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Abstract 

 

Improving the understanding of sources and processes driving the variation of 
atmospheric aerosols is critical for quantifying their air quality and climate implications 
and for formulating regulatory policies. This thesis presents four projects that exploit 
multiple observation data and modeling tools to quantify and interpret aerosol trends and 
sources. 

Global visibility records are filtered and processed to assess historical trends in 
atmospheric haze. Spatially coherent trends in the screened inverse visibility (1/Vis) are 
consistent with trends in collocated aerosol measurements over the US and Europe. Trend 
transitions of 1/Vis in the eastern US, Europe and eastern Asia are significantly associated 
(r ~ 0.7-0.9) with the variation of sulfur dioxide emissions, reflecting historical 
socioeconomic events and environmental regulation activities. 

The 1/Vis dataset over the eastern US reveals significant changes in the dominant 
aerosol seasonality from winter maxima to summer maxima over 1946-1975. By 
interpreting seasonal contrasts in 1/Vis trends with a historical emission inventory of 
aerosol sources, we attribute these changes to increasing sulfate and decreasing primary 
carbonaceous aerosols. Summer 1/Vis increases faster over the southeastern US than over 
the northeast during 1956-1975, suggesting concurrent increase in secondary organic 
aerosols. 

A simulation with the GEOS-Chem chemical transport model downscaled with 
satellite-derived PM2.5 identifies a significant increase (0.28 μg m-3yr-1, p < 0.05) in global 
population-weighted PM2.5 concentration over 1989-2013, driven by increasing organic 
aerosols (0.10 μg m-3yr-1), nitrate (0.05 μg m-3yr-1), sulfate (0.04 μg m-3yr-1) and ammonium 
(0.03 μg m-3yr-1). These four components predominantly drive trends in population-
weighted mean PM2.5 over populous regions of South Asia (0.94 μg m-3yr-1), East Asia 
(0.66 μg m-3yr-1), Western Europe (-0.47 μg m-3yr-1) and North America (-0.32 μg m-3yr-

1). Trends in area-weighted mean and population-weighted mean PM2.5 composition differ 
significantly. 

Two inversion methods are tested for ammonia emission estimates using the GEOS-
Chem model and its adjoint at coarse (2˚ × 2.5˚) and fine (0.25˚ × 0.3125˚) resolutions. 
Comparing to four-dimensional variational assimilation, the iterative finite difference mass 
balance approach requires fewer iterations to yield smaller errors in the top-down 
inventories at coarse resolution, while consistently shows larger errors at fine resolution.  
  



x 

List of Abbreviations and Symbols Used 
 

Symbol Unit Description 

1/Vis Mm-1 Inverse visibility 

4D-Var  Four-dimensional variational assimilation 

AERONET  Aerosol Robotic Network 

AOD  Aerosol optical depth 

APEI  Air Pollutant Emissions Inventory 

AVHRR  Advanced Very High Resolution Radiometer 

babs Mm-1 Absorption coefficients 

BC  Black carbon 

bext Mm-1 Extinction coefficients 

BRAVO  Big Bend Regional Aerosol and Visibility Observational Study 

BSOA  Secondary organic aerosols from biogenic carbon 

bsp Mm-1 Scattering coefficients 

BVOC  Biogenic volatile organic compounds 

C  Contrast of radiation intensity of the background and the object 

CAC  Criteria Air Contaminants 

CCN  Cloud condensation nuclei 

Ccrit  Critical radiation intensity contrast discernible by human eye 

CEDS  Community Emission Data System 

CI  Confidence interval 

CrIS  Cross-track Infrared Sounder 

CSN  Chemical Speciation Network 

CTM  Chemical transport model 

DOFS  Degrees of freedom for signal 

EANET  Acid Deposition Monitoring Network in East Asia 

EC  Elemental carbon 

EDGAR  Emissions Database for Global Atmospheric Research 

EMEP  European Monitoring and Evaluation Programme 

GBD  Global Burden of Disease Study 

GCHP  GEOS-Chem with the high performance option 

GCM  General circulation model 

GEIA  Global Emissions InitiAtive 

GEOS  Goddard Earth Observing System 

GFED  Global Fire Emissions Database 



xi 

GMAO  Global Modeling and Assimilation Office 

GSOD  Global summary of the day 

H2SO4  Sulfuric acid 

HEMCO  Harvard-NASA Emissions Component 

HNO3  Nitric acid 

I W m-2sr-1 Radiation intensity 

IBMB  Iterative basic mass balance method 

IFDMB  Iterative finite difference mass balance method 

IMPROVE  Interagency Monitoring of PROtected Visual Environments program 

IPCC  Intergovernmental panel on climate change 

ISD  Integrated Surface Database 

MEGAN  Model of Emissions of Gases and Aerosols from Nature 

MERRA  Modern-Era Retrospective analysis for Research and Applications 

MISR  Multi-angle Imaging SpectroRadiometer 

MK  Mann-Kendall trend detection 

MODIS  Moderate Resolution Imaging Spectroradiometer 

N2O5  Dinitrogen pentoxide 

NAPS  National Air Pollution Surveillance program 

NCEI  National Centers for Environmental Information 

NCEP  National Center for Environmental Prediction 

NEI  National Emission Inventory 

NH3  Ammonia 

NH4NO3  Ammonium nitrate 

NME  Normalized mean error 

NO2  Nitrogen dioxide 

NOAA  National Oceanic and Atmospheric Administration 

NOx  Nitrogen oxides 

OA  Organic aerosols 

OC  Organic carbon 

OM/OC  Ratio between organic aerosol and organic carbon mass 

OMI  Ozone Monitoring Instrument 

p  p-value in statistical significance tests 

PM  Atmospheric aerosols, or particulate matter 

PM2.5 μg m-3 Aerosol particles with an aerodynamic diameter below 2.5 μm 

POA  Primary organic aerosols 

PWM  population-weighted mean 

r  Pearson correlation coefficient 



xii 

RETRO  REanalysis of the TROpospheric chemical composition 

RH % relative humidity 

SeaWiFS   Sea-viewing Wide Field-of-view Sensor 

SEDAC  Socioeconomic Data and Applications Center 

SI  Supporting Information 

SIA  Secondary inorganic aerosols 

Simds  downscaled simulation 

SO2  Sulfur dioxide 

SOA  Secondary organic aerosols 

SSA  Single scattering albedo 

SSR W m-2 Surface solar radiation 

Trendsat  Satellite-based PM2.5 trends 

US  United States of America 

US EPA  United States Environmental Protection Agency 

UVAI  Ultraviolet aerosol index 

Vis km Visibility 

VOC  Volatile organic compounds 

W10 m/s 10-m horizontal wind speed 

WHO  World Health Organization 

WMO  World Meteorological Organization 

α  Ångström exponent 

β   Sensitivity of changes in concentrations to emission changes 

σabs m2 Absorption cross section 

σsp m2 Scattering cross section 

Ω molecules cm-2 Column density 

 
  



xiii 

Acknowledgements 

 

Every chapter of this thesis contains the invaluable outcome of the insightful 
brainstorming, discussion and comments from my advisor, Dr. Randall Martin. I would 
like to firstly convey my appreciation to your knowledge, encouragement and guidance on 
my research, which have significantly consolidated my ability to work independently and 
in collaborations. Thanks also to your financial support, as well as to these awarded by the 
Killam Trusts Foundation, the Atlantic Computational Excellence Network and the 
Government of Nova Scotia. 

A lot of people made my journey at Dalhousie University a memorable academic and 
life experience. Thanks to my committee members, Dr. Rachel Chang and Dr. Glen Lesins. 
The dozens of hours of discussion with you on this project is truly helpful and greatly 
appreciated. I am lucky to meet the members of the Atmospheric Composition Analysis 
Group who are excellent scientists and friends. The scientific discussion and technical help 
from Brian Boys, Matt Cooper, Betty Croft, Melanie Hammer, Colin Lee, Max Manning, 
Jun Meng, Sajeev Philip, Sacha Ruzzante, Aaron van Donkelaar, Crystal Weagle and 
Junwei Xu are fruitful and critical to this thesis. Thanks to Balagopal Pillai and Ross 
Dickson for always being responsive of technical questions, and to the Physics Office for 
their assistance on every process and paperwork of this PhD program. 

I am also privileged to have received crucial contributions and comments from many 
external collaborators. These people include the co-authors of Chapter 4: Michael Brauer, 
Monica Crippa, Eloise Marais, Adam Reff, David Ridley, Madeleine Strum and Qiang 
Zhang. I am also grateful to the contributions to Chapter 5 from Daven Henze, Jennifer 
Kaiser, Mark Shephard and Lin Zhang. Besides, this work benefits greatly from personal 
communications with Yang Feng, Jing Li, Kaicun Wang, Xiaolan Wang, Jia Xing, 
Xuesong Zhang and the GEOS-Chem support team. Also, special thanks to the ten 
anonymous reviewers for their constructive comments that greatly improved the quality of 
Chapters 2-4. Lastly, this work could not be realized without the data maintainers of 
various dataset used that are publicly available. 

I must express my sincere thanks to my family and friends. Thank you to my mother 
Yanhong Qi and my father Yunxiang Li, for your unconditional support and 
encouragement during the past years. To my kindly grandfather Shengjin Qi, I would never 
have accomplished this much without being inspired and shaped by your uprightness, 
clemency and perseverance. 

To everyone who helped or is helping me find my unique self, thank you and best 
wishes. 
 



1 

Chapter 1. Introduction 

 

1.1 Aerosols 

Atmospheric aerosols, or particulate matter (PM), are liquid or solid particles 

suspended in the Earth’s atmosphere. Aerosols consist of thousands of chemical species 

from various sources (Section 1.2), span a wide range of sizes with implications on their 

ability to affect radiation (Section 1.3), experience aging processes in the atmosphere such 

as condensation, coagulation and internal mixing (Fuzzi et al., 2015; Khalizov et al., 2009; 

Trivitayanurak et al., 2008), could be transported distantly (Prospero and Lamb, 2003; 

Ridley et al., 2012; Xu et al., 2017), and are removed from the atmosphere within ~1 week 

(Croft et al., 2014; Kristiansen et al., 2016; Ramanathan et al., 2001).  

Aerosols play a critical role in atmospheric radiation and climate change. According 

to IPCC (2013), the effective radiative forcing of aerosols (–0.9 Wm-2) indicates an overall 

cooling effect that could potentially counteract a significant portion of warming from 

greenhouse gases (2.83 Wm-2). Meanwhile the high uncertainty (i.e. 5 to 95% confidence 

interval, –1.9 to –0.1 Wm-2) of aerosol radiative forcing contributes to the greatest portion 

of uncertainties in the total anthropogenic forcing (1.1 to 3.3 Wm-2). Aerosol radiative 

forcing is exerted to the atmosphere via (directly) the aerosol-radiation interaction 

(Bellouin et al., 2005) and (indirectly) the aerosol-cloud interaction (Rosenfeld et al., 2014; 

Stevens and Feingold, 2009). Confidence in the current understanding of the latter is still 

low (IPCC, 2013), while accurate estimation of the former requires global knowledge of 

the 3-D distribution of aerosol size, shape, chemical composition and mixing state (Myhre 

et al., 2017).  

 Aerosols also have various environmental implications, such as contributing to soil 

acidification (Zhang et al., 2012a), altering vegetation growth by strengthening diffuse 

radiation (Mercado et al., 2009), degrading visibility (Wang et al., 2009), and impairing 

human health (Fuzzi et al., 2015; Wang et al., 2009). Fine aerosols, usually referred to as 

aerosol particles with an aerodynamic diameter below 2.5 μm (PM2.5), attract particular 

research interests for their ability to penetrate into human lungs and significant association 
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with respiratory and cardiovascular diseases (Dockery et al., 1993; Dominici et al., 2006; 

Lim et al., 2012). The global burden of diseases (GBD) project estimates that exposure to 

ambient and indoor PM2.5 contribute to 4.1 million and 2.6 million premature deaths in 

2016, ranking the 6th and 8th among all health risk factors, respectively (Gakidou et al., 

2017). Besides the integrated exposure-response function, these estimates of PM2.5 health 

effects are sensitive to the accuracy and resolution (Li et al., 2016c; Punger and West, 

2013) of PM2.5 concentration. 

Anthropogenic perturbation to climate change and air quality are inherently connected 

(Fiore et al., 2012). Advancing the understanding of global aerosol distribution and 

variation is fundamental for characterizing their climate and health effects, and for guiding 

mitigation strategies. The following sections review sources and processes that drive the 

variability of atmospheric aerosols (Section 1.2), aerosol optical properties that determine 

their radiative effects (Section 1.3), and existing observation data and modeling tools 

(Section 1.4). Goals and outlines of this research are provided in Section 1.5.  

 

1.2 Aerosol Chemical Composition 

Chemical composition of aerosols largely determine their size and microphysical 

properties, and are insightful to identify sources and processes (Hand et al., 2012a; Kahn 

and Gaitley, 2015; Snider et al., 2016). Aerosols are mainly composed of sea salts (mostly 

sodium chloride), secondary inorganic aerosols (including sulfuric acid, ammonium sulfate 

and ammonium nitrate), black carbon (BC), mineral species (mostly desert dust), as well 

as thousands of organic aerosol (OA) species (Fuzzi et al., 2015; Pöschl, 2005; Philip et 

al., 2014b; Snider et al., 2016; Zhang et al., 2007). These chemical components are either 

directly emitted as primary particles, or formed via secondary processes (e.g. nucleation 

and photochemistry) from gaseous precursors.  

1.2.1 Sea Salt and Dust 

Constituting the two main coarse and natural aerosol components, sea salt and mineral 

dust aerosols are both primary, and are dominant in aerosol mass over remote ocean and 

desert regions. Sea salt emissions from sea spray and dust emission from soil or crustal 
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erosion are both associated with surface wind speed (Ginoux et al., 2001; Jaeglé et al., 

2011). Sea salt emission is also sensitive to sea water temperature, salinity and composition 

(Grythe et al., 2014), and dust emission also depends on surface vegetation cover and soil 

moisture (Kim et al., 2017; Prospero and Lamb, 2003; Ridley et al., 2014). Besides natural 

dust, anthropogenic sources of dust due to land use practices (Paul et al., 2012; Webb and 

Pierre, 2016) and fugitive/industrial processes (Philip et al., 2017) also make a significant 

contribution to total dust and aerosol mass over semi-arid and urban regions. 

1.2.2 Secondary Inorganic Aerosols 

Secondary inorganic aerosols (SIA) represent most of water soluble ions in fine 

aerosols, constituting 20%-60% of total PM2.5 (Hand et al., 2012a; Zhang et al., 2007; 

Zhang et al., 2012b). The formation of SIA begins with the photochemical oxidation of 

primary gases, i.e. sulfur dioxide (SO2) and nitrogen oxides (NOx), to sulfuric acid (H2SO4) 

and nitric acid (HNO3) (Heald et al., 2012; Kim et al., 2015; Walker et al., 2012). H2SO4 

is mostly in the condensed phase in ambient conditions due to its low vapor pressure, 

meanwhile ambient HNO3 is in gas phase. Another important SIA precursor is ammonia 

(NH3). NH3 would preferentially neutralize H2SO4, then the extra NH3 could form 

ammonium nitrate (NH4NO3) with HNO3 (Holt et al., 2015; Pinder et al., 2008a). NH4NO3 

is semivolatile, thus nitrate particle yields under thermodynamic equilibrium depend on 

temperature and humidity (Heald et al., 2012; Li et al., 2018a; Wang et al., 2013). With 

excessive NH3 (high NH3 and low H2SO4) nitrate is HNO3 sensitive, otherwise nitrate 

formation is limited by NH3 (Holt et al., 2015). H2SO4 and NH3 are also critical for new 

particle formation (Kirkby et al., 2011), another pathway to form secondary aerosols. 

SO2 and NOx have both anthropogenic (e.g. fossil fuel combustion) and natural (e.g. 

volcanic eruption for SO2 and lightning for NOx) origins (Fisher et al., 2011; Murray et al., 

2012; Xing et al., 2013). Over marine regions, a significant SO2 source is conversion from 

biogenic dimethyl sulfide (Kettle et al., 1999). Coal combustion in power generation 

facilities contribute to over 50% of SO2 emissions globally and over North America, 

Europe and South Asia (Li et al., 2017b; Lu et al., 2011; Smith et al., 2011b; Vestreng et 

al., 2007; Xing et al., 2013), while over China coal use in industry is the largest emitter of 

SO2 (Li et al., 2017b; Lu et al., 2011; Ma et al., 2017). The industry sector also contributes 
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to the greatest proportion of NOx emission over China (Li et al., 2017b; Ma et al., 2017), 

while over developed regions transportation is generally the dominant source sector for 

NOx (Crippa et al., 2016; Xing et al., 2013). Apart from biomass burning and other natural 

sources, NH3 is dominantly emitted by agricultural sources (Paulot et al., 2014; Zhang et 

al., 2018b) and is hard to regulate.  

1.2.3 Primary Carbonaceous Aerosols 

Primary organic aerosols (POA) and BC are emitted directly from incomplete fossil 

fuel or biomass burning processes, and are dominant aerosol species over boreal and 

tropical biomass burning regions (Martin et al., 2010b; Tiitta et al., 2014; Warneke et al., 

2009). Global anthropogenic emissions of organic carbon (OC) and BC are dominantly 

from the use of solid fuels (i.e. coal and wood) for residential heating and cooking in 

developing countries (Bond et al., 2007; Lu et al., 2011; Wang et al., 2014b), which also 

contributes dominantly to global premature mortality due to household air pollution 

(Forouzanfar et al., 2016; Gakidou et al., 2017). Meanwhile the importance of vehicle 

emissions for OC and BC is more pronounced over developed countries, where the use of 

solid fuels has historically been substantially reduced (Bond et al., 2007; Hoesly et al., 

2018; Ridley et al., 2018; Wang et al., 2014b). 

1.2.4 Secondary Organic Aerosols 

Formation of secondary organic aerosols (SOA) originates from volatile organic 

compounds (VOC) which get oxidized and then the oxidation products could partition to 

the condensed phase (Hoyle et al., 2011). With thousands of species and their unique 

formation pathways and characteristics, SOA is poorly constrained and represent a major 

research challenge in atmospheric science (Tsigaridis et al., 2014).  

VOC has both anthropogenic and biogenic sources, the latter accounting for more than 

80% of the total emission (Guenther et al., 2012). Isoprene and monoterpenes are the 

dominant emitted species, together contributing to 80% of biogenic VOC (BVOC) 

emissions (Sindelarova et al., 2014). Although BVOC emission depends little on 

anthropogenic influence, SOA formation from BVOC may be enhanced substantially by 

anthropogenic emissions. Observed significant changes in SOA yields under more polluted 
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environment (Shilling et al., 2013; Xu et al., 2015a; Xu et al., 2016) could be attributable 

to (1) more existing POA that facilitate reversible portioning to particle phase (Carlton et 

al., 2010), (2) high SO2/sulfate that enhance reactive uptake of isoprene SOA 

(Budisulistiorini et al., 2015; Marais et al., 2016), (3) complicated role of NOx on BVOC 

oxidation (Ng et al., 2007; Zhang et al., 2018a), and (4) changes in aerosol water that could  

mediate SOA yields (Nguyen et al., 2015; Pye et al., 2017), etc. 

 

1.3 Aerosol Optical Properties 

The aerosol direct radiative forcing depends on the 3-D distribution of aerosol optical 

properties, i.e. the abilities of aerosols to scatter or absorb radiation, as well as surface 

reflectivity (Myhre et al., 2017). The core optical property is aerosol extinction (bext), i.e. 

the sum of the aerosol scattering (bsp) and absorption (babs) coefficients. Other important 

aerosol optical parameters for radiative forcing could be derived from bext, bsp and babs, e.g. 

aerosol optical depth that is the columnar integration of bext, single scattering albedo (SSA 

= bsp/bext) that represents the relative strength of scattering and absorption, phase function 

that describes the angular distribution of bsp, and Ångström exponent (α) that indicates the 

spectral dependence of bext, bsp or babs (Dubovik et al., 2002; Dubovik et al., 2006; O'Neill 

et al., 2003). bsp and babs are determined by aerosol concentration, as well as its scattering 

(σsp) and absorption (σabs) cross section (Pitchford et al., 2007). σsp and σabs are wavelength-

dependent, and vary with different chemical composition, hygroscopicity, sizes, shapes, 

and mixing state. These properties also affect aerosols’ ability to activate as cloud 

condensation nuclei (CCN) and their indirect radiative forcing. 

Aerosol chemical composition determines its hygroscopicity and complex refractive 

index, the latter indicating relative ability to scatter and absorb radiation (Dubovik et al., 

2002; Li et al., 2013). SIA and sea salt are nearly purely scattering and strongly hygroscopic, 

while BC, dust and some of OA (also called brown carbon) are major absorbing particles 

and are less hygroscopic (Hammer et al., 2016; Martin et al., 2003b). Aerosol size largely 

determines the spectral range of radiation that aerosols are sensitive to. Fine particles are 

most efficient in scattering solar radiation while coarse particles (e.g. dust) could also 

significantly alter longwave radiation (Drury et al., 2010; Ridley et al., 2016). Particle 
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shape deviating from spherical assumption would significantly modify the optical 

properties especially for coarse aerosols (Dubovik et al., 2006; Li et al., 2014a; Meng et 

al., 2010). Finally, different aerosol mixing states can further alter particle size, 

hygroscopicity and refractive index, and hence optical properties (Bond et al., 2006; 

Khalizov et al., 2009; Lack and Cappa, 2010; Lesins et al., 2002).  

 

1.4 Observation and Modeling 

With large diversity of different properties and a relatively short lifetime relying on 

meteorology (Fuzzi et al., 2015; Kristiansen et al., 2016; Pöschl, 2005), aerosols exhibit 

strong spatiotemporal variability. For example, annual mean surface concentration of total 

PM2.5 and composition vary by 2 orders of magnitude among different regions (van 

Donkelaar et al., 2016; Weagle et al., 2018). Additional observations of aerosols and their 

precursors are crucially needed to better understand aerosol sources, processes and 

properties. It is also important to represent existing knowledge of aerosols sources and 

processes in models to interpret and complement observations for evaluating their climate 

and health effects, and to infer possible changes under future scenarios. 

1.4.1 In Situ Measurements 

In situ observational aerosol data sets are essential for characterizing aerosol 

composition and properties, as well as constraining model representations. Integrated field 

experiments that track the 4-D evolution of aerosol composition and precursors are 

especially valuable for characterizing multi-scale aerosol sources and processes (e.g. Jacob 

et al., 2010; Kulmala et al., 2011; Logan et al., 2010; Martin et al., 2010a). Long-term 

routine measurements of surface aerosol mass concentration, composition and deposition 

(e.g. Dabek-Zlotorzynska et al., 2011; Hand et al., 2012a; Snider et al., 2016; Tørseth et 

al., 2012; Vet et al., 2014; Zhang et al., 2012b) provide information on spatial distribution, 

trends and seasonal variations.  

Besides direct measurements, observational information of aerosol optical properties 

is also valuable. Surface bsp and babs measurements are available for the recent two decades 

over North America and Europe (Collaud Coen et al., 2013; Hand et al., 2014a). AOD, 
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SSA and other columnar aerosol optical parameters have been continuously retrieved by 

sunphotometers of the global Aerosol Robotic Network (AERONET) (Dubovik et al., 2002; 

Li et al., 2014b), and also by other regional networks (e.g. Che et al., 2015; Mitchell et al., 

2017). The higher the aerosol concentration, the stronger the aerosol scattering that 

attenuates direct radiation and intensifies diffuse radiation, and consequently the lower the 

visibility (Li et al., 2016a). Therefore, worldwide horizontal visibility observations that 

span several decades could be used as a proxy to estimate long-term changes in aerosol 

loading (Founda et al., 2016; Husar et al., 2000; Wang et al., 2009).  

1.4.2 Satellite Remote Sensing 

Remote sensing is a widely used technique of inferring abundance of atmospheric 

composition based on their interaction with radiation as measured by optical sensing 

instruments. Satellite remote sensing is the only observational information of aerosols (e.g. 

AOD, SSA and bext profile) and important precursors (e.g. SO2, NO2, and NH3) at the global 

scale and with nearly continuous sampling (e.g. Jethva et al., 2014; Kaufman et al., 2002; 

Levelt et al., 2018; Levy et al., 2015; Van Damme et al., 2014), which complements in situ 

measurements over broad areas not covered by ground-based data. Satellite data facilitate 

global estimates of long-term surface air quality such as PM2.5 and nitrogen dioxide (NO2) 

(Geddes et al., 2016; van Donkelaar et al., 2016), and are valuable in constraining radiative 

forcing (Bellouin et al., 2005; Johannes et al., 2008; Yu et al., 2006) and emission 

inventories (Lamsal et al., 2011; McLinden et al., 2016; Xu et al., 2013; Zhu et al., 2013). 

Meanwhile satellite retrievals are expected to suffer from measurement noise, calibration 

accuracy, cloud/snow/bright scenes, vertical sensitivities, and assumptions on surface 

states, a priori profile, and optical properties, etc. (e.g. Li et al., 2009; Rodgers, 2000; 

Young et al., 2013). Therefore, extensive evaluation and error quantification are usually 

necessary before these applications (Ridley et al., 2016; Shi et al., 2011; van Donkelaar et 

al., 2016).  

1.4.3 Chemical Transport Modeling 

Improved understanding of atmospheric composition and their processes from 

observations could be generalized into updated mathematical representations in 
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atmospheric models. Model simulations could also serve to interpret ambient observations 

to infer sources or processes, and to investigate possible changes under assumed scenarios. 

With varying focus on thermodynamics, chemistry or climate, different atmospheric 

models exist from molecular level to synoptic scale (e.g. Bey et al., 2001; Fountoukis and 

Nenes, 2007; Zhang et al., 2010). Chemical transport models (CTM), such as the GEOS-

Chem model used in this thesis, simulate the spatial variation and temporal evolution of 

atmospheric chemistry based on inputs of emission and meteorology data. Comparing to 

models targeting dynamics and climate change such as general circulation models (GCM), 

CTMs are designed to focus on investigating the processes of emission, advection, 

chemistry and deposition, while generally ignoring feedbacks on meteorology. 

One specific application of CTMs is the inverse modeling for emission inventories. 

Based on observed concentrations of atmospheric composition, an inversion algorithm 

could be applied with CTM to optimize the emissions (i.e. x) that best reproduce 

observations (i.e. y), accounting for errors in both observations and the model. Such 

inversion could be done by a full calculation and optimization inversion of the sensitivities 

from emissions to observations (i.e. ����, where x and y are both vectors), such as GEOS-

Chem adjoint-based four-dimensional variational (4D-Var) assimilation (Jacob et al., 2016; 

Paulot et al., 2014; Zhu et al., 2013). Alternatively, the inversion could be simplified by 

assuming a localized and linear relationship (Lamsal et al., 2011; Martin et al., 2003a).  

1.5 Goals and Outlines of this Work 

Substantial changes in aerosols have occurred over recent decades as is evident in 

observations, as this thesis will discuss in more detail. These changes relate with changes 

in aerosol sources. This thesis compiles multiple in situ observations and satellite data and 

use a chemical transport model to better understand global and regional aerosol trends and 

sources.   

Few observations reported information about historical aerosol changes before 1990s. 

In Chapter 2, we infer trends in atmospheric haze as represented by inverse visibility (1/Vis) 

over more than 3000 ground stations worldwide. We discuss the processes and necessities 

of data quality control of this aerosol proxy, and present trends from late 1920s over the 

US, and from early 1970s over Europe and East Asia. We highlight the strong association 
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of observed 1/Vis trends with historical SO2 emissions. This work was published in Atmos. 

Chem. Phys. in 2016.  

Aerosol seasonal variation reflects the dominance of chemical composition. Based on 

the developed 1/Vis dataset in Chapter 3, we discover and report, for the first time, 

significant changes in the dominant aerosol seasonality over the eastern US, from winter 

maxima to summer maxima over 1946-1975. We attribute this historical change to 

increasing dominance of sulfate and SOA and decreasing aerosol fraction of POA and BC, 

based on seasonal contrasts in 1/Vis trends and historical anthropogenic emissions. This 

work was published in Environmental Science and Technology Letters in 2018. 

Compared to changes in total aerosol loading such as PM2.5, changes in aerosol 

chemical composition are more insightful on changes in specific sources. In Chapter 4, we 

collect time-varying emission inventories and conduct a 25-year global GEOS-Chem 

simulation. Downscaled with satellite-derived PM2.5, this simulation reports regional 

diversities in dominant aerosol species that drive trends in the health-relevant population-

weighted PM2.5 concentration, and highlights the dominant contribution of OA to the 

increase in population-weighted PM2.5 globally and over the most populous regions of 

South and East Asia. This work was published in Environmental Science and Technology 

in 2017. 

Uncertainties in “bottom-up” ammonia (NH3) emission estimates are a significant 

source of simulation errors of ammonia and aerosols in chemical transport models. 

Emerging satellite remote sensing observations of NH3 abundance are promising to infer 

“top-down” emission constraints. Various inverse modeling methods exist, while their 

applicability has not been evaluated for NH3 emissions. In Chapter 5, we use the GEOS-

Chem model and its adjoint to simulate NH3 column densities observed by satellite 

instruments with known emissions and apply two “top-down” inversion methods from 

these pseudo observations. The goals of this work were to evaluate their applicability at 

coarse and fine resolutions, contrast their difference in performances, and interpret its 

implications for realistic emission inversions. 
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Chapter 2. Evaluation and Application of Multi-decadal 
Visibility Data for Trend Analysis of Atmospheric Haze 

 

Reproduced with permission from “Evaluation and application of multi-decadal visibility 

data for trend analysis of atmospheric haze” by Li, C., Martin, R. V., Boys, B. L., van 

Donkelaar, A., and Ruzzante, S., Atmos. Chem. Phys., 16, 2435-2457, doi:10.5194/acp-16-

2435-2016, 2016. Copyright 2016 by the Authors. CC Attribution 3.0 License. All text, 

figures and results were contributed by the first author. 

 

2.1 Abstract 

There are few multi-decadal observations of atmospheric aerosols worldwide. This 

study applies global hourly visibility (Vis) observations at more than 3000 stations to 

investigate historical trends in atmospheric haze over 1945-1996 for the US, and over 

1973-2013 for Europe and eastern Asia. A comprehensive data screening and processing 

framework is developed and applied to minimize uncertainties and construct monthly 

statistics of inverse visibility (1/Vis). This data processing includes removal of relatively 

clean cases with high uncertainty, and change point detection to identify and separate 

methodological discontinuities such as the introduction of instrumentation. Although the 

relation between 1/Vis and atmospheric extinction coefficient (bext) varies across different 

stations, spatially coherent trends of the screened 1/Vis data exhibit consistency with the 

temporal evolution of collocated aerosol measurements, including the bext trend of -2.4% 

yr-1 (95% CI: -3.7, -1.1% yr-1) vs. 1/Vis trend of -1.6% yr-1 (95% CI: -2.4, -0.8% yr-1) over 

the US for 1989-1996, and the fine aerosol mass  (PM2.5) trend of -5.8% yr-1 (95% CI: -7.8, 

-4.2% yr-1) vs. 1/Vis trend of -3.4% yr-1 (95% CI: -4.4, -2.4% yr-1) over Europe for 2006-

2013. Regional 1/Vis and Emissions Database for Global Atmospheric Research (EDGAR) 

sulfur dioxide (SO2) emissions are significantly correlated over the eastern US for 1970-

1995 (r = 0.73), over Europe for 1973-2008 (r ~ 0.9) and over China for 1973-2008 (r ~ 

0.9). Consistent “reversal points” from increasing to decreasing in SO2 emission data are 

also captured by the regional 1/Vis time series (e.g. late 70s for the eastern US, early 1980s 
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for western Europe, late 1980s for eastern Europe, and mid 2000s for China). The 

consistency of 1/Vis trends with other in situ measurements and emission data 

demonstrates promise in applying these quality assured 1/Vis data for historical air quality 

studies. 

 

2.2 Introduction 

Atmospheric aerosols have broad implications for air quality and climate change. The 

Global Burden of Disease (GBD) assessment attributed ambient exposure to aerosol 

particles with an aerodynamic diameter below 2.5 μm (PM2.5) as the sixth largest overall 

risk factor for premature mortality with 3.2 million premature deaths per year (Lim et al., 

2012). Aerosols are also considered to be the most uncertain component for global radiative 

forcing (IPCC, 2013). Aerosols are formed from a variety of emission sources and chemical 

processes with a short tropospheric lifetime against different removal mechanisms, 

yielding a highly variable spatiotemporal distribution that is not well understood (Fuzzi et 

al., 2015). Information on long-term aerosol temporal evolution is crucially needed across 

a range of disciplines. Historical PM2.5 exposure and its trends are needed to understand 

changes in Global Burden of Disease (Brauer et al., 2012), and to guide mitigation actions 

(Apte et al., 2015; Wong et al., 2004). Observations are needed to evaluate historical 

emission inventories that are crucial to accurately represent the changes in aerosol sources 

and its consequent feedbacks on climate (Lu et al., 2011; Smith et al., 2011b; Xu et al., 

2013). Aerosol trend analysis is also fundamental to assessing radiative forcing, evaluating 

model processes, and projecting future changes (Chin et al., 2014; Leibensperger et al., 

2012; Li et al., 2014b). Various studies have been carried out to investigate aerosol trends 

using in situ measurements (Collaud Coen et al., 2013; Hand et al., 2012b; Murphy et al., 

2011), satellite/ground remote sensing (Hsu et al., 2012; Li et al., 2014b; Zhang and Reid, 

2010), and analysis of measurements with models (Boys et al., 2014; Chin et al., 2014; 

Pozzer et al., 2015; Turnock et al., 2015). However, these studies are mostly limited to the 

recent 2 decades, since few satellite or in situ aerosol observations exist over land prior to 

the 1990s. Long-term observations of aerosols at the global scale are needed to place 
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current knowledge of their spatial distribution and temporal evolution in a historical 

context for all these applications. 

Visibility observations offer an alternative information source for the investigation of 

historical aerosol trends. Horizontal visibility (Vis) from worldwide meteorological 

stations and airports is mainly determined by the optical extinction (bext) of the atmospheric 

boundary layer, and has been recognized as a proxy of the atmospheric aerosol 

burden/loading (Husar et al., 2000). Historical Vis data from more than 3000 stations have 

been applied to characterize decadal trends in global aerosol optical depth (AOD) from 

1973 to 2007 (Wang et al., 2009). Regional trend studies of Vis were also conducted for 

populated areas e.g. the US (Husar et al., 1981; Schichtel et al., 2001), Europe (Vautard et 

al., 2009) and China (Che et al., 2007; Chen and Wang, 2015; Lin et al., 2014; Wu et al., 

2012; Wu et al., 2014), and the inferred trends were usually attributed to changes in 

anthropogenic emission. Another study employing Vis over desert regions (Mahowald et 

al., 2007) found an association of Vis with meteorology factors such as drought index 

(based on precipitation and temperature) and surface wind speeds. Trends in Vis data 

interpreted with other data sets also supported studies of several aerosol related climate 

trends such as the western Pacific subtropical high (Qu et al., 2013) and precipitation 

(Rosenfeld et al., 2007; Stjern et al., 2011).  

Despite the abundance of the above-mentioned studies, the interpretation of Vis data 

and their trends might be limited by insufficient data processing or poor data quality. Multi-

decadal Vis data might contain possible variation or even reversal in haze trends as 

expected from historical emission and surface solar radiation (SSR) data (Lu et al., 2010) 

(Stern, 2006; Streets et al., 2006; Wild et al., 2005). It is of particular interest how these 

changes would associate with the trends of air quality, and would be captured by the Vis 

data. Detailed variation in global Vis trends are rarely reported in these previous studies. 

On the other hand, Vis data are inherently uncertain because most Vis are recorded through 

human observations with variable protocols. For example, an increase in inverse visibility 

(1/Vis) has been reported over the US during 1993-2010 (Wang et al., 2012) that is opposite 

in sign with the significant decline (>10% decade-1) of observed PM2.5, sulfate and bext (US 

EPA, 2012; Attwood et al., 2014; Hand et al., 2012b; Hand et al., 2014a), and raises 

questions about the quality of Vis observations. 
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This study revisits the Vis observations to characterize historical trends of 

atmospheric haze by asserting two major efforts: a more comprehensive data quality 

assurance processing and a more detailed trend analysis for separate periods. This analysis 

provides multi-decadal information about air quality evolution and its connections to 

emission trends over major industrialized regions. To facilitate interpretation, the 

theoretical relationship between Vis and atmospheric extinction is reviewed in the 

following section. Section 2.4 describes the data and processing methods, followed by an 

evaluation of the screened monthly 1/Vis and its trends using in situ measurements in 

Section 2.5. Section 2.6 provides an extensive discussion of the resultant spatial 

distribution and temporal variation of the derived 1/Vis trends for three highly populated 

regions (i.e. the US, Europe and eastern Asia), and comparative analysis of these trends 

with sulfur dioxide (SO2) emission data. Section 2.7 summarizes this work and its 

implications. 

 

2.3 Relationship between Vis and bext 

Visibility is a measure of the transparency of the atmosphere, and is defined as the 

greatest distance at which a black object can be recognized against the horizon sky (WMO, 

2008). The visibility of a particular object (i.e. visibility marker) is determined by the 

contrast C between the radiation intensity I of the background b and of the object o reaching 

an observer at distance x from the object: 

                                                    �(�) = 	
(�)�	
(�)	
(�)                                                        (2-1) 

Under assumptions of a plane-parallel atmosphere and homogeneous background 

intensity (i.e. constant sky brightness), C exhibits an exponential decay based on Beer’s 

law, 

                                                        �(�) = ��exp (−�����)                                         (2-2) 

where bext is the extinction of the atmosphere (including extinction of aerosols and 

molecules). Since Vis represents the furthest distance corresponding to a minimum critical 

contrast Ccrit below which the observer cannot discern the object, we have 
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                                                        ����� = ��exp (−�������)                             (2-3) 

Rearranging to solve for bext yields 

                                                              ���� = ����                                         (2-4) 

where  = −!" #$%&'#
 . This is the Koschmieder equation (Griffing, 1980), representing 

a linear relationship between 1/Vis and bext. The slope K of this relationship is mainly 

determined by two factors: the inherent contrast at the object’s position C0 and the critical 

contrast of the observer’s eye Ccrit. This equation is only valid for a plane-parallel and 

homogeneous atmosphere. For situations with high gradients of bext (e.g. smoke plumes), 

this could readily break down. Even for ideal conditions, this relationship could vary due 

to the variation of C0 (change of markers or observing conditions) and/or Ccrit (change of 

observer or protocol). It is sometimes assumed that the object is perfectly black (C0 = 1) so 

that K is only determined by Ccrit. Nevertheless, K still varies from 1.5 to 3.9 (e.g. Husar 

and Wilson, 1993; Schichtel et al., 2001; Wang et al., 2009) because of different Ccrit values 

or different observing conditions. Below we similarly find that even where 1/Vis is highly 

correlated with bext data, K still varies significantly for different stations. 

 

2.4 Data and Processing 

2.4.1 Visibility Data 

We begin with raw Vis data from synoptic observations over 1929-2013 in the 

Integrated Surface Database (ISD, https://catalog.data.gov/dataset/integrated-surface-

global-hourly-data) archived at the NOAA's National Centers for Environmental 

Information (NCEI). ISD data are generated through merging hundreds of data sources 

(Smith et al., 2011a). The data from different networks have different report frequencies 

(e.g. hourly, 3-hourly, 6-hourly, etc.). We reject the daily averaged data called “global 

summary of the day” (GSOD) since an arithmetic mean could bias the daily and monthly 

statistics because of threshold and discreteness issues, as discussed in Section 2.4.1.2. Each 

processing step is described below.  
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2.4.1.1 Conventional screening 

We begin with “conventional screening” using algorithms adapted from prior studies. 

We eliminate effects on Vis of weather conditions such as fog, precipitation, low cloud and 

high relative humidity (RH > 90%, estimated from temperature and dew point) following 

the description in Husar et al. (2000). A sensitivity test that limited conditions to RH < 80% 

reduced data density but yielded similar trend results without changing the main findings 

in this study. Potential human errors are reduced by statistical checks of daily spikes and 

non-repeating values following Lin et al. (2014). Duplicate stations with different names 

are combined, and stations lacking geolocation information are removed following Willett 

et al. (2013). After this screening step, 21,703 stations remain from the 30,895 original ISD 

sites. 

2.4.1.2 Threshold filtering 

We develop a filter to address spatial and temporal variation in the threshold of 

reported Vis. The “threshold” is the maximum reported Vis at a station that often depends 

on the furthest employed Vis marker. Vis above this threshold is not resolved. Thus the 

threshold acts as an artificial detection limit. The ability of Vis data to capture the variation 

of bext is weak when the air is clean and/or the adopted threshold Vis at the station is low. 

We identify the 99th percentile of reported Vis in each year as the threshold for each station, 

and reject months with ≤ 50% of the data below the threshold. This approach differs from 

eliminating stations with low thresholds (e.g. Husar et al., 2000). Observations could still 

be meaningful at heavily polluted stations even if the threshold is low, while for clean 

stations with high thresholds most of the reported Vis could remain unresolved. To further 

ensure data representativeness and variability, data are removed for any month with less 

than 4 different days of data or with nearly identical percentile values (i.e. the ratio of 50th 

and 25th percentile Vis is less than 1.07 or the ratio of the 25th to 10th percentile Vis is 

less than 1.1) following Husar et al. (2000). This data screening step further reduces the 

number of qualified station to 10,446. 

We describe the monthly Vis level with nonparametric statistics rather than arithmetic 

mean for a few reasons. First, an arithmetic mean would have biased monthly statistics due 

to the variable fraction (50-100% after the threshold filtering) of Vis reported under the 
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threshold in 1 month. Second, Vis is recorded as discrete values with coarse and uneven 

increments, and is not normally distributed (Schichtel et al., 2001). The protocol of 

reporting Vis varies across stations, depending on local regulations and available Vis 

markers. Both issues would affect the GSOD data or the monthly mean 1/Vis so we work 

with the raw data. We follow the convention to adopt the 75th percentile 1/Vis as the 

monthly representation of haziness (Husar et al., 2000; Qu et al., 2013). Other statistics, 

such as 50th and 90th percentile 1/Vis lead to similar trends and do not alter the conclusion 

of this study. However, the 50th percentile is closer to and more vulnerable to the detection 

limit, while the 90th percentile tends to be more susceptible to extreme events. Husar et al. 

(1987) assessed the effects of different choices of statistics. Below we commonly refer to 

the 75th percentile as “monthly 1/Vis” unless stated otherwise.  

2.4.1.3 Completeness check 

Completeness criteria are applied for further screening. A year of data is removed if 

less than 6 months in this year is available to guarantee annual representativeness. Short-

term time series covering less than 7 years are also removed since they offer little 

information on trends. A total of 6,466 stations comply with these standards and remain in 

the data archive. 

2.4.1.4 Change point detection 

Sudden discontinuities in characteristics of the derived monthly time series of 1/Vis 

are frequently found even after the comprehensive filtering. Any change of the Vis marker 

(i.e. change of C0) or observing standard (i.e. change of Ccrit) could alter the relationship 

(K) between bext and 1/Vis, introducing inconsistency in the time series unrelated to actual 

bext change. For example, instrumentation (e.g. telephotometers, transmissometers and 

scatterometers) has replaced human observers at many sites in the US (Kessner et al., 2013) 

and to a lesser extent in Europe (Vautard et al., 2009), but there is a lack of documentation 

recording when and at which stations this switch occurred. Such artificial changes could 

seriously bias the inferred trends if not addressed. Various methods have been proposed to 

detect abrupt “change points” (Costa and Soares, 2009; Reeves et al., 2007). For example, 

the RHtest software package developed for multiple change point detection is based on 
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penalized maximal t and F test (Wang et al., 2007; Wang, 2008b) embedded in a recursive 

testing algorithm (Wang, 2008a). We adopt the FindU function in the RHtest (version 4, 

available at http://etccdi.pacificclimate.org/) software to detect “type-1” change points 

(without reference time series). We manually examine all reported change points for 

possible false detections. By visually inspecting each remaining station from Section 

2.4.1.3, we retain only obvious structural discontinuities in the time series of 50th or 75th 

monthly percentiles from the candidate change points provided by the RHtest results. 

 
Figure 2-1. An example of change point detection and determination based on the time 
series of 50th (red) and 75th (black) percentiles of monthly 1/Vis. Automatically detected 
change points are represented by vertical lines. Text in the inset lists the dates of 
automatically detected points. In this example, five significant change points are identified, 
in which February 1988 is determined as the separation point for further analysis, while 
other reported breaks are considered to be false detections. 

Figure 2-1 shows an example of change point detection based on the time series of 

50th and 75th percentiles of monthly 1/Vis at one ISD station. The change points are 

reported in three different types (95% confidence): significant change, possibly significant 

(undetermined) change and insignificant change. In this example, although four significant 

changes for the 50th percentiles 1/Vis and two significant change points for the 75th 

percentiles 1/Vis are reported, only one candidate (February, 1988) indicated by both time 

series is considered to be an obvious discontinuity and chosen as the actual change point.  

The candidate change points provided by RHtest allow greater efficiency than pure 

manual detection, which is prohibitive for thousands of stations. Any gap of more than 4 

years in a time series is also considered to be a change point. Such a large gap could obscure 

protocol changes and introduce uncertainties in the derived trends without separation. We 

analyze separately the 1/Vis time series before and after the determined change points. 

Finally, we eliminate any year of data with annual 1/Vis (average of monthly 1/Vis) less 

than 40 Mm-1 to address the poor data variation and representativeness of clean 

environments, as will be discussed in Section 2.5.1. 
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We acknowledge that, although guided by RHtest results and a synthetic analysis 

based on the time series of 50th and 75th percentiles, this is still a subjective method. A 

small fraction of determined change points could be extreme events, while a few 

undetected change points missed by this subjective judgement might remain in the analysis. 

Several time series with irregular temporal variation are also removed during the visual 

examination. In summary, only 1/Vis time series considered to be consistent and 

continuous are analyzed here.  

A total of 3,930 stations (5,320 time series) remain after this processing step, in which 

856 sites (22%) are diagnosed as containing change points and thus separated. This small 

fraction of structural discontinuities generally has minor impacts on the large-scale trend 

features and regional trends in Section 2.6 according to our sensitivity test using data 

without separation. But the separated data reduce spatial incoherency in the derived trend 

maps, and are more reliable for studies over small areas or independent stations, as shown 

in Figure 2-1. 

The threshold filtering (Section 2.4.1.2) and change point detection (Section 2.4.1.4) 

are designed to ensure basic representativeness and continuity of the derived monthly 1/Vis 

time series, and are the main differences of this processing from prior investigations.  

2.4.1.5 Distribution of stations 

Figure 2-2 (top) shows the ISD stations and the number of years with available data 

for 1929-2013 before and after data processing. Most of the remaining stations are located 

in the US (753), Europe (1625) and eastern Asia (791). More than 6000 removed stations 

have less than 7 years of data as indicated in the left panel. Many other removed stations 

have small population density or harsh observing environment (e.g. islands and polar 

regions), which might correspond to poor observing conditions or maintenance.  
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Figure 2-2. Distribution of Integrated Surface Database (ISD) stations before (left) and 
after (right) data screening. Colors indicate the number of years with available visibility 
data for (upper) 1929-2013 and (lower) 1995-2013. 

Figure 2-2 (bottom) shows that most US stations are screened after the mid 1990s. 

This is because more than 90% of the ISD stations gradually switched to employ a low Vis 

threshold of 10 miles (~16 km) after the mid 1990s (Figure 2-S1), probably due to the 

introduction of unified instrumentation (Kessner et al., 2013). A maximum Vis of 16 km 

may be sufficient for airport navigation and weather reports, but this threshold Vis under 

clear sky conditions represents a moderate pollution level, and clean cases are not resolved. 

Thus most of the US stations with such low thresholds are rejected during the threshold 

screening. In contrast, screened stations remain densely distributed with long-term data 

over Europe and eastern Asia after the mid 1990s because the adopted thresholds are 

generally higher and more consistent (Figure 2-S1). 

2.4.2 Complementary In Situ Data 

We adopt complementary data to evaluate and interpret the constructed monthly 1/Vis 

time series and trends. The measured and calculated aerosol optical data from the 

Interagency Monitoring of PROtected Visual Environments (IMPROVE) program 

(http://vista.cira.colostate.edu/improve/Data/data.htm) are employed to evaluate the 
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screened 1/Vis data and its trends after 1988. IMPROVE applies empirical mass extinction 

and RH growth factors to measured mass of aerosol components to calculate and report 

ambient bext in a 3-4 day frequency (Pitchford et al., 2007), and for several stations 

concurrent measurements of aerosol scattering coefficient (bsp) are also made at hourly 

frequency using nephelometers. We generate monthly mean total bext (including aerosol 

extinction and site-specific Rayleigh scattering) and bsp from data with RH < 90% and 

status flags as “V0” (valid). Any month with less than 4 available days for averaging is 

abandoned. Pitchford et al. (2007) demonstrated that the estimated bext is consistent with 

measured bsp. We also find high correlation (r = 0.90, N = 3439) between monthly bext and 

bsp across IMPROVE stations (Figure 2-S2).  

The measurement of bext or bsp is sparse outside the US. Therefore we obtain long-

term measurements of fine particulate matter mass (PM2.5) from the European Monitoring 

and Evaluation Programme (EMEP, http://ebas.nilu.no) for comparison over Europe 

(Tørseth et al., 2012). Forty-five stations of data collected by filter-based ambient samplers 

are used. Similarly, these daily PM2.5 data are averaged monthly provided at least four valid 

measurements are available. 

2.4.3 SO2 Emission Data 

We apply bottom-up total anthropogenic SO2 emission inventories to interpret 

historical 1/Vis trends. This approach exploits the close relation of sulfate aerosol 

concentration with SO2 emission due to the short time scale of SO2 oxidation (Chin et al., 

1996; Chin et al., 2014; Daum et al., 1984; Hand et al., 2012b), the major PM2.5 

contribution from sulfate aerosols over land for most populated areas (Chin et al., 2014), 

and the dominance of sulfate for light extinction due to its hygroscopicity (Hand et al., 

2014a). We employ three different SO2 emission data sets, including country-level data for 

1850-2005 (Smith et al., 2011b; Smith et al., 2011c), gridded data from EDGAR 

(Emissions Database for Global Atmospheric Research) version 4.2 (Olivier et al., 1994) 

at 0.1 degree resolution for 1970-2008 (http://edgar.jrc.ec.europa.eu/), and data from Lu et 

al. (2011) at 0.5 degree resolution for 1996-2010 over China. The data from Smith et al. 

(2011b) are referred to as “Smith emissions” below. The data from Lu et al. (2011) are 

referred to as “Lu emissions”. 
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2.4.4 Trend Analysis 

In this study, we separately calculate trends for several periods of 8-10 years to allow 

possible trend reversal, and to include stations with short-term data. The choice of study 

periods is mainly based on the historical SO2 emission data. Figure 2-S3 shows the Smith 

emission data for several representative countries. SO2 emission trends in the US changed 

direction at ~1944, ~1954, and again at ~1973. Also, for most eastern European countries, 

there is a sharp reduction of SO2 emission starting from ~1989 after the breakdown of the 

communist system, while the 1997 Asian financial crisis affected the SO2 emission trend 

in Korea. It is of particular interest to examine how Vis is affected by these emission 

changes. Data for most ISD stations outside the US start from the year 1973, and 

representative coverage of Vis stations over the US starts from the year 1945, although the 

earliest records after screening start from 1929. Based on these transition points of SO2 

trends and Vis data availability, eight periods (1945-1953, 1954-1963,1964-1972, 1973-

1980, 1981-1988, 1989-1996, 1997-2005, 2006-2013) are chosen to be analyzed in detail 

over the US, while the latter five periods are studied for Europe and eastern Asia. We also 

briefly examine two short periods before 1945 (1929-1934 and 1935-1944) over the US 

where stations are less spatially representative (not included in regional quantitative 

analysis) but still show prominent trend information in 1/Vis.  

We assess the linear trend and its significance (p value, two-tail test) in the 

deseasonalized monthly anomalies using Sen’s slope (Sen, 1968) and the Mann-Kendall 

(MK) test (Kendall, 1975; Mann, 1945). All monthly data are deseasonalized by removing 

multi-year monthly means of each period before trend estimation. Pre-whitening is 

introduced to reduce the effect of lag-1 autocorrelation (Yue et al., 2002), and 95% 

confidence interval (CI) of the slope is calculated (Li et al., 2014b). This nonparametric 

trend estimation method is insensitive to missing values and outliers in the time series, and 

does not require a normal distribution, thus it has been widely adopted to study aerosol 

trends in previous studies (Collaud Coen et al., 2013; Papadimas et al., 2008). Least square 

trends (Weatherhead et al., 1998) are also calculated, and are found to be consistent with 

the MK-Sen trends. For all the 8027 calculated slopes in 1/Vis, 88% are unanimously 

diagnosed as significant (90% confidence, p < 0.1) or insignificant by both methods. For 

the significant trends 76% of their differences are within 20%. Relative trends are 
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calculated by normalizing the absolute MK-Sen slopes to the multi-year mean of monthly 

1/Vis in the corresponding period to facilitate the comparison and interpretation with other 

in situ data. 

Short-term trends of 8-10 years are expected to be less statistically robust and more 

sensitive to extremes. For each period, a time series is required to contain at least half of 

the total months and two-thirds of the total years (e.g. at least 60 monthly data in at least 7 

years for a 10 year period) for the calculated trend to be representative. This step only 

reduces the number of stations at which trends are reported, but does not further screen the 

data.  

The meaning and observing methods of daytime and nighttime data differ. According 

to WMO (2008), Vis at night, as determined using illuminated objects, also depends on the 

light source intensity, the adaptation of the observer’s eyes to darkness and the observer’s 

illuminance threshold. We compare the relative trends calculated using daytime and 

nighttime data to the combined trends adopted in this paper, over all remaining sites and 

the eight periods. The 5183 daytime trends have a correlation of 0.85 with the combined 

trends, in which 84% of the differences between significant trends (p < 0.1) are within 50%. 

For the comparison between 4109 nighttime and combined trends, the correlation is 0.80 

and 78% of the differences between significant trends are within 50%. Therefore, after 

representing the data as a monthly resolution and normalizing the changes in 1/Vis to 

relative trends, the daytime and nighttime data show generally consistent trends in haze 

level compared to the combined data, and do not meaningfully alter our results and 

conclusions. 

We calculate composite trends based on monthly 1/Vis averaged from an ensemble of 

stations (e.g. for the time series of collocated stations in Section 2.5 or defined regions in 

Section 2.6). To ensure temporal representativeness, a station is considered in the average 

only if two-thirds of the total months of data are available for the study period. Qualified 

stations are gridded to 1 degree resolution before averaging to avoid biased averaging 

towards more densely distributed areas. To ensure spatial representativeness, only monthly 

data derived from at least 75% of the total grids (i.e. number of unique grids covered by all 

the monthly data) for each study period are used in the composite trend estimation. This 
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strategy reduces sampling difference within each period; however the composite 1/Vis for 

different periods might be averaged from a different distribution of stations. We expect the 

uncertainty from spatially variant K and data quality to be random, and to be reduced by 

spatial averaging and by normalizing the slopes into relative trends. Over these regions, we 

also calculate several time series and trends for longer merged periods with consistent 

station coverage and similar trends, to assess the consistency of the short-term trends. 

 

2.5 Evaluation against In Situ Data 

2.5.1 Comparison with IMPROVE bext and EMEP PM2.5 

We compare the monthly IMPROVE bext data with the quality controlled monthly 

1/Vis from Section 2.4.1. Collocations are considered between IMPROVE and ISD time 

series over 1988-2013 within the distance of less than 1 degree and altitude difference of 

less than 500 m. One IMPROVE station could pair with more than one ISD station and 

vice versa. A total of 59 collocations (each with at least 20 paired monthly values) are made. 

We expect a maximum correlation of 0.9 given the relation between measured bsp and 

calculated bext (Figure 2-S2). Similarly, we create collocations between ISD 1/Vis and 

EMEP PM2.5 on a monthly basis, and expect a weaker correlation due to variation of aerosol 

water and mass extinction efficiency. 
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Figure 2-3. Spatial distribution of (top left) average of the collocated bext of IMPROVE 
stations, (top right) Pearson correlation coefficients between collocated pairs of monthly 
ISD 1/Vis and IMPROVE bext, (bottom left) slope of monthly bext against monthly 1/Vis 
after linear fitting through the origin point using the reduced major-axis linear regression 
(Ayers, 2001) and (bottom right) Pearson correlation coefficients between collocated pairs 
of monthly ISD 1/Vis and EMEP PM2.5. 

Figure 2-3 shows the comparison results between collocated 1/Vis and bext over the 

US. This evaluation highlights the following major findings. 

1) The mean bext level of collocated IMPROVE stations after 1990 is below 50 Mm-1 

for the western US, and below 120 Mm-1 for the eastern US (top left). As discussed in 

Section 2.4.1, the low threshold Vis of ~16 km (equivalent to bext ~100 – 240 Mm-1 

depending on K) recently adopted by most US stations fails to resolve actual bext variation 

under this relatively clean environment. Thus many stations are rejected by the threshold 

filtering.  

2) As shown in the top right panel, correlation coefficients of monthly values vary 

from ~0 to 0.85. About half of the collocations (29 out of 59) have r < 0.5, while 10 

collocated ISD stations have r > 0.7. The overall moderate correlation is not unexpected, 

as is similarly found in previous studies (Mahowald et al., 2007; Wang et al., 2012). 

Correlations are expected to differ from station to station, due to the inherent difference in 
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observing conditions, protocols, and residual uncertainties. This preliminary evaluation 

suggests that Vis data at individual stations can be unreliable, and in the following 

discussion we focus on interpreting regionally coherent observations. 

3) Correlations generally exceed 0.5 in the eastern US, where the mean bext is higher 

due to higher aerosol concentration (Hand et al., 2012a; van Donkelaar et al., 2015) and to 

a larger fraction of hygroscopic sulfate aerosols (Hand et al., 2012a). The correlation 

increases significantly with the mean bext, indicating the tendency for better 1/Vis 

representativeness in more polluted regions. As previously discussed, at lower bext more 

reported Vis are close to the threshold Vis, thus the true 1/Vis tends to be less well resolved. 

Also, because the Vis data are reported in discrete values, clean stations with a narrow 

dynamic range of bext have few reportable Vis to capture the continuous bext variation. 

Moreover, the increment of adjacent reportable Vis is relatively coarse in cleaner 

conditions (WMO, 2008), and atmospheric homogeneity might break down for longer 

distances. All these factors weaken the ability of Vis to capture bext variation in clean 

environments. Wang et al. (2012) found low correlation of 1/Vis with PM10 over the US 

and Canada, and similarly attributed this to low aerosol concentrations and higher Vis 

uncertainty over North America. Thus we apply the 40 Mm-1 threshold of annual 1/Vis to 

further filter the data as introduced in Section 2.4.1.4. Without this screening, seven of 

eight stations with mean 1/Vis < 40 Mm-1 were found to exhibit low correlations (r < 0.25) 

with collocated bext. Different thresholds from 10 to 70 Mm-1 were tested, and thresholds 

above 40 Mm-1 ceased to improve the consistency with the few sites reporting bext.  

4) The slope of fitted linear relationship (bottom left) between 1/Vis and bext varies 

from ~0.8 to ~2 even over the eastern US where correlations are higher. This supports the 

expectation that this slope (K) would differ spatially with observing conditions (Griffing, 

1980; Husar et al., 2000; Schichtel et al., 2001), as discussed in Section 2.3. Thus in the 

later analysis we focus on the relative trend of 1/Vis which is independent of K.  

Figure 2-3 (bottom right) also shows the correlation between monthly 1/Vis and PM2.5 

over Europe. Although the relation of 1/Vis with PM2.5 is expected to be more uncertain 

than with bext, we find more stations with high correlation (r > 0.5) over Europe (93 out of 

129, 72%) than over the US (51%). Wang et al. (2012) similarly found higher correlation 
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of 1/Vis with PM10 over Europe and China than over the US and Canada. The higher 

thresholds and higher concentration of fine aerosol over Europe (van Donkelaar et al., 2015) 

allow 1/Vis to better resolve PM2.5 variation there. These findings suggest more reliability 

of Vis observations at areas with both higher aerosol loading and sufficiently high 

thresholds to resolve bext variation, e.g. the three populated regions investigated in this 

study. 

2.5.2 Trend Evaluation 

Figure 2-4 shows the spatial distribution of relative trends in 1/Vis, in IMPROVE 

estimated bext and in measured bsp over the US for 1989-2013. Overall, the trend maps of 

1/Vis, bext and bsp show a dominant trend of decreasing haziness over the continental US 

after 1988, which reflects reduction of aerosol sources (Hand et al., 2014a; Leibensperger 

et al., 2012). The overall decrease across the US is consistent with recent trend studies 

employing IMPROVE bext (Hand et al., 2014a) and bsp (Collaud Coen et al., 2013) data, 

and is determined by the reduction of both aerosol mass and hygroscopicity (Attwood et 

al., 2014). For the last two periods (1997-2013), the number of available ISD stations for 

trend analysis is dramatically reduced by their detection limit and improved air quality. 

Although the remaining sparse ISD stations still show overall consistency in trends with 

nearby bext and bsp, they cannot provide spatially coherent and aggregated trend information. 

We thus suggest that the ISD Vis data over the US are not appropriate for studying haze 

trends after the mid 1990s, and limit our analysis to data before 1996 for this region. Over 

1989-1996, the 1/Vis trends still reproduce the bext trends, with decreasing tendencies in 

the eastern and western US. For this period, 15 ISD stations and 9 IMPROVE stations with 

significant trends are collocated and labeled. Thus the apparent discrepancy in sign of 

trends in 1/Vis (Wang et al., 2012) with trends in other aerosol measurements (US EPA, 

2012; Attwood et al., 2014; Hand et al., 2012b; Hand et al., 2014a) is resolved by more 

comprehensive data processing and screening. 
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Figure 2-4. Spatial distribution of relative trends in 1/Vis (top row), IMPROVE bext (middle 
row), and IMPROVE bsp (bottom row) over the US for 1989-2013. Larger colored points 
with black outline indicate trends with at least 95% significance, smaller colored points 
with black outline represent trends with 90%-95% significance, and colored points without 
outline indicate insignificant trends. Stations with cross and circle symbols are collocated 
between the ISD and IMPROVE networks over 1989-1996 for composite time series 
analysis in Figure 2-6. 

Figure 2-5 shows the spatial distribution of relative trends in 1/Vis and PM2.5 over 

Europe for 2006-2013. There is a tendency of greater reductions in 1/Vis over western 

Europe than over eastern Europe as examined further in Section 2.6.2. The dominant 

decreasing trends of PM2.5 are adequately captured by the 1/Vis trends, especially at the 19 

ISD and 10 EMEP collocated sites with significant trends, as discussed further below. 

Figure 2-6 (top) shows the composite time series of the collocated 1/Vis and bext 

stations over the US for 1989-1996. The seasonal variation of the averaged bext is well 

reproduced by that of collocated 1/Vis, with a correlation of 0.77 between these two time 

series. Both composite 1/Vis and bext show a peak in summer months, due mostly to 

increased aerosol concentration in warm months because of increased photochemical 

activity and biogenic emission (Chen et al., 2012; Hand et al., 2012a). The trend of 
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collocated 1/Vis (-1.6% yr-1; 95% CI: -2.4, -0.8% yr-1) is within the confidence intervals of 

the decrease of bext (-2.4% yr-1; 95% CI: -3.7, -1.1% yr-1). The slight underestimation may 

reflect the weak sensitivity of discrete 1/Vis data to the continuous decrease of bext in clean 

environments due to the threshold and discreteness issues.   

 
Figure 2-5. Spatial distribution of relative trends in 1/Vis and PM2.5 over Europe for 2006-
2013. Larger colored points with black outline indicate trends with at least 95% 
significance, smaller colored points with black outline represent trends with 90%-95% 
significance, and colored points without outline indicate insignificant trends.Stations with 
cross and circle symbols are collocated between the ISD and EMEP networks for 
composite time series analysis in Figure 2-6. 

Figure 2-6 (bottom) shows composite time series of PM2.5 and 1/Vis of these 

collocated 1/Vis and PM2.5 stations over Europe for 2006-2013. High correlation (0.80) 

between these two time series indicates consistent seasonal variation. The winter maximum 

in the composite 1/Vis over Europe well represents the PM2.5 seasonality at most collocated 

EMEP sites, which could be attributable to near surface inversion and low surface winds 

(Yttri et al., 2006), to greater nitrate aerosol formation (Aas et al., 2012; Yttri et al., 2006), 

and to higher carbonaceous aerosol emission from residential wood combustion (Denier 

van der Gon et al., 2015). The CI of the 1/Vis trend (-3.4% yr-1, 95% CI: -4.4, -2.4% yr-1) 

overlaps with that of the PM2.5 trend (-5.8% yr-1, 95% CI: -7.8, -4.2% yr-1), but 

underestimates the relative decrease of PM2.5. In addition to the weak sensitivity of discrete 

1/Vis to resolve aerosol variation under clean environment (the collocated EMEP stations 

are mostly in the cleaner western Europe), the inclusion of Rayleigh scattering in 1/Vis and 
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the non-linear association between ambient 1/Vis and dry PM2.5 (fixed at 50% RH) also 

contribute to this bias.  

 
Figure 2-6. Composite time series and trends of (top) 1/Vis and bext for collocated ISD and 
IMPROVE stations (Figure 2-4) over 1989-1996 and (bottom) 1/Vis and PM2.5 for 
collocated ISD and EMEP stations (Figure 2-5) over 2006-2013. Only stations with 
significant trends of >90% confidence are collocated. The long ticks on the horizontal axis 
indicate the January of the year.  Data gaps represent months with less than 75% of the 
total grids. Error bars show the 25th and 75th percentile of all monthly values of collocated 
stations. 

In summary, 1/Vis exhibits spatially variant K (i.e. relationship with bext) and data 

quality that suggests uncertainty in the information of one station especially at clean 

locations. However the aggregated 1/Vis time series successfully capture the seasonal 

variation and trends of collocated in situ data. The high correlation between composite time 

series and the overall consistency of composite trends suggest that the interpretation value 

of 1/Vis data benefits from averaging over multiple stations. 

 

2.6 Historical Trends of 1/Vis 

2.6.1 United States 

Figure 2-7 presents the calculated relative trend of 1/Vis of all qualified stations over 

the US for 1945-1988 (Figure 2-4 contains 1/Vis trends over 1989-2013). Figure 2-8 shows 

the regionally averaged time series and trends of 1/Vis over the eastern US for 1945-1996, 
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superimposed with the evolution of SO2 emission data. Historically, 1/Vis in the eastern 

US experienced a pronounced decrease (-2.8% yr-1, p < 0.001) after World War II until the 

mid 1950s, a consistent upward trend afterwards (0.9‒1.8% yr-1, p < 0.001) during the 

following 2 periods until the early 1970s, variable tendencies during 1973-1980, and a 

significant decreasing trend (-1.1 to -2.0% yr-1, p < 0.005) from the early 1980s until 1996. 

Over 1954-1973, the long-term trend of 1/Vis is 1.2% yr-1 (p < 0.001), lying between the 

separated short-term trends. This 1/Vis trend evolution resembles the SO2 emission trend. 

Industrial activity gradually decreased after World War II until the mid 1950s, followed by 

economic growth until the early 1970s with the emergence of both the oil crisis and the 

Clean Air Act (Greenstone, 2001). The emission of SO2 starts to consistently decrease after 

1973 for the Smith inventory, and after 1977 for the EDGAR inventory. For the period 

1973-1980 the regional 1/Vis is generally consistent with these two inventories except for 

an anomalous peak of annual 1/Vis in 1977-1979. The NOAA Climate Extremes Index 

(http://www.ncdc.noaa.gov/extremes/cei/) describes the winters of 1977-1979 as the 

coldest during 1945-1996 across the US. Increased emissions from domestic heating, as 

well as stagnant weather may contribute to the 1/Vis peak. After 1978, the three annual 

time series uniformly exhibit a downward tendency.  

Table 2-1 contains the correlation of annual 1/Vis with SO2 emissions. Annual 1/Vis 

over the eastern US exhibits a correlation of 0.66 with the Smith SO2 emissions over the 

entire US (1946-1995), and of 0.73 with the EDGAR SO2 emissions over the eastern US 

(1970-1995). The 1/Vis trends over the western US (where SO2 emissions are much lower 

than in the eastern US, organic aerosols dominate in PM2.5 and forest fires are more 

prevalent) are less consistent than over the eastern US with the SO2 emission data, given 

the influence of other sources. In summary, the 1/Vis time series successfully capture large-

scale haze evolution over the eastern US from 1945 to 1996, which is consistent with 

changes in SO2 emissions as well as previous investigations on 1/Vis for this region (Husar 

and Wilson, 1993; Schichtel et al., 2001).  
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Figure 2-7. Spatial distribution of relative trends in 1/Vis over the US for 1945-1988. 
Larger colored points with black outline indicate trends with at least 95% significance, 
smaller colored points with black outline represent trends with 90%-95% significance, and 
colored points without outline indicate insignificant trends. The red rectangle defines the 
eastern US region for composite time series analysis in Figure 2-8. 

 
Figure 2-8. Composite time series of 1/Vis and SO2 emission over the eastern US region. 
The long ticks on the horizontal axis indicate January of the year, where all annual values 
are plotted. Light green dots represent the average monthly 1/Vis of all qualified stations 
(error bars showing the 25th and 75th percentile) in the defined region. Red dots show the 
number of grid cells for averaging, and data gaps indicate months with less than 75% of 
the total grids for each period. Blue lines and text represent the 1/Vis trends calculated 
using the monthly anomalies for each period. Trends in parentheses are the 95% confidence 
intervals. Black lines are the annual 1/Vis averaged from at least 8 monthly values. SO2 
emissions for the entire US from Smith et al. (2011b) are in orange. Purple indicates 
EDGAR SO2 emissions for the entire US (dashed) and for the defined region (solid) in 
Figure 2-7. 
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Table 2-1. Summary of Pearson correlation coefficients (r) between annual 1/Vis and SO2 
emissions for five regions. 

Inventory Period Eastern US 
 

Smith 1946-1995 0.66 
 

EDGAR 1970-2008 0.73 
 

  
Eastern Europe Western Europe 

Smith 1973-2005 0.92 0.91 
EDGAR 1973-2008 0.92 0.92   

Northern China Southern China 
Lu 1996-2010 0.78 0.87 
EDGAR 1973-2008 0.91 0.88 

Figure 2-S4 shows the calculated 1/Vis trends over the US for two short periods prior 

to 1945. Although the stations are sparsely distributed, the nearly uniform trends in 1/Vis 

strongly suggest a prominent decrease over 1929-1934, and then a rapid increase over 

1935-1944. This evolution reflects the significant drop in industrial activity following the 

1929 Great Depression, and the economic recovery after ~1933 during the New Deal 

programs and World War II. The Smith SO2 emissions of the US (Figure 2-S3) also reflect 

these socioeconomic events. 

2.6.2 Europe 

Figure 2-9 presents the spatial distribution and temporal evolution of haze trends over 

Europe as derived from the 1/Vis data for 1973-2005. The historical trend pattern of 1/Vis 

is quite different between western and eastern Europe. The large-scale 1/Vis trend over 

western Europe is consistently decreasing for the four periods after 1981 (also in Figure 2-

5). Some countries such as the UK and France begin decreasing prior to 1981, consistent 

with the SO2 emission decrease over these countries (Figure 2-S3). Prior analysis also 

indicated Vis improvements after ~1973 for most sites over the UK (Doyle and Dorling, 

2002). Meanwhile stations over eastern Europe have significantly increased 1/Vis for 

1973-1980, a mostly decreasing trend in its western part for 1981-1988, and then a 

decrease-dominant trend after 1989.  
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Figure 2-9. Spatial distribution of relative trends in 1/Vis over Europe for 1973-2005. 
Larger colored points with black outline indicate trends with at least 95% significance, 
smaller colored points with black outline represent trends with 90%-95% significance, and 
colored points without outline indicate insignificant trends. Red rectangles define the 
eastern and western Europe regions for composite time series analysis in Figure 2-10. 
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Figure 2-10. Regional time series analysis of 1/Vis and SO2 emission over western and 
eastern Europe. The long ticks on the horizontal axis indicate January of the year, where 
all annual values are plotted. Light green dots represent the average monthly 1/Vis of all 
qualified stations (error bars showing the 25th and 75th percentile) in the defined region. 
Red dots show the number of grid cells for averaging, and data gaps indicate months with 
less than 75% of the total grids for each period. Blue lines and text represent the 1/Vis 
trends calculated using the monthly anomalies for each period. Trends in parentheses are 
the 95% confidence intervals. Black lines are the annual 1/Vis averaged from at least 8 
monthly values. The Smith SO2 emissions in orange are the total emission of all countries 
listed in Table 2-2 for each region. The EDGAR SO2 emissions in purple are summed from 
all pixels inside the defined region (Figure 2-9). 

Figure 2-10 shows the regionally composite time series of 1/Vis as well as SO2 

emissions over western and eastern Europe for 1973-2013. Table 2-2 lists the specific 

country names included in the Smith emissions for the two regions. The evolution of 1/Vis 

over western and eastern Europe is broadly consistent with the SO2 emissions, and reflects 

the lag of emission reduction in eastern vs. western Europe. Stjern et al. (2011) similarly 
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reported later improvement in Vis over eastern vs. western Europe. The SO2 emission 

reduction extends from the 1980s to the end of data record for western Europe, and 

primarily over 1989-2000 for eastern Europe. The composite 1/Vis time series successfully 

capture the significant reduction of haze over western Europe (-1.1 to -1.7% yr-1, p < 0.08). 

Long term 1/Vis trend over western Europe for 1981-2011 (insufficient qualified stations 

after 2011) is -1.8% yr-1 (p < 0.001), consistent with the separate short-term trends. For 

eastern Europe the decrease of 1/Vis is stronger before 1997 (-2.0% yr-1, p < 0.001) than 

after 2006 (-1.1% yr-1, p = 0.03), and the calculated trend over 1997-2005 is insignificant, 

consistent with the SO2 emission evolution. There is an obvious peak in 1/Vis from October 

1995 to March 1996 especially over eastern Europe, which is consistent with the peak 

sulfate concentration that Stjern et al. (2011) attributed to the anomalously cold winter of 

1996 with stagnant air.  

Table 2-1 shows that the annual 1/Vis time series exhibit a correlation of 0.91 (0.92) 

with the Smith Emissions for 1973-2005, and of 0.92 (0.92) with the EDGAR emissions 

for 1973-2008 over western (eastern) Europe, respectively. Such high correlations suggest 

a major role of SO2 emissions to determine the decadal trends of haze over Europe.  

Table 2-2. List of countries included to calculate regional SO2 emission from the country-
level emission data (countries with most parts inside the defined region) of (Smith et al., 
2011b). 

Region Countries  
Eastern 
US United States  

Eastern 
Europe 

Albania, Belarus, Bosnia & Herzegovina, Bulgaria, Czech, Croatia, 
Greece, Hungary, Latvia, Lithuania, Moldova, Poland, Romania, 
Serbia & Montenegro, Slovakia, Slovenia, Turkey, Ukraine 

 

Western 
Europe 

Austria, Belgium, Denmark, France, Germany, Ireland, Italy, 
Netherland, Portugal, Spain, Switzerland, United Kingdom 

 

2.6.3 Eastern Asia 

Figure 2-11 shows the calculated relative trends of 1/Vis over eastern Asia after 1973. 

A persistent increasing trend of 1/Vis dominates over eastern China for more than 30 years. 

A prominent feature in the trends over China is more heterogeneity in the spatial 

distribution compared to the trend maps over the US and Europe. This could be a result of 

asynchronous economic development, as several studies reported “lagging” of Vis 
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impairment in rural sites (from ~1990s) compared to urban sites (from ~1960s) in China 

(Quan et al., 2011; Wu et al., 2012). The overall increasing trend in 1/Vis reverses in the 

last period of 2006-2013, when most stations in southern China and many in northern China 

show a statistically significant decreasing trend of 1/Vis. This is consistent with the 

implementation of fuel-gas desulfurization facilities in power plants after ~2007. This 

recent reduction was also supported by satellite observations of SO2 (Li et al., 2010; Lu et 

al., 2010; Lu et al., 2011; Wang et al., 2015b; Zhao et al., 2013). 

 
Figure 2-11. Spatial distribution of relative trends in 1/Vis over eastern Asia for 1973-2013. 
Larger colored points with black outline indicate trends with at least 95% significance, 
smaller colored points with black outline represent trends with 90%-95% significance, and 
colored points without outline indicate insignificant trends.Red rectangles define the 
northern and southern China regions for composite time series analysis in Figure 2-12. 

Figure 2-11 also shows a consistent increase of 1/Vis over Korea from 1973 to 1996. 

After 1997 when the SO2 emission transits to decrease (Figure 2-S3), the increase in 1/Vis 

levels off and reverses. The aerosols over China also affect areas downwind through long-

range transport (Aikawa et al., 2010). For the 1997-2005 period, most eastern stations of 

Korea show a downward trend, in contrast with the increasing 1/Vis over the west, which 

is more strongly influenced by pollutant transport from China. Lee et al. (2015b) also 

discovered insignificant improvement of Vis over urban areas of Korea after late 1990s 
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despite the national emission reduction policy launched in early 2000s, which was 

attributed to the regional transport from upwind continental areas. Long-term aerosol 

measurement over Gosan Island, Korea showed rapid increase of sulfate and nitrate 

concentrations from early 2000s to ~2006, which were closely related with the trends of 

China’s emission (Kim et al., 2011). Similarly, stations over the western and coastal areas 

of Japan consistently exhibit an upward 1/Vis trend before 2006, despite the continuous 

decrease of local SO2 emission and concentration since 1970 (Wakamatsu et al., 2013). 

Aikawa et al. (2010) found a zonal gradient in terms of both the magnitude and trend of 

measured SO2 and sulfate concentrations over Japan, and in the modeled contribution from 

China to the sulfate concentration in Japan. Lu et al. (2010) reported that most EANET 

(Acid Deposition Monitoring Network in East Asia) stations over Japan and Korea have 

increasing trends in SO2 and sulfate aerosols from 2001 to 2007. For the last period 2006-

2013, 1/Vis shows a dominant decreasing trend over Japan and Korea that may reflect in 

part China’s SO2 emission controls. Itahashi et al. (2012) reported a trend reversal of 

MODIS (Moderate Resolution Imaging Spectroradiometer) fine aerosol optical depth 

(AOD) over the Sea of Japan from increasing to decreasing at ~2006 that is more consistent 

with China’s SO2 emission than the local emission. This analysis highlights the sensitivity 

of 1/Vis to long range transport, and the value of international collaboration for air quality 

improvement over eastern Asia. 
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Figure 2-12. Regional time series analysis of 1/Vis and SO2 emission over southern and 
northern China. The long ticks on the horizontal axis indicate January of the year, where 
all annual values are plotted. Light green dots represent the average monthly 1/Vis of all 
qualified stations (error bars showing the 25th and 75th percentile) in the defined region. 
Red dots show the number of grid cells for averaging, and data gaps indicate months with 
less than 75% of the total grids for each period. Blue lines and text represent the 1/Vis 
trends calculated using the monthly anomalies for each period. Trends in parentheses are 
the 95% confidence intervals. Black lines are the annual 1/Vis averaged from at least 8 
monthly values. The SO2 emission in Lu et al. (2011) in orange and the EDGAR SO2 
emission in purple are summed from all pixels inside the defined region (Figure 2-11). 

Figure 2-12 presents a regional analysis of averaged 1/Vis time series over northern 

and southern China, and the evolution of SO2 emissions from two inventories. The overall 

Vis impairment trend in China for 1973-2005 reflects the consistent SO2 emission increase. 

Both the north and south show a steady and significant (p < 0.001) increase of haziness for 

the 1973-1980 period, and southern China shows an even faster impairment (2.9% yr-1) 
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than the north (1.2% yr-1). For the next 2 decades (1980-2000) the 1/Vis increase slows 

down in both the south and the north, in accordance with other investigations using Vis 

and SSR data (Chen and Wang, 2015; Luo et al., 2001; Wu et al., 2014). The south exhibits 

a slower (0.2% yr-1) and less significant (p > 0.3) increase than the north (0.5‒0.6% yr-1). 

The long-term trend over 1981-1996 for northern China (0.5% yr-1, p < 0.001) also exceeds 

that for southern China (0.2% yr-1, p = 0.04). This difference is determined not only by the 

slower increase of SO2 emissions in the south (Lu et al., 2010), but also by more 

precipitation and ventilation in the south that favors the removal of aerosols and their 

precursors (Xu, 2001; Ye et al., 2013). The decline of SO2 emissions from 1996 to 2000 

reflects both the 1997 Asian financial crisis, and a decline in coal use and sulfur content 

(Lu et al., 2011). Both regions show a leveling off or even reversal of 1/Vis increase during 

this short period, which is again more significant in the south. The period 2000-2006 

exhibits significant growth (>1% yr-1) of 1/Vis in both the north and south, resembling the 

steady growth in SO2 emissions. The recent reduction of SO2 emissions is reflected in the 

Lu emissions while not in the EDGAR emissions. After 2006, significant (p < 0.05) 

decreasing trends in 1/Vis are apparent (-0.9 to -1.6% yr-1) for both northern and southern 

China, which is more consistent with the Lu emissions. As shown in Table 2-1, the annual 

1/Vis time series exhibit a high correlation of 0.78 (0.87) with the Lu emissions (1996-

2010), and of 0.91 (0.88) with the EDGAR emissions (1973-2008) over northern (southern) 

China, respectively. 

2.6.4 Connections to SSR and AOD Trends 

Long-term records of surface solar radiation (SSR) and columnar aerosol optical depth 

(AOD) serve as complementary data resources to study and interpret changes in air 

pollution during the last few decades, especially for regions with fewer ground-based 

aerosol measurements. SSR is determined by the total columnar extinction of aerosols and 

clouds while 1/Vis represents the extinction level at the surface. Moreover, the direct 

scattering and absorption of solar radiation by aerosols could be amplified in less polluted 

regions or dampened over highly polluted stations, due to aerosol-cloud interaction (Fuzzi 

et al., 2015; Wild, 2009). Despite these uncertainties, the observed reversals of SSR from 

“dimming” to “brightening” in 1980-1990 over the US and Europe (Streets et al., 2006; 



40 

Turnock et al., 2015; Wild, 2012) generally agree with the reversals around the 1980s of 

1/Vis trends in this study. Over China, the recently reported decadal SSR variation shows 

dimming before the 1990s and no significant trend afterwards (Tang et al., 2011; Wang et 

al., 2015a). The latter phenomenon may reflect compensation of more aerosol extinction 

by less cloud cover (Norris and Wild, 2009). 

Reliable AOD data over land are limited to the recent 2 decades, but exhibit even 

greater consistency with 1/Vis trends. The recent decrease in 1/Vis after late-1990s over 

the US and western Europe in this study is consistent with previous studies on AOD trends 

based on both ground based (e.g. Li et al., 2014b; Yoon et al., 2012) and satellite (e.g. Chin 

et al., 2014; Hsu et al., 2012; Pozzer et al., 2015) observations. Over China, several studies 

on AOD trends in the 2000s showed notable increasing tendency (e.g. Hsu et al., 2012; 

Pozzer et al., 2015; Yoon et al., 2012), while some recent studies also discovered that 

separating AOD time series could reflect the plateauing and reversal of trends in recent 

years due to emission control strategies (Che et al., 2015; He et al., 2016; Lu et al., 2011). 

PM2.5 trends derived from satellite AOD over 1998-2012 have decreasing tendencies over 

North America and Europe, and increasing tendencies over eastern Asia (Boys et al., 2014; 

van Donkelaar et al., 2015), similar to the 1/Vis trends found here. 

 

2.7 Conclusion 

This study examines Vis observations as a trend indicator of haziness and air quality 

over the US (1945-1996), Europe (1973-2013), and eastern Asia (1973-2013). We 

comprehensively process the raw data from over 20,000 stations considering effects from 

meteorological factors, protocol design, and human errors. We develop filters to exclude 

relatively clean cases (i.e. months with ≤ 50% records below the threshold Vis, or years 

with annual 1/Vis ≤ 40 Mm-1) with weaker sensitivity to bext variation, and apply change 

point detection and separation to largely reduce the intrinsic discontinuities. Nearly 4000 

stations remain after the processing with 753 over the US, 1625 over Europe, and 791 over 

eastern Asia. The composite time series of 1/Vis over the US for 1989-1996 generally 

agrees with the collocated IMPROVE bext in terms of both seasonal variation (r = 0.77) and 

trends (-1.6% yr-1, 95% CI: -2.4, -0.8% yr-1) in 1/Vis vs. bext (-2.4% yr-1, 95% CI: -3.7, -
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1.1% yr-1). Similarly, for 2006-2013 over Europe, the seasonal variation (r = 0.80) and 

significant decrease (-5.8% yr-1, 95% CI: -7.8, -4.2% yr-1) in PM2.5 are captured by 

collocated 1/Vis (-3.4% yr-1, 95% CI: -4.4, -2.4% yr-1). This consistency highlights the 

benefits of thorough data screening to reduce uncertainties brought by the inherent issues 

in Vis observations such as threshold choices, discreteness and discontinuities. As 

discussed in Section 2.4.1, the inclusion of unresolved values in the mean 1/Vis and the 

contaminants of discontinuities could dampen the ability of 1/Vis to correctly resolve 

aerosol trends. Admittedly, the derived 1/Vis trends are still subject to several uncertainties, 

e.g. the spatially variant K and data quality, the less robust short-term trends, sampling 

differences and direct averaging in composite time series. Nevertheless, the interpretation 

value of 1/Vis data is shown to be enhanced by the comprehensive screening and spatial 

averaging. Therefore we focus on the trend results that are regionally coherent and 

aggregated, and avoid drawing strong conclusions based solely on the 1/Vis trends. 

Although at individual stations the 1/Vis changes might be affected by these above-stated 

artificial factors, regionally coherent trend signals suggest these derived 1/Vis trends 

represent actual changes in bext. Our filtered monthly 1/Vis data are freely available as a 

public good (http://fizz.phys.dal.ca/~atmos/martin/?page_id=1435). 

Analysis of the 1/Vis trends for several short periods reveals haze trend evolution and 

reversals. These historical 1/Vis trends and their evolution also exhibit compelling 

consistency with SO2 emissions and SSR studies. For example, 1/Vis shows statistically 

significant decreasing trends from the late 1970s to the mid 1990s over the eastern US (-

1.1 to -2.0% yr-1), from the early 1980s to 2013 over western Europe (-1.1 to -1.7% yr-1), 

in the early 1990s (-2.0% yr-1) and after the mid 2000s (-1.1% yr-1) over eastern Europe, 

and after the mid 2000s over China (-0.9 to -1.6%/yr). These recent decreases in 1/Vis are 

attributable to emission changes in these populated areas. Reversal points of 1/Vis trends 

also consistently reflect several historical socioeconomic events e.g. the New Deal 

programs (from decrease to increase at ~1934), the end of World War II (from increase to 

decrease at ~1945) and the Clean Air Act (from increase to decrease at ~1979) in the US, 

the collapse of communism in eastern Europe (from increase to decrease at ~1989), and 

the 1997 Asian financial crisis.  
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Therefore, the constructed 1/Vis data are applicable to resolve historical aerosol trends 

on a regional and annual basis, and provide complementary information about the historical 

changes in air quality. For instance, the annual 1/Vis time series exhibit high correlations 

(0.7-0.9) with SO2 emissions for five large domains (Table 2-1). Apart from verifying the 

historical 1/Vis trends, this consistency also provides an evaluation of emission inventories. 

For example, after ~2006 1/Vis trends agree better with Lu et al. (2011) than the EDGAR 

emissions in capturing the SO2 emission controls over China. Emission inventories differ 

significantly (Smith et al., 2011b), and 1/Vis data offer constraints on these inventories. 

However, SO2 emission inventories cannot fully explain the trends in ambient haze 

due to the influence of other emissions and meteorological factors. Notable reductions in 

emissions of nitrogen oxides and black carbon have been reported over North America and 

western Europe (Bond et al., 2007; Lu et al., 2015; US EPA, 2012; Vestreng et al., 2009), 

while steady increase in emissions of nitrogen oxides, organic carbon and black carbon 

were identified over China (Lu et al., 2011; Zhao et al., 2013). Observed (Leibensperger et 

al., 2012; Murphy et al., 2011) and simulated (Lin and McElroy, 2010; Wang et al., 2013) 

changes in various aerosol chemical species suggest increasing importance of emissions 

other than SO2 on air quality trends in recent years. We have also shown that occasional 

cold winters in the US and Europe, and the long-range transport of China’s pollutants into 

Korea and Japan could affect the association between 1/Vis and local emission. Future 

work includes applying a chemical transport model to further interpret the observed 1/Vis 

(bext) trends, as well as the contribution from meteorology and emissions. 
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2.9 Supporting Information 

Four supporting figures are included for complementary interpretation. 

 
Figure 2-S1. Threshold visibility of ISD stations over the US, Europe and eastern Asia in 
1990, 1995 and 2000. 
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Figure 2-S2. Scatter plot of monthly bsp (measured by nephelometers) and bext (estimated 
from aerosol speciation data) from all IMPROVE stations with bsp measurements for 56 
IMPROVE sites over 1993-2013. The intercept of ~12 Mm-1 corresponds to Reyleigh 
scattering. 

 
Figure 2-S3. SO2 emission for several major countries. Data are from Smith et al. (2011b). 
The top left and top right panels include major countries of western and eastern Europe, 
respectively. Vertical lines represent division years of the study periods that roughly 
indicate transition points of emission trend. 
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Figure 2-S4. Spatial distribution of relative trends in 1/Vis over the US for 1929-1944. 
Larger colored points with black outline indicate trends with at least 95% significance, 
smaller colored points with black outline represent trends with 90%-95% significance, and 
colored points without outline indicate insignificant trends. 
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Chapter 3. Decadal Changes in Seasonal Variation of 
Atmospheric Haze over the Eastern United States: Connections 
with Anthropogenic Emissions and Implications for Aerosol 
Composition 

 

Reproduced with permission from “Decadal changes in seasonal variation of atmospheric 

haze over the eastern United States: connections with anthropogenic emissions and 

implications for aerosol composition” by Li, C. and Martin, R. V., Environ. Sci. Technol. 

Lett., 5, 413-418, doi:10.1021/acs.estlett.8b00295, 2018. Copyright 2018 by the American 

Chemical Society. All text, figures and results were contributed by the first author. 

 

3.1 Abstract 

The current seasonal summer maximum in surface fine particulate matter (PM2.5) over 

the eastern United States has been well established. We find that this seasonality has 

historically changed substantially, based on long-term quality assured inverse visibility 

(1/Vis) data over 1946-1998. The median summer/winter 1/Vis ratio increased from about 

0.8 over both the southeastern and northeastern United States in the late 1940s, to 1.24 over 

the southeastern United States and to 1.04 over the northeastern United States in the mid-

1970s. This ratio exhibits weaker changes in both regions afterwards. The observed PM2.5 

seasonality after the year 2000 has similar spatial distribution as that in 1/Vis over the mid-

1990s, with systematically higher summer/winter ratios which rapidly weaken after the 

mid-2000s. From 1956 to 1975, stronger increases in 1/Vis occurred in summer than in 

winter in both regions, associated with increases in sulfur dioxide emissions and reductions 

in anthropogenic carbonaceous emissions. Over the southeastern United States, the 

changes in aerosol seasonality, i.e. both the strengthened summer maxima over 1946-1975 

and dampened summer maxima after 2007, suggest historical changes in anthropogenic 

influence on secondary organic aerosol (SOA) formation, and suggest the prospect of 

reducing summer SOA through controls on anthropogenic emissions. 
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3.2 Introduction 

Atmospheric aerosols (i.e. particulate matter) exert significant impacts on health 

(Hoek et al., 2013; West et al., 2016), climate (IPCC, 2013), visibility (Wang et al., 2009) 

and ecosystems (Mercado et al., 2009; Zhang et al., 2012a). Outdoor exposure to fine 

particulate matter (PM2.5) is associated with an estimated 4.2 million global attributable 

mortalities in 2015 (Cohen et al., 2017a). Fine particles are also efficient in scattering 

radiation and impairing visibility (Hand et al., 2012a; Malm et al., 1994; Pitchford et al., 

2007). The spatial and temporal variation of aerosols and their effects are strongly 

heterogeneous due to the diversity of aerosol chemical composition (Hand et al., 2012a; 

Kahn and Gaitley, 2015; Snider et al., 2016; Zhang et al., 2007) as determined by various 

emission sources and atmospheric processes (Fuzzi et al., 2015). Dense observations of 

aerosol speciation from long-term in situ networks across the United States (US) have been 

valuable for understanding aerosol sources and processes (Chen et al., 2010; Kim et al., 

2015; Schichtel et al., 2017), long-term trends (Blanchard et al., 2016; Hand et al., 2012b; 

Malm et al., 2002; Malm et al., 2017), visibility (Hand et al., 2014a), and spatial and 

seasonal variation (Hand et al., 2012a; Hidy et al., 2014; Malm et al., 1994). From these 

observations, summertime maxima in PM2.5 concentration have been consistently reported 

over the eastern US for both rural and urban regions (Hand et al., 2012a). These seasonal 

patterns are affected by the seasonality in ammonium sulfate aerosols, and also by the 

concurrent seasonality of secondary organic aerosol (SOA) from biogenic carbon over the 

southeastern US (Goldstein et al., 2009; Hand et al., 2012a; Hidy et al., 2014). However, 

few observations exist about changes in fine aerosols prior to the 1990s. This gap could be 

bridged by interpreting alternative observations of aerosol burden, such as atmospheric 

visibility (Husar et al., 2000; Wang et al., 2009). 

Anthropogenic aerosol sources over the eastern US have changed significantly over 

the last century. Sulfur dioxide (SO2) emissions reversed trends several times before the 

1970s, and decreased afterwards (Li et al., 2016a; Smith et al., 2011b). Nitrogen oxide 

(NOx) and ammonia (NH3) emissions generally increased until the 1980s and decreased 

recently (Gschwandtner et al., 1986; Hoesly et al., 2018). Organic carbon (OC) and black 
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carbon (BC) emissions have decreased since the 1930s (Bond et al., 2007; DuBay and 

Fuldner, 2017; Hoesly et al., 2018). These changes in anthropogenic emissions would have 

introduced significant trends in sulfate, nitrate, ammonium, primary organic aerosols, BC, 

and associated aerosol water (Attwood et al., 2014; Blanchard et al., 2013; Hand et al., 

2012b; Malm et al., 2017; Murphy et al., 2011; Nguyen et al., 2015; Nguyen et al., 2016; 

Xing et al., 2015). Indirectly, these emission changes could also affect the SOA yields from 

biogenic carbon in multiple ways, such as by altering oxidation pathways, gas/particle 

partitioning, and aqueous-phase reactions (Hoyle et al., 2011; Marais et al., 2016; Pye et 

al., 2017; Xu et al., 2015a). These anthropogenic influences on major aerosol chemical 

components offer valuable information to understand the historical seasonality in aerosol 

extinction and visibility.  

In this letter, we analyze a recently developed data record of historical inverse 

visibility (1/Vis) (Li et al., 2016a) to explore how the aerosol seasonality in the eastern US 

evolved over five decades. We interpret seasonal contrasts in 1/Vis trends, and use 

historical emission inventories to understand observed changes in 1/Vis and its seasonality. 

 

3.3 Materials and Methods 

Horizontal visibility (Vis) is inversely related with atmospheric extinction, and has 

been recognized as a proxy of surface aerosol loading (Husar et al., 2000; Li et al., 2016a; 

Wang et al., 2009). We use a recently developed dataset of quality assured inverse visibility 

(1/Vis, unit: Mm-1) (Inverse visibility data, 2018; Li et al., 2016a). Starting from global 

raw synoptic observations, this monthly 1/Vis dataset has been comprehensively screened 

and processed to reduce effects from cloudy, foggy and high relative humidity (RH > 90%) 

records, as well as spikes, artificial detection thresholds and discontinuities (Li et al., 

2016a). The 1/Vis data were validated against aerosol extinction and PM2.5 data over the 

US and Europe and provided quantitatively insightful information on aerosol seasonal 

variations and trends (Li et al., 2016a). We use the 1/Vis data for 1946-1998, during which 

each year contains at least 150 sites over the eastern US. The number of available sites 

substantially decreased after 1998 because of the Vis reporting thresholds (i.e. Vis higher 

than 10 miles are not resolved) after adopting instrumentation to replace human 
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observations; this limits the representativeness of the 1/Vis data for cleaner air quality in 

recent years (Li et al., 2016a). For 1999-2016, we obtain long-term federal reference 

method PM2.5 data from the US Environmental Protection Agency (EPA) to complement 

our interpretation of 1/Vis.  

For each site and season, we calculate seasonal 1/Vis or PM2.5 for each year provided 

that at least 2 of 3 monthly 1/Vis or PM2.5 records are available. We define the aerosol 

seasonality as the ratio of 1/Vis or PM2.5 between summer (JJA) and winter (DJF), and 

calculate this ratio (subsequently referred to as “summer/winter”) for each running 5-year 

period. In spring or fall, the 1/Vis data generally exist between summer and winter values.  

We use historical anthropogenic emissions and meteorological reanalyses to interpret 

the observed changes in 1/Vis seasonality. We use monthly 70-year (1945-2014) 

Community Emission Data System (CEDS) anthropogenic emission data (Hoesly et al., 

2018) of sulfur dioxides (SO2), nitrogen oxides (NOx), organic carbon (OC), black carbon 

(BC) and ammonia (NH3) for perspective on historical aerosol sources. We also use long-

term (1948-2015) monthly data from NOAA National Center for Environmental Prediction 

(NCEP) Reanalysis to infer trends in meteorological factors. 

We separate the regions of the northeastern and southeastern US following Goldstein 

et al. (2009) and exploit their strong contrasts in biogenic aerosol sources (Figure 3-S1) to 

interpret the observed historical changes in 1/Vis seasonality. We focus our analysis on the 

start (1946-1950), middle (1973-1977) and end (1993-1997) of our dataset, while also 

examining changes between them. We estimate seasonal percentage trends in 1/Vis, CEDS 

emissions and NCEP parameters (relative to multi-year mean) in summer and winter using 

the Sen’s slope (Sen, 1968) and determined the significance (i.e. p value) from the Mann-

Kendall test (Kendall, 1975; Mann, 1945), provided that at least 2/3 of the total years in 

the calculated periods are available. 
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3.4 Results and Discussion 

3.4.1 Changes in 1/Vis and PM2.5 Seasonality 

Figure 3-1 shows the calculated summer/winter ratio in 1/Vis over the eastern US. In 

the late 1940s (1946-1950), the whole domain is characterised by low summer/winter 

values, with 95% of sites exhibiting a winter maximum (summer/winter<1). The lowest 

summer/winter ratios (<0.5) are found around the Great Lakes region, and the highest 

values (>0.9) are over the New England coast. These summer/winter values increase over 

time. After nearly 3 decades (1973-1977), 63% of sites exhibit a summer maximum with 

summer/winter>1, except for the Great Lakes region with a winter maximum and the 

lowest summer/winter ratios across the domain. Summer/winter values over the mid-

Atlantic and southeastern US exhibit high values (summer/winter>2). This spatial pattern 

remains similar two decades later (1993-1997).  

 
Figure 3-1. Spatial distribution of 5-year summer/winter ratio in 1/Vis over the eastern US.  

Figure 3-S2 shows the summer/winter ratios calculated from more recent PM2.5 data. 

The spatial distribution over 1999-2003 is broadly consistent with those in 1/Vis over 1993-

1997, with highest summer/winter values across the Appalachian region from New 

England to Alabama, and lowest values appearing in the north. PM2.5 sites with 

summer/winter>1 extend further west and north, perhaps related to either aerosol 

hygroscopicity or different time periods.  Interestingly, there is a broad reduction in the 

summer/winter ratios over most eastern US sites in recent years (2012-2016), with many 

sites over the northeastern US reverting to a winter maximum, and most southeastern sites 
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exhibiting weaker summer maxima. A recent study also found more measurement sites 

with wintertime PM2.5 maxima over the US appearing after 2009 (Chan et al., 2018). 

 
Figure 3-2. Temporal evolution of the summer/winter ratio of 1/Vis (filled) and PM2.5 
(open) over the northeastern (red) and southeastern (green) US. Regions are defined in 
Figure 3-S1. Each point represents the multi-site median of the 5-year running mean 
summer/winter ratios. Error bars indicate the 25th and 75th percentiles of the calculated 
ratios within each region. 

Figure 3-2 shows the historical evolution in multi-site median of the calculated 5-year 

running mean summer/winter ratios over the northeastern and southeastern US. Both 

regions have median summer/winter of ~0.8 in 1948 (i.e. representing 1946-1950), which 

significantly (p < 0.05) increase to 1.04 (northeastern US) and 1.24 (southeastern US) in 

1975. The changes in regional median summer/winter ratios are not uniform and less 

pronounced after 1975, exhibiting significant (p < 0.05) but slower overall increases (by 

less than 0.1) during 1976-1996. Over both regions, the summer/winter values in 1/Vis 

might exhibit a systematic underestimation of those in PM2.5, although the measurement 

gap over 1997-2000 complicates interpretation. Nevertheless, the median summer/winter 

ratios calculated from PM2.5 for recent years generally follow the tendency of these from 

1/Vis, with consistently higher median summer/winter over the southeast than the northeast. 

The recent reductions in summer/winter (weakened seasonality) are evident for both 

regions. In summary, we find that the dominance of summer maxima broadly observed in 

PM2.5 over the eastern US is also observed in the 1/Vis data after the 1970s, but the 1/Vis 

seasonality in earlier years is significantly weaker and even reversed in the 1940s, 

suggesting similar historical evolution of PM2.5 seasonality. 
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3.4.2 Contrasting 1/Vis Trends in Winter and Summer  

Figure 3-S3 shows the calculated seasonal 1/Vis trends over each site, and Figure 3-

S4 shows the time series of the seasonal 1/Vis over the two regions. There is a 3-phase 

trend evolution in 1/Vis, i.e. decreases for 1946-1955, increases for 1956-1975, and 

decreases after 1975. This evolution is most evident in summer and is consistent with 

annual trends (Li et al., 2016a). Comparing to these summer trends, the winter 1/Vis 

decreasing trends over 1946-1955 are stronger, and the 1956-1975 increasing trends are 

weaker over both regions, introducing increases in the summer/winter ratios. After 1975, 

the decreases in 1/Vis are similar in winter and summer, leading to the weaker changes in 

summer/winter values. 

3.4.3 Linkage to Emissions and Aerosol Composition 

Changes in aerosol sources and chemical composition could contribute to these 

changes in aerosol seasonality. Among the major aerosol species, ammonium sulfate and 

SOA from biogenic carbon (BSOA) have higher concentrations and higher extinction in 

summer with more rapid photochemistry and stronger biogenic emissions (Goldstein et al., 

2009; Hand et al., 2012a; Hand et al., 2014a). Meanwhile nitrate and carbonaceous aerosols 

from anthropogenic sources generally exhibit winter maxima due to low temperatures 

which promote nitrate formation (Hand et al., 2012a; Heald et al., 2012) and carbonaceous 

emissions from residential heating (Bond et al., 2007; Hand et al., 2012a). This is consistent 

with the observed recent spatial distribution of summer/winter in PM2.5, specifically higher 

values over the southeast with stronger biogenic emissions and over the Appalachian 

region with prevalent coal burning, versus lower values over the northern and colder states. 

The recent reduction in the summer/winter values of PM2.5 (Figure 3-2) over the eastern 

US is attributable to stronger reductions in summertime sulfate and weaker reductions in 

wintertime nitrate and OA in the 2000s (Chan et al., 2018; Kim et al., 2015; Li et al., 2017a). 

In contrast, the observed strengthening in summer maxima in 1/Vis over 1946-1975 could 

be caused either by increases in the mass fraction of sulfate and BSOA, or by decreases in 

that of nitrate, anthropogenic organic aerosol (OA) and BC. We use historical emission 

estimates to interpret these observed changes in 1/Vis seasonality.  
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Table 3-S1 shows winter and summer trends in anthropogenic emissions over both 

regions, with detailed time series shown in Figure 3-S5. Over 1946-1955, the stronger 

decreases in 1/Vis in winter than in summer (Figure 3-S3 and 3-S4) over both regions are 

associated with significant reductions in OC and BC emissions (p < 0.05), which have 

winter emission maxima over this period (Figure 3-S5). These carbonaceous emission 

reductions are driven by the domestic sector (Figure 3-S5), as the percentage of homes over 

the US using coal, coke or wood for wintertime residential heating reduced from 77% in 

1940 to 16% in 1960 (Historical Census of Housing Tables, 2018). SO2 emissions also 

decreased (p < 0.1) in both regions and seasons over this period. The consequent decrease 

in sulfate (with a photochemical summer maximum) does not fully compensate for the 

effects from OA and BC reductions on increasing the summer/winter. Over 1956-1975, the 

significantly increasing (p < 0.05) SO2 emissions in both regions, driven by increases in 

the energy sector, drive the increasing 1/Vis (Figure 3-S3) and the strengthening summer 

maxima. Meanwhile several sites with negative 1/Vis trends over 1956-1975 in winter over 

the northeast (Figure 3-S3) suggest additional effects of significant wintertime OC and BC 

emission reductions (p < 0.05) during this period (Figure 3-S5). Over 1976-1995, the SO2, 

OC and BC emissions all decrease (p < 0.05) following the Clean Air Act and its 

amendments (Evolution of the Clean Air Act, 2018), and the resultant trends in 1/Vis 

appear similar in summer and winter (Figure 3-S3), corresponding to relatively constant 

summer/winter (Figure 3-2). The small decreases in median summer/winter over both 

regions during 1976-1985 (Figure 3-2) are consistent with the temporary increases in wood 

burning (Historical Census of Housing Tables, 2018) and OC emissions during the same 

period (Figure 3-S5). Possible effects of changes in NOx and NH3 emissions, as well as in 

meteorology are discussed in the Supporting Information and expected to be less important. 

Although the evolution in anthropogenic emissions is similar over the two regions 

(Table 3-S1 and Figure 3-S5), the substantial changes in the summer/winter over the 

southeastern US cannot be solely explained by the effects of increased sulfate and reduced 

anthropogenic OA and BC. In summer, if BSOA over the southeastern US (currently 

accounting for >30% of total PM2.5) (Kim et al., 2015; Xu et al., 2015b) had not increased 

significantly, the northeastern US dominated by anthropogenic aerosols would have 

historically greater relative increases in 1/Vis. However, we find that from 1956 to 1975, 
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the median 1/Vis in summer increased by 25 Mm-1 (29%) over the northeastern US, and 

by 38 Mm-1 (56%) over the southeastern US (Figure 3-S4). This stronger increase over the 

southeast is insensitive to the RH thresholds used to screen the visibility data (Figure 3-S8 

and Figure 3-S11), confirming stronger increases in aerosol mass concentration over the 

southeast than the northeast where anthropogenic aerosols dominate. Therefore, increases 

in BSOA likely occurred over the southeastern US during 1956-1975.  

Biogenic emissions are not expected to exhibit systematic trends concurrent with 

anthropogenic emissions (Sindelarova et al., 2014). Numerous recent studies proposed 

various pathways by which anthropogenic emissions could mediate BSOA formation 

yields (Carlton et al., 2010; Hoyle et al., 2011; Rollins et al., 2012). Various model 

developments have emerged recently to describe these processes (Budisulistiorini et al., 

2017; Keppel‐Aleks and Washenfelder, 2016; Marais et al., 2016; Pye et al., 2013). 

Especially over the southeastern US, observational evidence suggests a strong relationship 

of BSOA with sulfate or SO2 emissions, and recent decreasing BSOA with concurrent 

reductions in sulfur and associated aerosol water (Blanchard et al., 2016; Carlton and 

Turpin, 2013; Malm et al., 2017; Nguyen et al., 2015; Pye et al., 2017; Xu et al., 2015a). 

The 1/Vis data provide observational evidence that an opposite procedure, i.e. enhanced 

BSOA formation over the southeastern US following the increase in anthropogenic 

emissions has occurred historically. In the late 1940s, the similar summer/winter values 

over both regions (Figure 3-1 and 3-2) indicate similar aerosol composition (i.e. higher 

anthropogenic OA and BC, lower sulfate and BSOA). Although hard to quantitatively 

estimate, the previously inhibited BSOA yields could reflect less existing aerosol for 

gas/particle partitioning (Carlton et al., 2010), less aerosol water due to dominance of 

carbonaceous aerosols (Nguyen et al., 2015), and less sulfur to facilitate aqueous-phase 

reactive isoprene uptake to SOA (Xu et al., 2015a). Trends in summertime surface air 

temperature are insignificant (Figure 3-S12), and thus unlikely to sufficiently increase 

biogenic emissions to explain the 1/Vis trends. Anthropogenic land use increased biogenic 

emissions over the southeastern US from the mid-1980s to the mid-1990s (Purves et al., 

2004), and might also partially contribute to the increasing BSOA if it occurred over 1946-

1975. 
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Thus, the growing dominance of summer maxima in 1/Vis over the eastern US from 

the late 1940s to the mid-1970s was likely driven by reductions in OC and BC emissions 

and increases in SO2 emissions. The observed changes in 1/Vis seasonality are associated 

with substantial changes in aerosol sources and composition, with anthropogenic OA and 

BC becoming less dominant, and sulfate and BSOA being more important. Anthropogenic 

OA reduction was estimated to save ~0.18 million premature deaths in the US over 1990-

2012 (Ridley et al., 2018). Our findings provide indirect observational evidence of longer-

term benefits of historical changes in carbonaceous emissions. Over the southeastern US, 

the winter maxima in 1/Vis before the 1950s, the stronger increase in the summer/winter 

values compared to the northeast, and the recent weakening of summer maxima all suggest 

evidence of interaction between anthropogenic emissions and BSOA formation, and co-

benefits on reducing BSOA through mitigating anthropogenic emissions. 
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3.6 Supporting Information 

3.6.1 Discussion of Other Emission and Meteorological Factors Affecting Observed 
Changes in 1/Vis 

Besides the changes in sulfur and anthropogenic carbon emissions discussed in the 

main text, aerosol composition and extinction are affected by various other emission and 

meteorological factors that might contribute to the observed long-term changes in 1/Vis. 

Here we discuss these effects. 

Nitrogen oxides (NOx) and ammonia (NH3) emissions increased (p < 0.05) across the 

eastern US in both summer and winter over 1946-1975 (Table 3-S1 and Figure 3-S5). 

These increases could increase the formation of ammonium nitrate (Holt et al., 2015; 

Pinder et al., 2008a) and have compensating effects for the increasing summer/winter ratios, 

especially around the Great Lakes, where nitrate formation is favored (Hand et al., 2012a). 

However, increasing NOx emissions could also contribute to the increasing summer/winter 

in haze through stronger photochemical production of oxidants (Fuglestvedt et al., 1999; 

Wang and Jacob, 1998) that increase summertime sulfate production rates (Fiore et al., 

2012; Shindell et al., 2009). The overall effect from NOx and NH3 emission trends is 

therefore undetermined and requires chemical transport modeling to fully resolve, which 

is beyond the scope of this study.  

Relative humidity is an important parameter that determines aerosol composition and 

extinction. Ambient aerosol extinction is affected by particle water which would increase 

its size and scattering ability (Attwood et al., 2014; Pitchford et al., 2007). Generally, 

inorganic aerosols of sea salt, ammonium sulfate and ammonium nitrate are significantly 

more hygroscopic than carbonaceous aerosols and dust (Martin et al., 2003b; Pitchford et 

al., 2007; Snider et al., 2016). Therefore, changes in aerosol composition would modify 

the overall hygroscopicity and consequently the extinction. Recent studies over the 

southeastern US indicate that aerosol water decreased by 79% over 2001-2012 in summer 

(Nguyen et al., 2015), and the weakened aerosol hygroscopicity is responsible for a 

decrease in aerosol extinction equivalent to 32% of the decreased extinction due to changes 

in dry aerosol mass (Attwood et al., 2014).  
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Our 1/Vis data were constructed with screening of high RH records (RH > 90%) in 

the raw hourly data (Li et al., 2016a) to avoid strong effects on 1/Vis from aerosol water 

that would mask the representativeness of the 1/Vis data on changes in aerosol loading, as 

was similarly performed in other related studies (Che et al., 2007; Husar et al., 2000; Lin 

et al., 2014). We perform sensitivity tests by reprocessing the raw data with stricter 

screening of records with RH > 80% (Figure 3-S6 – 3-S8) and RH > 70% (Figure 3-S9 – 

3-S11). These screenings reduce the number of available monthly 1/Vis records by 30% 

(for RH > 80%) and 43% (for RH > 70%) relative to the data presented in the main text, 

and reduce the overall 1/Vis (e.g. comparing Figure 3-S4 with Figure 3-S8 and 3-S11) 

because of less water contribution to extinction. Aerosol hygroscopicity also reduces the 

magnitudes of summer/winter ratios, as the median summer/winter in Figure 3-S7 and 3-

S10 are higher than these in Figure 3-2, especially after the 1970s when the more 

hygroscopic sulfate aerosols have increased while less hygroscopic OA and BC have 

reduced. Nevertheless, the main findings in this paper about historical changes, i.e. 

increasing summer/winter from the late 1940s to the mid-1970s  (Figure 3-S6 and 3-S9), 

larger increase in median summer/winter over the southeast than over the northeast (Figure 

3-S7 and 3-S10), stronger increase in summer 1/Vis over the southeast which indicates 

additional increase in BSOA than over the northeast (Figure 3-S8 and 3-S11), and steady 

reductions in winter 1/Vis over the northeast  (Figure 3-S8 and 3-S11) corroborating 

historical reductions in carbonaceous aerosols, are all consistently supported by these 

sensitivity experiments derived from 1/Vis records less affected by RH. We therefore 

conclude that the changes in 1/Vis and its seasonality as presented in the main text are 

insensitive to RH and dominated by changes in the aerosol mass concentration and 

chemical composition. 

Besides changing aerosol water, RH is also associated with aerosol formation yields 

of some components, e.g. nitrate and SOA (Carlton and Turpin, 2013; Heald et al., 2012; 

Pye et al., 2017). Any long-term trends in RH would also affect aerosol composition. 

Figure 3-S12 explores trends in RH and several other key meteorological parameters in 

NCEP over 1948-2015, including surface air temperature that affects biogenic emissions, 

chemical reaction rates, and aerosol partitioning of semi-volatile species, cloud cover that 

affects sulfate and SOA aqueous formation (Carlton and Turpin, 2013; Paulot et al., 2017; 
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Pye et al., 2017), as well as surface wind speed and precipitation that affect aerosol removal. 

Strong interannual variability in these parameters results in different signs and significance 

in the calculated trends for different time periods, seasons and regions. For the 2 regions, 

2 seasons and 4 periods, we find that 15 out of the 16 calculated trends in RH and cloud 

cover agree in their signs (except for the 1948-1955 summer over the northeast while both 

trends are insignificant with p > 0.1). Similarly, the signs of 14 calculated trends in RH and 

precipitation are consistent (except for the 1996-2015 summer over both regions while only 

1 trend is significant at p < 0.1). The strong covarying feature among these 3 parameters 

reflects their variabilities driven by atmospheric water vapor. However, these parameters 

have compensating effects on aerosols, with RH and cloud cover favoring aerosol 

formation and hygroscopic growth while precipitation facilitates aerosol scavenging. For 

wind speed, the only significant trend (p < 0.05) before 1975 is the increasing wind speed 

over the southeastern US in winter for 1948-1955, which could accelerate aerosol 

ventilation in winter and positively contribute to the increasing summer/winter. Air 

temperature exhibits insignificant trends (p > 0.1) before 1975. The significantly increasing 

(p < 0.05) temperature in winter over 1976-1995 could decrease nitrate particle formation 

and increase the summer/winter, which might also be compensated by concurrently 

decreasing wind speed (p < 0.1) also occurred over winter. Quantitative evaluation of the 

meteorological contributions to the observed changes cannot be achieved without 

numerical simulation, which is beyond the scope of this study. Based on the compensating 

effects from different parameters, it appears likely that the contributions from 

anthropogenic emissions to long-term changes in aerosol composition and 1/Vis dominate 

over the overall effects from climate change, which is consistent with conclusions from 

recent modeling studies (Fang et al., 2013; Ridley et al., 2018; Westervelt et al., 2016; 

Yang et al., 2016). 
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Table 3-S1. Seasonal and regional trends in total anthropogenic emissions (CEDS) for 3 
periods. Trends with p < 0.1 are followed by one asterisk (*), and trends with p < 0.05 are 
bold and followed by two asterisks (**). Positive trend (p < 0.1) are red and negative trends 
(p < 0.1) are green. 

Trend (%/yr) Winter (DJF) Summer (DJF) 
46-55 56-75 76-95 46-55 56-75 76-95 

Northeastern US 
SO2 -1.4* 2.3** -1.5** -1.4* 3.0** -1.4** 
NOx 2.6** 3.7** -0.1 2.4** 3.9** -0.3** 
OC -3.5** -3.5** -1.4** -2.3** -0.6** -0.9** 
BC -2.3** -1.8** -2.1** -0.6 1.1** -1.8** 
NH3 2.9** 2.1** -0.3* 2.8** 2.4** 0.4** 

Southeastern US 
SO2 -1.4* 2.2** -1.3** -1.5* 2.9** -1.0** 
NOx 2.5** 3.4** -0.6** 2.4** 3.6** -0.5** 
OC -3.2** -2.5** -0.8** -2.4** -0.9** -0.6** 
BC -1.7** -1.0** -1.7** -0.7 0.5** -1.4** 
NH3 3.1** 2.7** 0.5** 3.1** 2.8** 0.9** 

 
Figure 3-S1. Total emissions of isoprene and monoterpenes over the eastern US in the 
summer (JJA) of 2013 from MEGAN 2.1 (Guenther et al., 2012). The definitions of the 
northeastern and southeastern US are indicated by the red rectangles. 
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Figure 3-S2. Spatial distribution of 5-year summer/winter ratio in PM2.5 over the eastern 
US. 

 
Figure 3-S3. Relative trends in 1/Vis for winter (DJF) and summer (JJA) over 3 periods. 
Larger points with black outlines indicate significant trends with p < 0.05. Smaller points 
with black outline represent significant trends with 0.05 ≤ p < 0.1. Points without outline 
indicate insignificant trends. 
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Figure 3-S4. Evolution of 1/Vis over the northeastern (left) and southeastern (right) US in 
winter (DJF) and summer (JJA). Points indicate median 1/Vis within each region in the 
year (color coded) and season. Error bars represent the 25th and 75th percentiles. 

 
Figure 3-S5. Anthropogenic emissions (1945-2014) of aerosol sources from the CEDS 
inventory for winter and summer, and over the northeastern and southeastern US. Colors 
indicate emission sectors. 
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Figure 3-S6. Similar to Figure 3-1 but regenerated by eliminating hourly Vis records with 
RH > 80%. 

 
Figure 3-S7. Similar to Figure 3-2 but regenerated by eliminating hourly Vis records with 
RH > 80%. 

 

Figure 3-S8. Similar to Figure 3-S4 but regenerated by eliminating hourly Vis records with 
RH > 80%. 
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Figure 3-S9. Similar to Figure 3-1 but regenerated by eliminating hourly Vis records with 
RH > 70%. 

 
Figure 3-S10. Similar to Figure 3-2 but regenerated by eliminating hourly Vis records with 
RH > 70%. 

 

Figure 3-S11. Similar to Figure 3-S4 but regenerated by eliminating hourly Vis records 
with RH > 70%. 
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Figure 3-S12. Long-term (1948-2015) variations in NCEP surface relative humidity, 
surface air temperature, total cloud cover, surface (10m) horizontal wind speed and 
precipitation rate over winter (left) and summer (right) for the northeastern (red) and 
southeastern US (green). Relative trends (%/yr) for 4 periods are shown on the bottom of 
each panel. Trends with p < 0.1 are followed by one asterisk (*), and trends with p < 0.05 
are followed by two asterisks (**). 
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Chapter 4. Trends in Chemical Composition of Global and 
Regional Population-Weighted Fine Particulate Matter 
Estimated for 25 Years 

 

Reproduced with permission from “Trends in Chemical Composition of Global and 

Regional Population-Weighted Fine Particulate Matter Estimated for 25 Years” by Li, C., 

Martin, R. V., van Donkelaar, A., Boys, B. L., Hammer, M. S., Xu, J.-W., Marais, E. A., 

Reff, A., Strum, M., Ridley, D. A., Crippa, M., Brauer, M., and Zhang, Q., Environ. Sci. 

Technol., 51, 11185-11195, doi:10.1021/acs.est.7b02530, 2017. Copyright 2017 by the 

American Chemical Society. All text, figures and results were contributed by the first 

author. 

 

4.1 Abstract 

We interpret in situ and satellite observations with a chemical transport model 

(GEOS-Chem, downscaled to 0.1˚ × 0.1˚) to understand global trends in population-

weighted mean chemical composition of fine particulate matter (PM2.5). Trends in observed 

and simulated population-weighted mean PM2.5 composition over 1989-2013 are highly 

consistent for PM2.5 (-2.4 vs. -2.4 %/yr), secondary inorganic aerosols (-4.3 vs. -4.1 %/yr), 

organic aerosols (OA, -3.6 vs. -3.0 %/yr) and black carbon (-4.3 vs. -3.9 %/yr) over North 

America, as well as for sulfate (-4.7 vs. -5.8 %/yr) over Europe. Simulated trends over 

1998-2013 also have overlapping 95% confidence intervals with satellite-derived trends in 

population-weighted mean PM2.5 for 20 of 21 global regions. Over 1989-2013, most (79%) 

of the simulated increase in global population-weighted mean PM2.5 of 0.28 μg m-3yr-1 is 

explained by significantly (p < 0.05) increasing OA (0.10 μg m-3yr-1), nitrate (0.05 μg m-

3yr-1), sulfate (0.04 μg m-3yr-1) and ammonium (0.03 μg m-3yr-1). These four components 

predominantly drive trends in population-weighted mean PM2.5 over populous regions of 

South Asia (0.94 μg m-3yr-1), East Asia (0.66 μg m-3yr-1), Western Europe (-0.47 μg m-3yr-

1) and North America (-0.32 μg m-3yr-1). Trends in area-weighted mean and population-

weighted mean PM2.5 composition differ significantly. 
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4.2 Introduction 

Atmospheric aerosols have major roles in air quality (Fuzzi et al., 2015; West et al., 

2016), visibility (Li et al., 2016a; Malm et al., 1994; Wang et al., 2009) and climate 

(Bellouin et al., 2005; IPCC, 2013; Wild, 2009). Particles with an aerodynamic diameter 

of 2.5 μm or less (PM2.5) are a leading risk factor for global morbidity and mortality 

(Dockery et al., 1993; US EPA, 2009; Forouzanfar et al., 2016; Hoek et al., 2013). Not 

only does over 85% of the world’s current population live where annual estimated PM2.5 

is above the World Health Organization (WHO) guideline of 10 μg/m (Brauer et al., 2015; 

van Donkelaar et al., 2016), but recent cohort studies also reveal an association of mortality 

rates with long-term exposure to PM2.5 concentrations at levels below the WHO guideline 

(Correia et al., 2013; Crouse et al., 2012; Pinault et al., 2016), implying the need for further 

mitigation efforts (Apte et al., 2015). Changes in PM2.5 mass concentration are driven by 

changes in its chemical composition due to variations in emissions and atmospheric 

processes (Chin et al., 2014; Daskalakis et al., 2016; Fuzzi et al., 2015). Understanding 

trends in PM2.5 components can help inform source contributions and future mitigation 

efforts. Since the 1980s, regulations in developed regions have dramatically reduced 

emissions of primary particles and precursor gases, while the rapidly growing economies 

of developing countries have led to steeply rising energy consumption and pollutant 

emissions (Crippa et al., 2016; Daskalakis et al., 2016; Lu et al., 2011; Vestreng et al., 2007; 

Xing et al., 2013). Given the established impacts of PM2.5 on human health, improved 

understanding of how these changes affect trends in global PM2.5 burden and composition 

is warranted.  

A few regions have long-term in situ measurements of PM2.5 and its chemical 

composition. These measurements revealed regionally coherent decreases over North 

America in PM2.5 (Brook et al., 1999; US EPA, 2016; Wang et al., 2012), ammonium 

(Leibensperger et al., 2012; Silvern et al., 2017; Xing et al., 2015), sulfate (Brook et al., 

1999; Hand et al., 2012b; Leibensperger et al., 2012; Malm et al., 2002; Silvern et al., 2017; 

Xing et al., 2015), nitrate (Leibensperger et al., 2012; Xing et al., 2015), organic aerosol 

(Hand et al., 2013; Leibensperger et al., 2012; Marais et al., 2017; Zhang et al., 2017) and 

black carbon (Hand et al., 2013; Leibensperger et al., 2012; Murphy et al., 2011; Xing et 

al., 2015), and over Europe in sulfate (Tørseth et al., 2012; Turnock et al., 2015; Xing et 
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al., 2015), nitrate (Xing et al., 2015) and PM2.5 (Li et al., 2016a; Tørseth et al., 2012; Wang 

et al., 2012). Table 4-S1 summarizes these reported trends. Measurements in these regions, 

where emissions are relatively well known, offer valuable information to test the 

representation of PM2.5-related atmospheric processes in global models. Over regions 

without long-term in situ data, alternative proxies of PM2.5 provide complementary trend 

information (Table 4-S2), such as global trends in satellite observations of columnar 

aerosol optical depth (AOD) (Hsu et al., 2012; Mehta et al., 2016; Yoon et al., 2014). These 

satellite observations have been related to ground-level PM2.5 by chemical transport 

modeling (Boys et al., 2014; Geng et al., 2017) or statistical models (Hoek et al., 2008; Ma 

et al., 2016).  More broadly, models facilitate interpretation of these ground-based and 

satellite-based observations to understand sources and processes affecting these trends, and 

their relation with chemical composition (Chen et al., 2010; Chin et al., 2014). 

Chemical transport models (CTMs) have been widely used for global characterization 

of aerosol spatiotemporal variation, with the ability to quantify the contributions from 

different chemical composition and sources. Recent regional simulations largely 

reproduced observed aerosol trends over North America and Europe, affirming their value 

for interpretation (Leibensperger et al., 2012; Marais et al., 2017; Turnock et al., 2015; 

Xing et al., 2015). But the current generation of global models suffers from relatively 

coarse resolution that introduces spatial misalignment between population density and 

modeled PM2.5 that inhibits direct assessment of PM2.5 exposure using models alone. Case 

studies indicate that mortality estimates due to PM2.5 at a typical resolution of current 

global simulations could be systematically lower compared to estimates at finer resolutions 

(Li et al., 2016c; Punger and West, 2013). Thus in this study we combine the attributes of 

satellite observations at fine resolution with process-level information offered by CTM 

simulations. We spatially redistribute the CTM-modeled PM2.5 composition with satellite-

based PM2.5 estimates at 0.1˚ resolution, to produce a 25-year assessment of global 

population-weighted PM2.5 chemical composition from 1989 to 2013. We evaluate this 

downscaled simulation versus in situ observations where available. Then we apply this 

downscaled simulation to investigate global changes in population-weighted mean PM2.5 

chemical composition, to further understand the intrinsic drivers of trends in PM2.5 

exposure. 
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4.3 Materials and Methods 

4.3.1 Observations and Complementary Data 

We collect long-term observation data about PM2.5 and its chemical composition over 

North America and Europe, and the global ground-based PM2.5 measurements collected for 

the Global Burden of Disease Study (GBD) (Brauer et al., 2015). Population data at 0.1˚ × 

0.1˚ resolution are also used for exposure estimation. Details on data selection and 

processing are described in the Supporting Information (SI).  

For model downscaling to a resolution more relevant to population exposure, we use 

the global satellite-based PM2.5 estimates at 0.1˚ × 0.1˚ resolution (van Donkelaar et al., 

2016) that merged satellite AOD retrievals from 7 different algorithms inversely weighted 

by their errors against AERONET, converted AOD to PM2.5 using simulated PM2.5-AOD 

relationships, and then statistically fused (geographically weighted regression) these PM2.5 

estimates with ground-based measurements. We use the 5-year average data between 2008-

2012 (referred to as Meansat) when more ground-based PM2.5 records (over 4000) are 

available for statistical calibration.  

We evaluate simulated trends in global PM2.5 using mostly independent satellite-based 

PM2.5 trends (referred to as Trendsat). The 1998-2013 annual variations in global PM2.5 

were inferred from the SeaWiFS and MISR sensors that have long-term calibration stability 

(Boys et al., 2014; van Donkelaar et al., 2015). PM2.5 trends for 1999-2012 from these 

estimates show unbiased consistency with in situ measurements over the eastern US (Boys 

et al., 2014). The absolute concentrations of Trendsat are also calibrated to Meansat to match 

the 2008-2012 mean while preserving the original trends. The annual mean PM2.5 data to 

calculate Meansat and Trendsat are obtained directly from the publicly available archive 

(Global Estimates of Surface PM2.5, 2017). Although Meansat and Trendsat contain some 

common elements (e.g. both using AOD from SeaWiFS and MISR, and PM2.5-AOD 

relationship in GEOS-Chem), we attempt to isolate their independent information by 

focusing on the spatial distribution of absolute concentrations from Meansat, and on 

temporal variation from Trendsat to evaluate the downscaled simulation. 
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4.3.2 GEOS-Chem Simulation and Downscaling 

We use the GEOS-Chem CTM (version 11-01; http://www.geos-chem.org), including 

updated emission inventories and meteorological data from a consistent reanalysis 

(MERRA-2), to simulate the global evolution of PM2.5 chemical composition over 1989-

2013. More details about the simulation and historical emissions are provided in the SI. 

The current generation of global models does not sufficiently resolve spatial variation 

in PM2.5 to adequately estimate population exposure (Li et al., 2016c; Punger and West, 

2013). Thus we follow Lee et al. (2015a) to downscale the simulation to 0.1˚ × 0.1˚ 

resolution to match the PM2.5 magnitude and spatial variation in the 2008-2012 Meansat. 

This downscaled simulation (referred to as Simds) does not modify the modeled fraction or 

the simulated relative temporal variation of PM2.5 composition, since we apply to all years 

the same scale factors (namely, the 0.1˚ × 0.1˚ spatial map of ratios in the 2008-2012 mean 

of Meansat versus the simulation). Table 4-S3 contains a comparison of annual PM2.5 from 

Simds versus the global ground-based database collected for GBD. Globally and regionally, 

fine-scale information from Meansat improves the spatial representation of PM2.5 in Simds 

compared to the pure simulation. 

4.3.3 Trend Analysis and Evaluation 

We summarize time series as linear trends to aid presentation. Following commonly 

adopted methods in previous studies (e.g. Tables 4-S1 and 4-S2), we analyze data over a 

long time period (i.e. over ~10 years) to reduce random errors and to detect systematic 

trends. In addition to trends over 1989-2013, short-term trends over 2002-2013 are 

included to summarize more recent trends during the periods of denser in situ observations, 

and these over 1998-2013 are also calculated to facilitate comparison with Trendsat. Details 

on the trend analysis are contained in the SI.   
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4.4 Results and Discussion 

4.4.1 Emission Trends 

Figure 4-S2 shows time series of annual area-weighted mean emissions of major 

aerosol and precursor species over GBD regions, and Table 4-S5 lists trends in these 

regional emissions over 1989-2013. Substantial reductions in anthropogenic and total 

emissions of SO2, NOx, OC and BC are found over North America, Asia-Pacific and 

Europe, whereas increases in these species are substantial over Asia. Reductions are 

dramatic in SO2, OC and BC emissions before ~1996, with a transitional slow down 

afterwards over Central Asia, Central Europe and Eastern Europe (Crippa et al., 2016; 

Vestreng et al., 2007). SO2 emissions over East Asia also show a transition from increasing 

to decreasing at ~2006 (Lu et al., 2011; Wang et al., 2015b). NH3 emissions generally have 

increasing or insignificant trends except over Europe where NH3 emissions decrease. 

Strong inter-annual variation in OC and BC emissions occurs over biomass burning regions 

such as Eastern Europe (including Siberia), Southeast Asia, Tropical Latin America and 

Central Sub−Saharan Africa, and in mineral dust emissions from desert regions. 

4.4.2 In Situ Trends 

Figure 4-1 shows the spatial distribution over North America of annual trends in PM2.5 

and its composition from the downscaled simulation (Simds), overlaid with observed trends 

for two periods. The observations show significant (p < 0.05) decrease in population-

weighted mean (PWM) PM2.5 of -0.26 μg m-3yr-1 over 1989-2013, increasing in magnitude 

to -0.44 μg m-3yr-1 over 2002-2013, with larger decreases in the east than in the western 

interior. The collocated Simds well reproduces the composite PWM trends within 0.06 μg 

m-3yr-1. Steeper reductions in PWM sulfate, nitrate and ammonium at measurement sites 

over 2002-2013 than over 1989-2013 are indicated by both the observations and Simds, due 

to inclusion of more urban sites from EPA_CSN as well as stronger emission reductions in 

recent years (Figure 4-S2). These secondary inorganic aerosols (SIA) largely drive the 

PM2.5 decreases over North America, with significant decreases (p < 0.05) in PWM 

concentration over 1989-2013 in both the observations (-0.31 μg m-3yr-1 or -4.3 %/yr) and 

Simds (-0.28 μg m-3yr-1 or -4.1 %/yr), and more pronounced decreases over 2002-2013 in 
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both the observations and Simds. The Simds shows relatively weaker performance for nitrate 

trends, similar to recent simulations (Leibensperger et al., 2012; Xing et al., 2015), possibly 

due to bias in simulated HNO3 (Heald et al., 2012; Zhang et al., 2012a), uncertainties in 

NH3 emissions (Zhu et al., 2013), and non-linear sensitivity of nitrate partitioning to SO2, 

NOx and NH3 emissions (Holt et al., 2015; Pinder et al., 2008a). The observed and 

simulated annual decreases in PM2.5 and SIA are largely consistent with trends in winter 

and summer (Figure 4-S3 & 4-S4). Steeper decreases in sulfate and ammonium are 

observed in summer than in winter, a seasonal variation that is captured by Simds, reflecting 

faster photochemistry in summer that more closely connects emission changes to local 

concentration changes (Paulot et al., 2017). Meanwhile nitrate generally has higher 

concentration and stronger absolute decreases in winter when colder temperatures favor its 

formation (Pinder et al., 2008a). 

Observed significant (p < 0.05) reductions in PWM OA partially drive the PM2.5 

trends, and are consistent with the collocated Simds (-0.16 vs. -0.11 μg m-3yr-1) over 1989-

2013. This reduction in OA reflects different seasonal mechanisms in Simds. Over winter 

(Figure 4-S3), natural OA sources are weak and simulated OA trends are similar to the 

annual trends, driven by reductions in anthropogenic OC emissions (Figure 4-S2). Over 

summer (Figure 4-S4), observed decreases in OA over the southeastern US are well 

represented in Simds, due primarily to inclusion of an aqueous formation mechanism of 

isoprene SOA (Marais et al., 2016), which yields an SOA decrease driven by reductions in 

sulfate (Marais et al., 2017), consistent with observational evidence (Blanchard et al., 2016; 

Xu et al., 2015b). Meanwhile over 2002-2013, Simds underestimates observed PWM OA 

trends, driven by weaker wintertime OA trends in the simulation relative to observations 

(Figure 4-S3), due to increasing anthropogenic wood burning (US EPA, 2015) and OC 

emissions in the east after 2008.  

BC has significant (p < 0.05) decreases (-2.5 – -4.3 %/yr) in both the observations and 

Simds because of reductions in BC emission, despite small absolute changes. Finally, weak 

and mostly insignificant trends in PWM dust and sea salt are observed and simulated. 

Figure 4-S5 shows the spatial distribution of trends in sulfate and PM2.5 over Europe. 

Significant (p < 0.05) reductions in annual PWM sulfate observed over 1989-2013 (-0.15 
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μg m-3yr-1) and over 2002-2013 (-0.12 μg m-3yr-1) are seasonally consistent with Simds. The 

slower sulfate decline and fewer significant trends over 2002-2013 in both the observations 

and Simds reflect slower SO2 emission reductions (Figure 4-S2), consistent with previous 

investigations (Tørseth et al., 2012; Turnock et al., 2015). The PWM PM2.5 over all sites 

trend downward at p < 0.1 in observations and Simds over 2002-2013, driven mostly by 

sites over western Europe while most eastern sites have insignificant trends. The stronger 

reductions in observed PWM PM2.5 are disproportionately influenced by a single site near 

the Po Valley of Italy (IT0004R), and the paucity of sites across Europe. Excluding this 

site reduces the observed annual PWM trends by 75% (-0.15 μg m-3yr-1 or -1.4 %/yr), 

yielding better agreement with the collocated Simds (-0.23 μg m-3yr-1 or -1.6 %/yr).  

Table 4-S6 summarizes the network-composite PWM concentrations and trends 

between Simds and in situ data after spatial and temporal collocation. Observed and 

simulated PWM trends agree within their 95% confidence intervals (CIs) for 33 of the 35 

cases. All components except dust and sea salt have decreasing and significant trends in 

observations, which are mostly well reproduced by Simds. The importance of SIA and OA 

in driving PWM PM2.5 trends over North America is apparent in both observations and 

Simds. The Simds underestimates observed OA and its trends in IMPROVE and NAPS, 

which is an unresolved issue in current CTMs, likely due to missing anthropogenic sources 

and uncertainties in SOA modeling (Tsigaridis et al., 2014). The Simds also underestimates 

PWM BC, partially due to heterogeneity of BC (Hand et al., 2014b) not resolved in Simds. 

Our estimates of OA and BC contribution to PWM PM2.5 and its trends likely represent 

lower bounds. 
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Figure 4-1. Spatial distribution of long-term (1989-2013) and short-term (2002-2013) 
annual trends in PM2.5 and its chemical composition from the downscaled simulation 
(Simds, background) and in situ observations (symbols, with different shapes representing 
different networks). The significance (i.e. p value) of derived trends over land is indicated 
by the opaqueness of the colors. The color scale of trends for PM2.5 (saturated at ±1.0 μg 
m-3yr-1) and its chemical composition (saturated at ±0.4 μg m-3yr-1) differ. PM2.5 is 
simulated at 35% RH and its individual components are presented without aerosol water, 
for consistency with observational protocols. Composite trends (in μg m-3yr-1, with relative 
trends in %/yr in brackets) in population-weighted mean concentration from all sites are 
shown for observations (Obs) and spatiotemporally collocated Simds. Trends with >90% 
significance (p < 0.1) are followed by one asterisk (*), and those with >95% significance 
(p < 0.05) are followed by two asterisks (**). 

In summary, Simds generally well represents observed trends in PM2.5 and its 

composition across North America and Europe, where emissions are relatively well known. 

We find greater OA influence than in previous GEOS-Chem simulations (Boys et al., 2014; 

Leibensperger et al., 2012) due to stronger trends in OC emissions (Ridley et al., 2018; 

Xing et al., 2013), and to an aqueous isoprene SOA mechanism (Marais et al., 2017). The 

overall consistency of Simds with measurements supports its applicability to represent 
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atmospheric processes to understand the chemical components driving PM2.5 trends. We 

next evaluate the performance of Simds where emissions are less well known. 

4.4.3 Global Trends in PM2.5  

Figure 4-S6 shows global PM2.5 trends over 1998-2013 in Trendsat and Simds. The two 

datasets exhibit a high degree of consistency in the spatial distribution of trends and 

significance. Both datasets show significant (p < 0.1) increases over eastern Africa, India, 

China and the Middle East, and decreases over North America, western Africa and Europe. 

Regional mismatches are found from forest fires over boreal Canada and Russia, with little 

impact on regional PWM trends due to low population. The spatial distribution of trends 

from the two datasets are significantly correlated (r = 0.67, slope = 0.75), with even higher 

correlation (r = 0.85, slope = 0.76) where both datasets suggest significant trends at p < 0.1. 

Both Trendsat and Simds show significant (p < 0.05) increases in global PWM PM2.5 (0.53 

vs. 0.37 μg m-3yr-1), with overlapping 95% CIs.  

Table 4-S7 lists the annual PWM PM2.5 and trends over 21 GBD regions for 1998-

2013. The downscaling substantially improves the accuracy of PWM PM2.5 over several 

regions e.g. South Asia, Southern Latin America and Central Asia, where the original 

simulated PWM PM2.5 underestimates the satellite-based estimates by more than a factor 

of 2. This improvement reinforces the value of bringing together the satellite observations 

and simulation. The annual trends from Trendsat and Simds have overlapping 95% CIs for 

20 regions (except Oceania with ~0.1% of global population), and consistency in their 

significance (at 90% confidence) for the first 15 regions that comprise 91% of the global 

population. Both datasets also suggest the most pronounced and significant (p < 0.05) 

increases over South Asia (0.97 vs. 0.99 μg m-3yr-1) and East Asia (1.32 vs. 0.86 μg m-3yr-

1), in contrast with decreases over High-income North America (-0.31 vs. -0.39 μg m-3yr-

1), Western Europe (-0.23 vs. -0.23 μg m-3yr-1) and Central Europe (-0.23 vs. -0.30 μg m-

3yr-1). Increases over the densely populated regions of East and South Asia drive increases 

in global PWM PM2.5. Two other developing regions (Southeast Asia and Southern Sub-

Saharan Africa) and two arid regions (Eastern Sub-Saharan Africa & North Africa and 

Middle East) also show significant and consistent increases (p < 0.1) in both datasets. This 

overall agreement in regional PWM trends provides further confidence in the ability of 
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Simds to resolve trends on a global scale. We further extend the analysis of Simds to long-

term global trends in PM2.5 composition in the context of Trendsat.  

4.4.4 Global Trends in PM2.5 Composition 

Figure 4-2 shows trends in PM2.5 mass and composition from Simds over 1989-2013. 

The spatial pattern of simulated PM2.5 trends is similar (r = 0.81) to that over the shorter 

1998-2013 period, with a slightly weaker global PWM trend of 0.28 μg m-3yr-1, driven by 

stronger reductions over Europe and weaker increases over Asia in the 1990s. OA makes 

the largest individual contribution to the increase in global PWM PM2.5, with a significant 

PWM trend of 0.10 μg m-3yr-1, driven by substantial increases (> 0.2 μg m-3yr-1) over 

eastern China and India. This is despite substantial decreases (< -0.2 μg m-3yr-1) in OA over 

less populous tropical biomass burning regions driven by trends in the fire inventory 

(Figure 4-S2). Sulfate and ammonium have similar spatial distribution (r = 0.93) in annual 

trends, with pronounced increases (> 0.1 μg m-3yr-1) over India and China and pronounced 

decreases (< -0.1 μg m-3yr-1) over North America and Europe, driven by trends in regional 

SO2 emissions (Figure 4-S2). The global PWM trends in sulfate (0.04 μg m-3yr-1) and 

ammonium (0.03 μg m-3yr-1) are also driven by densely populated regions of South and 

East Asia. The global PWM nitrate trend of 0.05 μg m-3yr-1 exhibits the most pronounced 

increases (> 0.1 μg m-3yr-1) over China and northern India, and decreases (< -0.1μg m-3yr-

1) over the US and Europe. BC trends have similar spatial distribution (r = 0.78) with OA 

trends, with smaller yet significant contribution (0.02 μg m-3yr-1) to global PWM PM2.5 

trends. Dust trends exhibit a dipole with decreases over the western Sahara (< -0.2 μg m-

3yr-1) and increases over the eastern Sahara and Arabic Peninsula (> 0.3 μg m-3yr-1); its 

global PWM trend of 0.03 μg m-3yr-1 reflects these compensating effects. Sea salt trends 

are minor and insignificant. Trends in PM2.5 composition are similar over the period of 

satellite observations (Figure 4-S7), with largely consistent global PWM trends albeit 

smaller areas of significant trends. 
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Figure 4-2. Annual trends in global PM2.5 and its chemical composition over 1989-2013 
from the downscaled simulation. Aerosol water is associated with each chemical 
component at 35% RH. The significance (i.e. p value) of derived trends over land is 
indicated by the opaqueness of the colors. The color scale of trends for PM2.5 (saturated at 
±1.0 μg m-3yr-1) and its chemical composition (saturated at ±0.4 μg m-3yr-1) differ. Global 
population-weighted mean trends (95% confidence intervals in the square brackets) are 
shown, and trends with >95% significance (p < 0.05) are followed by two asterisks (**). 
Boundaries in the maps correspond to the 21 GBD regions in Figure 4-S1. 

Simds shows an increase in global PWM PM2.5 from 26.7 μg m-3 in 1990 to 32.0 μg 

m-3 in 2013, consistent with the GBD 2013 study (26.4 μg m-3 in 1990 and 31.8 μg m-3 in 

2013) (Brauer et al., 2015). These trends are primarily of anthropogenic origin, consistent 

with recent studies on PM2.5 air quality (Boys et al., 2014; Daskalakis et al., 2016; Lelieveld 

et al., 2015; Silva et al., 2016) and AOD (Chin et al., 2014; Pozzer et al., 2015). SIA and 
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OA account for 79% of the significant increase in global PWM PM2.5 (0.28 μg m-3yr-1), 

and drive PWM PM2.5 trends over densely populated regions (North America, Europe and 

Asia). In contrast, PM2.5 trends are driven by OA from open fires over tropical rainforests 

and by mineral dust over North Africa and the Arabic Peninsula. Reddington et al. (2015) 

reported recent air quality improvements driven by decreasing OA due to fewer 

deforestation fires over the Amazon. Boys et al. (2014) attributed the satellite-based PM2.5 

trends over the Arabic Peninsula to dust. We further examine the regional driving 

components based on analysis of regional time series in the next section.  

4.4.5 Regional Trends in Populated-Weighted Mean PM2.5 Composition 

Figure 4-3 summarizes annual concentrations and trends in PWM PM2.5 and its 

composition over 21 GBD regions from the downscaled simulation and satellite-based 

estimates. Below we discuss regional trends over 1989-2013. 

4.4.5.1 Densely Populated Regions 

The regions of South and East Asia have the largest increases in PWM PM2.5, 

consistent with long-term increases in aerosol loading from satellite AOD (Hsu et al., 2012; 

Yoon et al., 2014) and visibility observations (Che et al., 2007; Jaswal et al., 2013) (Tables 

4-S1 and 4-S2). SIA and OA account for over 90% of these increases. OA is the leading 

contributor to PWM PM2.5 increases over South Asia and the second largest contributor 

over East Asia. The OA trends over these two regions largely determines its role as the 

leading contributor to global PWM PM2.5 increases. 

Over South Asia, OA makes the largest contribution to the annual PWM PM2.5 

concentration (38%) and trends (43%), consistent with measurements of high OA fractions 

in PM2.5 (Ram et al., 2012; Snider et al., 2016), reflecting the extensive agricultural and 

biofuel burning in this region. The residential sector, primarily biofuel burning, accounts 

for the largest (39%) sectoral fraction of energy consumption in India (Lu et al., 2011). 

Lacey et al. (2017) estimated that eliminating residential solid fuel use in India and 

Bangladesh could avoid ~60 thousand premature deaths from outdoor PM2.5 each year, ~90% 

of which is associated with OA, illustrating the value of reducing OC emissions across this 

region (Ram et al., 2012; Venkataraman et al., 2005). 
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Over East Asia, nitrate has the largest trends, contributing to 35% of the annual 

increase in PWM PM2.5, due to continuously increasing NOx and NH3 emissions and to 

decreasing SO2 emissions since 2006 (Figure 4-S2). Over 2006-2013, PWM PM2.5 in East 

Asia insignificantly (p > 0.1) decreases in Trendsat and Simds, despite significantly (p < 

0.05) increasing nitrate (0.28 μg m-3yr-1). This recent reversal of PM2.5 trends over China 

is consistent with other investigations (Ma et al., 2016; Tang et al., 2017) (Tables 4-S1 and 

4-S2), and implies the role of nitrate in driving recent and future PM2.5 trends over China 

(Li et al., 2016b; Matsui and Koike, 2016; Wang et al., 2013) after recent reductions in SO2 

and sulfate (Wang et al., 2015b). China has made progress in reducing NOx emissions after 

2011 as observed by satellite observations (de Foy et al., 2016), but reducing nitrate could 

also benefit from reductions in NH3 emissions (Backes et al., 2016; Holt et al., 2015; Pinder 

et al., 2008b; Wang et al., 2013).  

Southeast Asia also has significant increases in PM2.5 especially over the Mainland 

(e.g. Figure 4-S6). Sulfate and ammonium drive the PWM PM2.5 trends, accounting for 

over 65% of the simulated PWM PM2.5 increase, consistent with the steady increases in 

fuel consumption (e.g. 275% increase in coal burning from 1990 to 2003), and in SO2 and 

NH3 emissions over this region (Li et al., 2017b; Ohara et al., 2007). OA accounts for 45% 

of PWM PM2.5, revealing the importance of open and residential burning (Cohen et al., 

2017b). But OA trends are insignificant due to strong meteorologically driven inter-annual 

variation of fires (Marlier et al., 2013). 

  



 

 
Figure 4-3 (caption on the next page). 
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Figure 4-3. Regional and global variations in annual population-weighted mean (PWM) 
PM2.5 and its composition in the downscaled simulation (Simds), with time series in 
satellite-based PM2.5 estimates (Trendsat) shown as thick blue lines. Different colors 
indicate different chemical composition. Aerosol water is associated with each chemical 
component at 35% RH. The PWM PM2.5 trends (95% confidence intervals in the square 
brackets) with >90% significance (p < 0.1) are followed by one asterisk (*), and those 
with >95% significance (p < 0.05) are followed by two asterisks (**).  For each region, the 
pie chart shows the 1989-2013 mean PWM concentrations in each composition with the 
mean PM2.5 concentrations in the middle, and the two bar plots show the trends of each 
chemical species over 1989-2013 and 1998-2013, respectively. Statistically significant 
trends (p < 0.1) are presented with filled bars while insignificant trends (p ≥ 0.1) are 
indicated by blank bars. 

Three populous regions have significant decreases in PWM PM2.5 in both the 

simulation and satellite-based estimates: Western Europe, High-income North America 

and Central Europe. Over the two European regions, more than 80% of PWM PM2.5 trends 

are explained by SIA, with especially pronounced decreases in the 1990s when SO2 

emissions decreased more rapidly (Figure 4-S2). Nitrate is a prominent component over 

Europe that comprises over 25% of PWM PM2.5 concentrations. Simulations and 

observations also indicate that the nitrate contribution to particle mass over Europe usually 

is similar to sulfate except during summer (Putaud et al., 2010; Schaap et al., 2004; Xing 

et al., 2015). Simultaneous reductions in NOx and NH3 emissions (Figure 4-S2) yield a 

pronounced nitrate decrease, accounting for 15-19% of PWM PM2.5 trends. Over High-

income North America, the driving roles of sulfate and OA, accounting for 69% of PWM 

PM2.5 decreases, are consistent with our previous discussions based on in situ data, and 

with an extensive body of literature (Table 4-S1). 

For these 6 populated regions, PM2.5 chemical components generally exhibit 

consistent contributions to PWM PM2.5 trends in all seasons due to seasonally consistent 

emission changes (Figure 4-S8 – 4-S11). Dust invasion in spring and summer to South 

Asia, and in spring to East Asia results in seasonal enhancements in the dust fraction in 

PWM PM2.5 concentration, but makes insignificant contribution to its trends. East Asia has 

higher PWM PM2.5 and OA concentrations and increases in winter with intensive coal and 

wood burning for domestic heating, and in fall with enhanced agricultural burning (Zhang 

et al., 2008; Zhang et al., 2012b). Europe has the highest PWM PM2.5 in winter driven by 

higher nitrate. North America has higher PM2.5 in summer associated with OA and sulfate. 
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4.4.5.2 Arid Regions 

Trends in SIA and OA are weak or variable over the two largest desert regions (North 

Africa and Middle East, and Western Sub-Saharan Africa), where dust explains most of 

the annual PWM PM2.5 concentrations (> 65%) and trends (> 75%). The opposite regional 

trends and significance levels are well captured by Simds over 1998-2013, and are 

consistent with prior trend analysis of dust (Ganor et al., 2010; Shao et al., 2013) and AOD 

(Klingmüller et al., 2016; Ridley et al., 2014) over these two regions (Table 4-S2). Over 

Eastern Sub-Saharan Africa, dust remains dominant but its importance is less pronounced 

(accounting for 33% of PWM PM2.5 and 57% of its increase) due to steady increases in 

SIA, OA and BC associated with anthropogenic emissions (Figure 4-S2). Over Southern 

Sub-Saharan Africa with weaker dust emissions and stronger increases in anthropogenic 

emissions, the dust contribution is negligible compared to the driving role of ammoniated 

sulfate.  

Dust exhibits strong meteorologically driven inter-annual variation and seasonality, 

thus its trends exhibit varying significance levels and contributions to PWM PM2.5 trends 

in different periods and seasons over these 4 regions (Figure 4-S8 – 4-S11). For example, 

the simulation indicates highest dust intensity in winter and lowest in summer over Eastern 

Sub-Saharan Africa, where dust is the dominant driver of PWM PM2.5 increases in winter, 

while OA becomes the leading contributor in summer. 

4.4.5.3 Tropical Biomass Burning Regions 

PWM PM2.5 changes over Tropical Latin America and Central Sub-Saharan Africa 

are driven by OA from biogenic sources and biomass burning. Insignificantly (p > 0.1) 

decreasing PWM PM2.5 in the satellite-based estimates over 1998-2013 are reproduced by 

the simulation, consistent with recent decreases in AOD (Bevan et al., 2009; Reddington 

et al., 2015) (Table 4-S2) and burning intensities (Andela and van der Werf, 2014; Giglio 

et al., 2013; Reddington et al., 2015) over these regions. Similar to the desert regions, 

strong inter-annual variation of fire intensity (Duncan et al., 2003; Giglio et al., 2013) leads 

to variable tendencies in different periods in PWM PM2.5 and OA over these two regions. 

Trends in OA and PM2.5 over 1989-2013 are more uncertain for regions with PM2.5 
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dominated by open fire sources, due to weaker constraints on fire emissions from satellite 

observations in early years (1989-1996) (Schultz et al., 2008). The PWM PM2.5 trends are 

solely driven by OA over Central Sub-Saharan Africa for all seasons, while SIA plays the 

dominant role over Tropical Latin America in winter (Figure 4-S8) and spring (Figure 4-

S9) when the intensity of burning is low.  

4.4.5.4 Other Regions 

Insignificant PWM PM2.5 trends are consistently indicated by both the satellite-based 

estimates and the simulation over High-income Asia Pacific, Southern Latin America and 

Australasia. Increasing pollutant transport from China (Aikawa et al., 2010; Itahashi et al., 

2012; Li et al., 2016a) compensates for the effects of decreasing local emissions (Figure 4-

S2) and partially explains the insignificant trends over High-income Asia Pacific in recent 

years. Over the two small dust source regions in the Southern Hemisphere, Simds attributes 

the insignificant trends in PWM PM2.5 to counteracting effects of different components, i.e. 

increasing SIA and dust in Southern Latin America and increasing SIA in Australasia 

counteracts decreasing OA driven by recent decreases in open burning (Giglio et al., 2013; 

Shao et al., 2013). 

The remaining 6 regions, containing 9% of the global population, exhibit less 

consistency in the magnitude and significance (at p < 0.1) of PWM PM2.5 trends in Trendsat 

and Simds. Over Central Latin America and Eastern Europe, mismatches in certain years 

(e.g. 1999-2000 over Central Latin America and 2005-2006 over Eastern Europe) are 

partially explained by uncertainties in open fire inventories. Over Central Asia and Andean 

Latin America, the satellite-based estimates suggest significant increases (p < 0.05) in 

PWM PM2.5 over 1998-2013, consistent with significant SIA increases in the simulation 

over both regions. Meanwhile the simulation has insignificant trends in total PWM PM2.5 

due to compensating effects of other components (e.g. dust over Central Asia and OA over 

Andean Latin America). The Caribbean and Oceania have strong influences from external 

transport in Simds. For example, the high dust fraction (31%) in annual PWM PM2.5 over 

the Caribbean reflects transport from the western African coast in spring and summer 

(Prospero and Lamb, 2003; Ridley et al., 2014). 
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4.4.5.5 Contrasts with Area-Weighted Trends 

Many long-term analyses of regional aerosol composition have focused on area-

weighted mean (AWM) or multi-station mean values (Chin et al., 2014; Hand et al., 2012b; 

US EPA, 2016; Turnock et al., 2015; Xing et al., 2015). We find significantly different 

concentrations and trends in PWM (Figure 4-3) and AWM (Figure 4-S12) PM2.5 

composition over the 21 GBD regions. Over populated regions, all PWM trends exceed 

AWM trends, since higher PM2.5 concentrations generally coexist with higher population 

densities. For example, PWM PM2.5 concentrations and trends are about twice those of 

AWM PM2.5 over High-income North America and Eastern Europe. Similarly, SIA 

generally has higher contributions to PWM PM2.5 and trends than in the AWM case over 

most regions. In contrast, the contribution of natural dust to PWM PM2.5 concentration is 

smaller than in the AWM case, especially over regions with both broad desert and 

populated cities (e.g. Australasia and the African arid regions), because the dustiest regions 

generally have lower population density. Similarly, the contributions of OA to PWM PM2.5 

and its trends are also smaller in the PWM cases than in the AWM cases over biomass 

burning regions (e.g. Tropical Latin America). The global AWM PM2.5 trend of 0.06 μg m-

3yr-1 is distinctively weaker than the significant PWM trends of 0.53 μg m-3yr-1 in Trendsat. 

In summary, population weighting yields significant differences from area weighting, with 

implications for conclusions about the dominant PM2.5 components and their contributions 

to PM2.5 trends. 

Overall, we found that Simds reproduced the significant reductions in PWM 

concentrations of PM2.5 chemical composition across North America and Europe, and 

exhibited consistency with satellite-based estimates of PM2.5 trends. Globally, population 

weighting, along with updated emission inventories and OA processes contributed to our 

finding that OA is the leading contributor to the global increase in PWM PM2.5 over 1989-

2013, followed by nitrate and sulfate. Our analysis also identified regional differences in 

PM2.5 trends and its key drivers, implying the need for ongoing attention to regional 

variation in emissions and chemistry. Despite the insights from this study, further work is 

needed in key areas. Finer resolution simulations would better resolve fine-scale and 

nonlinear processes affecting PM2.5 production and loss. Outstanding issues in current 

CTMs e.g. underestimation of OA (Tsigaridis et al., 2014), uncertainties in inter-annual 
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variation in open fire emissions, and regional biases in dust (Ridley et al., 2016) and nitrate 

(Heald et al., 2012) continue to warrant attention. Ongoing work to reduce uncertainties in 

emission inventories, especially beyond North America and Europe would further improve 

the accuracy of trends in PM2.5 composition and their contributions to PM2.5 trends. Future 

developments of satellite remote sensing of aerosol properties and accumulation of long-

term data in emerging global PM2.5 speciation networks (Snider et al., 2016) would offer 

valuable observational constraints. 
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4.6 Supporting Information  

4.6.1 Description of Compiled Observational Aerosol Trends from Literatures 

We collect literature results about observed trends in PM2.5 and its chemical 

composition, as tabulated in Table 4-S1. We focus on results at spatially coherent regional 

scales, but also include several studies over particular sites. Significant reductions are 

observed since the early 1990s for total PM2.5, secondary inorganic and carbonaceous 

aerosols over the US, Canada and Europe, as summarized in Table 4-S1. Outside these 

regions, regional trends derived from satellite aerosol optical depth (AOD) reveal persistent 

increases in PM2.5 over South Asia and the Middle East. Over China, a transition from 

increase to decrease is reported around 2006-2008.  

We also include studies on long-term trends in other indirect observations, e.g. 

satellite- and ground-based aerosol optical depth (AOD) and horizontal visibility, to 

evaluate our trend results outside North America and Europe. Table 4-S2 indicates 

persistent increasing trends in these PM2.5 proxies over India and Middle East and 

decreases over Western Africa. Over China, the transition from increasing aerosol loading 

to decreases at around ~2007 is further supported. Trends in aerosols over Australia are 

affected by large inter-annual variation in biomass burning and/or dust. Over Brazil, an 

overall decreasing trend since late 1990s is suggested, with a temporary increase due to 

fires during 2001-2005. 

4.6.2 Description of In Situ and Complementary Data 

In this study, employed in situ measurements in densely populated areas of North 

America include PM2.5 data from the US EPA based on the federal reference method 

(EPA_FRM) and the chemical speciation network (EPA_CSN), as well as the National Air 

Pollution Surveillance program over Canada (NAPS). Networks designed to represent the 

regional background include the US IMPROVE and the European EMEP. These datasets 

have been extensively described and evaluated (Dabek-Zlotorzynska et al., 2011; Hand et 

al., 2012a; Tørseth et al., 2012). We do not use the organic carbon (OC) and black carbon 

(BC) data from EPA_CSN due to a protocol change of carbonaceous aerosol measurements 

during 2007-2010 (Hand et al., 2012a; Hand et al., 2014b). From EMEP, we only use 
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sulfate and filter-based gravimetric PM2.5 data due to the scarcity (< 5) of long-term sites 

and variations in protocols (Tørseth et al., 2012) for other components. NAPS data of 

ammonium and nitrate before 2003 are not used due to concerns about volatilization losses 

(Brook et al., 1999; Dabek-Zlotorzynska et al., 2011). We also avoid the IMPROVE sulfate 

data before April 1989 and nitrate data between 1996-2000 due to concerns about data 

quality (http://vista.cira.colostate.edu/IMPROVE/data/QA_QC/Advisory.htm). All the 

data are screened based on available data quality flags, and averaged monthly provided at 

least 4 qualified observations are available for a month. 

To examine modeled PM2.5 concentration over broader areas, we also make use of 

global annual mean PM2.5 database (2008-2013) from surface monitors, collected for the 

Global Burden of Disease (GBD) (Brauer et al., 2015). Annual mean PM2.5 from the 

original and downscaled simulation are collocated with each record in the database. 

Statistics are calculated globally and for several regions with sufficient collocation pairs 

(Table 4-S3). 

We use gridded population estimates from the Socioeconomic Data and Applications 

Center (SEDAC, version 4, regridded to 0.1˚ × 0.1˚) to calculate population-weighted mean 

(PWM) PM2.5 for Global Burden of Disease Study (GBD) regions (Figure 4-S1). We 

estimate population for each year using linear interpolation from the original data that 

provides population estimates in 5-year intervals. The calculated PWM PM2.5 composition 

and trends are similar whether using time-varying or single-year population for all GBD 

regions. For example, over parts of Asia with strong population growth and domestic 

migration during urbanization, the PWM PM2.5 trends (and 95% confidence interval) in 

Trendsat based on time-varying population vs. the 2010 population are 1.32 (0.64, 1.93) vs. 

1.31 (0.61, 1.86) μg m-3yr-1 over East Asia and 0.97 (0.66, 1.31) vs. 0.92 (0.61, 1.27) μg 

m-3yr-1 over South Asia. This weak sensitivity of PWM trends to population change is 

consistent with prior findings for PM2.5 (van Donkelaar et al., 2015) and NO2 (Geddes et 

al., 2016). We show results with time-varying population. 
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4.6.3 Description of GEOS-Chem Simulation 

GEOS-Chem treats fully coupled tropospheric oxidant–aerosol chemistry (Bey et al., 

2001; Park et al., 2004), including black carbon (Park et al., 2003; Wang et al., 2011; Wang 

et al., 2014a), mineral dust (Duncan Fairlie et al., 2007; Zhang et al., 2013), sea salt (Jaeglé 

et al., 2011), the sulfate–nitrate–ammonium system (Park et al., 2004), as well as primary 

(Pye and Seinfeld, 2010) and secondary (Pye et al., 2010) organic aerosols (OA). We 

update the original semi-volatile partitioning of secondary OA (SOA) formed from 

isoprene with the irreversible aqueous uptake scheme in Marais et al. (2016) The local ratio 

between OA and OC mass (OM/OC) in the model and in situ measurements varies 

spatiotemporally based on conventional literature values of 1.4 for primary OA, and 2.3 

for oxidized OA (Canagaratna et al., 2015; Philip et al., 2014a; Turpin and Lim, 2001). We 

include recent updates in dry (Fisher et al., 2011) and wet (Liu et al., 2001; Wang et al., 

2011; Wang et al., 2014a) deposition. The ISORROPIA II thermodynamic module 

(Fountoukis and Nenes, 2007) performs aerosol–gas partitioning as implemented by Pye 

et al. (2009) Aerosol uptake of N2O5 is given by Evans and Jacob (2005). HNO3 

concentrations are reduced following Heald et al. (2012) for better consistency with 

observations. Aerosol optics affect photolysis rates as described by Martin et al. (2003b) 

with updates on aerosol size distribution (Drury et al., 2010), dust optics (Ridley et al., 

2012) and brown carbon (Hammer et al., 2016). For consistency with common 

measurement protocols, simulated PM2.5 is at 35% relative humidity (RH), except for 

comparison with EMEP observations where PM2.5 is given at 50% RH to comply with 

European measurement protocols. Concentrations of simulated PM2.5 composition are also 

reported at 35% RH, except when comparing with measurements where aerosol water is 

completely excluded. 

We conduct simulations at a horizontal resolution of 2˚ × 2.5˚ with 47 vertical levels, 

driven by assimilated meteorology from the Modern-Era Retrospective analysis for 

Research and Applications, Version 2 (MERRA-2). This recent reanalysis from the Global 

Modeling and Assimilation Office offers a consistent assimilation from 1980, including 

updates in both the Goddard Earth Observing System Model and the assimilation system 

(Molod et al., 2015). We include a non-local boundary layer mixing scheme (Lin and 

McElroy, 2010). We follow the recommendations of Philip et al. (2016) to use a chemical 
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and transport operator duration of 20 min and 10 min, respectively, for computationally 

efficient operator splitting. We spin up the model for 1 month before each simulation to 

remove the effects of initial conditions. 

4.6.4 Description of Historical Emissions 

Emissions are handled in GEOS-Chem via the HEMCO module (Keller et al., 2014). 

We use the GEOS-Chem default emission inventories for lightning (Murray et al., 2012; 

Price and Rind, 1992), biogenic (Guenther et al., 2012; Hu et al., 2015; Tai et al., 2013), 

soil NOx (Hudman et al., 2012), volcano (Fisher et al., 2011), dust (Duncan Fairlie et al., 

2007; Zhang et al., 2013), sea spray (Jaeglé et al., 2011), aircraft (Stettler et al., 2011) and 

ship (Lee et al., 2011) sources.  

Global anthropogenic emissions are based on EDGAR v4.3.1 (Crippa et al., 2016) 

except for speciated volatile organic compounds (VOCs) which are from RETRO (Schultz, 

2007). These global inventories are overwritten with regional inventories as summarized 

in Table 4-S4. None of these inventories cover exactly the simulation period, thus we also 

collect available information to scale emissions to each year (Table 4-S4, Column 4). The 

global scale factors are from EDGAR v4.3.1, with available regional information over the 

US, Canada, Europe and Asia. The original emission summaries from the NEI (US) and 

APEI (Canada) do not provide BC or OC emissions. We apply the sector-specific OC to 

PM2.5 emission ratios based on data in the EPA SPECIATE database (Reff et al., 2009) to 

calculate OC emission trends from the available primary PM2.5 emissions over the US and 

Canada, following the approach in Ridley et al. (2018) for the US. Since most estimates of 

emission sources over the US use thermal optical methods to estimate BC as elemental 

carbon (EC), we use the EC to PM2.5 emission ratio in SPECIATE to infer annual variations 

in BC emissions. 

The default open fire emissions are from GFED-4 (Giglio et al., 2013), covering the 

years 1997-2014. For the prior years of 1989-1996, we apply the annual variation from the 

RETRO fire emission inventory (Schultz et al., 2008) while preserving the seasonality in 

GFED-4. For each grid cell, each emission species and each month, we scale RETRO 
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emissions to match GFED-4 for the overlapping years 1997-2000. We fill RETRO grids 

without emissions with climatological mean monthly GFED-4 data over 1997-2000.  

4.6.5 Description of Trend Analysis and Evaluation 

Linear trend slopes and significance levels are calculated from annual or seasonal 

mean time series, based on the Theil-Sen slope (Sen, 1968) and the Mann-Kendall test 

(Mann, 1945). Relative trends are expressed as normalized to the multi-year mean. We 

focus on annual trends while also provide information on seasonal trends for additional 

insight. Following Li et al. (2016a), a valid trend requires 2/3 of the total years in the 

specified period, with each record averaged from at least 6 months per year for annual 

trends and 2 months per year for seasonal trends. Network- or region- composite PWM 

trends are calculated by firstly aggregating measurements to 0.1˚ × 0.1˚ grids before 

population-weighted averaging. We require each site to contain at least 2/3 of total years 

for each study period, and each annual record to be averaged from at least 75% of the total 

sites to ensure the spatial and temporal representativeness of the composite time series. 

 



 

Table 4-S1. Summary of literature results of trends in PM2.5 and its chemical composition. Results are based on in situ 
measurements except for the last 3 studies over China which are based on estimates from satellite aerosol optical depth (AOD). 
Increasing trends are colored in red and decreases in green. If mentioned in the paper, statistically significant trends are bolded 
and insignificant trends are slant. Only results in Geng et al. (2017) are based on population-weighted mean concentrations.  

City/Region 
Trend (No. of sites if available), μg m-3yr-1 (%yr-1 if absolute trend not available) 

Period Reference 
PM2.5 Sulfate Nitrate Ammonium OA BC 

US (IMPROVE)  -0.033 (27) -0.003 (27)   -0.006 (26) 
1990-2010 (Xing et al., 2015) 

US (CASTNET)  -0.099 (38) -0.006 (38) -0.026 (38)   

US  -2.7% (53)     1990-2010 
(Hand et al., 2012b) 

US  -4.6% (157)     2001-2010 
US     Negative (total carbon) 1990-2010 (Hand et al., 2013) 
US      -2.2% (50) 1990-2004 (Murphy et al., 2011) 
US -1.4%      1990-2015 (US EPA, 2016) 
US -1.8% (406)      1998-2010 (Wang et al., 2012) 

US (summer)  -8.0%  -8.5%   
2003-2013 (Silvern et al., 2017) 

Southeast US (summer)  -9.2%  -9.1%   

Eastern US  -2.1% (54) -1.1% (54) -1.9% (41) -1.7% (15) -2.5% (15) 1990-2009 (Leibensperger et al., 
2012) 

Southeast US   -0.21 (8) -0.01 (8) -0.05 (8) -0.17 (8)  2004-2012 (Saylor et al., 2015) 
(median trend) 

Southeast US  -0.40 (8) -0.19 (8) -0.01 (8) -0.08 (8) -0.18 (8) -0.05 (8) 1999-2010 (Blanchard et al., 2013) 
Southeast US 

(IMPROVE, summer) 
 -2.8%   -1.6%  1991-2013 

(Marais et al., 2017) Southeast US  
(SEARCH, summer) 

 -4.0%   -1.9%  1998-2013 

Southeast US 
(IMPROVE, summer) 

 -4.5%   -1.5%  1992-2013 
(Attwood et al., 2014) Southeast US  

(SEARCH, summer) 
 -6.7%   -0.9%  1998-2013 

Canada -0.6 (10) -0.05 (10)     1986-1995 (Brook et al., 1999) 
Canada -0.8% (56)      1995-2009 (Wang et al., 2012) 
Europe  -0.104 (39) -0.008 (12) 0.005 (6)   1990-2010 (Xing et al., 2015) 

Europe (winter)  -0.19     
1978-2009 (Turnock et al., 2015) 

Europe (summer)  -0.17     
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Europe -0.9% (98)      1998-2009 (Wang et al., 2012) 
Europe -5.8% (10)      2006-2013 (Li et al., 2016a) 
Europe -2.7% (13)      2000-2009 

(Tørseth et al., 2012) 
Europe  -2.8% (30)     1990-2009 

California, US      -2.5% 1989-2008 (Bahadur et al., 2011) 
Los Angeles, US     -0.25 -0.09 1970-2010 (McDonald et al., 2015) 

Edmonton, Canada −0.05 -0.01 0.004 -0.005 -0.14 (OC) -0.15 2007-2014 (Bari and Kindzierski, 
2016) 

Montseny, Spain -0.65 -0.09 -0.04 -0.06 -0.14 (OC) -0.001 2002-2010 (Cusack et al., 2012) 

Po Valley, Italy -0.82 (24)      2006-2014 (Bigi and Ghermandi, 
2016) (median trend) 

Spain -0.30 (9)      2001–2012 (Querol et al., 2014) 
(median trend) 

Beijing, China -3.18      2005-2013 (Zhang et al., 2015) 
Wanqingsha, 

Guangdong, China 
(Fall and Winter) 

-8.58 -1.72 0.79  -1.10 (OC)  2007-2011 (Fu et al., 2014) 

Tokyo, Japan -5.0% (4)      2001-2010 (Hara et al., 2013) 
Seol, Korea -0.55      2004-2013 (Ahmed et al., 2015) 

China -0.28%      2005-2012 (Geng et al., 2017) 
(derived from satellite 

AOD) 
China 18.19%      2005-2007 
China -2.67%      2008-2012 
China 1.97      2004-2007 (Ma et al., 2016) 

(derived from satellite 
AOD) China -0.46      2008-2013 

East China 0.79      
1998-2012 

(Boys et al., 2014) 
(derived from satellite 

AOD) 
India 0.93      

Middle East 0.81      
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Table 4-S2. Summary of literature results of trends in PM2.5 proxies over broad regions outside North America and Europe. 
Trends indicating increasing aerosol loading are colored in red and those representing decreasing aerosols in green. If mentioned 
in the paper, statistically significant trends are bolded and insignificant trends are slant. 

Variable, unita 
Trend, unit yr-1 (%yr-1 if absolute trend not available) Period Reference 

China India Western 
Africa Middle East Brazil Australia   

AOD 0.004 0.006 0.005 0.009   1998-2010 (Hsu et al., 2012) 
AOD (Multi-sensor) 1.45-5.66% 1.52-4.77%  1.63-3.84%   1998-2010 (Yoon et al., 2014) 
AOD (AERONET) -1% 0.5%  2% -10% 3% 1993-2013 (Yoon et al., 2016) 

AOD (MODIS&MISR) negative positive  positive negative  2001–2014 (Mehta et al., 2016) 

AOD  0.01–0.04     2000-2010 (Dey and Di 
Girolamo, 2011) 

AOD (ARFINET)b  2.97%     2001-2012 (Babu et al., 2013) 

AOD    0.014   2000-2015 (Klingmüller et al., 
2016) 

AOD 0.004      2002-2007 
(He et al., 2016) 

AOD -0.006      2008-2015 
Local AODc 0.003      2001-2007 (Sun and Chen, 

2017) Local AOD -0.002      2008-2015 
AOD (Aug-Nov)     0.02  2000-2005 (Koren et al., 2007) 

AOD (Aug-Oct)     -0.026  2001-2012 (Reddington et al., 
2015) 

AOD (dry season)     negative  1995-2000 
(Bevan et al., 2009) 

AOD (dry season)     positive  2000-2005 

AOD   -0.004    1980-2006 (Foltz and 
McPhaden, 2008) 

Dust AOD (Dec -Mar)   -0.003    
1982-2008 (Ridley et al., 2014) 

Dust AOD (Apr -Sep)   -0.005    

AOD (sun photometer 
network)      

18 of 22 sites 
insignificant, 
negative over 

tropical 
northwest 

2000-2015 (Mitchell et al., 
2017) 

Visibility, km -0.21      1990-2005 
(Che et al., 2007) 

1%      1981-2005 
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Extinction (bext) 
estimated from 
visibility, km-1 

1.5%      2000-2011 (Wang et al., 2012) 

AOD estimated from 
visibility 

0.002      1990-2005 
(Tang et al., 2017) 

-0.007      2006-2010 
0.002      1996-2009 (Wu et al., 2014) 

Annual haze days 
(days/year) 0.27      1961-2012 (Han et al., 2016) 

Winter haze days 
(days/year) 0.26      1980-2012 (Yang et al., 2016) 

Afternoon good 
Visibility days  -0.86%     

1961-2008 (Jaswal et al., 2013) Morning poor Visibility 
days  0.33%     

Dust estimated from 
visibility, μg/m3   -1.08 0.10  0.002 1984-2012 (Shao et al., 2013) 

Dust days (days/yr)    0.27   1958-2006 (Ganor et al., 2010) 

a. AOD is unitless, and refers to single-sensor satellite data if not specified. 

b. Median trend of 9 stations, among which 8 show significant positive trends 
c. Defined as average from AODs below the median value of all valid AODs during one period (e.g. a month), based on 
the assumption that localized aerosol emissions are persistent on both clear and polluted days.
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Table 4-S3. Comparison between annual mean PM2.5 from the downscaled and original (in brackets) simulation and from ground 
monitors collected for the GBD (2008-2013). For comparisons over each region, the number of collocated pairs (N), slope (k) 
of reduced major axis regression, correlation coefficient (R), and root mean square difference (RMSD, relative to the average of 
in situ data) are shown. 

Region Direct PM2.5 measurements PM2.5 estimated from PM10 
N k R RMSD N k R RMSD 

Global 1855 0.77 (0.58) 0.91 (0.80) 48% (76%) 2227 1.06 (1.06) 0.81 (0.67) 43% (59%) 
North America 793 0.92 (1.27) 0.72 (0.45) 24% (42%) 231 0.57 (0.77) 0.48 (0.19) 47% (69%) 

Europea 729 0.85 (0.53) 0.83 (0.62) 25% (43%) 1123 0.82 (0.48) 0.76 (0.55) 28% (43%) 
East Asia 99 0.70 (0.65) 0.84 (0.69) 35% (47%) 304 1.33 (1.88) 0.58 (0.36) 31% (50%) 

South Asia 18 0.77 (0.15) 0.64 (0.70) 39% (75%) 185 1.16 (0.44) 0.61 (0.38) 59% (54%) 
Middle East and Africab 34 0.85 (0.61) 0.64 (0.24) 42% (68%) 135 0.77 (0.25) 0.69 (0.45) 39% (72%) 

Other regions 182 0.74 (0.38) 0.73 (0.47) 55% (89%) 249 0.97 (0.71) 0.51 (0.44) 51% (59%) 

a. Includes all 3 European GBD regions, where PM2.5 is simulated at 50% RH for consistency with protocols, whereas 
PM2.5 at 35% RH is used for other regions. 
b. Including GBD regions of Central Asia, North Africa and Middle East and 4 sub-Saharan regions. 
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Table 4-S4. Summary of anthropogenic emission inventories used in this study. 

Region Inventory 
(coverage) Used species Annual scale factora Reference 

World 

EDGAR v4.3.1 
(1970-2010) 

CO, NOx, SO2, 
NH3, OC, BC N/A (Crippa et al., 

2016) 
RETRO 
(2000) VOCs from EDGAR v4.3.1, 

1970-2010 (Schultz, 2007) 

US EPA NEI 
(2011) 

CO, NOx, SO2, 
NH3, OC, BC, 

VOCs 

NEI historical emission, 
1990-2014b 

US 
Environmental 

Protection 
Agencye 

Canada CAC 
(2002-2008) 

CO, NOx, SO2, 
NH3, OC, BC APEI, 1990-2014c Environment 

Canadaf 

Mexico BRAVO 
(1999) CO, NOx, SO2 from EDGAR v4.3.1, 

1970-2010 
(Kuhns et al., 

2005) 

Europe EMEP 
(1990-2012) 

CO, NOx, SO2, 
NH3 N/A 

Centre on 
Emission 

Inventories and 
Projectionsg 

Asia MIX 
(2008-2012) 

CO, NOx, SO2, 
NH3, OC, BC, 

VOCs 

CO, NOx, NH3, VOCs 
from EDGAR v4.3.1, SO2, 

OC, BC from Lu et al. 
(2011) 

(Li et al., 2017b) 

a. Annual scale factors are applied only when the emission inventory lacks data for a 
certain year. These scale factors are all spatially resolved. Data in the closest available 
year is used if outside of the available range.  
b. https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei, 
state level. NH3 scale factors are not used due to methodological changes in 2000 (US 
EPA, 2001) and weak trends in NH3 emissions during the investigated period (Xing et 
al., 2013). Annual variation in OC/BC emission is calculated from PM2.5 emission 
based on Reff et al. (2009). 
c. http://ec.gc.ca/inrp-npri/donnees-data/ap/index.cfm?lang=En, province level. 
Annual variation in OC/BC emission is calculated from PM2.5 emission based on Reff 
et al. (2009). 
d. http://edgar.jrc.ec.europa.eu/overview.php?v=431 
e. https://www.epa.gov/air-emissions-inventories/2011-national-emissions-
inventory-nei-data 
f. https://www.ec.gc.ca/air/default.asp?lang=En&n=7C43740B-1 
g. http://www.ceip.at/webdab-emission-database 
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Table 4-S5. Summary of relative trends in PM2.5 related emissions over 21 GBD regions. 
Only statistically significant trends with >90% significance (p < 0.1) are shown, and trends 
with >95% significance (p < 0.05) are bolded.  

Region 
Trend (% yr-1, left: total emission; right: anthropogenic emission) 
SO2 NOx NH3 OC BC Dusta 

South Asia 3.4 3.4 3.0 3.0 1.3 1.4 1.6 1.7 1.9 2.0 -1.3 
East Asia 1.2 1.2 4.3 4.3 0.4 0.5 0.8 1.1 1.3 1.3  

Southeast Asia 1.3 1.8  2.8 1.0 1.6 -1.4 0.8  1.0  
Western Europe -7.4 -7.4 -3.1 -3.1 -1.0 -1.1 -3.3 -3.5 -3.7 -3.7 2.0 

High-income North America -4.7 -4.8 -2.4 -2.7  0.02  -2.2 -2.5 -3.2  
Central Europe -6.0 -6.0 -2.2 -2.3 -1.6 -1.8 -1.7 -1.5    

North Africa and Middle East 2.2 2.2 2.7 2.7 2.0 2.3   1.7 1.7  
Eastern Sub-Saharan Africa 1.1 2.6  3.8 1.5 2.8  1.9 0.6 2.7 2.1 
Western Sub-Saharan Africa  1.3  3.1 1.2 2.6 -0.9 1.5  2.4 -0.8 
Southern Sub-Saharan Africa 1.6 1.7 0.6 1.1 0.8 1.4 -0.9 0.6 -0.9   

Tropical Latin America -1.1  -1.5 2.0 0.7 2.1 -4.4 1.1 -3.2   
Central Sub-Saharan Africa -0.7 2.6 -1.1 4.0 -0.5 2.8 -1.2 2.3 -1.0 3.2 -3.3 
High-income Asia Pacific -4.8 -4.8 -1.2 -1.2 -0.4 -0.4 -4.8 -5.5 -3.1 -3.1  

Southern Latin America   1.2 1.7 1.7 2.3 -1.2 0.9  0.9  
Australasia  1.0 -2.7 -0.9  2.1 -4.1 -3.0 -4.4 -1.9  

Central Latin America -1.8 -1.7 0.7 1.5 0.7 1.3 -2.8 -0.6 -1.6 0.2 2.5 
Eastern Europe -3.6 -3.6 -1.9 -1.8 -2.2 -3.6  -4.5 -2.4 -1.9  

Central Asia -3.0 -3.0   -0.3   -1.6    

Andean Latin America  1.3  3.2 0.8 3.0 -3.5  -2.7 1.9  
Caribbean 0.7 0.8 -0.8  -0.7 -0.6 -4.0 -4.2 -3.8 -3.1  

Oceania 1.2 4.8 -2.4 3.9 -0.9 1.7 -3.9 1.3 -3.5 1.7  

a. No anthropogenic dust emission is included in this simulation. 
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Table 4-S6. Summary of annual network-composite population-weighted mean 
concentrations and trends in PM2.5 and its chemical composition over North America and 
Europe. The downscaled simulation (Simds) is temporally and spatially collocated with 
each in situ network before comparison. The 4th column (N) indicates the number of 
collocated grids. The Simds PM2.5 is given at 35% and 50% RH, to be compared with 
observations over North America and Europe, respectively, while its composition is in dry 
mass concentration. Absolute and relative (normalized to the multi-year mean 
concentration) trends (95% confidence intervals in the square brackets) with >90% 
significance (p < 0.1) are followed by one asterisk (*), and those with >95% significance 
(p < 0.05) are followed by two asterisks (**). 
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Table 4-S6 (continued, caption in the previous page) 

Period Species Network N Mean (μg m-3) Trend (μg m-3yr-1) Relative trend (% yr-1) 
In situ Simds In situ Simds In situ Simds 

1989 
- 

2013 

PM2.5 IMPROVE 58 12.00 13.90 -0.517 [-0.586, -0.450]** -0.523 [-0.588, -0.440]** -4.3 [-4.9, -3.8]** -3.8 [-4.2, -3.2]** 
NAPS 7 9.68 9.83 -0.199 [-0.264, -0.122]** -0.269 [-0.319, -0.214]** -2.1 [-2.7, -1.3]** -2.7 [-3.2, -2.2]** 

Sulfate 
EMEP 46 3.12 3.37 -0.148 [-0.179, -0.099]** -0.194 [-0.236, -0.151]** -4.7 [-5.7, -3.2]** -5.8 [-7.0, -4.5]** 

IMPROVE 58 3.76 3.88 -0.197 [-0.226, -0.163]** -0.190 [-0.232, -0.161]** -5.2 [-6.0, -4.3]** -4.9 [-6.0, -4.1]** 
NAPS 6 2.06 1.71 -0.063 [-0.090, -0.045]** -0.053 [-0.064, -0.042]** -3.0 [-4.4, -2.2]** -3.1 [-3.7, -2.5]** 

Ammonium 

IMPROVE 

29 1.86 1.68 -0.082 [-0.106, -0.058]** -0.063 [-0.077, -0.049]** -4.4 [-5.7, -3.1]** -3.8 [-4.6, -2.9]** 
Nitrate 38 1.21 1.09 -0.041 [-0.051, -0.026]** -0.016 [-0.028, -0.006]** -3.4 [-4.2, -2.2]** -1.4 [-2.6, -0.5]** 

OA 53 4.32 3.75 -0.156 [-0.199, -0.122]** -0.111 [-0.140, -0.061]** -3.6 [-4.6, -2.8]** -3.0 [-3.7, -1.6]** 
BC 53 0.88 0.49 -0.037 [-0.054, -0.024]** -0.019 [-0.021, -0.016]** -4.3 [-6.2, -2.8]** -3.9 [-4.4, -3.3]** 

Dust 59 0.70 0.18 -0.009 [-0.018, 0.003] 0.004 [-0.002, 0.009]* -1.2 [-2.5, 0.5] 2.5 [-0.9, 4.9]* 
Sea salt 52 0.16 0.11 -0.002 [-0.008, 0.005] 0.001 [-0.000, 0.002]* -1.1 [-4.9, 3.1] 0.8 [-0.1, 1.4]* 

2002 
- 

2013 

PM2.5 

EMEP 21 14.7 17.7 -0.596 [-1.198, -0.104]** -0.269 [-0.626, 0.008]* -4.1 [-8.1, -0.7]** -1.5 [-3.5, 0.0]* 
EPA_CSN 151 12.7 12.10 -0.532 [-0.796, -0.302]** -0.571 [-0.667, -0.440]** -4.2 [-6.3, -2.4]** -4.7 [-5.5, -3.6]** 
IMPROVE 154 9.92 11.60 -0.226 [-0.437, -0.012]** -0.319 [-0.547, -0.144]** -2.3 [-4.4, -0.1]** -2.8 [-4.7, -1.2]** 
EPA_FRM 737 11.60 12.10 -0.431 [-0.548, -0.398]** -0.506 [-0.604, -0.397]** -3.7 [-4.7, -3.4]** -4.2 [-5.0, -3.3]** 

NAPS 14 8.81 8.42 -0.221 [-0.418, -0.143]** -0.199 [-0.299, -0.094]** -2.5 [-4.7, -1.6]** -2.4 [-3.5, -1.1]** 

Sulfate 

EMEP 49 2.54 2.60 -0.118 [-0.192, -0.064]** -0.134 [-0.175, -0.085]** -4.7 [-7.5, -2.5]** -5.2 [-6.7, -3.3]** 
EPA_CSN 151 2.71 2.98 -0.215 [-0.323, -0.161]** -0.200 [-0.248, -0.146]** -7.9 [-11.9, -5.9]** -6.7 [-8.3, -4.9]** 
IMPROVE 154 2.03 2.90 -0.168 [-0.191, -0.142]** -0.132 [-0.185, -0.082]** -8.3 [-9.4, -7.0]** -4.6 [-6.4, -2.8]** 

NAPS 13 1.70 1.58 -0.117 [-0.158, -0.085]** -0.109 [-0.174, -0.049]** -6.9 [-9.3, -5.0]** -6.9 [-11.0, -3.1]** 

Ammonium 
EPA_CSN 150 1.33 1.43 -0.119 [-0.170, -0.085]** -0.084 [-0.102, -0.073]** -8.9 [-12.8, -6.4]** -5.9 [-7.1, -5.1]** 
IMPROVE 153 1.13 1.16 -0.092 [-0.134, -0.048]** -0.056 [-0.074, -0.041]** -8.1 [-11.9, -4.2]** -4.8 [-6.4, -3.5]** 

NAPS 5 0.73 1.01 -0.038 [-0.069, -0.022]** -0.044 [-0.062, -0.020]** -5.2 [-9.5, -3.0]** -4.4 [-6.2, -2.0]** 

Nitrate 
EPA_CSN 150 1.88 1.27 -0.101 [-0.128, -0.082]** -0.057 [-0.089, -0.034]** -5.4 [-6.8, -4.3]** -4.5 [-7.0, -2.7]** 
IMPROVE 153 1.52 0.77 -0.084 [-0.136, 0.029]* -0.038 [-0.067, -0.022]** -5.5 [-8.9, 1.9]* -5.0 [-8.7, -2.8]** 

NAPS 5 0.89 1.48 -0.030 [-0.091, 0.006]** -0.012 [-0.066, 0.014] -3.3 [-10.2, 0.7]** -0.8 [-4.4, 1.0] 

OA IMPROVE 154 4.57 3.01 -0.138 [-0.229, -0.027]** -0.037 [-0.095, 0.036] -3.0 [-5.0, -0.6]** -1.2 [-3.2, 1.2] 
NAPS 5 3.64 2.36 -0.095 [-0.194, -0.010]** -0.018 [-0.118, 0.054] -2.6 [-5.3, -0.3]** -0.8 [-5.0, 2.3] 

BC IMPROVE 154 0.74 0.52 -0.018 [-0.066, -0.002]** -0.006 [-0.026, 0.008] -2.5 [-8.9, -0.2]** -1.2 [-5.0, 1.5] 
NAPS 5 0.87 0.29 -0.044 [-0.061, -0.032]** -0.010 [-0.016, -0.005]** -5.1 [-7.1, -3.6]** -3.3 [-5.5, -1.6]** 

Dust EPA_CSN 23 1.09 0.55 0.018 [-0.004, 0.056] 0.009 [-0.015, 0.049] 1.7 [-0.3, 5.1] 1.6 [-2.7, 8.9] 
IMPROVE 154 1.41 0.61 0.011 [-0.057, 0.055] 0.011 [-0.047, 0.047] 0.8 [-4.1, 3.9] 1.9 [-7.8, 7.7] 

Sea salt 
EPA_CSN 77 0.12 0.22 -0.008 [-0.014, -0.002]** 0.001 [-0.005, 0.008] -6.7 [-11.7, -2.0]** 0.4 [-2.5, 3.7] 
IMPROVE 153 0.22 0.30 -0.002 [-0.008, 0.007] 0.005 [-0.013, 0.018] -0.8 [-3.6, 3.0] 1.8 [-4.3, 5.9] 

NAPS 12 0.16 0.10 -0.001 [-0.008, 0.006] 0.001 [-0.003, 0.004] -0.9 [-5.3, 3.8] 0.6 [-3.2, 4.2] 
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Table 4-S7. Regional and global population in 2010, mean and trends in annual population weighted mean (PWM) PM2.5 over 
1998-2013 from satellite-based estimates (Trendsat), the downscaled simulation (Simds) and the original simulation (Sim). Trends 
(95% confidence intervals in the square brackets) with >90% significance (p < 0.1) are followed by one asterisk (*), and those 
with >95% significance (p < 0.05) are followed by two asterisks (**). The first 15 regions show consistency in the significance 
level (at 90% confidence) of trends in both datasets, which are grouped in consistency with Sect 3.4.1-3.4.4 and sorted by 
population in each group. Regions with significant (p < 0.1) trends in Trendsat are bold, and those also with significant (p < 0.1) 
trends in Simds are underlined. 

Region Population 
(Million) 

PWM PM2.5 (μg m-3) 1998-2013 trend (μg m-3yr-1) 
Trendsat Simds Sim Trendsat Simds Sim 

South Asia 1607 46.4 45.2 29.1 0.97 [0.66, 1.31]** 0.99 [0.81, 1.20]** 0.62 [0.54, 0.77]** 
East Asia 1387 42.5 43.3 49.8 1.32 [0.64, 1.93]** 0.86 [0.47, 1.28]** 0.87 [0.46, 1.31]** 

Southeast Asia 614 15.8 16.2 12.9 0.26 [0.08, 0.40]** 0.15 [-0.02, 0.30]* 0.13 [0.01, 0.27]** 
Western Europe 417 14.8 14.6 11.2 -0.23 [-0.34, -0.12]** -0.23 [-0.31, -0.16]** -0.18 [-0.24, -0.12]** 

High-income North America 344 11.2 11.3 10.5 -0.31 [-0.39, -0.25]** -0.39 [-0.46, -0.32]** -0.37 [-0.43, -0.29]** 
Central Europe 117 21.0 20.3 14.4 -0.23 [-0.54, -0.04]** -0.30 [-0.46, -0.10]** -0.21 [-0.33, -0.08]** 

North Africa and Middle East 445 28.3 28.9 18.4 0.43 [0.21, 0.65]** 0.34 [0.17, 0.61]** 0.18 [0.09, 0.35]** 
Eastern Sub-Saharan Africa 363 16.5 16.0 11.6 0.11 [0.00, 0.21]** 0.17 [0.02, 0.30]** 0.12 [-0.00, 0.22]* 
Western Sub-Saharan Africa 339 40.8 40.5 47.0 -0.33 [-0.80, 0.22] -0.48 [-1.01, 0.19] -0.55 [-1.13, 0.20] 

Southern Sub-Saharan Africa 72 17.4 17.3 9.89 0.12 [0.05, 0.17]** 0.13 [0.02, 0.23]** 0.06 [-0.00, 0.12]* 
Tropical Latin America 204 8.99 8.95 6.36 -0.04 [-0.12, 0.05] -0.07 [-0.15, 0.06] -0.07 [-0.12, 0.04] 

Central Sub-Saharan Africa 98 22.6 22.2 28.1 -0.07 [-0.21, 0.12] -0.11 [-0.30, 0.18] -0.23 [-0.47, 0.17] 
High-income Asia Pacific 176 17.1 17.3 15.6 0.14 [-0.11, 0.25] -0.08 [-0.22, 0.07] -0.07 [-0.20, 0.06] 
Southern Latin America 61 11.8 11.9 4.62 0.03 [-0.01, 0.11] 0.01 [-0.07, 0.07] 0.00 [-0.04, 0.03] 

Australasia 26 4.83 5.34 3.88 0.00 [-0.05, 0.04] -0.05 [-0.14, 0.06] -0.04 [-0.11, 0.06] 
Central Latin America 234 12.4 13.0 8.47 -0.01 [-0.23, 0.18] -0.20 [-0.32, -0.07]** -0.11 [-0.19, -0.03]** 

Eastern Europe 208 16.5 16.0 11.0 -0.04 [-0.27, 0.15] -0.21 [-0.34, -0.02]** -0.15 [-0.24, -0.02]** 
Central Asia 81 27.3 28.1 11.7 0.27 [0.09, 0.39]** -0.03 [-0.37, 0.39] -0.03 [-0.16, 0.11] 

Andean Latin America 53 13.6 13.5 5.37 0.29 [0.11, 0.44]** 0.09 [-0.13, 0.30] 0.03 [-0.14, 0.11] 
Caribbean 27 6.55 6.98 5.11 0.06 [-0.04, 0.16] -0.07 [-0.14, -0.02]** -0.06 [-0.10, -0.01]** 
Oceania 7 1.52 1.79 2.83 0.11 [0.06, 0.15]** 0.01 [-0.01, 0.02] 0.03 [-0.01, 0.05]* 
Global 6880 29.9 29.9 25.5 0.53 [0.28, 0.77] ** 0.37 [0.27, 0.52]** 0.28 [0.18, 0.45]** 
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Figure 4-S1. Definition of GBD regions (adapted from http://www.healthdata.org/gbd/faq).  

 
Figure 4-S2. Anthropogenic (dashed) and total (solid) time series of annual mean emission 
over the 21 GBD regions. Volcanic, ship and aircraft emissions are not included. Different 
regions are indicated by colors. Regions with similar magnitudes of emissions are grouped 
for visualization clarity. 
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Figure 4-S3. Similar to Figure 4-1 but for wintertime (DJF) trends. 

 
Figure 4-S4. Similar to Figure 4-1 but for summertime (JJA) trends. 
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Figure 4-S5. Spatial distribution of long-term (1989-2013) and short-term (2002-2013) 
annual and seasonal trends in PM2.5 and sulfate from the downscaled simulation (Simds, 
background) and EMEP observations (diamond symbols). The significance (i.e. p value) 
of derived trends over land is indicated by the opaqueness of the colors. The color scale of 
trends for PM2.5 (saturated at ±1.0 μg m-3yr-1) and its chemical composition (saturated at 
±0.4 μg m-3yr-1) differ. PM2.5 is simulated at 50% RH and sulfate is presented without 
aerosol water, for consistency with observational protocols. Composite trends (in μg m-3yr-

1, with relative trends in % yr-1 in brackets) in population-weighted mean concentration 
from all sites are shown for observations (Obs) and spatiotemporally collocated Simds. 
Trends with >90% significance (p < 0.1) are followed by one asterisk (*), and those 
with >95% significance (p < 0.05) are followed by two asterisks (**). 
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Figure 4-S6. Annual PM2.5 trends (at 35% RH) over 1998-2013 from satellite-based 
estimates (upper) and downscaled simulation (lower). The significance (i.e. p value) of 
derived trends over land is indicated by the opaqueness of the colors. Global population-
weighted mean trends (95% confidence intervals in the square brackets) in PM2.5 are shown, 
and trends with >95% significance (p < 0.05) are followed by two asterisks (**). 
Boundaries in the maps correspond to the 21 GBD regions in Figure 4-S1. 
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Figure 4-S7. Similar to Figure 4-2 but for annual trends over 1998-2013. 
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Figure 4-S8. Similar to Figure 4-3 but for analysis of wintertime (DJF). 
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Figure 4-S9. Similar to Figure 4-3 but for analysis of springtime (MAM). 
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Figure 4-S10. Similar to Figure 4-3 but for analysis of summertime (JJA). 



 

109 

 
Figure 4-S11. Similar to Figure 4-3 but for analysis of fall time (SON). 



 

110 

 
Figure 4-S12. Similar to Figure 4-3 but for analysis of area-weighted mean PM2.5 and its composition. 
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Chapter 5. Assessing the Ability of Iterative Finite 
Difference Mass Balance and 4D-Var Methods to Retrieve 
Ammonia Emissions over North America Using Synthetic 
Cross-track Infrared Sounder Observations  

 

5.1 Abstract 

The recent emergence of satellite retrievals of ammonia (NH3) offers promise to 

constrain NH3 emissions. Here we evaluate two inverse modeling methods by conducting 

inversion experiments using the GEOS-Chem chemical transport model and its adjoint. We 

simulate pseudo observations of NH3 column density as observed by the Cross-track 

Infrared Sounder over North America to test the ability of the iterative finite difference 

mass balance (IFDMB) and the four-dimensional variational assimilation (4D-Var) 

methods to recover known NH3 emissions. Comparing to the more rigorous 4D-Var 

method, the IFDMB approach requires fewer iterations (~10 vs. ~25) to yield similar or 

smaller errors (12-17% vs. 17-26%) in the top-down inventories at 2˚ × 2.5˚ resolution, but 

consistently exhibits larger errors (44-69% vs. 30-45%) at 0.25˚ × 0.31˚ resolution. 

Analysis of simulated differences in NH3 columns and in NH3 emissions suggests stronger 

misalignments at the finer resolution. Adjoint calculations further indicate that the adjacent 

grids needed to account for >70% emission contributions to the local columnar NH3 

abundance over an NH3 source site increase from ~1 at 2˚ × 2.5˚ to ~10 at 0.25˚ × 0.31˚, 

leading to increased errors in IFDMB. Applying the inversion results from 2˚ × 2.5˚ 

resolution to update the a priori emissions at 0.25˚ × 0.31˚ resolution could improve the 

accuracy of IFDMB inversions, and reduce the number of iterations needed in the 4D-Var 

by ~10. 

 

5.2 Introduction 

Ammonia (NH3) is the most abundant alkaline gas in the atmosphere with major 

implications. Ammonia contributes significantly to atmospheric aerosols and in turn their 
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associated health effects and radiative forcing (Henze et al., 2012; IPCC, 2013; Lelieveld 

et al., 2015). NH3 is critical to the formation of new particles (Croft et al., 2016; Kirkby et 

al., 2011). NH3 is the dominant acid-neutralizing component in aerosols, and thus alters 

aerosol acidity (Guo et al., 2017; Weber et al., 2016) and associated properties (e.g. Holt 

et al., 2015; Jang et al., 2002; Xu et al., 2015a). Dry and wet deposition of NH3 and 

ammonium significantly affect soil properties and vegetation wellness (Fangmeier et al., 

1994; Stevens et al., 2004). Quantifying NH3 sources is a prerequisite for a better 

understanding of these environmental effects.  

Ammonia emissions are complex. The largest contribution to global NH3 emissions 

is from the agricultural sector (Bouwman et al., 1997), with emission rates of NH3 through 

farming and livestock production that depend on numerous geo-environmental factors that 

are highly variable in space and time (Huang et al., 2012; Paulot et al., 2014; Zhang et al., 

2018b), making “bottom-up” emission estimation challenging. Uncertainties in current 

bottom-up estimates of NH3 emission over North America have been attributed as a source 

of errors in modeled ammonium nitrate aerosols (Heald et al., 2012; Pye et al., 2009; 

Walker et al., 2012). Recent satellite remote sensing instruments provide unprecedented 

observations of columnar NH3 abundance with global coverage (Shephard et al., 2011; 

Shephard and Cady-Pereira, 2015; Van Damme et al., 2014; Warner et al., 2016; Zhu et 

al., 2015b). In addition to providing evaluation opportunities, these observations also 

enable inferring NH3 emissions using “top-down” inverse modelling approaches (Jacob et 

al., 2016; McLinden et al., 2016; Streets et al., 2013). Prior to applications to inversions 

with real data, it is essential to evaluate existing inversion methods using pseudo 

observations simulated from known emissions. 

Several recent studies applied the four-dimensional variational (4D-Var) assimilation 

approach to constrain NH3 emissions from satellite observations (Zhang et al., 2018b; Zhu 

et al., 2013). The 4D-Var method calculates the gradients of a cost function with respect to 

spatially resolved emissions in a forward model (e.g. a chemical transport model) and 

adjusts emissions to minimize the cost function based on the calculated gradients. The 

calculation of the gradients is efficient using the adjoint of the forward model (Henze et al., 

2007), where the sensitivities of observations to emissions through processes in the forward 

model (e.g. transport, chemistry and deposition) are explicitly accounted for. An alternative 
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and more computationally efficient approach, i.e. the mass balance method (Lamsal et al., 

2011; Martin et al., 2003a), simplifies the problem by treating the difference between the 

concentration from observations and from a forward model as linearly related with local 

emissions. This assumption may be inappropriate for long-lived species (Jacob et al., 2016; 

Streets et al., 2013) or finer resolutions (Turner et al., 2012), while these effects might be 

reduced by iterative processing (Ghude et al., 2013; Zhao and Wang, 2009). Using pseudo 

observations, a recent study (Cooper et al., 2017) found that for a short-lived species (NOx), 

the iterative finite difference mass balance method had similar errors in the emission 

estimates compared to the 4D-Var approach at coarse (4˚ × 5˚ and 2˚ × 2.5˚) resolutions. 

However, no prior studies have investigated the mass balance approach for NH3 emission 

inversion. Moreover, no comparison of these two methods has been performed at finer 

resolutions using pseudo observations, even though more recent studies have utilized 

regional inverse modeling to resolve spatially heterogeneous emissions at resolutions finer 

than 1˚ (e.g. Cui et al., 2017; Kaiser et al., 2018; Sheng et al., 2018; Turner et al., 2015; 

Zhang et al., 2018b). 

In this study, we evaluate the iterative finite difference mass balance (IFDMB) and 

the 4D-Var methods using synthetic satellite observations of NH3 column created from 

known emissions over North America. We compare the two approaches at coarse (2˚ × 

2.5˚) and fine (0.25˚ × 0.3125˚) resolutions to contrast their applicability. Section 5.3 

introduces the modeling tools used and inversion methods tested in this study. Comparison 

of inversion results are presented in Section 5.4, with discussions on the implications for 

realistic inversions. Conclusions are drawn in Section 5.5. 

 

5.3 Data and Methods 

5.3.1 GEOS-Chem and its Adjoint 

We use the GEOS-Chem chemical transport model and its adjoint to simulate NH3 

processes and sensitivities to NH3 emissions. Specifically, we use version 35k of the adjoint 

model for the 4D-Var inversion, and use the identical forward model to test the mass 

balance approach to facilitate comparison of these two methods. The forward model 
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simulates a detailed tropospheric ozone–NOx–hydrocarbon–aerosol chemistry (Bey et al., 

2001; Park et al., 2004). Although bi-directional exchange of NH3 flux could be significant 

and affect emission estimates (Wentworth et al., 2014; Zhu et al., 2015a), NH3 emission is 

treated as one-way in the current model version. Partitioning of NH3 gas and ammonium 

aerosol phases is calculated from the ISORROPIA II thermodynamic module (Fountoukis 

and Nenes, 2007). Removal of ammonia and ammonium aerosols are through wet (Liu et 

al., 2001; Wang et al., 2011) and dry (Wesely, 1989; Zhang et al., 2001) deposition. The 

GEOS-Chem adjoint includes the adjoint calculation of model processes of convection, 

advection, chemistry, turbulent mixing, wet removal and aerosol thermodynamics (Henze 

et al., 2007). The calculated sensitivities of modeled observations (e.g. column density) to 

emissions have been extensively applied to inverse modeling of aerosol sources (e.g. Paulot 

et al., 2014; Qu et al., 2017; Xu et al., 2013; Zhang et al., 2018b; Zhu et al., 2013). 

We conduct the simulations at coarse (2˚ × 2.5˚) and fine (0.25˚ × 0.3125˚) resolutions. 

The coarse resolution simulation is performed globally while the fine resolution simulation 

is applied to a nested-grid domain of 26.25˚ × 23.44˚ around the Great Lakes region of 

North America. The nested simulation domain is 105 × 75 grids around the Great Lakes. 

We discard 5 columns (rows) of grids at each boarder of the nested region for analysis to 

avoid impacts from the buffer zone (3 columns and rows) of one-way nesting. The 

simulations are performed for April, July and October in 2013, driven by assimilated 

GEOS-FP meteorology data (native resolution: 0.25˚ × 0.3125˚) from the Goddard Earth 

Observing System of the NASA Global Modeling and Assimilation Office. Natural and 

anthropogenic emissions of NH3 are from the Global Emissions InitiAtive (GEIA) 

inventory (Bouwman et al., 1997) unless stated otherwise, and open fire emissions are from 

Global Fire Emissions Database version 3 (van der Werf et al., 2010).  

5.3.2 Pseudo Observations 

We use synthetic observations to test the accuracy of the inversion methods to recover 

“true” emissions for satellite observing scenarios. We obtain NH3 retrievals from the Cross-

track Infrared Sounder (CrIS) (Shephard and Cady-Pereira, 2015) over North America. 

CrIS is a Fourier Transform Spectrometer onboard the Suomi National Polar-orbiting 

Partnership satellite. CrIS has a spatial resolution of 14 km at nadir, and a spectral 
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resolution of 0.625 cm-1 over the main NH3 absorbing spectral region (960-970 cm-1). CrIS 

is in a sun-synchronous orbit, with a mean local overpass time of 01:30 and 13:30 and 

twice daily global coverage. We only use the daytime retrievals with quality flag = 4 

(highest quality) to represent typical sampling scenarios in inversions. CrIS retrievals of 

NH3 are based on an optimal estimation method as described in Shephard and Cady-Pereira 

(2015). These retrievals compute the sensitivities of the retrievals to the true atmospheric 

state (i.e. average kernels), which are used to compute the CrIS “retrieved” NH3 from the 

GEOS-Chem simulations. The trace of the averaging kernel matrix gives the number of 

degrees of freedom for signal (DOFS).  

We first run the forward model with the “true” NH3 emissions (i.e. base simulations) 

to simulate hourly NH3 fields. Emissions, meteorology data and initial conditions in these 

base simulations are identical with the descriptions in Section 5.3.1 except that 

anthropogenic emissions of NH3 are overwritten with the 2008 U.S. National Emissions 

Inventory (NEI) over the US, and with the Criteria Air Contaminants (CAC) inventories 

over Canada (van Donkelaar et al., 2008). Simulated NH3 profiles collocated with the 

sampling time and locations are converted to the profile and column density (Ω) as 

“retrieved” using the a priori profiles and average kernels of CrIS. Two weeks of pseudo 

observations are prepared for each month and resolution. 

We apply these NH3 columns as pseudo observations to simulations using the a priori 

anthropogenic NH3 emissions (from GEIA) to evaluate two inversion approaches. We use 

normalized mean error (NME) and Pearson correlation (r) vs. the “true” emissions as 

standards to evaluate the emission estimates. The expression of NME is: 

                                                         ()* = ∑ |��-|∑ -                                                         (5-1) 

where x represents estimates and y represents the truth. 

5.3.3 Inversion Methods 

The iterative finite difference mass balance (IFDMB) approach is described elsewhere 

(Cooper et al., 2017; Lamsal et al., 2011). Briefly, the sensitivity of the column density (Ω) 

to emission (E) of NH3 over each grid box is linearized around an a priori concentration 
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obtained from a forward model. Then top-down emission estimates (Et) in one iteration can 

be calculated as: 

                                                        *� = *.(1 + 12�13413 )                                              (5-2) 

where 5 = ∆1/1∆8/8 . Ea is the a priori emission, corresponding to a simulated column Ωa, and 

Ωo is the observed column. The sensitivity (β) of fraction changes in NH3 column to those 

in NH3 emission can be determined from a simulation with Ea perturbed by 10%. The top-

down emission Et can be used as Ea in the next iteration. The iteration is interpreted as 

converged if consecutive iterations yields emission estimates with small normalized mean 

error (NME < 2%). We follow Cooper et al. (2017) to limit β values to the range 0.1–10 to 

avoid unrealistically large sensitivities and emission adjustments. We also briefly examine 

the performance of the iterative basic mass balance (IBMB) method (Martin et al., 2013a) 

in which β equals unity. 

 The emission optimization in 4D-Var starts with defining a cost function (J) that 

considers the error-weighted difference between the simulated and observed NH3 column: 

                    9(:) = ;<= − <(:)>?@=�A;<= − <(:)> + B(C − D)?@.�A(C − D)          (5-3) 

where Ωo is the vector of observed column, Ω(x) is the vector of simulated column, and x 

is the vector of emissions to be adjusted by scaling factors σ. So and Sa are the error 

covariance matrices in the observations and a priori, respectively. γ is the regularization 

parameter that determines the weighting of the cost function toward observations or a 

priori emissions. According to evaluation with surface remote sensing products (Dammers 

et al., 2017), a 35% random error is assumed to represent typical CrIS retrieval 

uncertainties, overwritten by an absolute error of 5×1015 molecules/cm2 to low-NH3 

records (Ω < 1.43×1016 molecules/cm2). The minimum absolute error is assumed to 

account for the increasing uncertainties in CrIS data under low-NH3 environments 

(Dammers et al., 2017; Kharol et al., 2018). We assume errors in each observation record 

are independent (i.e. So is diagonal).  

The GEOS-Chem adjoint model calculates the gradients of the cost function with 

respect to the distribution of emissions and uses the imbedded 4D-Var module to iteratively 
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adjust emissions to minimize the cost function. In this work, we focus on how well the 

inversion methods can reproduce the “true” emissions. Therefore, we do not include a 

weighted balance between observations and the a priori to generate the a posteriori 

estimates, but rather evaluate the top-down inversion results (e.g. Equation 5-2). For the 

4D-Var, this is done by setting γ=0, namely ignoring the right term in Equation 5-3.  

 

5.4 Results and Discussion 

5.4.1 Inversions at Coarse Resolution Using Ideal Pseudo Observations 

Figure 5-1 shows the results of inversion experiments at 2˚ × 2.5˚ resolution in April, 

July and October, 2013. The “true” NH3 emissions from NEI and CAC exhibit consistently 

high emissions over agricultural regions, e.g. southwestern California and the midwestern 

states. The a priori emissions from GEIA underestimate the domain-total emissions by 20-

70%. This underestimation is most significant in April, when the emissions have a 

maximum in NEI&CAC and a minimum in GEIA among the 3 months, highlighting the 

uncertainties in different bottom-up inventories. After inverting 2 weeks of pseudo 

observations, the IFDMB inversions reduce the NME of the a priori emissions from 53-

77% to 12-17%, and the 4D-Var tests reduce the NME to 17-26%. Both methods generally 

recover the domain-wide spatial distribution (r>0.95) of NH3 emissions. 
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Figure 5-1. Evaluation of top-down emission estimates at 2˚ × 2.5˚ resolution from iterative 
finite difference mass balance (IFDMB) method and from 4D-Var inversion. The left 
column shows “true” anthropogenic NH3 emissions. The other columns show the 
difference vs. the true emissions of the a priori emissions and the top-down emission 
estimates from IFDMB method and from 4D-Var inversion. Experiments are conducted 
for April (upper), July (middle) and October (lower) 2013. For each panel, total emission 
over the domain is shown at the bottom-left, normalized mean error vs. the “true” emissions 
is indicated at the bottom-right, and the number of iterations is indicated at the top-left. 

Figure 5-2 shows the evolution of the accuracy of the top-down estimates. Despite the 

similar or better performance, the computation burden in IFDMB inversions are 

significantly smaller, as indicated by the steeper reductions in NME, faster increases in the 

correlation, and the fewer number of iterations needed (~10 in IFDMB vs. ~25 in 4D-Var) 

to reach convergence. A maximum number of 30 iterations is conducted in the 4D-Var 

experiments, although the July case might not have converged.  
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Figure 5-2. Evolution of normalized mean error (red) and correlation (green) of top-down 
emission estimates from iterative finite difference mass balance method (blank circles) and 
4D-Var inversion (filled circles) for April (top), July (middle) and October (bottom), at 2˚ 
× 2.5˚ resolution. 

5.4.2 Inversions at Fine Resolution Using Ideal Pseudo Observations 

Figure 5-3 shows the performance of two inversion methods at 0.25˚ × 0.3125˚ 

resolution. At this fine resolution, the effects of transport become more apparent and both 

methods yield larger NME and smaller correlations with the “true” emissions compared to 

the inversions at coarse resolution. The IFDMB method nonetheless improves the emission 

estimates and reproduces the domain-wide total emissions. However, the 4D-Var estimates 

(NME=30-45%, r=0.85-0.95) exhibit significantly better skill in reproducing the spatial 

distribution of emissions than the IFDMB inversions (NME=44-69%, r=0.7-0.9). 
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Figure 5-3. Similar to Figure 5-1 but for experiments at 0.25˚ × 0.3125˚ resolution over a 
nested domain around the Great Lakes. 

Figure 5-4 shows the accuracy of top-down estimates after each iteration at the fine 

resolution. Fewer iterations are needed in the IFDMB (~10) than in the 4D-Var (~20) for 

convergence at the fine resolution, but the accuracy of the 4D-Var quickly exceeds that of 

the IFDMB. Both methods yield larger NME in the October inversions than in the other 

two months at both resolutions.  

Table 5-1 provides information on the base simulation and pseudo observations. April 

exhibits the strongest horizontal wind and the largest sensitivity (e.g. averaged DOFS) of 

CrIS observations. The strongest sensitivity (i.e. weaker reliance on the a priori NH3 

profiles) is consistent with the highest observed NH3 column in April (Shephard and Cady-

Pereira, 2015), which compensate the expected stronger “smearing effects” due to transport. 

Meanwhile October has the smallest observed NH3 emissions and CrIS sensitivities, which 

might be the main cause of the larger errors of inversion in this month. Figure 5-S1 shows 

that using the iterative basic mass balance (IBMB) methods (i.e. β fixed to 1) yields 

unstable inversion for October at fine resolution, while provides similar estimates as the 

IFDMB in other months. 
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Figure 5-4. Similar to Figure 5-2 but for experiments at 0.25˚ × 0.3125˚ resolution. 
Table 5-1. Description of pseudo observations in the base simulation. For each resolution, 
total number of observations (N), mean Degree of Freedom (DOFS), mean 10-m horizontal 
wind speed (W10, m/s) and mean NH3 column of all observations (Ω, ×1015 molecule/cm2) 
are shown for the domains of Figure 5-1 and Figure 5-3. 

Month 2˚ × 2.5˚ 0.25˚ × 0.3125˚ 
N DOFS Ω W10 N DOFS Ω W10 

201304 157684 0.82 8.4 4.5 29982 0.89 16 4.0 
201307 184359 0.77 5.9 3.4 50039 0.86 9.3 3.3 
201310 217115 0.75 3.4 3.5 44315 0.78 4.8 3.5 

Overall, our results at 2˚ × 2.5˚ resolution indicate that mass balance inversions with 

iterations provide similar accuracy as the more complex 4D-Var assimilation approach 

while requiring fewer iterations and computational resources, at least in the configurations 

applying CrIS sampling and sensitivities provided in this study. These are consistent with 

the conclusions for nitrogen oxides (NOx) emission inversions in Cooper et al. (2017), and 

suggesting promising application of the IFDMB for inversions at such coarse resolution. 

However, the 4D-Var exhibits greater skill at 0.25˚ × 0.3125˚ resolution if sufficient 

computational resources are available.  
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Figure 5-5. Comparison of inversion results at 0.25˚ × 0.3125˚ resolution, using the a priori 
emissions (left) and using the a priori emissions scaled with the IFDMB inversion results 
at 2 × 2.5˚ resolution (right).  

We also conduct sensitivity inversions at 0.25˚ × 0.3125˚ resolution by updating the 

a priori emissions with the scaling factors derived from the IFDMB inversions at 2˚ × 2.5˚. 

Figure 5-5 shows that the a priori emissions have reduced errors after the scaling, and the 

IFDMB inversions show improvements in both the NMEs and the correlations with the 

updated a priori emissions. The improvements are nearly negligible in July, and are most 

significant in October when the NME of the inversion results reduce from 69% to 49%. 

The dependence of IFDMB inversions on the accuracy of the a priori emissions indicates 

the weaker robustness of the inversion capability at the fine resolution. Meanwhile the 

NMEs and correlations of 4D-Var inversions are similar with the two a priori emissions, 

and are consistently better than the IFDMB inversions, indicating robust performance 

insensitive to the input a priori. It is noteworthy that using the updated a priori emissions 

that are closer to the “true” emissions could reduce the number of iterations to reach 

convergence (i.e. from ~20 to 10-15) in the 4D-Var inversions. This suggests that an initial 

inversion at coarse resolution (i.e. using the IFDMB method) could help reduce the 

computational resources needed for 4D-Var inversions at fine resolution. 
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5.4.3 Nonnegligible Effects from Transport at Fine Resolution 

The core assumption in the IFDMB approach is that the changes in NH3 column are 

driven by changes in local emissions in each grid. For NH3, violation of this assumption is 

mostly due to contribution to the observed column changes from non-local emissions via 

transport. Here we discuss the extent of such violation at coarse and fine resolution.  

  
Figure 5-6. Scatterplots between the difference (truth – simulation) of NH3 column density 
and that of NH3 emissions in the IFDMB inversions in April 2013, at 2˚ × 2.5˚ (left) and 
0.25˚ × 0.3125˚ (right) resolutions. Correlations are in brackets following the number of 
iterations indicated by colors. 

Figure 5-6 shows scatter plots of the column difference (ΔΩ) vs. emission difference 

(ΔE) between the base and a priori simulations in each grid for April 2013 during the 

iterations in IFDMB. The fine resolution case exhibits weaker correlation (0.57) than at 

coarse resolution (0.86) in the a priori (i.e. first iteration) simulation, characterized by a 

cluster of points around the Y-axis (i.e. large ΔΩ but nearly zero ΔE). The stronger 

misalignments between ΔΩ and ΔE clearly indicate stronger influence from non-local 

emission changes at fine resolution. As emission estimates improve for subsequent 

iterations, ΔΩ values reduce, and so does their correlation with ΔE. The iterations converge 

at both resolutions when the correlation between local ΔΩ and ΔE are reduced to ~0.25, 

and the scatter of the points are clustered around the X-axis (i.e. large ΔE but nearly zero 

ΔΩ), indicating residual misalignments between local ΔΩ and ΔE that cannot be resolved 

by further iterations. Although ΔΩ has been significantly reduced after the iterations, there 
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are more severe residual misalignments between ΔΩ and ΔE at fine resolution than at 

coarse resolution, indicating important effects from transport at finer grid size. 

To quantitatively assess the influence of non-local emissions to the observed NH3 

abundance, we calculate the gradient of the total columnar mass (M) of NH3 at a grid box 

to the fractional changes in anthropogenic NH3 emissions using the GEOS-Chem adjoint 

model. We then follow Turner et al. (2012) to calculate the fraction of the total gradient 

within a distance of the grid center to represent the cumulative emission influence on M.  

 

  
Figure 5-7. Emission influence of grids within a certain distance on total columnar mass of 
NH3 at a grid box normalized to the total influence from all grids. Results are given for a 
source (red grids and plot on the left) and a recipient (green grids and plot on the right) site 
at 2˚ × 2.5˚ (large grids and dashed line) and 0.25˚ × 0.3125˚ (small grids and solid line) 
resolutions. We approximate the width of a 2˚ × 2.5˚ grid as 200 km, and that of a 0.25˚ × 
0.3125˚ grid as 25 km.  

Figure 5-7 shows the increase of calculated emission influence following the distance 

for a source and a recipient grid at both resolutions. For the source site in Iowa, the local 

grid (within 100 km) contributes to ~40% of total NH3 burden, which increases to 60-70% 

after adding only one adjacent grid at each side (within 300 km) at 2˚ × 2.5˚ resolution. 

Our experiment suggests that the IFDMB method is capable of accounting for one adjacent 

grid after iterations and resolve the spatial distribution of emissions at such ~200 km scale. 
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At 0.25˚ × 0.3125˚ resolution, the local emission (within 12.5 km) of the Iowa site only 

contributes 10-20% to the NH3 columnar mass. The adjoint calculations at finer resolution 

reveal more details of source contribution from adjacent grids, and suggest that 5-10 

adjacent grids at each side (i.e. 100-400 total grids) are needed to accumulate the 

contribution to ~70%. The IFDMB method poorly accounts for interactions between 

hundreds of grids within that distance, thus fails to resolve emission distributions at the 

fine resolution according to our tests.  

The example recipient site at northern Michigan has much smaller NH3 emissions 

(Figure 5-1 and 5-3) and has weaker local contributions (< 22% at 2˚ × 2.5˚ and < 3% at 

0.25˚ × 0.3125˚) as well as slower accumulation with distance of the emission contribution 

than the source site. The calculation at 0.25˚ × 0.3125˚ resolution suggests that a 70% 

contribution should include all grids within 400-900 km around the site. The IFDMB 

method cannot correctly find the local emissions with such low local sensitivities. Thus 

although the iterative emission corrections over the other source regions gradually reduce 

ΔΩ, the resultant local emissions are erroneous as illustrated in Figure 5-6 by the clustering 

of points around the X-axis (wrong emission estimates despite reduced ΔΩ). 

In summary, our experiments indicate that the stronger effects of transport at finer 

spatial scales increase the adjacent grids needed to account for >70% emission 

contributions to local columnar mass from ~1 at 2˚ × 2.5˚ to ~10 at 0.25˚ × 0.3125˚. The 

IFDMB method poorly accounts for complicated transport effects of hundreds of grids. In 

contrast, the 4D-Var assimilation explicitly calculates these source influences by tracking 

processes including transport, thus has better skill in retrieving the spatial distribution of 

emissions at 0.25˚ × 0.3125˚ resolution.  

 

5.5 Conclusion 

We assessed the ability of two well-established inversion methods to retrieve top-

down NH3 emissions from satellite observations of NH3 column density over North 

America. Based on inversion results using pseudo observations, the iterative finite 

difference mass balance (IFDMB) approach requires fewer iterations (~10 vs. ~25) than 

the mathematically more rigorous four-dimensional variational assimilation (4D-Var) to 
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reach similar or lower inversion errors (NME of 12-17% vs. 17-26%) at 2˚ × 2.5˚ resolution. 

Meanwhile, the 4D-Var estimates (NME=30-45%, r=0.85-0.95) yield significantly 

improved inversions than the IFDMB (NME=44-69%, r=0.7-0.9) and exhibit more 

robustness against the input a priori emissions at 0.25˚ × 0.3125˚ resolution. The large 

errors of IFDMB at 0.25˚ × 0.3125˚ resolution are attributed to enhanced effects of 

transport. Nevertheless, applying the inversion results from 2˚ × 2.5˚ resolution to update 

the a priori emissions at 0.25˚ × 0.3125˚ resolution could improve the accuracy of IFDMB 

inversions and reduce the number of iterations needed in the 4D-Var by ~10. Our results 

suggest promising application of the more computationally efficient IFDMB method for 

top-down NH3 emission inversions at coarse resolution, as well as for refining the a priori 

emissions to accelerate the 4D-Var inversions at fine resolution. 
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5.6 Supporting Information 

 
Figure 5-S1. Comparison between the iterative finite difference mass balance (IFDMB) 
and the iterative basic mass balance (IBMB) inversion methods at 2˚ × 2.5˚ (left) and 0.25˚ 
× 0.3125˚ (right) resolutions. 
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Chapter 6. Conclusions 

 

6.1 Summary 

Aerosols exert significant effects on the global environment, human health and 

climate change. The current state of understanding of aerosols and their effects is limited 

due to complicated sources and processes that dynamically alter their size, composition 

and abundance. This study exploits a large suite of observation data and a chemical 

transport model (CTM) for characterizing global and regional aerosol trends and sources.  

In Chapter 2, decades of visibility data from ~30,000 global stations are collected to 

inform trends in haze, which reflect trends in surface aerosol extinction contributed 

dominantly by fine particulate matter (PM2.5). Despite the intuitively straightforward 

relationship between inverse visibility (1/Vis) and surface atmospheric extinction (bext), we 

find that a critical step for such purpose is a comprehensive data filtering process. Besides 

eliminating records with high humidity and spikes as is conventionally performed in other 

studies, there is a tendency of weaker representativeness of aerosol variation by 1/Vis under 

cleaner environment. This tendency is revealed by the higher correlations (r > 0.5) between 

monthly 1/Vis and bext data from the Interagency Monitoring of PROtected Visual 

Environments (IMPROVE) network over the eastern US and the two most polluted 

metropolitan areas in California than over other sites (Figure 2-3). The manual reporting 

of discrete visibility with a maximum threshold is the main contributor to the weakened 

representativeness. We consider this factor in our filtering algorithm, and further examine 

and separate discontinuities in the time series of 1/Vis. The quality assured 1/Vis data 

exhibit over less than 4000 sites after screening, and reveal trends (95% confidence 

intervals in brackets) that are consistent with collocated bext trend over the US in 1989-

1996 (1/Vis: -1.6% [-2.4, -0.8] yr-1; bext: -2.4% [-3.7, -1.1] yr-1), and with collocated PM2.5 

trend over Europe in 2016-2013 (1/Vis: -3.4% [-4.4, -2.4] yr-1; PM2.5: -5.8% [-7.8, -4.2] yr-

1). This consistency supports the applicability of the screened 1/Vis dataset for historical 

and regional haze trend studies. 
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Application of the screened 1/Vis data to calculate regional trends over several 

separating periods reveals historical haze pollution during six decades (1929-1996) over 

the eastern US, and during four decades (1973-2013) over Europe and eastern Asia. Several 

reversal points of 1/Vis trends are largely consistent with transitions in sulfur dioxide (SO2) 

emission trends, reflecting historical socioeconomic events and environmental regulations. 

Some inconsistencies between SO2 and 1/Vis evolution may be contributed by anomalies 

in meteorology and other aerosol sources. 

In Chapter 3, we further interpret historical changes in the seasonality of 1/Vis over 

the eastern US with a recently published historical emission inventory of major 

anthropogenic aerosol sources during 1946-1998. We find that the regional dominance of 

summer maxima in PM2.5 as observed from aerosol chemical composition network in 1999-

2009 was reversed historically. This region was characterized by winter maxima in 1/Vis 

before the 1950s, and the summer/winter ratio in 1/Vis increased steadily over 1946-1975. 

This reversed seasonality is attributable to increasing SO2 emissions (increasing sulfate and 

strengthening summer maxima) since the mid 1950s and decreasing organic carbon (OC) 

and black carbon (BC) emissions (decreasing primary organic aerosols and black carbon 

and reducing winter maxima) since the 1940s. We also find that summer 1/Vis exhibits 

faster increase over the southeastern US than over the northeastern US during 1956-1975 

despite the greater sulfate dominance in PM2.5 over the northeast, suggesting that secondary 

organic aerosols (SOA) should have increased concurrently with increasing sulfate. These 

findings highlight the ability of combining 1/Vis data and historical emissions to 

qualitatively reveal historical changes in major aerosol composition. 

In Chapter 4, evolutions in surface PM2.5 and its chemical composition over 1989-

2013 are simulated using the GEOS-Chem CTM at 2˚ × 2.5˚ resolution. We collect 

available global and regional emission inventories and their historical evolution for the 

study period to supply the simulation, and use satellite-derived global PM2.5 to further 

downscale the simulation to a resolution (0.1˚ × 0.1˚) relevant to population exposure 

studies. The downscaled simulation not only increases the correlation vs. global in situ 

measured PM2.5 from 0.80 (original simulation) to 0.91, but also successfully reproduces 

observed trends (1989-2013) in population-weighted mean (PWM) PM2.5 (observation vs. 

downscaled simulation: -2.4 vs. -2.4 %/yr), secondary inorganic aerosols (-4.3 vs. -
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4.1 %/yr), organic aerosols (OA, -3.6 vs. -3.0 %/yr) and black carbon (-4.3 vs. -3.9 %/yr) 

over North America, and in PWM sulfate (-4.7 vs. -5.8 %/yr) over Europe. The successful 

reproduction of OA trends over North America in both winter and summer is a model 

improvement, benefiting from reasonable trends in OC emissions and recent updates in 

SOA yields.  

Showing statistically overlapping trends in PWM PM2.5 vs. trends in satellite-derived 

PM2.5 over 20 of the 21 Global Burden of Disease Study regions, the downscaled 

simulation attributes nearly 80% of the significant (p < 0.05) increase in global PWM PM2.5 

(0.28 μg m-3yr-1) over 25 years to significantly (p < 0.05) increasing OA (0.10 μg m-3yr-1), 

nitrate (0.05 μg m-3yr-1), sulfate (0.04 μg m-3yr-1) and ammonium (0.03 μg m-3yr-1), 

reflecting the dominant contribution of anthropogenic emissions to changes in population 

exposure to PM2.5. Unlike the populated regions of North America, Europe, South Asia 

and East Asia where these four species also predominantly drive the steady trends in PWM 

PM2.5, the inter-annual evolutions in PWM PM2.5 are with dominant influences from dust 

over desert regions in Africa, and from organic aerosols due to biomass burning over 

African and Amazon forests. We also find that global trend in area-weighted mean PM2.5 

is much weaker (0.06 μg m-3yr-1) in the satellite-derived PM2.5, distinctly different from the 

trend in PWM PM2.5 (0.58 μg m-3yr-1). 

In Chapter 5, we use the GEOS-Chem model and its adjoint to evaluate how satellite 

observations of ammonia (NH3) abundance can improve our understanding of NH3 

emissions. We create synthetic NH3 column density as observed by the Cross-track Infrared 

Sounder with known emissions and apply two inversion methods to infer top-down NH3 

emissions from these pseudo observations. We find that the iterative finite difference mass 

balance (IFDMB) approach requires fewer iterations (~10 vs. ~25) than the four-

dimensional variational assimilation (4D-Var) to reach similar or lower normalized mean 

errors (NME, 12-17% vs. 17-26%) in the inversions at 2˚ × 2.5˚ resolution. However, the 

4D-Var estimates (NME=30-45%, r=0.85-0.95) exhibit pronounced advantages over the 

IFDMB (NME=44-69%, r=0.7-0.9) at 0.25˚ × 0.3125˚ resolution. At 0.25˚ × 0.3125˚, 

simulated differences in NH3 column and in NH3 emission exhibit strong misalignments 

and the local emission contribution to columnar NH3 abundance is less than 20%, 

explaining the large errors because of reduced representativeness of transport in IFDMB. 
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We also find that the IFDMB inversion at 2˚ × 2.5˚ resolution could be used to improve the 

a priori emissions at 0.25˚ × 0.3125˚ resolution and consequently reduce the number of 

iterations needed in the 4D-Var by ~10. These inversion experiments suggest promising 

application of the more computationally efficient IFDMB method for top-down NH3 

emission inversions. 

 

6.2 Studies Utilizing this Work 

The GEOS-Chem simulation in Chapter 4 featured a collection of recent updates in 

emission inventories and model capabilities. Hammer et al. (2018) used the aerosol data 

archived in this simulation to calculate and interpret observed trends in Ultraviolet Aerosol 

Index (UVAI) from the Ozone Monitoring Instrument (OMI) over 2005-2015. Absorption 

of mineral dust or brown carbon were found to dominantly contribute to the trends in UVAI 

over North Africa, Middle East, Australia, Central South America and West Africa, while 

significant trends in UVAI over the eastern US and eastern India were determined by 

opposite trends in scattering of secondary inorganic aerosols. This simulation served as 

boundary conditions of a nested (0.5˚ × 0.625˚) simulation using the same emissions and 

model processes over North America, which contributed to a historical estimates of surface 

PM2.5 over 1980-2016 (Meng et al., 2018). Future estimates of global PM2.5 based on 

satellite remote sensing of aerosol optical depth (AOD) will also incorporate the modelled 

AOD profile and PM2.5 from global and regional nested simulations using the emissions 

and chemical mechanisms in this work. 

 

6.3 Future Directions 

The 1/Vis dataset developed in Chapter 2 showed promising applicability for regional 

aerosol trend studies. Besides the populated regions discussed in Section 2.6, information 

of 1/Vis evolution over other areas with fewer aerosol measurements, e.g. South Asia, 

Africa, Australia and South America are valuable. As discussed in this thesis, the reduced 

number of sites available over these regions after screening usually impedes generalization 

of spatially coherent information. Therefore, evaluation against available measurements 
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similar to Section 2.5 is prerequisite for such future applications. This thesis focuses on 

using 1/Vis to probe long-term evolution of mean 1/Vis state, such as trends (e.g. Chapter 

2) and seasonal variations (e.g. Chapter 3). Extremes in visibility without high humidity 

are related with strong haze pollution and have outstanding health and climate implications 

(Gao et al., 2017; Li et al., 2018b). Similar to recent studies on winter haze over China 

(Wang and Chen, 2016; Yang et al., 2016; Yin et al., 2017; Zou et al., 2017), future analysis 

of visibility with measurements of aerosols, emissions and meteorological parameters, as 

well as model processes to interpret their associations would help elucidate causes of 

extreme haze events. 

The historical changes in aerosol seasonality over the eastern US as revealed by the 

1/Vis data in Chapter 3 warrant further quantitative assessment using model simulations. 

The quantified historical effects on PM2.5 of e.g. significant reduction in carbonaceous 

aerosol emissions, possible enhanced SOA yields due to anthropogenic emissions, and 

potential enhancement in atmospheric oxidation following NOx emissions, would be 

insightful for current environmental policies. 

As outlined in Chapter 4, future developments in chemical transport models and 

emergence of new observations will improve our current understanding of changes in PM2.5 

and its chemical composition. The GEOS-Chem model has recently introduced a high-

performance capability (GCHP) utilizing a distributed-memory framework for massive 

parallelization (Eastham et al., 2018), which would enable global simulations with full 

chemistry at 10-km resolution scale and online coupling with processes in earth system 

models (Hu et al., 2018). Besides new satellite missions, developments of AOD retrieval 

algorithm from historical radiance observations of Advanced Very High Radiometer 

(AVHRR) are promising to provide constraints on trends since the late 1970s (Hsu et al., 

2017; Sayer et al., 2017). Finally, this global study reveals strong connections of trends in 

population exposure to PM2.5 components with associated emissions. Meanwhile this 

connection is expected to be modulated by changes in meteorology and chemistry. For 

example, a GEOS-Chem simulation constrained with aircraft measurements identified 

strengthened formation yields of wintertime sulfate over the eastern US in recent years due 

to relaxed oxidant deficiency as its concentration decreases (Shah et al., 2018). Future work 
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employing detailed analysis of model processes with measurement data would provide 

more insights on non-emission effects and regulation policies. 

More work is needed to consolidate and extend the conclusions of Chapter 5. The 

comparison in this work idealizes errors in the observations, e.g. these from forward 

modeling, from satellite retrievals and from the a priori emissions. Future evaluation of 

the inversion methods using pseudo observations containing such errors will give more 

insights on their robustness to errors in realistic inversions. Sensitivity of the inversion 

accuracy to sampling frequency is also of interest, regarding future launch of geostationary 

satellite missions (Zhu et al., 2015b) that would significantly increase the number of 

available retrievals. These experiments could also be performed at more intermediate 

resolutions to determine the critical spatial scale that IFDMB could resolve. At fine 

resolution, the large dimensionality of state vector (x) at native resolution in 4D-Var might 

not be optimal regarding available density of sampling, which could severely affect the 

inversion (Jacob et al., 2016; Wecht et al., 2014). Choices of state vector aggregation and 

their influence on both methods (e.g. Turner and Jacob, 2015) warrant more investigation. 

Finally, this research would contribute to advancing the top-down constraints of NH3 

emissions using realistic satellite observations. 
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