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Abstract

Crew costs constitute the largest direct operating cost after fuel costs for airlines.

Even a small percentage of savings in crew costs is signi�cant in monetary value.

After initial schedules are published, changes in �ight schedules, crew and aircraft

availability can result in segments of �ights without crew members, which is known

as open-time �ying. Our study, done in collaboration with Jazz Aviation LP, deals

with the re-optimization of the open-time �ying for reserve cabin crew. A two-phase

approach is proposed: the �rst phase generates all legal potential pairings and the

second phase solves a set partitioning model to select the optimal combination of

pairings. This pairing problem includes multiple duty types, multi-day rolling time

horizon, complex non-linear crew pay structure, multiple bases, and crew deadhead-

ing. Our study addresses the research gap between the monthly and the day of

operations problems and designs a decision support system to assist schedulers.
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Glossary

block hour The number of hours a crew member spends on productive �ying.

cabin crew This category of crews includes �ight attendants and pursers.

check-out The time at which a crew member's duty period / pairing ends.

check-in The time at which a crew member's duty period / pairing begins.

credit hour The units of work that a crew member earns for pay purposes (i.e., the

number of hours a crew member gets paid).

crew base In airlines with multiple bases, every crew member is associated with a

base which is basically where they live, i.e., their domicile or home city.

deadhead Crew members usually work on �ights they are assigned to, but a pairing

may also contain so-called deadheads, where the crew member is not working,

but is only transported as a passenger from one airport to another.

duty period Legs are grouped into what is called a duty period, which can simply

be thought of as a working day for crew members.

layover Duty periods are separated by layovers, which are also referred to as overnight

connections or rest periods.

leg A single non-stop �ight is usually referred to as a leg or segment. Legs are

speci�ed by �ight number, origin and destination airport codes as well as local

departure and arrival times and dates.

open-time �ying A leg that does not have a full crew and needs to be covered by

reserve crew.

pairing A crew pairing, also referred to as rotation, is made up of individual duty

periods, which are separated by periods of rest (also known as layover or

overnight).
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purser The �ight attendant who is in charge on a �ight that requires more than one

�ight attendant.

reserve crew A crew member who is scheduled to be on call for blocks of days in a

month. In other words, a crew member whose calendar month is only composed

of reserve availability periods and days o�.

sit connection A connection within duty, i.e., between any two legs, is called a sit

connection, or simply sit.

x



Acknowledgements

First and foremost, I would like to thank my supervisors, Dr. Alireza Ghasemi and

Dr. Claver Diallo, for their valuable academic inputs, support, help and encourage-

ments. I cannot emphasize enough how supportive and caring they have been towards

me. They have helped me grow, develop a more positive outlook towards anything

and everything, believe in myself and feel con�dent that I can take up challenges.

I would also like to acknowledge Dr. Majid Taghavi of the School of Health Ad-

ministration at Dalhousie University and Dr. Peter Vanberkel of the Department of

Industrial Engineering at Dalhousie University as readers of this thesis. I am grateful

to them for their valuable comments.

I would also like to thank Jazz Aviation LP for funding and inspiring this research

project. I feel fortunate to have worked on a collaborative project between the In-

dustrial Engineering Department at Dalhousie University and the airline, from which

I would especially like to thank the project leader, Lisa Vad, and the support team,

Daryl Joseph and Josh MacKay, for their incredible support, encouragement, patience

and time as well as for providing an inclusive environment.

I would like to express my sincere gratitude to my mother and my father whose

wisdom, love, support and prayers always bring me comfort. I am grateful for having

them by my side. I am also thankful to my brother for being the caring big brother

he is, and for sharing his life experiences yet encouraging me to be open to new ex-

periences.

I would also like to show my appreciation to my many good friends, from near and

far, who have always been there for me as if we were family. I would especially like

to thank my friend, Elna Siebring, for her friendship, having answers to my many

questions and being a role model that I know I can look up to on the journey of life.

xi



Chapter 1

Introduction

This thesis presents the develpment of a decision support system for the optimization

of reserve crew open-time pairings for Jazz Aviation LP. In this chapter, resource

planning and scheduling for airlines is introduced in Section 1.1. The airline crew

scheduling problem is explored in Section 1.2 and Section 1.3 describes the motiva-

tion for this study.

1.1 Resource Planning and Scheduling for Airlines

The main resources of an airline are aircraft and crews. As a result, the planning

and scheduling of these resources requires various departments to collaborate and

perform complex tasks including the construction of the �ight timetable and �eet

assignment with regards to aircraft, followed by the scheduling of cockpit and cabin

crews (Gopalakrishnan & Johnson [23]). The creation of the �ight timetable is a

logical prerequisite for other resource planning problems. Flight timetable construc-

tion intends to match market demand with the available �eets, considering external

restrictions such as available time slots for every airline at di�erent airports (Ander-

sson, Housos, Kohl & Wedelin [5]). The output of this stage is a number of non-stop

�ights, called �ight segments or legs, that the airline plans to operate (Andersson et

al. [5]).

The next stage in resource planning is known as the Fleet Assignment Problem where

aircraft, distinguished by �eet type and tail number, are allocated to the �ight legs.

As with the production of the �ight timetable, some airports may impose restrictions

and not permit the operation of certain aircraft (Andersson et al. [5]). The main

concern in Fleet Assignment is to check whether the constructed timetable can feasi-

bly be operated using the aircraft at hand (Andersson et al. [5]). Since the expected

1
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revenue of a �ight depends on the number of passenger seats, therefore, following fea-

sibility checks, the objective of this stage is to maximize pro�t, i.e., expected revenue

minus operating costs (Andersson et al. [5]).

Once the airline has decided which �ight segments to operate using the available

�eet, the Crew Scheduling Problem (CSP) is tackled. The objective of the airline

CSP is to �nd an assignment of �ight crews to a given �ight schedule that minimizes

crew cost (Vance, Barnhart, Johnson & Nemhauser [34]). The airline CSP is an exten-

sive and complex problem that is the focus of this research. The purpose is to design

and develop a decision support system to assist crew schedulers of a local airline. In

addition, a literature review shows the existence of a gap in research between the

monthly problem and the day of operations airline crew scheduling problem, which

is addressed in this work.

1.2 Airline Crew Scheduling Problem (ACSP)

The objective of an ACSP is to identify sequences of �ight segments and to assign

cockpit and cabin crews to these sequences, while trying to minimize crew costs or

maximize crew utilization and crew satisfaction. The ACSP is generally solved in two

stages, namely crew pairing and crew assignment or rostering. Key terms used in the

ACSP along with their de�nitions can be found in the glossary of this thesis. Section

1.2.1 provides more insight into the �rst stage of the crew scheduling problem, which is

the focus of this thesis. The concept of open-time �ying is introduced in Section 1.2.2.

1.2.1 Crew Pairing Construction

The process of constructing crew pairings is based on the concepts of �ight legs (also

known as segments), duty periods, and crew pairings (sometimes referred to as rota-

tions).

A leg or segment is a single non-stop �ight. For the purpose of this study, the �ight

number, origin and destination airport codes as well as local departure and arrival
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times and dates fully describe a leg. (Note that the reason why equipment types and

aircraft tail numbers are not of concern will be explained in Chapter 3.) Table 1.1

shows an example of a leg with �ight number 7066 that has been scheduled to depart

from YYC (Calgary, AB, Canada) at 21:00 p.m. local time on September 1st 2016

and to arrive in YWG (Winnipeg, MB, Canada) at 00:23 a.m. local time.

Flight No.
Origin
Airport

Destination
Airport

Departure
Date

Local
Departure
Time

Local
Arrival
Time

7066 YYC YWG 09/01/16 2100 0023

Table 1.1: Example of a �ight leg

The local arrival date of each �ight leg is required to correctly calculate �ight dura-

tions and other indicators in the context of multi-day planning periods. This piece

of information is usually missing in �ight schedules. Given the local departure date,

local departure time, local arrival time, departure airport UTC o�set, and arrival

airport UTC o�set of any leg, the corresponding local arrival date can be determined

using the pseudo-code given in Appendix A.

Duty periods are sequences of �ight segments with only brief periods between them

to allow for connecting between �ights (known as sit connection or sit). In simple

terms, a duty period can be thought of as a working day for �ight crew members

(Vance et al. [34]).

Pairings are made up of individual duty periods, which are separated by periods of

rest (also known as layover or overnight). In other words, a crew pairing or rotation

is a sequence of legs for an unspeci�ed crew member, which begins and ends at the

same crew base. Figure 1.1 provides a visual representation of how �ight segments,

duty periods, sit connections and rest periods come together to form a pairing that

begins and terminates at the same crew base. Airlines may have one or several crew

bases. In airlines with multiple bases, every crew member is associated with a base

which is typically their domicile or home city. In order for crews to start and �nish
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pairings at the same base, it may be necessary to use deadheads. Deadheads refer to

�ying crew members as passengers from their home base to another base/city where

they would start their duties. Deadheads also occur when crew members are �own

as passengers at the end of a pairing from a base/city to their home base. Apart

from association with a particular base, crew members belong to one of two main

categories, namely cockpit crew (or pilots) and cabin crew (or �ight attendants). In

general, cabin crew pairings are independent of cockpit crew pairings.

For duty periods and pairings to be considered legal, they must follow a lengthy list

of feasibility rules, resulting from government regulations and collective bargaining

agreements (CBA) which di�er for cockpit and cabin crew. Thus, approaching the

crew pairing problem for �ight attendants, for instance, which is the subject of this

work, requires the use of work rules for this crew category. Moreover, at some airlines,

crews may be further grouped into regular and reserve crew positions for an arbitrary

calendar month which requires di�erent scheduling processes. The rules governing

the entire crew scheduling problem, including pairing construction, is highly depen-

dent on the airline. As a result, although techniques for generating crew pairings are

well established, they are highly customized and require signi�cant implementation

e�orts to adapt to each airline. Depending on the complexity of the requirements and

the number of �ights considered, certain CSP modeling methods have proven to be

more appropriate than others. It is therefore very important to clearly understand

the operating environment of an airline in order to identify the best crew scheduling

method and adapt it to solve the problem at hand.

1.2.2 Open-time Pairings

Existing papers have mostly examined the CSP at the strategic level, speci�cally

focusing on modeling and �nding near-optimal or optimal solutions for the typical

pre-month planning process. On the other end of the planning spectrum, lies the crew

rescheduling problem at the operational level, which aims to recover crew schedules

from disruptions that may occur during daily operations. Compared to the monthly

problem, the crew rescheduling problem is a less-studied area, although after initial
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schedules are published, changes in crew availability, �ight schedules, and aircraft

are inevitable, resulting in what is known as open-time �ying, and thus, a proper

approach to this time-critical problem can prevent unnecessary extra costs for air-

lines. Previous research in this area have mainly addressed the rescheduling problem

encountered on the day of operations. However, open-time �ying may be caused by

various sources, some of which make it possible to identify broken pairings several

days prior to the day of operations, therefore allowing for a signi�cant portion of dis-

ruptions to be dealt with in a less time-restrained planning environment by utilizing

reserve crews as e�ciently as possible. This aspect of crew rescheduling is overlooked

by previous academic research. Our study, done in collaboration with industry part-

ner, Jazz Aviation LP, has led to the design of a two-phase approach for the crew

pairing optimization problem with respect to open-time �ying for reserve cabin crew.

1.3 Background and Motivation

Jazz Aviation LP (formerly Air Canada Jazz) operates �ights on behalf of Air Canada

as a contract carrier. This airline operates more �ights and �ies to more Canadian

destinations than any other carrier. They provide service to and from many smaller

communities in Canada and the United States under the brand name Air Canada

Express, which serves approximately 70 di�erent destinations. They also operate to

larger centers at o�-peak times as a complement to Air Canada's schedule. According

to the Corporate Fact Sheet retrieved on June 22nd 2017 [2], Jazz Aviation has 4,333

employees and operates 722 �ights daily, �ying a total of 30,000 passengers each day.

Their �eet consists of a total of 119 aircraft, including 44 Canadian-made Bombardier

Dash 8, 31 CRJ and 44 Q400 NextGen aircraft, which are among the most e�cient

aircraft �ying today [1]. Jazz Aviation's headquarters are located in Halifax, Nova

Scotia at the Stan�eld International Airport, where all of the crew planning and the

crew scheduling are done (Wiggins & Conrad [35]). However, Jazz Aviation also has

�ve regional o�ces and operation bases across Canada in Halifax, Montreal, Toronto,

Calgary, and Vancouver.

Flight crews at Jazz Aviation are scheduled on a monthly basis and their �ying is
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grouped into �ying blocks, which are composed of pairings (Wiggins & Conrad [35]).

Credit losses are incurred when a crew member is paid but is not working for ex-

ample because of a long break between two legs. At Jazz Aviation, it is required

that the total credit hours of each �ying block fall within a speci�c window (Wiggins

& Conrad [35]). According to the collective agreement, �ying blocks are assigned

through a bidding process. As it is not possible to �t all �ights into blocks that meet

the above criteria, some �ights remain unassigned (Wiggins & Conrad [35]) or are

incomplete (i.e., do not form a complete loop). These are said to be in open-time. In

addition, there are various other factors which can cause previously scheduled �ights

to fall into open-time, including weather disruptions, ground delays, aircraft main-

tenance issues, crew unavailability due to sickness or fatigue (Wiggins & Conrad [35]).

Currently at Jazz Aviation, open �ying is assigned semi-manually by the Crew Schedul-

ing Department. This research is aiming at designing a decision support system to

help the Scheduling Department re-optimize the generation of legal open-time pairings

for reserve cabin crew. The optimization problem has been complicated by the large

number of possible deadheads to be included in creating the pairings. In this research,

the creation of optimal pairings for cabin crew �ights in open-time is studied. The

key characteristics of the crew pairing problem under consideration include multiple

duty types, multi-day rolling time horizon, complex non-linear crew pay structure

in terms of credit hours, multiple crew bases, and use of actual �ights available for

deadheading crew from and/or to base. In the case of Jazz Aviation, all �ights be-

tween two Canadian cities as well as �ights originating from any US city served by

the airline and its partners which land in Canada are potential deadheads and have

been considered.

An overview of relevant research in the area of airline crew scheduling is presented

in Chapter 2. As airline requirements vary substantially from one company to an-

other, existing modeling techniques for the crew pairing problem could not be adapted

directly. Therefore, a two-phase approach to the open-time pairing optimization prob-

lem for reserve cabin crew is proposed, which will be described in Chapter 3. Exper-

iments, results and discussions are presented in Chapter 4. Finally, conclusions and
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future extensions are given in Chapter 5.



Chapter 2

Literature Review

Crew costs constitute the largest direct operating cost of airlines after fuel costs

(Anbil, Gelman, Patty & Tanga [4]; Andersson et al. [5]). Therefore, even small

percentage of savings in crew costs add up to signi�cant monetary values for airlines

(Anbil et al. [4]; Ho�man & Padberg [24]). Desaulniers et al. [18] have mentioned

that for major airlines, ". . . a 1 % decrease in the total crew costs often amounts to

tens of millions of dollars per year in additional pro�ts." A large portion of �ight crew

costs is controllable (Anbil et al. [4]), prompting academia and industry to examine

the CSP (Bazargan [11], p. 82). Ho�man and Padberg [24] have stated that mini-

mizing the cost of airline crew schedules also results in crews being happier with the

schedules because the obtained solutions tend to allocate more time to paid �ying

than waiting on the ground.

The objective of the airline crew scheduling problem (ACSP) is to �nd a minimum-

cost assignment of �ight crews to �ight schedules (Vance et al. [34]). Crew scheduling

involves the processes of identifying sequences of �ight segments and assigning cockpit

and cabin crews to these sequences, while trying to minimize crew costs or maximize

crew utilization. The CSP is typically solved in two stages: building crew pairings

and crew assignment or rostering (Yan & Tu [36]; Bazargan [11], p. 82; AhmadBeygi,

Cohn & Weir [3]). A pairing can be viewed as a single-day/multi-day sequence of

�ights that starts and �nishes at the same crew base and "can feasibly be �own [or

covered] by a single crew" (AhmadBeygi et al. [3]). From another viewpoint, pairings

are composed of individual duty periods, i.e., legal work days, which are separated

by rest periods (AhmadBeygi et al. [3]). Therefore, duties are sequences of �ight

segments that contain brief connection times between consecutive �ights (Vance et

al. [34]; AhmadBeygi et al. [3]). A lengthy list of rules that restrict pairings and

duty periods are present in crew scheduling and are derived from:

9
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- government regulations, collective agreements, operation and safety require-

ments (AhmadBeygi et al. [3]);

- "sound economics" (Arabeyre, Fearnley, Steiger & Teather [6]);

- "certain company restrictions imposed by the carrier to assure the smooth tran-

sition of crews to �ights" (Ho�man & Padberg [24]).

Taking these considerations into account results in a highly complex cost function

and constraints, which are even di�cult to formulate (Balas [8]).

In the �rst stage of the CSP, namely crew pairing, legal pairings of �ight legs, which

satisfy governmental regulations and airline-speci�c collective agreements, are con-

structed. Generally, the time horizon associated with pairing construction is several

days (Desaulniers et al. [18]). For instance, the crew pairing problem at Air France,

involving medium-haul �ights, which was addressed by Desaulniers et al. [18], has a

periodic weekly horizon. On the other hand, AhmadBeygi et al. [3] have focused on

formulating the daily problem, where it is assumed that each �ight is repeated every

day of the week.

The second stage of the CSP, commonly known as the crew assignment or rostering

problem, deals with assigning anonymous minimum-cost pairings to named individ-

uals, while satisfying training, vacation and other requirements. For instance, cabin

crew must meet the language pro�ciency quali�cation for international �ights (Kohl

& Karisch [25]). In the crew assignment problem, a category of rules addresses in-

dividual assignments or rosters (single crew member rules), while another category

focuses on combinations of rosters or crew members (multiple crew member rules)

(Fahle et al. [22]). The objective of this phase, also referred to as the crew workload

assignment problem or the block assignment problem (Desaulniers et al. [18]), is a

combination of cost e�ciency and crew satisfaction (Kohl & Karisch [25]). Kohl and

Karisch [25] have provided a comprehensive description of crew rostering problems in

the airline industry and have shown how complex real-world crew rostering is. For

instance, they have argued that the maximization of crew satisfaction is an impor-

tant part of crew rostering (Kohl & Karisch [25]) as overall crew satisfaction may



11

impact the quality and economic return of an airline's operations (El Moudani &

Mora-Camino [21]). However, it is very di�cult to quantify crew satisfaction in a fair

and logical way that would be accepted by the crew (Kohl & Karisch [25]). Other

research in airline crew rostering includes the works of Day and Ryan [16], Dawid,

Konig and Strauss [15], El Moudani, Cosenza and Mora-Camino [20], Cappanera and

Gallo [12], and Maenhout and Vanhoucke [27].

CSP is classi�ed in terms of personnel category as work rules for �ight attendants

di�er from those for pilots. In practice, most airlines divide the crew pairing prob-

lem into two independent problems to be solved separately for cabin and cockpit

crews (Desaulniers et al. [18]). Vance et al. [34] have considered the problem of

scheduling pilots, while Yan and Tu [36] have focused on scheduling �ight attendants.

Desaulniers et al. [18] have implemented a crew pairing problem optimizer at Air

France, where the pilot pairing problem and the �ight attendant pairing problem are

solved separately. In addition, crew quali�cations regarding aircraft types determine

whether or not the pairing problem must be further decomposed into individual prob-

lems (Gopalakrishnan & Johnson [23]). In terms of problem size, the �ight attendant

problem tends to be much larger than the pilot problem (Gopalakrishnan & Johnson

[23]), because usually, depending on the airline, �ight attendants are quali�ed to work

on multiple, if not all, aircraft types, whereas pilots are trained to �y only one type of

aircraft. As a result, the pilot scheduling problem is separable by �eet type (Schaefer,

Johnson, Kleywegt & Nemhauser [30]).

Airline crew scheduling is performed in several planning levels (Stojkovi¢, Soumis

& Desrosiers [33]). Crew planning at the strategic level uses the �ight timetable

that generally spans about one calendar month (Medard & Sawhney [28]) in order

to generate feasible crew pairings without considering individual needs or preferences

of crews (Maenhout & Vanhoucke [27]) in the �rst stage, and to assign cockpit and

cabin crews to the pairings in the second stage after the pre-assignment of other ac-

tivities such as training, o�ce duties, or medical checks (Kohl & Karisch [25]). This

process is referred to as the pre-month planning process (Sohoni, Johnson, & Bailey

[31]) and usually takes place weeks before the �ights are operated. At the monthly
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planning level, a major challenge is problem size, which can be represented by the

number of �ight legs to cover in the planning horizon. This is why various modelling

approaches and solution methods are found in the literature with regards to solving

large-scale airline crew scheduling problems (ACSP), which are known to be di�cult

combinatorial optimization problems (Anbil et al. [4]; Stojkovi¢ et al. [33]; Deng

& Lin [17]). Thus, much e�ort has been put on overcoming the issue of solving to

optimality large integer programs arising within the ACSP in a reasonable amount of

time using available software and hardware technologies. Examples of research rele-

vant to strategic crew planning problems include Baker, Bodin, Finnegan and Ponder

[7], Ho�man and Padberg [24], Desaulniers et al. [18], Vance et al. [34], Chu, Gelman

and Johnson [13], Andersson et al. [5], Yan and Tu [36], AhmadBeygi et al. [3], Deng

and Lin [17].

The operational crew planning of an airline includes the so-called time critical crew

recovery problems, also known as crew re-scheduling (Nissen & Haase [29]), which

address disruptions during daily operations that may be caused by changes in �ight

schedules, aircraft and crew availability (Medard & Sawhney [28]). For instance, sick-

ness of crew (crew absences), �ight delays and cancellations due to severe weather

conditions, peak-hour congestion at airports, crew and passenger delays and strikes

(Stojkovi¢, Soumis, Desrosiers & Solomon [32]) (schedule disruptions), or unplanned

aircraft maintenance requirements (aircraft substitutions) are inevitable events that

a�ect the initial schedule (Stojkovi¢ et al. [33]). To be speci�c, a �ight delay might

make it impossible for a crew member to reach the following �ight on their scheduled

pairing; a �ight cancellation caused by aircraft unavailability results in the scheduled

pairing assigned to crew to become operationally infeasible; and a crew calling sick

leaves the initially assigned pairing uncovered (Medard & Sawhney [28]). Such issues

must be dealt with e�ciently through crew re-scheduling. The crew recovery problem

focuses on �nding a reassignment of aircraft and crews that satis�es safety regulations

and has little impact on passengers at minimum recovery operation cost (Lettovsky,

Johnson & Nemhauser [26]). The objective function may include several goals, such

as minimizing passenger delay, returning to the original plan as quickly as possible as

well as minimizing passenger inconvenience (non-quanti�able) (Clausen, A. Larsen,
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J. Larsen & Rezanova [14]). Among the characteristics of the crew re-scheduling

problem are the signi�cantly smaller planning horizon compared to the pre-month

planning problem, as well as time sensitivity, which demands a solution technique

that takes as little computation time as possible. Medard and Sawhney [28] have

suggested that "in the context of day of operations, solutions must be found within

1 − 5 minutes." Their work is an example of research in day-of crew re-planning, in

which they have formulated the crew recovery problem as a �ight-based crew roster-

ing problem, where pairing construction and pairing assignment are done in a single

step using a generate-and-optimize approach.

Open-time �ying may be a result of various sources. In addition to daily disrup-

tions that may leave �ights uncovered, open-time �ying is encountered frequently

in airlines that use the preferential bidding system to award monthly work sched-

ules based on crew bids. Thus, on the operational level, crew scheduling attempts

to legally and optimally match available crews with all such open-time �ying. How

airlines deal with uncovered �ights and broken pairings varies from one airline to

another. For instance, some airlines choose to maintain reserve crews in addition to

regular crews to provide smooth daily operations (Sohoni, Johnson & Bailey [31]).

This is the case at Jazz Aviation LP, the industry partner in this study, where the

calendar month for reserve crews consists of blocks of o� days and days they are on

call.

Since a portion of open-time �ying may be known several days before the day of

operations, the crew scheduling department at Jazz Aviation takes such unassigned

�ights and attempts to cover them using reserve crews before operations day. Ap-

proaching the crew rescheduling problem after initial crew schedules are published

and before the day of operations allows for a signi�cant portion of open-time �ying

to be dealt with in a less time-restrained planning environment by utilizing crews

as e�ciently as possible. In addition, unlike day-of rescheduling, this aspect of crew

recovery allows �ight crews to know their schedules in advance, which results in more

satisfaction. All other open-time �ights arising on the day of operations can be dealt
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with separately. Review of previous studies shows that a gap exists in research be-

tween the monthly problem and the day of operations airline crew scheduling problem.

This research addresses the crew pairing problem in the context of open-time �ying

and reserve crews over a multi-day period that begin operations on the day following

scheduling day. For example, the scheduling problem approached on the 20th day of

the month deals with open-time �ights that would be operating on the 21st, 22nd, 23rd

as well as the 24th day of the month. As one of the reasons leading to open-time �ying

is sudden unavailability of crews, for instance because of sickness, the crew pairing

problem will not be merged with the crew assignment problem. Therefore, the objec-

tive of this study is to optimally construct legal anonymous pairings respecting the

collective bargaining agreement between the airline and the union of �ight attendants

without considering the needs or preferences of individual crew members.

Crew pairing problems, in the context of airline scheduling, are usually formulated

as set partitioning problems (SPP) (Schaefer et al. [30]) or set covering problems

(SCP) (Yan & Tu [36]). The set partitioning model does not allow "over-covering of

�ights", i.e., �ights with more crew on board than the number that are required to

work (Medard & Sawhney [28]). In theory, the set partitioning model needs the set

of all feasible pairings as input (Ball & Roberts, [9]). As there may be billions of legal

[cockpit] crew pairings for larger �eets (Schaefer et al. [30]), in practice, a large set of

"good" pairings is used (Ball & Roberts, [9]). (Note that airlines typically evaluate

crew pairings based on their corresponding planned costs (Schaefer et al. [30])). The

solution to the SPP, being a zero-one integer programming problem, is a subset of the

pairings, which covers each �ight segment exactly once for the scheduling period and

at the same time, minimizes the total cost of pairings. The set partitioning problem

formulation with regards to the crew pairing problem is as follows:

Parameters:

m: number of �ight legs

n: number of legal pairings

cj: cost of pairing j
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aij =

⎧⎨⎩1, if �ight leg i is used on pairing j

0, otherwise

Decision Variables:

xj =

⎧⎨⎩1, if pairing j is used in the solution

0, otherwise

Min
n∑

j=1

cj · xj (2.1)

subject to:

n∑
j=1

aij · xj = 1, ∀i ∈ {1, . . . ,m} (2.2)

xj ∈ {0, 1}, ∀j ∈ {1, . . . , n} (2.3)

The objective function (Equation 2.1) minimizes the cost of the selected pairings.

Constraint 2.2 ensures that each leg appears only once in a pairing.

Baker et al. [7] provided a general insight as to how the set partitioning formulation

of the airline crew scheduling problem must be approached. The solution procedure

consists of three stages: enumeration, reduction, and selection. At the enumeration

stage, all feasible pairings, which make up the constraint matrix of the set partition-

ing formulation are generated. The reduction stage is applied within the enumeration

process, or afterwards, in order to reduce the problem size and thus the total time

required to obtain a solution. Attempts to reduce the problem size, as mentioned

by Baker et al. [7], may include reduction procedures such as dominance and logical

comparisons, or for instance, elimination of all pairings with layovers at an undesir-

able base. Baker et al. [7] applied heuristic procedures similar to those used in vehicle

routing and scheduling problems to obtain near-optimal solutions for a problem at

Federal Express (FedEx). This problem considered 1,000 �ights over the course of

one month.
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Vance et al. [34] presented a two-stage method that does not use the conventional

set partitioning model in scheduling pilots. In the �rst stage, a set of duty periods

that cover the �ights in the schedule is identi�ed. In the second stage, pairings are

built using those duty periods. They mentioned that compared to the traditional

SPP formulation, the linear programming (LP) relaxation of their duty-period-based

formulation provides a tighter bound on the optimal integer programming (IP) solu-

tion, but the disadvantage is that the LP relaxation of their formulation is di�cult to

solve. Interestingly, the main focus has been put on the LP relaxation of their pro-

posed formulation when attempting to solve the model. Vance et al. [34] have also

introduced a modi�ed formulation in order to speed up the convergence of the column

generation algorithm. Using the proposed formulations and solution methods, test

problems provided by a major American carrier for a domestic daily problem have

been modeled and solved. They observed that for a relatively small problem, it is

more e�cient to enumerate the pairings than to use column generation. The results of

the aforementioned research are not known to be implemented and used at any airline.

By examining the results of previous research, Yan and Tu [36] concluded that in

relatively large problems, the column generation method does not usually produce an

optimal integer solution. Therefore, non-integer solutions obtained by using column

generation require further methods for improvement. In addition, extended �ight

networks cause set partitioning or set covering problems to become more complicated

and thus more di�cult to solve (Yan & Tu [36]). Yan and Tu [36] formulated and

solved the CSP for the cabin crew of a Taiwan airline by constructing a minimum-cost

pure network �ow model. In their paper, Yan and Tu [36] proposed pure network

models to formulate the crew scheduling problem for their speci�c case study which

involves an airline with relatively simple work rules. To be speci�c, they construct

pairings that satisfy dispatch regulations by building a minimum-cost pure network

�ow model. As Yan & Tu [36] have mentioned, the practical advantage of pure net-

work �ow models is that they are very e�cient to solve, for example, by using the

Network Simplex Method.

A general rule which is included in the Taiwan model of Yan and Tu [36] is that
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the number of both take-o�s and landings in a duty should not be more than four.

In other words, each duty period consists of either one or two �ight segments. Note

that this rule veri�es that the �ight legs in their study are international �ights. On

the other hand, restrictions on �ying hours and working hours do not allow more

than 14 working hours and more than 9 �ying hours in any 24-hour time window.

Although somewhat similar general restrictions such as a limited number of landings

in duty, duration of �ying hours and working hours are common in the airline indus-

try, international and domestic scheduling problems di�er in details. For instance, in

an airline that mostly operates domestic �ights, each duty period typically contains

more than two �ight segments, which means complicated procedures are required to

identify legal duty periods.

It can be learned from Yan and Tu's [36] listings of general and work duty constraints

that when approaching the crew pairing problem, it is necessary to distinguish be-

tween the constraints that must be included in the model and the ones that can either

be considered in crew rostering or real-time crew operations. The following constraint

of Taiwan airlines makes this statement more clear: "The number of working hours in

a duty can be lengthened if there are incidents. However, adjustments for the irregu-

larity should be reported to the labour union within 24 hours after the event. Suitable

rest periods should be o�ered for overtime after the duty period." (Yan & Tu [36])

Such a constraint does not appear in the crew pairing model. Rather, it is one that

must be dealt with in real-time. This example shows the necessity of understanding

which terms in a collective agreement must be included in the pairing construction

problem and which ones must be excluded. In addition, it can be concluded that

even automating the whole crew scheduling process cannot eliminate the need for

crew schedulers in the o�ce.

"Although approaches other than set partitioning have sometimes been successful

especially on small instances or under less complicated regulations, SP-based ap-

proaches are typically used because they enable the embedding of many complex

rules within the variable de�nition" (AhmadBeygi et al. [3]). AhmadBeygi et al.

[3] proposed a mixed-integer programming model to generate pairings that can be



18

solved using commercial solvers to provide academic researchers with a way to easily

implement a crew pairing generator in order to test new ideas in the airline planning

�eld. Their modeling approach is based on a set of binary decision variables that

determine whether two �ights immediately follow each other and, if so, whether they

follow each other in the same duty or span the overnight between two duties. They

focused on the daily problem, assuming that each �ight operates every day of the

week and deadheading is not used. In real life situations, some airlines allow dead-

heading in their models, which is the term used when crews take up revenue seats

to reposition for a leg or return to home base following a leg (Arabeyre et al. [6];

Vance et al. [34]) "either by ground or air transportation" (Stojkovic et al. [33]).

Deadheading is seen as unproductive �ying; however, it can lead to reduced crew

costs if used economically (Ball & Roberts [9]). In some cases, especially in long-haul

crew pairing problems regarding international �ights, the use of deadheads lowers

overall costs by eliminating extended rest periods (Barnhart, Hatay & Johnson [10]).

AhmadBeygi et al. [3] have mentioned that their formulation takes into account only

the most common rules concerning the legality of crew pairings. Therefore, not all

obtained valid solutions to their model are legal pairings according to US Federal

Aviation Administration (FAA) regulations.

As airline requirements vary substantially from one airline to another, existing mod-

eling techniques for the crew pairing problem could not be adapted directly to the

open-time problem. Therefore, a two-phase approach to the open-time pairing op-

timization problem for reserve cabin crew is proposed, which will be described in

Chapter 3.



Chapter 3

Methodology

In this chapter, the two-phase approach to optimize open-time pairings for reserve

crew at Jazz Aviation LP, is presented. Phase 1, or the Feasible Pairing Generation

stage, is explained in Section 3.1. Phase 2, dealing with Pairing Optimization, is

described in Section 3.2.

3.1 Phase 1: Feasible Pairing Generation

The construction of legal or valid pairings is carried out in Phase 1. Note that the

terms feasible, legal and valid are used interchangeably throughout this thesis with

regards to crew pairings. Figure 3.1 summarizes valid pairing generation (Phase 1).

In Phase 1, when generating pairings from a list of open legs and available deadheads

for cabin crew, the following operational characteristics speci�c to our partner have

been taken into account:

1. All �ight attendants are quali�ed to work on all aircraft types, thus �eet types

have no impact on the pairing generation problem and are therefore ignored.

Note that this may not be true of every airline.

2. In the airline under study, existing aircrafts require 1 or 2 cabin crew positions

(purser PU or �ight attendant FA) depending on �eet type. Depending on

why a segment goes in open-time, one or more crew positions may be a�ected.

Therefore, to generate anonymous pairings that can feasibly be covered by only

one crew member, every combination of open �ight segment and crew position

is given a unique �ight identi�cation number, or simply �ight ID. It is worth

noting that this numbering system is consistent with the leg covering constraint

used in the optimization model developed for Phase 2.

19
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Before describing the steps of this phase, it is important to understand the di�er-

ent restrictions that are encountered when building a sequence of �ights that can

feasibly be �own by cabin crews. This section is organized as follows. Pairing con-

struction constraints are given in Section 3.1.1, where a preprocessing procedure is

proposed. Valid pairing generation taking advantage of preprocessing is further de-

veloped. Section 3.1.2 deals with the identi�cation of duty periods using Leg-Gap

patterns. Determination of duty and pairing types is covered in Section 3.1.3 and

pairing validation is presented in Section 3.1.4. Finally, pairing costs are examined

in section 3.1.5.

3.1.1 Pairing Building Constraints

Constraints that are required to be satis�ed when building valid pairings generally

fall into two major groups: (a) logical constraints, and (b) airline-speci�c constraints.

Logical Constraints and Phase 1 Preprocessing

Table 3.1 shows a list of location and time related constraints that must logically/inherently

be satis�ed by any valid pairing.

In the �rst phase of the proposed two-phase approach to open-time pairing optimiza-

Constraint No. Description
1 Two segments may follow one another in a pairing (and/or

duty period) only if the destination of the �rst leg is the same
as the origin of the next leg.

2 Two segments may follow one another in a pairing (and/or
duty period) only if the �rst leg arrives before the departure
time of the next leg while allowing su�cient time for crew to
transition between �ights.

Table 3.1: Logical constraints on pairing construction

tion for reserve cabin crew, �rstly the logical constraints presented in Table 3.1 are

evaluated with respect to all open segments to decide which legs can potentially follow

one another in a pairing. Constraints derived from the airline's collective bargaining
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Figure 3.1: Summary of Phase 1 or the Feasible Pairing Generation Phase
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agreement (CBA) with the union representing �ight attendants are considered after-

wards. This approach is based on the idea that regardless of how valid pairings are

constructed, a pairing, by de�nition, as described in Section 1.2.1, is a series of seg-

ments. It is clear that in such a series, the idle times between every two consecutive

segments (i.e., the gap between one arrival and the next departure) mark sit connec-

tions within duty periods and if applicable, rest periods between duties. Therefore, it

is rational to begin the valid pairing construction procedure by determining sequences

of legs that respect the aforementioned location/time constraints. Such sequences,

which will be referred to as potential pairings (or ppairings) in this text, must contain

at least 2 legs due to the base-to-base requirement of pairings and may have up to the

maximum number of legs permitted within a pairing. Note that parameters such as

the maximum number of legs permitted within a duty period (pairing) are dictated

by the collective agreement and will be explored in the next subsection.

The value of the preprocessing procedure above can be understood by evaluating

how much the problem size is reduced early on in the process of generating all possi-

ble valid pairings given a speci�c number of open segments. This will be explored in

Chapter 4, where sample results showing the number of potential pairings resulting

from the aforementioned preprocessing procedure is given in Table 4.4.

The pseudo-code for generating potential pairings given a set of open segments is

as follows:

START.

for every base b:

# STEP 1: Initialize ppairing.

# Note: ppairing is a list where each element is a sequence of legs.

j ← −1
for every open leg i:

if originCity[leg[i]]==base b:

j ← j + 1
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create new ppairing sequence j

ppairing[j] �{leg[i]}

else:

for every deadhead k from base b:

if destinationCity[deadhead[k]]==originCity[leg[i]]

& arrivalTime[deadhead[k]]+DH-IN-BUFFER <departureTime[leg[i]]:

j ← j + 1

create new ppairing sequence j

ppairing[j] �{deadhead[k] from base b � leg[i]}

else:

continue

FirstPPairingInCurrentRound �0

LastPPairingInCurrentRound �j

i← 0

# STEP 2: In each iteration, for every sequence created and initialized in STEP

1, add one leg to the end of the sequence if possible and append resulting sequence

to list of potential pairings.

Repeat loop until maximum number of legs permitted within a pairing is reached:

FirstPPairingInPreviousRound �FirstPPairingInCurrentRound

LastPPairingInPreviousRound �LastPPairingInCurrentRound

# For every ppairing constructed in STEP 1:

for i in range(FirstPPairingInPreviousRound,LastPPairingInPreviousRound):

FirstPPairingInCurrentRound �LastPPairingInPreviousRound + 1

LastCity �destinationCity[last leg in ppairing[i]]

LastTime �arrivalTime[last leg in ppairing[i]]

# Compare LastCity and LastTime with originCity and departureTime of

every open leg:

for every open leg j:

TimeDi�erence �departureTime[leg[j]]-LastTime

if originCity[leg[j]]==LastCity and TimeDi�erence > MIN-SIT:
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create new ppairing sequence �{ppairing[i] � leg[j]}

else:

continue

LastPPairingInCurrentRound �index of last ppairing sequence

# STEP 3: By the end of this step, potential pairings that begin and end in

base are stored in list of all ppairings for all bases.

create empty list of all ppairings for all bases

i← 0

for every ppairing i:

if destinationCity[last leg in ppairing[i]] ̸= base b:

for every deadhead k′ to base b:

if originCity[deadhead[k′]]==destinationCity[last leg in ppairing[i]]

& departureTime[deadhead[k′]] >arrivalTime[last leg in ppairing[i]]

+DH-OUT-BUFFER:

append sequence {ppairing[i] � deadhead[k′} to list of all ppair-

ings for all bases

else:

continue

else:

append sequence {ppairing[i]} to list of all potential pairings for all

bases

END.

The following example shows the result of implementing the above pseudo-code. Sam-

ple potential pairings for the small set of open legs given in Table 3.2 can be seen

in Table 3.3. Note that in this table, the negative �ight identi�cation numbers seen

in some of the sequences refer to deadhead segments. For each of the airline's crew

bases, all of the potential pairings are generated. Each potential pairing is a sequence

of legs where every two consecutive legs respect the logical time/location constraints.

In order to respect the base-to-base requirement for pairings, wherever necessary,

deadhead segments are used at the beginning and/or end of each potential pairing.
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For the given example regarding 4 open legs, the constructed potential pairings con-

tain 1 to 4 open legs. For instance, the 4th sequence in Table 3.3, is a potential pairing

based in YYC (Calgary, AB) that contains 2 of the segments in open-time and does

not use deadheading. The 5th sequence given in Table 3.3 is another potential pairing

generated by the aforementioned procedure, which is based in YVR (Vancouver, BC)

and uses two deadhead segments to start and �nish the pairing in the same base.

Flight
ID

Origin
Airport

Dept.
Time
UTC
Minutes

Dest.
Airport

Arrv.
Time
UTC
Minutes

Dept.
Date

Local
Dept.
Time

Local
Arrv.
Time

1 YYC 1,535 YQU 1,621 Day 0 19:35 21:01
2 YQU 1,655 YYC 1,730 Day 0 21:35 22:50
3 YYC 1,775 YXE 1,851 Day 0 23:35 00:51
4 YXE 2,580 YYC 2,663 Day 1 13:00 14:23

Table 3.2: Departure and arrival information required in the construction of potential
pairings for a small set of open legs

Airline-speci�c Constraints on Duty Periods, Rest Periods and Pairings

As mentioned earlier, a lengthy list of rules that are, for the most part, speci�c to

each airline, a�ect the validity of potential pairings as constructed above. These con-

straints have been extracted from the collective agreement and are used to �lter the

initial list of potential pairings step by step in order to obtain the list of valid pairings.

Airline-speci�c constraints can be grouped into three categories: (a) constraints on

duty periods, (b) constraints on rest periods, and (c) constraints on pairings. In what

follows, each category will be examined in detail.

In the case of the airline under consideration, constraints on duty periods and pair-

ings are complicated by the fact that, as per the collective agreement of �ight at-

tendants, there are several types of duty periods and thus pairings. This is due to

a period called silent hours which is an interval that begins some hour before/after

local midnight (SilentHoursStartT ime) and ends some hour past local midnight

(SilentHoursEndT ime), during which the frequency of �ights is lower than during

daytime. For example, the Jazz Aviation collective agreement de�nes silent hours as
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No. Sequence Origin

Dept.
Time
UTC
Minutes

Dest.

Arrv.
Time
UTC
Minutes

Dept.
Date

Local
Dept.
Time

Local
Arrv.
Time

1 [1, -5493]
YYC 1,535 YQU 1,621 Day 0 19:35 21:01
YQU 2,320 YYC 2,408 Day 1 8:40 10:08

2 [1, 2]
YYC 1,535 YQU 1,621 Day 0 19:35 21:01
YQU 1,655 YYC 1,730 Day 0 21:35 22:50

3 [-2397, 2, 3, -5531]
YYC 1,325 YQU 1,424 Day 0 16:05 17:44
YQU 1,655 YYC 1,730 Day 0 21:35 22:50
YYC 1,775 YXE 1,851 Day 0 23:35 00:51
YXE 2,305 YYC 2,388 Day 1 8:25 9:48

4 [3, 4]
YYC 1,775 YXE 1,851 Day 0 23:35 00:51
YXE 2,580 YYC 2,663 Day 1 13:00 14:23

5 [-3035, 1, 2, 3, -6114]
YVR 980 YYC 1,059 Day 0 9:20 11:39
YYC 1,535 YQU 1,621 Day 0 19:35 21:01
YQU 1,655 YYC 1,730 Day 0 21:35 22:50
YYC 1,775 YXE 1,851 Day 0 23:35 00:51
YXE 2,145 YVR 2,280 Day 1 5:45 7:00

· · ·
1707 [1, 2, 3, 4]

YYC 1,535 YQU 1,621 Day 0 19:35 21:01
YQU 1,655 YYC 1,730 Day 0 21:35 22:50
YYC 1,775 YXE 1,851 Day 0 23:35 00:51
YXE 2,580 YYC 2,663 Day 1 13:00 14:23

Table 3.3: Sample potential pairings generated for the set of open legs given in Table
3.2
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the hours between 23:00 p.m. and 05:00 a.m. local time. A given pairing, depending

on pairing check-in time and the portion of pairing that falls between silent hours as

well as the number of duties it contains may be one of four types, which will be re-

ferred to as Pairing Type 1-A, Pairing Type 1-B, Pairing Type 1-C and Pairing Type

2 in this thesis. The three Type 1 pairings are single-duty pairings while the fourth

type is multi-duty, meaning that pairings of Type 2 span several days. In addition,

based on the local time when a duty period begins, it may either be a Duty Type 1

or a Duty Type 2. Duty Type 1 is an early check-in duty, which means duty check-in

time falls between silent hours. If a duty is not Type 1, then it is considered Duty

Type 2 (i.e., regular duty). Note that duty check-in time is the time a crew member

begins duty and this is not the same as the departure time of the �rst leg in duty;

rather, it is calculated as follows, where CHECK-IN-TIME is a parameter obtained

from the collective agreement:

DutyCheckInTime = departureTime[�rst leg in duty]− CHECK-IN-TIME (3.1)

A duty period beginning with a leg that departs at 5:55 a.m. local time where �ight

attendant check-in (CHECK-IN-TIME) is 60 minutes prior to departure, suggests a

4:55 a.m. local check-in which is during silent hours. This is an example of Duty

Type 1.

Before listing the speci�c constraints that a�ect di�erent types of duty periods and

pairings as well as rest periods, it is worthwhile to introduce a few attributes with

regards to duty periods and pairings, including duty check-out time, pairing check-in

time, pairing check-out time, length of duty period, length of pairing, length of rest

period, number of landings within duty, and number of duties within pairing.

Duty check-out time marks the end of a duty period and must be distinguished

from the arrival time of the last leg in duty:
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DutyCheckOutTime = arrivalTime[last leg in duty]+ CHECK-OUT-TIME (3.2)

In the above formula, similar to CHECK-IN-TIME, CHECK-OUT-TIME is a param-

eter obtained from the collective agreement. Note that in the simplest of cases, both

parameters may have constant values. For instance, in an airline, �ight attendants

may be required to check in 60 minutes prior to the �rst departure in duty and to

check out 30 minutes after the last arrival. However, this is not always the case

in practice. As a matter of fact, where trans-border �ights are present in the �ight

schedule in addition to domestic legs, the amount of check-out time required following

the arrival of the last segment depends on whether or not customs need to be cleared.

If customs must be cleared, a longer CHECK-OUT-TIME becomes essential in the

pairing construction problem.

Check-in and check-out times for a pairing are also of importance and can be calcu-

lated in a similar fashion as duty periods:

PairingCheckInTime = departureTime[�rst leg in pairing]− CHECK-IN-TIME

(3.3)

PairingCheckOutTime = arrivalTime[last leg in pairing]+ CHECK-OUT-TIME

(3.4)

The length of a duty period is the elapsed time between duty check-in and duty

check-out times, which is referred to as Duty-Elapsed-Time in this thesis. According

to �ight crew work rules, duty length is not to exceed a maximum limit (MAX-

LENGTH-OF-DUTY), which varies by type of duty and pairing.

Duty-Elapsed-Time = DutyCheckOutTime−DutyCheckInTime (3.5)
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In addition, the length of the time interval between check-in and check-out times of

a pairing is referred to as Pairing-Elapsed-Time.

Pairing-Elapsed-Time = PairingCheckOutTime− PairingCheckInTime (3.6)

Note that the subtraction operations above must be carried out carefully using ap-

propriate functions due to the operands being time objects that can occur in di�erent

time zones.

For a pairing that spans multiple work duties, namely Pairing Type 2, between every

two consecutive duty periods, a rest period is required, the length of which must

satisfy a minimum amount (MIN-LENGTH-OF-LAYOVER) as crew members need

to rest after every work day. It is worth noting that the aforementioned lengths of

time will later appear in cost calculations.

Another attribute worth mentioning here is the number of landings within a duty.

Based on work and safety regulations, each duty period within a pairing may consist

of at most a speci�c number of �ight segments. Note that the term landing is usually

used in collective agreements in this regard in order to distinguish between similar

�ight numbers that make at least one stop before landing in the �nal destination. For

example, �ight number 7063 departing from YAM at 11:50 a.m. local time and ar-

riving in YWG at 13:50 p.m. local time needs to be distinguished from �ight number

7063 leaving YWG at 14:35 p.m. local time and landing in YYC at 16:40 p.m. local

time. For pairing building purposes, this �ight number marks two segments, each of

which, as explained before, is basically a non-stop �ight. Therefore, the presence of

both portions of this �ight number in a duty period is equivalent to two landings.

In the simplest case, the maximum number of legs permitted within a duty period

(MAX-NUMBER-OF-LEGS-IN-DUTY) is a constant parameter. However, in the

case where there are several types of duty periods and pairings, this number varies
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by type. In fact, at the airline under consideration, in one case, this maximum value

is variable, meaning that depending if a certain amount of break is provided during

duty, the number of segments may be increased as well as the length of duty. In

addition, deadheading a�ects the permitted number of segments in duty, meaning

that for instance, if a deadhead segment is present in a duty period of Type 2, an

extra segment is allowed. As it can be seen, various factors contribute to determin-

ing parameters such as maximum landings in duty and maximum length of duty,

which cannot be known in advance. The approach proposed in this thesis requires

that potential pairings �rst be broken down to possible duty periods, and then the

type of every resulting duty-based pairing be identi�ed. It is when the type of each

potential pairing and its constituting duty periods are speci�ed that the appropriate

constraints on duty periods, rest periods and pairings can be applied to �lter out

invalid potential pairings.

Similar to the number of segments in a duty, the maximum number of duty peri-

ods permitted within a pairing is limited. A single-day pairing consists of one duty

period, whereas a multi-day pairing is made up of several duties separated by periods

of rest, in which the number of duties is not to exceed MAX-NUMBER-OF-DUTIES

-a parameter obtainable from the collective agreement that typically has a value of 4

or 5 for cabin crew.

As mentioned before, rest periods or layovers happen between every two consecu-

tive duty periods in a multi-day pairing. Depending on the airline, there may be

a restriction as to where, geographically speaking, layovers take place as the airline

is generally required to book hotel rooms for crew to rest before their next work

day. Understanding company policies is especially important in airlines with multiple

crew bases regarding layovers at or outside home base. For instance, in the developed

open-time pairing optimization tool for reserve �ight attendants, as per the airline's

request, overnight at home base does not appear in any pairing.

Tables 3.4, 3.5, and 3.6 list constraints on duty periods, rest periods and pairings

for the case of the industry partner.
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Constraint No. Description
3 Number of landings within a duty period must not ex-

ceed maximum permitted (MAX-NUMBER-OF-LEGS-IN-
DUTY).
Complexity: Parameter MAX-NUMBER-OF-LEGS-IN-
DUTY varies by type of duty/pairing and whether or not
there is a deadhead in duty.

4 Length of a duty period must not exceed maximum permitted
(MAX-LENGTH-OF-DUTY).
Complexity: Parameter MAX-LENGTH-OF-DUTY varies
by type of duty/pairing.

Table 3.4: Airline-speci�c constraints regarding duty periods

Constraint No. Description
5 Length of rest period between every two consecutive duty

periods within a multi-day pairing must satisfy a minimum
amount (MIN-LENGTH-OF-LAYOVER).

6 Multi-day crew pairings may not overnight at home base.

Table 3.5: Airline-speci�c constraints regarding rest periods or layovers

3.1.2 Identifying Duty Periods

In order to apply the listed constraints to the previously-constructed potential pair-

ings, due to the fact that parameters such as MAX-LENGTH-OF-DUTY and MAX-

NUMBER-OF-LEGS-IN-DUTY depend on duty type, it is �rst necessary to identify

duty periods within each potential pairing. In what follows, the duty period identi�-

cation procedure is described in detail.

As de�ned earlier, a potential pairing, which meets the minimum requirements of

a pairing (logical constraints), is a sequence of legs. Since �ight legs each have a

known departure time and arrival time, there is naturally a time gap between every

leg and its following segment in the pairing. The length of this gap is the length of

time between an arrival and the departure time of the next leg. Given a potential

pairing, using the departure and arrival times of its legs, it is possible to calculate the

lengths of all such gaps. These calculations are very simple to carry out due to the

fact that the times that need to be subtracted from one another are in the same time
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Constraint No. Description
7 Number of duty periods within a pairing cannot exceed the

maximum limit (MAX-NUMBER-OF-DUTIES).

Table 3.6: Airline-speci�c constraints regarding pairings

zone. In the process of identifying duty periods which in turn determines layovers,

what is of interest is the gaps in a potential pairing which are at least as long as

MIN-LENGTH-OF-LAYOVER. This process is based on the fact that in a potential

pairing, only gaps that are su�ciently long have the potential to mark rest periods

in the pairing. Legs that fall between periods of rest constitute duty periods. In this

thesis, the term Gap refers to the described period of time.

Depending on the number of Gaps available in a potential pairing, several combi-

nations of duty periods may be possible. After applying constraints derived from

work rules, some of these combinations may be found infeasible. However, there is

always one case that is more likely to be feasible: all available Gaps are considered

layovers that separate duty periods. Before moving on to the relationship between the

number of identi�ed Gaps and the number of possible combinations of duty periods

in a potential pairing, Leg-Gap patterns will be introduced.

Every potential pairing can be described using a pattern which will be referred to

as Leg-Gap pattern in this thesis and is employed in the duty identi�cation process.

The idea of associating Leg-Gap patterns to pairings helps design an algorithm that

can break any pairing down to duty periods, which, as mentioned earlier, is a neces-

sary step before a potential pairing can be validated. Given a potential pairing, each

unique pattern shows how �ight legs and identi�ed Gaps follow one another. For

example, the Leg-Gap pattern associated with the following potential pairing of legs

with identi�cation numbers 10, 3, 4, 7, 16, and 28 in the given order, with the time

gap between the arrival time of leg number 4 and the departure time of leg number 7

being greater than or equal to MIN-LENGTH-OF-LAYOVER (e.g., 10 hours, or 600

minutes), is L-L-L-G-L-L-L. This is an example of a potential pairing with 1 Gap.

An example of the Leg-Gap pattern for a potential pairing with 3 Gaps, which may
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in turn have 3 layovers and thus 4 duty periods, is L-L-L-L-G-L-L-L-L-G-L-L-L-G-

L-L-L. In what follows, the impact of the number of Gaps in a Leg-Gap pattern on

how pairings can be broken down to duty periods will be explored.

The only factor that plays a role in determining the number of possible combina-

tions of duty periods for a given potential pairing is the number of Gaps. Table 3.7

helps illustrate this idea. In this table, sample potential pairing Leg-Gap patterns as

well as all probable duty periods associated with each pattern are given. Note that for

each sample potential pairing, the case which is most likely feasible is marked with a

*. Since the number of duties in a pairing is limited to MAX-NUMBER-OF-DUTIES

(for instance, 4), only patterns that may result in the acceptable number of duties

and layovers need to be inspected. For instance, assuming the maximum number of

duty periods permitted within a pairing is 4, a pattern that contains 8 Gaps cannot

result in a feasible pairing and thus does not require further processing. The logic

behind the duty period identi�cation procedure, which will be explored shortly, sheds

light on this argument.
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Table 3.7: Relationship between number of Gaps (G) in potential pairing pattern and number of possible sets of duty periods

Example

PPairing Pattern Possible Duty Periods

L-L-L *Case 1:

[Duty # 1 of 1: L-L-L]

L-L-G-L-L *Case 1:

[Duty # 1 of 2: L-L]-[layover]-[Duty # 2 of 2: L-L]

Case 2:

[Duty # 1 of 1: L-L-[long sit connection]-L-L]

L-L-G-L-L-G-L-L *Case 1:

[Duty # 1 of 3: L-L]-[layover]-[Duty # 2 of 3: L-L]-[layover]-[Duty # 3 of 3: L-L]

Case 2:

[Duty # 1 of 2: L-L]-[layover]-[Duty # 2 of 2: L-L-[long sit connection]-L-L]

Case 3:

[Duty # 1 of 2: L-L-[long sit connection]-L-L]-[layover]-[Duty # 2 of 2: L-L]
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Table 3.7 Continued

PPairing Pattern Possible Duty Periods

L-L-G-L-L-G-L-L-G-L-L *Case 1:

[Duty # 1 of 4: L-L]-[layover]-[Duty # 2 of 4: L-L]-[layover]-[Duty # 3 of 4: L-L]-[layover]-[Duty # 4 of 4: L-L]

Case 2:

[Duty # 1 of 3: L-L]-[layover]-[Duty # 2 of 3: L-L]-[layover]-[Duty # 3 of 3: L-L-[long sit connection]-L-L]

Case 3:

[Duty # 1 of 3: L-L]-[layover]-[Duty # 2 of 3: L-L-[long sit connection]-L-L]-[layover]-[Duty # 3 of 3: L-L]

Case 4:

[Duty # 1 of 3: L-L-[long sit connection]-L-L]-[layover]-[Duty # 2 of 3: L-L]-[layover]-[Duty # 3 of 3: L-L]

Case 5:

[Duty # 1 of 2: L-L-[long sit connection]-L-L]-[layover]-[Duty # 2 of 2: L-L-[long sit connection]-L-L]
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To understand how potential duty periods are identi�ed for a given potential pairing,

consider an example with two Gaps. In Table 3.7, the sequence L-L-G-L-L-G-L-L

implies there is enough time between the arrival of the second leg and the departure

of the third leg to allow for a layover if needed. This is also true of the fourth arrival

and the �fth departure. If the entire potential pairing which covers legs 1 through

6, is not broken into smaller duty periods separated by periods of rest, it is con-

sidered a single duty period consisting of 6 segments and 2 long sit connections. In

what follows, the feasibility of such a duty period is explored. Note that at this point,

the constraints of interest are those relevant to lengths of time regarding duty periods.

Assuming MAX-LENGTH-OF-DUTY is, depending on type of duty, either 12 hours

(720 minutes) or 13 hours and 30 minutes (810 minutes), and that MIN-LENGTH-

OF-LAYOVER is 10 hours (600 minutes), since 2 Gaps add up to at least 20 hours

(1200 minutes), two or more Gaps are not feasible in the same duty period, regardless

of duty type. Therefore, each duty period may contain at most 1 Gap. As a result,

given the Leg-Gap pattern for a potential pairing, considering that every Gap in the

pattern may either be a layover or a long sit connection, and taking into account the

fact that at most one Gap may exist in a feasible duty period, then based on the

number of Gaps in the potential pairing, several combinations of duty periods are

possible. In a pattern containing two Gaps, as mentioned above, it is not feasible to

consider both Gaps to be long sit connections in a single duty period. Therefore, the

search for the duty periods in L-L-G-L-L-G-L-L, as seen in Table 3.7, leads to three

di�erent combinations which will be referred to as duty-based pairings in this thesis:

1: (1st Gap: layover , 2nd Gap: layover)� 3 duty periods D1, D2, D3

2: (1st Gap: layover , 2nd Gap: long sit connection)� 2 duty periods D′
1, D

′
2

3: (1st Gap: long sit connection , 2nd Gap: layover)� 2 duty periods D′′
1 , D

′′
2

It is worth mentioning that the likelihood of each of the above cases being found valid

eventually is di�erent. In fact, a rough comparison of MAX-LENGTH-OF-DUTY,

MIN-LENGTH-OF-LAYOVER and the typical length of �ights considered shows that

the case where all Gaps in the potential pairing are assumed to be rest periods, such

as Case 1 listed above, has a higher probability of being feasible than the other cases
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where one or more duty periods include a long sit connection in addition to �ight

legs. However, in such cases as Case 2 and Case 3 above, there is a chance, although

small, that each resulting duty-based pairing is found feasible when the remaining

constraints are applied.

Based on the described logic, the developed decision support system for open-time

cabin crew pairing optimization has a function that can take the Leg-Gap pattern

associated with a potential pairing to produce duty-based pairings, which are the se-

quences that the airline-speci�c constraints explained earlier can directly be applied

to once the type of pairing and its duty periods are determined.

The total number of possible duty-based pairings for di�erent number of Gaps found

in Leg-Gap patterns, is given in Table 3.8. These numbers are derived based on the

values listed in Table 3.9. As mentioned earlier, a pattern that contains 8 Gaps (or

more) cannot result in a feasible pairing. To understand why, consider a basic Leg-

Gap pattern consisting of 8 Gaps : L-G-L-G-L-G-L-G-L-G-L-G-L-G-L-G-L. In order

for the underlying potential pairing to have a maximum of 4 duty periods, at most

3 of its 8 Gaps must be layovers. Therefore, the remaining 5 Gaps must be long

sit connections that appear in 4 duty periods, which means that there must be at

least 2 Gaps/long sit connections in a single duty. This violates the constraint on the

maximum permitted length of duty and thus results in the potential pairing being

infeasible.

3.1.3 Determining Duty and Pairing Types

Following the potential pairing duty period identi�cation procedure, for every result-

ing duty-based pairing, the type of each pairing as well as duty period if applicable, is

speci�ed. For the airline under study, the speci�c criteria that de�ne each category

of pairings and duty periods can be found in the collective agreement and are utilized

to determine whether each pairing is Pairing Type 1-A, 1-B, or 1-C, or Type 2. Note

that a potential pairing that does not contain any Gaps is a single duty period or in

other words, a single-day pairing, which is one of the three Type 1 pairings. On the
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Number of Gaps Number of Resulting Duty-based Pairings
0 1
1 2
2 3
3 5
4 7
5 7
6 4
7 1

8 or more 0

Table 3.8: The relationship between the number of identi�ed Gaps in a Leg-Gap
pattern and the number of possible combinations of duty periods, based on the as-
sumptions provided in Table 3.9

Parameter Value
MAX-LENGTH-OF-DUTY 12 hours or 13 hours and 30 minutes (depending

on type of duty)
MIN-LENGTH-OF-LAYOVER 10 hours
MAX-NUMBER-OF-DUTIES 4

Table 3.9: Assumed values of problem parameters used in the described duty period
identi�cation procedure

other hand, multi-day pairings include two or more duties and are referred to as Pair-

ing Type 2. In the case of Type 2 pairings, the question that needs to be answered is

whether each of the duty periods within the pairing are Duty Type 1 or 2. The de-

veloped decision support system executes this step and saves the pairing/duty types

of each duty-based pairing for the purpose of applying the appropriate constraints in

order to remove invalid potential pairings. For con�dentiality reasons, in this thesis,

the details regarding how each type of pairing or duty is de�ned will not be discussed.

3.1.4 Pairing Validation

Once the aforementioned steps are carried out and duty and pairing types are achieved,

duty-based pairings are quali�ed to be passed to the potential pairing validation pro-

cedure explained earlier. For each of the previously-constructed duty-based [potential]
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pairings, appropriate airline-speci�c constraints are checked in order to remove in-

valid (or illegal) pairings. Cycling through the entire list of duty-based [potential]

pairings results in the list of all valid pairings across all crew bases. References to

the constraints that are applied to duty periods, rest periods and overall pairings

are found in Tables 3.4, 3.5, and 3.6. The output of the validation code is a binary

variable for every existing duty-based pairing, which is set to 1 (or YES) if a pairing is

found invalid due to at least one of the constraints being violated, or set to 0 (or NO)

otherwise. Therefore, only duty-based pairings for which the variable PPAIRING-

IS-INVALID is equal to 0 are saved to the list of valid pairings. Before discussing

the costs associated with each feasible pairing generated in Phase 1 of the proposed

approach to open-time crew scheduling and moving on to the pairing optimization

phase (Phase 2), an example will be provided to illustrate how the potential pairing

validation code functions.

Consider the sample potential pairing {11− 12− 17− 18− 19− 20} which has the

following Leg-Gap pattern: L-L-G-L-L-L-L. The duty period identi�cation code pro-

duces the following duty-based pairings as output:

1. {11− 12− layover − 17− 18− 19− 20}

2. {11− 12− 17− 18− 19− 20}

Pairing 1, in the above example, has two duty periods, namely D1: {11− 12} and
D2: {17− 18− 19− 20}, while Pairing 2 has a single duty period. The second duty-

based pairing is known to match the de�nition of Pairing Type 1-C, for which the

length of pairing, or equivalently length of duty, is limited to 13 hours and 30 minutes

(i.e., MAX-LENGTH-OF-DUTY=810 minutes). Knowing this, appropriate param-

eters are substituted in the constraints. Running the potential pairing validation

procedure �nds that this potential pairing is invalid. This is because although the

constraint on the number of legs within duty is satis�ed, it violates the constraint

regarding total length of duty. The length of Pairing 2, found using converted UTC

Minutes, is:
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Pairing-Elapsed-Time = PairingCheckOutTime− PairingCheckInTime (3.7)

= 2239− 1235 = 1004 minutes > permitted 810 minutes

On the other hand, Pairing 1, being composed of multiple duty periods, undergoes a

slightly di�erent validation procedure than Pairing 2. Before getting into the details

of each duty period which is where most of the restrictions are in place, the overall

pairing and rest period(s) are checked. Since the minimum amount of rest required

between consecutive duties (i.e., parameter MIN-LENGTH-OF-LAYOVER) is em-

bedded in the proposed approach to identifying duty periods, it is not necessary to

assess the length of rest periods in the validation code. However, in the open-time

crew pairing problem for Jazz Aviation LP, the cities where layovers take place are

to be compared against crew bases as multi-day pairings may not overnight at home

base. Pairing 1 begins and terminates at YVR, therefore this restriction leads to

the entire pairing being infeasible since the layover follows the arrival of crew at the

destination of leg 12, which also happens to be YVR. Logically, it is not necessary to

continue evaluating the remaining constraints once the violation of a constraint results

in the pairing being found infeasible. However, in this example, for the sole purpose of

clarifying how the validation procedure works, the pairing is treated as if it were valid.

As for the constraint on pairings, as explained before, the number of duties within a

feasible pairing does not exceed MAX-NUMBER-OF-DUTIES. In the given example,

MAX-NUMBER-OF-DUTIES has a value of 4, which means Pairing 1 has an accept-

able number of duty periods. At this point, the question that needs to be answered

is whether or not each duty within Pairing 1 satis�es the constraints regarding duty

periods.

Duty D1, with a check-in time of 12:35 p.m. local YVR time and check-out time

of 19:15 p.m. local YVR time on the same day, is Type 2 Duty (i.e., regular duty
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as opposed to early check-in). In this example, for Type 2 Duty, MAX-LENGTH-

OF-DUTY is 13 hours and 30 minutes (or equivalently, 810 minutes), and MAX-

NUMBER-OF-LEGS-IN-DUTY is equal to 7 if there are no deadhead segments in

duty or 8 otherwise. The length of duty for D1 is calculated using converted UTC

Minutes :

Duty-Elapsed-Time = DutyCheckOutTime−DutyCheckInTime (3.8)

= 3075−2675 = 400 minutes < MAX-LENGTH-OF-DUTY

Therefore D1, which includes 2 open legs and 0 deadheads, does not violate any of the

constraints concerning Type 2 duties. The second duty in Pairing 1, which follows a

rest period of 1055 minutes (or 17 hours and 35 minutes), is analyzed in a similar way.

For D2, check-in is at 12:50 p.m. local YVR time and check-out is at 22:39 p.m.

local YVR time on the date following the �rst duty. Similar to D1, D2 is Type 2

Duty. The length of duty is calculated using converted UTC Minutes :

Duty-Elapsed-Time = DutyCheckOutTime−DutyCheckInTime (3.9)

= 4719− 4130 = 589 minutes < MAX-LENGTH-OF-DUTY

Thus, D2, consisting of 4 open segments and 0 deadheads, satis�es the constraints

on Type 2 duties and is a valid duty period. However, in this example, the entire

pairing, despite having feasible duties, is infeasible for the reason explained earlier

and therefore the variable PPAIRING-IS-INVALID corresponding to Pairing 1 is set

to 1. Following the validation of potential pairings, the costs associated with valid

crew pairings must be calculated in order for the optimization model of Phase 2 to

select the optimal, i.e., minimum cost, set of feasible pairings.
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3.1.5 Pairing Cost Calculations

The speci�c cost structure of crew pairings varies across airlines. Typically, North

American airlines pay their crews based on credit hours, which are the units of work

that a crew member earns for pay purposes, whereas European airlines often pay crew

a �xed salary (Andersson et al. [5]). Depending on crew-pay structure, the objective

of the optimization model in the crew pairing problem takes di�erent forms, such

as minimization of crew costs or maximization of crew utilization (or equivalently,

minimization of the required number of �ight crews or minimization of the number of

pairings required to cover the �ight schedule) (Dück, Wesselmann & Suhl, [19]). In

the problem under study, since the partner uses credit hours to pay �ight attendants,

the objective is introduced as the minimization of total credit loss. The goal is to

select a collection of legal pairings where the number of paid working hours is as close

as possible to the number of actual �ying hours, subject to each segment being cov-

ered once. In mathematical terms, this objective is de�ned as the minimization of the

ratio of total credit hours over total block hours across all selected eligible pairings, or

Objective1 : minimize

n∑
i=1

(CreditHoursi · xi)

n∑
i=1

(BlockHoursi · xi)
(3.10)

Equation 3.10 is written as de�ned by the industry partner. It will be linearized for

optimization purposes. Before discussing the pairing selection phase in detail, it is

important to understand how credit hours and block hours are de�ned in the collec-

tive agreement. Block hours for an individual �ight leg, in the context of the cabin

crew pairing problem, is the duration of the �ight, i.e., the elapsed time between the

departure time at the origin and the arrival time at the destination. For each �ight

in the list of open segments, this parameter is usually available in hh : mm format.

Where several �ight segments are sequenced in a duty period and/or pairing, block

hours is de�ned as the total duration of productive �ying time. Thus, for a duty

period, block hours (Duty-Block-Hours) is calculated as the sum of the individual

block hours for each �ight segment in the duty. However, it must be noted that

if a deadhead �ight is present in a duty period, the associated block hours is not
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used in the calculations since, by de�nition, deadheads are only used to transport

crew as passengers in order to begin working elsewhere and thus are not considered

productive �ying hours. In a pairing composed of several duty periods, block hours

(Pairing-Block-Hours) can be calculated as the sum of the block hours for each duty

in the pairing. Duty-Block-Hours and Pairing-Block-Hours, which are used in �nding

credit hours, are calculated as follows:

Duty-Block-Hours =
∑

k∈{1,...,L}
k/∈Deadheads

BlockHours{Leg[k]} (3.11)

Pairing-Block-Hours =
∑

d∈{1,...,D}

BlockHours{Duty[d]} (3.12)

Credit hours has a more complicated structure compared to block hours for both

duty periods and pairings. Although the speci�c factors that impact crew pay on

the basis of credit hours may vary from airline to airline, credit hours is generally a

complex non-linear function of several parameters such as minimum guaranteed pay

per duty, actual �ying hours (i.e., block hours) and time away from base or TAFB

(i.e., the number of minutes that elapse between the beginning and the end of a duty

period/pairing (Schaefer et al. [30]). For instance, the developed open-time pair-

ing generator and optimizer for cabin crew uses the maximum function to determine

credit hours for duty periods (Duty-Credit-Hours) as well as pairings (Pairing-Credit-

Hours). Duty-Credit-Hours is the maximum of three values and can be found using

the following function:

Duty-Credit-Hours = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
MIN-GUARANTEED-CREDIT-HRS-PER-DUTY;

Duty-Block-Hours ;

w1 · Duty-Elapsed-Time.

(3.13)

In the above equation, MIN-GUARANTEED-CREDIT-HRS-PER-DUTY represents

the minimum number of credit hours crew are guaranteed to get paid per duty period

regardless of the length of duty, and is a constant parameter speci�ed in the collective

agreement. Duty-Elapsed-Time is calculated as the length of the time interval that

begins at DutyCheckInTime and ends at DutyCheckOutTime (given in Chapter 3).
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Parameter w1 is a constant derived from CBA with a fractional value between 0 and

1 (0 < w1 < 1). This parameter represents the signi�cance weight given to the length

of duty periods regarding credit hours. The term w1 ·Duty-Elapsed-Time in Equation

3.13 indirectly incorporates the cost of deadheading on credit hours. For a multi-day

pairing, once Duty-Credit-Hours are calculated for each duty period, Pairing-Credit-

Hours can be determined as follows:

Pairing-Credit-Hours = max

⎧⎪⎪⎨⎪⎪⎩
∑

d∈{1,...,D}

Duty-Credit-Hours{Duty[d]};

w2 · Pairing-Elapsed-Time.

(3.14)

In this equation, Pairing-Elapsed-Time, commonly referred to as time away from base

or TAFB, is the length of the time interval that begins at PairingCheckInTime and

ends at PairingCheckOutTime (given in Chapter 3), and w2 is a constant parameter

with a prede�ned fractional value between 0 and 1 (0 < w2 < 1). Similar to w1, w2

in Equation 3.14 indirectly incorporates the impact of deadheading on credit hours.

It is worth noting that w1 > w2. As a result, �nding the credit hours for single-duty

pairings reduces to only calculating Duty-Credit-Hours. The calculation of cost pa-

rameters for valid pairings, namely Pairing-Block-Hours and Pairing-Credit-Hours,

marks the end of the �rst phase. All valid legal pairings and their costs are recorded

in specially formatted matrices that are passed to the next phase.

3.2 Phase 2: Pairing Optimization

Phase 2, or the Pairing Optimization or Selection Phase, uses the output of Phase 1

as input data in running the BIP formulation to be developed to select the optimal

pairings covering the segments in open time.

Using the matrices generated in Phase 1, the Pairing Selection Problem is formulated

as a Set Partitioning Problem (SPP), with the exception that the objective function is

modi�ed to incorporate deadheading preferences. This formulation is given in Equa-

tions 3.15 through 3.17. Note that to �nd the value of parameter n′ used in these

equations, the number of open legs is added to the total number of valid duty-based
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pairings generated in Phase 1. The reason behind this will be discussed in Section

4.5.

Parameters:

m: number of �ight legs

n′: number of legal pairings

Cj: PAIRING-CREDIT-HOURS for pairing j

Bj: PAIRING-BLOCK-HOURS for pairing j

Lj: Pairing-Elapsed-Time for pairing j

d: very small positive number. Here d = 0.000001.

Aij =

⎧⎨⎩1, if open �ight leg i is used on pairing j

0, otherwise

Decision Variables:

xj =

⎧⎨⎩1, if pairing j is used in the solution

0, otherwise

Min
n′∑
j=1

(Cj −Bj + d · Lj)xj (3.15)

s.t.

n′∑
j=1

Aij xj = 1, ∀i ∈ {1, . . . ,m} (3.16)

xj ∈ {0, 1}, ∀j ∈ {1, . . . , n′} (3.17)

The objective function (Equation 3.15) has two terms. The �rst term is a linearized

version of the credit loss ratio introduced in Equation 3.10: Total credit loss is ex-

pressed as the di�erence between total credit hours and total block hours across all

legal pairings.

The second term of the objective function aims to capture the preference given to
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shorter deadheads. The speci�c cost structure that applies to duty periods and pair-

ings, which was described previously, may lead to two or more legal pairings with

similar values for PAIRING-CREDIT-HOURS − PAIRING-BLOCK-HOURS. This

occurs in pairings that consist of the same open legs but only di�er in the deadhead

segments that may have been used in order to �y crew from and/or to any of the air-

line's several bases at the beginning and/or end of pairings. In such cases, the pairing

with the lowest value for Pairing-Elapsed-Time would be equivalent to the pairing

with the least deadheading. For economical, operational and safety reasons, airlines

prefer to have crew spend less time on deadheads. Therefore, the length of pairings

is used to select the most desirable pairing among pairings with similar credit loss. It

is worth noting that a very small weight, d = 0.000001 or 10−6, has been arbitrarily

chosen to be applied to the pairing lengths in order to distinguish between the main

objective of this minimization and what is only a tiebreaker.

Equation 3.16 is the leg covering constraint, which states that each open leg must

appear in one and only one of the selected pairings. Feasible pairings, generated in

Phase 1, are composed of open-time �ight segments and possibly deadhead legs at the

beginning and/or end of pairings; however, since covering deadhead legs is not the

purpose of the optimization problem, they are excluded from the constraint matrix

[Aij]m×n′ , where the rows represent unique �ight ID of open legs and the columns

show legal pairings.

The optimal solution found by solving the given mathematical model using avail-

able linear/integer programming solvers is an assignment of the values 0 or 1 to the

decision variables (Equation 3.17) and is interpreted as follows: All j's for which

xj = 1, make up the subset of legal pairings that have been selected by the optimiza-

tion phase, resulting in the minimum total cost. Referring back to the list of pairings

generated and validated in Phase 1, details regarding the legs that fall on each selected

pairing j can be retrieved. In order to access a user-friendly summary of the results

of the optimization, the developed decision support system includes a post-processing

module that displays essential information with regards to the sequence of �ights on

each pairing, such as �ight number, departure date, origin airport, departure time,
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destination airport and arrival time for deadhead �ights and segments that were orig-

inally in open-time. Figure 3.2 shows what the output of the developed decision tool

typically looks like. Crew schedulers using the pairings generated by this tool would

then need to make the necessary arrangements for the �ying of crew on speci�ed

�ights for the purpose of deadheading which may take place on �ights operated by

other airlines, as well as to book hotel rooms during layovers within pairings.

3.2.1 Extending the Optimization Objective to Reduce Deadheading

Di�erent metrics inspire the extension of the optimization objective beyond cost min-

imization. For example, the ratio of the total number of used deadhead segments

across all of the selected pairings to the number of open legs can be incorporated in

the objective function of the optimization problem. Weight parameters assigned to

each term in the objective show relative preference among optimization goals. The

crew pairing optimization model of Phase 2 can be reformulated as follows (Equations

3.18 to 3.20) assuming that newly-introduced parameters Dj are available for every

valid duty-based pairing. (In Phase 1, the developed decision support system can

easily calculate and save these parameters in matrix form.)

Parameters:

m: number of open �ight legs

n′: number of legal pairings

Cj: PAIRING-CREDIT-HOURS for pairing j

Bj: PAIRING-BLOCK-HOURS for pairing j

Lj: Pairing-Elapsed-Time for pairing j

d: very small positive number. Here d = 0.000001.

w3: arbitrary number between 0 and 1

Dj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if pairing j does not have any deadhead legs

1, if pairing j has one deadhead leg (from or to a base)

2, if pairing j has two deadhead legs (from a base and to the same base)
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Aij =

⎧⎨⎩1, if open �ight leg i is used on pairing j

0, otherwise

Decision Variables:

xj =

⎧⎨⎩1, if pairing j is used in the solution

0, otherwise

Min
n′∑
j=1

(Cj −Bj)xj + d

n′∑
j=1

Lj xj + w3
1

m

n′∑
j=1

Dj xj (3.18)

s.t.

n′∑
j=1

Aij · xj = 1, ∀i ∈ {1, . . . ,m} (3.19)

xj ∈ {0, 1}, ∀j ∈ {1, . . . , n′} (3.20)

The objective function (Equation 3.18) minimizes total credit loss while giving prefer-

ence to shorter deadhead segments as well as lower ratio of total number of deadhead

segments used across all of the selected pairings to number of open legs (i.e., lower

number of deadhead segments in the solution). Constraint 3.19 ensures that each

open leg is covered exactly once.

This marks the end of Phase 2, and thus, the two-phase approach to open-time

pairing optimization for cabin crew is completed at this point. Chapter 4 is dedicated

to experiments, results and relevant discussions.
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Chapter 4

Experiments, Results and Discussions

The developed approach and application have been veri�ed using the following data

provided by the airline for several 4-day time horizons:

1. open segments;

2. open pairings across the di�erent crew bases;

3. legs making up each of the previously published pairings, some of which have

gone into open-time; and

4. deadhead �ights available through di�erent airlines from/to each crew base.

The decision support system for crew pairings has been developed in a way that

facilitates making modi�cations when necessary or running experiments. This feature

can especially be advantageous when updates to the collective agreement a�ect the

open-time pairing problem at the airline for reserve cabin crew.

4.1 Multiple Pairing Types

Results of several test runs are summarized in Tables 4.1 and 4.2. Table 4.1 shows

the various types of pairings achieved by the developed crew pairing application. It

should be noted that when verifying results with multiple duty and pairing types,

the type of duty/pairing must be taken into consideration because it in�uences the

constraints to be satis�ed.

4.2 Duration of Layovers and Sit Connections

With regards to verifying that none of the constraints given in Chapter 3 have been

violated within the pairing generator/optimizer solution, Table 4.2 addresses sam-

ple constraints. It can be seen that in the optimal solution regarding each dataset,

50
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Dataset
Number of
open legs

Total
number of
selected
feasible
pairings

Number of
Type 1-A
and Type
1-B
pairings

Number of
Type 1-C
pairings

Number of
Type 2
pairings

Dataset 1 20 7 0 7 0
Dataset 2 27 7 3 2 2
Dataset 3 38 9 2 3 4
Dataset 4 38 5 0 0 5
Dataset 5 39 11 3 6 2
Dataset 6 46 14 1 12 1
Dataset 7 65 12 0 6 6
Dataset 8 68 16 3 7 6
Dataset 9 75 20 2 12 6
Dataset 10 80 22 3 14 5
Dataset 11 87 18 4 6 8

Table 4.1: Pairing types within the optimal selection of pairings for several sample
runs

the constraints governing the number of duties (Equation 4.1) and the length of rest

periods (Equation 4.2) in each crew pairing are respected. In what follows, limita-

tions on the duration of rest periods and sit connections will be examined more closely.

number of duties in pairing ≤ 4 (= MAX-NUMBER-OF-DUTIES) (4.1)

length of layover in pairing ≥ 10 hrs (= MIN-LENGTH-OF-LAYOVER) (4.2)

4.2.1 Adding a New Constraint: Setting an Upper Bound on Sit

Connections

In this case study, the collective bargaining agreement (CBA) between the union of

�ight attendants and the airline does not enforce an upper limit for the duration of

rest periods between duties as well as the duration of sit connections between �ight
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Dataset
Number of
open legs

Number of
selected
multi-day
pairings

Maximum
number of
duties in
pairings

Minimum
length of
layover in
pairings

Maximum
length of
layover in
pairings

Dataset 1 20 0 1 duty 0 0
Dataset 2 27 2 pairings 4 duties 14.3 hrs 24.4 hrs
Dataset 3 38 9 pairings 2 duties 11.4 hrs 19.3 hrs
Dataset 4 38 5 pairings 3 duties 11.4 hrs 20.3 hrs
Dataset 5 39 2 pairings 3 duties 15.3 hrs 17.6 hrs
Dataset 6 46 1 pairing 2 duties 14.7 hrs 14.7 hrs
Dataset 7 65 6 pairings 3 duties 13.5 hrs 19.3 hrs
Dataset 8 68 6 pairings 3 duties 11.0 hrs 17.7 hrs
Dataset 9 75 6 pairings 3 duties 11.5 hrs 20.3 hrs
Dataset 10 80 5 pairings 3 duties 10.1 hrs 19.5 hrs
Dataset 11 87 8 pairings 3 duties 12.2 hrs 18.6 hrs

Table 4.2: Rest periods or layovers between duty periods for the optimal selection of
pairings

segments. The e�ect of adding such a constraint to the crew pairing problem, partic-

ularly regarding sit connections, will be examined through several experiments on one

dataset. Among the datasets at hand, Dataset 1 is used for this purpose, because, as

can be seen in Table 4.1, the solution is conveniently composed of single-day Type

1-C pairings. Therefore, all of the pairings in the solution to the original unbounded

problem are governed by the same constraints and thus, similar rules with regards

to sit connections. However, some of the experiments are expected to change the

structure of the original solution while others are not. The experiments are carried

out in the following manner.

Firstly, once the optimal solution of the original unbounded problem is obtained, the

longest sit connection appearing within the entirety of duty periods is found. In what

follows, this value will be called Longest-Sit-Found. The second longest sit connection

is also used in this experiment and will be referred to as 2nd-Longest-Sit-Found. Note

that the unbounded problem refers to the pairing generation problem that does not

constrain the maximum permitted length of sit connections between consecutive legs

(Equation 4.3).
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length of sit connection ≤ MAX-LENGTH-OF-SIT (4.3)

Having determined the aforementioned values, the constraint given in Equation 4.3 is

added to the pairing generation module. Next, in each experiment, parameter MAX-

LENGTH-OF-SIT is set to a di�erent value determined by Longest-Sit-Found and

2nd-Longest-Sit-Found as follows:

1. MAX-LENGTH-OF-SIT≫ Longest-Sit-Found

2. MAX-LENGTH-OF-SIT > Longest-Sit-Found

3. MAX-LENGTH-OF-SIT = Longest-Sit-Found

4. 2nd-Longest-Sit-Found < MAX-LENGTH-OF-SIT < Longest-Sit-Found

5. MAX-LENGTH-OF-SIT = 2nd-Longest-Sit-Found

6. MAX-LENGTH-OF-SIT < 2nd-Longest-Sit-Found

Eventually, for each case, the pairing generator and optimizer are run again and so-

lutions are compared with that of the original unbounded problem. The described

experiments are run on Dataset 1, where the longest and second longest sit connec-

tions found as well as total credit loss of achieved pairings are as follows:

Longest-Sit-Found = 196 minutes (or 3.3 hours)

2nd-Longest-Sit-Found = 129 minutes (or 2.2 hours)

Total Credit Loss of Achieved Pairings = 0.026 (or 2.60%)

Results of the aforementioned experiments are summarized in Table 4.3. It is worth

mentioning that in these experiments, a signi�cant change in run time was not ob-

served. Table 4.3 shows that as expected, reduction in the feasible region results in

the exclusion of pairings that were once legal in the original unbounded problem.

Thus, the minimization of the total credit loss gets worse. These results emphasize

the fact that in an optimization problem with a bounded feasible region, constraints

leading to an even more limited set of feasible solutions are to be incorporated only
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Experiment Description

MAX-
LENGTH-
OF-SIT
(minutes)

Total
Credit
Loss of
Achieved
Pairings

Overall
Assessment
of Solution
Compared
with
Unbounded
Problem

1 ≫ 196 minutes 250 0.026 no change
2 > 196 minutes 197 0.026 no change
3 = 196 minutes 196 0.026 no change
4 > 129 and < 196 minutes 195 0.133 slightly worse
5 = 129 minutes 129 0.133 slightly worse
6 < 129 minutes 128 1.369 signi�cantly worse

Table 4.3: Experiments on a sample dataset regarding the duration of sit connections

when required. For this reason, in the developed pairing optimization tool, the con-

straint given in Equation 4.3, which can be seen in airline crew pairing literature,

is not applied, even with a very large value of parameter MAX-LENGTH-OF-SIT.

However, in the event that the airline decides to select an upper limit for the duration

of intermissions between �ight segments and/or duties, the underlying idea behind

the experiments summarized in Table 4.3, i.e., keeping track of the maximum sit con-

nection and/or layover observed in the optimal solution to the pairing problem over

time, will be bene�cial.

4.3 Varying Problem Size

Table 4.4 provides insight as to how big a typical open-time crew pairing problem

for reserve �ight attendants is with respect to all 5 crew bases of the airline under

study. Historical records show that the total number of open legs from all sources,

namely open segment report and open pairing report, is normally below 100 legs over

the course of 4 days. Thus, the problems typically encountered by the "Next-day

Crew Scheduling Department" at the airline can be solved in a reasonable amount of

time on mainstream computers using current LP/IP solvers, which is far beyond the

speed of manual scheduling. Application run time is especially important in such a

problem that targets the recovery of crew schedules at the operational level. Before
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Number of open Total number of Number of Number of valid
Datasets legs deadheads constructed pairings

available ppairings

Dataset 1 20 813 4798 2841
Dataset 2 27 5903 25814 7603
Dataset 3 38 6020 71183 37524
Dataset 4 38 6132 224642 150017
Dataset 5 39 6400 51563 26861
Dataset 6 46 6312 27981 10607
Dataset 7 65 6077 168001 73818
Dataset 8 68 2866 137447 44291
Dataset 9 75 6002 548970 197932
Dataset 10 80 4915 267966 62183
Dataset 11 87 2591 514904 128636

Table 4.4: Sample Runs: Relationship between the number of given open legs, number
of available deadhead legs from/to bases, number of constructed potential pairings,
and number of valid duty-based pairings across all crew bases

presenting sample run times, the overall impact of potential pairing construction at

the beginning of Phase 1 on total program execution time will be illustrated.

The value of the preprocessing procedure described in Section 3.1.1 can be understood

by evaluating how much the problem size is reduced early on in the process of gener-

ating all possible valid pairings given a speci�c number of open segments. Consider

a problem involving 68 open legs over the 4-day planning horizon. From a set theory

perspective, the crew pairing construction problem is, in a way, similar to �nding all

of the possible subsets, which respect work rules, for the set of open legs. Clearly, in

this context, the subset containing zero elements, i.e., no legs, is of no interest. Hy-

pothetically, if there were absolutely no constraints as to how �ight segments could

be grouped together to form pairings, combinatorics suggests that there would be at

most 268− 1 = 295, 147, 905, 179, 352, 825, 855 possible pairings, the lengths of which,

in terms of number of legs, would range from 1 to 68. Undoubtedly, the notion behind

the logical constraints given in Table 3.1 alone suggests that many of these subsets are

invalid. This is due to the fact that if, either time-wise or location-wise, a sequence

of two arbitrary segments is infeasible, then this sequence, as is, must not appear in

any potential pairing. As it can be seen in Table 4.4, for a sample problem with 68
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Number of Total number of Valid pairing Pairing
Datasets open legs deadheads generator optimizer

available run time (sec) run time (sec)

Dataset 1 20 813 1.2 0.5
Dataset 2 27 5903 11.0 0.9
Dataset 3 38 6020 39.9 3.7
Dataset 4 38 6132 192.9 15.8
Dataset 5 39 6400 36.7 2.9
Dataset 6 46 6312 22.4 1.4
Dataset 7 65 6077 91.5 11.4
Dataset 8 68 2866 59.5 7.5
Dataset 9 75 6002 210.4 35.7
Dataset 10 80 4915 166.8 11.3
Dataset 11 87 2591 114.2 23.0

Table 4.5: Sample run times (in seconds)

open legs, the number of potential pairings, or ppairings, is incomparable with the

number of unconstrained possibilities suggested by Combinatorial Mathematics on

the �rst look. Thus, incorporating such a preprocessing module within the developed

application conveniently leads to less operations and run time required to generate

all feasible pairings which build the foundation for �nding the optimal selection of

pairings.

Table 4.5 shows sample run times for valid pairing generation as well as pairing

optimization. The feasible pairing generator has been programmed in the Python

programming language using Python's Integrated DeveLopment Environment (IDLE)

Version 2.7. After this module is run, relevant data is exported to the optimization

phase in matrix form through CSV, or Comma Separated Values, �les. Figure 4.1

illustrates the integration of these modules and �les. The pairing optimizer uses open-

source GUSEK Version 0.2 to model the pairing selection problem in GNU MathProg

Language (GMPL), which is solved using GLPK solver. This model can be found in

Appendix C. Sample runs have been performed on an Intel® Core� i5-6300HQ CPU

@2.30 GHz processor/8 GB RAM machine. As it can be seen in Table 4.5, depending

on the dataset and problem size, total execution time typically ranges between a few

seconds to a few minutes.
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It has been observed that GUSEK is not capable of handling relatively large open-time

pairing optimization problems, which are less likely to be encountered at the airline

but may still be seen occasionally. To be speci�c, attempts to solve the optimization

model for the datasets described in Table 4.6 using GLPK solver resulted in memory

error. To overcome this issue, the pairing optimization model has been translated

to MPL Modeling Language and solved using Gurobi Solver. It is worth noting that

in case of Dataset B, the program was run on a machine with a RAM size of 32

GB; however, less than half of the amount of available memory was used. It can

be concluded that GLPK/GUSEK performs well for regular-sized problems (roughly

under 100 open legs), i.e., the optimal solution is reached in a reasonable amount of

time. However, larger problems (roughly over 100 open legs) may need to be solved

using a more powerful LP/IP solver such as Gurobi.

Large
Dataset

Number of
open legs

Total
number of
deadheads
available

Total
number of
constructed
ppairings

Total
number of
valid
pairings

Pairing
optimizer
run time

A 106 6,296 1,127,200 208,830 1.32 sec
B 106 6,247 > 5 million > 1 million 12.81 sec

Table 4.6: Optimization run times of large datasets

4.4 Optimal Credit Loss

Optimization results showing total block hours and total credit hours for selected legal

pairings in several test runs are given in Table 4.7. Credit loss, minimized by solving

the binary integer programming model of the second phase to optimality, shows how

far actual �ying times are from achieved credit hours based on which �ight attendants

are scheduled to get paid. Table 4.8 depicts each individual optimal pairing.

The objective of the optimization problem has been de�ned as the minimization of

total credit loss across all pairings, suggesting that theoretically, if necessary, inef-

�cient pairings may appear in the optimal solution as long as the negative impact

of such pairings on the overall di�erence between credit hours and block hours is
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compensated for by more e�cient pairings. Taking a closer look at each individual

pairing in the solutions of sample runs veri�es that regardless of the percentage of

total credit loss, it is not beyond expectation to see pairings with absolutely no credit

loss. In fact, Table 4.8 shows that it is possible for a fairly high percentage of the

pairings to have a credit loss of 1+5%
−0 .

Dataset
Number of
open legs

Number of
selected
pairings

Average
pairing CH

BH

Minimum
pairing CH

BH

achieved

Number of
pairings
with
minimum
ratio
(1.00+0.05

−0 )
Dataset 1 20 7 1.03 1.00 6
Dataset 2 27 7 2.13 1.06 3
Dataset 3 38 9 1.64 1.00 3
Dataset 4 38 5 1.29 1.00 2
Dataset 5 39 11 1.78 1.00 5
Dataset 6 46 14 1.43 1.00 4
Dataset 7 65 12 1.22 1.00 5
Dataset 8 68 16 1.58 1.00 1
Dataset 9 75 20 1.35 1.00 10
Dataset 10 80 22 2.01 1.00 7
Dataset 11 87 18 1.38 1.00 8

Table 4.8: A glance at the ratio of credit hours to block hours (CH
BH

) for individual
selected pairings in obtained solutions to optimization problem across all crew bases

4.5 E�ects of Deadheads on Pairings

It must be noted that deadheads do not show up in block hour calculations and only

contribute to pairing credit hours. Therefore, deadheads are considered costly for

the airline even though the credit hours awarded on a deadhead segment is only a

percentage of the credit hours of an actual productive �ight. One reason why air-

lines prefer less deadheads is the limited number of legs permitted within each duty

period/pairing, and deadheads count as legs. However, deadheads play an important

role in creating feasible pairings. In other words, deadheading is generally inevitable

in open-time pairing construction, mainly due to the constraint that requires all legal
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pairings to begin and terminate at a crew base. For this purpose, a lengthy list of

�ights on which, if necessary, cabin crew may �y as passengers is required for identi-

fying useable deadheads. Therefore, depending on what �ights are available for this

purpose during the planning period, segments that are appropriate in terms of ori-

gin/destination as well as departure time/arrival time are identi�ed. The following

example illustrates this concept.

Consider a pairing where an anonymous crew member would begin the pairing by

�ying on a deadhead segment as a passenger from their home base to another airport

where they would start working on a sequence of legs and eventually �y back home.

To ensure that they would arrive at their �rst working airport in time in the event of

unexpected delays, a minimum bu�er time, for instance 30 minutes, is added prior to

the departure of the �rst actual leg in the pairing. Therefore, the following relation-

ships must hold true with regards to connecting a deadhead segment and an actual

�ight on the basis of time (Equation 4.4) and location (Equation 4.5):

ArrivalT ime[DeadheadFromBase] + BUFFER-TIME < DepartureT ime[Leg1]

(4.4)

DestinationCity[DeadheadFromBase] = OriginCity[Leg1] (4.5)

4.5.1 Feasible Region of Optimization Problem and Dummy Pairings

Wherever necessary, the pairing generator refers to the list of useable deadheads in

order to make it possible for potential pairings to begin at a base and end at the same

base. Since the �nal goal is to �nd a subset of feasible pairings that cover all open

legs at minimum cost, in order for the optimal solution to exist, it must be ensured

that the feasible region is not empty in the �rst place, i.e., it is necessary that each

open leg appear in at least one valid pairing.

Theoretically, for the simpli�ed problem consisting of one crew base, a basic solu-

tion to the Set Partitioning Problem formulation of Phase 2, provided in Chapter

3, is the solution that is composed of single-leg pairings which are surrounded by

deadheads from or/and back to base as needed. It can easily be shown that such
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pairings, which either consist of 2 or 3 legs, are legal. In the worst case, the de-

scribed solution which satis�es the leg covering constraint and thus is feasible, is also

optimal provided that no better subset of legal pairings exists. However, practically

speaking, there may be instances where due to the lack of desirable deadhead �ights

from/to crew bases, certain open legs do not show up in any feasible pairing, which

eventually leads to such segments remaining in open-time. Before explaining how the

optimization model of the developed application deals with this issue and what the

airline can do to resolve it, it is worth noting that such instances are not unlikely

to happen; however, given the list of open segments along with �ights available for

crew deadheading, the algorithm given in Appendix E can be used to predict exactly

which legs will be left uncovered.

The developed decision support system makes sure that at least one feasible solu-

tion exists for the pairing optimization problem by adding dummy pairings with very

high costs. At the end of Phase 1, once all valid pairings are found, for every open

segment, a dummy pairing solely consisting of that open leg at a very large cost,

i.e., in�nity block hours and credit hours and pairing length in theory, is created and

appended to the list of valid pairings passed on to Phase 2. When the minimization

model searches for a subset of pairings to satisfy the leg covering constraint, it will not

select from the described single-leg dummy pairings unless it is absolutely necessary.

4.5.2 Legs Remaining in Open-time

The size and quality of the list of deadheading options directly impact the optimiza-

tion solution. With regards to the optimal solution to the pairing selection problem,

the post-processing module introduced earlier distinguishes between dummy pairings,

that show which legs remain in open-time, and selected feasible pairings, based on

which total block hours and total credit hours are compared.

It must be noted that among the described open legs, may be segments that depart

from the second planning day onwards. Therefore, due to the rolling time horizon of

next-day scheduling at the airline, in such cases, it is probable that solving for the
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following 4-day period consisting of a new pool of open �ights will �t some of these

legs in feasible pairings. In case an uncovered leg departs on the �rst day of the

planning period, i.e., the day after schedules are published, the airline's day-of crew

scheduling team that are basically in charge of �nding solutions to schedule disrup-

tions occurring on the day of operations, take over.

4.6 De�ning Metrics to Evaluate the Solution

Using the tables to follow, sample solutions from three test runs will be evaluated

in terms of various metrics to assess individual pairings as well as the entire set of

selected feasible pairings. Table 4.9 summarizes the use of deadheads in the optimal

solutions obtained by running the pairing optimizing application for several datasets.

Note that whether or not deadheading is part of a solution highly depends on the

nature of the open segments given as input to the crew pairing problem. However,

what is certain is that for a given scheduling period, the total number of deadhead

�ights used in the solution, which make commencing and terminating at crew bases

possible, fall between 0 (best case) and 2 × number of open legs (worst case). For

example, in case of Dataset 11, with 87 open legs in the input, 7 deadhead segments

have appeared in the solution, which means on average there are 7
87
or 0.08 deadhead

segments to every open segment (i.e., 1 deadhead for every 12 open legs). Airlines

naturally prefer solutions with low ratio of deadhead segments to number of open

legs denoted by ρ and given in Equation 4.6. Despite the fact that a solution may

not be very appealing in every way, it should be noted that the described solution is

the solution that leads to the lowest total cost, i.e., credit loss, while respecting rules

and regulations regarding cabin crew and is thus considered acceptable by the airline.

Nonetheless, the metrics de�ned to describe the optimal solution simply illustrate the

tradeo� between lower cost and other factors of interest.

It must be recognized that from the airline crew planning perspective which seeks

relatively desirable solutions on top of low-cost solutions, certain factors are espe-

cially important to assess over time. Therefore, once the minimum-cost set of pairings

is obtained, evaluating the solution based on de�ned metrics provides the means for
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quantifying solution desirability. In what follows, another metric de�ned with regards

to crew deadheading (µ given in Table 4.9) will be explained.

Dataset

Number
of
open
legs

Number
of
available
dead-
heads

Total
number of
selected
feasible
pairings

Number of
feasible
pairings
with dead-
heading

Total
number of
deadhead
�ights
used in
solution

ρ µ

1 20 813 7 0 0 0 0 %
2 27 5,903 7 1 1 0.04 14 %
3 38 6,020 9 3 4 0.11 33 %
4 38 6,132 5 1 1 0.03 20 %
5 39 6,400 11 3 6 0.15 27 %
6 46 6,312 14 3 3 0.07 21 %
7 65 6,077 12 2 3 0.05 17 %
8 68 2,866 16 4 6 0.09 25 %
9 75 6,002 20 4 5 0.07 20 %
10 80 4,915 22 9 11 0.14 41 %
11 87 2,591 18 5 7 0.08 28 %

Table 4.9: Sample results showing the count of deadheads in the obtained solutions

0 < ρ =
total number of deadhead segments in solution

number of open legs
< 2 (4.6)

As Table 4.9 suggests, among the several feasible pairings selected by the optimizer,

there are pairings with deadheading at the beginning and/or end of the sequence of

legs they cover, which eventually need to be assigned to �ight attendants through

crew rostering. This piece of information may especially be important for crew mem-

bers bidding on published pairings as some �ight attendants may or may not prefer

deadheading for personal reasons. From the planner's perspective, the percentage of

pairings that include deadheading (DH), denoted by µ, can be calculated (Equation

4.7) and compared against speci�ed target values in order to assess the attractiveness

of the obtained solution.

µ = % of pairings with DH =
number of selected pairings with DH

total number of selected pairings
× 100 (4.7)



Chapter 5

Conclusions

Existing research have mostly examined the crew scheduling problem at the strategic

level, speci�cally focusing on modeling and �nding near-optimal or optimal solutions

to the crew pairing problem that is required to be solved at airlines as part of the

typical pre-month planning process. On the other end of the planning spectrum, lies

the crew rescheduling problem at the operational level, which aims to recover crew

schedules from disruptions that may occur during daily operations. Compared to the

monthly problem, the crew rescheduling problem is a less-studied area, although after

initial schedules are published, changes in crew availability, �ight schedules, and air-

craft are inevitable, resulting in what is known as open-time �ying, and thus, a proper

approach to this time-critical problem can prevent unnecessary extra costs for airlines.

Previous research in this area have mainly addressed the rescheduling problem en-

countered on the day of operations. However, open-time �ying may be caused by

various sources, some of which make it possible to identify uncovered legs and/or

pairings several days prior to the day of operations, therefore allowing for a signi�cant

portion of disruptions to be dealt with in a less time-restrained planning environment

by utilizing reserve crews as e�ciently as possible. This aspect of crew rescheduling

is overlooked by previous academic research. This study, done in collaboration with

industry partner, Jazz Aviation LP, aimed at designing a decision support system to

help the Scheduling Department re-optimize the generation of legal open-time pair-

ings for reserve cabin crew, and has led to the proposal of a two-phase approach to

this problem.

Since crew unavailability itself is a source of open-time �ying, the crew reschedul-

ing problem on the next-day level is advised to be carried out in two separate stages
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in a similar fashion as the monthly problem, namely crew pairing and crew assign-

ment. As airline requirements vary substantially, existing modeling techniques for the

crew pairing problem could not be adapted directly. The key characteristics of our

pairing problem, where optimal legal pairings are generated independent of individual

reserve crew availability or preferences, include multiple duty types, multi-day rolling

time horizon, complex non-linear crew pay structure in terms of credit hours, multiple

crew bases, and use of actual �ights available for deadheading crew from and/or to

base.

Given a list of �ight segments in open time as well as �ights that may be used

in crew deadheading where needed, following data processing and cleaning, our pro-

posed enumeration-based technique begins with the construction of valid pairings in

Phase 1. The underlying assumption is that all �ight attendants are quali�ed to work

on all aircraft types, thus �eet types have no impact on the pairing generation prob-

lem and are ignored. The di�erent restrictions that are encountered when building

pairings that can feasibly be �own by cabin crews fall into two major groups, (a)

logical constraints, and (b) airline-speci�c constraints.

Phase 1 begins with a preprocessing procedure that addresses logical constraints by

building what we have called potential pairings. Incorporating a preprocessing mod-

ule within the developed application conveniently leads to less operations and run

time required to generate all valid pairings. In order to apply the constraints to the

constructed potential pairings, due to the fact that certain parameters in the collective

agreement depend on duty type, it is �rst necessary to identify duty periods within

each potential pairing. The duty period identi�cation process is carried out by exam-

ining the Leg-Gap pattern associated with each potential pairing in order to produce

duty-based pairings, which are the sequences that the airline-speci�c constraints can

directly be applied to once the type of pairing and its duty periods are determined.

Thus, for every resulting duty-based pairing, the type of each pairing as well as duty

period if applicable (i.e., in case of multi-day as opposed to single-day pairings), is

speci�ed. The validation procedure then �lters out invalid potential pairings. The
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costs of all valid duty-based pairings in terms of block hours and credit hours are

calculated at the end of Phase 1, which allow for the removal of non-linearity from

the optimization model of Phase 2.

Valid pairings and their costs are passed to Phase 2 in order to select a set of pair-

ings that minimizes total credit loss while covering each open segment once. The

optimization problem is formulated as a binary integer programming (BIP) formu-

lation, namely Set Partitioning Problem (SPP) formulation, with the exception that

the objective function is modi�ed to incorporate deadheading preferences. The length

of pairings is used to select the most desirable pairing among pairings with similar

credit loss.

The proposed two-phase approach has been veri�ed using data provided by the air-

line. Depending on the dataset and problem size, total execution time typically ranges

between a few seconds to a few minutes. We conclude that GLPK/GUSEK performs

well for regular-sized problems (∼ under 100 open legs), i.e., the optimal solution

is reached in a reasonable amount of time. Larger problems (100+ open legs) may

need to be solved using more powerful LP/IP solvers such as Gurobi. While we have

tackled the gap existing in research between the monthly problem and the day of

operations airline crew scheduling problem, we have been able to build a decision

support system to assist crew schedulers in practice, which has been successful in

�nding optimal solutions to the open-time crew pairing problem for reserve �ight at-

tendants in a reasonable amount of time. This is much faster than a purely manual

approach. In addition, we �nd the optimal selection of pairings by considering all

of the valid pairings for all crew bases. Considering all crew bases simultaneously

results in a better objective function (i.e., lower credit loss) compared to a sequential

approach that looks at the pairing problem separately for each base. Our system also

considers a lengthy list of available deadhead segments that is impossible to e�ciently

work with manually.

This research project is recommended to be extended in the following ways:

� Adding deadhead legs in the middle of pairings:
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We have used deadheading only at the beginning and end of pairings. However,

in practice, it is possible to deadhead crews in the middle of pairings if this

leads to lower total credit loss. Therefore, one way to extend this work is to

consider deadhead �ights in the middle of pairings in addition to the beginning

and end.

� Adding other deadheading options used in practice (e.g., ground transportation):

This project has been carried out based on the assumption that the only way to

transport crews from base to another city or back to base is by �ying them on

�ights available for deadheading. Under this assumption, how crew deadheading

via air a�ects pairing block hours and credit hours were known. In practice,

other options for the purpose of transporting crews as passengers, such as ground

transportation, are common. Once the e�ect of such transportation modes on

constraints regarding duty and pairing construction as well as associated block

hours and credit hours is known with regards to crew deadheading, additional

deadheading options may be incorporated in the pairings.

� Incorporating an estimate of available reserve crews at each base (number, avail-

ability, etc.) within Phase 2:

The ultimate solution to the crew pairing problem is an optimal set of pairings

to be used in crew assignment. In our pairing problem, the solution is optimal

with respect to all of the crew bases at the airline without considering reserve

crew availability at each base. In order to come up with a more practical solu-

tion, information regarding crews that are on call during the planning period,

such as an estimate of the number of available reserve crews at each base as well

as the number of days each crew is available, is recommended to be incorporated

within the optimization model of Phase 2.

� Updating minimum sit connection time between legs in each duty period when

aircraft tail numbers data becomes available:

In order for a cabin crew to connect from one leg to the following segment in

their duty, a minimum sit connection time is required. In practice, if the crew

does not need to change aircraft, then the required amount of sit connection is

less than cases where they would need to switch aircraft. Considering this may
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lead to better pairings and thus improve total credit loss; however, an integrated

data report containing aircraft tail numbers must be available for this purpose.

When this information becomes accessible in a useable format, we recommend

updating the minimum required sit connection used in the construction of valid

open-time pairings at the airline.

� Improving the pre-processing procedure to reduce the number of potential pair-

ings to be validated in Phase 1:

At the beginning of Phase 1, we generate potential pairings, which are sequences

of legs that respect the logical location and time constraints. The time con-

straint we have speci�cally applied states that two segments may follow one

another in a pairing (and/or duty period) only if the �rst leg arrives before the

departure of the next leg while allowing for su�cient time for crew to transition

between �ights, which is MIN-SIT. Therefore, in an attempt to construct every

sequence that would logically be acceptable, even at a clearly high cost, we have

not imposed an upper bound on sit connection times. However, we observe that

with regards to each crew base, numerous distinct potential pairings frequently

cover the exact same open leg(s) and only di�er in deadhead segments that

belong to di�erent times/dates, leading to unnecessary and expensive potential

pairings. (This is because our planning period spans multiple days and we have

a large pool of deadhead �ights at hand across the airline's multiple crew bases.)

We suggest improving the pre-processing procedure to identify and eliminate

the potential pairings that would clearly be found infeasible eventually and/or

the ones that, if found feasible and passed to the optimization phase, would

not be able to compete with other potential pairings under any circumstances.

This extension will reduce the amount of memory used by the valid pairing

generation code of Phase 1, which is particularly important for large datasets.
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Appendix A

Local and UTC Times and Dates

Depending on the direction of �ight, i.e., how time zones change as a �ight takes place

from origin towards destination, the local arrival date at the destination may be the

same as the local departure date at the origin or one calendar date apart. Clearly

this is true under the assumption that typical aircrafts that are used to �y passengers

in this day are not normally scheduled to �y non-stop for 24 hours in a row or longer.

Given the local departure date, local departure time, local arrival time, departure

airport UTC o�set, and arrival airport UTC o�set of any leg, the corresponding local

arrival date is determined using the following pseudo-code:

START.

%Case 1 (Flight does not pass midnight):

if Local Arrival Time ≥ Local Departure Time:

then: Local Arrival Date �Local Departure Date;

%Case 2 (If �ying from east to west; in North America this translates to �ying towards

a more negative UTC o�set, i.e., arrival time zone has a more negative UTC o�set

than departure time zone):

else if (Local Arrival Time <Local Departure Time) and

(absolute value of [Departure City UTC O�set] <absolute value of [Arrival City UTC

o�set]):

then: Local Arrival Date �Local Departure Date;

%Case 3 (If �ying from west to east or within the same time zone; in North America,

this is equivalent to departure time zone having the same or a more negative UTC

o�set than arrival time zone):

else if (Local Arrival Time <Local Departure Time) and

absolute value of [Departure City UTC O�set] ≥ absolute value of [Arrival City UTC

o�set]:

73



74

then: Local Arrival Date �date following Local Departure Date.

END.

Case 1 is the most common case encountered in the datasets provided by the air-

line, while cases 2 and 3 are seen occasionally. An example of each case is given in

Table A.1. To illustrate how the pseudo-code presented above works, the arrival date

Instance Case
Flight
No.

Origin
Airport

Destination
Airport

Departure
Date

Local
Departure
Time

Local
Arrival
Time

1 Case 1 7061 YUL YAM 09/01/15 0800 1025
2 Case 2 8721 YGR YGP 05/29/15 1450 1438
3 Case 3 7066 YYC YWG 09/01/16 2100 0023

Table A.1: Three di�erent cases encountered when calculating the local arrival date
of a leg

of the sample leg corresponding to Case 2 in Table A.1 will be determined. For this

purpose, the UTC o�sets of the origin and destination airports are required and can

be found in Table A.2.

Airport
Minimum
UTC O�set

Maximum
UTC O�set

Local Time Local Date

YGR -04:00 -03:00 14:50 05/29/15
YGP -05:00 -04:00 14:38 Local Arrival Date = ?

Table A.2: Example of local arrival date calculations

In this example, based on the time of year which calls for Summer Time calculations,

Minimum UTC O�sets are used (as opposed to Winter Time/Maximum UTC O�-

sets). Therefore, the time zones corresponding to departure and arrival cities YGR

(with an o�set of -04:00) and YGP (with an o�set of -05:00), show that the direction

of �ight is from east to west and therefore since the local arrival time is less than,

i.e., earlier than, the local departure time, the correct local arrival date is the same

as the local departure date, namely 05/29/15. The veri�cation of cases 1 and 3 are
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left to the reader.



Appendix B

List of Parameters and Variables Used

In this section, the parameters and variables used in equations throughout this thesis

with regards to duty periods and pairings are listed.

Constant values obtained from CBA:

� MIN-SIT

� DH-IN-BUFFER

� DH-OUT-BUFFER

� SilentHoursStartTime

� SilentHoursEndTime

� CHECK-IN-TIME

� CHECK-OUT-TIME

� MAX-LENGTH-OF-DUTY

� MIN-LENGTH-OF-LAYOVER

� MAX-NUMBER-OF-LEGS-IN-DUTY

� MAX-NUMBER-OF-DUTIES

� MIN-GUARANTEED-CREDIT-HRS-PER-DUTY

Variables:

� DutyCheckInTime
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� DutyCheckOutTime

� Duty-Elapsed-Time

� PairingCheckInTime

� PairingCheckOutTime

� Pairing-Elapsed-Time

� Duty-Block-Hours

� Duty-Credit-Hours

� Pairing-Block-Hours

� Pairing-Credit-Hours

Parameters used in Experiment described in Section 4.2.1:

� MAX-LENGTH-OF-SIT

� Longest-Sit-Found

� 2nd-Longest-Sit-Found



Appendix C

GMPL Code for Phase 2

The pairing optimization problem modeled in GMPL is as follows. In Gusek, GLPK

solver can easily be used to solve regular-sized problems.

#--------------------------------------------------------------#

# PAIRING OPTIMIZATION CODE #

#--------------------------------------------------------------#

set L;

param e{l in L};

/* parameters */

table tab_parameters IN "CSV" "parameters.csv" :

L <- [parameter], e ~ value ;

param m, integer := e['m'];

/* index of last open leg */

/* = number of open legs */

param n, integer := e['n'];

/* index of last feasible pairing */

/* = number of feasible pairings minus 1 */

set I := {1..m};

/* set of open legs */

set J := {0..n};
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/* set of feasible pairings */

param a{i in I, j in J}, default 0;

/* whether open leg i is on pairing j; */

/* OUTPUT OF PHASE 1*/

param bh{j in J};

/* block hour cost of feasible pairing j; */

/* not necessarily integer; naturally ch[j] >= bh[j] */

param ch{j in J};

/* credit hour cost of feasible pairing j; */

/* not necessarily integer */

param ln{j in J};

/* length of feasible pairing j (in hours); */

/* not necessarily integer */

table tab_a_matrix IN "CSV" "a_matrix.csv" :

[OpenLeg, ValidPairing], a ~ a_matrix_coefficient;

/* constraint matrix, where the rows represent open legs */

/* and the columns represent feasible pairings */

table tab_bh_matrix IN "CSV" "bh_matrix.csv" :

[ValidPairing], bh ~ bh_matrix_coefficient;

/* block hour cost of feasible pairing j */

table tab_ch_matrix IN "CSV" "ch_matrix.csv" :

[ValidPairing], ch ~ ch_matrix_coefficient;
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/* credit hour cost of feasible pairing j */

table tab_ln_matrix IN "CSV" "ln_matrix.csv" :

[ValidPairing], ln ~ ln_matrix_coefficient;

/* length of feasible pairing j (in hours) */

/* from pairing check-in time to pairing check-out time */

var x{j in J}, binary;

/* decision variables; x[j] = 1 means feasible pairing j is selected */

minimize creditLoss: sum{j in J} ((ch[j] - bh[j]) * x[j]) +

0.000001*sum{j in J} (ln[j] * x[j]);

/* the objective is to find the cheapest selection of feasible pairings

that cover each open leg exactly once */

/* in case of a tie, preference is given to the pairing with less

deadheading and thus shorter length */

s.t. legCovering{i in I}: sum{j in J} (a[i,j] * x[j]) = 1;

/* constraints; each open leg must be covered by exactly one pairing; */

/* note that the same flight leg which is in open-time for more than */

/* one crew position is given a unique leg identification number, and thus */

/* every combination of leg/position is considered a separate open segment */

solve;

table tab_result{j in J} OUT "CSV" "result.csv" :

j ~ ValidPairing, x[j] ~ Selection;

end;



Appendix D

MPL Code for Phase 2

The pairing optimization problem modeled in MPL is as follows. The Gurobi Solver

can conveniently be used to solve large problems.

!--------------------------------------------------------------!

! PAIRING OPTIMIZATION CODE !

!--------------------------------------------------------------!

{ValidPairingOptimization.mpl}

TITLE

ValidPairingOptimization;

OPTIONS

ExcelWorkbook = "parameters.xlsx";

DATA

M := EXCELRANGE("m");

N := EXCELRANGE("n");
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INDEX

i = 1..M;

j = 0..N;

DATA

BH[j] := DATAFILE("bh_matrix.dat");

CH[j] := DATAFILE("ch_matrix.dat");

LNG[j] := DATAFILE("ln_matrix.dat");

A[j,i] := SPARSEFILE("a_matrix.dat");

BINARY VARIABLES

x[j];

MODEL

MIN CreditLoss =

SUM(j: CH[j]*x[j] -BH[j]*x[j]) + 0.000001*SUM(j: LNG[j]*x[j]);

SUBJECT TO

LegCovering[i] : SUM(j: A[j,i]*x[j]) = 1 ;

END



Appendix E

Uncovered Segments Prediction

The following �owchart shows how to predict whether a particular open leg will be

left in open-time with regards to a single crew base. Clearly, in a multi-base setting,

if a leg cannot be covered via any of the pairings belonging to di�erent bases, then it

would certainly be left in open-time. Note that the terms predecessor/successor are

used to refer to open legs (from the entire set of open legs given as input) that can

precede/follow the segment under consideration in a pairing in terms of location and

minimum sit connection time (i.e., logical constraints). In Figure E.1, DH refers to

deadhead segments.
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