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ABSTRACT 
 

In this study, the Dirichlet boundary problem for vibration of a parallelogram-shaped membrane 

is solved. The simplicity and transparency of the proposed procedures allow one to clarify the 

specific features of some state-of-the-art approaches to solve similar problems of mathematical 

physics. For many types of domains, including a wide range of non-canonical ones, the use of the 

concept of a general solution of the boundary value problem makes it possible to construct a 

numerical-analytical solution to the problem. In this case, sets of partial solutions for the basic 

equations of mathematical physics are used. The main idea is to indicate effective ways to 

determine arbitrary coefficients and functions that are part of a general solution. The conventional 

approach for deriving numerical-analytical solutions is used based on the mean square deviation 

minimization and collocation methods.  

 

KEYWORDS: vibration; membrane; parallelogram; Dirichlet boundary value problem; mean 

square deviation minimization; collocation method.  

 

1. INTRODUCTION  
 

Consider the problem of harmonic vibration of a parallelogram-shaped membrane, as shown in 

Fig. 1. 

 

 
  

Figure 1. Parallelogram-shaped vibrating membrane 
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In the absence of a mechanical load within the area occupied by the membrane, the oscillatory 

process is reduced to the Dirichlet problem and the Helmholtz equation [1,2], which has the 

following form 

 

{
𝛻2𝜙 + 𝑘2𝜙 = 0, (𝑥, 𝑦) ∈ 𝛺,
𝜙(𝑥, 𝑦) = 𝛷(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛤.

                             (1) 

 

Here, 𝜙 is lateral displacements of the membrane, 𝛺 is the area it occupies, 𝛤 = ⋃ 𝛤𝑖
𝐼𝑉
𝑖=𝐼  is the 

boundary of this region, while 𝛤𝐼, 𝛤𝐼𝐼, 𝛤𝐼𝐼𝐼, and 𝛤𝐼𝑉 are the parallelogram sides OD, BC, DC, and 

OB, respectively. From a mechanical point of view, this problem describes the kinematic 

excitation of the membrane. To solve it, the method of partial domains can be successfully applied 

[3]. 

The vibration problem of a membrane with fixed edges, excited by a mechanical load with a 

density 𝐹(𝑥, 𝑦) distributed along its surface (dynamic excitation), can also be solved by the method 

used for solving the expression (1). This problem has the form 

 

{
𝛻2𝜙 + 𝑘2𝜙 = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺,

𝜙(𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ 𝛤.
                                                 (2) 

 

To obtain the solution to this problem, we use the mathematical system of fundamental solutions 

satisfying the following equation 

 
𝛻2𝜙∗ + 𝑘2𝜙∗ = 𝛿(𝑥, 𝑦)                                       (3) 

 

From a mechanical point of view, the fundamental solution is a function that satisfies the equation 

of oscillations of the membrane (i.e., the Helmholtz equation) under the action of a bulk oscillating 

force. 

 

In the case under study, the fundamental solution requires no implementation of specific boundary 

conditions, and we can use the fundamental solution of the form 

 

).(
4

1
),( 22

0
* yxYyx +−=

                                                                                                           (4) 

 

In this case, the amplitude of displacements at an arbitrary point of the membrane caused by the 

action of a load with density ),( yxF distributed along its surface  is calculated in the form of 

its convolution with the fundamental solution (4): 

 

                

.))()((),(
4

1
),(ˆ 22

0  ddyxYFyx −+−−= 
                                           (5) 

 

We now assign a function with a reversed sign as a function in the boundary conditions of problem 

(1): 
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.))()((),(
4

1
),( 22

0



−+−=   ddyxYFyx

                                           (6) 

 

Having solved the latter problem for the given boundary conditions and taking the sum of the 

solution obtained, which we denote by 
~

, with the forced (nonuniform) solution ̂  to (5), we get 

the desired solution to the problem of forced oscillations of the membrane with a fixed edge: 

 

),(ˆ),(~),( yxyxyx  +=                                                                                                       (7) 

 

2. The problem solution by the method of partial areas 

 

The main objective of the mathematical modeling of physical oscillations is to obtain their 

quantitative characteristics, depending on the geometric parameters of their area of existence and 

boundary conditions. Typically, this goal is achieved by some iterative processes. This may be, for 

example, the process of increasing the number of members in the Fourier series, which is used to 

represent the desired function. For the effective implementation of such iterative processes, it is 

crucial to guarantee that the choice of characteristics of the process ensures its stability and reliable 

quantitative estimates. 

 

In this respect, the method of partial domains, which leads to the construction of general solutions 

of boundary problems, has a substantial advantage over other computation techniques. The 

stability and convergence of computational procedures in its implementation are provided by the 

fundamental properties of the completeness of the systems of functions used to represent solutions. 

Consider two coordinate systems 
),(),( 11 yxyx 

 and 
),( 22 yx

, which refer to the scheme 

shown in Fig. 1 and are linked by the following relations: 

 





+−=

+=

;sincos

,cossin

221

221





yxy

yxx

                                                                                                                  (8) 

 





+=

−=

.sincos

,cossin

112

112


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yxy

yxx

                                                                                                                     (9) 

 

Next, we introduce the following notations (Fig. 1): Ω1 and 2 are the areas bounded by OGCE 

and OHCF rectangles, respectively. Thus,  21       =
. Let ,a  b , a , b , h ,and L be 

lengths of OF, OH, OD, OB, OG, and OE segments, respectively. It is obvious that sinaa =

, cosabDFbb +=+= , sinbh = , while the set of points of the boundary 


 can be 

described as follows: 
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Ι  : 
01 =y

; 
 ax  ;01 ;                                                                                                          (10) 

ΙΙ
: 

hy =1 ; 
  cos;cos1 babx +

;                                                                             (11) 

ΙΙΙ
: 

  cos;cos; 22 abayax +=
;                                                                             (12) 

ΙV
:  byx = ;0;0 22 .                                                                                                             (13) 

 

The boundary conditions for equation (1) can be reduced to the following form: 

 

,1

2
cosh

2
cosh

)(

1

1 +





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 
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x
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                                                                                                (14) 
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)cos(
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                                                                               (15) 
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cos2

cos)(
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2
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
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b
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                                                                                              (17) 

 

According to the method of partial regions, the desired function 
),( yx

 can be represented by 

the sum of solutions to the Dirichlet problem 
),( 111 yx

 and 
),( 222 yx

 in the rectangular areas

1
 and 2  , respectively: 

 

),(),(),( 222111 yxyxyx  +=
,                                                                                            (18) 

 

where                            
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                                                                                                 (19) 
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In this case, we can make an arbitrary choice of boundary conditions for functions 1  and 2  

within separate sections of the region boundaries 1
 and 2

. This method is also known as the 

Schwarz-Neumann method [4]. Next, functions 1  and 2  should have zero values within 

segments DE, GB, BH, and DF.  

 

Using the following designation 

 

)),(),,((),( 2212211221 yxyyxxyx  =
,                                                                              (20) 

)),(),,((),( 1121122112 yxyyxxyx  =
                                                                                (21) 

 

we can formulate boundary conditions for the sum of functions (18) 
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                                                                           (22) 
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                                             (23) 
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                                                                   (25) 

 

Arbitrary functions can be used as 
)( 1xI

, 
)( 1xII

, 
)( 2yIII

, 
)( 2yIV

.  Without loss of 

universality, they can later be set to zero. 

The type of regions 1
 and 2

allows one to represent their solutions by infinite series: 

 

)(sin)(),( 11
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Insofar as 
),( 111 yx

has to be the Helmholtz equation solution, this yields the following system 

of equations concerning functions 
)( 1yAn : 

0)(sin)()(
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1

1

1
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1

2

2
1
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=

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.                                                                (28) 

Since
0)(sin 1 x

L

n

, to determine )( 1yAn in (28), we get the following system of ordinary 

differential equations: 
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                                                                                      (29) 

Using 
,,

b

p

L

n
pn





 ==

 we can write the solution to system (29) as follows:  
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We designate  
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This allows one to reduce expansion (26) to 
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Similarly, we derive 
),( 222 yx

: 
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Next, we apply the following designations: 
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This allows one to reduce series (27) to the following form 
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Using (31) and (33), we can derive the general solution to (18) 
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which coordinates are derived via Eq.(19). 

 

3. The mean square deviation minimization (MSDM) method  

Definition of constants 
)1(

nA
, 

)2(
nA

, 

)1(
pD

and 

)2(
pD

 in (34) is carried out by the mean square 

deviation minimization method (MSDM) [5-20]. As projection systems of functions , we choose 

the systems 







)
~

(sin 1x
L

n

, ,...2,1~ =n  for Ι  and ΙΙ
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




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)
~

(sin 2y
b
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, 

,...2,1~ =p
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 and ΙV
boundaries.  

 

We define the boundary conditions for the boundaries of regions 1 and 2 , which include the 

sides of the parallelogram. Taking into account the reduction of infinite series in the representation 

of the general solution (4.34) to the finite ones with the number of their members N and P, 

respectively, as well as the corresponding choice of the number of projective functions, we obtain 



ANNUAL TECHNICAL CONFERENCE 
CONFÉRENCE TECHNIQUE ANNUELLE 

HALIFAX 2019 

 

a system of PN 22 +  linear algebraic equations relative to 
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Here, the following designations are used  
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The numerical realization of the proposed method was carried out using the Wolfram Mathematica 

system. The calculations were conducted at N=P=60 and N=P=120. The method mismatch with 

the boundary solutions was assessed, as shown in Fig. 2. It can be seen that the obtained solutions 

have the largest oscillation mismatch/error in the vicinity of the parallelogram angular points. 
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a)                                                                                                  b)

 
c)                                                                                                  d)

 
e)                                                                                                  f) 

 
g)                                                                                               h) 

 

Fig. 2. Mismatch with boundary conditions obtained by the method of the mean square 

minimization method:  

a) at boundary Ι  for N=P=60 at k=8; b) at boundary Ι  for N=P=120 at k=8; 

c) at  boundary ΙΙ  for N=P=60 at k=8; d) at boundary ΙΙ  for N=P=120 at k=8;  

e) at boundary ΙΙΙ  for N=P=60 at k=8; f) at boundary ΙΙΙ  for N=P=120 at k=8;  
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g) at boundary ΙV  for N=P=60 at k=8; h) at boundary ΙV  for N=P=120 at k=8;  

 

4.  The collocation method 

Alternatively, constants 
)1(
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, 

)2(
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, 

)1(
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, 

)2(
pD

 in (34) can be derived via the collocation 

method, which can be reduced to point-by-point implementation of boundary conditions in 

particular boundary points (also referred to as collocation points). In this case, the system of linear 

algebraic equations takes the following form: 
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Here 
)/( ΙΙΙ

mainN
 and 
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have to meet the requirements of 
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This yields:  
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The system of 2N+2P equations (34) allows one to derive 2N+2P unknown expansion coefficients. 
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The mismatch with boundary conditions by the collocation method was estimated for different 

cases at N=P=60 and N=P=120, as shown in Fig.3.  
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c)                                                         d) 

 
e)                                                                f) 
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g)                                                              h) 

Fig. 2. Mismatch with boundary conditions obtained by the collocation method:  

a) at boundary Ι  for N=P=60 at k=8; b) at boundary Ι  for N=P=120 at k=8; 

c) at boundary ΙΙ  for N=P=60 at k=8; d) at boundary ΙΙ  for N=P=120 at k=8;  

e) at boundary ΙΙΙ  for N=P=60 at k=8; f) at boundary ΙΙΙ  for N=P=120 at k=8;  

g) at boundary ΙV  for N=P=60 at k=8; h) at boundary ΙV  for N=P=120 at k=8;  

 

The comparison of the results obtained for the two systems of collocation points (containing 60 

and 120 points, respectively) strongly indicates that an increase in the number of collocation points 

improves the quality of boundary conditions’ implementation. Noteworthy is the presence of a 

relatively high error in very narrow areas near the ends of the boundary segments. This can be 

treated as a specific feature of the collocation method, which can be omitted by using the 

alternative technique, e.g., the mean square deviation minimization method. However, local 

deviations in boundary conditions have no significant effect when the spectrum of 

eigenfrequencies is assessed by the collocation method. Moreover, the comparative analysis of 

data for 60 and 120 points of collocation indicates that an increase in the number of collocation 

points improves the accuracy and the number of such points can be significantly increased, if 

required. 

 

5. Oscillation of the membrane with a dynamic excitation; The mean square deviation 

minimization (MSDM) method 

 

Consider a parallelogram-shaped membrane subjected to a distributed load of density  
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The nonuniform solution (5) corresponding to such a loading case is  
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In this case, coefficients of the linear algebraic system (35) remain unchanged, as compared to 

those in the problem of kinematically excited membrane oscillations, while variations occur only 

in the right parts of equations representing the problem boundary conditions. When the MSDM is 
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used, functions 
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 are considered to be equal to zero, 

which reduces the right parts of the system equations to the following form: 
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By solving the obtained linear algebraic system, we can derive the reduced series coefficients. 

Next, to assess the displacement amplitude at an arbitrary point of the membrane, the uniform 

solution should be derived for the nonuniform one in (46). 

6. Oscillation of the membrane with a dynamic excitation; The collocation method 

 

The coefficients of the linear algebraic system (40) remain unchanged, as compared to those in in 

the problem of kinematically excited membrane oscillations solved by the collocation method, 

while the right parts of the system equations take the following form: 
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The behavior of solution errors (mismatches) provided by the MSDM and collocation methods, in 

case of dynamically excitated membrane oscillations, is similar to those revealed in the kinematic 

excitation cases. 

Forms of oscillation of the membrane with a kinematic excitation are depicted in Fig.3. 
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Fig.3. Forms of oscillation of the membrane with a kinematic excitation for different values of k:  

k=5.895; b) k=10.013; c) k=13.6; d) k=14.77; e) k=17.15; f) k=19.75; g) k=20.76; h) k=23.17; j) 

k=23.354; k) k=27.224; l) k=27.877; m) k=29.22 

 

Forms of oscillation of the membrane with a dynamic excitation are presented in Fig.4, whereas 

the calculated amplitude-frequency characteristic (AFC) of the membrane is plotted in Fig.5. 

 
a)                                                              b) 

Fig.4. Forms of oscillation of the membrane with a dynamic excitation for two values of k: a) 

k=5.895; b) k=10.013.  
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Fig.5. The calculated amplitude-frequency characteristic of the dynamically excited membrane. 

 

7. Conclusions 

 

This study attempted to provide solutions to the oscillation problems of complex-shaped 

membranes, including the case of dynamically excited finite regions. The main feature of the 

dynamic processes in such regions is the presence of resonance phenomena. The results obtained 

strongly indicate that the analysis of forced oscillations in a wide range of frequencies of 

interfering factors makes it possible to determine precisely their eigenfrequencies and eigenforms 

of oscillations. The amplitude-frequency characteristic of the membrane central point was derived, 

which indicates the effect of the complexity of the membrane shape on the spectrum of its 

eigenfrequencies. There is no distribution regularity, in contrast to rectangular membranes. Some 

discrepancies in the magnitudes of oscillation amplitudes for frequencies close to resonant ones is 

due to a slight difference in the values of different frequencies from the membrane 

eigenfrequencies. However, a significant increase in the membrane deviation from the static 

equilibrium state (by 2-3 orders of magnitude) strongly indicates the sufficient accuracy of the 

obtained estimates. All calculations made using 120 collocation points fully satisfied the boundary 

conditions. The additional proof of the sufficient accuracy of predictions is the fact that the 

magnitude of oscillation amplitudes of kinematic perturbations of exciting circuits approaches 

zero. Several characteristic intrinsic forms of oscillation were derived for various wavenumbers 

and the number of used collocation points. It is shown that an increase in the wavenumber leads 

to a rise in the number of nodal lines in its oscillation eigenfrequencies. The performed analysis of 

oscillation forms confirms that the chosen number of collocation points is sufficient to determine 

the dynamic characteristics of the system with high eigenfrequencies containing about ten local 

maxima in the membrane area. 

 

8. Acknowledgements  
 

The authors would like to gratefully acknowledge financial support by the Natural Sciences 

and Engineering Research Council of Canada (NSERC) and the Sadler Scholarship at the 

Department of Mechanical Engineering at the University of Alberta. 

 



ANNUAL TECHNICAL CONFERENCE 
CONFÉRENCE TECHNIQUE ANNUELLE 

HALIFAX 2019 

 

 

8. REFERENCES  

 

[1] M. Ya. Barnyak and B. Soltannia, “Projection method of solving the problem of the natural 

vibrations of a clamped plate,” Akust. Visn., 12, No. 1, 11–18 (2009).  

[2] V. T. Grinchenko and V. V. Meleshko, Harmonic Vibrations and Waves in Elastic 

Bodies[in Russian], Naukova Dumka, Kyiv (1981).  

[3] O. Zienkiewicz and K. Morgan, Finite Elements and Approximation, Dovers Publications, 

Dover (2006).  

[4] V. V. Meleshko and S. O. Papkov, “Bending vibrations of simply supported elastic 

rectangular plates: from Khladni (1809) and Ritz (1909) to today,” Akust. Visn., 12, No. 4, 

34–51 (2009).  

[5] V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 5 of the five-

volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova 

Dumka, Kyiv (1989).  

[6] W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, 

New York (1950).  

[7] S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, 

New York (1959).  

[8] P. Shakeri Mobarakeh, V. T. Grinchenko, V. V. Popov, B. Soltannia, and G. M. 

Zrazhevsky, “Modern methods for numerical-analytical solution of boundary-value 

problems in noncanonical domains,” Mat. Metody Fiz.-Mekh. Polya, 60, No. 4, 75–89 

(2017).  

[9] P. Shakeri Mobarakeh and G. M. Zrazhevs’ky, “Galerkin’s algorithm in the method of 

partial domains of solving boundary problems,” Visn. Kyiv. Univ., Ser. Fiz. Mat. Nauky, 

No. 1, 75–82 (2014). 

[10] D. J. Gorman, Vibration Analysis of Plates by the Superposition Method, World 

Scientific, London (1999).  

[11] M. Hajikhani, B. Soltannia, A. R. Oskouei, and M. Ahmadi, “Monitoring of 

delamination in composites by use of acoustic emission,” in: Proc. 3rd Condition 

Monitoring &Fault Diagnosis Conf., Tehran, Iran (2009). 

[12] A. W. Leissa and M. S. Qatu, Vibrations of Continuous Systems, McGraw-Hill, 

New York (2011). 

[13] S. O. Papkov and J. R. Banerjee, “A new method for free vibration and buckling 

analysis of rectangular orthotropic plates,” J. Sound Vibr., 339, 342–358 (2015).  

[14] P. Shakeri Mobarakeh and V. T. Grinchenko, “Construction method of analytical 

solutions to the mathematical physics boundary problems for non-canonical 

domains,” Reports of Mat. Physics, 75, No. 3, 417–434 (2015).  

[15] P. Shakeri Mobarakeh, V. T. Grinchenko, H. Ahmadi, and B. Soltannia, “The 

amplitude-frequency characteristics of piezoceramic plates depending on the shape of the 

boundaries,” in: Proc. 7th Int. Conf. on Acoustics and Vibration (ISAV2017), Tehran, Iran 

(2017). 

[16] P. Shakeri Mobarakeh, V. T. Grinchenko, S. Iranpour Mobarakeh, and B. Soltannia, 

“Influence of acoustic screen on directional characteristics of cylindrical radiator,” 

in: Proc. 5th Int. Conf. on Acoustics and Vibration (ISAV2015), Tehran, Iran (2015).  



ANNUAL TECHNICAL CONFERENCE 
CONFÉRENCE TECHNIQUE ANNUELLE 

HALIFAX 2019 

 

[17] P. Shakeri Mobarakeh, V. T. Grinchenko, and B. Soltannia, “Directional 

characteristics of cylindrical radiators with an arc-shaped acoustic screen,” J. Eng. 

Math., 103, No. 1, 97–110 (2017). 

[18] P. Shakeri Mobarakeh, V. T. Grinchenko, and B. Soltannia, “Effect of boundary 

form disturbances on the frequency response of planar vibrations of piezoceramic plates. 

Analytical solution,” Strength of Materials, 50, No. 3, 376–386 (2018). 

[19] P. Shakeri Mobarakeh, V. T. Grinchenko, and G. M. Zrazhevsky, “A numerical-

analytical method for solving boundary-value problem of elliptical type for a parallelogram 

shaped plate,” Bulletin of T. Shevchenko Nat. Univ. of Kyiv, Ser.: Phys.-Math., Special 

issue, 297–304 (2015). 

[20] E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and 

Applications, Marcel Dekker, New York (2001).  

 

 

  



ANNUAL TECHNICAL CONFERENCE 
CONFÉRENCE TECHNIQUE ANNUELLE 

HALIFAX 2019 

 

9. BIOGRAPHY  

 

 

Pouyan Shakeri Mobarakeh, has received his Ph.D. (2011-2019) in Mechanics of Deformable 

Solids, from Taras Shevchenko National University of Kyiv. Prior to joining Taras Shevchenko 

National University of Kyiv, he completed his B.Sc. (2005-2009) and M.Sc. (2009-2011), in 

Mechanical Engineering, and Dynamics and Strength of Machines at National Technical 

University of Ukraine, Kyiv Polytechnic Institute, respectively. He has more than 8 publications 

in the field of vibration of plates and membrane, published in English and Russian. 

 

 

Victor Timofeevich Grinchenko, was born in Poltava city in 1937.  He graduated from the Kyiv 

State University named after Taras Shevchenko, the department of mechanics and mathematics in 

1959.  V.T. Grinchenko obtained his Ph.D. (engineering) in 1963, D.Sc. (engineering) in 1973. 

Since 1980 he has been a professor at the chair of acoustics and acoustoelectronics. He started his 

scientific activity in the Institute of Mechanics, National Academy of Sciences (NAS) of Ukraine, 

where he worked under the direction of А. D. Коvalenko, an academician of the NAS of Ukraine. 

He has been working in the Institute of Hydromechanics, NAS of Ukraine since 1981. 

 

Babak Soltannia, is a Ph.D. candidate in the Department of Mechanical Engineering at the 

University of Alberta. Prior to joining the department, he completed his second M.Sc., in Civil 

Engineering at Dalhousie University. He has received multiple international, national and 

provincial awards including partial IBM Scholarship, NSERC, AITF, QE II Graduate Scholarship, 

Government of Alberta Graduate Citizenship Award, and appreciation certificate from the 

Government of Alberta for his services to Albertans. He knows English, Russian, Persian fluently, 

and he is a novice regarding French. He was President of MEGSA during 2015-16, and University 

of Alberta GSA President and Vice-Chair of ab-GPAC during 2017-18, and an APEGA E.I.T. He 

has been recently appointed to teach Vibrations to undergraduate students as sessional instructor 

at Dalhousie University, during winter 2020.  
 

 

 
 

 

 


