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Abstract

Emergency Medical Services organizations are responsible for providing paramedic

crews, vehicles and equipment to transfer patients from one location to another in

emergency and non-emergency settings. In the non-emergency setting, they must

solve difficult scheduling and assignment problems to ensure on-time arrival of pa-

tients and the efficient use of health care resources. The objective of this thesis is

to develop a mathematical model that will assign Patient Transfer Units to non-

emergency patient transfer requests and design a schedule that will minimize travel

costs, balance workloads, and attempt to leave previously scheduled pickup times

unchanged. This thesis also utilizes historical patient transfer data in the modelling

process. The mathematical model provides decision support for the non-emergency

patient transfer scheduling process.
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Chapter 1

Introduction

This thesis examines the scheduling and assignment of non-emergency patient transfer

requests and the use of historical patient transfer data in the scheduling process.

1.1 Patient Transfers

Non-emergency patient transfers are transportation requests for patients who are not

able to transport themselves to receive non-emergency medical treatment. They are

commonly referred to as patient transfers, which is the term that will be used for the

remainder of this thesis. Patient transfers primarily take place between any of the

following locations: a special care facility, a hospital or a personal residence. This

on-demand transit system helps fill gaps in current transit infrastructure.

Patients require patient transfers for many reasons. They often cannot drive them-

selves to a medical appointment and may live in a rural area with limited or no public

transportation. They may have special equipment and therefore require extra care.

If they are in the care of a medical facility but require a treatment only offered at

another location, patient transfer systems ensures the patient receives any required

care during transit. Due to these reasons, patient transfer systems are depended upon

by public health and safety systems [24].

In some jurisdictions of Canada, patient transfers are conducted by Emergency Med-

ical Service (EMS) providers. They use paramedic crews with ambulances or similar

vehicles for patient transfer operations. Increasing transfer volumes add pressure to

EMS providers as they must also deal with rising emergency call volumes [38].

The patient transfer process varies across countries and jurisdictions, but the common

steps include:

1
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1. Driving an ambulance or similar vehicle to the pickup location.

2. Loading the patient into the vehicle while ensuring all patient care requirements

are met.

3. Driving the vehicle to the delivery location.

4. Unloading the patient and bringing them to the correct clinic or residence. This

includes transferring the responsibility of care to the receiving facility.

1.2 Patient Transfers in Nova Scotia

In Nova Scotia, Emergency Health Services (EHS) is the organization responsible for

EMS and patient transfers. They dispatch crews of paramedics in ambulances and

Patient Transfer Units (PTUs) to emergency incidents and patient transfer requests

as required. PTUs are very similar to ambulances but do not have all of the same

equipment and resources. Therefore, they are not equipped to respond to emergency

calls and are used exclusively for patient transfers. Ambulances can and are used for

both emergency calls and patient transfers. Emergency calls take priority for ambu-

lances and there are strict rules in place for when an ambulance can help with patient

transfer operations. Paramedic crews operating these vehicles in Nova Scotia com-

municate with the EHS Operations Communications Centre. The Communications

Centre receives calls for emergencies and patient transfers and will assign a crew and

relay information about the request to the crew, including where to travel to. This

is done for both emergency calls and patient transfers.

The Nova Scotia Health Authority (NSHA) is responsible for the majority of health

care operations in Nova Scotia. The NSHA has divided coverage into four zones as

shown in figure 1.1. Every zone has its own dedicated set of paramedic crews and

fleet of ambulances and PTUs. The majority of patient transfers in Nova Scotia take

place in the Central Zone. The Central Zone includes the Halifax Regional Munic-

ipality (HRM), the largest municipality in the province. All four of the province’s

tertiary hospitals (The QEII Victoria General site, the QEII Halifax Infirmary site,

the Nova Scotia Hospital and the IWK Health Centre) are located in this region in
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addition to eight other hospitals [41]. Patient transfers are often between these four

tertiary hospitals, between one of the regional or community hospitals to the tertiary

hospitals, or from a personal residence in the HRM to a tertiary hospital.

Many transfers originating in the other zones will involve one of the tertiary hos-

pitals in the Central Zone as well. Due to the rural nature of Nova Scotia, many

medical services are only located in the Central Zone. As such, patients in the other

zones often require patient transfers to the Central Zone for medical care. The Central

Zone also has the highest volume of emergency calls of all of the zones. The number

of emergency and non-emergency calls have been increasing over the last few years.

Therefore, not only is the demand for patient transfers increasing, but ambulances

are busier than ever. This is discussed further in chapter 4.

Overcrowding in emergency departments resulting in ambulance offload delay [25]

is another factor impacting ambulance availability. While the biggest impact from

offload delay are emergency calls at risk of not receiving timely care, another conse-

quence is that there are not enough resources (paramedic crews and vehicles) available

to serve the patient transfer demand. As such, the ambulances in the Central Zone

are often too busy to help with patient transfer operations. Emergency department

overcrowding and long wait times may also be caused by non-emergency patients. If

the department closes or is too overcrowded, there may be a surge of patient transfer

requests [32]. The PTU crews in the Central Zone are often the only resources avail-

able for patient transfers and as such have a high utilization.

These factors have led to increased stress on the patient transfer system, especially

in the Central Zone. In light of this information, this thesis focuses on the patient

transfer system in the Central Zone.

1.3 The Patient Transfer Scheduling Process

The EHS Operations Communications Centre receives patient transfer requests via

phone calls. Additional information may be faxed or emailed. Requests can be re-

ceived from the pickup facility or from the patient themselves (in case of a pickup from
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Figure 1.1: NSHA zones

a personal residence). The requester asks for a specific pickup time. The Communi-

cations Centre considers the volume of requests, the location of the pickup and PTU

availability among other factors before deciding to agree to the requested pickup time.

They may suggest a slightly modified (either earlier or later) time if the Communi-

cations Centre expects all of the PTUs to be busy at the requested time of pickup. If

there is no acceptable time for both parties, the patient transfer may be delayed or

cancelled, resulting in delayed service for the patient.

Once a pickup time has been agreed upon, the request information is entered into a

database. This agreed upon pickup time may be changed once by EHS should the

volume of requests increase and changing a pickup time will benefit the patient trans-

fer system; it cannot be changed more than once. If the new time is not acceptable

to the requesting party, a transfer may be delayed or cancelled, resulting in delayed

service to the patient. EHS considers changing the pickup time a last resort and uses

it only when the situation absolutely requires it (such as an unexpected delay during
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another patient transfer). When the time for a pickup draws closer, the Communica-

tions Centre will dispatch a vehicle and crew to the pickup location.

From a scheduling and assignment perspective, patient transfers present a unique

challenge to EMS providers and Operations Research (OR) scientists. Patient trans-

fers are scheduled according to:

• The time the transfer request was placed. Some requests are placed the day

prior or earlier while others are placed a few hours before the requested pickup

time.

• The requested time of pickup.

• The estimated availability of PTUs and ambulances in the region at the re-

quested time of pickup.

• Logistical issues surrounding the transfer such as equipment required and future

pickups.

• Ensuring the work is distributed relatively evenly between the PTU paramedic

crews so that no crew is overworked.

• The anticipated location of PTUs at the time of pickup. The Communications

Centre attempts to schedule requests so that PTUs end up near the next request.

Requests that are placed the day prior (or earlier) to the requested pickup time are

considered “advance notice requests” or simply Advance requests. Every evening, a

preliminary schedule for the Advance requests that will occur the following day is

created at the Communications Centre. This schedule is created by EHS Operations

staff and uses all known information about the requests and domain expert knowl-

edge. Requests that are placed on the same day as the requested pickup time are

called “Same Day requests”. As Same Day requests are received, the Communica-

tions Centre adjusts the schedule as best as they can.

Except in extraordinary circumstances, patient transfer requests are treated as “first
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Figure 1.2: Patient transfer scheduling process

come, first serve.” If a Same Day request has a pickup time where the Communi-

cations Centre expects all of the PTUs will be busy with other requests (and they

assume no ambulances will be available), the requester will be informed of the next

available pickup time. Existing requests in the system will not be “bumped” or de-

layed for new patient transfer requests. The scheduling process can be seen in figure

1.2.

Within this scheduling and assignment procedure, there is an opportunity to improve

scheduling efficiency and free Communications Centre Resources to help coordinate

patient transfer operations in the other zones in Nova Scotia with the help of Oper-

ations Research. Scheduling models are one avenue to improve this process.

1.4 Patient Transfer Data

Similar to numerous organizations in the 21st century [18], EHS collects and stores

data, including from its vehicles during operations. Information such as pickup loca-

tion, destination, PTU identification, when a PTU arrives at the pickup location, how

long is spent with the patient before departing for the patient transfer destination,

special equipment required for the patient and more is captured for every patient

transfer. The EHS Communications Centre receives near real time updates on the

location and status of each vehicle.

Organizations are beginning to figure out ways to use their data as part of research

projects and in tools to help with decision support. There is, however, still a gap

between collecting the data and using it. In business and research, there is a need for
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trained personnel to find ways to transfer the information found in data to decisions.

The information collected by EHS is useful for evaluating their operations and ana-

lyzing the operation from a high-level. However, this data could be doing more to

help with the schedule planning that takes place every evening and day, during the

offline and online operational phases [15]. This thesis aims to make use of EHS data

in the scheduling process and a scheduling model.

1.5 Problem Statement

This thesis focuses on scheduling patient transfer requests efficiently. Research on

non-emergency patient transfers and vehicle routing and scheduling models are ex-

plored in order to understand the considerations for an intelligent scheduling model

that takes the current EHS system into account. Recent research on workload bal-

ancing and using data driven methods in vehicle routing and scheduling models are

also explored. The final model is constructed in a two stage approach. The first

stage is a model that schedules Advance requests to minimize total travel time. The

purpose of this model is to run it every evening with the Advance requests to create

a preliminary schedule, similar to what EHS currently does. The second stage is a

model that creates a new schedule and attempts to minimize the number of changed

pickup times from the previous schedule (the PTU executing the transfer can change,

however). This model would be run during the online operational phase of EHS Op-

erations.

Statistical models were also explored to help inform the model. Past patient transfer

data was explored and analyzed to help make modelling decisions. Travel and service

time estimates are generated from models using the historical patient transfer re-

quest data. Where travel data is not available, Google Maps API and the googleway

R package [4] are used to generate travel time estimates. These are fed to both steps

of the scheduling model as inputs.

Experiments are performed on the model. Real requests from the historical patient

transfer data are used to test how changing the parameters affects the run time and
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results. Total travel time is also examined, and the difference between perfect infor-

mation (all requests known) and actual information (splitting requests into Advance

and Same Day requests) is analyzed. The difference in travel times between the step

one model and the actual models are observed for how much improvement may be

gained. A strategy for when to run the model in the second step is also tested and

evaluated with the historical data.

The remainder of this thesis is organized as follows: Chapter 2 presents a litera-

ture review on patient transfers, scheduling models, workload balancing in vehicle

routing problems and data-driven research in scheduling models. Chapter 3 presents

the formulation of the two stage scheduling model. Chapter 4 presents descriptive

data analysis of the patient transfer data and methods for estimating the travel time

and service time parameters for the scheduling model. Chapter 5 presents the exper-

iments performed on the final scheduling model and the results. Chapter 6 presents

the conclusions of the thesis and ideas for future work.



Chapter 2

Literature Review

In this chapter, relevant literature for the thesis is reviewed. Topics covered include

patient transfers, scheduling models applied to non-emergency patient transfers, work-

load balancing constraints applied in Vehicle Routing Problems (VRPs) and literature

concerning uses of data used for non-emergency patient transfer systems.

2.1 Patient Transfer Review

Both inter-hospital and intra-hospital transfers have been studied, although focus has

generally been on inter-hospital transfers. Kulshrestha and Singh [24] conducted a

review of recent literature on emergency and non-emergency patient transfers. The

literature has not settled on a strict definition of a non-emergency patient trans-

fer [20, 38, 23], but possible reasons for a transfer may include specialty care, non-

availability of beds or funding for medical treatment [45]. Pre-transfer stabilization

has been noted as a key step in the patient transfer process [26]. Hains et al. [13]

reviewed literature specifically for non-emergency transfers and found that efficiency

and communication are key factors for high quality patient transfers. Even though

non-emergency transfers are not “critically” ill, these patients often have the same

needs as emergency patients [7].

2.2 Scheduling Models

Patient transfer systems are a common part of healthcare systems and as such,

scheduling patient transfers has been studied extensively. These “Dial A Ride” trans-

portation systems have been in use since the 1970s [33]. The first attempts at analyt-

ical investigations into scheduling a Dial A Ride system were also made in the 1970s

[42]. Analytic solutions to these problems such as dynamic programming algorithms

[35] were used to solve the “Dial A Ride Problem” (DARP) during the planning phase

9
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of these transportation systems.

The DARP is a type of Vehicle Routing Problem (VRP) and part of the Travel-

ling Salesman group of problems. The DARP will design vehicle routes and schedules

for n requests divided among k vehicles. It is a difficult problem to solve because it is

combinatorially difficult and a solution is required in real time. Recent reviews of the

DARP in literature include Cordeau and Laporte [6] and Ho et al.[19]. Cordeau also

introduced a formulation of the DARP with time windows (also known as the Pickup

and Delivery Problem with Time Windows (PDPTW)) that focused on minimizing

the total cost of the vehicle routes, and a branch and cut algorithm for solving it

[5]. This algorithm proved feasible for small to medium sized problems. The DARP

has many different design choices and these are reviewed, although focus is placed on

research concerning the PDPTW as EHS must agree to pickup times with the patients.

The most common objective of the DARP is to minimize the total cost of the routes.

The cost may be total travel time, total travel distance or driver working time. Some

DARP objective functions focus on user inconvenience, such as total ride time and

total wait time [19]. Guerriero et al [11] investigated a multi-objective DARP where

both maximum total ride time and total waiting time were optimized. They solved the

problem using a two-step approach of meta-heuristics and a set-partitioning formu-

lation. Urra et. al [43] used a weighted multi-objective function with several factors

including travel time, ride time and route duration. Berg and Essen [44] looked at

the problem of scheduling non-emergency patient transfers where resources are shared

between non-emergency and emergency operations in order to minimize the impact

on emergency operations.

It is often assumed in the DARP that the vehicles are located at a single depot;

that is, every vehicle route starts and ends at the same location. Detti et al. [8] for-

mulated a Mixed Integer Programming (MIP) model for a multi-depot DARP. They

investigated Variable Neighborhood Search and Tabu Search as methods for solving

the problem, and presented computational results on random instances generated
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from a large real-world problem. Patients and vehicles both may be considered ho-

mogeneous or heterogeneous. Parragh [34] investigated a DARP with heterogeneous

patients and vehicles and solved the problem with direct methods and heuristics.

The previous papers focused on deterministic DARPs, or problems where the in-

formation is known with certainty. However, certain information may be stochastic.

Hyyti et al. [21] investigate a stochastic DARP model with a single vehicle. VRPs

may also be dynamic; that is, new information may be received over time and fed

into the model. Dynamic vehicle routing and dispatching has been researched since

the 1970s. Psaraftis et al. [36] present a review on the topic. Ichoua, Gendreau and

Potvin [22] used knowledge of future demands to plan vehicle dispatching in real time.

Hll et al. [14] evalutated a dynamic DARP system using simulation. Markovi et al.

[28] used a greedy insertion algorithm to solve the dynamic DARP in a real-world

setting. The literature on the dynamic DARP primarily focuses on new requests trig-

gering new vehicle routes. However, Beaudry et al. [2] presented a VRP model with

other considerations for adjusting the vehicle routes such as lengthy patient delays.

2.3 Workload Balancing Review

Workload balancing in VRPs is often applied to keep workers happy and ensure no

worker is overworked. Matl et al. [29] reviewed the recent literature on workload

balancing in VRPs. Workload balancing can be applied in the objective function or

as a constraint. The measure of workload balancing is commonly the total time of

the routes but can also be demand served by each vehicle. The literature also defines

two primary methods of measure workload balancing, either through min-max [3] or

a range of acceptable workloads [1]. Mourgaya and Vanderbeck [30] used a workload

balancing constraint on a cluster of delivery points in a VRP. Goodson [9] used a

constraint for the range of the workloads in a specialized VRP for election days. Gror

et al. [10] used constraints to enforce balanced workloads in a VRP.
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2.4 Data-Driven Research

Using data in conjunction with VRPs is not new, but recent trends in data collection,

computing power and statistical modelling techniques does open new avenues for

organization to use their data, and for operations researchers to apply their skills

and tools. Yalnda et al. [46] used historical data to estimate travel times of home

care givers in a home health care problem. Markovi et al. [27] used machine learning

algorithms during the planning phase of a new DARP system to estimate the capacity

required. Saadi et al. [40] used various machine learning methods to forecast short-

term (time interval of ten minutes) spatio-temporal demand for a ride-hailing service.

Nazari et al. [31] used deep reinforcement learning to solve a VRP problem with

instances sampled from a random distribution. While these examples are promising,

there is still opportunity to use data and apply statistical and machine learning models

to the DARP and VRPs, especially in real world case studies.



Chapter 3

Methodology

In this section, the approach and assumptions made when modelling the scheduling

process with a DARP model are reviewed. This approach is used to mimic the actual

scheduling process used by EHS. The model is conducted in two stages as described

below.

• A preliminary schedule is created in the evening for all patient transfer requests

submitted in advance that are scheduled for the following day.

• An updated schedule is created during the online operational phase where new

routes are created with Advance and Same Day requests. The scheduled pickup

times from the previous solution is included as an input and the model attempts

to keep these pickup times unchanged.

The model assumes a single depot to act as the start and end point for every vehicle.

It also assumes that the fleet of vehicles and the patients are homogeneous. In reality,

patients do have different needs but this has little impact on the time required for a

request. Every PTU is equipped with the same resources and therefore are able to

handle all patient transfer requests.

3.1 Advance Request Model

The Advance request model is an adaptation of the deterministic, static DARP model

in [5] which includes time windows. All of the non-linear constraints in the DARP

model are linearized. The model creates a set of routes for k vehicles and n requests

while minimizing the travel time across all routes. The vehicles represent the PTUs.

The DARP model is based on of the three-index formulation found in Cordeau [5].

However, the Advance Model includes workload balancing constraints and variable

shift times for the PTU crews. The time windows are used to ensure patients arrive

13
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at their destination in a timely manner. Each request for transportation includes a

pickup and a delivery.

Let n represent the number of patient transfer requests. The DARP is formulated

on a directed graph G = (V,A). Each request from n has a pickup node and a

delivery node represented by i and n + i respectively. These nodes must be visited

in order and by the same vehicle. The pickup nodes are represented by the subset

P = (1, ..., n) and the delivery nodes are represented by the subset D = (n+1, ..., 2n).

Therefore, P ∪ D represents every location that must be visited by a vehicle. The

depot is represented by nodes 0 and 2n+ 1. These three indices make up the vertex

set V = (0, 1, ..., n, n+ 1, ..., 2n, 2n+ 1).

K represents the set of vehicles. Each vehicle k ∈ K has a capacity of Qk, a minimum

shift start time of Tmink and a maximum shift end time of Tmaxk. Each node i ∈ V
has a non-negative service time di and a load qi such that qn+i = −qi. These values

for the depot are such that d0 = d2n+1 = q0 = q2n+1 = 0. Each node i ∈ V has a time

window [ei, li] where ei and li are the earliest and latest times that service may begin

at node i. Each arc (i, j) ∈ A has an associated travel time tij. This travel time also

acts as the cost measure, which is discussed in section 4.1. Parameters wb+ and wb−

are used as the maximum and minimum workload, respectively, for each vehicle.

The model has three types of decision variables:

• For every arc (i, j) ∈ A and vehicle k ∈ K, xkij is a binary decision variable that

is 1 if vehicle k will traverse the arc from node i to node j and is 0 otherwise.

• For every node i ∈ V and vehicle k ∈ K, uki represents the start time of service

by vehicle k at node i.

• For every node i ∈ V and vehicle k ∈ K, fk
i represents the number of patients

in vehicle k after visiting node i.

The MIP formulation is (3.1)− (3.19):
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Min
∑
k∈K

∑
i∈V

∑
j∈V

tijx
k
ij (3.1)

∑
k∈K

∑
j∈V

xkij = 1 ∀ (i ∈ P ) (3.2)

∑
i∈V

xk0i =
∑
i∈V

xki,2n+1 = 1 ∀ (k ∈ K) (3.3)∑
j∈V

xkij −
∑
j∈V

xkn+i,j = 0 ∀ (i ∈ P, k ∈ K) (3.4)

∑
j∈V

xkji −
∑
j∈V

xkij = 0 ∀ (i ∈ P ∪D, k ∈ K) (3.5)

Equation (3.1) is the objective function where the total travel time of the routes is

minimized. Constraints (3.2) ensures each request is served once. Constraints (3.3)

ensures that every vehicle route begins and ends at the depot. Constraints (3.4)

ensures the pickup and delivery nodes of a request are served by the same vehicle.

Constraints (3.5) certifies that the vehicle that enters node i will also depart from

node i.

ukj ≥ uki + di + tij −M(1− xkij) ∀ (i, j ∈ V, k ∈ K) (3.6)

uki+n ≥ uki + di + ti,i+n −M(1− xki,i+n) ∀ (i ∈ P, k ∈ K) (3.7)

uk2n+1 ≤ Tmaxk ∀ (k ∈ K) (3.8)

uk0 ≥ Tmink ∀ (k ∈ K) (3.9)

ei ≤ uki ≤ li ∀ (i ∈ V, k ∈ K) (3.10)

Constraints (3.6) and (3.7) guarantee that service time is consistent among every

node, and that the service time at node i + n does not begin until after the service

at node i is completed. Note that Constraints (3.7), valid inequalities, only work

when the vehicle capacity is 1 and the patient delivery must be completed before the

next patient is picked up, as applicable to the problem in this thesis. M is a large

constant. Constraints (3.8) and (3.9) uphold the vehicle and crew shift start and end

times and are similar to the constraints in the DARP model of [5] which place a limit

on vehicle route length and user ride time. Constraints (3.10) ensures that a request

is completed during its time window.
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fk
j ≥ fk

i + qj −M(1− xkij) ∀ (i, j ∈ V, k ∈ K) (3.11)

fk
j ≤ fk

i + qj +M(1− xkij) ∀ (i, j ∈ V, k ∈ K) (3.12)

fk
i ≤ Qk ∀ (i ∈ V, k ∈ K) (3.13)

fk
i ≤ Qk + qi ∀ (i ∈ V, k ∈ K) (3.14)

fk
i ≥ 0 ∀ (i ∈ V, k ∈ K) (3.15)

fk
i ≥ qi ∀ (i ∈ V, k ∈ K) (3.16)∑

i∈K

∑
j∈V

(tij + di)x
k
ij ≤ wb+ ∀ (k ∈ K) (3.17)

∑
i∈K

∑
j∈V

(tij + di)x
k
ij ≥ wb− ∀ (k ∈ K) (3.18)

xkij ∈ (0, 1) ∀ (i ∈ V, j ∈ V, k ∈ K) (3.19)

Constraints (3.11) - (3.16) ensures consistency for the passenger load in every vehicle

and every node. Constraints (3.17) and (3.18) are the workload balancing constraints.

Workload is measured as the sum of the travel time and service time along a vehicle’s

route.

3.2 Same Day Request Model

The Same Day Model is structured similarly to the Advance Model, but has a differ-

ent objective. The Same Day Model is designed to be run during the online opera-

tional period [15] and attempts to schedule all Advance requests and (known at the

time) Same Day requests while not changing any previously scheduled pickup times.

More specifically, the model will minimize the number of significantly changed pickup

times. “Significantly changed” will be defined later in this section. The idea behind

the model is to use previously scheduled patient transfer pickups to influence the new

schedule. An agreement on a pickup affects the resources available and service pro-

vided in the future. As described in section 1.2, EHS attempts to avoid changing any

agreed upon pickup times. Delaying a pickup time may result in diminished medical

service for the patient in the form of a delayed or cancelled appointment.

In addition to avoiding delayed pickups, the Same Day Model attempts to avoid
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“advancing” pickup times as well. Advancing is defined as changing the pickup time

to a significantly earlier time. Many transfer pickups are located in busy hospitals.

Hospital staff must prepare a patient for pickup and will often plan around an ex-

pected pickup time. Arriving for a pickup early and unannounced in these situations

is not beneficial for the hospital staff and the paramedics as the patient will not be

ready for transport. Calling a hospital ahead of time may alleviate this problem but

the hospital staff may be too busy to accommodate the early pickup request. A simi-

lar problem may occur at the delivery location. Staff may be unprepared or may not

have a bed available to accommodate an earlier delivery, resulting in wasted time for

the paramedic crew and the vehicle.

The number of patient transfer requests are represented by n, and each request has a

pickup node and a delivery node represented by i and n+ i respectively. The indices

for the pickup nodes, delivery nodes and the vehicle depot are the same as in section

3.1. The sets and parameters described in section 3.1 remain in the Same Day Model.

The routing constraints (3.2) − (3.5), the service time constraints (3.6 − 3.10), the

load constraints (3.11)−(3.18) and the workload balancing constraints (3.18)−(3.19)

are unchanged.

The three decision variables from the Advance Request Model remain in the Same

Day Model, but three new decision variables are introduced. The first two are listed

below.

• For every node i ∈ P , Yi is a binary decision variable that is 1 if the service

start time at node i is delayed by more than α+ minutes and is 0 otherwise.

• For every node i ∈ P , Zi is a binary decision variable that is 1 if the service

start time at node i is advanced by more than α− minutes and is 0 otherwise.

The service start times, uki , generated by the Advance Model for every Advance re-

quest pickup are used as an input to the Same Day Model. Only the service start times

where vehicle k visited node i are kept. They are represented by a new parameter,

wi. For any requests that have a previously scheduled pickup time, wi is the previ-

ously agreed upon pickup time. For any new requests, wi is the requested pickup time.
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The Same Day Model has four global parameters. They are as follows:

• α+ is the amount of time a pickup may be delayed before it is considered

significantly changed (late) at any pickup node i ∈ P .

• α− is the amount of time a pickup may be advanced before it is considered

significantly changed (early) at any pickup node i ∈ P .

• β+ is the maximum amount of time a pickup may be delayed at any pickup

node i ∈ P .

• β− is the maximum amount of time a pickup may be advanced at any pickup

node i ∈ P .

The objective function for the Same Day MIP Model is (3.20).

Min
∑
i∈P

Yi +
∑
i∈P

Zi (3.20)

For every node i ∈ P , the third new decision variable, bi, is used to measure the

difference between the previous scheduled pickup time, wi, and the new pickup time,

uki . The following constraint is introduced to measure this difference.

∑
j∈V

xkiju
k
i −

∑
j∈V

xkijwi = bi ∀ (i ∈ P, k ∈ K) (3.21)

Constraints (3.21) is non-linear, therefore xkiju
k
i is replaced with skij, a continuous deci-

sion variable with bounds of [Slow, Shigh]. Constraints (3.21) is replaced by constraints

(3.22-3.26).

∑
j∈V

skij −
∑
j∈V

xkijwi = bi ∀ (i ∈ P, k ∈ K) (3.22)

skij ≥ xkij ∗ Slow ∀ (i ∈ P, j ∈ V, k ∈ K) (3.23)

skij ≤ xkij ∗ Shigh ∀ (i ∈ P, j ∈ V, k ∈ K) (3.24)

skij ≤ uki − Slow(1− xkij) ∀ (i ∈ P, j ∈ V, k ∈ K) (3.25)

skij ≥ uki − Shigh(1− xkij) ∀ (i ∈ P, j ∈ V, k ∈ K) (3.26)
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Slow and Shigh should be picked so that skij may only take a value between the earliest

possible service start time and the latest possible service start time. In the Same

Day Model, these are the earliest shift start time and the latest shift end time of the

vehicles. This is shown in equations (3.27) and (3.28).

Slow = min
(k∈K)

(Tmink) (3.27)

Shigh = max
(k∈K)

(Tmaxk) (3.28)

Two of the global parameters introduced earlier, β+ and β−, are used to impose a

maximum amount of time a pickup time may be changed. Constraints (3.29) and

(3.30) show this.

bi ≥ β− ∀ (i ∈ P ) (3.29)

bi ≤ β+ ∀ (i ∈ P ) (3.30)

Constraints (3.31)-(3.32) dictate the relationship between bi and the new decision

variables, Yi and Zi. If a pickup time has been delayed by greater than α+, than Yi

will be equal to 1. If a pickup time has been advanced by greater than α−, than Zi

will be equal to 1.

G ∗ Yi ≥ bi − α+ ∀ (i ∈ P ) (3.31)

(−G) ∗ Zi ≤ bi + α− ∀ (i ∈ P ) (3.32)

Yi ∈ (0, 1) ∀ (i ∈ P ) (3.33)

Zi ∈ (0, 1) ∀ (i ∈ P ) (3.34)

G is a sufficiently large constant. It should be larger than the largest possible deviance

between bi and α+ or α−. This can be determined by equation (3.35).

G ≥ max(β+ − α+, |β− + α−|) (3.35)
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The relationship between the four new global parameters can be summarized in equa-

tion (3.36).

β− ≤ α− ≤ 0 ≤ α+ ≤ β+ (3.36)

In the Same Day Model, α+ and α− act as soft time windows. The Same Day Model

attempts to keep every pickup time within this soft time window. If necessary, a

pickup time can be changed past the soft time windows but not past β+ and β−;

these act as hard time windows.

The schedule generated by the Same Day Model can also be used as an input to

re-run the Same Day Model, replacing the input from the Advance Model. As dis-

cussed previously, when Same Day requests are received, the Same Day Model can

be run with the previous solution service start times (uki ) as the wi parameter. This

process can be repeated as the Same Day model also generates service start times.

The Same Day Model schedule can therefore replace the Advance Model schedule as

an input and be rerun over the course of the online operational phase.

The Same Day Model is used to generate new vehicle routes while attempting to

maintain the scheduled pickup times. The process of generating a preliminary sched-

ule and using that schedule as an input to the Same Day Model is shown in figure

3.1.
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Figure 3.1: Scheduling model framework



Chapter 4

Data Analysis

In this chapter, analysis performed on patient transfer data provided by the EHS

Operations team will be explored. This data is used to compute certain parameters

in the Advance and Same Day Models. This analysis also helps with decisions for

experiments to test the models with in chapter 5. Note that a lot of the charts do not

have labelled y axis. This is to protect some information for EHS. The trends shown

are what is important on the charts.

4.1 Data Exploration

4.1.1 Data Characteristics

Data for every patient transfer request in 2016 and 2017 in the Central Region of

Nova Scotia was provided by the EHS Operations Team. The data includes requests

that were not completed. Descriptive information such as which PTU was assigned

to the transfer, pickup location and destination are included.

Sensors on the PTUs send continuous updates on the vehicle’s status. Transfer re-

quests are assigned to a PTU by EHS Operation staff. This is done over the radio, but

staff also flag the patient transfer in their computer system. When this event occurs,

the PTU is considered “Enroute” to the pickup location. Once the PTU reaches the

pickup location, the PTU status is changed to “At Scene”. When a PTU leaves a

pickup location, the status changes to “Depart Scene”. Once it has arrived to the

delivery location, the status becomes “At Destination”. The status is updated a final

time to “Available” once the patient transfer is complete.

The system saves the timestamp where every status change occurs. This allows for

metrics of interest to be calculated. These metrics are as follows.

22
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• The Pickup Travel Time is estimated from the difference between the Enroute

and At Scene timestamps.

• The Pickup Service Time is estimated from the difference between the At Scene

and Depart Scene timestamps.

• The Delivery Travel Time is estimated from the difference between the Depart

Scene and At Destination timestamps.

• The Delivery Service Time is estimated from the difference between the At

Destination and Available timestamps.

These metrics are important to the models discussed in chapter 3 and are examined

in sections 4.2 and 4.3.

4.1.2 Descriptive Data Analysis

Exploratory analysis of the patient transfer data is presented. First, the patient trans-

fer demand is analyzed. Figure 4.1 shows the sum of all patient transfer demands by

the day of the week. Labels 1 and 7 represent Sunday and Saturday, respectively. As

patient transfer volume is low on the weekend, the weekday was focused upon.

Figure 4.2 shows the patient transfer demand by the time of day, with each bin rep-

resenting one hour of the day. The data was graphed according to the agreed upon

pickup time. Patient transfer volume begins increasing at 6.00 and rises sharply until

13.00. There is a steady decrease until 18.00 where demand remains relatively con-

stant until the end of the day.

The time period that takes place between 6.00 and 19.00 during a week day is defined

as the “peak demand period” and is the focus of the data analysis. Demand for the

24 month time period the data was collected from was plotted in figure 4.3. This

chart shows the number of patient transfer requests in the Central Region with a

trend line. The trend line shows a downward trend in patient transfers for the period

of 2016 through 2017.
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Figure 4.1: Patient transfer requests by day of week



25

Figure 4.2: Patient transfer requests by time of day
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Figure 4.3: Patient transfer requests in the Central Region

The patient transfer demand was drilled into to determine any causes for the decrease

in patient transfers. Figures 4.4 and 4.5 show the number of patient transfers that

are assigned to PTUs and ambulances, respectively, in the Central Region per month.

Figure 4.4 shows a clear upward trend in the data whereas figure 4.5 has a decreasing

trend. This is evidence supporting the notion that ambulances are helping less with

patient transfer operations (likely for reasons discussed in chapter 1), and the PTUs

must make up for the lack of service previously provided by ambulances and their

paramedic crews.

Demand was split into two categories: Advance and Same Day. These terms were

previously used in chapter 3 and the same definitions apply here. Figure 4.7 shows

the trend for Advance and Same Day requests across all vehicles. The charts show a

small increasing trend for Advance Requests (with a large amount of variance) and a

clear decreasing trend for Same Day requests.
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Figure 4.4: Patient transfer requests assigned to PTUs
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Figure 4.5: Patient transfer requests assigned to ambulances
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Figure 4.6: Patient transfer requests by vehicle

Digging into requests assigned to PTUs, figure 4.8 shows the trend for requests as-

signed to PTUs. Advance requests have significantly increased over the two year

period. Same Day requests have declined slightly, but there is quite a bit of variance

in the data. With more Advance requests being submitted, there is less capacity to

schedule Same Day requests.

4.2 Travel Time Estimates

PTU travel times are an important measure for the models presented in this thesis.

Before running the models, estimates are required for a number of parameters, in-

cluding tij. For a problem with n = 50 requests (EHS routinely serves 50 or more

patient transfer requests over the course of day in the Central Region of Nova Sco-

tia), there are (2(n+ 1))2 = 10404 tij values required. The patient transfer data will

be used to estimate these values quickly, and an alternative solution for generating

either missing or all tij values is also presented. Travel times during the peak hours

as described in section 4.1.2 are only considered as traffic tends to be busiest during
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Figure 4.7: Advance and Same Day patient transfer requests trend
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Figure 4.8: Advance and Same Day patient transfer requests trend for PTUs
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this time.

It is important to note that, like many data sets, the patient transfer data set has er-

rors and anomalies. The data was analyzed and cleaned prior to analysis. Pickup and

delivery location names were standardizes as some locations had different spellings

and abbreviations. Outliers for travel and service times were identified. Most of

these were the result of missing data and workarounds for the calculation were used.

A small amount of outliers could not be corrected and had to be removed from the

analysis. Several calculated columns were added to the data to help make analysis

easier (such as month and day of the week).

First, pickup travel times are plotted in figure 4.9 and measures are shown in ta-

ble 4.1.

Figure 4.9: Pickup travel time distribution
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Pickup Travel Time Metrics
Mean Median Standard Deviation Coefficient of Variation
12.24 9.25 12.88 1.05

Table 4.1: Pickup travel time metrics

The majority of pickups requires less than 12 minutes for travel, but there are a

number of outliers with some pickups exceeding 90 minutes worth of travel. Next,

delivery travel times are plotted in figure 4.10 and metrics are shown in table 4.2.

Figure 4.10: Delivery travel time distribution

There are two peaks in figure 4.10. The first occurs in the 0-5 minute bin of the

histogram. This is because roughly 33% of the patient transfers in our data set are

between the Halifax Infirmary and the Victoria General Hospital, the two largest

hospitals in the Central Region. These two facilities are located very close to each
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Delivery Travel Time Metrics
Mean Median Standard Deviation Coefficient of Variation
15.85 14.00 12.07 0.76

Table 4.2: Delivery travel time metrics

other, and the travel times show this; the mean and median travel times for this trip

are 7 and 5 minutes, respectively.

The second peak occurs in the 15-20 minutes bin, and is the result of the remainder

of the patient transfers in the data set. Similar to the pickup travel times, delivery

travel times have outliers up to 100 minutes, although the median is 14 minutes.

From the patient transfer data, we can observe the Pareto principle in that almost

50% of requests involve one of the top two locations, and 84.9% involve one of the top

10 locations. With this data, estimates can be found for the majority of routes that

the PTU crews will have to drive. The statistics for the top 10 locations are found in

table 4.3.

Percent of Patient Transfers by Location
Location Percent of Requests Cumulative Percent Sum

1 26.2 26.2
2 21.9 48.1
3 11.4 59.5
4 7.7 67.2
5 5.5 72.7
6 4.5 77.2
7 2.6 79.8
8 1.8 81.6
9 1.7 83.3

10 1.6 84.9

Table 4.3: Percent of requests for top 10 locations

For estimating travel times, a measure of central tendency such as the mean or median

is chosen. To demonstrate the benefits of these two options, the mean and median

travel times in minutes for the ten most populous routes from the patient transfer

data are shown in table 4.4.
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Top 10 Route Statistics
Route Mean Median

1 7.5 5.1
2 22.6 21.0
3 23.0 21.0
4 7.2 5.0
5 19.9 16.0
6 26.7 25.6
7 50.3 48.9
8 19.3 14.4
9 35.1 29.4

10 6.4 5.0

Table 4.4: Top 10 route travel statistics (minutes)

Due to the outliers on the upper end of the travel time distributions (shown in figures

4.9 and 4.10), the travel time mean is consistently higher than the median for a given

route. Using the mean is a “risk averse” method for estimating the travel time and

is useful if delays are expected during the operating period.

While there are differences between the mean and median for pickup travel time

and delivery travel time, they are treated the same for estimating. This means the

same route for travelling to a pickup and travelling to a delivery will have the same

estimated travel time. The reason is because the start and end points of a route are

the primary factors that influence how long it takes to drive a route.

4.2.1 Missing Data

The travel time estimates for some routes are missing from the data; this means a

PTU has never driven from a particular location to a particular destination (in the

data set). For instance, there are many routes missing where a personal residence

is either the pickup or delivery location. For these travel time estimates, a solution

using the R programming language [37] and the googleway R package [4] is presented.

The googleway R package uses a user-provided Google API key to access Google

Maps and retrieve data. One such use is to retrieve route distance and estimated
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travel time for a route between two locations. This is done with the google distance

function. While two addresses can be used as inputs, sometimes exact addresses are

unknown. However, EHS does store the latitude and longitude for every pickup and

delivery location; google distance can also use latitude and longitude as an input. For

any routes with no travel data (and therefore no estimate for tij), a list of the routes

can be inputted into the google distance function to retrieve a travel time estimate.

The code for this function is included in the TravelTimeGenerator.R file found on

DalSpace.

It is recommended to use historical patient transfer data for the tij estimates where

possible. Operating a PTU is not the same as operating a smaller vehicle such as a

car. PTUs also have special equipment and may be transporting a patient, requiring

extra care while driving. However, using data from Google Maps is an acceptable

substitute in absence of patient transfer data.

4.3 Service Time Models

In this section, models to estimate service time with a patient are introduced. Service

time, both in this chapter and in chapter 3, refers to the time spent with a patient

at the pickup and delivery locations. It does not include any travel time. It can be

thought of as steps 2 and 4 of the patient transfer process described in chapter 1.1. In

the Advance and Same Day Models, every node i ∈ P ∪D has a service time di ≥ 0.

Service time taking place at the pickup location, i ∈ P , is called pickup service time.

Service time taking place at the delivery location, i ∈ D, is called delivery service time.

First, the pickup and delivery service time data are analyzed. The statistical dif-

ferences are explored. Next, multiple linear models are explored to generate service

time estimates. Only peak hours are considered again, as this is when hospitals are

at their busiest.

4.3.1 Service Time Comparison

Pickup service time and delivery service time are analyzed and compared to determine

if they require separate models. The distribution of pickup service time is shown in
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figure 4.11 and measures are in table 4.5.

Figure 4.11: Pickup service time distribution

Pickup Service Time Metrics
Mean Median Standard Deviation Coefficient of Variation
18.49 17.00 12.11 0.65

Table 4.5: Pickup service time metrics

Pickup service time has a similar distribution shape to pickup travel time, with out-

liers as far as 100 minutes. Half the patient transfers have a pickup service time

below 17 minutes. The delivery service time distribution and measures are shown in

figure 4.10 and table 4.6. It also has outliers in the right tail. However, it also has

a lower mean and median. A Welch’s t test is used to test the hypothesis between

the two group means (under the assumption of unknown and different population

variances). Even though the data is non-normal, the t test should be sufficient due
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to the very large number of samples (> 10000). The test statistic is 44.151 and the

p-value is approximately 0. This confirms the alternative hypothesis that the pickup

and delivery service time means are different.

Figure 4.12: Delivery service time distribution

Delivery Service Time Metrics
Mean Median Standard Deviation Coefficient of Variation
13.86 12.78 9.93 0.72

Table 4.6: Delivery service time metrics

Perhaps service time is more dependent on the location, and not whether the service

performed in a pickup or a delivery. Certain locations are represented in the data

much more often than others (shown in table 4.3). To investigate, the mean pickup

and delivery service times for the top ten patient transfer locations are shown in ta-

ble 4.7. The table provides evidence that while the location probably does affect the
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service time length, pickup and delivery service times are likely to be two distinct

populations. Nine of the top ten locations have a pickup service time mean greater

than the delivery service time mean. Because of this evidence, pickup and delivery

service time are treated as two independent populations.

Top 10 Location Service Time Means
Location Pickup Service Mean Delivery Service Mean

1 21.76 16.79
2 17.72 14.84
3 19.98 15.26
4 14.77 10.85
5 15.58 11.19
6 18.24 11.40
7 16.10 12.96
8 17.74 12.50
9 8.68 8.44

10 18.38 28.34

Table 4.7: Top 10 location service time means (minutes)

4.3.2 Pickup Service Time Model

In this section, a multiple linear regression model is investigated for pickup service

time. Several predictors are investigated for their effects on patient transfer service

time. The first predictor to investigate is the pickup location. As shown in section

4.3.1, where the pickup takes place likely affects the pickup service time. However,

there are 100 distinct pickup locations in the patient transfer data set. 64 of these

locations have less than 10 pickups. Therefore, only locations with greater than 10

pickups were included in the linear regression. 10 locations were kept in the final

model (F statistic = 123.2).

The day of the week is added to the linear model as a categorical variable. Saturday

and Sunday are omitted due to the low patient transfer demand on the weekend.

The day of the week has a F statistic of 26.38 (p-value of approximately zero) and is

therefore significant in the model even with the presence of the 10 pickup locations.

Hour of the day is added, also as a categorical variable. The hours included are
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6.00 to 18.00, matching the peak demand period established in section 4.1.1. The F

statistic for hour of the day is 8.25 (p-value of approximately zero) when added to

the linear model. Day of the week and pickup location remain significant.

A new column indicating whether the patient is bariatric or not was added to the

data set. This is based on a code used by EHS. This “bariatric flag” was added to the

model. It has an F statistic of 35.24 (p-value of approximately zero) and is included

in the linear regression model. All previous predictors remain significant.

Next, the destination was investigated for effects on pickup service time. The same

approach as the pickup location was taken for the destination. Only four destination

location were shown to have a statistically significant effect on the pickup service

time, and they are included in the linear model. The final model, including predictor

and F-statistic, is found in table 4.8. The R2 value is 0.09 and the root mean square

error (RMSE) is 10.93.

Several other predictors were tested in addition to the ones above, but were found to

not have a significant effect on the pickup service time. These include whether the

patient requires special equipment, whether special precautions for the paramedics

are required, whether the request is an Advance or Same Day request, the type of

facility the pickup is located in, and several pickup and destination locations.

4.3.3 Delivery Service Time Model

The process from section 4.3.2 was repeated for the delivery service time model. The

distribution of delivery locations is similar to pickup locations. There are 109 distinct

delivery locations in the data set, but 72 of these locations have less than 10 pickups.

The remaining 37 locations were included in a linear regression. 16 of these locations

were kept in the final model (F statistic of 60.5).

Day of the week (F statistic of 3.93) and hour of the day (F statistic of 7.02) are

included again. The bariatric flag is included as well (F statistic of 37.54). Unlike the

pickup service time model, whether the request was an Advance or Same Day request
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Predictor Type F Statistic
Day of Week Categorical 26.64

Hour Categorical 12.24
Pickup Location 1 Binary 948.79
Pickup Location 2 Binary 222.89
Pickup Location 3 Binary 134.33
Pickup Location 4 Binary 193.48
Pickup Location 5 Binary 23.81
Pickup Location 6 Binary 22.16
Pickup Location 7 Binary 11.30
Pickup Location 8 Binary 13.25
Pickup Location 9 Binary 12.69

Pickup Location 10 Binary 32.88
Bariatric Binary 52.17

Destination 1 Binary 18.72
Destination 2 Binary 7.75
Destination 3 Binary 30.16
Destination 4 Binary 16.40

Table 4.8: Multiple linear regression model for pickup service time

does affect the delivery service time (F statistic of 31.06). The type of facility is also

statistically significant (F statistic of 34.53). The final delivery service model is in

table 4.9.

Other predictors were tested and found not to be statistically significant. These

included whether the patient requires special equipment, whether special precautions

for the paramedics are required and several pickup and delivery locations.

The framework of the scheduling model shown in figure 4.13 has been updated to

include the information provided from the data and the googleway package.
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Predictor Type F Statistic
Day of Week Categorical 3.96

Hour Categorical 7.04
Delivery Location 1 Binary 687.63
Delivery Location 2 Binary 66.50
Delivery Location 3 Binary 111.50
Delivery Location 4 Binary 193.48
Delivery Location 5 Binary 521.42
Delivery Location 6 Binary 11.04
Delivery Location 7 Binary 14.58
Delivery Location 8 Binary 6.58
Delivery Location 9 Binary 14.05

Delivery Location 10 Binary 24.40
Delivery Location 11 Binary 8.50
Delivery Location 12 Binary 23.38
Delivery Location 13 Binary 281.66
Delivery Location 14 Binary 24.83
Delivery Location 15 Binary 13.28
Delivery Location 16 Binary 12.47

Bariatric Binary 38.04
Advance or Same Day Binary 31.42

Location Type Categorical 34.53

Table 4.9: Multiple linear regression model for delivery service time
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Figure 4.13: Scheduling model framework updated with the models derived from the
data



Chapter 5

Results

In this chapter, experiments are designed for the Advance Model, Same Day Model

and the two used in conjunction. Afterwards, the results are analyzed. The Advance

and Same Day Models have experiments conducted to explore several parameters.

The quality of the schedules generated by the Advance Model are compared to the

actual schedules (with some limitations) as well. The value of information is explored

next, comparing results from scenarios where every patient transfer request is known

in advance and the actual scenario where some requests are received during the same

day as the requested pickup time. The final experiment simulates an actual opera-

tional day as new requests are received using the models.

The computational time to solve the DARP models, the total travel time and the

number of changed pickup times are the variables of interest. The input files contain-

ing the parameters that are used by the model are created with the patient transfer

data. The R programming language [37] and RStudio [39] are used to extract the

information from the data into the input files. The DARP Advance and Same Day

Models are constructed with the Pyomo package [16] [17] and written in the Python

programming language. The problems are solved using the Gurobi Optimizer [12] on

a server with an Intel 4114 CPU, 2.20 GHz processor with 20 cores and 64 GB of

RAM. A maximum solve time of six hours was placed on every experiment. Vehicle

capacity, Qk, was kept to one to match the capacity of the PTUs.

5.1 Experimental Design

The design of the experiments is reviewed in this section. First, experiments testing

parameters in the Advance Model are reviewed. Next, experiments testing the effect

of parameters in the Same Day Model are reviewed. The experiments that put a

value on perfect information are reviewed next. The last set of experiments simulates

44
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a single day where the Advance Model is used to generate the preliminary schedule,

and the Same Day Model is run several times over the course of the day as new patient

transfer requests are received.

5.2 Advance Model Experiments

The Advance Model is tested with different inputs for certain parameters. The patient

transfer data is used for the experiments. Data from nine different days is used; they

are chosen to encompass a wide range of the number of patient requests. The smallest

experiment has 25 patient transfer requests and the largest has 64 requests; this is

the largest number of patient requests served by Central Region PTUs in a single day

in the data set. Every request is treated as an Advance request. The parameters of

interest are the number of vehicles, the length of the time windows and the use of the

workload balancing constraints. The experiments are described below.

• The vehicles are tested for values of 5, 6, 7, and 8. These numbers are chosen

because they are close to the actual number of PTUs used in the Central Region

during the peak operating hours by EHS. They can provide evidence of how

increasing or downsizing the fleet of PTUs may affect operations.

• The time window length is applied to both sides of the pickup time. Therefore,

PTUs may arrive a little early or a little late. This decision was made to

balance early and late pickups. As discussed in section 3.2, arriving early is not

necessarily a positive outcome for EHS. The time window lengths chosen for

testing are 10, 12, 15 and 20 minutes.

• The workload balancing constraints are turned on (with a wide range between

wb+ and wb−) and off. This is because when there are no workload balancing

constraints, the Advance Model will attempt to use as few vehicles as possible

to serve every request. In addition, a low wb+ value will have the side effect of

limiting the number of requests that can be served by the vehicles.

After these experiments are carried out, the Advance model is tested for practical use

and the quality of the schedules generated by the Advance Model for selected days in

the patient transfer data where the number of Same Day requests is minimized. For
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the practical use experiments, the Advance Model is tested on 40 randomly selected

days.

5.3 Same Day Model Experiments

For the Same Day Model, every day in the historical data is assigned to a category.

The number of Advance and Same Day requests are summed for each day and sorted

into three categories: Low, Medium and High. If the number of requests for a day is

in the 33rd percentile or lower, it is placed into the Low Category. If the number of

requests is in the 67th percentile or higher, it is placed into the High category. Other-

wise, the day is placed into the Medium category. This is done for both Advance and

Same Day requests. Every day is than placed into a category according to the matrix

in figure 5.1. A random day is chosen from the following categories (highlighted in

grey in figure 5.1) for the Same Day Model experiments:

• Low Same Day, High Advance

• Medium

• Medium Same Day, High Advance

• High Same Day, Low Advance

• High Same Day, Medium Advance

• High

The Low and Low-Medium categories are ignored as they are less interesting. In the

Same Day Model experiments, different values of β+, β−, α+ and α− are investigated

while the number of PTUs is kept constant and workload balancing constraints are

used. For simplicity, β− = −β+ and α− = −α+. For each experiment, the first step

is to create a schedule with the Advance Model and Advance requests so that the

pickup times may be used as the wi parameter in the Same Day Model.



47

Figure 5.1: Same Day Model experiments

5.4 Value of Information Experiments

The next set of experiments attempt to put a value on information. 19 days describ-

ing a wide range of total patient transfer requests were selected for the experiments.

For every day, the scheduling problem is solved with two different approaches. First,

all of the Advance requests are used as inputs to the Advance Model and solved with

7 vehicles, 10 minute time windows and workload balancing. The pickup times gen-

erated by this solution, the Advance requests and the Same Day requests then are

submitted as inputs to the Same Day Model and solved.

The second approach treats every request as an Advance request, and the problem is

solved in the Advance Model. In this scenario, the Advance Model has 7 vehicles and

workload balancing, and the time window is the smallest value the problem will solve

with from 10, 12, 15 and 20 minutes. The sum of the travel time from both methods

are compared to each other.
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5.5 Same Day Strategy Experiments

The final experiment tests how the models perform while being used throughout the

online operational phase. It will simulate how EHS or a similar organization would

use the Advance and Same Day Models throughout a simulated day. A ‘typical’ day

with a total number of requests close to the daily mean for our sample data (n = 48)

and a relatively even split between Advance and Same Day requests is chosen from

the patient transfer data. Our chosen day has 49 requests with 24 Advance requests

and 25 Same Day requests. A preliminary schedule with the 24 Advance requests is

created with the Advance Model (similar to EHS creating a preliminary schedule in

the evening for the following day). The Advance Model is run with 7 vehicles, 10

minute time windows and workload balancing constraints.

In the patient transfer data, there is a column that lists the time EHS picked up

the phone for each request. With this, it is known exactly when each request was

placed with EHS. This information is used to devise a possible strategy for the Same

Day Model and to conduct this experiment. There are many possible strategies for

choosing when to run the Same Day Model throughout the day. One option is to run

the model every time a Same Day request is received. Another option is to run the

Same Day Model once a threshold is reached. This threshold can be either once a

certain number of requests have been received, or once a certain amount of time has

passed.

For this experiment, using the Same Day Model is tested with a threshold of 30

minutes. This means the Same Day Model is run every half an hour during the simu-

lated day. This is done to balance efficiency and practicality. Waiting a long time or

until a large number of new, Same Day requests have been received may not be feasi-

ble as some requests have a short duration between the time the request is placed and

the requested pickup time. Running it for every request or every 5 minutes may be

inefficient if the new schedule has to be scrapped because a new call immediately came

in after the model finished solving. Running the Same Day Model every 30 minutes is

done to balance these two extremes. The Same Day Model is run with 7 vehicles, hard

time windows of 20 minutes, soft time windows of 10 minutes and workload balancing.
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One final consideration for the simulated day are pickups that take place before the

time the Same Day Model is run. For instance, consider a pickup that takes place at

node i = 1 with a pickup time of 6.15. In the previous schedule, vehicle k = 1 is to

drive to node i = 1 from the depot for this pickup. When the Same Day Model is

run at six thirty, vehicle k = 1 will already be at node i = 1 (or will have left, trans-

porting the patient to the destination). This pickup would obviously not be changed

and should be reflected in the new schedule. Certain xkij are set to 1 according to the

following rule in order to account for this possibility.

If xkij (where j ∈ P ) is equal to 1 in the previous schedule and the service start

time at node j by vehicle k, ukj , is earlier than the present time when the Same Day

Model is to be run, xkij is set to 1. In the example given above, x101 = 1 for the Same

Day Model run at six thirty. There is no need to account for the nodes in the delivery

set (j ∈ D) as the routing constraints will ensure vehicle k will visit the delivery node

j + n.

Therefore, the simulated day experiment can be summarized as follows:

1. Run the Advance Model for all 24 Advance requests ‘the night before’ the

simulated day.

2. Run the Same Day Model at 6.00 if any new requests were received overnight.

This is the beginning of the online operational phase for EHS. The Advance

Model scheduled pickup times are used as wi in the Same Day Model.

3. Run the Same Day Model every 30 minutes until 19.00. Run only if any new

requests are received in the previous 30 minutes. The scheduled pickup times

from the most recent schedule are used as wi. If ukj where j ∈ P is less than the

current time, set xkij = 1 for j ∈ P if xkij was equal to 1 in the previous schedule.

The feasibility and practicality of this strategy will be evaluated through the compu-

tational time to run the models and the sum of the travel time as compared to an

optimal solution generated by the Advance Model for all 49 patient transfer requests.
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Experiment Purpose
Advance Model Parameter
Testing

Test different inputs for number of vehicles,
time windows and workload balancing

Advance Model Compari-
son to Actual

Compare travel time of Advance Model
routes to actual routes

Same Day Model Parame-
ter Testing

Test different inputs for soft and hard time
windows

Value of Information Compare travel time of routes from actual
Advance/Same Day split and scenario where
all requests are known in advance

Same Day Strategy Simulate using the Advance and Same Day
models over the span of one operational day

Table 5.1: Experiments summary

5.6 Advance Model Results

The first set of Advance Model experiments tested different values for the number of

vehicles (k in the model). Values of 5, 6, 7 and 8 were used for k. Workload balancing

constraints were used and the time windows were kept at 10 minutes. 9 days were

chosen to test that encompassed a wide range of patient transfer requests. In total, 36

experiments were performed. All were solved to optimality, with the exception of the

experiments where a status of “infeasible” was returned by the solver. The results are

found in figure 5.2. The computational time and the sum of the vehicle travel time

are charted against the number of patient transfer requests. The symbol represents

the number of vehicles used in the experiment. As expected, the computational time

increased exponentially as the number of requests increased. The total travel time

increased linearly. The computational time chart shows that increasing the value of

k slightly increases the time required to optimally solve the DARP; the 8 vehicle

problems require the longest amount of time. Changing the value of k appears to

have little effect on the total travel time. The larger problems (n > 50) show slightly

less total travel time for the 8 vehicle problems, however.

Some of the test problems were unable to solve and a status of “infeasible” was

returned. Problems with k = 5 and k = 6 quickly became infeasible as the number

of patient transfer requests grew. The infeasible experiments are found in table 5.2.
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Number of Requests Vehicles
35 5
39 5
39 6
45 5
50 5
50 6
50 7
56 5
56 6
60 5
60 6
64 5
64 6
64 7
64 8

Table 5.2: Infeasible Advance Model vehicle experiments

For the workload balancing experiments, the previous 36 experiments were repeated

without the workload balancing constraints and solved to optimality. The results are

in figure 5.3. There is almost no difference in the total travel time. Experiments with

no workload balancing constraints appear to take slightly longer. On average, these

experiments took 6% longer than their partner experiment with workload balancing.

The same experiments that were infeasible in the vehicle experiments remained in-

feasible for the workload balancing experiments.

The final set of experiments on the Advance Model tested time window lengths of 12,

15 and 20 minutes (in addition to the 10 minute time windows tested in the previous

experiments). These experiments were solved to a MIP gap of 2% as some problems

reached the six hour time limit imposed on the solver. The experiments used work-

load balancing, but only used values of 7 and 8 for k due to lower numbers being

infeasible for larger problem sizes. The results are found in figure 5.4.

The results show that a larger time window greatly increases the computational time

required to solve the DARP. The time window length appears to have minimal im-

pact on the total travel time, however. The main function of increasing the time
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windows is to make larger problems become more likely to solve, as some of the pre-

vious problems that were infeasible solve under larger time windows (including the

64 request problem, which solved with 12 and 15 minutes time windows). Some of

these problems reached the six hour time limit, but returned solutions that did not

reach the 2% MIP gap. These problems were attempted with a 5% MIP gap. 5% is

considered an acceptable gap because even in a large DARP problem for EHS, the

total travel time for all vehicles is typically around 1200 minutes. 5% spread across

7 vehicles is roughly 8.5 minutes. A single patient transfer typically takes 60 minutes

to complete; therefore, 8.5 minutes will not have a large impact on the final solution.

Some problems still reached the six hour time limit. These experiments and their

MIP gaps are listed in table 5.3. Every one of these problems solved to within a 5%

Number of Requests Vehicles Time Window Travel Time MIP Gap
39 7 20 711 12.24%
39 8 15 733 4.91%
39 8 20 727 12.24%
45 7 20 1009 4.96%
45 8 20 1016 5.91%
50 7 20 1069 4.96%
50 8 20 1072 4.94%
56 7 20 1177 16.31%
56 8 20 1159 19.41%
60 7 15 1127 3.82%
60 8 15 1132 15.02%
64 8 12 1488 6.05%
64 8 15 1448 24.45%

Table 5.3: Time window experiments with MIP gap larger than 2%

optimality gap with smaller time windows, except for the 64 request problem (which

only generated solutions for the 12 and 15 minute time window problem with 8 ve-

hicles). If an experiment did not solve to the 5% MIP gap in six hours, experiments

with larger time windows were not performed in order to save time.

5.7 Advance Model Comparison to Actual Schedules

EHS typically receives 15 to 45 Advance requests per day in the HRM. The Advance

Model is tested on randomly selected actual problems from the historical data. The
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Requests Computational Time (Seconds)
Max 49 3281
Min 19 2

Mean 33 319

Table 5.4: Advance Model computational results summary

Advance
Requests

Model
Travel
Time

Actual
Travel Time

Actual
Completed
Requests

Travel Time
Difference

Same Day
Requests

24 645 747 22 102 8
26 771 833 26 62 8
32 847 1244 32 397 9
34 744 1048 34 304 11
35 768 993 35 225 10
37 890 933 36 43 8
39 920 1211 37 291 10
39 740 1191 38 451 11
43 1289 1271 41 -18 12
309 7614 9471 301 1857

Table 5.5: Advance Model travel time comparison to actual schedules

computational times are plotted on a logarithmic scale in figure 5.5. Every prob-

lem tested solved in under one hour of run time. Since EHS would run the model

overnight, this shows that the model can be solved in a short time frame where the

results will be of use to EHS. Table 5.4 shows a summary of the tests including the

maximum, minimum and mean number of requests and time (measured in seconds)

required to solve the DARP.

The total travel time from the Advance Model is compared against the actual recorded

travel time from the data for Advance requests. However, it is not possible to obtain

the original schedules with only the Advance requests. Instead, the data contains the

final schedules with Advance and Same Day requests. Therefore, the 9 days where

Same Day requests make up the smallest percentage of all requests are selected from

the patient transfer data. While this is not a completely fair comparison, focusing

on the days with the least impact from the Same Day requests is the closest possible

to a fair comparison. The results are found in Table 5.5. The final row in the table

shows the sum of the columns. For these Advance Model problems, there is a total



54

reduction in travel time of 1857 minutes, or 206 minutes per day. This is a 19.6%

improvement on the actual travel time spent on the Advance requests. In addition,

the PTUs only completed 301 Advance requests vs. the 309 that were planned for

as 8 requests were cancelled. Cancellations can happen for a number of reasons, but

it is most likely these requests were cancelled because the patient was not ready for

transport. The average travel time spent per request as per the model is 24.6 minutes

vs. 31.5 minutes in the data, an improvement of 21.7%.

5.8 Same Day Model Results

As discussed in section 5.1, the hard and soft time windows are tested in the Same

Day Model. Six days from the patient transfer data are chosen corresponding to fig-

ure 5.1. Two levels are tested for both time windows. 20 and 30 minutes are used for

the hard time windows (β− and β+). Soft time windows of 5 and 10 minutes are used

(α− and α+). This resulted in 24 total experiments. The results are in figures 5.6, 5.7

and 5.8. The figures list the category of how many Advance and Same Day requests

were in the experiment on the y and x axis, respectively. The variables of interest

are the computational time, the total travel time of the vehicles and the number of

changed pickup times (the objective function of the Same Day Model). The size of

the points indicates how large the variable is, and the colour indicates the hard time

window length.

Figure 5.6 shows the computational time. While the High categories have larger

computational times, there does not appear to be a large difference between the hard

time windows. Figure 5.7 shows the travel time. There is no noticeable difference

between the hard time windows within each experiment again. Figure 5.8 shows the

changed pickup times. The main takeaway from this chart is the medium experiment

had no changed pickup times, where any experiment with a high number of Advance

or Same Day requests required multiple changed pickup times.

The results for the same experiments compared to the soft time windows are shown in

figures 5.9, 5.10, 5.11. These figures follow the same format as the figures describing

the results for the hard time windows. Figure 5.9 shows the computational time. It
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appears that the smaller time window has longer computational times for every high

Advance request experiment and the medium Advance with high Same Day requests

experiment. The rest show no difference. Figure 5.10 shows the travel time. There

does not appear to be any difference within the experiments for this measure. Fig-

ure 5.11 shows the changed pickup times, and every experiment except the medium

experiment has a higher number of changed pickup times for the smaller soft time

window.

5.9 Value of Information Results

The third set of experiments tested several randomly chosen days from the patient

transfer data to determine how knowing all requests in advance affects the potential

solutions to the DARP. The experiments consist of a wide range of realistic number

of patient transfer requests, from 38 to 56 requests. Figure 5.12 shows the results.

Clearly, the ‘Actual Advance/Same Day Split’ travel times are higher than every ex-

periment where all requests were known in advance. Knowing all requests in advance

saved a total of 4724 minutes of travel time across the 19 experiments; an average

of 248.6 minutes per day. This is 19.4% of the total travel time for the ‘Actual Ad-

vance/Same Day Split’ scenarios. This is worth roughly the equivalent of half a PTU

shift (just over four hours).

5.10 Same Day Strategy Results

The final set of experiments simulates the online operational phase for a single day.

The Advance Model is run on the 24 Advance requests. Those pickup times are fed

as the first inputs to the Same Day Model, and the Same Day Model is run every 30

minutes if any new Same Day requests are made. Figure 5.13 shows how the number

of requests come in. The x axis is the time of day in hours. The requests steadily

come in until the last request is received by five thirty. The first point at zero on the

x axis represents the 24 Advance requests.

At the end of the day, no pickup times were significantly changed from the original

schedule. Figure 5.14 shows how the total travel time for the vehicles changes over
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the course of the day. Certain times, the new solution had less travel time than the

previous solution. This occurred at 10.00 and 11.30. This is likely because there are

multiple potential solutions for the objective function, and the quality of the total

travel time will vary between the solutions.

The final total travel time is 1357 minutes. From the patient transfer data, the

final actual travel time is 1662 minutes. The final schedule generated by the model

shows an improvement of 18.4% over the actual schedule. All of the requests were

fed into the Advance Model to determine the optimal solution for travel time, and

the travel time is 1085 minutes, or a 20% improvement. Figure 5.15 shows the com-

putational time required for each time the Same Day Model was run. The point at

zero on the x axis is the time required for the 24 Advance requests with the Advance

Model. It required the longest time at 20 seconds. None of the Same Day Model runs

required longer than 10 seconds to solve. This is likely because it is being forced to

use part of the previous solution, which reduces the solution space.



57

Figure 5.2: Advance Model results for the number of vehicles

Figure 5.3: Advance Model results for workload balancing
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Figure 5.4: Advance Model results for time windows

Figure 5.5: Advance Model computational time
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Figure 5.6: Same Day Model hard time windows computational time

Figure 5.7: Same Day Model hard time windows travel time
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Figure 5.8: Same Day Model hard time windows changed pickup times

Figure 5.9: Same Day Model soft time windows computational time
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Figure 5.10: Same Day Model soft time windows travel time

Figure 5.11: Same Day Model soft time windows changed pickup times
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Figure 5.12: Perfect information vs. actual information

Figure 5.13: Total requests over the course of the day
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Figure 5.14: Total travel time over the course of the day

Figure 5.15: Computational time required for simulated day



Chapter 6

Conclusions

In this thesis, a non-emergency patient transportation system in Nova Scotia, Canada

was explored. The scheduling and assignment process in place was examined. Patient

transfer requests can be received before the requested pickup date; these requests are

considered ‘Advance’ requests. They may also be received on the same day as the re-

quested pickup date; these are called ‘Same Day’ requests. Schedulers typically take

requests in a first come, first served manner and must balance current operations

against new requests.

Literature on VRPs, including the DARP, was reviewed to understand how to model

a scheduling and assignment problem for patient transfers. This included workload

balancing constrains as EHS does not want to overload the paramedic crews. Research

using data-driven models for VRPs was reviewed to understand how operations re-

searchers are making use of the growing amount of available data as part of their

research. A two-part scheduling model based on the DARP was created and tested.

The first model is called the Advance Model and is designed to schedule all Advance

requests. The objective function minimizes the total travel time of the vehicles. It

generates a planned schedule for EHS to update as new requests are submitted.

The second model is called the Same Day Model, and it will generate a new schedule

when Same Day requests have been submitted. The pickup times from the previous

schedule (whether generated by the Advance Model or the Same Day Model) are

used as an input. It minimizes the number of significantly changed pickup times from

the previous schedule. A pickup time is ‘significantly changed’ if the pickup time is

changed by greater than a certain number of minutes that is user specified.

Both the Advance and Same Day Models are influenced by two years worth of patient

64
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transfer data provided by EHS, the organization responsible for patient transfers in

Nova Scotia. Travel time estimates for the routes in both models are generated from

the data. Missing data is filled in with estimates generated from the Google Maps

API and the googleway R package. Service times at the pickup and delivery locations

are estimated with a linear regression model developed with the patient transfer data.

Experiments were performed on the two models. For the Advance Model, the num-

ber of vehicles influenced the computational time required to solve the model slightly,

while the number of requests greatly influenced the computational time. The time

window length appears to be the main driver of the computational time; they should

be kept as small as possible to ensure practical use of the Advance Model. The Ad-

vance Model was also shown to deliver better solutions in terms of travel times when

compared (with some limitations) to the actual schedules of the PTUs. Workload

balancing appears to slightly reduce the computational time required for the model,

likely because it limits the solution space. None of the variables investigated affected

the total travel time of the solutions. The experiments also demonstrated the feasi-

bility of EHS using the Advance Model. With the ability to leave the model to solve

overnight, EHS can potentially solve even large problems.

For the Same Day Model, the hard and soft time windows were examined for six

experiments classified by the number of Advance and Same Day requests in the prob-

lem. The categories are High, Medium and Low. Unsurprisingly, the High category

experiments all required longer computational time. The length of the hard time win-

dow did not appear to impact the computational time, the travel time or the number

of changed pickup times. However, smaller soft time windows had a longer computa-

tional time in four of the six experiments, including every High category experiment.

The smaller time window also resulted in a higher number of changed pickup times

in every experiment except the Medium experiment, an expected consequence as the

soft time window directly influences the objective function in the Same Day Model.
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The value of information was shown to be quite valuable to scheduling patient trans-

fers. Across 19 experiments, knowing every patient transfer request in advance when

compared to the actual scenario was worth 19.4% of the time the vehicles spend trav-

elling, or 248.6 minutes per day. This is the rough equivalent of the time required for

another six patient transfers per day.

The final experiment simulated an operational day where the Same Day Model is

used repeatedly. The Advance Model generates a schedule with all Advance requests,

and the Same Day Model is rerun every 30 minutes with new requests (if new re-

quests are received). Completed pickups are forced to match the previous schedule

every time the Same Day Model is run. This process for using the Advance and Same

Day Models is shown to be effective as the Same Day Model solves in ten seconds or

less due to the low number of ‘unsolved’ requests in each iteration. One shortcoming

of the strategy used is if a request requires an immediate pickup, waiting until the

(somewhat arbitrary) 30 minute timeline to pass is impractical. In the experiment,

there was one such call that asked for an immediate pickup. A better strategy is likely

a combination of a threshold signal for running the model (either by the number of

minutes passed or the number of new requests received) and running the model im-

mediately when required. This final experiment also showed a 20% improvement in

the total travel time if every request was known in advance, further demonstrating

the value of perfect information for scheduling.

While the approach and methods described in this thesis are shown to be adequate for

the patient transfer scheduling and assignment problem, there are shortcomings that

can be improved upon in future work. The Advance Model is directly solved with the

Gurobi solver, but other cheaper solvers may be of better use to health organizations,

especially if finances are a concern. Different heuristics may be of use to solving the

Advance Model as well.

The Same Day Model focuses on not changing the pickup times but does not take into

consideration the objective of the Advance Model, the total travel time. There are
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likely multiple optimal solutions for the Same Day Model as currently constructed,

especially when there are a low number of total requests. These solutions may have

different travel times (as shown in figure 5.14). Travel time could be incorporated

into the objective function, and different solve methods such as heuristics may be

used to solve this multi-objective function. Column generation may be one avenue

to investigate for solving both models. Determining the effects of weights on these

objectives is also of value. Both models are deterministic; stochastic methods should

be investigated as travel times and service times have an element of randomness to

them. Both models deal with the expected range of patient transfer requests well

however.

One strategy for using the models during the online operation phase was considered

in this thesis. The 30 minute threshold strategy has limits, and is not appropriate for

any requests where the requested pickup time is sooner than the next scheduled run

of the Same Day Model. Different strategies should be investigated. For instance,

run the Same Day Model once a number of new requests have been received or run

the model for every new request. In addition, different triggers for running the Same

Day Model should be considered. For instance, when a PTU incurs a significant delay

during a patient transfer, EHS may want to rerun the Same Day Model to determine

the impact on operations. This would allow them to give future pickups earlier notice

about a late pickup. The models can be used to show the effects on operations from

changes to the system, such as additional capacity (more PTUs, paramedics) or new,

high volume medical facilities.

One other consideration not explored in this thesis is the effect of the Advance Model

schedule on the Same Day Model schedule, specifically how parameters such as the

workload balancing parameters (wb+ and wb−) impact the future schedules. for exam-

ple, a reasonable question to ask could be whether a wide range of workload balancing

parameters would impact the quality of the updated schedule generated by the Same

Day Model. For instance, if all of the Advance requests are located in one part of the

municipality, it may make sense to assign all of these requests to one or two PTUs
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(by turning the workload balancing constraints off) and save the rest of the PTUs for

the Same Day requests as they appear around the city. If the Advance requests are

scattered throughout the municipality, EHS may want workload balancing to ensure

the PTUs are distributed evenly over the city so that any possible future requests are

covered.

The Advance and Same Day Models have been shown to be feasible for online op-

erational use. The Advance Model is based on of a DARP model and has workload

balancing constraints added. The Same Day Model is also based on a DARP model

but attempts to keep previously scheduled pickup times unchanged. This is based on

the idea of using past decisions to influence future outcomes and capture the conse-

quences to future operations when assigning limited resources in the present. Both

models make use of patient transfer data as simple statistical models are used to

estimate important parameters in the models. The data also helped influence the

time period the models are used for and provided the data used for the experiments.

These case studies provide insight to how the DARP works when used with real life

scenarios and how EMS organizations can use these scheduling models to improve

their operations.



Appendix A

Electronic Supplements

The file TravelTimeGenerator.R, found on DalSpace, contains the code to generate

travel time estimates as described in section 4.2.1.
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