocol and queued for additional processing. Relevant

features will be extracted, and protocol-specific classifiers are applied on each packet

to generate alerts and thus update the attack signature database. This approach

6

focuses on detecting DoS/DDoS attack types. The main features that the classifiers

focus on are the types of protocols.

Singh et al.[5] have designed a framework using Snort as a rule-based attack

detection system and have installed NIDS in the virtual bridge to monitor network

traffic and to form low-level intrusion alerts. The correlation section in this design

converts these low-level intrusion alerts to high-level intrusions.

Patil et al.[4] have proposed a framework to detect intrusion using Snort, a

signature-based tool. The overall architecture adapts a module called correlation

unit. The correlation unit is a component that can be deployed over all networks so

that all hosts can share the signatures in real-time. Snort itself has a detection engine

that can match the packet with rules for any correlation. The Snort signature will be

generated only when the major alert factor reaches a pre-set threshold.

Kumar et al.[26] described a signature-based IDS using Snort. In this paper, the

rules used in the detection engine is generated by known intrusion signature system.

A rule is divided into rule headers and rule options. Cisco has more than 2500 rule

bases in its database. Moreover, users can also change the rules based on their needs.

Altwaijry et al.[27] has proposed an automatic tool, WHASG, to generate Snort

signatures using a honeypot. In this design, there is a component called rules module.

It receives all the information required from the main module. Then it will generate

the signature. In this paper, Altwaijry et al. designed a data structure called signature

container array. An attack packet will be fed into the module, and a Snort signature

will be generated automatically.

There are also some online tools that can help to generate Snort signatures, such

as Snorpy. Snorpy is useful when researchers want to create one rule or two. However,

it is infeasible to use it to generate signatures in an automatic system.

2.1.2 Snort and its Rules

Snort is a lightweight signature-based network intrusion detection system created by

Martin Roesch[1]. It can rapidly filter the TCP/IP traffic based on headers and

options.

The Snort rules typically have 24 option fields[28].

7

• content

• content

list

• flags

• ttl

• itype

• icode

• fragbits

• id

• ack

• seq

• logto

• dsize

• offset

• depth

• nocase

• msg

• tos

• ipoption

• icmp id

• icmp seq

• session

• rpc

• resp

• react

Here is an example of Snort rules:

alert tcp any any − > 192.168.1.0/24 111 (content : ”|00 01 86 a5|”;msg : ”mountd access”;)

This rule alerts all traffic that has all the following characteristics:

1. it is a TCP traffic

2. could be from any IP and any port

3. the direction is ”in”

4. it has the same content as 00 01 86 a5

If Snort captures traffic like this, it will print the message ”mountd access” to the

log file or console.

The default DDoS rules can be found in Caswell et al.’s book[29]. Before training

the neural networks, these rules will be added into Snort. The rules will be used as

default, but the users can also apply the rules defined by themselves.

Here is an example of DDoS detection rules:

alert udp $EXTERNAL NET any− > $HOME NET 10498

(msg : ”...”; content : ”pong”; classtype : attempted− dos; sid : 246; rev : 2;)

There are 32 more default rules for DDoS detection[28] by default.

8

2.2 Traditional Machine Learning Techniques

2.2.1 Naive Bayes Classifier

Naive Bayes classifier is a simple probabilistic classifier[30]. In supervised learning,

Naive Bayes classifier can be trained rapidly without an enormous amount of com-

putational resources. Modi et al.[31] proposed a NIDS that integrates Naive Bayes

classifier and Snort. In this framework, Snort signature-based detection filters the

captured packets. The captured packets will be divided into two sets: intrusion pack-

ets and non-intrusion packets. The intrusion packets will be logged and denied by

the system. Meanwhile, the non-intrusion packets will be preprocessed and fed into

the anomaly detection module. The anomaly detection module employs the Naive

Bayes classifier to further classify the non-intrusion packets into normal and intrusion

packets. Once the packets are classified as intrusions, they will be logged and denied.

Only when the packets are labelled as normal can they be allowed to go to the system.

The F-1 score tested on the KDD’99 dataset varies from 91.25% to 98.01%. Qin et

al.[32] designed a similar framework as Modi et al [1] did. Qin’s performance test on

the DARPA’99 dataset got a detection rate of 97%, a prediction rate of 97% and a

false alarm rate of 0.1%.

2.2.2 Support Vector Machine

Jing et al.[33] have proposed Support Vector Machine(SVM) with a new scaling

method in 2019. The necessary steps are: (1) divide the dataset into the train-

ing set and testing set; (2) Preprocessing the data (both training set and testing

set) with scaling method; (3) Train the SVM model with the training set; (4) Test

the model with the testing set; (5) Record the classification result. The paper uses

UNSW-NB15 dataset. The dataset has nine distinct attack labels and one normal

label. There are two successive parts in the experimentation. One is to train and

test the model on binary labels while the other on multi labels. The detection rate

of anomaly data is 97%, and the false-positive rate is 27.5%. The detection rate of

normal data is 72.5%, and the false-positive rate is 3%. In the multi-class test, the

accuracies of ten classes vary from 86.7% to 99.9%, the detection rate ranges from

0% to 95.8%, and the false-positive rate ranges from 0% to 11.85%.

9

2.2.3 Decision Tree

Hong et al.[34] propose a lightweight NIDS that uses Decision Tree. In this proposal,

they use Chi-Square and Enhanced C4.5 in the detection model. The authors down-

sample the KDD’99 dataset to 10% of the original size. The Chi-Square module

is used to select proper features. A subset of the data with less normal and more

attack traffic will be fed into the Chi-Square selector. The selector can automatically

determine a proper χ2 threshold, which can keep the original data fidelity. The C4.5

module will use the features selected by the Chi-Square module to train a multi-class

decision tree. The C4.5 model uses information gain as the criteria to determine

the split points. Then the authors build a balanced subset and use it to train the

Enhanced C4.5 model.

The model is evaluated using the rest of the KDD’99 dataset. The experiment re-

sult shows that the True Positive Rate varies from 50.01% (U2R) to 99.99% (Normal).

Moreover, the False Alarm Rate varies from 1.48% (DOS) to 28.32%(U2R).

2.2.4 Random Forest

Zhang et al.[35] propose a hybrid detection system using random forest. In their pro-

posal, they employ both misuse detection and anomaly detection. Misuse detection

refers that the system alerts when it captures attack traffic. Otherwise, the system

will label the traffic as benign traffic and let it in. In this case, uncertain traffic will

not be handled. Using only this method will decrease the Detection Rate. Anomaly

detection means the opposite way. It will only let the benign traffic in and alert all

other traffic. Using only this technique will increase the False Alarm Rate.

Zhang et al. use Random Forest in both misuse and anomaly detection module.

During the training of the misuse module, they over-sample the majority and down-

sample the minority to avoid data imbalance problems. The training data are well

labelled. In the anomaly detection module, they also employ the Random Forest

technique. In this procedure, they use unsupervised learning to train the model.

They train the model using only benign traffic such as HTTP, FTP and telnet. The

Random Forest then will detect the outliers or unusual behaviours. The model mainly

detects two types of outliers. One is traffic that significantly deviates from other

services of the same type. The other one is traffic that behaves like another type of

10

service. For example, if telnet traffic is clustered into HTTP service, the traffic will

be determined as an attack.

Combining the two detection modules, the authors achieved 94,7% of the overall

detection rate and 2% of the overall false alarm rate.

Anomaly detection component by Patil et al.[21] identifies and classifies an attack

by analyzing the applied network traffic using the Random Forest classifier algo-

rithm. They have performed comparative analysis using several algorithms to detect

anomalous behaviour and classify it as an attack. The researchers have worked on

two different datasets, i.e., the UNSW-NB15 dataset and the CICIDS-2017 dataset

comparing them with false-positive rates and detection accuracy as a measurement.

The results indicate that the Random Forest classifier delivers exceptionally higher

accuracy and has the least false-positive rate. Random Forest classifier algorithm

also helps and performs better in achieving real-time validation, detecting a variety

of attacks, fast detection, high handling of network traffic.

Where Patil et al.[21] used a pre-trained Random Forest classifier to accomplish

anomaly detection (making the first attempt to identify malicious activity in un-

known network traffic patterns), some researchers have proposed adopting an ensem-

ble approach using feature selection, similar to that outlined by Zhou et al.[36]. A

hybrid/ensemble technique proposed by Moustafa et al.[2] could yield better results

when developing machine learning models for detecting new attacks. The performance

of traditional classifiers are assessed in Chapter4 when trained on modern datasets

such as CSE-CIC-IDS2018[10], and found that Random Forest-based classifiers (par-

ticularly those using boosting, or better still optimized gradient boosting), appeared

to out-perform naive approaches or classification via simple Decision Tree. These

results, coupled with the arguments and experimental validation provided by Zhou et

al.[36], have informed the researchers to use a pre-trained classifier, built using their

preferred approach of combining feature selection with an ensemble classifier based

on a combination of C4.5 and Random Forest, for anomaly detection. One possible

drawback of this strategy is that Random Forest-based approaches can fail to account

for environmental factors, and so some method of correcting possible false positives

that accounts for this is highly desirable.

11

Patil et al.[4] proposed a Protocol specific Multi-threaded Network Intrusion De-

tection System (PM-NIDS). It aims at detecting DoS and DDoS attacks in the cloud

system. It works by employing different classifiers, i.e. random forest algorithm, deci-

sion tree algorithm and OneR classifier, based on the protocol of the incoming packet.

Experiments and results prove that the proposed design delivers high accuracy and

low false positives, however detecting a variety of attacks and real-time validation is

not fulfilled.

2.3 Deep Learning Techniques

2.3.1 Dense Neural Network

Al-Maksousy et al.[37] proposed a simple system that integrates Dense Neural Net-

work (DNN). The brief steps of the system are: (1) Use a data sniffer (e.g. WireShark)

to record the data flowing over the client network. The data sniffer will generate

PCAP files that contain all the information of packets. (2) The PCAP files will be

forwarded to tcptrace, a utility that can extract over 90 meaningful high-dimensional

data. The results will be saved in CSV files. (3) The CSV data will be fed into the

first DNN, which is a binary classifier. This DNN will only determine the packets are

normal or suspicious. If the packets are labelled as suspicious, they will be directed

to the alarm module as well as the second DNN (4) The second DNN is a multi-class

classifier. This DNN is trained on malware datasets. The purpose of the second DNN

is to label the packets with known malware types. The author tested the system on

the KDD’99 dataset. The testing accuracy of suspicious data is 99.7%. However, the

testing accuracy of benign data is 99.9%.

2.3.2 Convolutional Neural Network

Convolutional Neural Network is a type of neural network designed for tasks related

to images. It has a special layer called convolutional layer. Convolution layer can

extract local features from images and pass them to the next layer. Normally, CNN

is used in some tasks that need to process images. However, some researchers found

CNN performs well in Network Intrusion Detection [38]–[42].

Vinayakumar et al.[38] use a six-layer model. The first three layers are CNN,

12

and the last three layers are CNN with Recurrent Neural Network, Long-Short-Time-

Memory and Gated Recurrent Unit. The multi-class test accuracy on KDD’99 min-

imal features varies from 92.3% to 98.7%. Li et al.[39] proposed another algorithm

using CNN to detect intrusions. Their work employs multi-scale CNN, Inception mod-

els as well as batch normalization. The Detection Rate on KDD’99 reaches 93.22%,

and the False Alarm Rate reaches 2.18%. Khan et al.[40] proposed a simple CNN

model that consists of an input layer, two convolutional layers, two max-pooling layers

and a fully connected output layer. The overall accuracy tested on KDD’99 reaches

99.23% after training for 800 epochs. Xiao et al.[41] apply feature reduction before

feeding the data into CNN. They compared feature reduction performance using Prin-

ciple Component Analysis and Auto Encoder. After that, the authors implemented

a CNN with Batch Normalization and dropout layers. The results show that Auto

Encoder got a higher Detection Rate and lower False Alarm Rate when testing on

the KDD’99 dataset. The overall multi-class accuracy reaches 94.0%. Yang et al.[42]

designed an Improved Convolutional Neural Network. The experiment results on

KDD’99 show that AUC reaches 0.9392.

2.3.3 Recurrent Neural Network

RNN is s type of neural network that has a special memory mechanism such as gates

or Gated Recurrent Unit(GRU). The gates or GRUs can remember the features that

were earlier fed into the RNN for a period of time. After a certain time, the gates

or GRUs will forget the earlier features. This mechanism is commonly used when

time-series needs to be established. A typical use case of RNN is Natural Language

Processing, in which time-series plays an important role. In the area of intrusion

detection, some researchers built well-performed models using RNN[43]–[47].

Yin et al.[43] use RNN with forward propagation and weights updates (backprop-

agation). The authors applied grid search to the parameters. The best test accuracy

on KDD’99 is 81.29%. Qureshi et al.[44] rebalanced the KDD’99 dataset before train-

ing and testing. The proportion of abnormal data in the training set is rebalanced to

46.5%. The authors have referred to Bajaj et al.[48]’s work about feature reduction

and dropped some features in the preprocessing. The highest accuracy they got on

the KDD’99 test set is 94.50%. Althubiti et al.[45] use Long-Short-Term-Memory

13

RNN and ADAM optimizer. LSTM is a special type of RNN which is explicitly

designed for tasks that need short-term memory. After reducing the features to five-

dimension, the test accuracy on CSIC 2010 HTTP dataset reaches 99.57%. Meng

et al.[46] took a further step and integrate kernel PCA and LSTM. Kernel PCA is

a type of dimension reduction technique. The main difference between PCA and

Kernel PCA is that Kernel PCA generalize PCA from linear to nonlinear dimension

reduction. The overall Detection Rate tested on KDD’99 is 99.46%, while the False

Alarm Rate is 4.86%. Le et al.[47] compared several gradient descent optimizers with

LSTM. Gradient Descent is a classic optimizer used in deep learning. However, there

are many variations of Gradient Descent optimizers. The authors also compared

Adagrad, Adadelta, RMSprop, Adam, Adamax and Nadam. The Nadam optimizer

outperforms other optimizers. The Detection Rate tested on KDD’99 reaches 98.95%,

and the False Alarm Rate gets 9.98%.

2.3.4 AutoEncoder

Rezvy et al [49] chose AutoEncoder as the pre-train model to re-configure features and

then use DNN to classify the traffic. AutoEncoder works as a feature re-constructor

in this system. The system works as below: (1) Pre-process the dataset. The author

used down-sampling and over-sampling techniques to avoid the imbalance of data.

The dataset is divided into 80% for training and validation and 20% for testing.

(2) Pre-Train the AutoEncoder with the training set. The categorical columns are

encoded with one-hot. Before feeding the data into the model, the data is normalized

using a min-max scaler. The AutoEncoder compressed the feature dimension from

122 to 61, and re-construct it back to 122. (3) The re-constructed 122 features are fed

into a three-layer DNN. The DNN is a five-class classifier. It labels the packets with

the types of attacks. The author tested the model with the NSL-KDD’99 five-class

dataset. The accuracy of the five classes varies from 89.2% to 99.9%. The overall

accuracy of the attacks is 99.3%.

14

2.4 Hybrid Techniques

2.4.1 Rule Based Techniques

Signature-based approaches and rule-based processes (e.g. Snort[1], [3]) are employed

to generate alerts at a local level to improve efficiency, handing anomaly detection and

the classification of unknown traffic patterns to a pre-trained machine learning model.

Processes benefiting from centralization or requiring more computational resources

are further passed to a cluster where simple correlations and more involved machine

learning tasks can be accomplished to efficiently reduce the likelihood of errors in

detection, limiting false positives. Detections coming from the central correlation

unit, or generated by either of the classifiers, result in updates to a signature database

feeding back into the rule-based tools and improving future outcomes.

Where past researchers have described complex algorithms for estimating system

load and scheduling tasks, with the aim of supporting truly distributed systems[22],

a more streamlined approach is proposed in this paper. Local, low-power devices

associated with routing, logging and other SIEM functions can reliably handle tasks

associated with packet capture (excluding IDS-related traffic), filtering/reducing raw

data (capturing required header fields), feature extraction; and basic anomaly de-

tection. More computationally costly, resource-intensive tasks cannot be efficiently

managed locally. In Chiba et al.’s[23] approach, a local device will act as a controller,

sending network flows and other data to a better-provisioned cluster when measures

of certainty are low (and additional verifications are needed to reduce errors related

to false positives) or computationally costly tasks are anticipated (e.g. when data

with unfamiliar characteristics are to be processed and classified). The algorithms

driving control and switching can be tuned based upon feedback data generated by

the cluster, and a DB supporting rule- and signature-based detection managed by the

same.

The processes of their proposed IDS can be grouped conceptually into three related

modules:

Cognitive Module: Classic rule-based and signature-based detection strategies

are a part of what might be thought of as the Cognitive Module.

15

Classification Module: The module for classification of potentially anomalous

behaviour that relies on simple ML classifiers at the local level, and more complex

ML and DL processes on the cluster.

Adaptive Module: The relationship between the local device/controller and the

cluster results in a flexible, adaptive solution. The cluster supports correlation and

error correction (reducing false-positive alerts originating with the Cognitive and Clas-

sification modules when measures of certainty are inadequate) and populates/updates

a DB to improve future responses. Switching and scheduling of tasks can result in

more efficient use of resources and more efficient classification of unknown/unusual

behaviours or patterns.

In this design, network traffic will be captured and analyzed using Tcpdump, a

command-line utility tool. It is a resourceful and robust tool that incorporates many

options and filters. This tool enables us to capture any network traffic through all

active interfaces and can even store it into a file with a ”.pcap” extension. Snort,

an Intrusion detection system, is used to detect any known attack signatures and

anomalies present in the captured traffic. All the captured raw data is sent to Snort

without any removal of payload data, which makes it likely for Snort even to look

at the payload and examine any indications of malicious content. Snort makes it

possible to detect known attacks and signatures as an efficient rule-based approach.

Besides that, raw data is sent to Tshark in order to reduce the captured traffic by

filtering the data stream to obtain appropriate packet headers. This reduced and

filtered dataset is the input for CSEFlowMeter, where required feature extraction

takes place. The features are extracted effectively adopting the proposed scheme and

finally forwarded to the anomaly detection stage where appropriate machine learning

algorithm(s) are employed to build a model and discover any additional information

or attack signatures.

The second component is the phase where detection rules for Snort are updated.

When a new exploit or an attack becomes identified through any of the adopted

classifiers, those particular instance information gets appended to the existing rule

base. It enables immediate detection of those particular attack instances subsequently.

16

Correlation and Error Correction segment is also responsible for identifying resource-

intensive machine learning tasks that require much more computational power. This

identification helps in switching and reassigning the job to be executed in a much

more robust environment using remote resources such as an external cloud server.

The detected anomaly traffic will be handled by the Alert and Mitigation module.

After this, the newly detected traffic will be added into Snort and knowledge bases.

Moreover, the knowledge bases are deployed on the cloud, so once a new anomaly is

detected, all IDS on the cloud will get an immediate update.

Haddad et al.[24] designed a collaborative framework for intrusion detection in

cloud computing using Snort as a signature-based detection and Support Vector Ma-

chine algorithm to identify anomalous attack patterns. This system was primarily de-

signed in a collaborative way to detect distributed attack patterns and defend against

them. The collaborative system additionally helps to keep updating the knowledge

base from time to time.

2.4.2 NN-based Hybrid Technique

When attempting to address the potential of false-positive detections from either

rule-based processes or the local anomaly detection unit, it is good to pass traffic

flows off to a more resource-intensive model using a hybrid Convolutional Neural

Network (CNN and DNN). This will significantly increase the accuracy of detection

and reduce the likelihood of false positives. Ma et al.[50] introduced a new feature

called environmental features. It can analyze the active flows in the flow-sliding

window. Combining the environmental features and general statistical features can

give us a new perspective to dig more information from the raw flow data. Considering

environmental features can also make it possible to detect a series of attacks that have

certain behaviour routines. It also helps with analyzing the emergence of flooding

attacks. The model also uses CNN, which can learn sequential characteristics of data

very quickly by convolutional layers and pooling layers. The experiment results also

show that the hybrid NN has excellent performance on multi-type classification.

In Ma et al.’s proposed NIDS, the classification module employs Neural Networks.

The NIDS is a hybrid architecture that consists of four parts. The anomaly detection

is divided into two parts. The first part is Snort, which is a signature-based intrusion

17

detection system. Snort can detect known intrusion traffic, but it does not perform

well on unknown or latest intrusions. To tackle this problem, they introduced a hybrid

neural network to do further classification.

The hybrid neural network uses three novel feature sets derived from raw traffic

data. Namely, the sequence packet features general statistical features and environ-

mental features of the traffic. Unlike previous IDS, this hybrid neural network can

make use of comprehensive features from traffic data. The network not only focuses

on single flows from outside but also monitoring sequential flows between two IP ad-

dresses. The network introduced a sliding window to detect the correlation in time

series between two IP addresses. Moreover, the length of the sliding window can be

modified with corresponding requirements.

Chiba et al.[51] use Snort as an Intrusion detection system for misuse detection and

the Optimized Back-Propagation Neural network (BPN) algorithm for anomaly de-

tection. The back-propagation algorithm has some drawbacks such as slow detection

speed, less detection accuracy and slow convergence speed. However, an optimization

module is used along with the BPN to increase the detection rate, maintain high ac-

curacy, achieve low false positives and low false negatives. The authors have proposed

a cooperative design. However, no performance outcomes or results are presented in

the paper.

Distributed intrusion detection systems over heterogeneous network architectures

by [22] applied the Local Outlier Factor (LOF) algorithm from Chandola et al. This

algorithm yields promising results, and it is more efficient when applied in data that

has regions of varying densities such as network traffic. However, this method is

computationally infeasible if there are a large number of data points that require

other techniques such as sampling to reduce complexity [52].

Chapter 3

Methodology

In this chapter, the basic procedures of the proposed framework will be introduced.

The CICDDoS2019 dataset[8] will be used in this thesis. The dataset will be

explained and discussed in detail in Section 3.2. The dataset has two versions of

data. One is the raw packets data (PCAP files) captured from two one-day attack

plans. The other is the features derived from the raw data using CIC-FlowMeter[9],

[53]. This version is in the format of CSV. It contains manually labelled attack types

as well.

Even though the CSV files already have the labels, and it is more convenient to

use it as the input files in machine learning, the files were examined in detail, and

two problems showed up. The first problem is that some data is missing or infinity,

which is not applicable in machine learning models. The second problem is that some

columns in the dataset have a few significant figures. This could cause a problem

because the precision of the float numbers is low. This problem can be fixed by

regenerating the CSV files directly from the raw packets using CIC-FlowMeter.

After regenerating the dataset by CIC-FlowMeter, the next step is training and

testing the traditional machine learning models and comparing the results. The

purpose of this step is to understand how difficult to classify the attack types of the

dataset and set up a benchmark for further experiments. Therefore, four traditional

machine learning models will be trained and tested on a proportionally sampled sub-

dataset. The four models are (1) Decision tree (2) Random forest (3) Multinomial

logistic regression (4) Naive Bayes.

The exploration of traditional machine learning models will be followed by deep

learning models, which are the proposed approaches of this thesis. Because three

different deep learning approaches are introduced and used in this thesis, and two of

which would have a feature reduction or compression module, the feature reduction

or compression module will be introduced before training deep learning models. In

18

19

Section 3.4, three different feature reduction or compression techniques will be tested

and compared. The three techniques are (1) Principal Component Analysis, (2)

ANOVA, (3) Autoencoder. The technique that has the best results among all will be

used as the proposed feature reduction module.

Once the feature reduction technique is settled, the next step is training deep

learning models. In Section 3.6, three deep learning approaches are designed, trained

and tested. The three models follow the evolutional style, from the simplest Dense

Neural Network to a hybrid neural network with statistical feature selection and

feature compressing. The three models are (1) DNN model (2) DNN models with

AutoEncoder as the feature compression module (3) The same deep model as (2),

but some columns in the input features will be dropped according to the Pearson

Correlation Coefficient[12]. The three models will be trained and tested on the regen-

erated CSV files from the CICDDoS2019 dataset. The results will be compared with

traditional machine learning models and the results of the CICDDoS2019 original

paper[8].

Furthermore, in the last Section (3.7), the metrics used to evaluate the models

will be introduced in detail.

3.1 CIC-FlowMeter

NIDS is designed for collecting, analyzing, classifying and responding to traffic that

comes from outside networks. The first step for NIDS is capturing network traffic.

Packet capture is accomplished with tcpdump or Wireshark. From which, PCAP files

can be generated. Moreover, the PCAP files will be analyzed in the next steps.

CIC-DDoS-2019 dataset[8] has two versions of data. One is CSV files, which are

already labelled by University of New Brunswick. The other one is raw PCAP files

that were captured in their two-day experiment.

For machine learning techniques, the CSV files can be directly used in training

and testing only if the dataset is clean and complete. If the dataset is not clean or

complete, proper data cleaning work is necessary. After inspecting the CSV files pro-

vided in CIC-DDoS-2019, the data is not clean enough for applying machine learning.

There are mainly problems with the CSV files: (1) the classes are highly imbalanced,

especially for the benign traffic (2) The significant figures are too few in some columns,

20

which make the data uninterpretable. For example, the column ”Fwd IAT Mean”

contains 78.3% value of 0.0. This problem causes an information loss which could

influence the predicting accuracy. (3) The feature names do not equal to the docu-

mentation.

The third problem is not a big issue for analysis. However, the first problem could

cause high accuracy and low F-score. The second problem hides useful information

from the researchers, which could make the model underfitting.

In order to solve the problems, one of the best feasible ways is to recreate the CSV

dataset by using CIC-FlowMeter.

CIC-FlowMeter[9], [53] is a network traffic flow generator and analyser published

by Canadian Institute for Cybersecurity. It can generate 84 features from raw PCAP

files.

In this paper, all CSV files are regenerated from CIC-FlowMeter. The PCAP files

used in this procedure are CIC-DDoS-2019, which will be introduced in Section 3.2.

3.2 Dataset

The dataset used in this paper is CICDDoS 2019[8]. This dataset contains only DDoS

attacks and benign traffic. The creators describe it as a realistic cyber defence dataset.

This dataset is a joint project of the Canadian Communications Security Establish-

ment (CSE) and The Canadian Institute for Cybersecurity (CIC). CIC-DDoS 2019

is a new, high quality, synthetic dataset, providing both network traffic and log data.

In order to generate the dataset, networks of target machines were instantiated via

AWS and automated using CIC-BenignGenerator[10]. These machines represented

five departments of a target organization, with 420 clients and 30 servers in total.

Target machines were instrumented and then systematically attacked using an attack

infrastructure of 50 machines, with log data and network traffic data captured and

categorized. There is evidence of considerable effort on the part of the dataset’s cre-

ators to enhance external validity through their choice of architecture, the design of

both target and attack networks, and their experimental design.

Benign: In this dataset, there are also benign data. The authors used CIC-BenignGenerator[10]

to imitate benign background traffic based on the profiles of abstract behaviour of 25

21

users. Benign traffic is based on HTTP, HTTPS, FTP, SSH, and email protocols.

Attacks: Two genres of DDoS attacks are captured in this dataset. The first is

Reflection-based DDoS, including MSSQL, SSDP, NTP, TFTP, DNS, LDAP, Net-

BIOS and SNMP. In this type of attack, the real attackers can hide behind the legiti-

mated clients and utilize them in an attack. It makes the victims more challenging to

differentiate the users and attackers only by the source. These attacks are based on

TCP(MSSQL and SSDP), UDP(NTP and TFTP) or both(DNS, LDAP, NETBIOS

and SNMP). The second is Exploitation-based attacks, including SYN flood, UDP

flood and UDP-Lag. This type of attack will spoof the source IP address and sent

a large number of packets to the victim server. This will cause the victim resources

exhausted. The explanations of all types of attacks can be found below.

1. MSSQL: MSSQL stands for Microsoft SQL. The attackers pretend to be the

Microsoft SQL Server and send responses to the victims. It abuses Microsoft

SQL Server Resolution Protocol and spoofs the MS SQL server’s IP address[54].

2. SSDP: Simple Service Discovery Protocol (SSDP). It is a type of reflection DDoS

attacks. SSDP DDoS attack sends an amplified traffic stream to the victim’s

server. It exploits the Universal Plug and Play (UPnP) network protocols. This

attack can overwhelm the target’s infrastructure and take their web resource

offline[55], [56].

3. NTP: Network Time Protocol (NTP) is a type of protocol used to synchronize

the clocks through the Internet. NTP amplification uses NTP servers to over-

whelm the target with UDP traffic. The attacker typically sends requests to the

NTP servers with spoofing the IP address, which belongs to the victims[57].

4. TFTP: TFTP attack is a type of amplification DDoS attack based on the Trivial

File Transfer Protocol (TFTP). The amplification factor can reach up to 60. A

TFTP server is normally used to store device images and configuration files.

TFTP is a stateless protocol and does not have authentication methods, which

makes it easier to launch and harder to detect[58].

22

5. DNS: DNS attack is a type of amplification DDoS attack exploits Domain Name

Servers and exhausts the bandwidth of the victims[59]. This attack can over-

whelm the victims and make them inaccessible. DNS attacks can be easily

launched by bots[60].

6. LDAP: LDAP stands for Lightweight Directory Access Protocol. This is a type

of amplification DDOS attack, in which the amplification factor can be up to

55[61]. LDAP is mainly used in corporate networks, this is the reason why it is

widely used to attack corporate networks[62].

7. NetBIOS: NetBIOS stands for Network Basic Input/Output System. Its am-

plification factor is 3.8[61]. This attack is based on UDP.

8. SNMP: SNMP stands for Simple Network Management Protocol. SNMP is a

network management protocol used to configure and collect information from

network devices. During an SNMP reflection attack, the attackers send a large

amount of SNMP queries using a spoofing IP address that belongs to the victim.

After that, the SNMP servers will reply to the victim’s IP address[63].

9. SYN: A SYN flood attack is also called a half-open attack. It aims to consume

all server resources and make a server unavailable. The attacker constantly

sends a connection request (SYN) to the victim server but does not reply to the

ACK from the victim server. The TCP connection will keep half-open for some

time, and all ports become unavailable[64].

10. UDP: A UDP flood uses User Datagram Protocol (UDP) to launch attacks.

The attacker sends a large amount of UDP packets to the victim server’s port

with a spoofing IP address. If no program is running on that port, the victim

server will send an ICMP packet to remind the sender. However, the source IP

is unreachable, and the victim server will never get a response. By doing this,

the victim server ports will be exhausted[61].

11. UDP-Lag: The UDP-Lag attack is a kind of attack that disrupts the connection

between the client and the server. This attack is mostly used in online gaming.

This attack can make the UDP connection slower than normal. This could be

a serious problem when the server requires a short time lag[8].

23

Attacks Attack Time PCAP Files Num of Files
NTP 10:35 - 10:45 01 - 188 188
DNS 10:52 - 11:05 192 - 196 5

LDAP 11:22 - 11:32 379 - 443 65
MSSQL 11:36 - 11:45 444 - 470 27
NetBIOS 11:50 - 12:00 475 - 486 12
SNMP 12:12 - 12:23 487 - 571 85
SSDP 12:27 - 12:37 572 - 592 21
UDP 12:45 - 13:09 593 - 617 25

UDP-Lag 13:11 - 13:15 Not found 0
WebDDoS 13:18 - 13:29 Not found 0

SYN 13:29 - 13:34 618 - 620 3
TFTP 13:35 - 17:15 621 - 818 198
Benign other 189 - 191, 197 - 378, 471 - 474 189

Table 3.1: Second Day

In this dataset, the authors provided two types of data for researchers. One

is generated CSV files, and the other one is raw PCAP files captured from their

experiment. Since the problems of the CSV files are addressed in Section 3.1, the

data to be used in this paper would be the PCAP files. The attack schedule for this

dataset can be found on the CICCCoS2109 website[11]. According to the schedule, the

corresponding PCAP files are listed in Table 3.1. Please note that in some adjacent

files, there could be partial attacks and partial benign.

Table 3.2: Features in CICDDoS2019 [8], [11].

Begin of Table

Feature Name Description

Flow Duration Flow duration

Total Fwd Packet Total packets in the forward direction

Total Bwd packets Total packets in the backward direction

Total Length of

Fwd Packet
The total size of packets in the forward direction

Fwd Packet Length

Max
Maximum size of packets in the forward direction

24

Continuation of Table 3.2

Feature Name Description

Fwd Packet Length

Min

The minimum size of packets in the forward direc-

tion

Fwd Packet Length

Mean
The average size of packets in the forward direction

Fwd Packet Length

Std

Standard deviation size of packets in the forward

direction

Bwd Packet Length

Max
Maximum size of packets in the backward direction

Bwd Packet Length

Min

The minimum size of packets in the backward di-

rection

Bwd Packet Length

Mean
Mean size of packets in the backward direction

Bwd Packet Length

Std

Standard deviation size of packets in the backward

direction

Flow Bytes/s
flow byte rate that is the number of packets trans-

ferred per second

Flow Packets/s
flow packets rate that is the number of packets

transferred per second

Flow IAT Mean The average time between the two flows

Flow IAT Std Standard deviation time two flows

Flow IAT Max Maximum time between two flows

Flow IAT Min Minimum time between two flows

Fwd IAT Total
Total time between two packets sent in the forward

direction

Fwd IAT Mean
The mean time between two packets sent in the

forward direction

Fwd IAT Std
Standard deviation time between two packets sent

in the forward direction

25

Continuation of Table 3.2

Feature Name Description

Fwd IAT Max
Maximum time between two packets sent in the

forward direction

Fwd IAT Min
Minimum time between two packets sent in the

forward direction

Bwd IAT Total
Total time between two packets sent in the back-

ward direction

Bwd IAT Mean
The mean time between two packets sent in the

backward direction

Bwd IAT Std
Standard deviation time between two packets sent

in the backward direction

Bwd IAT Max
Maximum time between two packets sent in the

backward direction

Bwd IAT Min
Minimum time between two packets sent in the

backward direction

Fwd PSH Flags
Number of times the PSH flag was set in packets

travelling in the forward direction (0 for UDP)

Bwd PSH Flags
Number of times the PSH flag was set in packets

travelling in the backward direction (0 for UDP)

Fwd URG Flags
Number of times the URG flag was set in packets

travelling in the forward direction (0 for UDP)

Bwd URG Flags
Number of times the URG flag was set in packets

travelling in the backward direction (0 for UDP)

Fwd Header

Length

Total bytes used for headers in the forward direc-

tion

Bwd Header

Length

Total bytes used for headers in the forward direc-

tion

Fwd Packets/s Number of forwarding packets per second

Bwd Packets/s Number of backward packets per second

Packet Length Min Minimum length of a flow

26

Continuation of Table 3.2

Feature Name Description

Packet Length Max The maximum length of a flow

Packet Length

Mean
Mean length of a flow

Packet Length Std Standard deviation length of a flow

Packet Length

Variance
Minimum inter-arrival time of packet

FIN Flag Count Number of packets with FIN

SYN Flag Count Number of packets with SYN

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWE Flag Count Number of packets with CWE

ECE Flag Count Number of packets with ECE

Down/Up Ratio Download and upload ratio

Average Packet

Size
The average size of packets

Fwd Segment Size

Avg
Average size observed in the forward direction

Bwd Segment Size

Avg
Average size observed in the backward direction

Fwd Bytes/Bulk

Avg

The average number of bytes bulk rate in the for-

ward direction

Fwd Packet/Bulk

Avg

The average number of packets bulk rate in the

forward direction

Fwd Bulk Rate

Avg

The average number of bulk rate in the forward

direction

Bwd Bytes/Bulk

Avg

The average number of bytes bulk rate in the back-

ward direction

27

Continuation of Table 3.2

Feature Name Description

Bwd Packet/Bulk

Avg

The average number of packets bulk rate in the

backward direction

Bwd Bulk Rate

Avg

The average number of bulk rate in the backward

direction

Subflow Fwd Pack-

ets

The average number of packets in a sub-flow in the

forward direction

Subflow Fwd Bytes
The average number of bytes in a sub-flow in the

forward direction

Subflow Bwd Pack-

ets

The average number of packets in a sub-flow in the

backward direction

Subflow Bwd Bytes
The average number of bytes in a sub-flow in the

backward direction

FWD Init Win

Bytes

Number of bytes sent in the initial window in the

forward direction

Bwd Init Win

Bytes

The number of bytes sent in the initial window in

the backward direction

Fwd Act Data Pkts
The number of packets with at least 1 byte of TCP

data payload in the forward direction

Fwd Seg Size Min
Minimum segment size observed in the forward di-

rection

Active Mean
The mean time a flow was active before becoming

idle

Active Std
Standard deviation time a flow was active before

becoming idle

Active Max
The maximum time a flow was active before be-

coming idle

Active Min
The minimum time a flow was active before be-

coming idle

Idle Mean Meantime a flow was idle before becoming active

28

Continuation of Table 3.2

Feature Name Description

Idle Std
Standard deviation time a flow was idle before be-

coming active

Idle Max
The maximum time a flow was idle before becom-

ing active

Idle Min
The minimum time a flow was idle before becoming

active

The authors also conducted data analysis based on what they generated from CIC-

FlowMeter. According to their algorithm, the features weighted most are extracted

from the 80 features. Based on their selected features, they applied the ID3 decision

tree, sklearn random forest, Naive Bayes and multinomial Logistic Regression. The

results of their experiment will be compared in Chapter 4. Moreover, in Table 3.3,

the top 5 weighted features selected by them are shown. In Chapter 4, these features

will be used in more machine learning models, and the results yield from those models

will be used as benchmarks.

3.3 Traditional Machine Learning Approaches Exploration

In this section, multiple popular machine learning techniques will be trained and

tested on CIC-DDoS 2019 dataset. According to No Free Lunch (NFL) theorem[65],

no algorithm can perform best on every problem. An exploration of machine learning

approaches must be done before design the whole framework. The purpose of this

section is to choose a technique that can perform better on this particular dataset.

A simple approach to testing the performance of a machine learning technique is

shown in Algorithm 1.

In this section, the dataset is down-sampled into a smaller size and balanced. The

detail of the sampled dataset is shown in Table 3.4.

Label Encoder from scikit-learn[66] is used in the experiment. The corresponding

code-label map is also shown in Table 3.4. The Confusion Matrix in the subsections

below refers to this encoding scheme.

29

Table 3.3: Feature selection for detection [8]
Label Feature

UDP-Lag
ACK Flag Count, Init Win bytes forward, min seg size
forward, Fwd IAT Mean, Fwd IAT Max

TFTP
Fwd IAT Mean, min seg size forward, Fwd IAT Max,
Flow IAT Max, Flow IAT Mean

WebDDoS
ACK Flag Count, Init Win bytes forward, Fwd Packet
Length Std, Packet Length Std, min seg size forward

DNS
Max Packet Length, Fwd Packet Length Max, Fwd
Packet Length Min, Average Packet Size, Min Packet
Length

Benign
ACK Flag Count, Flow IAT Min, Init Win bytes
forward, Fwd Packet Length Std, Packet Length Std

MSSQL Fwd Packets/s, Protocol

LDAP
Max Packet Length, Fwd Packet Length Max, Fwd
Packet Length Min, Average Packet Size, Min Packet
Length

NetBIOS
Fwd Packets/s, min seg size forward, Protocol, Fwd
Header Length, Fwd Header Length.1

NTP
Subflow Fwd Bytes, Length of Fwd Packets, Fwd
Packet Length Std, min seg size forward, Flow IAT Min

SSDP
Destination Port, Fwd Packet Length Std, Packet
Length Std, Protocol, min seg size forward

SNMP
Max Packet Length, Fwd Packet Length Max, Fwd
Packet Length Min, Average Packet Size, Min Packet
Length

Syn
ACK Flag Count, Init Win bytes forward, min seg size
forward, Fwd IAT Total, Flow Duration

UDP
Destination Port, Fwd Packet Length Std, Packet
Length Std, min seg size forward, Protocol

30

Algorithm 1: algorithm used for testing the performance of a machine learn-

ing technique on CIC-DDoS 2019 dataset.

1 def explore performance (df,model);

Input : DataFrame df , model model

Output: confusion matrix cm

2 df ← select a balanced subset from df ;

3 scale df using sklearn.preprocessing.MinMaxScaler;

4 split df into trainset and testset;

5 train model with 10 fold cross validation;

6 plot loss and acc for both training and validating;

7 calculate confusion matrix cm;

8 return cm;

DDoS type number of rows Encode Label
SSDP 130531 7
UDP 125386 8
NTP 120264 4

LDAP 108997 2
SNMP 103197 6
DNS 101420 1

MSSQL 90450 3
NetBIOS 81866 5
BENIGN 27375 0

Table 3.4: Detail of Sampled Dataset

31

Algorithm Precision Recall F1-score
ID3 0.78 0.65 0.69

Random Forest 0.77 0.56 0.62
Naive Bayes 0.41 0.11 0.05

Logistic Regression 0.25 0.02 0.04

Table 3.5: The results from Sharafaldin et al [8]

3.3.1 Results from the dataset creators

In the original paper of CICDDoS2019[8], the authors applied their feature selection

algorithm to every attack type. The top five selected features are shown in detail in

Table 3.3. They also provide a classification result based on the selected features.

The authors have applied ID3 (a type of decision tree), Random Forest, Logistic

Regression and Naive Bayes. The results from their paper will be listed in Table 3.5,

and the results will be used to make a comparison with the results in the following

subsections.

The reason why rerun the experiment is that, first, the dataset is regenerated, the

experiment must be reconducted to keep the consistency. Second, the original features

(unselected) must be tested and will be used as the benchmark in the following

experiments.

3.3.2 Decision Tree

Decision Tree is used by many researchers[67]–[69] to detect DDoS attacks. Decision

Tree determines the types of attacks by calculating the information gain at every

split point. The information gain is calculated by the difference of information purity

before and after splitting. There are mainly two types of formula to calculate the

information purity: entropy (Equation 3.1) and Gini Index (Equation 3.1).

entropy = −
n∑

i=1

p(xi) log p(xi) (3.1)

Gini = 1−
n∑

i=1

p(xi)
2 (3.2)

In both equations, p(xi) refers to the probability of the class out of all classes.

32

Figure 3.1: Confusion Matrix for Decision Tree

sklearn.tree.DecisionTreeClassifier[70] is used in this experiment. The results for

Decision Tree is shown below. And the Confusion Matrix is shown in Figure 3.1.

Accuracy: 0.71600

Precision: 0.75496

Recall: 0.75433

F1-score: 0.75462

3.3.3 Random Forest

Random Forest is an ensemble classifier that consists of multiple decision trees. Each

decision tree will take a different feature subset when it train and test. Based on

different features, the decision trees may behave differently on the dataset. It is

possible that the decision trees in the random forest give a different prediction on the

same data. A simple way to tackle this problem is by utilizing a voting mechanism.

For example, five out of nine decision trees give label BENIGN to specific traffic, and

the forest can determine the traffic is BENIGN.

33

Figure 3.2: Confusion Matrix for Random Forest

Brabec et al.[71] do a comparative analysis of the voting scheme in network in-

trusion detection. Their works prove that majority voting increases the F-score of

intrusion detection. The comparison of experiments from Section 3.3.2 and 3.3.3 also

supports the idea.

sklearn.ensemble.RandomForestClassifier[72] is used in this experiment. The hy-

perparameter n estimator is set to default(100). The result for Random Forest is

shown below. And the Confusion Matrix is shown in Figure 3.2.

Accuracy: 0.73960

Precision: 0.77993

Recall: 0.77781

F1-score: 0.77393

3.3.4 Logistic Regression

Logistic Regression is a type of classifier which uses the approach of regression. Lo-

gistic Regression is mostly used in binary classification. However, Logistic Regression

can also be modified to adapt to multi-label classification[73]. A simple way to achieve

34

this goal is using binary classification for a single class in the remaining data. This

method is called Leave-One-Out[74]. For example, if the dataset has three labels,

firstly, binary classification is applied to determine class A and non-A. Then, apply

binary classification again on non-A data to determine class B and non-B. At last,

the non-B data can be labelled as class C.

Logistic Regression is used by many researchers[74]–[77]. Among the researchers,

Subba et al.[75], Kamarudin et al.[76] and Ghosh et al.[77] all train and test on NSL-

KDD’99 dataset. Subba and his team got the best result among the three team.

The overall binary accuracy reached 98.27% and the multi-class accuracy varies from

92.43% and 99.02%.

sklearn.linear model.LogisticRegression[78] is employed in this experiment. The

multi-class classification results are shown below. The confusion matrx is shown in

Figure 3.3.

Accuracy: 0.73960

Precision: 0.77993

Recall: 0.77781

F1-score: 0.77393

3.3.5 Naive Bayes

Naive Bayes is a statistical model that considers prior knowledge. The assumption

to make Naive Bayes work is that every event in the causal model is independent.

However, Naive Bayes itself does not perform well in some scenarios.

Many researchers combine Naive Bayes with other techniques to improve perfor-

mance. Varuna rt al.[79] combines k-means clustering and Naive Bayes classifier to

detect network intrusion. Almansobe et al.[80] addressed the challenges for intrusion

detection system using naive Bayes and PCA algorithm. Li et al.[81] used Naive

Bayes with AdaBoost to Enhance Network Anomaly Intrusion Detection. Halimaa

et al.[82] explore a way to use Naive Bayes with SVM to improve the performance.

Veetil et al.[83] introduced Hadoop, a big data analysis tool, to the framework and

worked with Naive Bayes.

Meanwhile, there are also some researchers work on improving Naive Bayes itself

instead of co-operating with other classifiers. Panda et al.[84] applied discriminative

35

Figure 3.3: Confusion Matrix for Logistic Regression

multinomial Näıve Bayes with various filtering analysis to build a NIDS. Moreover,

Bhosale et al.[85] made some modifications to Naive Bayes and applied feature selec-

tion to the dataset.

sklearn.naive bayes.MultinomialNB[86] is used in this experiment. The result can

be found below. And the corresponding confusion matrix is shown in Figure 3.4.

Accuracy: 0.54138

Precision: 0.67635

Recall: 0.54744

F1-score: 0.49248

3.4 Feature Compressing

After dropping all unnecessary features, there are 49 features left. In order to find the

most important features from the remaining ones, there are mainly two ways. The first

way is using feature selection techniques such as Principle Component Analysis[87]

and ANOVA[88]. These two techniques are statistical models. Dey et al.[88] conclude

36

Figure 3.4: Confusion Matrix for Naive Bayes

from their experiment that ANOVA achieved the lowest False Alarm Rate when tested

on the NSL-KDD’99 dataset. These two techniques can only select the features from

the original columns, which means they can not derive component features that do not

exist in the original features. The second way is using a neural network to compress

the original features into a lower dimension, and reconstruct the compressed features

back to the original ones. The performance of the compressing can be evaluated

by calculating the loss of the original features and the reconstructed features. This

method employs Auto Encoder[49], shown in Figure 3.5. Auto Encoder is a neural

network in essence, which implies it can operate non-linear feature selection.

To make the best of non-linear feature selection, Auto Encoder is chosen in this

paper. The experiments and results of comparing PCA, ANOVA and Auto Encoder

can be found in Section4.4.

The process of training an autoencoder is shown in Algorithm 2.

37

Algorithm 2: algorithm used for training the auto encoder and return the

loss between the original features and the compressed features.

1 def evaluate (df,model);

Input : DataFrame df , model model and number of epochs epoch

Output: loss

2 df ← df drop the rejected, categorical columns and ”Label”;

3 df ← df drop the Nan and Inf rows;

4 scale df using sklearn.preprocessing.MinMaxScaler;

5 while epoch > 0 do

6 train model using df as both the train and validation set;

7 loss← the binary crossentropy between the original features and the

reconstructed features;

8 print loss;

9 epoch← epoch− 1 ;

10 return;

Figure 3.5: Auto Encoder representation

38

3.5 Pandas-profiling

Sharafaldin et al.[8] has selected the top five important features for each attack type.

The idea behind the selection is similar to Principal Component Analysis(PCA). The

purpose of PCA is to select a set of uncorrelated features from all columns. However,

in this experiment, the opposite way is going to be conducted. Which means, the

highly correlated features will be dropped in the procedure of training.

The metrics used to evaluate the correlation between the features is the Pearson

correlation coefficient. Pearson correlation coefficient is developed by Karl Pear-

son[12]. It measures the linear correlation between the two features. The formula of

the Pearson correlation coefficient is shown in Equation 3.3. In Equation 3.3, E[X]

represents the expectation of variable X.

ρX,Y =
E[XY]− E[X]E[Y]√

E[X2]− [E[X]]2
√
E[Y 2]− [E[Y]]2

(3.3)

The coefficient is between -1 to 1. 1 means 100% positive linear correlated while

-1 means 100% negative linear correlated. Moreover, 0 means the two variables are

not correlated. In this experiment, the correlation is considered high if the Pearson

correlation coefficient is larger than 0.9 or less than -0.9.

The tool used to calculate the Pearson correlation coefficient is Pandas-profiling.

Pandas-profiling[89] is a python-based statistical tool that does exploratory data anal-

ysis. It will generate an HTML file that contains:

• Type inference: detect the types of columns in a dataframe.

• Essentials: type, unique values, missing values

• Quantile statistics such as minimum value, Q1, median, Q3, maximum, range,

interquartile range

• Descriptive statistics such as mean, mode, standard deviation, sum, median

absolute deviation, coefficient of variation, kurtosis, skewness

• Most frequent values

• Histogram

39

• Correlations highlighting of highly correlated variables, Spearman, Pearson and

Kendall matrices

• Missing values matrix, count, heatmap and dendrogram of missing values

• Text analysis learn about categories (Uppercase, Space), scripts (Latin, Cyrillic)

and blocks (ASCII) of text data.

Among all the statistics, correlations are the most important for the analysis of

the dataset. This tool will give alerts when there are two columns that have the

Pearson Correlation Coefficient higher than 0.9 or less than -0.9. In this case, these

two columns should not present in the learning process at the same time. An example

of Pandas-profiling report for SNMP is shown in Figure 3.6.

An example of Pearson correlation coefficient for SNMP is shown in Figure 3.7.

The Pearson correlation coefficient for each attack type is calculated, respectively.

The numbers of highly correlated features vary from 41 to 47. There are two ap-

proaches to drop the features. (1) Drop the corresponding features for each attack

type. Use the remained features to train and test. (2) Drop only the intersection of

the features derived from each attack type. Keep the other features and then train

and test. There are two problems if the first approach is adopted: (1) When the

test on a mixed dataset which contains more than one attack type, it is hard to de-

cide which columns are dropped. (2) The features that are highly correlated in one

attack type and not correlated in another attack type may be an important feature

to discriminate the types. However, there are also two issues if the second approach

is adopted. (1) The number of remaining features is more than the number of the

first approach. The training and prediction time may increase. (2) The respective

accuracy for each attack type may decrease because there are highly correlated fea-

tures in the dataset. However, the ultimate purpose of the proposed framework is to

discriminate attacks from benign background traffic. One of the best practices is to

keep the input features of all the models identical since the types of traffic are not

known. Considering all the conditions mentioned above, the second approach will be

used in the experiment. Other than the highly correlated features, the features which

have constant values such as 0 will be dropped simultaneously.

40

Figure 3.6: Snapshot of Pandas-profiling

41

Figure 3.7: Pearson correlation coefficient

42

’Active Max’ ’Subflow Bwd Packets’ ’Bwd IAT Max’
’Active Min’ ’Idle Min’ ’Fwd Bulk Rate Avg’

’Bwd PSH Flags’ ’Packet Length Min’ ’Bwd URG Flags’
’Idle Max’ ’Fwd IAT Total’ ’Bwd Bytes/Bulk Avg’

’Bwd Segment Size Avg’ ’Fwd Packet/Bulk Avg’ ’Fwd URG Flags’
’URG Flag Count’ ’Active Mean’ ’ECE Flag Count’

’Fwd Bytes/Bulk Avg’ ’ACK Flag Count’ ’Fwd Packets/s’
’Bwd Packet Length Std’ ’Subflow Bwd Bytes’ ’Fwd IAT Std’

’Bwd IAT Std’ ’Fwd IAT Mean’ ’Active Std’
’Packet Length Mean’ ’Fwd IAT Max’ ’Fwd Segment Size Avg’

Table 3.6: Features to be dropped

According to the result of Pandas-profiling, the following columns should be

dropped during the learning procedure:

The following columns should also be dropped because they are categorical and

sparse:

• ’Flow ID’

• ’Source IP’

• ’Destination IP’

• ’Timestamp’

3.6 Classifiers

In this section, three different approaches are designed and tested. The first approach

is using DNN to do the classification. The second approach is using autoencoder to

reduce the feature dimensions before classifying with DNN. The third approach is

firstly dropping some features based on the Pearson correlation coefficient. Secondly,

use autoencoder to make further feature reduction. Lastly, classify the data with

DNN. Three approaches will be explained in detail in the following subsections.

The reason why not using a single multiclass DNN is here. Firstly, in real networks,

no one knows what type of traffic the netflow is. The job of detection does is to

discriminate attacks from benign traffic. That is the reason why multi classifiers are

not required. Secondly, a multi class test has been conducted, but the results are not

good.

Note: In this thesis, DNN refers to Dense Neural Network.

43

3.6.1 DNN Classifier

DNN stands for Dense Neural Network. DNN is a type of neural network that consists

of only dense layers. As is known, a neural network is built with multiple layers. Each

layer is connected to the next layer, except for input and output layers. In Dense

Neural Network, each neuron on each layer is connected to each neuron on the next

layer, as shown in Figure 3.8. The number of neurons on the input layer should

be equal to the dimension of features. The number of neurons on the output layer

depends on how many distinct labels does the dataset has. For example, if there is

only one neuron on the output layer, the DNN can be used as a binary classifier,

as 0 represents false, and 1 represents true. If the DNN is used to do multi-label

classification, the number of neurons may vary. Usually, researchers use the one-hot

encoder to encode the labels. Using the one-hot encoder, the number of neurons on

the output layer should be equal to the number of distinct labels.

3.6.2 AutoEncoder

AutoEncoder is also a type of dense neural network. However, it is not designed to do

classification. In an autoencoder, the input and the output should be identical. An

autoencoder consists of two main parts. The first part is called encoder. The primary

purpose of the encoder is to compress the original features into a lower dimension.

For example, in Figure3.5, the encoder part consists of the first three layers. The

first layer is the input layer, which has the same number of neurons as the input

feature dimension. The second part is called decoder. The purpose of the decoder is

to reconstruct the compressed features back to the original features. As is shown in

Figure3.5, from the third layer to the fifth layer, it represents the decoder part. The

last layer is the output layer, and the number of neurons on the output layer is the

same as the original feature dimension. In the training process of the autoencoder,

the training input and the training output should be the same. If the autoencoder

can successfully reconstruct the features back to the original ones, the compressed

features can be used to classify since the compressed features can represent all the

original features.

After autoencoder, the compressed features will be used as input features of DNN

in order to classify the traffic data.

44

Figure 3.8: Illustration of DNN

45

3.6.3 Pearson Correlation Coefficient

Pearson Correlation Coefficient is explained in Section 3.5. The main procedure is:

(1) use Pandas-Profiling to calculate the Pearson Correlation Coefficient. (2) Drop

one of the highly correlated features. (3) Feed the remaining features into the model

that is identical to the one described in Subsection 3.6.2.

3.7 Metrics

In this section, all metrics that are used to evaluated models are defined below.

True Positive (TP) Attack records correctly classified as attack records.

True Positive is expected to be high in the result.

True Negative (TN) Benign records correctly classified as benign records.

True Negative is expected to be high in the result.

False Positive (FP) Normal records incorrectly classified as attack records.

False Positive is expected to be low in the result.

False Negative (FN) Attack records incorrectly classified as benign records.

False Negative is expected to be low in the result.

False Positive Rate(FPR) The proportion of incorrectly classified normal records

among all normal records.

FPR =
FP

FP + TN

False Positive Rate is expected to be low in the result.

Accuracy The overall success rate of an IDS, showing the percentage of correct

classifications.

In the result, Accuracy is expected to be high.

Acc =
TN + TP

TP + FP + TN + FN

46

Precision The proportion of correct positive attack classifications.

Precision is expected to be high in the result.

Precision =
TP

TP + FP

Recall (TPR) The proportion of correctly detected positive values.

Recall is expected to be high in the result.

Recall =
TP

TP + FN

F-Measure The F-Measure of a model is the harmonic mean of precision and recall.

F-Measure is expected to be high in the result.

F −Measure =
2× Precision×Recall
Precision+Recall

Confusion Matrix A N × N Matrix that helps summarize how successful the

model was in predicting attacks, where N is the number of unique labels. Higher

values across the primary diagonal indicate better results.

Learning Curve A learning curve shows the effect of increasing the size of the

training data on the score of the model. It can be used to infer overfitting and bias

in the training data.

ROC Curve A Receiver-Operating Characteristic (ROC) Curve shows the relation

between the TPR and FPR at varying classification thresholds. A steeper curve

towards the y-axis represents better detection by the model.

Area Under the Curve (AUC) The Curve refers to the ROC Curve. The AUC is

equal to the probability that a classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative one[90].

Chapter 4

Experiment

4.1 Hardware configuration

Operating System: Windows 10 Education 64-bit

Version: 1909

OS build: 18363.657

Processor: Intel(R) Core(TM) i7-9700KF CPU @ 3.60GHz 3.60GHz

Installed RAM: 128 GB

GPU: NVIDIA Quadro RTX 8000

Bios Information: Version 90.2.30.0.1

Graphics Memory: 114644 MB

4.2 Generate New CSVs

As mentioned in Section 3.1, the CSV files provided by CICDDoS2019 is not suitable

for this experiment. The best way to utilize the dataset is to directly generate the

CSV files from the raw PCAP files using CIC-FlowMeter. The source code of CIC-

FlowMeter can be found from their GitHub Repository[91].

The procedure for generating CSV files is easy. After following the setup guidelines

on the GitHub page, the Graphic User Interface will show up on the screen. The CIC-

FlowMeter offers two modes to convert the PCAP files: realtime and offline. For this

experiment, the PCAP files are already provided by the CICDDoS2019 dataset so

that we can choose the offline mode.

After a simple configuration of the PCAP directory and output directory, the

CIC-FlowMeter can run and generate the CSV files consequently. The snapshot of

running the CIC-FlowMeter is shown in Figure 4.1.

47

48

Figure 4.1: Running CIC-FlowMeter

49

4.3 Data preprocessing

4.3.1 Rebalance Data

The CSV data provided by CIC-DDoS-2019 contains only 27375 rows of benign data.

In contrast, the number of attacks are more than 40 million, which is around 1500

times more than benign data. The dataset is highly imbalanced. To tackle this prob-

lem, there are mainly two methods: down-sampling the majority and over-sampling

the minority. In Section 3.3, to explore the performance of different types of machine

learning techniques, down-sampling is employed to rebalance the dataset. In Section

3.3, all 27375 benign data is used in the dataset, while all other attacks are down-

sampled to from 81866 to 130531. The size of this re-sampled dataset is ideal for

exploring the performance of machine learning techniques, however, it is not enough

to train a better performing neural network. In this section, up-sampling is employed

to solve this problem.

The CSV data provided by CIC-DDoS-2019 is generated by CIC-FlowMeter[9],

[53]. And the PCAP files that are used to generate CSV data are also provided by

CIC-DDoS-2109. In the dataset, not only the attacks traffic but also the benign traffic

are logged in PCAP files. The details of the PCAP files is shown in Table 3.1. As

stated in Table 3.1, there are 189 PCAP files containing only benign data. From

which, we can generate 5662323 benign traffic.

There is a minor issue about CIC-FlowMeter. The CIC-FlowMeter is updated to

version 4, which is stabler than version 3. There are mainly three differences between

the two versions is:(1) the names of the features are changed; (2) three columns are

ignored: Fwd Header Length.1, SimillarHTTP, Inbound; (3) Timestamp format is

changed. In order to keep the consistency, all attack PCAP files are reprocessed

using CIC-FlowMeter V4.

One big issue using the changed Timestamp format is that it is incompatible

with python DateTime format. In order to get rid of this issue, the time for-

mat used in CIC-FlowMeter is changed to standard 24-hour format: dd/MM/yyyy

HH:mm:ss. The code is located in src/main/java/cic/cs/unb/ca/flow/jnetpcap/Date-

Formatter.java.

After converting the PCAP files into CSV files, the ”Label” column is left as

50

Attack Size Proportion
PortMap 2312 0.0116%
NetBIOS 3844874 19.339%

LDAP 1917733 9.646%
MSSQL 5781928 29.082%

UDP 3855870 19.394%
UDP-Lag 3479 0.0175%

SYN 4444750 22.356%
benign 30787 0.1549%
Total 19881733 100%

Table 4.1: Regenerated First Day Dataset Details

Attack Size Proportion
NTP 1195447 2.388%
DNS 16599 0.0332%

LDAP 2207225 4.409%
MSSQL 3987736 9.965%
NetBIOS 4273829 8.537%
SNMP 4959941 9.907%
SSDP 2630865 5.255%
UDP 3113814 6.220%
SYN 2050115 4.095%

TFTP 19957711 39.865%
benign 5662323 11.310%
Total 50063090 100%

Table 4.2: Regenerated Second Day Dataset Details

”Need Manual Label”. Which means, the rows must be labelled by the timestamp.

The time-class reference table can be found in Table 3.1.

The regenerated dataset details are shown in Table 4.2 and 4.1.

4.3.2 Data Cleaning

As mentioned in Section 3.5, the sparse categorical columns and highly correlated

columns should be dropped in the process. Other than that, the Nan value and Inf

value should also be dropped. This operation is conducted by the Listing 4.1.

Listing 4.1: Data Cleaning

import pandas as pd

51

data path = ' f i n a l c o m p l e t e . csv '

data = pd . r ead c sv (data path)

r e j e c t e d = [. . .]

cat co lumns = [. . .]

data = data . drop (columns=r e j e c t e d)

data = data . drop (columns=cat columns)

data . r e p l a c e ([np . in f , −np . i n f] , np . nan)

data = data . dropna ()

data = data . r e index (sorted (data . columns) , a x i s =1)

4.3.3 Data Normalization

Data normalization is usually required when researchers apply deep learning tech-

niques to data that have different scales on attributes. Wang et al.[92] did re-

search comparing the model performance with and without attribute normaliza-

tion. The result shows that with statistical attribute normalization, discriminative

models such as SVM and KNN becomes more effective than without statistical at-

tribute normalization. In this part, two scalers are tested and compared. One is

sklearn.preprocessing.StandardScaler. The other one is sklearn.preprocessing.MinMaxScaler.

The StandardScaler mapping function is shown in Equation 4.1.

f ′
:,i =

f:,i −mean(f:,i)

std(f:,i)
. (4.1)

The MinMaxScaler mapping function is shown in Equation 4.2.

f ′
:,i =

f:,i −min(f:,i)

max(f:,i)−min(f:,i)
. (4.2)

According to sklearn manual[93], [94], MinMaxScaler is very sensitive to the pres-

ence of outliers. Furthermore, StandardScaler is more useful when handling negative

values.

In order to check which scaler performs better on this dataset, a small experiment

is conducted. The subset, details shown in Table 3.4, is used to test the scalers. The

52

Figure 4.2: MinMaxScaler Loss

Figure 4.3: MinMaxScaler Loss

MinMaxScaler and StandardScaler testing results are respectively shown in Figure

4.2 and 4.3.

As is shown in Figure 4.3, the loss remains negative. This problem is caused by

the mechanism of StandardScaler. The StandardScaler always tries to scale all data

to a normal distribution with mean equals zero, and the standard deviation equals

one. This would make 50% of the data fall into the negative range. In this case,

MinMaxScaler does a better job since the loss is always positive.

4.3.4 Data Split

During the training and testing process, the balance of data is an important factor

that could influence the final testing results. Since the dataset has around 5 million

rows of benign data, the best practice is to extract a proper proportion of attack

data to match the number of benign traffic. However, if the number of attacks is too

few, it is also acceptable to down-sample the benign traffic to match the number of

attacks. Due to this reason, the number of each attack type used for training and

testing is listed in Table 4.3.

53

Attack type train set size validation set size test set size
SNMP 3962742/3472844 1188822/1041853 1698318/1488362

NetBIOS 3963512/2991795 1189053/897538 1698648/1282198
MSSQL 3961230/2793812 1188369/838144 1697670/1197348

UDP 3962126/2181172 1188638/654352 1698054/934788
SSDP 3939803/1844031 1181941/553209 1688487/790299
LDAP 3962518/1526167 1188755/463850 1698222/662643
SYN 3962527/1436180 1188758/430854 1698226/615506
NTP 3964170/836269 1189251/250880 1698930/358401
DNS 11550/11690 3465/3507 4950/5010

WebDDoS 1496/1540 449/462 641/660
UDP-Lag 3710/3817 1113/1145 1590/1636

TFTP 3962077/3965175 1188623/1189552 1698033/1699361

Table 4.3: Data split on each attack type

Predicted Benign Predicted Attack
True Benign 25335 58
True Attack 15 37510

Table 4.4: Training Confusion Matrix of PCA

4.4 Dimension Reduction Techniques

In this section, three different dimension reduction techniques are trained and tested.

The experiment is using a subset extracted from CICDDoS2019. In this section, only

the UDP flooding attacks are tested. The train set has 25393 benign attacks and

37525 UDP attacks. In the test procedure, 3134 benign data and 3754680 UDP data

is used. The primary purpose of this section is to choose the best feature reduction

and compressing technique for the CICDDoS2019 dataset.

4.4.1 PCA

PCA stands for Principal Component Analysis. It is a type of linear statistical orthog-

onal transformation tool. It can give the researchers the most uncorrelated variables

among all features. The training confusion matrix is shown in Table 4.4. The test-

ing confusion matrix is shown in Table 4.5. Moreover, the ROC curve is shown in

Figure 4.4.

54

Predicted Benign Predicted Attack
True Benign 3128 6
True Attack 101 3754579

Table 4.5: Testing Confusion Matrix of PCA

Figure 4.4: ROC of PCA

4.4.2 ANOVA

ANOVA stands for Analysis of variance. It is also a type of statistical model. It

can analyze the differences among group means in a sample. The training confusion

matrix is shown in Table 4.6. The testing confusion matrix is shown in Table 4.7.

Moreover, the ROC curve is shown in Figure 4.5.

4.4.3 Auto Encoder

Auto Encoder is a type of feature compressing model based on Dense Neural Network.

It is also a type of non-linear model. It tries to compress the original features into

a lower dimension and reconstruct it back to the original features. The training

confusion matrix is shown in Table 4.8. The testing confusion matrix is shown in

Table 4.9. Moreover, the ROC curve is shown in Figure 4.6.

Predicted Benign Predicted Attack
True Benign 25188 0
True Attack 22 37708

Table 4.6: Training Confusion Matrix of ANOVA

55

Predicted Benign Predicted Attack
True Benign 3134 0
True Attack 629 3754051

Table 4.7: Testing Confusion Matrix of ANOVA

Figure 4.5: ROC of ANOVA

Predicted Benign Predicted Attack
True Benign 25372 21
True Attack 15 37510

Table 4.8: Training Confusion Matrix of Auto Encoder

Predicted Benign Predicted Attack
True Benign 3125 9
True Attack 101 3754579

Table 4.9: Testing Confusion Matrix of Auto Encoder

Figure 4.6: ROC of Auto Encoder

56

After calculating the F1-score for each model, the Auto Encoder outperforms other

models. Thus, in the following experiment, Auto Encoder will be used as the feature

compressing module.

4.5 Training Auto Encoder

As AutoEncoder captures the non-linear nature of the feature, it shows an excellent

fit for the dataset we used for the experimentation. Autoencoder is a neural-network-

based feature engineering approach and able to learn the hidden features of the data

with an iterative training process. In this process of learning, autoencoder learns

the correlation and intermediate relationship between the individual attributes and

extract the optimum information from the features. In our experimentation, For the

above reasons, autoencoder was finally chosen for extracting representative features.

The python code of building the Auto Encoder is shown in Listing 4.2

Listing 4.2: Auto Enoder code

from keras . l a y e r s import Input , Dense

from keras . models import Model

input data = Input (shape =(37 ,))

encoded 1 = Dense (20 , a c t i v a t i o n= ' r e l u ') (input data)

encoded 2 = Dense (10 , a c t i v a t i o n= ' r e l u ') (encoded 1)

decoded 1 = Dense (20 , a c t i v a t i o n= ' s igmoid ') (encoded 2)

decoded 2 = Dense (37 , a c t i v a t i o n= ' s igmoid ') (decoded 1)

autoencoder = Model (input data , decoded 2)

encoder = Model (input data , encoded 2)

autoencoder . compile (opt imize r= ' adade l ta ' , l o s s= ' b ina ry c ro s s en t r opy ')

The optimally compressed dimension will be derived from a series of the control

experiment. All variables other than the compressed dimension remain the same in

every experiment.

57

dimension validation loss dimension validation loss
20 0.0537 15 0.0537
10 0.0600 5 0.0561

Table 4.10: validation loss of different dimensions

Figure 4.7: Train loss and test loss over epochs

The training details are listed below:

• train set size: 209726

• test set size: 209726

• input features: 37

• number of DDoS: 125386

• number of benign: 84340

• validation split: 0.33

• shuffle: true

• optimizer: adadelta

• loss function: binary crossentropy

• epochs: 500

• batch size: 256

The experiment result is shown in Table 4.10

The training loss and test loss over 500 epochs are shown in Figure 4.7.

From this control experiment on Auto Encoder, a conclusion can be drawn. For

this dataset, the features can be compressed down to five dimensions with a loss below

0.06. The trained Auto Encoder in this section will be used to compress the data

features before feeding the data into the Classification Module.

58

Figure 4.8: DNN accuray over epochs

4.6 DNN Training

4.6.1 Architecture of the Dense Neural Network

A five-layer neural network is constructed, and a broad range of experimentation

is executed in regard to selecting the optimal hyperparameters. The first layer of

the network has 25 neurons, the second layer has 50 neurons, the third layer has 50

neurons, the fourth layer has 25 neurons, and finally, the output layer has one neuron

as this network is configured for binary classification. Tanh and Relu was tested,

but they don’t give promising results. After testing with several activation function,

Sigmoid outperforms others. Sigmoid activation function was used in all the layers.

The data, which is considered as benign according to Snort, was fed into AutoEn-

coder for dimensionality reduction, then DNN for classification. The DNN classifies

those traffic as an attack or not an attack. The classified predictions were used to

train and test a decision tree. This process is discussed later in the next section.

The remaining data filtered by Snort has the same features as the original CSVs.

It has 83 features, as shown in Table 3.2. Before feeding the data into AutoEncoder,

Pandas-profiling was used to analyze the correlations between the features. According

to the Pandas-Profiling results, the highly-correlated features were dropped.

4.6.2 Training Details and Results

59

Figure 4.9: DNN loss over epochs

Figure 4.10: ROC of DNN

60

Attack type Accuracy Precision Recall F1-Score
SNMP 0.75058 0.75015 0.75119 0.75018

NetBIOS 0.99643 0.99650 0.99621 0.99635
MSSQL 0.94096 0.93752 0.94960 0.94018

UDP 0.99398 0.99345 0.99341 0.99343
SSDP 0.99291 0.99138 0.99229 0.99183
LDAP 0.73057 0.65391 0.56543 0.55831
SYN 0.99984 0.99987 0.99972 0.99979
NTP 0.99719 0.99552 0.99469 0.99502
DNS 0.72671 0.75768 0.72565 0.71763

WebDDoS 0.49270 0.24635 0.50000 0.33007
UDP-Lag 0.93707 0.93704 0.93710 0.93707

TFTP 0.99943 0.99943 0.99943 0.99943

Table 4.11: DNN results

Attack type Accuracy Precision Recall F1-Score
SNMP 0.88263 0.88192 0.88283 0.88227

NetBIOS 0.99444 0.99413 0.99454 0.99433
MSSQL 0.94087 0.94818 0.94088 0.94128

UDP 0.98747 0.98619 0.98645 0.98632
SSDP 0.98892 0.98959 0.98482 0.98716
LDAP 0.72037 0.62770 0.56909 0.56751
SYN 0.99973 0.99966 0.99962 0.99964
NTP 0.99239 0.98346 0.99237 0.99239
DNS 0.72309 0.76445 0.72189 0.71112

WebDDoS 0.49270 0.24635 0.50000 0.33007
UDP-Lag 0.86578 0.87384 0.86683 0.86527

TFTP 0.99286 0.99293 0.99286 0.99286

Table 4.12: AE-DNN results

61

Attack type Accuracy Precision Recall F1-Score
SNMP 0.87664 0.87619 0.87772 0.87643

NetBIOS 0.99409 0.99361 0.99436 0.99398
MSSQL 0.94071 0.93725 0.94931 0.93992

UDP 0.98299 0.97885 0.98445 0.98153
SSDP 0.98255 0.97774 0.98229 0.97997
LDAP 0.72800 0.64595 0.56501 0.55867
SYN 0.99870 0.99770 0.99897 0.99833
NTP 0.98989 0.99148 0.97330 0.98211
DNS 0.68845 0.75553 0.68690 0.66546

WebDDoS 0.93313 0.94177 0.93214 0.93268
UDP-Lag 0.93986 0.94299 0.93929 0.93969

TFTP 0.99717 0.99717 0.99717 0.99717

Table 4.13: PCC-AE-DNN results

Table 4.14: CM

Begin of Table

Attack and Model Label Predicted Benign Predicted Attack

SNMP, DNN Benign 1260052 438266

SNMP, DNN Attack 356549 1131813

SNMP, AE DNN Benign 1494303 204015

SNMP, AE DNN Attack 170001 1318361

SNMP,

PCC AE DNN
Benign 1462717 235601

SNMP,

PCC AE DNN
Attack 157510 1330852

NetBIOS, DNN Benign 1694820 3828

NetBIOS, DNN Attack 6825 1275373

NetBIOS, AE DNN Benign 1688164 10484

NetBIOS, AE DNN Attack 6086 1276112

NetBIOS,

PCC AE DNN
Benign 1689686 8962

NetBIOS,

PCC AE DNN
Attack 8990 1273208

62

Continuation of Table 4.14

Attack and Model Label Predicted Benign Predicted Attack

MSSQL, DNN Benign 1527238 170432

MSSQL, DNN Attack 481 1196867

MSSQL, AE DNN Benign 1527161 170509

MSSQL, AE DNN Attack 670 1196678

MSSQL,

PCC AE DNN
Benign 1527115 170555

MSSQL,

PCC AE DNN
Attack 1096 1196252

UDP, DNN Benign 1690210 7844

UDP, DNN Attack 8004 926784

UDP, AE DNN Benign 1680987 17067

UDP, AE DNN Attack 15928 918860

UDP, PCC AE DNN Benign 1663068 34986

UDP, PCC AE DNN Attack 9809 924979

SSDP, DNN Benign 1687469 10189

SSDP, DNN Attack 7448 782851

SSDP, AE DNN Benign 1690959 6699

SSDP, AE DNN Attack 20868 769431

SSDP, PCC AE DNN Benign 1668808 28850

SSDP, PCC AE DNN Attack 14568 775731

LDAP, DNN Benign 1599570 98652

LDAP, DNN Attack 537433 125210

LDAP, AE DNN Benign 1552133 146089

LDAP, AE DNN Attack 514074 148569

LDAP,

PCC AE DNN
Benign 1590526 107696

LDAP,

PCC AE DNN
Attack 534469 128174

SYN, DNN Benign 1698183 43

63

Continuation of Table 4.14

Attack and Model Label Predicted Benign Predicted Attack

SYN, DNN Attack 331 615175

SYN, AE DNN Benign 1697965 261

SYN, AE DNN Attack 368 615138

SYN, PCC AE DNN Benign 1695485 2741

SYN, PCC AE DNN Attack 276 615230

NTP, DNN Benign 1696509 2421

NTP, DNN Attack 3295 355106

NTP, AE DNN Benign 1687845 11086

NTP, AE DNN Attack 4564 353837

NTP, PCC AE DNN Benign 1696828 2102

NTP, PCC AE DNN Attack 18693 339708

DNS, DNN Benign 2726 2224

DNS, DNN Attack 498 4512

DNS, AE DNN Benign 2587 2363

DNS, AE DNN Attack 395 4615

DNS, PCC AE DNN Benign 2123 2827

DNS, PCC AE DNN Attack 276 4734

WebDDoS, DNN Benign 641 0

WebDDoS, DNN Attack 660 0

WebDDoS, AE DNN Benign 641 0

WebDDoS, AE DNN Attack 660 0

WebDDoS,

PCC AE DNN
Benign 554 87

WebDDoS,

PCC AE DNN
Attack 0 660

UDP-Lag, DNN Benign 1493 97

UDP-Lag, DNN Attack 106 1530

UDP-Lag, AE DNN Benign 1496 94

UDP-Lag, AE DNN Attack 339 1297

64

Continuation of Table 4.14

Attack and Model Label Predicted Benign Predicted Attack

UDP-Lag,

PCC AE DNN
Benign 1430 160

UDP-Lag,

PCC AE DNN
Attack 34 1602

TFTP, DNN Benign 1696898 1135

TFTP, DNN Attack 796 1698565

TFTP, AE DNN Benign 1676183 21850

TFTP, AE DNN Attack 1794 1697567

TFTP,

PCC AE DNN
Benign 1691249 6784

TFTP,

PCC AE DNN
Attack 2844 1696517

4.7 Discussion of the results

As is shown in Section 4.6, three models performs different on different attacks. In

this section, the best model for each attack type is selected in the ensembled model.

The metrics F1-score is used to select the models to avoid low accuracy when the

testing data is highly imbalanced. Taking this into consideration, the selected models

are listed in Table 4.15.

From the results, we can conclude that for different attack types, the performance

of each model would be different. This result reflects a famous theory: No free lunch.

In comparison with the DNN and DNN with AE, a general conclusion is that the

Auto Encoder would bring down the F1-score in most cases. However, for some attack

types such as SNMP, the DNN with AE improved the testing F1-score. However, for

some attack types such as UDP-Lag, the DNN with AE brought the F1-score from

93,7% to 86,5%.

In comparison with the approaches with and without dropping pandas-profiling-

selected columns, the results show in most cases, with dropping the columns, the

F1-score is slightly lower than without dropping the columns. This situation may be

caused by the loss of information in the dropped columns. However, in some cases

65

Figure 4.11: SNMP AE loss

Attack Type Selected Model F1-score
SNMP AE DNN 0.88227

NetBIOS DNN 0.99635
MSSQL AE DNN 0.94128

UDP DNN 0.99343
SSDP DNN 0.99183
LDAP AE DNN 0.56751
SYN DNN 0.99979
NTP DNN 0.99502
DNS DNN 0.71763

WebDDoS PCC AE DNN 0.93268
UDP-Lag PCC AE DNN 0.93969

TFTP DNN 0.99943

Table 4.15: Model Selection

66

such as UDP-Lag, the F1-score is slightly improved with dropping the columns. There

is one case that deserves attention, WebDDoS. The DNN and the DNN with AE can

not successfully discriminate it from benign attacks, but with dropping the selected

columns, the model can precisely tell the attacks from the benign data. The F1-

score increases from 33.0% to 93.3%. The reason behind this may be after dropping

the columns, the interference factors are gone. Thus, the remaining data has higher

purity and becomes less challenging to be determined.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this paper, three different deep learning models are proposed for DDoS detection.

The testing results reflect a famous theorem: No Free Lunch. We found that for each

DDoS attack type, three models perform differently. For some attack types, using

feature reduction or compressing techniques may bring down the F1-score. However,

for other attack types, this technique may increase the performance drastically. The

F1-score for SNMP increased from 75.0% to 88.2% by applying Auto Encoder. For

UDP, the difference is more prominent. Before using Auto Encoder, the F1-score

is 0.3%, which means the model misclassified almost all attacks to benign. After

applying Auto Encoder, the F1-score is increased to 98.6%. Another example is

WebDDoS; both DNN and DNN with Auto Encoder did not give high F1-score. In

comparison with the third approach, which integrates pandas-profiling, the F1-score

is improved significantly to 93.3%. The results show that the three proposed models

outperform each other in some circumstances.

The performance of the proposed models is better than the benchmarks we set

in Section 3.3. The proposed models outperform the models in the original paper[8]

as well. In the results of Sharafaldin[8], the highest F1-score is 69%. The highest

F1-score from benchmarks is 77.393%.

Although DDoS attack remains to be a major type of attacks that happens in the

networks. Because DDoS attacks can be launched and reflected by legitimated users

on the networks, it is hard for the victims to detect and prevent it. However, many

researchers have targeted this problem.

In order to explore the difficulty of detecting DDoS attacks, especially those who

have risen in recent years, the CICDDoS2019 dataset is selected as the training and

testing set in this paper. To gain the most precise information, we also used CIC-

FlowMeter to generate the features directly from raw PCAP files.

67

68

5.2 Future work

In the experiment, the models were trained and tested separately. This means the

models can only discriminate against an attack from benign traffic. However, in real

networks, different types of attacks are mixed with benign traffic. The models trained

in this paper can not determine an attack from a mixture like that.

Future researchers should consider, the next step of the research should focus

on developing an algorithm to combine the models and build an ensemble classifier.

In the ensemble classifier, each model should give a prediction, and the ensemble

model should develop a mechanism to make a decision based on the predictions. The

algorithm could be a voting system or a weighted mechanism.

Another shortcoming of the research is that the models can not work in real-time.

As is known, a server could receive thousands of requests per second. But CIC-

FlowMeter can only analyze the packets and output CSV files. If the CIC-FlowMeter

can be modified to generate feature tensors and the tensors can be directly fed into

the models, a real-time DDoS detection system can be built.

Last but not least, in the dimension reduction part, another important technique

is not used. It is independent component analysis. Future researchers should consider

using this technique and comparing the testing results.

Although researchers have done a significant amount of work regarding DDoS

detection and prevention, the threats and challenges of DDoS will keep showing up in

the future. Every small piece of work from each researcher will make a difference in

the area. With more novel DDoS attack types rising and more researchers working,

DDoS detection techniques will ultimately evolve.

Bibliography

[1] Martin Roesch. “Snort – Lightweight Intrusion Detection for Networks”. en. In:

(1999), p. 11.

[2] Nour Moustafa, Jiankun Hu, and Jill Slay. “A holistic review of Network Anomaly

Detection Systems: A comprehensive survey”. en. In: Journal of Network and

Computer Applications 128 (Feb. 2019), pp. 33–55. issn: 1084-8045. doi: 10.

1016/j.jnca.2018.12.006. url: http://www.sciencedirect.com/science/

article/pii/S1084804518303886 (visited on 03/06/2020).

[3] Michael Brennan. “Using Snort For a Distributed Intrusion Detection System”.

en. In: (2002), p. 12.

[4] Rajendra Patil, Harsha Dudeja, Snehal Gawade, et al. “Protocol Specific Multi-

Threaded Network Intrusion Detection System (PM-NIDS) for DoS/DDoS At-

tack Detection in Cloud”. In: 2018 9th International Conference on Comput-

ing, Communication and Networking Technologies (ICCCNT). ISSN: null. July

2018, pp. 1–7. doi: 10.1109/ICCCNT.2018.8494130.

[5] Dinesh Singh, Dhiren Patel, Bhavesh Borisaniya, et al. “Collaborative IDS

Framework for Cloud”. en. In: (2016), p. 11.

[6] Snort - Network Intrusion Detection & Prevention System. url: https://www.

snort.org/ (visited on 03/16/2020).

[7] CAIDA: Center for Applied Internet Data Analysis. UCSD Network Telescope

Aggregrated DDoS Metadata. Library Catalog: www.caida.org. url: https://

www.caida.org/data/passive/telescope-ddos.xml (visited on 03/16/2020).

[8] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, et al. “Developing Re-

alistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy”.

In: 2019 International Carnahan Conference on Security Technology (ICCST).

ISSN: 1071-6572. Oct. 2019, pp. 1–8. doi: 10.1109/CCST.2019.8888419.

69

70

[9] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Mamun,

et al. “Characterization of Tor Traffic using Time based Features”. In: Feb.

2020, pp. 253–262. isbn: 978-989-758-209-7. url: https://www.scitepress.

org/PublicationsDetail.aspx?ID=g4gLnPa%2f2OM%3d&t=1 (visited on

02/27/2020).

[10] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. “Toward Gen-

erating a New Intrusion Detection Dataset and Intrusion Traffic Characteriza-

tion:” en. In: Proceedings of the 4th International Conference on Information

Systems Security and Privacy. Funchal, Madeira, Portugal: SCITEPRESS -

Science and Technology Publications, 2018, pp. 108–116. isbn: 978-989-758-

282-0. doi: 10.5220/0006639801080116. url: http://www.scitepress.org/

DigitalLibrary/Link.aspx?doi=10.5220/0006639801080116 (visited on

02/15/2020).

[11] DDoS 2019 — Datasets — Research — Canadian Institute for Cybersecurity

— UNB. en. Library Catalog: www.unb.ca. url: https://www.unb.ca/cic/

datasets/ddos-2019.html (visited on 03/10/2020).

[12] Pearson Karl. Proceedings of the Royal Society of London. en. Taylor & Francis,

1895.

[13] Julian Jang-Jaccard and Surya Nepal. “A survey of emerging threats in cyber-

security”. en. In: Journal of Computer and System Sciences. Special Issue on

Dependable and Secure Computing 80.5 (Aug. 2014), pp. 973–993. issn: 0022-

0000. doi: 10.1016/j.jcss.2014.02.005. url: http://www.sciencedirect.

com/science/article/pii/S0022000014000178 (visited on 03/17/2020).

[14] Jasmeen Chahal, Abhinav Bhandari, and Sunny Behal. “Distributed Denial of

Service Attacks: A Threat or Challenge”. In: New Review of Information Net-

working 24 (Apr. 2019), pp. 31–103. doi: 10.1080/13614576.2019.1611468.

[15] Christos Douligeris and Aikaterini Mitrokotsa. DDoS attacks and defense mech-

anisms: classification and state-of-the-art. 2004.

[16] Srikanth Kandula, Dina Katabi, Matthias Jacob, et al. “Botz-4-Sale: Surviving

Organized DDoS Attacks That Mimic Flash Crowds”. en. In: (), p. 14.

71

[17] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. “Survey of Network-

based Defense Mechanisms Countering the DoS and DDoS Problems”. In: Acm

Comp. Surv 39.1 (2007).

[18] Saman Taghavi Zargar, James Joshi, and David Tipper. “A Survey of Defense

Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks”.

en. In: IEEE Communications Surveys & Tutorials 15.4 (2013), pp. 2046–2069.

issn: 1553-877X. doi: 10.1109/SURV.2013.031413.00127. url: http://

ieeexplore.ieee.org/document/6489876/ (visited on 03/17/2020).

[19] Thuy T.T. Nguyen and Grenville Armitage. “A survey of techniques for internet

traffic classification using machine learning”. en. In: IEEE Communications

Surveys & Tutorials 10.4 (2008), pp. 56–76. issn: 1553-877X. doi: 10.1109/

SURV.2008.080406. url: http://ieeexplore.ieee.org/document/4738466/

(visited on 03/17/2020).

[20] Micha l Woźniak, Manuel Graña, and Emilio Corchado. “A survey of multiple

classifier systems as hybrid systems”. en. In: Information Fusion 16 (Mar. 2014),

pp. 3–17. issn: 15662535. doi: 10.1016/j.inffus.2013.04.006. url: https:

//linkinghub.elsevier.com/retrieve/pii/S156625351300047X (visited on

03/17/2020).

[21] Rajendra Patil, Harsha Dudeja, and Chirag Modi. “Designing an efficient secu-

rity framework for detecting intrusions in virtual network of cloud computing”.

en. In: Computers & Security 85 (Aug. 2019), pp. 402–422. issn: 0167-4048.

doi: 10.1016/j.cose.2019.05.016. url: http://www.sciencedirect.com/

science/article/pii/S0167404818310629 (visited on 03/06/2020).

[22] José Francisco Colom, David Gil, Higinio Mora, et al. “Scheduling framework

for distributed intrusion detection systems over heterogeneous network architec-

tures”. en. In: Journal of Network and Computer Applications 108 (Apr. 2018),

pp. 76–86. issn: 1084-8045. doi: 10.1016/j.jnca.2018.02.004. url: http:

//www.sciencedirect.com/science/article/pii/S1084804518300419 (vis-

ited on 03/05/2020).

[23] Z. Chiba, N. Abghour, K. Moussaid, et al. “A Cooperative and Hybrid Net-

work Intrusion Detection Framework in Cloud Computing Based on Snort

72

and Optimized Back Propagation Neural Network”. en. In: Procedia Com-

puter Science. The 7th International Conference on Ambient Systems, Networks

and Technologies (ANT 2016) / The 6th International Conference on Sustain-

able Energy Information Technology (SEIT-2016) / Affiliated Workshops 83

(Jan. 2016), pp. 1200–1206. issn: 1877-0509. doi: 10.1016/j.procs.2016.

04.249. url: http://www.sciencedirect.com/science/article/pii/

S1877050916302824 (visited on 03/05/2020).

[24] Zayed Al Haddad, Mostafa Hanoune, and Abdelaziz Mamouni. “A collaborative

framework for intrusion detection (C-NIDS) in Cloud computing”. In: 2016 2nd

International Conference on Cloud Computing Technologies and Applications

(CloudTech). ISSN: null. May 2016, pp. 261–265. doi: 10.1109/CloudTech.

2016.7847708.

[25] Massimo Ficco, Luca Tasquier, and Rocco Aversa. “Intrusion Detection in

Cloud Computing”. In: 2013 Eighth International Conference on P2P, Par-

allel, Grid, Cloud and Internet Computing. ISSN: null. Oct. 2013, pp. 276–283.

doi: 10.1109/3PGCIC.2013.47.

[26] Vinod Kumar and Dr Om Prakash Sangwan. “Signature Based Intrusion De-

tection System Using SNORT”. en. In: International Journal of Computer Ap-

plications (2012), p. 7.

[27] Hesham Altwaijry and Khalid Shahbar. “(WHASG) Automatic SNORT Signa-

tures Generation by using Honeypot”. en. In: Journal of Computers 8.12 (Dec.

2013), pp. 3280–3286. issn: 1796-203X. doi: 10.4304/jcp.8.12.3280-3286.

url: http://ojs.academypublisher.com/index.php/jcp/article/view/

11506 (visited on 03/05/2020).

[28] Martin Roesch. Writing Snort Rules. 2001. url: https : / / paginas . fe .

up.pt/~mgi98020/pgr/writing_snort_rules.htm#includes (visited on

02/18/2020).

[29] Brian Caswell, James C. Foster, Ryan Russell, et al. Snort 2.0 Intrusion Detec-

tion. Syngress Publishing, 2003. isbn: 978-1-931836-74-6.

73

[30] Keyvan Karami, Saeed Zerehdaran, Ali Javadmanesh, et al. “Characterization

of bovine (Bos taurus) imprinted genes from genomic to amino acid attributes by

data mining approaches.” English. In: PLoS ONE 14.6 (June 2019). Publisher:

Public Library of Science, e0217813–e0217813. issn: 19326203. url: https:

//go.gale.com/ps/i.do?p=AONE&sw=w&issn=19326203&v=2.1&it=r&

id=GALE%7CA587945359&sid=googleScholar&linkaccess=abs (visited on

03/22/2020).

[31] Chirag N. Modi, Dhiren R. Patel, Avi Patel, et al. “Bayesian Classifier and

Snort based network intrusion detection system in cloud computing”. In: 2012

Third International Conference on Computing, Communication and Networking

Technologies (ICCCNT’12). ISSN: null. July 2012, pp. 1–7. doi: 10.1109/

ICCCNT.2012.6396086.

[32] Qin Zhao, Jizhou Sun, and Song Zhang. “A hybrid and hierarchical NIDS

paradigm utilizing naive Bayes classifier”. In: Canadian Conference on Electri-

cal and Computer Engineering 2004 (IEEE Cat. No.04CH37513). Vol. 1. ISSN:

0840-7789. May 2004, 145–148 Vol.1. doi: 10.1109/CCECE.2004.1344977.

[33] Dishan Jing and Hai-Bao Chen. “SVM Based Network Intrusion Detection

for the UNSW-NB15 Dataset”. In: 2019 IEEE 13th International Conference

on ASIC (ASICON). ISSN: 2162-7541. Oct. 2019, pp. 1–4. doi: 10.1109/

ASICON47005.2019.8983598.

[34] Dai Hong and Li Haibo. “A Lightweight Network Intrusion Detection Model

Based on Feature Selection”. In: 2009 15th IEEE Pacific Rim International

Symposium on Dependable Computing. ISSN: null. Nov. 2009, pp. 165–168. doi:

10.1109/PRDC.2009.34.

[35] J. Zhang and M. Zulkernine. “A hybrid network intrusion detection technique

using random forests”. In: First International Conference on Availability, Re-

liability and Security (ARES’06). ISSN: null. Apr. 2006, 8 pp.–269. doi: 10.

1109/ARES.2006.7.

[36] Yuyang Zhou, Guang Cheng, Shanqing Jiang, et al. “An Efficient Intrusion

Detection System Based on Feature Selection and Ensemble Classifier”. In:

74

arXiv:1904.01352 [cs] (Sept. 2019). arXiv: 1904.01352. url: http://arxiv.

org/abs/1904.01352 (visited on 03/06/2020).

[37] Hassan Hadi Al-Maksousy, Michele C. Weigle, and Cong Wang. “NIDS: Neural

Network based Intrusion Detection System”. In: 2018 IEEE International Sym-

posium on Technologies for Homeland Security (HST). ISSN: null. Oct. 2018,

pp. 1–6. doi: 10.1109/THS.2018.8574174.

[38] R Vinayakumar, K P Soman, and Prabaharan Poornachandran. “Applying con-

volutional neural network for network intrusion detection”. In: 2017 Interna-

tional Conference on Advances in Computing, Communications and Informatics

(ICACCI). ISSN: null. Sept. 2017, pp. 1222–1228. doi: 10.1109/ICACCI.2017.

8126009.

[39] Li Yong and Zhang Bo. “An Intrusion Detection Model Based on Multi-scale

CNN”. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC). ISSN: null. Mar. 2019, pp. 214–218.

doi: 10.1109/ITNEC.2019.8729261.

[40] Riaz Ullah Khan, Xiaosong Zhang, Mamoun Alazab, et al. “An Improved Con-

volutional Neural Network Model for Intrusion Detection in Networks”. In: 2019

Cybersecurity and Cyberforensics Conference (CCC). ISSN: null. May 2019,

pp. 74–77. doi: 10.1109/CCC.2019.000-6.

[41] Yihan Xiao, Cheng Xing, Taining Zhang, et al. “An Intrusion Detection Model

Based on Feature Reduction and Convolutional Neural Networks”. In: IEEE

Access 7 (2019). Conference Name: IEEE Access, pp. 42210–42219. issn: 2169-

3536. doi: 10.1109/ACCESS.2019.2904620.

[42] Hongyu Yang and Fengyan Wang. “Wireless Network Intrusion Detection Based

on Improved Convolutional Neural Network”. In: IEEE Access 7 (2019). Con-

ference Name: IEEE Access, pp. 64366–64374. issn: 2169-3536. doi: 10.1109/

ACCESS.2019.2917299.

[43] Chuanlong Yin, Yuefei Zhu, Jinlong Fei, et al. “A Deep Learning Approach

for Intrusion Detection Using Recurrent Neural Networks”. In: IEEE Access 5

(2017). Conference Name: IEEE Access, pp. 21954–21961. issn: 2169-3536. doi:

10.1109/ACCESS.2017.2762418.

75

[44] Ayyaz-Ul-Haq Qureshi, Hadi Larijani, Jawad Ahmad, et al. “A Novel Random

Neural Network Based Approach for Intrusion Detection Systems”. In: 2018

10th Computer Science and Electronic Engineering (CEEC). ISSN: null. Sept.

2018, pp. 50–55. doi: 10.1109/CEEC.2018.8674228.

[45] Sara Althubiti, William Nick, Janelle Mason, et al. “Applying Long Short-

Term Memory Recurrent Neural Network for Intrusion Detection”. In: South-

eastCon 2018. ISSN: 1091-0050. Apr. 2018, pp. 1–5. doi: 10.1109/SECON.

2018.8478898.

[46] Fanzhi Meng, Yunsheng Fu, Fang Lou, et al. “An Effective Network Attack

Detection Method Based on Kernel PCA and LSTM-RNN”. In: 2017 Interna-

tional Conference on Computer Systems, Electronics and Control (ICCSEC).

ISSN: null. Dec. 2017, pp. 568–572. doi: 10.1109/ICCSEC.2017.8447022.

[47] Thi-Thu-Huong Le, Jihyun Kim, and Howon Kim. “An Effective Intrusion De-

tection Classifier Using Long Short-Term Memory with Gradient Descent Opti-

mization”. In: 2017 International Conference on Platform Technology and Ser-

vice (PlatCon). ISSN: null. Feb. 2017, pp. 1–6. doi: 10.1109/PlatCon.2017.

7883684.

[48] Karan Bajaj and Amit Arora. “Improving the Intrusion Detection using Dis-

criminative Machine Learning Approach and Improve the Time Complexity by

Data Mining Feature Selection Methods”. en. In: International Journal of Com-

puter Applications 76.1 (Aug. 2013), pp. 5–11. issn: 09758887. doi: 10.5120/

13209-0587. url: http://research.ijcaonline.org/volume76/number1/

pxc3890587.pdf (visited on 03/03/2020).

[49] Shahadate Rezvy, Miltos Petridis, Aboubaker Lasebae, et al. “Intrusion Detec-

tion and Classification with Autoencoded Deep Neural Network”. en. In: Inno-

vative Security Solutions for Information Technology and Communications. Ed.

by Jean-Louis Lanet and Cristian Toma. Lecture Notes in Computer Science.

Cham: Springer International Publishing, 2019, pp. 142–156. isbn: 978-3-030-

12942-2. doi: 10.1007/978-3-030-12942-2_12.

76

[50] Chencheng Ma, Xuehui Du, and Lifeng Cao. “Analysis of Multi-Types of Flow

Features Based on Hybrid Neural Network for Improving Network Anomaly De-

tection”. In: IEEE Access 7 (2019). Conference Name: IEEE Access, pp. 148363–

148380. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2946708.

[51] Zouhair Chiba, Noureddine Abghour, Khalid Moussaid, et al. “A novel architec-

ture combined with optimal parameters for back propagation neural networks

applied to anomaly network intrusion detection”. en. In: Computers & Secu-

rity 75 (June 2018), pp. 36–58. issn: 0167-4048. doi: 10.1016/j.cose.2018.

01.023. url: http://www.sciencedirect.com/science/article/pii/

S0167404818300543 (visited on 02/04/2020).

[52] Varun Chandola, Eric Eilertson, Levent Ertoz, et al. “Minds: Architecture &

Design”. en. In: Data Warehousing and Data Mining Techniques for Cyber Se-

curity. Ed. by Anoop Singhal. Advances in Information Security. Boston, MA:

Springer US, 2007, pp. 83–107. isbn: 978-0-387-47653-7. doi: 10.1007/978-0-

387-47653-7_6. url: https://doi.org/10.1007/978-0-387-47653-7_6

(visited on 03/06/2020).

[53] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,

et al. “Characterization of Encrypted and VPN Traffic using Time-related

Features”. In: Feb. 2020, pp. 407–414. isbn: 978-989-758-167-0. url: http:

//www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=

cazNsYLjzhw=&t=1 (visited on 02/27/2020).

[54] Attackers Using New MS SQL Reflection Techniques - The Akamai Blog. url:

https : / / blogs . akamai . com / 2015 / 02 / plxsert - warns - of - ms - sql -

reflection-attacks.html (visited on 03/11/2020).

[55] SSDP DDoS Attack. en-us. Library Catalog: www.cloudflare.com. url: https:

//www.cloudflare.com/learning/ddos/ssdp-ddos-attack/ (visited on

03/11/2020).

[56] What is an SSDP DDoS attack? en-US. Library Catalog: ddos-guard.net. url:

http://ddos-guard.net (visited on 03/11/2020).

77

[57] What is NTP Amplification — DDoS Attack Glossary — Imperva. en-US. Li-

brary Catalog: www.imperva.com Section: DDoS. url: https://www.imperva.

com/learn/application-security/ntp-amplification/ (visited on 03/11/2020).

[58] Boris Sieklik, Richard Macfarlane, and William Buchanan. “TFTP DDoS am-

plification attack”. In: Computers & Security 57 (Oct. 2015). doi: 10.1016/j.

cose.2015.09.006.

[59] Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, et al. “Detecting

DNS Amplification Attacks”. In: Oct. 2007, pp. 185–196. doi: 10.1007/978-

3-540-89173-4_16.

[60] DNS Amplification DDoS Attack. en-us. Library Catalog: www.cloudflare.com.

url: https://www.cloudflare.com/learning/ddos/dns-amplification-

ddos-attack/ (visited on 03/13/2020).

[61] UDP-Based Amplification Attacks — CISA. url: https://www.us-cert.gov/

ncas/alerts/TA14-017A (visited on 03/13/2020).

[62] Attackers are now abusing exposed LDAP servers to amplify DDoS attacks. en.

Library Catalog: www.pcworld.com. Oct. 2016. url: https://www.pcworld.

com / article / 3135771 / attackers - are - now - abusing - exposed - ldap -

servers-to-amplify-ddos-attacks.html (visited on 03/13/2020).

[63] Imperva Impreva. What is SNMP Reflection and Amplification — DDoS At-

tack Glossary — Imperva. en-US. Library Catalog: www.imperva.com Section:

Threats. url: https://www.imperva.com/learn/application-security/

snmp-reflection/ (visited on 03/13/2020).

[64] SYN Flood DDoS Attack. en-us. Library Catalog: www.cloudflare.com. url:

https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

(visited on 03/13/2020).

[65] D.H. Wolpert and W.G. Macready. “No free lunch theorems for optimization”.

In: IEEE Transactions on Evolutionary Computation 1.1 (Apr. 1997), pp. 67–

82. issn: 1941-0026. doi: 10.1109/4235.585893.

78

[66] sklearn.preprocessing.LabelEncoder — scikit-learn 0.22.1 documentation. url:

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

LabelEncoder.html (visited on 02/24/2020).

[67] Yi-Chi Wu, Huei-Ru Tseng, Wuu Yang, et al. “DDoS Detection and Traceback

with Decision Tree and Grey Relational Analysis”. In: 2009 Third International

Conference on Multimedia and Ubiquitous Engineering. ISSN: null. June 2009,

pp. 306–314. doi: 10.1109/MUE.2009.60.

[68] Yixin Chen, Jianing Pei, and Defang Li. “DETPro: A High-Efficiency and Low-

Latency System Against DDoS Attacks in SDN Based on Decision Tree”. In:

ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

ISSN: 1550-3607. May 2019, pp. 1–6. doi: 10.1109/ICC.2019.8761580.

[69] S. Brahanyaa and L. Jani Anbarasi. “Classification of SNMP Network Dataset

for DDoS attack prevention”. In: 2018 IEEE International Conference on Com-

putational Intelligence and Computing Research (ICCIC). ISSN: 2471-7851.

Dec. 2018, pp. 1–5. doi: 10.1109/ICCIC.2018.8782319.

[70] sklearn.tree.DecisionTreeClassifier — scikit-learn 0.22.1 documentation. url:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.

DecisionTreeClassifier.html (visited on 02/26/2020).

[71] Jan Brabec and Lukas Machlica. “Decision-Forest Voting Scheme for Classifica-

tion of Rare Classes in Network Intrusion Detection”. In: 2018 IEEE Interna-

tional Conference on Systems, Man, and Cybernetics (SMC). ISSN: 1062-922X.

Oct. 2018, pp. 3325–3330. doi: 10.1109/SMC.2018.00563.

[72] 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier — scikit-learn 0.22.1 docu-

mentation. url: https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestClassifier.html (visited on 02/26/2020).

[73] Hui Zhang, Ping Chen, and Qiang Wang. “Fault Diagnosis Method Based on

EEMD and Multi-Class Logistic Regression”. In: 2018 3rd International Con-

ference on Smart City and Systems Engineering (ICSCSE). ISSN: null. Dec.

2018, pp. 859–863. doi: 10.1109/ICSCSE.2018.00185.

79

[74] Rohan Bapat, Abhijith Mandya, Xinyang Liu, et al. “Identifying malicious bot-

net traffic using logistic regression”. In: 2018 Systems and Information Engi-

neering Design Symposium (SIEDS). ISSN: null. Apr. 2018, pp. 266–271. doi:

10.1109/SIEDS.2018.8374749.

[75] Basant Subba, Santosh Biswas, and Sushanta Karmakar. “Intrusion Detection

Systems using Linear Discriminant Analysis and Logistic Regression”. In: 2015

Annual IEEE India Conference (INDICON). ISSN: 2325-9418. Dec. 2015, pp. 1–

6. doi: 10.1109/INDICON.2015.7443533.

[76] Muhammad Hilmi Kamarudin, Carsten Maple, Tim Watson, et al. “Packet

Header Intrusion Detection with Binary Logistic Regression Approach in De-

tecting R2L and U2R Attacks”. In: 2015 Fourth International Conference on

Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec). ISSN: null.

Oct. 2015, pp. 101–106. doi: 10.1109/CyberSec.2015.28.

[77] Partha Ghosh and Rajarshee Mitra. “Proposed GA-BFSS and logistic regres-

sion based intrusion detection system”. In: Proceedings of the 2015 Third Inter-

national Conference on Computer, Communication, Control and Information

Technology (C3IT). ISSN: null. Feb. 2015, pp. 1–6. doi: 10.1109/C3IT.2015.

7060117.

[78] sklearn.linear model.LogisticRegression — scikit-learn 0.22.1 documentation. url:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_

model.LogisticRegression.html (visited on 02/26/2020).

[79] S. Varuna and P. Natesan. “An integration of k-means clustering and näıve

bayes classifier for Intrusion Detection”. In: 2015 3rd International Conference

on Signal Processing, Communication and Networking (ICSCN). ISSN: null.

Mar. 2015, pp. 1–5. doi: 10.1109/ICSCN.2015.7219835.

[80] Saqr Mohammed Almansob and Santosh Shivajirao Lomte. “Addressing chal-

lenges for intrusion detection system using naive Bayes and PCA algorithm”.

In: 2017 2nd International Conference for Convergence in Technology (I2CT).

ISSN: null. Apr. 2017, pp. 565–568. doi: 10.1109/I2CT.2017.8226193.

80

[81] Wei Li and QingXia Li. “Using Naive Bayes with AdaBoost to Enhance Net-

work Anomaly Intrusion Detection”. In: 2010 Third International Conference

on Intelligent Networks and Intelligent Systems. ISSN: null. Nov. 2010, pp. 486–

489. doi: 10.1109/ICINIS.2010.133.

[82] Anish Halimaa A. and K. Sundarakantham. “Machine Learning Based Intru-

sion Detection System”. In: 2019 3rd International Conference on Trends in

Electronics and Informatics (ICOEI). ISSN: null. Apr. 2019, pp. 916–920. doi:

10.1109/ICOEI.2019.8862784.

[83] Sanjai Veetil and Qigang Gao. “Chapter 18 - Real-time Network Intrusion De-

tection Using Hadoop-Based Bayesian Classifier”. en. In: Emerging Trends in

ICT Security. Ed. by Babak Akhgar and Hamid R. Arabnia. Boston: Morgan

Kaufmann, Jan. 2014, pp. 281–299. isbn: 978-0-12-411474-6. doi: 10.1016/

B978-0-12-411474-6.00018-9. url: http://www.sciencedirect.com/

science/article/pii/B9780124114746000189 (visited on 02/07/2020).

[84] Mrutyunjaya Panda, Ajith Abraham, and Manas Ranjan Patra. “Discrimina-

tive multinomial Näıve Bayes for network intrusion detection”. In: 2010 Sixth

International Conference on Information Assurance and Security. ISSN: null.

Aug. 2010, pp. 5–10. doi: 10.1109/ISIAS.2010.5604193.

[85] Karuna S. Bhosale, Maria Nenova, and Georgi Iliev. “Modified Naive Bayes

Intrusion Detection System (MNBIDS)”. In: 2018 International Conference

on Computational Techniques, Electronics and Mechanical Systems (CTEMS).

ISSN: null. Dec. 2018, pp. 291–296. doi: 10.1109/CTEMS.2018.8769248.

[86] sklearn.naive bayes.MultinomialNB — scikit-learn 0.22.1 documentation. url:

https://scikit-learn.org/stable/modules/generated/sklearn.naive_

bayes.MultinomialNB.html (visited on 02/26/2020).

[87] H. Sun, Y. Zhaung, and H. J. Chao. “A Principal Components Analysis-Based

Robust DDoS Defense System”. In: 2008 IEEE International Conference on

Communications. ISSN: 1938-1883. May 2008, pp. 1663–1669. doi: 10.1109/

ICC.2008.321.

81

[88] Samrat Kumar Dey and Md. Mahbubur Rahman. “Flow Based Anomaly Detec-

tion in Software Defined Networking: A Deep Learning Approach With Feature

Selection Method”. In: 2018 4th International Conference on Electrical Engi-

neering and Information Communication Technology (iCEEiCT). ISSN: null.

Sept. 2018, pp. 630–635. doi: 10.1109/CEEICT.2018.8628069.

[89] pandas-profiling/pandas-profiling. original-date: 2016-01-09T23:47:55Z. Feb. 2020.

url: https://github.com/pandas-profiling/pandas-profiling (visited

on 02/16/2020).

[90] Tom Fawcett. “An introduction to ROC analysis”. en. In: Pattern Recogni-

tion Letters 27.8 (June 2006), pp. 861–874. issn: 01678655. doi: 10.1016/j.

patrec.2005.10.010. url: https://linkinghub.elsevier.com/retrieve/

pii/S016786550500303X (visited on 02/26/2020).

[91] AHLashkari. ahlashkari/CICFlowMeter. original-date: 2018-02-12T16:57:30Z.

Mar. 2020. url: https://github.com/ahlashkari/CICFlowMeter (visited

on 03/10/2020).

[92] Wei Wang, Xiangliang Zhang, Sylvain Gombault, et al. “Attribute Normaliza-

tion in Network Intrusion Detection”. In: Dec. 2009, pp. 448–453. doi: 10.

1109/I-SPAN.2009.49.

[93] 6.3. Preprocessing data — scikit-learn 0.22.2 documentation. url: https://

scikit-learn.org/stable/modules/preprocessing.html (visited on 03/08/2020).

[94] Compare the effect of different scalers on data with outliers — scikit-learn 0.22.2

documentation. url: https://scikit-learn.org/stable/auto_examples/

preprocessing/plot_all_scaling.html (visited on 03/08/2020).

