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Abstract

Improving the understanding of sources and processes driving the variation of
atmospheric aerosols is critical for quantifying their air quality and climate implications
and for formulating regulatory policies. This thesis presents four projects that exploit
multiple observation data and modeling tools to quantify and interpret aerosol trends and
sources.

Global visibility records are filtered and processed to assess historical trends in
atmospheric haze. Spatially coherent trends in the screened inverse visibility (1/Vis) are
consistent with trends in collocated aerosol measurements over the US and Europe. Trend
transitions of 1/Vis in the eastern US, Europe and eastern Asia are significantly associated
(r ~ 0.7-0.9) with the variation of sulfur dioxide emissions, reflecting historical
socioeconomic events and environmental regulation activities.

The 1/Vis dataset over the eastern US reveals significant changes in the dominant
aerosol seasonality from winter maxima to summer maxima over 1946-1975. By
interpreting seasonal contrasts in 1/Vis trends with a historical emission inventory of
aerosol sources, we attribute these changes to increasing sulfate and decreasing primary
carbonaceous aerosols. Summer 1/Vis increases faster over the southeastern US than over
the northeast during 1956-1975, suggesting concurrent increase in secondary organic
aerosols.

A simulation with the GEOS-Chem chemical transport model downscaled with
satellite-derived PM, 5 identifies a significant increase (0.28 ug m=yr’!, p < 0.05) in global
population-weighted PM> s concentration over 1989-2013, driven by increasing organic
aerosols (0.10 pg m-3yr"), nitrate (0.05 pg m=>yr!), sulfate (0.04 pg m>yr') and ammonium
(0.03 pg m3yr!). These four components predominantly drive trends in population-
weighted mean PMa s over populous regions of South Asia (0.94 pg m3yr'), East Asia
(0.66 ug m3yr'), Western Europe (-0.47 ug m3yr!) and North America (-0.32 pg m>yr
1. Trends in area-weighted mean and population-weighted mean PM, s composition differ
significantly.

Two inversion methods are tested for ammonia emission estimates using the GEOS-
Chem model and its adjoint at coarse (2° % 2.5°) and fine (0.25° x 0.3125°) resolutions.
Comparing to four-dimensional variational assimilation, the iterative finite difference mass
balance approach requires fewer iterations to yield smaller errors in the top-down
inventories at coarse resolution, while consistently shows larger errors at fine resolution.

X
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Chapter 1. Introduction

1.1 Aerosols

Atmospheric aerosols, or particulate matter (PM), are liquid or solid particles
suspended in the Earth’s atmosphere. Aerosols consist of thousands of chemical species
from various sources (Section 1.2), span a wide range of sizes with implications on their
ability to affect radiation (Section 1.3), experience aging processes in the atmosphere such
as condensation, coagulation and internal mixing (Fuzzi et al., 2015; Khalizov et al., 2009;
Trivitayanurak et al., 2008), could be transported distantly (Prospero and Lamb, 2003;
Ridley et al., 2012; Xu et al., 2017), and are removed from the atmosphere within ~1 week
(Croft et al., 2014; Kristiansen et al., 2016; Ramanathan et al., 2001).

Aerosols play a critical role in atmospheric radiation and climate change. According
to IPCC (2013), the effective radiative forcing of acrosols (0.9 Wm) indicates an overall
cooling effect that could potentially counteract a significant portion of warming from
greenhouse gases (2.83 Wm?). Meanwhile the high uncertainty (i.e. 5 to 95% confidence
interval, —1.9 to —0.1 Wm) of aerosol radiative forcing contributes to the greatest portion
of uncertainties in the total anthropogenic forcing (1.1 to 3.3 Wm2). Aerosol radiative
forcing is exerted to the atmosphere via (directly) the aerosol-radiation interaction
(Bellouin et al., 2005) and (indirectly) the aerosol-cloud interaction (Rosenfeld et al., 2014;
Stevens and Feingold, 2009). Confidence in the current understanding of the latter is still
low (IPCC, 2013), while accurate estimation of the former requires global knowledge of
the 3-D distribution of aerosol size, shape, chemical composition and mixing state (Myhre

etal., 2017).

Aerosols also have various environmental implications, such as contributing to soil
acidification (Zhang et al., 2012a), altering vegetation growth by strengthening diffuse
radiation (Mercado et al., 2009), degrading visibility (Wang et al., 2009), and impairing
human health (Fuzzi et al., 2015; Wang et al., 2009). Fine aerosols, usually referred to as
aerosol particles with an aerodynamic diameter below 2.5 um (PM3s), attract particular

research interests for their ability to penetrate into human lungs and significant association



with respiratory and cardiovascular diseases (Dockery et al., 1993; Dominici et al., 2006;
Lim et al., 2012). The global burden of diseases (GBD) project estimates that exposure to
ambient and indoor PM» 5 contribute to 4.1 million and 2.6 million premature deaths in
2016, ranking the 6th and 8th among all health risk factors, respectively (Gakidou et al.,
2017). Besides the integrated exposure-response function, these estimates of PM» s health
effects are sensitive to the accuracy and resolution (Li et al., 2016c; Punger and West,

2013) of PM2 5 concentration.

Anthropogenic perturbation to climate change and air quality are inherently connected
(Fiore et al., 2012). Advancing the understanding of global aerosol distribution and
variation is fundamental for characterizing their climate and health effects, and for guiding
mitigation strategies. The following sections review sources and processes that drive the
variability of atmospheric aerosols (Section 1.2), aerosol optical properties that determine
their radiative effects (Section 1.3), and existing observation data and modeling tools

(Section 1.4). Goals and outlines of this research are provided in Section 1.5.

1.2 Aerosol Chemical Composition

Chemical composition of aerosols largely determine their size and microphysical
properties, and are insightful to identify sources and processes (Hand et al., 2012a; Kahn
and Gaitley, 2015; Snider et al., 2016). Aerosols are mainly composed of sea salts (mostly
sodium chloride), secondary inorganic aerosols (including sulfuric acid, ammonium sulfate
and ammonium nitrate), black carbon (BC), mineral species (mostly desert dust), as well
as thousands of organic aerosol (OA) species (Fuzzi et al., 2015; Pdschl, 2005; Philip et
al., 2014b; Snider et al., 2016; Zhang et al., 2007). These chemical components are either
directly emitted as primary particles, or formed via secondary processes (e.g. nucleation

and photochemistry) from gaseous precursors.

1.2.1 Sea Salt and Dust

Constituting the two main coarse and natural aerosol components, sea salt and mineral
dust aerosols are both primary, and are dominant in aerosol mass over remote ocean and

desert regions. Sea salt emissions from sea spray and dust emission from soil or crustal



erosion are both associated with surface wind speed (Ginoux et al., 2001; Jaeglé et al.,
2011). Sea salt emission is also sensitive to sea water temperature, salinity and composition
(Grythe et al., 2014), and dust emission also depends on surface vegetation cover and soil
moisture (Kim et al., 2017; Prospero and Lamb, 2003; Ridley et al., 2014). Besides natural
dust, anthropogenic sources of dust due to land use practices (Paul et al., 2012; Webb and
Pierre, 2016) and fugitive/industrial processes (Philip et al., 2017) also make a significant

contribution to total dust and aerosol mass over semi-arid and urban regions.

1.2.2 Secondary Inorganic Aerosols

Secondary inorganic aerosols (SIA) represent most of water soluble ions in fine
aerosols, constituting 20%-60% of total PM»s (Hand et al., 2012a; Zhang et al., 2007;
Zhang et al., 2012b). The formation of SIA begins with the photochemical oxidation of
primary gases, i.e. sulfur dioxide (SOz) and nitrogen oxides (NOx), to sulfuric acid (H2SO4)
and nitric acid (HNO3) (Heald et al., 2012; Kim et al., 2015; Walker et al., 2012). H>SO4
is mostly in the condensed phase in ambient conditions due to its low vapor pressure,
meanwhile ambient HNOs is in gas phase. Another important SIA precursor is ammonia
(NH3). NHs would preferentially neutralize H2SOs, then the extra NH3 could form
ammonium nitrate (NH4NO3) with HNO; (Holt et al., 2015; Pinder et al., 2008a). NH4NO3
is semivolatile, thus nitrate particle yields under thermodynamic equilibrium depend on
temperature and humidity (Heald et al., 2012; Li et al., 2018a; Wang et al., 2013). With
excessive NH3 (high NH3 and low H2SOs) nitrate is HNOs sensitive, otherwise nitrate
formation is limited by NH; (Holt et al., 2015). H2SO4 and NH3 are also critical for new

particle formation (Kirkby et al., 2011), another pathway to form secondary aerosols.

SO, and NOy have both anthropogenic (e.g. fossil fuel combustion) and natural (e.g.
volcanic eruption for SO and lightning for NOx) origins (Fisher et al., 2011; Murray et al.,
2012; Xing et al., 2013). Over marine regions, a significant SO2 source is conversion from
biogenic dimethyl sulfide (Kettle et al., 1999). Coal combustion in power generation
facilities contribute to over 50% of SO, emissions globally and over North America,
Europe and South Asia (Li et al., 2017b; Lu et al., 2011; Smith et al., 2011b; Vestreng et
al., 2007; Xing et al., 2013), while over China coal use in industry is the largest emitter of
SO, (Lietal., 2017b; Lu et al., 2011; Ma et al., 2017). The industry sector also contributes



to the greatest proportion of NOy emission over China (Li et al., 2017b; Ma et al., 2017),
while over developed regions transportation is generally the dominant source sector for
NOx (Crippa et al., 2016; Xing et al., 2013). Apart from biomass burning and other natural
sources, NH3 is dominantly emitted by agricultural sources (Paulot et al., 2014; Zhang et

al., 2018b) and is hard to regulate.

1.2.3 Primary Carbonaceous Aerosols

Primary organic aerosols (POA) and BC are emitted directly from incomplete fossil
fuel or biomass burning processes, and are dominant aerosol species over boreal and
tropical biomass burning regions (Martin et al., 2010b; Tiitta et al., 2014; Warneke et al.,
2009). Global anthropogenic emissions of organic carbon (OC) and BC are dominantly
from the use of solid fuels (i.e. coal and wood) for residential heating and cooking in
developing countries (Bond et al., 2007; Lu et al., 2011; Wang et al., 2014b), which also
contributes dominantly to global premature mortality due to household air pollution
(Forouzanfar et al., 2016; Gakidou et al., 2017). Meanwhile the importance of vehicle
emissions for OC and BC is more pronounced over developed countries, where the use of
solid fuels has historically been substantially reduced (Bond et al., 2007; Hoesly et al.,
2018; Ridley et al., 2018; Wang et al., 2014b).

1.2.4 Secondary Organic Aerosols

Formation of secondary organic aerosols (SOA) originates from volatile organic
compounds (VOC) which get oxidized and then the oxidation products could partition to
the condensed phase (Hoyle et al., 2011). With thousands of species and their unique
formation pathways and characteristics, SOA is poorly constrained and represent a major

research challenge in atmospheric science (Tsigaridis et al., 2014).

VOC has both anthropogenic and biogenic sources, the latter accounting for more than
80% of the total emission (Guenther et al., 2012). Isoprene and monoterpenes are the
dominant emitted species, together contributing to 80% of biogenic VOC (BVOC)
emissions (Sindelarova et al., 2014). Although BVOC emission depends little on
anthropogenic influence, SOA formation from BVOC may be enhanced substantially by

anthropogenic emissions. Observed significant changes in SOA yields under more polluted
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environment (Shilling et al., 2013; Xu et al., 2015a; Xu et al., 2016) could be attributable
to (1) more existing POA that facilitate reversible portioning to particle phase (Carlton et
al., 2010), (2) high SOo/sulfate that enhance reactive uptake of isoprene SOA
(Budisulistiorini et al., 2015; Marais et al., 2016), (3) complicated role of NOx on BVOC
oxidation (Ng et al., 2007; Zhang et al., 2018a), and (4) changes in aerosol water that could
mediate SOA yields (Nguyen et al., 2015; Pye et al., 2017), etc.

1.3 Aerosol Optical Properties

The aerosol direct radiative forcing depends on the 3-D distribution of aerosol optical
properties, i.e. the abilities of aerosols to scatter or absorb radiation, as well as surface
reflectivity (Myhre et al., 2017). The core optical property is aerosol extinction (bex), 1.€.
the sum of the aerosol scattering (bsy) and absorption (bass) coefficients. Other important
aerosol optical parameters for radiative forcing could be derived from bey, bsp and baps, €.2.
aerosol optical depth that is the columnar integration of b.., single scattering albedo (SSA
= bg/bex) that represents the relative strength of scattering and absorption, phase function
that describes the angular distribution of by, and Angstrdm exponent (o) that indicates the
spectral dependence of beys, bsp or baps (Dubovik et al., 2002; Dubovik et al., 2006; O'Neill
et al., 2003). by, and buss are determined by aerosol concentration, as well as its scattering
(osp) and absorption (auss) cross section (Pitchford et al., 2007). g, and ouss are wavelength-
dependent, and vary with different chemical composition, hygroscopicity, sizes, shapes,
and mixing state. These properties also affect aerosols’ ability to activate as cloud

condensation nuclei (CCN) and their indirect radiative forcing.

Aerosol chemical composition determines its hygroscopicity and complex refractive
index, the latter indicating relative ability to scatter and absorb radiation (Dubovik et al.,
2002; Lietal., 2013). SIA and sea salt are nearly purely scattering and strongly hygroscopic,
while BC, dust and some of OA (also called brown carbon) are major absorbing particles
and are less hygroscopic (Hammer et al., 2016; Martin et al., 2003b). Aerosol size largely
determines the spectral range of radiation that aerosols are sensitive to. Fine particles are
most efficient in scattering solar radiation while coarse particles (e.g. dust) could also

significantly alter longwave radiation (Drury et al., 2010; Ridley et al., 2016). Particle



shape deviating from spherical assumption would significantly modify the optical
properties especially for coarse aerosols (Dubovik et al., 2006; Li et al., 2014a; Meng et
al., 2010). Finally, different aerosol mixing states can further alter particle size,
hygroscopicity and refractive index, and hence optical properties (Bond et al., 2006;
Khalizov et al., 2009; Lack and Cappa, 2010; Lesins et al., 2002).

1.4 Observation and Modeling

With large diversity of different properties and a relatively short lifetime relying on
meteorology (Fuzzi et al., 2015; Kristiansen et al., 2016; Poschl, 2005), aerosols exhibit
strong spatiotemporal variability. For example, annual mean surface concentration of total
PMs and composition vary by 2 orders of magnitude among different regions (van
Donkelaar et al., 2016; Weagle et al., 2018). Additional observations of aerosols and their
precursors are crucially needed to better understand aerosol sources, processes and
properties. It is also important to represent existing knowledge of aerosols sources and
processes in models to interpret and complement observations for evaluating their climate

and health effects, and to infer possible changes under future scenarios.

1.4.1 In Situ Measurements

In situ observational aerosol data sets are essential for characterizing aerosol
composition and properties, as well as constraining model representations. Integrated field
experiments that track the 4-D evolution of aerosol composition and precursors are
especially valuable for characterizing multi-scale aerosol sources and processes (e.g. Jacob
et al., 2010; Kulmala et al., 2011; Logan et al., 2010; Martin et al., 2010a). Long-term
routine measurements of surface aerosol mass concentration, composition and deposition
(e.g. Dabek-Zlotorzynska et al., 2011; Hand et al., 2012a; Snider et al., 2016; Terseth et
al., 2012; Vet et al., 2014; Zhang et al., 2012b) provide information on spatial distribution,

trends and seasonal variations.

Besides direct measurements, observational information of aerosol optical properties
is also valuable. Surface by, and bars measurements are available for the recent two decades

over North America and Europe (Collaud Coen et al., 2013; Hand et al., 2014a). AOD,



SSA and other columnar aerosol optical parameters have been continuously retrieved by
sunphotometers of the global Aerosol Robotic Network (AERONET) (Dubovik et al., 2002;
Liet al., 2014b), and also by other regional networks (e.g. Che et al., 2015; Mitchell et al.,
2017). The higher the aerosol concentration, the stronger the aerosol scattering that
attenuates direct radiation and intensifies diffuse radiation, and consequently the lower the
visibility (Li et al., 2016a). Therefore, worldwide horizontal visibility observations that
span several decades could be used as a proxy to estimate long-term changes in aerosol

loading (Founda et al., 2016; Husar et al., 2000; Wang et al., 2009).

1.4.2 Satellite Remote Sensing

Remote sensing is a widely used technique of inferring abundance of atmospheric
composition based on their interaction with radiation as measured by optical sensing
instruments. Satellite remote sensing is the only observational information of aerosols (e.g.
AOD, SSA and b.x profile) and important precursors (e.g. SO2, NO», and NH3) at the global
scale and with nearly continuous sampling (e.g. Jethva et al., 2014; Kaufman et al., 2002;
Leveltetal., 2018; Levy et al., 2015; Van Damme et al., 2014), which complements in situ
measurements over broad areas not covered by ground-based data. Satellite data facilitate
global estimates of long-term surface air quality such as PM 5 and nitrogen dioxide (NO)
(Geddes et al., 2016; van Donkelaar et al., 2016), and are valuable in constraining radiative
forcing (Bellouin et al., 2005; Johannes et al., 2008; Yu et al., 2006) and emission
inventories (Lamsal et al., 2011; McLinden et al., 2016; Xu et al., 2013; Zhu et al., 2013).
Meanwhile satellite retrievals are expected to suffer from measurement noise, calibration
accuracy, cloud/snow/bright scenes, vertical sensitivities, and assumptions on surface
states, a priori profile, and optical properties, etc. (e.g. Li et al., 2009; Rodgers, 2000;
Young et al., 2013). Therefore, extensive evaluation and error quantification are usually
necessary before these applications (Ridley et al., 2016; Shi et al., 2011; van Donkelaar et
al., 2016).

1.4.3 Chemical Transport Modeling

Improved understanding of atmospheric composition and their processes from

observations could be generalized into updated mathematical representations in



atmospheric models. Model simulations could also serve to interpret ambient observations
to infer sources or processes, and to investigate possible changes under assumed scenarios.
With varying focus on thermodynamics, chemistry or climate, different atmospheric
models exist from molecular level to synoptic scale (e.g. Bey et al., 2001; Fountoukis and
Nenes, 2007; Zhang et al., 2010). Chemical transport models (CTM), such as the GEOS-
Chem model used in this thesis, simulate the spatial variation and temporal evolution of
atmospheric chemistry based on inputs of emission and meteorology data. Comparing to
models targeting dynamics and climate change such as general circulation models (GCM),
CTMs are designed to focus on investigating the processes of emission, advection,

chemistry and deposition, while generally ignoring feedbacks on meteorology.

One specific application of CTMs is the inverse modeling for emission inventories.
Based on observed concentrations of atmospheric composition, an inversion algorithm
could be applied with CTM to optimize the emissions (i.e. x) that best reproduce
observations (i.e. y), accounting for errors in both observations and the model. Such

inversion could be done by a full calculation and optimization inversion of the sensitivities

. . .2
from emissions to observations (i.e. a_i’ where x and y are both vectors), such as GEOS-

Chem adjoint-based four-dimensional variational (4D-Var) assimilation (Jacob et al., 2016;
Paulot et al., 2014; Zhu et al., 2013). Alternatively, the inversion could be simplified by

assuming a localized and linear relationship (Lamsal et al., 2011; Martin et al., 2003a).
1.5 Goals and Outlines of this Work

Substantial changes in aerosols have occurred over recent decades as is evident in
observations, as this thesis will discuss in more detail. These changes relate with changes
in aerosol sources. This thesis compiles multiple in situ observations and satellite data and
use a chemical transport model to better understand global and regional aerosol trends and

Sources.

Few observations reported information about historical aerosol changes before 1990s.
In Chapter 2, we infer trends in atmospheric haze as represented by inverse visibility (1/Vis)
over more than 3000 ground stations worldwide. We discuss the processes and necessities
of data quality control of this aerosol proxy, and present trends from late 1920s over the

US, and from early 1970s over Europe and East Asia. We highlight the strong association



of observed 1/Vis trends with historical SO> emissions. This work was published in Atmos.

Chem. Phys. in 2016.

Aerosol seasonal variation reflects the dominance of chemical composition. Based on
the developed 1/Vis dataset in Chapter 3, we discover and report, for the first time,
significant changes in the dominant aerosol seasonality over the eastern US, from winter
maxima to summer maxima over 1946-1975. We attribute this historical change to
increasing dominance of sulfate and SOA and decreasing aerosol fraction of POA and BC,
based on seasonal contrasts in 1/Vis trends and historical anthropogenic emissions. This

work was published in Environmental Science and Technology Letters in 2018.

Compared to changes in total aerosol loading such as PM,s, changes in aerosol
chemical composition are more insightful on changes in specific sources. In Chapter 4, we
collect time-varying emission inventories and conduct a 25-year global GEOS-Chem
simulation. Downscaled with satellite-derived PM>s, this simulation reports regional
diversities in dominant aerosol species that drive trends in the health-relevant population-
weighted PM»s concentration, and highlights the dominant contribution of OA to the
increase in population-weighted PM» s globally and over the most populous regions of
South and East Asia. This work was published in Environmental Science and Technology

in 2017.

Uncertainties in “bottom-up” ammonia (NH3) emission estimates are a significant
source of simulation errors of ammonia and aerosols in chemical transport models.
Emerging satellite remote sensing observations of NH3 abundance are promising to infer
“top-down” emission constraints. Various inverse modeling methods exist, while their
applicability has not been evaluated for NH3 emissions. In Chapter 5, we use the GEOS-
Chem model and its adjoint to simulate NH3 column densities observed by satellite
instruments with known emissions and apply two “top-down” inversion methods from
these pseudo observations. The goals of this work were to evaluate their applicability at
coarse and fine resolutions, contrast their difference in performances, and interpret its

implications for realistic emission inversions.



Chapter 2. Evaluation and Application of Multi-decadal
Visibility Data for Trend Analysis of Atmospheric Haze

Reproduced with permission from “Evaluation and application of multi-decadal visibility
data for trend analysis of atmospheric haze” by Li, C., Martin, R. V., Boys, B. L., van
Donkelaar, A., and Ruzzante, S., Atmos. Chem. Phys., 16,2435-2457, doi:10.5194/acp-16-
2435-2016, 2016. Copyright 2016 by the Authors. CC Attribution 3.0 License. All text,

figures and results were contributed by the first author.

2.1 Abstract

There are few multi-decadal observations of atmospheric aerosols worldwide. This
study applies global hourly visibility (Vis) observations at more than 3000 stations to
investigate historical trends in atmospheric haze over 1945-1996 for the US, and over
1973-2013 for Europe and eastern Asia. A comprehensive data screening and processing
framework is developed and applied to minimize uncertainties and construct monthly
statistics of inverse visibility (1/Vis). This data processing includes removal of relatively
clean cases with high uncertainty, and change point detection to identify and separate
methodological discontinuities such as the introduction of instrumentation. Although the
relation between 1/Vis and atmospheric extinction coefficient (b.x) varies across different
stations, spatially coherent trends of the screened 1/Vis data exhibit consistency with the
temporal evolution of collocated aerosol measurements, including the be. trend of -2.4%
yr't (95% CI: -3.7, -1.1% yr!) vs. 1/Vis trend of -1.6% yr™!' (95% CI: -2.4, -0.8% yr™") over
the US for 1989-1996, and the fine acrosol mass (PMzs) trend of -5.8% yr™!' (95% CI: -7.8,
-4.2% yr!) vs. 1/Vis trend of -3.4% yr! (95% CI: -4.4, -2.4% yr'!) over Europe for 2006-
2013. Regional 1/Vis and Emissions Database for Global Atmospheric Research (EDGAR)
sulfur dioxide (SO») emissions are significantly correlated over the eastern US for 1970-
1995 (r = 0.73), over Europe for 1973-2008 (r ~ 0.9) and over China for 1973-2008 (r ~
0.9). Consistent “reversal points” from increasing to decreasing in SO, emission data are

also captured by the regional 1/Vis time series (e.g. late 70s for the eastern US, early 1980s

10



for western Europe, late 1980s for eastern Europe, and mid 2000s for China). The
consistency of 1/Vis trends with other in situ measurements and emission data
demonstrates promise in applying these quality assured 1/Vis data for historical air quality

studies.

2.2 Introduction

Atmospheric aerosols have broad implications for air quality and climate change. The
Global Burden of Disease (GBD) assessment attributed ambient exposure to aerosol
particles with an aerodynamic diameter below 2.5 um (PMas) as the sixth largest overall
risk factor for premature mortality with 3.2 million premature deaths per year (Lim et al.,
2012). Aerosols are also considered to be the most uncertain component for global radiative
forcing (IPCC, 2013). Aerosols are formed from a variety of emission sources and chemical
processes with a short tropospheric lifetime against different removal mechanisms,
yielding a highly variable spatiotemporal distribution that is not well understood (Fuzzi et
al., 2015). Information on long-term aerosol temporal evolution is crucially needed across
a range of disciplines. Historical PM2s exposure and its trends are needed to understand
changes in Global Burden of Disease (Brauer et al., 2012), and to guide mitigation actions
(Apte et al., 2015; Wong et al., 2004). Observations are needed to evaluate historical
emission inventories that are crucial to accurately represent the changes in aerosol sources
and its consequent feedbacks on climate (Lu et al., 2011; Smith et al., 2011b; Xu et al.,
2013). Aerosol trend analysis is also fundamental to assessing radiative forcing, evaluating
model processes, and projecting future changes (Chin et al., 2014; Leibensperger et al.,
2012; Li et al., 2014b). Various studies have been carried out to investigate aerosol trends
using in situ measurements (Collaud Coen et al., 2013; Hand et al., 2012b; Murphy et al.,
2011), satellite/ground remote sensing (Hsu et al., 2012; Li et al., 2014b; Zhang and Reid,
2010), and analysis of measurements with models (Boys et al., 2014; Chin et al., 2014;
Pozzer et al., 2015; Turnock et al., 2015). However, these studies are mostly limited to the
recent 2 decades, since few satellite or in situ acrosol observations exist over land prior to

the 1990s. Long-term observations of aerosols at the global scale are needed to place
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current knowledge of their spatial distribution and temporal evolution in a historical

context for all these applications.

Visibility observations offer an alternative information source for the investigation of
historical aerosol trends. Horizontal visibility (Vis) from worldwide meteorological
stations and airports is mainly determined by the optical extinction (b..) of the atmospheric
boundary layer, and has been recognized as a proxy of the atmospheric aerosol
burden/loading (Husar et al., 2000). Historical Vis data from more than 3000 stations have
been applied to characterize decadal trends in global aerosol optical depth (AOD) from
1973 to 2007 (Wang et al., 2009). Regional trend studies of Vis were also conducted for
populated areas e.g. the US (Husar et al., 1981; Schichtel et al., 2001), Europe (Vautard et
al., 2009) and China (Che et al., 2007; Chen and Wang, 2015; Lin et al., 2014; Wu et al.,
2012; Wu et al., 2014), and the inferred trends were usually attributed to changes in
anthropogenic emission. Another study employing Vis over desert regions (Mahowald et
al., 2007) found an association of Vis with meteorology factors such as drought index
(based on precipitation and temperature) and surface wind speeds. Trends in Vis data
interpreted with other data sets also supported studies of several aerosol related climate
trends such as the western Pacific subtropical high (Qu et al., 2013) and precipitation
(Rosenfeld et al., 2007; Stjern et al., 2011).

Despite the abundance of the above-mentioned studies, the interpretation of Vis data
and their trends might be limited by insufficient data processing or poor data quality. Multi-
decadal Vis data might contain possible variation or even reversal in haze trends as
expected from historical emission and surface solar radiation (SSR) data (Lu et al., 2010)
(Stern, 2006; Streets et al., 2006; Wild et al., 2005). It is of particular interest how these
changes would associate with the trends of air quality, and would be captured by the Vis
data. Detailed variation in global Vis trends are rarely reported in these previous studies.
On the other hand, Vis data are inherently uncertain because most Vis are recorded through
human observations with variable protocols. For example, an increase in inverse visibility
(1/Vis) has been reported over the US during 1993-2010 (Wang et al., 2012) that is opposite
in sign with the significant decline (>10% decade™') of observed PM s, sulfate and bex (US
EPA, 2012; Attwood et al., 2014; Hand et al., 2012b; Hand et al., 2014a), and raises

questions about the quality of Vis observations.
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This study revisits the Vis observations to characterize historical trends of
atmospheric haze by asserting two major efforts: a more comprehensive data quality
assurance processing and a more detailed trend analysis for separate periods. This analysis
provides multi-decadal information about air quality evolution and its connections to
emission trends over major industrialized regions. To facilitate interpretation, the
theoretical relationship between Vis and atmospheric extinction is reviewed in the
following section. Section 2.4 describes the data and processing methods, followed by an
evaluation of the screened monthly 1/Vis and its trends using in situ measurements in
Section 2.5. Section 2.6 provides an extensive discussion of the resultant spatial
distribution and temporal variation of the derived 1/Vis trends for three highly populated
regions (i.e. the US, Europe and eastern Asia), and comparative analysis of these trends
with sulfur dioxide (SO;) emission data. Section 2.7 summarizes this work and its

implications.

2.3 Relationship between Vis and bex¢

Visibility is a measure of the transparency of the atmosphere, and is defined as the
greatest distance at which a black object can be recognized against the horizon sky (WMO,
2008). The visibility of a particular object (i.e. visibility marker) is determined by the
contrast C between the radiation intensity / of the background b and of the object o reaching

an observer at distance x from the object:

_ Ip(x0)-Ip(x) )
Cx) =252 (2-1)

Under assumptions of a plane-parallel atmosphere and homogeneous background
intensity (i.e. constant sky brightness), C exhibits an exponential decay based on Beer’s

law,
C(x) = Coexp(—bex;X) (2-2)

where by is the extinction of the atmosphere (including extinction of aerosols and
molecules). Since Vis represents the furthest distance corresponding to a minimum critical

contrast Ces below which the observer cannot discern the object, we have
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Cerit = CoeXp(—bexVis) (2-3)

Rearranging to solve for b yields

K
Vis

(2-4)

bext =

where K = —In % This is the Koschmieder equation (Griffing, 1980), representing
0

a linear relationship between 1/Vis and b.x.. The slope K of this relationship is mainly
determined by two factors: the inherent contrast at the object’s position Cyp and the critical
contrast of the observer’s eye Ceq. This equation is only valid for a plane-parallel and
homogeneous atmosphere. For situations with high gradients of b.. (e.g. smoke plumes),
this could readily break down. Even for ideal conditions, this relationship could vary due
to the variation of Cy (change of markers or observing conditions) and/or Ccs (change of
observer or protocol). It is sometimes assumed that the object is perfectly black (Co=1) so
that K is only determined by Ceir. Nevertheless, K still varies from 1.5 to 3.9 (e.g. Husar
and Wilson, 1993; Schichtel et al., 2001; Wang et al., 2009) because of different C.,i values
or different observing conditions. Below we similarly find that even where 1/Vis is highly

correlated with b..; data, K still varies significantly for different stations.

2.4 Data and Processing

2.4.1 Visibility Data

We begin with raw Vis data from synoptic observations over 1929-2013 in the
Integrated Surface Database (ISD, https://catalog.data.gov/dataset/integrated-surface-
global-hourly-data) archived at the NOAA's National Centers for Environmental
Information (NCEI). ISD data are generated through merging hundreds of data sources
(Smith et al., 2011a). The data from different networks have different report frequencies
(e.g. hourly, 3-hourly, 6-hourly, etc.). We reject the daily averaged data called “global
summary of the day” (GSOD) since an arithmetic mean could bias the daily and monthly
statistics because of threshold and discreteness issues, as discussed in Section 2.4.1.2. Each

processing step is described below.
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2.4.1.1 Conventional screening

We begin with “conventional screening” using algorithms adapted from prior studies.
We eliminate effects on Vis of weather conditions such as fog, precipitation, low cloud and
high relative humidity (RH > 90%, estimated from temperature and dew point) following
the description in Husar et al. (2000). A sensitivity test that limited conditions to RH <80%
reduced data density but yielded similar trend results without changing the main findings
in this study. Potential human errors are reduced by statistical checks of daily spikes and
non-repeating values following Lin et al. (2014). Duplicate stations with different names
are combined, and stations lacking geolocation information are removed following Willett
etal. (2013). After this screening step, 21,703 stations remain from the 30,895 original ISD

sites.

2.4.1.2 Threshold filtering

We develop a filter to address spatial and temporal variation in the threshold of
reported Vis. The “threshold” is the maximum reported Vis at a station that often depends
on the furthest employed Vis marker. Vis above this threshold is not resolved. Thus the
threshold acts as an artificial detection limit. The ability of Vis data to capture the variation
of bex is weak when the air is clean and/or the adopted threshold Vis at the station is low.
We identify the 99th percentile of reported Vis in each year as the threshold for each station,
and reject months with < 50% of the data below the threshold. This approach differs from
eliminating stations with low thresholds (e.g. Husar et al., 2000). Observations could still
be meaningful at heavily polluted stations even if the threshold is low, while for clean
stations with high thresholds most of the reported Vis could remain unresolved. To further
ensure data representativeness and variability, data are removed for any month with less
than 4 different days of data or with nearly identical percentile values (i.e. the ratio of 50th
and 25th percentile Vis is less than 1.07 or the ratio of the 25th to 10th percentile Vis is
less than 1.1) following Husar et al. (2000). This data screening step further reduces the
number of qualified station to 10,446.

We describe the monthly Vis level with nonparametric statistics rather than arithmetic
mean for a few reasons. First, an arithmetic mean would have biased monthly statistics due

to the variable fraction (50-100% after the threshold filtering) of Vis reported under the
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threshold in 1 month. Second, Vis is recorded as discrete values with coarse and uneven
increments, and is not normally distributed (Schichtel et al., 2001). The protocol of
reporting Vis varies across stations, depending on local regulations and available Vis
markers. Both issues would affect the GSOD data or the monthly mean 1/Vis so we work
with the raw data. We follow the convention to adopt the 75th percentile 1/Vis as the
monthly representation of haziness (Husar et al., 2000; Qu et al., 2013). Other statistics,
such as 50th and 90th percentile 1/Vis lead to similar trends and do not alter the conclusion
of this study. However, the 50th percentile is closer to and more vulnerable to the detection
limit, while the 90th percentile tends to be more susceptible to extreme events. Husar et al.
(1987) assessed the effects of different choices of statistics. Below we commonly refer to

the 75th percentile as “monthly 1/Vis” unless stated otherwise.

2.4.1.3 Completeness check

Completeness criteria are applied for further screening. A year of data is removed if
less than 6 months in this year is available to guarantee annual representativeness. Short-
term time series covering less than 7 years are also removed since they offer little
information on trends. A total of 6,466 stations comply with these standards and remain in

the data archive.

2.4.1.4 Change point detection

Sudden discontinuities in characteristics of the derived monthly time series of 1/Vis
are frequently found even after the comprehensive filtering. Any change of the Vis marker
(i.e. change of Cy) or observing standard (i.e. change of C../) could alter the relationship
(K) between bex; and 1/Vis, introducing inconsistency in the time series unrelated to actual
bexr change. For example, instrumentation (e.g. telephotometers, transmissometers and
scatterometers) has replaced human observers at many sites in the US (Kessner et al., 2013)
and to a lesser extent in Europe (Vautard et al., 2009), but there is a lack of documentation
recording when and at which stations this switch occurred. Such artificial changes could
seriously bias the inferred trends if not addressed. Various methods have been proposed to
detect abrupt “change points” (Costa and Soares, 2009; Reeves et al., 2007). For example,

the RHtest software package developed for multiple change point detection is based on
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penalized maximal t and F test (Wang et al., 2007; Wang, 2008b) embedded in a recursive
testing algorithm (Wang, 2008a). We adopt the FindU function in the RHtest (version 4,
available at http://etccdi.pacificclimate.org/) software to detect “type-1” change points
(without reference time series). We manually examine all reported change points for
possible false detections. By visually inspecting each remaining station from Section
2.4.1.3, we retain only obvious structural discontinuities in the time series of 50th or 75th

monthly percentiles from the candidate change points provided by the RHtest results.
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Figure 2-1. An example of change point detection and determination based on the time
series of 50th (red) and 75th (black) percentiles of monthly 1/Vis. Automatically detected
change points are represented by vertical lines. Text in the inset lists the dates of
automatically detected points. In this example, five significant change points are identified,
in which February 1988 is determined as the separation point for further analysis, while
other reported breaks are considered to be false detections.

Figure 2-1 shows an example of change point detection based on the time series of
50th and 75th percentiles of monthly 1/Vis at one ISD station. The change points are
reported in three different types (95% confidence): significant change, possibly significant
(undetermined) change and insignificant change. In this example, although four significant
changes for the 50th percentiles 1/Vis and two significant change points for the 75th
percentiles 1/Vis are reported, only one candidate (February, 1988) indicated by both time

series is considered to be an obvious discontinuity and chosen as the actual change point.

The candidate change points provided by RHtest allow greater efficiency than pure
manual detection, which is prohibitive for thousands of stations. Any gap of more than 4
years in a time series is also considered to be a change point. Such a large gap could obscure
protocol changes and introduce uncertainties in the derived trends without separation. We
analyze separately the 1/Vis time series before and after the determined change points.
Finally, we eliminate any year of data with annual 1/Vis (average of monthly 1/Vis) less
than 40 Mm'! to address the poor data variation and representativeness of clean

environments, as will be discussed in Section 2.5.1.

17



We acknowledge that, although guided by RHtest results and a synthetic analysis
based on the time series of 50th and 75th percentiles, this is still a subjective method. A
small fraction of determined change points could be extreme events, while a few
undetected change points missed by this subjective judgement might remain in the analysis.
Several time series with irregular temporal variation are also removed during the visual
examination. In summary, only 1/Vis time series considered to be consistent and

continuous are analyzed here.

A total of 3,930 stations (5,320 time series) remain after this processing step, in which
856 sites (22%) are diagnosed as containing change points and thus separated. This small
fraction of structural discontinuities generally has minor impacts on the large-scale trend
features and regional trends in Section 2.6 according to our sensitivity test using data
without separation. But the separated data reduce spatial incoherency in the derived trend
maps, and are more reliable for studies over small areas or independent stations, as shown

in Figure 2-1.

The threshold filtering (Section 2.4.1.2) and change point detection (Section 2.4.1.4)
are designed to ensure basic representativeness and continuity of the derived monthly 1/Vis

time series, and are the main differences of this processing from prior investigations.

2.4.1.5 Distribution of stations

Figure 2-2 (top) shows the ISD stations and the number of years with available data
for 1929-2013 before and after data processing. Most of the remaining stations are located
in the US (753), Europe (1625) and eastern Asia (791). More than 6000 removed stations
have less than 7 years of data as indicated in the left panel. Many other removed stations
have small population density or harsh observing environment (e.g. islands and polar

regions), which might correspond to poor observing conditions or maintenance.
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Figure 2-2. Distribution of Integrated Surface Database (ISD) stations before (left) and
after (right) data screening. Colors indicate the number of years with available visibility
data for (upper) 1929-2013 and (lower) 1995-2013.

Figure 2-2 (bottom) shows that most US stations are screened after the mid 1990s.
This is because more than 90% of the ISD stations gradually switched to employ a low Vis
threshold of 10 miles (~16 km) after the mid 1990s (Figure 2-S1), probably due to the
introduction of unified instrumentation (Kessner et al., 2013). A maximum Vis of 16 km
may be sufficient for airport navigation and weather reports, but this threshold Vis under
clear sky conditions represents a moderate pollution level, and clean cases are not resolved.
Thus most of the US stations with such low thresholds are rejected during the threshold
screening. In contrast, screened stations remain densely distributed with long-term data
over Europe and eastern Asia after the mid 1990s because the adopted thresholds are

generally higher and more consistent (Figure 2-S1).

2.4.2 Complementary In Situ Data

We adopt complementary data to evaluate and interpret the constructed monthly 1/Vis
time series and trends. The measured and calculated aerosol optical data from the
Interagency Monitoring of PROtected Visual Environments (IMPROVE) program

(http://vista.cira.colostate.edu/improve/Data/data.htm) are employed to evaluate the
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screened 1/Vis data and its trends after 1988. IMPROVE applies empirical mass extinction
and RH growth factors to measured mass of aerosol components to calculate and report
ambient by in a 3-4 day frequency (Pitchford et al., 2007), and for several stations
concurrent measurements of aerosol scattering coefficient (bs,) are also made at hourly
frequency using nephelometers. We generate monthly mean total bey; (including aerosol
extinction and site-specific Rayleigh scattering) and by, from data with RH < 90% and
status flags as “V0” (valid). Any month with less than 4 available days for averaging is
abandoned. Pitchford et al. (2007) demonstrated that the estimated b is consistent with
measured by,. We also find high correlation (r = 0.90, N = 3439) between monthly b..; and
by across IMPROVE stations (Figure 2-S2).

The measurement of bey or by, is sparse outside the US. Therefore we obtain long-
term measurements of fine particulate matter mass (PMas) from the European Monitoring
and Evaluation Programme (EMEP, http://ebas.nilu.no) for comparison over Europe
(Terseth et al., 2012). Forty-five stations of data collected by filter-based ambient samplers
are used. Similarly, these daily PM: s data are averaged monthly provided at least four valid

measurements are available.

2.4.3 SO; Emission Data

We apply bottom-up total anthropogenic SO emission inventories to interpret
historical 1/Vis trends. This approach exploits the close relation of sulfate aerosol
concentration with SO emission due to the short time scale of SO, oxidation (Chin et al.,
1996; Chin et al., 2014; Daum et al.,, 1984; Hand et al., 2012b), the major PMys
contribution from sulfate aerosols over land for most populated areas (Chin et al., 2014),
and the dominance of sulfate for light extinction due to its hygroscopicity (Hand et al.,
2014a). We employ three different SO, emission data sets, including country-level data for
1850-2005 (Smith et al., 2011b; Smith et al., 2011c), gridded data from EDGAR
(Emissions Database for Global Atmospheric Research) version 4.2 (Olivier et al., 1994)
at 0.1 degree resolution for 1970-2008 (http://edgar.jrc.ec.europa.eu/), and data from Lu et
al. (2011) at 0.5 degree resolution for 1996-2010 over China. The data from Smith et al.
(2011b) are referred to as “Smith emissions” below. The data from Lu et al. (2011) are

referred to as “Lu emissions”.
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2.4.4 Trend Analysis

In this study, we separately calculate trends for several periods of 8-10 years to allow
possible trend reversal, and to include stations with short-term data. The choice of study
periods is mainly based on the historical SO> emission data. Figure 2-S3 shows the Smith
emission data for several representative countries. SO> emission trends in the US changed
direction at ~1944, ~1954, and again at ~1973. Also, for most eastern European countries,
there is a sharp reduction of SO> emission starting from ~1989 after the breakdown of the
communist system, while the 1997 Asian financial crisis affected the SO> emission trend
in Korea. It is of particular interest to examine how Vis is affected by these emission
changes. Data for most ISD stations outside the US start from the year 1973, and
representative coverage of Vis stations over the US starts from the year 1945, although the
earliest records after screening start from 1929. Based on these transition points of SO»
trends and Vis data availability, eight periods (1945-1953, 1954-1963,1964-1972, 1973-
1980, 1981-1988, 1989-1996, 1997-2005, 2006-2013) are chosen to be analyzed in detail
over the US, while the latter five periods are studied for Europe and eastern Asia. We also
briefly examine two short periods before 1945 (1929-1934 and 1935-1944) over the US
where stations are less spatially representative (not included in regional quantitative

analysis) but still show prominent trend information in 1/Vis.

We assess the linear trend and its significance (p value, two-tail test) in the
deseasonalized monthly anomalies using Sen’s slope (Sen, 1968) and the Mann-Kendall
(MK) test (Kendall, 1975; Mann, 1945). All monthly data are deseasonalized by removing
multi-year monthly means of each period before trend estimation. Pre-whitening is
introduced to reduce the effect of lag-1 autocorrelation (Yue et al., 2002), and 95%
confidence interval (CI) of the slope is calculated (Li et al., 2014b). This nonparametric
trend estimation method is insensitive to missing values and outliers in the time series, and
does not require a normal distribution, thus it has been widely adopted to study aerosol
trends in previous studies (Collaud Coen et al., 2013; Papadimas et al., 2008). Least square
trends (Weatherhead et al., 1998) are also calculated, and are found to be consistent with
the MK-Sen trends. For all the 8027 calculated slopes in 1/Vis, 88% are unanimously
diagnosed as significant (90% confidence, p < 0.1) or insignificant by both methods. For

the significant trends 76% of their differences are within 20%. Relative trends are
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calculated by normalizing the absolute MK-Sen slopes to the multi-year mean of monthly
1/Vis in the corresponding period to facilitate the comparison and interpretation with other

in situ data.

Short-term trends of 8-10 years are expected to be less statistically robust and more
sensitive to extremes. For each period, a time series is required to contain at least half of
the total months and two-thirds of the total years (e.g. at least 60 monthly data in at least 7
years for a 10 year period) for the calculated trend to be representative. This step only
reduces the number of stations at which trends are reported, but does not further screen the

data.

The meaning and observing methods of daytime and nighttime data differ. According
to WMO (2008), Vis at night, as determined using illuminated objects, also depends on the
light source intensity, the adaptation of the observer’s eyes to darkness and the observer’s
illuminance threshold. We compare the relative trends calculated using daytime and
nighttime data to the combined trends adopted in this paper, over all remaining sites and
the eight periods. The 5183 daytime trends have a correlation of 0.85 with the combined
trends, in which 84% of the differences between significant trends (p <0.1) are within 50%.
For the comparison between 4109 nighttime and combined trends, the correlation is 0.80
and 78% of the differences between significant trends are within 50%. Therefore, after
representing the data as a monthly resolution and normalizing the changes in 1/Vis to
relative trends, the daytime and nighttime data show generally consistent trends in haze
level compared to the combined data, and do not meaningfully alter our results and

conclusions.

We calculate composite trends based on monthly 1/Vis averaged from an ensemble of
stations (e.g. for the time series of collocated stations in Section 2.5 or defined regions in
Section 2.6). To ensure temporal representativeness, a station is considered in the average
only if two-thirds of the total months of data are available for the study period. Qualified
stations are gridded to 1 degree resolution before averaging to avoid biased averaging
towards more densely distributed areas. To ensure spatial representativeness, only monthly
data derived from at least 75% of the total grids (i.e. number of unique grids covered by all

the monthly data) for each study period are used in the composite trend estimation. This
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strategy reduces sampling difference within each period; however the composite 1/Vis for
different periods might be averaged from a different distribution of stations. We expect the
uncertainty from spatially variant K and data quality to be random, and to be reduced by
spatial averaging and by normalizing the slopes into relative trends. Over these regions, we
also calculate several time series and trends for longer merged periods with consistent

station coverage and similar trends, to assess the consistency of the short-term trends.

2.5 Evaluation against In Situ Data

2.5.1 Comparison with IMPROVE be¢ and EMEP PM 5

We compare the monthly IMPROVE b, data with the quality controlled monthly
1/Vis from Section 2.4.1. Collocations are considered between IMPROVE and ISD time
series over 1988-2013 within the distance of less than 1 degree and altitude difference of
less than 500 m. One IMPROVE station could pair with more than one ISD station and
vice versa. A total of 59 collocations (each with at least 20 paired monthly values) are made.
We expect a maximum correlation of 0.9 given the relation between measured b, and
calculated b.x; (Figure 2-S2). Similarly, we create collocations between ISD 1/Vis and
EMEP PM: s on a monthly basis, and expect a weaker correlation due to variation of aerosol

water and mass extinction efficiency.
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Figure 2-3. Spatial distribution of (top left) average of the collocated b... of IMPROVE
stations, (top right) Pearson correlation coefficients between collocated pairs of monthly
ISD 1/Vis and IMPROVE b.y;, (bottom left) slope of monthly b..; against monthly 1/Vis
after linear fitting through the origin point using the reduced major-axis linear regression
(Ayers, 2001) and (bottom right) Pearson correlation coefficients between collocated pairs
of monthly ISD 1/Vis and EMEP PM;s.

Figure 2-3 shows the comparison results between collocated 1/Vis and bex over the

US. This evaluation highlights the following major findings.

1) The mean b., level of collocated IMPROVE stations after 1990 is below 50 Mm'!
for the western US, and below 120 Mm™! for the eastern US (top left). As discussed in
Section 2.4.1, the low threshold Vis of ~16 km (equivalent to bexy ~100 — 240 Mm’!
depending on K) recently adopted by most US stations fails to resolve actual b..; variation
under this relatively clean environment. Thus many stations are rejected by the threshold

filtering.

2) As shown in the top right panel, correlation coefficients of monthly values vary
from ~0 to 0.85. About half of the collocations (29 out of 59) have r < 0.5, while 10
collocated ISD stations have r > 0.7. The overall moderate correlation is not unexpected,
as is similarly found in previous studies (Mahowald et al., 2007, Wang et al., 2012).

Correlations are expected to differ from station to station, due to the inherent difference in
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observing conditions, protocols, and residual uncertainties. This preliminary evaluation
suggests that Vis data at individual stations can be unreliable, and in the following

discussion we focus on interpreting regionally coherent observations.

3) Correlations generally exceed 0.5 in the eastern US, where the mean b, is higher
due to higher aerosol concentration (Hand et al., 2012a; van Donkelaar et al., 2015) and to
a larger fraction of hygroscopic sulfate aerosols (Hand et al., 2012a). The correlation
increases significantly with the mean b.y, indicating the tendency for better 1/Vis
representativeness in more polluted regions. As previously discussed, at lower b.,; more
reported Vis are close to the threshold Vis, thus the true 1/Vis tends to be less well resolved.
Also, because the Vis data are reported in discrete values, clean stations with a narrow
dynamic range of b.., have few reportable Vis to capture the continuous b, variation.
Moreover, the increment of adjacent reportable Vis is relatively coarse in cleaner
conditions (WMO, 2008), and atmospheric homogeneity might break down for longer
distances. All these factors weaken the ability of Vis to capture b.y variation in clean
environments. Wang et al. (2012) found low correlation of 1/Vis with PMio over the US
and Canada, and similarly attributed this to low aerosol concentrations and higher Vis
uncertainty over North America. Thus we apply the 40 Mm™! threshold of annual 1/Vis to
further filter the data as introduced in Section 2.4.1.4. Without this screening, seven of
eight stations with mean 1/Vis <40 Mm! were found to exhibit low correlations (r < 0.25)
with collocated b.,.. Different thresholds from 10 to 70 Mm™ were tested, and thresholds

above 40 Mm! ceased to improve the consistency with the few sites reporting bex.

4) The slope of fitted linear relationship (bottom left) between 1/Vis and be; varies
from ~0.8 to ~2 even over the eastern US where correlations are higher. This supports the
expectation that this slope (K) would differ spatially with observing conditions (Griffing,
1980; Husar et al., 2000; Schichtel et al., 2001), as discussed in Section 2.3. Thus in the

later analysis we focus on the relative trend of 1/Vis which is independent of K.

Figure 2-3 (bottom right) also shows the correlation between monthly 1/Vis and PMa s
over Europe. Although the relation of 1/Vis with PMa s is expected to be more uncertain
than with b.., we find more stations with high correlation (r > 0.5) over Europe (93 out of

129, 72%) than over the US (51%). Wang et al. (2012) similarly found higher correlation
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of 1/Vis with PMjo over Europe and China than over the US and Canada. The higher
thresholds and higher concentration of fine aerosol over Europe (van Donkelaar et al., 2015)
allow 1/Vis to better resolve PM; 5 variation there. These findings suggest more reliability
of Vis observations at areas with both higher aerosol loading and sufficiently high
thresholds to resolve b., variation, e.g. the three populated regions investigated in this

study.

2.5.2 Trend Evaluation

Figure 2-4 shows the spatial distribution of relative trends in 1/Vis, in IMPROVE
estimated b.x and in measured by, over the US for 1989-2013. Overall, the trend maps of
1/Vis, bex: and by, show a dominant trend of decreasing haziness over the continental US
after 1988, which reflects reduction of aerosol sources (Hand et al., 2014a; Leibensperger
et al., 2012). The overall decrease across the US is consistent with recent trend studies
employing IMPROVE b.,, (Hand et al., 2014a) and b,, (Collaud Coen et al., 2013) data,
and is determined by the reduction of both aerosol mass and hygroscopicity (Attwood et
al., 2014). For the last two periods (1997-2013), the number of available ISD stations for
trend analysis is dramatically reduced by their detection limit and improved air quality.
Although the remaining sparse ISD stations still show overall consistency in trends with
nearby b.,; and by, they cannot provide spatially coherent and aggregated trend information.
We thus suggest that the ISD Vis data over the US are not appropriate for studying haze
trends after the mid 1990s, and limit our analysis to data before 1996 for this region. Over
1989-1996, the 1/Vis trends still reproduce the b, trends, with decreasing tendencies in
the eastern and western US. For this period, 15 ISD stations and 9 IMPROVE stations with
significant trends are collocated and labeled. Thus the apparent discrepancy in sign of
trends in 1/Vis (Wang et al., 2012) with trends in other aerosol measurements (US EPA,
2012; Attwood et al., 2014; Hand et al., 2012b; Hand et al., 2014a) is resolved by more

comprehensive data processing and screening.
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Figure 2-4. Spatial distribution of relative trends in 1/Vis (top row), IMPROVE b, (middle
row), and IMPROVE by, (bottom row) over the US for 1989-2013. Larger colored points
with black outline indicate trends with at least 95% significance, smaller colored points
with black outline represent trends with 90%-95% significance, and colored points without
outline indicate insignificant trends. Stations with cross and circle symbols are collocated
between the ISD and IMPROVE networks over 1989-1996 for composite time series
analysis in Figure 2-6.

Figure 2-5 shows the spatial distribution of relative trends in 1/Vis and PM s over
Europe for 2006-2013. There is a tendency of greater reductions in 1/Vis over western
Europe than over eastern Europe as examined further in Section 2.6.2. The dominant
decreasing trends of PM» s are adequately captured by the 1/Vis trends, especially at the 19
ISD and 10 EMEP collocated sites with significant trends, as discussed further below.

Figure 2-6 (top) shows the composite time series of the collocated 1/Vis and bey
stations over the US for 1989-1996. The seasonal variation of the averaged be. is well
reproduced by that of collocated 1/Vis, with a correlation of 0.77 between these two time
series. Both composite 1/Vis and be; show a peak in summer months, due mostly to
increased aerosol concentration in warm months because of increased photochemical

activity and biogenic emission (Chen et al., 2012; Hand et al., 2012a). The trend of
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collocated 1/Vis (-1.6% yr'; 95% CI: -2.4, -0.8% yr'!) is within the confidence intervals of
the decrease of bex (-2.4% yr'; 95% CI: -3.7, -1.1% yr'!). The slight underestimation may
reflect the weak sensitivity of discrete 1/Vis data to the continuous decrease of by in clean

environments due to the threshold and discreteness issues.
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Figure 2-5. Spatial distribution of relative trends in 1/Vis and PM2.s over Europe for 2006-
2013. Larger colored points with black outline indicate trends with at least 95%
significance, smaller colored points with black outline represent trends with 90%-95%
significance, and colored points without outline indicate insignificant trends.Stations with
cross and circle symbols are collocated between the ISD and EMEP networks for
composite time series analysis in Figure 2-6.

Figure 2-6 (bottom) shows composite time series of PMas and 1/Vis of these
collocated 1/Vis and PM2 s stations over Europe for 2006-2013. High correlation (0.80)
between these two time series indicates consistent seasonal variation. The winter maximum
in the composite 1/Vis over Europe well represents the PM» 5 seasonality at most collocated
EMERP sites, which could be attributable to near surface inversion and low surface winds
(Yttri et al., 2006), to greater nitrate aerosol formation (Aas et al., 2012; Yttri et al., 2006),
and to higher carbonaceous aerosol emission from residential wood combustion (Denier
van der Gon et al., 2015). The CI of the 1/Vis trend (-3.4% yr!, 95% CI: -4.4, -2.4% yr'")
overlaps with that of the PMays trend (-5.8% yr'!, 95% CI. -7.8, -4.2% yr!), but
underestimates the relative decrease of PM2.s. In addition to the weak sensitivity of discrete
1/Vis to resolve aerosol variation under clean environment (the collocated EMEP stations

are mostly in the cleaner western Europe), the inclusion of Rayleigh scattering in 1/Vis and
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the non-linear association between ambient 1/Vis and dry PMa s (fixed at 50% RH) also

contribute to this bias.
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Figure 2-6. Composite time series and trends of (top) 1/Vis and b, for collocated ISD and
IMPROVE stations (Figure 2-4) over 1989-1996 and (bottom) 1/Vis and PMas for
collocated ISD and EMEP stations (Figure 2-5) over 2006-2013. Only stations with
significant trends of >90% confidence are collocated. The long ticks on the horizontal axis
indicate the January of the year. Data gaps represent months with less than 75% of the
total grids. Error bars show the 25th and 75th percentile of all monthly values of collocated
stations.

In summary, 1/Vis exhibits spatially variant K (i.e. relationship with be.;) and data
quality that suggests uncertainty in the information of one station especially at clean
locations. However the aggregated 1/Vis time series successfully capture the seasonal
variation and trends of collocated in situ data. The high correlation between composite time
series and the overall consistency of composite trends suggest that the interpretation value

of 1/Vis data benefits from averaging over multiple stations.

2.6 Historical Trends of 1/Vis

2.6.1 United States

Figure 2-7 presents the calculated relative trend of 1/Vis of all qualified stations over
the US for 1945-1988 (Figure 2-4 contains 1/Vis trends over 1989-2013). Figure 2-8 shows

the regionally averaged time series and trends of 1/Vis over the eastern US for 1945-1996,
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superimposed with the evolution of SO> emission data. Historically, 1/Vis in the eastern
US experienced a pronounced decrease (-2.8% yr'!, p <0.001) after World War II until the
mid 1950s, a consistent upward trend afterwards (0.9-1.8% yr'!, p < 0.001) during the
following 2 periods until the early 1970s, variable tendencies during 1973-1980, and a
significant decreasing trend (-1.1 to -2.0% yr'!, p < 0.005) from the early 1980s until 1996.
Over 1954-1973, the long-term trend of 1/Vis is 1.2% yr! (p < 0.001), lying between the
separated short-term trends. This 1/Vis trend evolution resembles the SO> emission trend.
Industrial activity gradually decreased after World War II until the mid 1950s, followed by
economic growth until the early 1970s with the emergence of both the oil crisis and the
Clean Air Act (Greenstone, 2001). The emission of SO starts to consistently decrease after
1973 for the Smith inventory, and after 1977 for the EDGAR inventory. For the period
1973-1980 the regional 1/Vis is generally consistent with these two inventories except for
an anomalous peak of annual 1/Vis in 1977-1979. The NOAA Climate Extremes Index
(http://www.ncdc.noaa.gov/extremes/cei/) describes the winters of 1977-1979 as the
coldest during 1945-1996 across the US. Increased emissions from domestic heating, as
well as stagnant weather may contribute to the 1/Vis peak. After 1978, the three annual

time series uniformly exhibit a downward tendency.

Table 2-1 contains the correlation of annual 1/Vis with SO> emissions. Annual 1/Vis
over the eastern US exhibits a correlation of 0.66 with the Smith SO> emissions over the
entire US (1946-1995), and of 0.73 with the EDGAR SO, emissions over the eastern US
(1970-1995). The 1/Vis trends over the western US (where SO2 emissions are much lower
than in the eastern US, organic aerosols dominate in PM>s and forest fires are more
prevalent) are less consistent than over the eastern US with the SO> emission data, given
the influence of other sources. In summary, the 1/Vis time series successfully capture large-
scale haze evolution over the eastern US from 1945 to 1996, which is consistent with
changes in SO, emissions as well as previous investigations on 1/Vis for this region (Husar

and Wilson, 1993; Schichtel et al., 2001).
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Figure 2-7. Spatial distribution of relative trends in 1/Vis over the US for 1945-1988.
Larger colored points with black outline indicate trends with at least 95% significance,
smaller colored points with black outline represent trends with 90%-95% significance, and
colored points without outline indicate insignificant trends. The red rectangle defines the
eastern US region for composite time series analysis in Figure 2-8.
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Figure 2-8. Composite time series of 1/Vis and SOz emission over the eastern US region.
The long ticks on the horizontal axis indicate January of the year, where all annual values
are plotted. Light green dots represent the average monthly 1/Vis of all qualified stations
(error bars showing the 25th and 75th percentile) in the defined region. Red dots show the
number of grid cells for averaging, and data gaps indicate months with less than 75% of
the total grids for each period. Blue lines and text represent the 1/Vis trends calculated
using the monthly anomalies for each period. Trends in parentheses are the 95% confidence
intervals. Black lines are the annual 1/Vis averaged from at least 8 monthly values. SO
emissions for the entire US from Smith et al. (2011b) are in orange. Purple indicates
EDGAR SO, emissions for the entire US (dashed) and for the defined region (solid) in
Figure 2-7.
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Table 2-1. Summary of Pearson correlation coefficients (r) between annual 1/Vis and SO»
emissions for five regions.

Inventory Period Eastern US
Smith 1946-1995 0.66
EDGAR 1970-2008 0.73

Eastern Europe Waestern Europe

Smith 1973-2005 0.92 0.91
EDGAR  1973-2008 0.92 0.92
Northern China Southern China
Lu 1996-2010 0.78 0.87
EDGAR  1973-2008 0.91 0.88

Figure 2-S4 shows the calculated 1/Vis trends over the US for two short periods prior
to 1945. Although the stations are sparsely distributed, the nearly uniform trends in 1/Vis
strongly suggest a prominent decrease over 1929-1934, and then a rapid increase over
1935-1944. This evolution reflects the significant drop in industrial activity following the
1929 Great Depression, and the economic recovery after ~1933 during the New Deal
programs and World War II. The Smith SO, emissions of the US (Figure 2-S3) also reflect

these socioeconomic events.

2.6.2 Europe

Figure 2-9 presents the spatial distribution and temporal evolution of haze trends over
Europe as derived from the 1/Vis data for 1973-2005. The historical trend pattern of 1/Vis
is quite different between western and eastern Europe. The large-scale 1/Vis trend over
western Europe is consistently decreasing for the four periods after 1981 (also in Figure 2-
5). Some countries such as the UK and France begin decreasing prior to 1981, consistent
with the SO, emission decrease over these countries (Figure 2-S3). Prior analysis also
indicated Vis improvements after ~1973 for most sites over the UK (Doyle and Dorling,
2002). Meanwhile stations over eastern Europe have significantly increased 1/Vis for
1973-1980, a mostly decreasing trend in its western part for 1981-1988, and then a

decrease-dominant trend after 1989.
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Figure 2-9. Spatial distribution of relative trends in 1/Vis over Europe for 1973-2005.
Larger colored points with black outline indicate trends with at least 95% significance,
smaller colored points with black outline represent trends with 90%-95% significance, and
colored points without outline indicate insignificant trends. Red rectangles define the
eastern and western Europe regions for composite time series analysis in Figure 2-10.
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Figure 2-10. Regional time series analysis of 1/Vis and SO, emission over western and
eastern Europe. The long ticks on the horizontal axis indicate January of the year, where
all annual values are plotted. Light green dots represent the average monthly 1/Vis of all
qualified stations (error bars showing the 25th and 75th percentile) in the defined region.
Red dots show the number of grid cells for averaging, and data gaps indicate months with
less than 75% of the total grids for each period. Blue lines and text represent the 1/Vis
trends calculated using the monthly anomalies for each period. Trends in parentheses are
the 95% confidence intervals. Black lines are the annual 1/Vis averaged from at least 8
monthly values. The Smith SO, emissions in orange are the total emission of all countries
listed in Table 2-2 for each region. The EDGAR SO; emissions in purple are summed from
all pixels inside the defined region (Figure 2-9).

Figure 2-10 shows the regionally composite time series of 1/Vis as well as SOz
emissions over western and eastern Europe for 1973-2013. Table 2-2 lists the specific
country names included in the Smith emissions for the two regions. The evolution of 1/Vis
over western and eastern Europe is broadly consistent with the SO> emissions, and reflects

the lag of emission reduction in eastern vs. western Europe. Stjern et al. (2011) similarly
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reported later improvement in Vis over eastern vs. western Europe. The SO, emission
reduction extends from the 1980s to the end of data record for western Europe, and
primarily over 1989-2000 for eastern Europe. The composite 1/Vis time series successfully
capture the significant reduction of haze over western Europe (-1.1 to -1.7% yr!, p < 0.08).
Long term 1/Vis trend over western Europe for 1981-2011 (insufficient qualified stations
after 2011) is -1.8% yr! (p < 0.001), consistent with the separate short-term trends. For
eastern Europe the decrease of 1/Vis is stronger before 1997 (-2.0% yr'!, p < 0.001) than
after 2006 (-1.1% yr!, p = 0.03), and the calculated trend over 1997-2005 is insignificant,
consistent with the SO> emission evolution. There is an obvious peak in 1/Vis from October
1995 to March 1996 especially over eastern Europe, which is consistent with the peak
sulfate concentration that Stjern et al. (2011) attributed to the anomalously cold winter of

1996 with stagnant air.

Table 2-1 shows that the annual 1/Vis time series exhibit a correlation of 0.91 (0.92)
with the Smith Emissions for 1973-2005, and of 0.92 (0.92) with the EDGAR emissions
for 1973-2008 over western (eastern) Europe, respectively. Such high correlations suggest
a major role of SOz emissions to determine the decadal trends of haze over Europe.

Table 2-2. List of countries included to calculate regional SO> emission from the country-

level emission data (countries with most parts inside the defined region) of (Smith et al.,
2011b).

Region Countries

Eastern .

Us United States

Eastern Albania, Belarus, Bosnia & Herzegovina, Bulgaria, Czech, Croatia,
Europe Greece, Hungary, Latvia, Lithuania, Moldova, Poland, Romania,

Serbia & Montenegro, Slovakia, Slovenia, Turkey, Ukraine
Western Austria, Belgium, Denmark, France, Germany, Ireland, Italy,
Europe Netherland, Portugal, Spain, Switzerland, United Kingdom

2.6.3 Eastern Asia

Figure 2-11 shows the calculated relative trends of 1/Vis over eastern Asia after 1973.
A persistent increasing trend of 1/Vis dominates over eastern China for more than 30 years.
A prominent feature in the trends over China is more heterogeneity in the spatial
distribution compared to the trend maps over the US and Europe. This could be a result of

asynchronous economic development, as several studies reported “lagging” of Vis
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impairment in rural sites (from ~1990s) compared to urban sites (from ~1960s) in China
(Quan et al., 2011; Wu et al., 2012). The overall increasing trend in 1/Vis reverses in the
last period of 2006-2013, when most stations in southern China and many in northern China
show a statistically significant decreasing trend of 1/Vis. This is consistent with the
implementation of fuel-gas desulfurization facilities in power plants after ~2007. This
recent reduction was also supported by satellite observations of SO» (Li et al., 2010; Lu et

al., 2010; Lu et al., 2011; Wang et al., 2015b; Zhao et al., 2013).
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1981-1988 1989-1996

— .
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Figure 2-11. Spatial distribution of relative trends in 1/Vis over eastern Asia for 1973-2013.
Larger colored points with black outline indicate trends with at least 95% significance,
smaller colored points with black outline represent trends with 90%-95% significance, and
colored points without outline indicate insignificant trends.Red rectangles define the
northern and southern China regions for composite time series analysis in Figure 2-12.

Figure 2-11 also shows a consistent increase of 1/Vis over Korea from 1973 to 1996.
After 1997 when the SO emission transits to decrease (Figure 2-S3), the increase in 1/Vis
levels off and reverses. The aerosols over China also affect areas downwind through long-
range transport (Aikawa et al., 2010). For the 1997-2005 period, most eastern stations of
Korea show a downward trend, in contrast with the increasing 1/Vis over the west, which
is more strongly influenced by pollutant transport from China. Lee et al. (2015b) also

discovered insignificant improvement of Vis over urban areas of Korea after late 1990s
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despite the national emission reduction policy launched in early 2000s, which was
attributed to the regional transport from upwind continental areas. Long-term aerosol
measurement over Gosan Island, Korea showed rapid increase of sulfate and nitrate
concentrations from early 2000s to ~2006, which were closely related with the trends of
China’s emission (Kim et al., 2011). Similarly, stations over the western and coastal areas
of Japan consistently exhibit an upward 1/Vis trend before 2006, despite the continuous
decrease of local SO, emission and concentration since 1970 (Wakamatsu et al., 2013).
Aikawa et al. (2010) found a zonal gradient in terms of both the magnitude and trend of
measured SO, and sulfate concentrations over Japan, and in the modeled contribution from
China to the sulfate concentration in Japan. Lu et al. (2010) reported that most EANET
(Acid Deposition Monitoring Network in East Asia) stations over Japan and Korea have
increasing trends in SO, and sulfate aerosols from 2001 to 2007. For the last period 2006-
2013, 1/Vis shows a dominant decreasing trend over Japan and Korea that may reflect in
part China’s SO, emission controls. Itahashi et al. (2012) reported a trend reversal of
MODIS (Moderate Resolution Imaging Spectroradiometer) fine aerosol optical depth
(AOD) over the Sea of Japan from increasing to decreasing at ~2006 that is mo