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Abstract 
The favorable abiotic conditions within aphid galls may provide an optimal 

microhabitat for pathogenic microorganisms such as fungi and bacteria. Pathogens, 
especially fungi may be one of the main sources of mortality of the aphid gall-formers. 
We found high levels of pathogenesis related (PR) proteins in the tissue of galls 
induced by the aphids Smynthurodes betae (West.), Forda riccobonii (Stephani), and in 
particular Slavum wertheimae HRL (Homoptera: Pemphigidae: Fordinae) on Pistacia 
atlantica (Anacardiaceae). Compared with adjacent ungalled leaves, activity levels of 
chitinase and peroxidase, but not ~-1,3-glucanase, were significantly higher in the 
galls. These PR proteins are an important component of the plant defense mechanisms 
against pathogens. The local induction of PR proteins in the galls suggests that 
manipulation of anti-microbial activity in the host tissue by gall-forming aphids may 
be self-benefiting. 
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1. Introduction 

The mechanism of gall induction by insects and other invertebrates is 
unknown (Shorthouse and Rohfritsch, 1992). The plant-gall formers' 
relationships are considered parasitic, negatively affecting the host plant. 
Gall-forming insects gain protection against abiotic factors and natural 
enemies, and obtain increased nutritional values (Price et al., 1987). Gall 
formers exploit the development, morphology, physiology, and chemistry of 
the host plant (Weis et al., 1988; Shorthouse and Rohfritsch, 1992). Thus, plant 
traits are modified to the benefit of the gall former (e.g., Inbar et al., 1995). 
Numerous extensive studies have examined the biochemical changes in gall 
tissues including the levels of plant hormones (Mapes and Davis, 2001), 
primary metabolites such as proteins (e.g., Schonrogge et al., 2000), and 
secondary metabolites including phenolics, tannins and terpenes (Cornell, 1983; 
Hartley, 1998; Monaco et al., 1973; Nyman and Julkunen-Titto, 2000). 
Pathogenesis related (PR) proteins are plant proteins that are induced in 

pathological situations (Bowles, 1990). Usually they are produced via the 
salicylic-dependent pathway and are considered a part of the multiple defense 
systems of plants (Kombrink and Somssich, 1997). For example, chitinase and p- 
1,3-glucanase have the ability of degrading fungal and bacterial cell walls. 
Peroxidases are key enzymes in lignification and hypersensitive responses in 
plants, which limit disease spread (Bowles, 1990). Only recently has it been 
shown that sap-feeding arthropods (aphids, whiteflies, mites) induce PR 
proteins in plants (Bronner et al., 1991; Mayer et al., 1996; Walling, 2000). 
Insect galls are attractive to pathogenic microorganisms, especially fungi, that 
can destroy the galls and the gall-formers (Taper and Case, 1987; Wool and 
Bar-El, 1995). High levels of tannins and phenolics in the gall tissue are often 
considered as a general host-plant manipulation by the insects to reduce the 
risk of pathogen infection and predation by natural enemies (Cornell, 1983; 
Taper and Case, 1987; Taper et al., 1986). In this study we evaluated the 
induction of three PR proteins by three gall forming aphid species as induced 
plant defense mechanisms against pathogens. 

2. Material and Methods 

The organisms 

Pistacia atlantica Desf, (Anacardiaceae) is a deciduous monoecious tree with 
a typical Irano-Turanian distribution from central Asia through the Middle 
East to north Africa (Zohary, 1952). In Israel, P. atlantica is distributed 
discontinuously from the Golan Heights, upper and lower Galilee, to the Negev 
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highlands (Zohary, 1952). The sampled trees grow naturally in the lower 
Galilee, ca. 30 km east of Haifa. The galls of three aphids (Homoptera, 
Pemphigidae, Fordinae) were examined in this study: Smynthurodes betae 
(West.) (SB), Forda riccobonii (Stephani) (FR), and Slacum wertheimae HRL 
(SW). All three aphids form typical galls only on P. atlantica (Inbar and 
Wool, 1995). The first (temporary) galls of SB and FR are formed early in the 
spring on the leaflet midrib by the fundatrices (Fl). Within each gall, ca. a 
dozen second generation aphids (F2) are produced parthenogenetically. The 
aphids leave the temporary galls and produce the final galls on the leaflet 
margin (lnbar and Wool, 1995). SW has only one cauliflower shaped gall that 
is formed in late spring on lateral buds (Wertheim and Linder, 1961). Samples 
of SW galls and final galls of SB and FR were collected in mid-August. We 
sampled 14 trees that had SB galls, 9 of them had FR galls, and SW was found 
on five trees. From each tree we randomly collected 20 galls and adjacent 
ungalled leaves that were pooled. Only "clean" galls that had no visual signs 
of pathogen infections were sampled. Galls were opened with a scalpel and the 
aphids were removed; ungalled leaves were similarly longitudinally cut. 

PR protein analyses 

Fresh samples were weighed, lyophilyzed, and then ground in liquid N2 
using an Omni-Mixer (OCI Instruments, Waterbury, CT). The resulting powder 
was suspended in cold 0.1 M sodium phosphate (pH 7.4) and homogenized for 1 
min. The homogenate was filtered through four layers of cheesecloth and 
centrifuged at 15,000 g for 15 min at 4°C. The supernatant was filtered through a 
layer of Miracloth (Calbiochern-Novabiochem Corp., La Jolla, CA). Filtrates 
were desalted by dialysis against water and lyophilyzed. Chitinase activity 
was measured colorimetrically using dye-labeled chitin (Loewe Biochemica, 
Munich, Germany) as the substrate (Wirth and Wolf, 1990). ~-1,3-Glucanase 
activity was assayed using the method of Abeles and Forrence (1970) with 
laminarin iLaminaria digitata, Sigma, St. Louis, MO) as the substrate. 
Peroxidase analysis was based on the method outlined in the Worthington 
Enzyme Manual (Worthington Biochemical Corporation, 1993), using 4- 
aminoantipyrine as a hydrogen donor. Differences in PR protein activity levels 
were ana:lyzed with a One Way ANOVA, and followed by mean separations 
post hoc tests. 

3. Results 

The levels of peroxidase and chitinase activities were low and hardly 
detectable in mature P. atlantica leaves (Figs. 1 and 2). Both enzymes had high 
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Figure 1. Peroxidase activity levels (mean ± se) in galls and ungalled leaves of P. atlantica. 
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Figure 2. Chitinase activity levels (mean ± se) in galls and ungalled leaves of P. atlantica. 

activity levels in the galls. Peroxidase activity was nearly 18-fold higher in 
SW galls compared with the ungalled leaves. Significant higher activity was 
also observed in SB and FR as well (F3_39 = 10.1, P<0.01, Fig 1.). A similar trend 
was found with chitinase. Again, compared with ungalled leaves, the sharpest 
increase in chitinase activity was found in SW galls. A moderate (but 
significant) increased was also found in FR and SB galls (Fig. 2, F3_39 = 17.1, 
P<0.01). ~-1,3-Glucanase activity levels in the galls were not statistically 
different from the activity levels in the ungalled leaves, although it was 
approximately 2-fold higher in the SW galls (Fig. 3). Nevertheless, mean 
separation test reviled that the significant ANOV A results (F3_39 = 4.4, 
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Figure 3. ~-1,3-Glucanase activity levels (mean ± se) of in galls and ungalled leaves of P. 
atlantica. Mean separation revealed that the only significant differences are 
between SW and SB galls. 

P<0.01) were due to the differences in ~-1,3-glucanase activity between SW and 
SB galls (Fig. 3). 

4. Discussion 

Chitinase and peroxidase activities were highly induced in all three aphid 
galls especially in SW. Walling (2000) suggests that responses by plants to 
pathogens are similar to their responses to sap feeding arthropods such as 
aphids. Aphid stylet penetration causes limited tissue damage and resembles 
the injury pattern associated with fungal and bacterial infection that often 
results in induction of PR proteins. Recently it has been shown that the green 
peach aphid Myzus percicae induces several PR proteins in Arabidopsis (Moran 
and Thompson, 2001). The elicitors of PR proteins in the galls could be contained 
in the aphid's saliva and produced either by the aphid itself or by 
endosymbiotic bacteria (Walling, 2000 and references therein). Aphid saliva is 
known to contain polygalacturonases that can produce oligosaccharide 
fragments that are elicitors (Ma et al., 1990). Indeed, plant breeders have 
targeted polygalacturonases and developed resistant plant varieties that 
produce complex polygalacturonides (Dreyer and Campbell, 1987). Further, 
plant polygalacturonase inhibitor proteins (PGIP) have been reported to aid in 
the generation of appropriately sized oligogalacturonides that act as elicitors 
for a heightened defense responses (Cervone et al., 1989). Plant PGIP are know 
to inhibit inset polygalacturonases (Doostdar et al., 1997). 

The peroxidase and chitinase activity levels in SW galls were not only 
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higher than ungalled leaves, but also than galls of SB and FR (Figs. 1 and 2). 
These results can be explained by species-specific differences in aphid abilities 
to induce PR proteins. However, there is another major difference between the 
galls of SW and those of SB and FR. SB and FR final galls develop early in the 
spring. By mid-August (the sampling date) SB and FR final galls are fully 
developed (mature) while SW galls, at the same date, are still in their early 
development phase, but contain larger numbers of aphids (Inbar and Wool, 
1995; Wertheim and Linder, 1961). It seems likely that the young 
differentiating tissue of SW is more inducible than in mature galls (galls of FR 
and SB at that of sampling date) (see also Alarcon and Malone, 1995). 
Unlike their clear role in antipathogenesis (e.g., Heil et al., 2000), the role 

of PR proteins in plant defense against sap feeding herbivores is unknown 
(Walling, 2000, but see van der Westhuizen et al., 1998). Furthermore, it 
appears that plant chitinases have limited effects on insect fitness (Kramer 
and Muthukrishnan, 1997). Peroxidases on the other hand, may have an 
important role in multiple plant defenses against pathogens and insects. 
Peroxidases are key enzymes in various metabolic cascades leading to a 
hypersensitive response, and production of secondary metabolites (Duffey and 
Stout, 1996; van der Westhuizen et al., 1998). Fungal infection may be one of the 
main sources of gall-former mortality (Taper and Case, 1987; Wilson 1995; 
Wilson and Carroll, 1997). In Forda formicaria Von Heyden, a gall forming 
aphid (Fordinae) on P. palaestina, rust fungus can become a major source of 
mortality (Wool and Bar-El, 1995). It is widely accepted that high 
concentrations of tannins and phenolics, especially in the outer layer of the 
galls, protect the gall-former from external enemies such as parasitoids, 
predators and fungi (Cornell, 1983; Taper and Case, 1987; Hartley, 1999). 

Little is known about the chemistry of the gall forming aphids (Fordinae) on 
Pistacia, except the fact that a few species induce high level of triterpenes 
(Caputo et al., 1975; Monaco et al., 1973). Gall formers manipulate the host 
plant organs for their own needs. Extensive developmental, morphological 
physiological and chimerical modifications have been reported (Weis et al., 
1988; Shorthouse and Rohfritsch, 1992). We suggest that the high level of PR 
proteins in the Fordinae galls reflects an additional aspect of host plant 
manipulation by the aphids. PR proteins induced locally only in the gall tissue 
by the Fordinae in P. atlantica trees, may protect the galls and aphids from 
pathogenic infections. Finally, since antifungal activities have been detected 
in (ungalled) Pistacia leaves (Kordali et al., 2002), it will be worthwhile for 
commercial use to evaluate such activity in gall extracts. 
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