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Abstract

Positioning plays a vital role in aircraft navigation. Pitch and roll estimation are

two important aspects of aircraft positioning. In our research, we focused on a low-

cost pitch/roll estimation platform, which includes a low-computation processor and

a small-sized memory. With the platform, we compared the performance of two

pitch/roll estimation methods: complementary filter based estimation and Kalman

filter based estimation. Our experimental results indicate that, between the two ap-

proaches under investigation, Kalman filter-based estimation is much more precise.

In addition, we found that R matrix, a critical variable of Kalman filter, has a serious

impact on convergence time and stability of Kalman filter. When the entries of R

matrix are set to low values, Kalman filter-based estimation leads to faster conver-

gence time and poor stability. When they are set to high values, Kalman filter-based

estimation is more stable, but it results in slow convergence.
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Chapter 1

Introduction

Aircraft positioning is an essential task in the navigation of an aircraft. Pitch and

roll estimation are part of this critical task. Technically, a pitch is an angle of an

aircraft’s motion in up and down direction and a roll is the angle of rotation of the

aircraft in clockwise or anticlockwise direction [5]. Generally, some sensors such as

an accelerometer or a gyroscope can be used to obtain the pitch and roll value. An

accelerometer measures acceleration of an object in motion in relation to gravity and a

gyroscope measures the rate of change of angle, also termed as the angular velocity [6].

But these sensors suffer from various errors and drifts. An accelerometer output

provides accurate roll and pitch when there is no external force applied to it due to the

acceleration. But, the accelerometer output suffers from errors due to extra forces and

vibrations. Similarly, gyroscope sensor suffers from drift errors which is accumulated

over a period of time, ultimately making it unstable in calculating the orientation of

an object [6]. Hence, relying solely on the data from these sensors to estimate roll and

pitch will lead to inefficient results. A promising solution is combining these sensor

values and some filter (such as complementary or Kalman filter) to arrive at a high-

precision estimation of aircraft roll and pitch. Technically, a filter is capable of easing

the negative impact of accumulated noise and drift, ultimately helping generate more

precise roll/pitch estimation.

1.1 Motivation and Challenges

Orientation estimation of an object has attracted much attention over the past

years. Roll and pitch angles were calculated for several objects such as Unmanned

Aerial Vehicle (UAV) [7], walking robots [8], biomedical applications [9] and motion

trackers [10]. These prior researches used magnetic sensors to measure the magnetic

1
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field of the earth and a set of inertial sensors such as an accelerometer and a gyroscope

to measure gravity and angular velocity, respectively. A few researchers have used

Attitude Heading Reference System (AHRS) for roll and pitch angle estimation which

uses rate gyroscope and gravity sensors. But these sensors are prone to errors when

low quality AHRS or sensors are used to lower the cost of hardware platform [11].

Other than these sensors, GPS sensors were successfully used in developing a low-

cost system [12], [13]. These studies used an ad-hoc non-linear vector matching

algorithm along with complementary filter for roll and pitch angle determination

[14]. The vector matching algorithm was initially proposed in the description of

Wahba’s problem [15], mainly for satellite attitude estimation to track stars. Attitude

estimation is an another term used for calculating positioning of an object with respect

to its angle and location. This research was further extended in several studies [16],

[17] where a Kalman filter was used in roll and pitch angle determination. Kalman

filter was proposed by Rudolf E. Kalman in 1960 [18].

One problem with the existing schemes based on accelerometer and gyroscope is

that they often require a high-end computation platform to obtain high precision. In

our research, we attempted to propose high-precision roll/pitch estimation methods

for low-cost platforms that involve a slow processor and a small memory. Technically,

the proposed estimation algorithms are based on a complementary or Kalman filter.

Complementary filters can be configured as a low-pass or a high-pass filter to eliminate

the noise from the sensors [3]. Kalman filter is a recursive filter which saves the

previous state to measure and estimate the current state of an object. By proposing

a low cost platform to obtain a high precision roll and pitch angle, our research

achieves a better accuracy using complex approaches.

1.2 Contributions

In this thesis, we present two high-precision roll and pitch estimation methods

for aircrafts: one is based on a complementary filter and the other is based on a

Kalman filter. The performance of the proposed schemes were thoroughly analyzed to

illustrate their advantages and disadvantages. Note that, in our research, we focused
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on algorithms for low-cost platforms, which include a slow processor and a small

memory. As a result, the hardware platform used in our research includes a 3-axis

digital accelerometer and a 3-axis digital gyroscope installed on a Cypress CYBLE

module. This is a fully certified module that can be used for wireless communication

with a processing frequency of 52Hz.

When the Kalman filter was studied in depth, a measurement error covariance

matrix was found to have a serious impact on the performance of the filter. Officially,

this matrix is called as R matrix with which the trustworthiness of the sensor mea-

surements can be tweaked. An in-depth analysis of this matrix is included in this

thesis, illustrating the impact of R matrix on the precision of the proposed roll/pitch

estimation schemes.

1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 covers all the background

information required to understand the details of the research explained in this thesis.

It sheds light on the roll and pitch angles of an aircraft, the role of sensors in detecting

these angles followed by the importance of sensors to estimate the precise roll and

pitch angles. Chapter 3 gives the information about previous research work in this

area. It has separate sections covering previous work with the complementary filter,

the Kalman filter, as well as few hybrid approaches where these filters are integrated

together. This chapter also covers the limitations of the existing studies. Chapter

4 explains the methodology used in this research work such as the hardware setup,

the experimental scenarios along with the procedure of data collection and finally the

data analysis strategies used in the research. Followed by this, the Chapter 5 shows

all the experimental results. Finally, Chapter 6 draws conclusions from this research

and describes future work directions.



Chapter 2

Background

2.1 Roll and Pitch Determination

Kinematics is the branch of mechanics which describes about the motion of an

object [19]. Different models of kinematics are required in control and analysis of

many systems such as cranes, satellites and other vehicles [20]. A controlled motion of

these systems can be performed to achieve different categories of tasks [5]. Aircraft can

be considered as one of the system having kinematics behaviour and the orientation of

aircrafts can help in understanding the flight navigation. Orientation of any object can

be commonly described using the Euler angles and roll-pitch-yaw angles, calculated

based on a given rotation matrix [21] [5]. Roll, pitch and yaw angles are shown in the

figure 2.1 below, where an object is represented with three axes. Roll can be described

Figure 2.1: Roll, pitch and yaw angle representation
Source : Adapted from [1]

as the change in the angle of an object in X-axis. Roll angle for an aircraft is shown

in the below figure 2.2 For an aircraft, roll is the angle of rotation in clockwise and

anticlockwise direction. Pitch can be described as the change in the angle of an object

in Y-axis. Pitch angle for an aircraft is shown below figure 2.3 In this research work,

we have concentrated on calculating roll and pitch angles for an aircraft based on the

4
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Figure 2.2: Roll image for an aircraft
Source : Adapted from [2]

Figure 2.3: Pitch image for an aircraft
Source : Adapted from [2]
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hardware setup we chose to perform the experiments. The hardware setup mainly

consists of different types of sensors to measure the roll and pitch angles. The sensors

which can be used to calculate these angles is explained in the below section. These

sensors can be either used individually or their readings can be integrated to calculate

pitch and roll angles of an object.

2.2 Sensors and Their Roles

Different types of sensors are used to capture the movement, acceleration and

rotation of an object thereby calculating the orientation. Individual sensors as well as

multiple sensors can be integrated to measure orientation of an object. Few sensors

that were used in some of the previous experiments are explained below. One of

the way with which pitch and roll can be measured is using the tilt sensor which

utilizes earth’s gravitational field [22]. Some of the tilt sensors include fluid based

sensors and an accelerometer. Another experiment utilized multiple gyroscopes and

an inclinator [8]. Even though the aim of the experiment was to develop a walking

robot, pitch and roll angles were calculated to help the motion of the robot. A research

implemented a tilt compensated eCompass using accelerometer and magnetometer

sensors [23]. Even the related work section covers several previous research performed

in the field of calculating roll and pitch angles utilizing these sensors. Accelerometer

measures the acceleration of a moving object based on earth’s gravity [24]. Gyroscope

measures rate of angular velocity [25]. A magnetometer measures the earth’s magnetic

field [23]. But, usually the individual or integrated sensor raw values will contain noise

due to several factors. For instance, an accelerometer suffers from errors due to the

force of acceleration and a gyroscope suffers from drift errors [1]. Hence, filters are

used to remove these errors (noise) and achieve better results.

2.3 Filters

Several filters are available with past research work to eliminate the noise from sen-

sor measurements. Complementary filter is a simplest form of a filter which involves

less calculations, hence quick to produce the results [3]. Kalman filter, proposed by

R. E. Kalman in 1960 [18], later improved in the next year with R. S. Bucy [26]
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is a complex algorithm compared to complementary filter provides better accuracy.

These filters are explained in detail in below sections.

2.3.1 Complementary Filter

A complementary filter is the simplest form of filter which can be configured

to work on various sensor measurements to eliminate the noise and obtain desired

result. When there are multiple sensors such as accelerometer and gyroscope, a

complementary filter can perform a low-pass filtering on one sensor value and a high-

pass filtering on the other to integrate and produce a better output than the raw

sensor values [27]. A basic complementary filter is shown in below figure 2.4 If x

Figure 2.4: Basic complementary filter presented in [3]

and y are two noisy sensor measurements, a basic complementary filter can be fed

with these measurements to obtain a result of z. Among x and y, if noise in y is of

higher frequency compared to the noise of x, then G(s) can be made as a low-pass

filter to remove high-frequency noise from y. When G(s) is configured as low-pass,

the complement of it is 1-G(s) becomes a high-pass filter. This high-pass filter can be

used to remove the low-frequency noise from signal x. This is shown in the figure 2.5

below. As the accelerometers suffers from high noise created due to acceleration [28],

sensor measurements of accelerometer can be fed into a low-pass filter. Gyroscope

suffers from small drift errors which gets accumulated over time [1]. Hence, gyroscope

sensor measurements can be fed into a high-pass filter. Integrating these readings can

result in pitch and roll angle of an object. If pitch and roll angles of an aircraft are

considered as decoupled processes, the accelerometer and gyroscope sensor data can
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Figure 2.5: Complementary filter on accelerometer and gyroscope sensor measure-
ments as shown in [1]

be filtered separately which is a linear complementary filter [29]. If a magnetometer

sensor is available in the hardware setup, then a non-linear complementary filter can

be implemented with additional mathematical calculations [30], [31]. The flowchart

to explain the operation of simple linear complementary filter in detail is given in

below figure 2.6 The sample rate is the input at which sensor measurements are

Figure 2.6: Flow chart of complementary filter as shown in [1]

fed into the complementary filter. Gyroscope sensor data is given more preference,

hence it is passed through a high-pass filter by giving more preference to it (98%).

Accelerometer sensor data which has high noise is passed through a low-pass filter.

Integrating these sensor measurements based on the axis of rotation can give us pitch

or roll angle of an object.
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2.3.2 Kalman Filter

Kalman filter is a powerful tool for combining information where there is high un-

certainty [32]. It is an iterative filter which uses the measurements from sensors, uses

few mathematical calculations including matrices and the previous state to measure

the current state. Overall picture of Kalman filter along with its details in every step

is wonderfully explained in the tutorial by T. Lacey and N. Thacker [4].

The process of putting all the steps of Kalman filter is termed as building a model

of the object whose orientation is being calculated. The block diagram of Kalman

filter operation is described in figure 2.7 below.

Figure 2.7: Operation of Kalman filter as described in [4]

The initial estimates are few matrices used in the state (roll/pitch) calculations,

explained ahead in this section. Using the initial estimates and the latest sensor

measurements the current state is estimated. The covariances of the current state

and measurements, saved as matrices are also updated after calculating the new

state. Kalman gain is calculated which depicts the overall operations and helps in

weighing the measurements and model together. All the formulae and explanations

are retrieved from the Kalman filter tutorial by T. Lacey and N. Thacker [4].

Let us consider we want to calculate state of an object ’y’ , it can be represented

with the following formula :

yk+1 = Ayk + wk (2.1)
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where; yk is state vector of the object at time k, A is the state transition matrix of the

object from state k to k+1; wk is the associated white noise process with a covariance

represented with a matrix. The state transition matrix represents the dynamics of the

system. For a flying object like an aircraft, it can be represented with a 3X3 matrix to

explain 3 dimensions of the aircraft. Before incorporating the measurements, Kalman

gain Kk is calculated based on the initial estimates.

Kk = P
′

kH
TSk

−1 (2.2)

Pk is the state error covariance matrix at time k. Pk
′

is the previous estimate of Pk.

H is a matrix called as measurement residual, maps a state onto measurements. Sk is

a measurement covariance matrix which depends on the covariance of previous model

predictions transformed into measurements.

Sk = HPkH
T + R (2.3)

HT is the H matrix transposed. R is the covariance matrix of error in sensor measure-

ments. This matrix is a 2X2 matrix which can be varied based on the determination

of noise of sensor measurements.

Using the Kalman gain and the measurements, new state estimation xk is done

using a prior estimate x
′

k. At this step, measurement residual - H matrix is used along

with a measurement vector Zk.

xk = xk
′
+ Kk(zk −Hx

′

k) (2.4)

For an aircraft, a roll or pitch angle can be measured based on the gravity vector

by using atan2 function in mathematical library applied upon the accelerometer and

gyroscope sensor measurements. This is called as a measurement vector Z.

Once the current state is estimated, state error covariance matrix is updated based

on the calculated Kalman gain and previous state error covariance matrix.

Pk = (I −KkH)P
′

k (2.5)

I is called as an identity matrix which has all the entries as zero except the diagonal

entries as 1. As a next step, state projection xk+1 is achieved using the estimated
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state xk and the state transition matrix Φ.

xk+1 = Φxk (2.6)

At this stage, the Kalman filter model has the latest state estimates using the

previous estimates and new sensor measurements. Now, an update to the state error

covariance matrix is performed as Kalman filter is an iterative filter which saves all

these values for future calculation. This step uses the model noise that is being built

along with state transition matrix Φ as follows:

Pk+1 = ΦPkΦT + Q (2.7)

ΦT is the state transition matrix transposed. Q is the matrix representing the covari-

ance of model noise. This Pk+1 matrix is used as Pk in the next step while measuring

the Kalman gain. Overall, there are five matrices that are used in the Kalman filter.

They are P (state error covariance matrix), H(measurement residual), R(covariance

matrix of error in sensor measurements), Q(covariance of model noise) and I(identity

matrix). Each matrix can be initialized with predefined values as explained in the

several previous researches [33], [34], [35], [36] and they are updated in every cycle of

Kalman filter as the algorithm is iterative.

Figure 2.8: Summary of Kalman filter algorithm [4]

The recursive nature of Kalman filter algorithm is summarized in the above fig-

ure 2.8, which provides the four steps and their corresponding formulae. Due to the

recursive nature of Kalman filter algorithm, which uses previous state and current

state estimates along with several covariance matrices, the accuracy of this algorithm

is very high compared to the complementary filter discussed in the section 2.3.1. On
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the contrary, due to several mathematical calculations, the Kalman filter is compu-

tationally heavier than the complementary filter [37], [38].



Chapter 3

Related Work

There are various researches in the field of aviation which measures the object ori-

entation using several types of filters. There are various implementations of com-

plementary filter along with UAV (Unmanned Aerial Vehicle), linear and non-linear

implementations of Kalman Filter along with inertial system in a virtual environment,

time varying Kalman filter to achieve positioning using gyroscope are to list a few of

them. This chapter covers the literature review of the complementary filter, Kalman

filter and hybrid approaches to calculate the orientation of an object by previous

researches. Hybrid approaches are the researches which either used multiple filters in

parallel or integrated the results of one filter as an input to an another filter. This

chapter also covers the limitations of these past researches with respect to calculating

roll and pitch angle of an aircraft.

3.1 Complementary Filter Based Approaches

Complementary filter is one of the simple filters which incorporates a low-pass

and a high-pass filter as explained in chapter 2.3.1 above. A low-pass filter can be

applied to the sensor values with higher error rate. A high-pass filter is applied to

sensor values with lower error rate [3].

A research from 2008 explained an implementation of non-linear complementary

filter for determining positioning of a UAV (Unmanned Aerial Vehicle) [27]. Non-

linear complementary filter was proposed in this research as the UAV makes sharp

turns which creates severe error rate in accelerometer sensor output. Authors used

accelerometer and gyroscope sensor values to obtain low frequency and high frequency

positioning. To eliminate the errors due to sharp turn of UAV, the pitch rate measured

by gyroscope was used in some of the previous research work [39], [38]. The non-linear

13
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complementary filter was tested from previously available data of a fixed wing UAV

from the Australian Center for Field Robotics, University of Sydney. The result of

the proposed filter was compared with the output from a GPS/INS Kalman filter [40]

which was considered as the baseline. The proposed algorithm with this paper is

very low in complexity which is ideal for low powered devices. This paper also points

out the drawback of Kalman filter in certain scenarios where the accelerometer is

producing invalid sensor values.

Tae Suk Yoo and his team implemented a version of complementary filter called

gain-scheduled complementary filter for a MEMS based attitude and heading reference

system such as a UAV [37]. This research can efficiently replace several versions of

Kalman filter such as extended Kalman filter which are very complex to implement

[41], [42], [43] as well as the simple filters such as SISO (single input single output)

filters [44], [45], [46], [47]. The main aim of this research work was to cover the cases of

UAV when the accelerometer sensor stops giving valid readings. This happens when

the UAV is circling for a very long time where it is affected by both the centrifugal force

as well as the gravitational acceleration resulting in invalid SISO filter output [48].

The roll and pitch angle of UAV is calculated using a IMU with magnetic sensor in

the scenarios such as non-acceleration, low and high-acceleration [49], [50], [51].

Another research proposed couple of versions of complementary filter to measure

the attitude and gyroscope bias estimation of an unmanned aerial vehicles [52]. Both

the proposed filters work on special orthogonal group SO(3). Inspired from some

of the previous works with complementary filter on SO(3) [30], [31] authors of this

research came up with a direct complementary filter and a passive non-linear com-

plementary filter. Direct complementary filter measures the attitude of quaternion

rotations of SO(3). Passive non-linear complementary filter overcomes the disad-

vantages of direct complementary filter such as complex implementation and high

sensitivity to noise.

R.Kottath et al. proposed an advanced complementary filter approach to de-

termine roll and pitch angles of an unmanned aerial vehicle [53]. This study used
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accelerometer, gyroscope and magnetometer sensors to estimate the orientation. The

interesting part of this work was modifying the behaviour of the complementary fil-

ter. Usually, a complementary filter adjusts the weights on the sensor output and

merges them to obtain roll and pitch angles. The weight on the sensor output re-

mains constant throughout the operation of the filter. This study proposed the weight

adjustment of sensors in every cycle of the complementary filter operation based on

MMAE based adaptive Kalman filtering scheme [54], [55]. This scheme allows to

estimate an angle, and update the estimate based on the output calculated from

sensors.

3.2 Kalman Filter Based Approaches

Kalman filter was proposed by Rudolf E. Kalman in 1960, has iterative steps to

calculate desired result based on predict and update steps [18]. This filter predicts

the future data based on the existing data. The filter starts with an initial set of

values along with sensor values fed to it to obtain a new value. Before obtaining

the new value, few predictions are made which are updated after the new value is

calculated. Hence, it is an iterative filter and the covariances are calculated at every

step and they are used in the future steps [56]. This helps to obtain better efficiency

and accuracy on the unknown values that are calculated using the Kalman filter,

which is pitch and roll angles in our case.

One of the oldest research paper from the year 1975 by Walter T Higgins gives basic

distinction between complementary filter and Kalman filter [3]. This paper explains

that the complementary filter is a type of a Kalman filter. As a low-pass and a high-

pass filter, complementary filter utilizes the sensor values fed to it and estimates the

result. It does not save any information about the current state. On the other hand,

the Kalman filter always saves the current state and the errors in the current state.

This helps Kalman filter to accurately measure the results in the further steps as it

already has the error rate and previous state. Several examples of implementation

of Kalman filter and complementary filter along with digital implementation is also

given in this paper.
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Demoz Gebre-Egziabher and his team performed a research in 1996 about a time-

varying Kalman filter used on gyroscope and magnetic field sensors along with low

pass filters [11]. This paper addresses the common issue with gyroscope sensors –

the drift errors, and also explains how to eliminate them using time-varying Kalman

filter. Time varying Kalman filter helps in determining attitude of an aircraft us-

ing a single GPS baseline in combination with ad-hoc non-linear acceleration vector

algorithm applied on gyroscope sensor data to eliminate the drift errors [57], [58].

An interesting study was carried out by Eric Foxlin to fulfil the need of an accurate

and quick responding head-tracking system [59]. A Kalman Filter implementation is

explained here, using two kind of sensors: gyroscope and gravimetric inclinometers

to achieve head-tracking of an inertial system in a virtual environment. Even though

this paper is not directly related to aircraft pitch and roll, it sheds some light on a dif-

ferent type of an implementation of Kalman Filter using gyroscope values [60]. This

research also explains how the drift of gyroscope sensor can be avoided by fine-tuning

the Kalman filter while estimating the orientation of a flying object where there are

rapid turns [61].

Another research from 2008 used accelerometer, gyroscope and GPS sensor values

to measure the orientation of a device in motion [62]. The devices that were experi-

mented contained all these three sensors in models such as miniature air vehicles. The

gyroscope values were used to measure time propagation and the accelerometer and

GPS sensors are used to measure the Kalman gain portion of Kalman filter [63], [46].

A vector arithmetic approach was adopted using all these three-sensor values to cal-

culate Euler attitude vector error [64]. There was a reset of measurement values after

each update followed by the calculation in repetition [65]. This helps in eliminating

the errors and get accurate orientation of an aircraft. The testing of algorithm was

done using a flight simulation containing several scenarios such as testing in loops

and circles.

A slightly off-topic research is about GPS or INS integration using a direct Kalman
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filter [66]. Even though it is not directly related to this research, this paper ex-

plains about another implementation of a Kalman filter on GPS sensor readings [67].

Kalman filter normally records the errors of sensor values (also known as Kalman

Gains) fed to it and uses them in the further steps to estimate the results. But, this

is computationally very costly as the previous Kalman Gains are used in every calcu-

lation along with calculating Kalman Gains in the current cycle as well. This paper

proposes a direct Kalman filter implementation with a two stage estimator method

to track the Kalman Gains which reduces the load on calculations [68], [69].

Another research concentrated on attitude estimation of a moving device based on

inertial and magnetic sensors using a quaternion-based indirect Kalman filter [6]. The

magnetic sensor values are used only to calculate yaw angles by combining multiple

values. The acceleration of the device is calculated using the Kalman Gain which suf-

ficiently decreases the load on accelerometer and corresponding errors. Even though

this paper describes about yaw angles which is not the topic of interest in this re-

search, the yaw angles can be calculated easily using gyroscope sensor values. Hence,

using indirect Kalman filter implementation and yaw angles, there is a possibility to

enhance the existing algorithm to obtain better pitch and roll values.

3.3 Hybrid Approaches

There are various research work which utilized multiple filters to calculate the

orientation of an object. Some of them utilized complementary filter and Kalman

filter together where as some used Kalman filter filters multiple times to filter the

noise and achieve orientation.

An interesting research by Cao Dong and his team utilized Kalman filter and

complementary filter to calculate attitude angles of a UAV [70]. MEMS (microelec-

tromechanical system) gyroscope was used in the research as it is cost effective and

small in size [71] along with accelerometer. But the MEMS gyroscope sensor suffers

from white noise and drift errors. Kalman filter was used to eliminate the noise and

errors [72], [73]. Complementary filter was used to fuse the result from Kalman filter

along with an accelerometer and a GPS sensor readings to obtain the roll and pitch
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angles of the UAV. The validation of results in this research utilized simulation from

MATLAB tools.

Another hybrid approach was to cascade two Kalman filters together to calculate

the orientation of human body segment using MEMS-IMU [74]. Even though this

research is not directly related to current topic, the tilt angles of a human body is

measured using Kalman filters which is the area of interest. According to authors,

the older experiments utilized Kalman filters along with utilization algorithms such as

QUEST [75], O2OQ [76] and G-N [77] to estimate the orientation using accelerometer,

magnetometer and gyroscope sensors. But the problem with this approach is when

the accelerometer and magnetometer are unavailable then filter output will yield the

optimal result [76]. Another approach to calculate the orientation of an object is by

using a complementary Kalman filter approach in two dimension and three dimension

orientation [78], [31]. This research proposed a faster and a cascaded Kalman filter

approach, where, the algorithm uses two linear Kalman filters. First Kalman filter

calculates tilt angles using accelerometer [79]. The result of first step is further used

by a second Kalman filter to calculate the yaw angle. In this way, orientation of an

object can be found in a two step process.

3.4 Contributions of the Proposed Schemes

As explained in the previous sections of this chapter, the literature review of the

filters used in the area of object orientation detection showed the vast amount of

researches mainly concentrated on UAVs and quadrocopters. The pitch and roll de-

tection specific to aircrafts was not available. However, these schemes do not work

well with low-cost platforms consisting of a simple processor and a small memory. As

the existing schemes used several sensors along with high end computation platforms,

a lot of data from sensors was generated. This resulted in operation overhead of data

synchronization to generate roll and pitch angles. A lot of these previous researches

utilized simulators to test the performance of the filters. T.Islam et al. [1] produced

a comparison of the complementary and the Kalman filter for an AHRS. The ex-

periment included quaternion rotations to capture the roll, pitch and yaw using an
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Arduino based hardware setup. From the results, it was clear that the experiment

was performed in stationary mode as the raw accelerometer data is in tandem with

pitch and roll calculated with complementary and Kalman filter. Also, the quaternion

rotations were not fixed, and they were random. The baseline used for calculating

the roll and pitch angles were also not very clear.

This thesis extends the comparison to a in-motion setup and compares these

filters to understand which filter is more efficient and accurate. This research is

directly applied towards pitch and roll angle estimation for light weight aircrafts

with a seating capacity of 20 or less. This thesis also sheds light on a behaviour

of the Kalman filter where the trust on sensor measurements are altered based on

testing conditions. Along with a selection of a predefined angles, a set of values were

configured to understand the roll and pitch angle output. This part of the thesis can

help in understanding the time convergence and the stability of the Kalman filter

in different testing conditions that can be modified based on the application of the

Kalman filter.



Chapter 4

Methodology

This chapter gives a complete coverage of the research work and the methodologies

applied in performing the experiments to obtain the results. The objective of this

thesis is to obtain higher precision aircraft positioning such as roll, and pitch based

on the efficiency and accuracy of complementary filter and Kalman filter. There

was a comparison of complementary filter and Kalman filter based on accelerometer,

gyroscope and magnetometer data to capture roll, pitch and yaw of an aircraft [1].

The comparison included the roll and pitch calculated using complementary filter and

Kalman filter along with raw data of accelerometer and gyroscope in stationary mode

only with no movements. Hence, we decided to extend this research by comparing

these filters in both stationary as well as in-motion. While exploring the Kalman filter

implementation, we extended our research also to a measurement error covariance

matrix - R matrix. It is a 2X2 matrix which helps in determining the error covariance

from sensor measurements. Our experiment contained accelerometer and gyroscope

sensors which might contain the error covariance. So, we inspected the R matrix

with various values to get the best precision values for the Kalman filter. Hardware

configuration section covers the hardware setup information along with other tools

used in this research. In this section, we cover all the steps of the experiments

performed along with answers such as why and how. Data collection and sampling

sections cover how the data was gathered and inspected along with the reasons behind

the decisions of data evaluation. Finally the data analysis section explains how the

sampled data was evaluated to reach a conclusion of the research.

20
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4.1 Hardware Configuration

The hardware setup included a Cypress CYBLE-014008-00 module incorporated

with LSM6DS3 which is a 6-degrees of Freedom inertial measurement unit (IMU).

This IMU contains a 3D digital accelerometer (ADXL345) and 3D digital gyroscope

(ITG-3205). This whole setup consumes very less power with a low cost to build.

The Kalman filter and the complementary filter algorithm were implemented on this

IMU. Below figure 4.1 shows the hardware setup used for this research work.

Figure 4.1: Hardware setup containing accelerometer and gyroscope sensors

Even though the primary aim of the research was to calculate roll and pitch angles,

fine tuning of R matrix to understand its impact on Kalman filter was the first step in

getting a higher precision roll and pitch. Hence, first phase of research and experiment

was performed to calculate roll and pitch angles based on different values of R matrix.

Using the result of this experiment, comparison of complementary filter with Kalman

filter was performed by calculating roll and pitch angles in stationary and in-motion

scenarios.

Figure 4.2 gives a brief description about the hardware module we used for the

experiments. It has a 32-bit processor with a single cycle, operating upto 48 MHz.

Hence, it is a low powered microcontroller with a limited processing capacity. The

memory is also limited with 128 KB of flash memory and 16 KB of SRAM memory.

It is clear from the module description that hardware has a slow processor and a
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Figure 4.2: Module description

limited memory.

We used a toy train to place the IMU in different angles and obtained the measure-

ment. The roll and pitch values were captured while the toy train was kept stationary

as well as in-motion with different angles. The main requirement to use a toy train

was to obtain the errors in accelerometer and gyroscope sensors at different angles

with a movement. Stationary position will not have any impact on the sensors, but

the objective of the thesis is to eliminate the errors from sensors when there is a

movement. Ideal testing would have been in a real world scenario by generating the

errors in sensors through an actual aircraft. But, as it is a very expensive procedure,

we required a method to generate errors during motion. Initially we looked into using

a toy plane for in-motion scenarios. But the main problem with it was not knowing

the actual angle at which the toy plane flies to estimate the predefined angle and

behaviour of complementary and Kalman filter. Also, the size of toy plane was so

small that we would not be able to house our hardware setup on it. Hence, we chose

a toy train where we could set up a predefined angle, generate errors in sensors by

moving the toy train and estimate the behaviour of filters. This experimental setup

helped us to estimate the performance of both filters by considering predefined angle

as a baseline.

The calculation of angles at which experiment was performed were measured using

an iOS application – “Compass”. This application gives us the different angles based

on the position of iPhone along with its inbuilt sensors. When the results are available,
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the accuracy can be measured in the form of time in seconds taken by each algorithm

to reach respective angles.

4.2 R Matrix Evaluation

The research was categorized into two phases, the first step was to understand

the effect of R matrix in the Kalman filter behaviour for the hardware setup used.

Data collection procedure along with data analysis and the experiment setup details

are covered in below sections.

4.2.1 Experiment Details

To evaluate the effect of different values of R matrix on a Kalman filter, a fixed

angle of 45 degrees was chosen. This angle is just an example to portray the behaviour

of Kalman filter. The initial plan was to test Kalman filter behaviour with 10 to 20

values of R matrix. But, as we were using a low powered hardware setup containing a

small microcontroller with a limited processing power and low memory, we could run

only 5 instances of Kalman filter simultaneously. Running simultaneous executions

of Kalman filter was the step to make sure to use the same raw roll and pitch angles

to understand the behaviour of Kalman filter and the processing of the filter was also

done on the same hardware setup. The five different values of R matrix were selected

based on several previous experiments [33], [34], [35], [36].

After carefully evaluating different angles for roll and pitch calculation, the final

angle at which this experiment performed was at 45 degrees. The choice of 45 degrees

is just an example to understand the behaviour of the Kalman filter with different R

matrix values. Being a 2X2 matrix, we finalized on 5 different values for the matrix

to understand the precision.

(i) [0,0,0,0]

(ii) [25,0,0,50]

(iii) [100,0,0,200]

(iv) [400,0,0,600]

(v) [800,0,0,1000]
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The first set of values (0,0,0,0) were selected to understand the precision of roll and

pitch values when the R matrix was completely eliminated. The second (25,0,0,50)

and third (100,0,0,200) set of values were selected to slowly increase the sensor mea-

surement error covariance and understand its effect on the precision of output on

Kalman filter. The final two values (400,0,0,600) and (800,0,0,1000) were selected

to understand how the Kalman filter behaves when the sensor measurement error

covariance becomes very high. All these five set of values were short-listed based on

the experiments listed in prior research [33], [34] in combination with the behaviour

of IMU used for this experiment.

Overall, we obtained 10 different results from this experiment to understand the

effect of R matrix on the roll and pitch angle precision.

4.2.2 Data Collection

For the R matrix evaluation, only Kalman filter algorithm was activated in the

IMU as the R matrix is a part of the Kalman filter. IMU was fixed on a toy-train

with a predefined angle of 45 degrees. The predefined angle of 45 degrees was chosen

just as an example to perform this experiment. The objective of this experiment

was to analyze the behaviour of Kalman filter with sensor errors irrespective of its

angle. Hence, the assumption is the Kalman filter would behave in similar terms

with other angles as well. The different values of R matrix mentioned in the section

4.2.1 were configured in the Kalman filter implementation. As the Kalman filter is

a complex algorithm, even though the IMU was capable of driving the sensors at

operating frequency of 52Hz, we had to reduce the it to incorporate 5 simultaneous

executions of the Kalman filter. Along with the single round of a roll followed by a

pitch experiment, all the R matrix values were tested using separate executions of

the Kalman filter algorithm. This helped in obtaining unanimous behaviour of the

Kalman filter for different R matrix values on a single capture of raw sensor values.

The R matrix can manipulate the behaviour of Kalman filter algorithm in 2 ways

[4]. The time of convergence to a particular predefined angle changes with the different

values of R matrix. Also, the sensitivity of Kalman filter output varies when these
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values of R matrix differs. Hence, the time convergence along with the sensitivity of

roll and pitch angles were analyzed using the results of this experiment. The IMU

affixed on a toy train was used to perform the experiment. The noise and errors in

the sensors were obtained by moving the toy train in different paths. The predefined

angle of 45 degrees was obtained using the native application of an Apple smartphone,

shown in figure 4.2. Overall, for each roll and pitch experiment, 5 different Kalman

filter angles were obtained which were further analyzed for the effect of different R

matrix values. The time taken by each Kalman filter algorithm based on its R matrix

values were captured along with the actual roll and pitch angles. Standard deviation

was used as a measure to estimate the sensitivity of Kalman filter. These values were

listed using the table explained in the next section.

4.2.3 Data Analysis Method

The results obtained from the R matrix evaluation is first stored in a table, shown

in table 4.1 for further investigation. Along with the pre-defined angle of 45 degrees,

five different values of R matrix were configured in five separate executions of the

Kalman filter. Five simultaneous executions of Kalman filter were performed to make

sure the R matrix evaluation is made on the same set of raw sensor roll and pitch

angles.

R matrix
[2X2]
values

Predefined
angle

Convergence
time for

Kalman filter
(in seconds)

Standard
Deviation√

1
N

∑N
i=1(xi − x)2

[0,0,0,0] 45
[25,0,0,50] 45

[100,0,0,200] 45
[400,0,0,600] 45
[800,0,0,1000] 45

Table 4.1: R matrix evaluation table

Convergence time field explains the time taken by Kalman filter for each R matrix

value to reach the predefined angle of 45 degrees. Standard deviation (SD) of the data
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set was calculated for each Kalman filter execution to understand amount of distribu-

tion of the output (angle) for each R matrix value. SD also helped in understanding

sensitivity of Kalman filter.

The comparison of every entry from the third, fourth and fifth column helped in

determining the effect of R matrix values to obtain best precision in the hardware

setup used for this experiment. This data was also plotted using matlab graphs which

is shown in the experimental results section.

4.3 Comparison of Complementary and Kalman Filter

The second step of the research was to evaluate the performance of the comple-

mentary filter and Kalman filter algorithm and compare the roll and pitch angles.

As mentioned in the section 4.2.2, raw sensor data was readily available from both

the accelerometer and gyroscope sensors at the rate of 52 Hz. The complementary

filter was implemented as a low-pass and a high-pass filter to eliminate the errors of

sensors and obtain roll and pitch angle. The Kalman filter used a recursive approach

to eliminate the noise from sensors and calculate roll and pitch angle [3]. Other than

this, the raw values from the sensors along with a predefined angles were utilized as

the baseline for roll and pitch calculations.

4.3.1 Experiment Scenarios

As we obtained the optimal values of R matrix, the next set of experiments to

compare the performance of complementary and Kalman filters were performed in

two major steps, each step containing 4 different scenarios.

The two steps were :

(i) Stationary

(ii) In-motion using a toy train

The 4 different scenarios for the roll and pitch measurement were as follows:

1. When the IMU module is at 15 degrees with respect to roll and pitch

2. When the IMU module is at 30 degrees with respect to roll and pitch

3. When the IMU module is at 45 degrees with respect to roll and pitch

4. When the IMU module is at 60 degrees with respect to roll and pitch
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Figure 4.3: Native iOS application - Compass

4.3.2 Experiment Configuration

After deciding the preferred values of R matrix of the Kalman filter for the current

hardware setup, comparison of complementary filter and Kalman filter was done

in stationary and in-motion scenarios. The IMU had the facility to save all the

output into a micro SD card. We utilized this provision with an in-motion scenario

where the IMU was fixed on a toy-train and a serial connection to obtain the result

was not possible. The roll and pitch values were captured while the train is not

moving (stationary) and when the train is in motion. With the toy train experiment,

the angles at which the experiment is performed are measured using a native iOS

application application – “Compass”. As shown in figure 4.2, this application gives

us the different angles based on the position of iPhone along with its internal sensors.

We are using an iPhone 5s as the device to obtain different roll and pitch angles.

As per the technical specifications of the iPhone 5s released by Apple on 16th May

2018 [80], it contains a high quality three-axis gyroscope, accelerometer along with

assisted GPS and GLONASS sensors. Hence, this model of iPhone must be able to

give us accurate angles with the help of its native Compass application. The roll and
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pitch angles obtained from the two filters were analyzed along with the time taken

for each filter to reach the predefined angle.

4.3.3 Data Analysis Procedure

This section covers the data analysis procedure for the comparison of complemen-

tary and Kalman filter. As per our preliminary understanding the complimentary

filter will be unable to completely eliminate the errors caused by drifts and noises

in sensors [3]. Hence, the results obtained from Kalman filter was expected to be

better than the complementary filter due its capability of identifying and eliminat-

ing the errors. The sensor data captured in all pre-defined positions was applied on

the complementary filter and Kalman filter algorithm and the results obtained were

compared along with baseline of raw value of accelerometer. The comparison were

made as follows.

Overall, there were two scenarios in the experiments : Stationary and in-motion.

Each of these scenarios had four different angles at which the experiments were per-

formed : 15, 30, 45 and 60. These angles were selected just as an example to perform

the experiments.

The IMU was mounted on a toy train similar to the R matrix sensitivity experiment.

Stationary experiment was performed without the movement of toy train. In-motion

experiment was performed by moving the toy train in a random track.

Scenario : Stationary / In-Motion

Predefined
Roll/Pitch

(angle)

Detected
angle

range by
CF

Detected
angle range

by KF

Convergence
time for

CF
(in seconds)

Convergence
time for

KF
(in seconds)

SD of
CF

SD of
KF

15
30
45
60

Table 4.2: Comparison of complementary and Kalman filter

The result of these experiments were be displayed in the form of table 4.2, as
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well as plotted as graphs using the tool - Matlab. Detected angle range explains

the range of angles detected by the both filters after reaching the predefined angles

in every experiment. The convergence time explains the time taken by both the

complementary and Kalman filter to reach the predefined angles : 15, 30, 45 and 60

degrees. The standard deviation was calculated for all the pitch and roll angles to

understand the stability of the filters. If the standard deviation is less, then the roll

and pitch angles are more near to the predefined angle which can imply which filter

is more precise to hold on to the converged angle.

With the help of these tables, we could identify the efficiency of Kalman filter

algorithm over complementary filter algorithm in comparison to the raw sensor values.



Chapter 5

Experimental Results

The experimental results of both R matrix evaluation and the performance of com-

plementary and Kalman filters are explained in the two sub-sections below. The first

set of results is the analysis of the effect of sensor measurement error covariance ma-

trix (R matrix ) on the behaviour of Kalman filter. The R matrix is a 2X2 matrix

which is initialized diagonally to help the Kalman filter matrix calculations [33]. The

Kalman filter includes matrix transpose operation which imposes a major load on

the processing load. Hence diagonal assignment of matrix values reduces this load

as the transpose of a diagonal matrix is the same as the original matrix. The values

chosen to tune R matrix is based on prior research work [33], [34], [35], [36] and the

behaviour of the IMU used for the experiment. In total, a set of 5 values were short-

listed to perform this experiment along with a predefined angle. Predefined angle is

the baseline to understand the output of the Kalman filter. A comparison of all the

results based on these 5 R matrix values were performed and a analysis was made

towards convergence of roll and pitch angles of the aircraft to the predefined angle

along with the measure of sensitivity of Kalman filter.

The second set of experiments validated the performance of complementary filter

and Kalman filter on different roll and pitch angles. The Kalman filter experiment

utilized the results of first research to gain an efficient precision of roll and pitch

angles based on a set of R matrix values specific to the hardware setup used in

this research. Finally a comparison of Kalman filter and complementary filter is

performed to understand which filter produces high precision roll and pitch angles in

both stationary and in-motion scenarios.

30
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5.1 R Matrix Sensitivity Evaluation

The R matrix, being a 2X2 matrix, used five set of values to analyze the sensitivity

on pitch and roll angles calculated using Kalman filter algorithm. Sections 5.1.1

and 5.2.1 covers these roll and pitch experiment results respectively and includes a

comparison of the results to understand the effect of R matrix values. This result

was utilized in obtaining a high-precision roll and pitch angles when applied on the

Kalman filter algorithm, explained in the section 5.2

5.1.1 R Matrix Effect on Roll Experiment

This section covers the results of R matrix sensitivity experiment for roll angle

calculation performed in the in-motion scenario. The results of these experiments are

explained in the subsequent sections below. As explained in section 4.3.1, the five

set of values were configured in the Kalman filter algorithm and the single set of raw

gyroscope and raw accelerometer sensor measurements were utilized by Kalman filter

algorithm calculate the pitch and roll angles.

Figure 5.1: Roll angle experiment for R matrix sensitivity - 30 seconds

The in-motion roll experiment result is shown in the figure 5.1 above. We can

clearly see that the first two values of R matrix, [0,0,0,0] and [25,0,0,50] help Kalman

filter to reach the predefined angle of 45 degrees in less than a second. Third value



32

[100,0,0,200] takes around 2 seconds where as fourth value [400,0,0,600] and the final

value [800,0,0,1000] of R matrix take around 5-6 seconds to reach 45 degrees. But,

due to the severe vibrations created during the movement of toy train, the lower

values of matrices shows higher sensitivity for Kalman filter algorithm results. This

is visible in the graphs with severe variations of pitch and roll angles. The R matrix

value - [0,0,0,0] makes Kalman filter highly sensitive and [25,0,0,50] improves the

sensitivity by a smaller margin than previous case, but both are not satisfactory. The

last three values of R matrix produces satisfactory results. The individual graphs of

these results are shown in appendices section.

5.1.2 R Matrix Effect on Pitch Experiment

This section covers the results of R matrix sensitivity experiment for pitch angle

calculation performed in the in-motion scenario. The values of R matrix are same as

the roll experiment and the error and noise of the sensors also achieved in the same

way.

The in-motion pitch experiment result is shown in the figure 5.2 below.

Figure 5.2: Pitch angle experiment for R matrix sensitivity - 30 seconds

The results of pitch angle calculation showed similar trends compared to the roll

angle calculation experiment except the time taken by the Kalman filter executions
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to reach predefined angle of 45 degrees was different. The first two values of the R

matrix reach the predefined angle in less than a second. The third and fourth value

of R matrix made Kalman filter reach the predefined angle around 2 seconds. Finally

the Kalman filter achieved 45 degrees around 3 seconds with the final value of the R

matrix.

5.1.3 Comparison and Analysis of R Matrix Sensitivity Results

This section summarizes all the results discussed in the above sections for R ma-

trix sensitivity on Kalman filter algorithm and compares them with each other to

measure the convergence time to the predefined angle of 45 degrees. The analysis of

convergence time in seconds was made in addition to the sensitivity measure using

the standard deviation of roll and pitch angle output by the Kalman filter.

5.1.3.1 Effect of R matrix values on the roll angle calculation

For the roll angle calculation, the Kalman filter execution results are summarized

in the tables 5.1.

R matrix
[2X2] values

Predefined
angle
xi

Convergence
time for

Kalman filter
(in seconds)

Standard
Deviation√

1
N

∑N
i=1(xi − x)2

[0,0,0,0] 45 0.33 3.130
[25,0,0,50] 45 0.88 0.631

[100,0,0,200] 45 2.44 0.539
[400,0,0,600] 45 5.16 0.395
[800,0,0,1000] 45 5.67 0.362

Table 5.1: Results of R matrix effect on roll-angle-experiment

The convergence time of Kalman filter with the predefined angle increases as the

R matrix values increase. When the R matrix values are completely eliminated by

using the first set of values - [0,0,0,0], the convergence time is the least of 0.33 seconds

to reach 45 degrees. As the R matrix values increase the convergence time increases

to a maximum of 5.67 seconds with highest value that was tested in this research -

[800,0,0,1000]. On the contrary, the standard deviation of the results decreases as R
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matrix value increases. When the R matrix value is the least - [0,0,0,0], the standard

deviation is 3.130. As the R matrix values increase, the standard deviation decreases.

The highest R matrix value that was tested in this research - [800,0,0,1000] has the

least standard deviation of 0.362 among all results of roll angle calculations.

5.1.3.2 Effect of R matrix values on the pitch angle calculation

For the pitch angle calculation, the Kalman filter execution results are summarized

in the table 5.2.

R matrix
[2X2] values

Predefined
angle
xi

Convergence
time for

Kalman filter
(in seconds)

Standard
Deviation√

1
N

∑N
i=1(xi − x)2

[0,0,0,0] 45 0.05 3.915
[25,0,0,50] 45 0.05 0.950

[100,0,0,200] 45 1.27 0.853
[400,0,0,600] 45 1.33 0.681
[800,0,0,1000] 45 2.50 0.502

Table 5.2: Results of R matrix effect on pitch-angle-experiment

It is evident from the table that the R matrix effect on pitch angle calculation of

Kalman filter is similar to that of the roll angle calculation explained in the previous

section. The smallest value of R matrix makes the Kalman filter converge to the pre-

defined angle in less than a second. As the R matrix values increase, the convergence

time of Kalman filter with the predefined angle also increase. The largest R matrix

values tested in this research - [800,0,0,1000] made the Kalman filter reach 45 degrees

at 2.50 seconds. Standard deviation calculation of the R matrix effect in the pitch

experiment showed similar results to the R matrix effect in the roll angle experiment.

As the R matrix values increased, the standard deviation of pitch angle calculated

by Kalman filter decreased. The least R matrix value - [0,0,0,0] showed the Kalman

filter output of pitch angle had a standard deviation of 3.915. The highest R matrix

value - [800,0,0,1000] had the lowest standard deviation of 0.502.
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5.1.4 Summary

The graphs and the tables displaying the results of all the experiments were used

to analyze the effect of R matrix on pitch and roll angle calculations using the Kalman

filter. As the results indicated, the R matrix values play a major role in both conver-

gence time and sensitivity of the Kalman filter algorithm. As the R matrix value in-

creases, the sensitivity of Kalman filter decreases and the convergence time increases.

This happens because, when the R matrix values increase, the Kalman filter gives

higher precedence to previously calculated values than the newly calculated value [3].

When the previously calculated values are given higher precedence, the output from

Kalman filter changes very slowly as indicated in the graphs. This results in a stable

output from Kalman filter but a slower convergence to an actual angle of an object.

On the other hand, smaller values of R matrix makes Kalman filter to give a higher

precedence to the latest calculated roll and pitch angles than the previously calcu-

lated values. This results in quick update of roll and pitch angle of an object, but the

errors and noise would not get completely eliminated. Hence, there is a faster conver-

gence but the output of roll and pitch angles are more prone to errors. This happens

because, when a high value of R matrix is configured, it makes the Kalman filter to

trust the previously measured values more than the new sensor measurements [33].

Hence, new measurements that might be showing a change in angle is reflected slowly

as the Kalman filter relies on previous angle calculated by itself. On the other hand,

if a small value is configured for R matrix, it trusts the sensor measurements more

than the previously calculated value. So, the output measured by the Kalman filter is

quick to reflect the change in angle as the sensor updates it. This results in Kalman

filter being very sensitive to the vibrations. For instance, from the results, [Appendix

A] it is evident that when the R matrix is completely eliminated by configuring zeros,

the sensitivity of Kalman filter is so high that it is completely unusable.

To summarize the results, whenever a Kalman filter is used to calculate roll and

pitch angle of an object, the R matrix has to be chosen wisely based on the type

of sensors as well as the hardware setup used in the experiment. When R matrix
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values are small, the convergence time is fast but the Kalman filter becomes very

sensitive. As the R matrix values increase, the convergence time becomes slow but

the Kalman filter becomes stable. Hence, there is a trade-off while choosing the R

matrix value. If a fast behaviour of filter is the main requirement, then a smaller R

matrix values can be chosen but there is a compromise on the stability of the filter.

If a stability of the filter is the main requirement, then larger R matrix values can be

chosen compromising on the convergence time of Kalman filter.

5.2 Performance of Complementary and Kalman Filter Based Schemes

The second part of research was to compare and analyze the performance of com-

plementary filter and Kalman filter algorithms while calculating the roll and pitch

angles. Both the pitch and roll angle measurements were calculated for two scenarios

: stationary and in-motion with 4 different angles. The raw accelerometer and raw gy-

roscope values were considered as the baseline to understand the performance of these

filters. The same hardware setup used in the first experiment of R matrix sensitivity

was used in this part of experiment. To measure the four different angles, the iPhone

5s was used similar to first experiment. In total, we gathered 16 different results from

all these experiments and compared the results to understand which filter performs

better. The roll angle experiment results are presented in section 5.2.1, followed by

the pitch angle experiment results in section 5.2.2 respectively, for both stationary

and in-motion scenarios with 4 different predefined angles. In-motion experiments

are performed using a toy-train to achieve the noise created due to vibrations in the

movement.

5.2.1 Roll Angle Calculations

Stationary scenario for roll angle calculation covers the four angles : 15, 30, 45 and

60. Raw values of accelerometer and gyroscope sensors are considered as the baseline

along with the predefined angle captured using iPhone 5s, and the complementary

filter along with the Kalman filter results are plotted using Matlab graphs. Each

image shows the pre-defined angle set for the experiment and time taken by both the

filters to reach that angle. The results of first 30 seconds from the experiment are
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shown below in both stationary and in-motion scenarios.

5.2.1.1 Stationary scenario

The stationary roll experiment result for the predefined angle of 15 degrees is

shown in the figure 5.3 below.

Figure 5.3: Stationary-roll experiment for 15 degrees

It can be seen from the figure that accelerometer and Kalman filter took less

than a second (0.11 seconds) to reach the predefined angle of 15 degrees. But, the

complementary filter was very slow in reaching the predefined angle of 15 degrees.

It took almost 5.96 seconds to reach 15 degrees even though it reached 14 degrees

in about 4 seconds. Raw accelerometer sensor readings had severe noise and errors

which made it almost reach 17 to 18 degrees. Raw gyroscope sensor readings showed

the rate of change of angle in every timeslot, hence could not be compared with these

three results.

The stationary roll experiment result for predefined angle of 30 degrees is shown

in the figure 5.4 below. As the graph indicated, the accelerometer was the fastest to

reach predefined angle of 30 degrees. Once again, the Kalman filter took less than one

second (0.19 seconds) to reach roll angle of 30 degrees. Similar to the results from

previous experiment, the complementary filter was slow and took 7.38 seconds to
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Figure 5.4: Stationary-roll experiment for 30 degrees

reach 30 degrees. Due to the errors in Raw accelerometer sensor readings, it hovered

between 32 to 33 degrees. Raw gyroscope sensor readings showed the rate of change

of angle in every timeslot, hence could not be compared with these three results.

The stationary roll experiment result for predefined angle of 45 degrees is shown

in the figure 5.5 below. The accelerometer sensor reached 45 degrees in no time,

Figure 5.5: Stationary-roll experiment for 45 degrees
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but suffered from errors even in stationary scenario. The Kalman filter once again

took less than one second (0.34 seconds) to reach the predefined angle of 45 degrees.

In this case, the complementary filter took 11.11 seconds to reach 45 degrees, even

though it reached 44 degrees in 6.84 seconds. The last change of 1 degree took about

5 seconds which shows that the performance of complementary filter was very slow.

Raw gyroscope sensor readings showed the rate of change of angle in every timeslot,

hence the results were not compared with roll angle output from the filters.

The stationary roll experiment result for the predefined angle of 60 degrees is

shown in the figure 5.6 below. Once again the accelerometer was the fastest to reach

Figure 5.6: Stationary-roll experiment for 60 degrees

60 degrees but it was affected with errors which made it to reach almost 63 degrees

occasionally. The Kalman filter took 1.23 seconds to reach the predefined angle of

60 degrees whereas the complementary filter took 9.88 seconds to reach the same.

Similar to the previous case, even though complementary filter reached 59 degrees

in 7.53 seconds, the convergence into the last one degree took around 2.43 seconds.

Similar to previous results, the raw gyroscope sensor readings were not compared

with the roll angle output from the filters.

The table describing overall results from stationary scenario for all the tested
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predefined roll angles is shown below.

Predefined
Roll

(angle)

Detected
angle

range by
CF

Detected
angle range

by KF

Convergence
time for

CF
(in seconds)

Convergence
time for

KF
(in seconds)

SD of
CF

SD of
KF

15 15 15 5.96 0.11 2.263 0.050
30 30-31 30 7.38 0.19 4.791 0.334
45 44-45 45 11.11 0.34 0.228 0.182
60 60 60 9.88 1.23 9.519 0.322

Table 5.3: Comparison of complementary and Kalman filter for roll angle calculation.
Scenario : Stationary

Due to the errors in accelerometer sensor along with the gyroscope sensor provid-

ing the change of rate of angle, they were not included in the performance analysis,

hence they were not a part of the table. Detected angle range of complementary filter

had a slight deviation to the predefined angle by one degree, even though the exper-

iment was a stationary scenario, indicating there was no movement. The detected

angle range of Kalman filter was very consistent to the predefined angle. The conver-

gence time for the Kalman filter was far superior compared to the convergence time of

the complementary filter. The standard deviation of both the filters in each case also

indicated the Kalman filter was the faster as well as more stable after reaching the

predefined angle compared to the complementary filter. This shows that the Kalman

filter is a more efficient algorithm compared to the complementary filter for roll angle

calculation in stationary scenario.

5.2.1.2 In-motion scenario

This section shows the results of roll angle experiment in the in-motion scenario.

The movement was achieved by fixing the hardware(IMU) on a toy train in different

angles such as 15, 30, 45 and 60 degrees.

The in-motion roll experiment result for predefined angle of 15 degrees is shown

in the figure 5.7 below. As it is seen in the figure, accelerometer and Kalman filter
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Figure 5.7: In motion-roll experiment for 15 degrees

reached the predefined angle very fast compared to the complementary filter. Ac-

celerometer reached 15 degrees faster than the Kalman filter, but it showed severe

errors due to the movement of the toy train (shown in grey color). Kalman filter took

0.26 seconds to reach the predefined angle and it was pretty consistent around 15

degrees. Complementary filter took 11 seconds to to reach the same which was very

slow convergence. Also, the variations in roll angles calculated by complementary

filter was (shown in pink color) higher than variations calculated by Kalman filter

(shown in blue color). Raw gyroscope sensor readings showed the rate of change of

angle in every timeslot, hence could not be compared with the performance of filters.

The in-motion roll experiment result for predefined angle of 30 degrees is shown

in the figure 5.8 below. Accelerometer sensor once again took the least amount of

time to reach predefined angle of 30 degrees, but due to the errors created during

the movement the roll angle was very inconsistent as there are huge deflections in

the graph (shown in grey color). The Kalman filter took only 0.19 seconds to reach

30 degrees and it was very consistent with minor variations (shown in blue color).

The complementary filter took about 11.34 seconds to reach 30 degrees, whereas it

had reached 28 degrees within 5.53 seconds itself. The final convergence of 2 degrees

took almost 6 seconds indicating poor performance of complementary filter. Also, the
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Figure 5.8: In motion-roll experiment for 30 degrees

variations after reaching predefined angle is higher for complementary filter (shown

in pink color) compared to the Kalman filter. Raw gyroscope sensor readings were

once again ignored in the comparison analysis due to the similar reasons as described

above.

The in-motion roll experiment result for predefined angle of 45 degrees is shown

in the figure 5.9 below. Similar to all previous experiments, the accelerometer sensor

was the fastest to converge into 45 degrees, but showed severe errors due to the

movement (shown in grey color). The Kalman filter took only 0.34 seconds to reach

the predefined angle of 45 degrees, whereas the complementary filter took about

5.31 seconds to reach the same. Even though complementary filter was faster in

converging to 45 degrees compared to previous two cases of 15 and 30 degrees of roll

experiment (figures 5.7 and 5.8), it was definitely not faster than the Kalman filter.

Also, the errors caused by the movement of toy train was not completely eliminated

by the complementary filter in comparison to the Kalman filter. This can seen by

the output of complementary filter (in pink color) varying over time compared to the

Kalman filter output (in blue color).

The in-motion roll experiment result for predefined angle of 60 degrees is shown
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Figure 5.9: In motion-roll experiment for 45 degrees

Figure 5.10: In motion-roll experiment for 60 degrees

in the figure 5.10 above. It can be seen from the figure that the accelerometer showed

the similar behaviour as the previous experiments. It was very fast and easily prone

to errors due to the movement of toy train, hence very unstable (shown in grey color).

The Kalman filter took only 0.7 seconds to reach the predefined angle of 60 degrees

which was way faster than the complementary filter which took 5.92 seconds to reach

the same. Similar to the previous experiment, the complementary filter couldn’t
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completely eliminate the errors during the roll angle calculation, hence there are few

severe deflections (shown in pink color). Kalman filter has some minor variations

(shown in blue color) around 45 degrees, but the performance is better than comple-

mentary filter. Raw gyroscope sensor readings showed the rate of change of angle in

every timeslot, hence they were not included in the analysis.

The table describing overall results from in-motion scenario for all the tested pre-

defined roll angles is shown below. Once again, the severe errors in raw accelerometer

Predefined
Roll

(angle)

Detected
angle

range by
CF

Detected
angle range

by KF

Convergence
time for

CF
(in seconds)

Convergence
time for

KF
(in seconds)

SD of
CF

SD of
KF

15 9-21 12-17 11 0.26 3.474 0.980
30 22-32 29-32 11.34 0.19 4.417 0.611
45 44-53 45-53 5.31 0.34 7.948 2.406
60 -5 to 92 58-65 5.92 0.07 10.308 1.281

Table 5.4: Comparison of complementary and Kalman filter for roll angle calculation.
Scenario : In-motion

sensor data due to the movement of toy train along with raw gyroscope sensor data

showing only rate of change of angle, they were not included in the table as well as

analysis of filters. As shown in second and third column of the table, the detected

angle range of the complementary filter varied a lot compared to the range of angle

captured the by Kalman filter. For example, in case of 30 degrees of roll angle, the

complementary filter ouput varied between 22 to 32 degrees after reaching 30 de-

grees. Also, when the predefined angle was 60 degrees, the detected angle range of

the complementary filter was between -5 to 92 degrees, which was very huge. The

detected angle range by the Kalman filter is less than 5 degrees in every case. Also

the standard deviation calculated for Kalman filter showed lower values compared to

the complementary filter in all experiments. This proved that the Kalman filter could

eliminate the errors more efficiently compared to the complementary filter.
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5.2.2 Pitch Angle Calculations

Similar to the evaluation of the complementary and the Kalman filter for roll angle

experiment, a set of experiments were performed for calculating pitch angles with the

model aircraft in the same four predefined angles : 15, 30, 45 and 60. The results of

these experiments are shown in below sections.

5.2.2.1 Stationary scenario

The stationary pitch experiment result for predefined angle of 15 degrees is shown

in the figure 5.11 below. It can be seen from the figure that the accelerometer sensor

Figure 5.11: Stationary-pitch experiment 15 degrees

was the fastest among all to reach 15 degrees, but it clearly showed small errors even

in stationary scenario (shown in grey color). The Kalman filter took 0.53 seconds

to reach the predefined angle of 15 degrees and it is very stable after reaching it.

Complementary filter took 6.23 seconds to reach the 15 degrees and the convergence

of last one degree took 1.33 seconds. After reaching the predefined angle, the com-

plementary filter was also stable similar to Kalman filter and held onto 15 degrees,

as there were no movement of toy train in the stationary scenario. Raw gyroscope

sensor readings were ignored as they did not show the actual roll angle.

The stationary pitch experiment result for predefined angle of 30 degrees is shown



46

in the figure 5.12 below Similar to previous results, the accelerometer was the fastest

Figure 5.12: Stationary-pitch experiment 30 degrees

but suffered from errors even in stationary scenario (shown in grey color). The

Kalman filter took 1.81 seconds to reach the predefined angle of 30 degrees. The

complementary filter took 7.57 seconds to reach the same. Both the complementary

filter as well as the Kalman filter did not suffer from any errors after reaching 30

degrees and held on to it. Raw gyroscope sensor readings were ignored for the same

reasons as explained in previous result sections.

The stationary pitch experiment result for predefined angle of 45 degrees is shown

in the figure 5.13 above. It can be seen from the figure that accelerometer being

the fastest to reach 45 degrees suffered from minor errors. It was very unstable even

in stationary scenario (shown in grey color). The Kalman filter took 0.23 seconds

to reach the predefined angle whereas the complementary filter took 6.76 seconds to

reach the same. Also, it can be seen that after 8.73 seconds, the detected angle of the

complementary filter showed the pitch angle as 16 degrees which is actually more than

predefined angle. The Kalman filter stayed at 15 degrees throughout the duration of

the test. Raw gyroscope sensor readings were ignored for stand alone analysis due to

the similar reasons explained in above result sections.
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Figure 5.13: Stationary-pitch experiment 45 degrees

The stationary pitch experiment result for predefined angle of 60 degrees is shown

in the figure 5.14 below. As seen from the figure, the accelerometer was once again

Figure 5.14: Stationary-pitch experiment 60 degrees

highly unstable (shown in grey color) throughout the duration of testing even though

it was faster than all other filters. The Kalman filter took 2.88 seconds to reach

the predefined angle of 60 degrees which was higher than its performance in the
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previous three experiments with pitch angles - 15, 30 and 45. The complementary

filter took 8.73 seconds to reach the same. Once again, both the filters did not show

any variations after reaching the predefined angle. But the complementary filter was

very slow compared to the Kalman filter in the convergence time to the predefined

angle.

The table 5.5 describes overall results from stationary scenario for all the tested

predefined pitch angles. Similar to the previous experiments, the raw accelerometer

sensor data and the raw gyroscope sensor data were not included in the table as

well as analysis of filters. In this set of experiment, the detected angle range of

Predefined
Pitch

(angle)

Detected
angle

range by
CF

Detected
angle range

by KF

Convergence
time for

CF
(in seconds)

Convergence
time for

KF
(in seconds)

SD of
CF

SD of
KF

15 15 15 6.23 0.53 3.213 0.142
30 30 28-30 7.57 1.81 5.820 0.311
45 45-47 45 6.76 0.23 8.013 0.171
60 60 60 8.73 2.84 10.725 0.398

Table 5.5: Comparison of complementary and Kalman filter. Scenario : Stationary

the complementary filter as well as the Kalman filter did not suffer huge variations,

as expected, due to the stationary behaviour of the scenario tested. But, the time

taken by complementary filter was significantly more than Kalman filter to reach

the predefined angles. Also the lower values of the standard deviation calculated for

Kalman filter proved a higher convergence rate as well as the stability of Kalman filter

compared to the complementary filter for all predefined angles. This proved that the

Kalman filter can eliminate the errors more efficiently compared to the complementary

filter for pitch angle calculation in stationary scenario.

5.2.2.2 In-motion scenario

This section shows the results of pitch angle experiment in the in-motion sce-

nario. Similar to the roll angle experiments, the movement was achieved by fixing the

hardware(IMU) on a toy train in different angles such as 15, 30, 45 and 60 degrees.
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The in-motion pitch experiment result for predefined angle of 15 degrees is shown

in the figure 5.15 below. It can be seen from the figure that the accelerometer sensor

Figure 5.15: In motion-pitch experiment 15 degrees

readings were highly unstable as it suffered from the errors created due to the move-

ment with the in-motion scenario (shown in grey color). The Kalman filter being the

fastest took only 0.07 seconds to reach the predefined angle of 15 degrees. It suffered

from minor errors (shown in blue color), but the error of angle range of Kalman filter

was less than 3 degrees to its predefined angle. Complementary filter took 5.61 sec-

onds to reach the angle of 15 degrees, but even this filter suffered from errors (shown

in pink color) which were higher than the Kalman filter. The raw gyroscope sensor

readings showed the rate of change of angle in every timeslot, hence could not be

compared with these three results.

The in-motion pitch experiment result for predefined angle of 30 degrees is shown

in the figure 5.16 below. Once again the accelerometer sensor suffered from severe

errors during movement (shown in grey color). The Kalman filter took only 0.61

seconds to reach the predefined angle of 30 degrees. Also, it was clearly evident

from the graph that Kalman filter was very consistent to the predefined angle (shown

in blue color) and eliminated most of the errors. The complementary filter took

3 seconds to reach 30 degrees which was faster than the time it took to reach 15
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Figure 5.16: In motion-pitch experiment 30 degrees

degrees in previous experiment. But the complementary filter showed a higher error

rate (shown in pink color) as it almost reached near to 40 degrees around 11.11

seconds. Raw gyroscope sensor readings were ignored for the analysis of filters due

to its behaviour of showing the rate of change in angle.

The in-motion pitch experiment result for predefined angle of 45 degrees is shown

in the figure 5.17 below. It can be seen from the figure that the accelerometer sensor

suffered from errors due to the noise captured during the movement (shown in grey

color). The Kalman filter took only 0.07 seconds to reach the predefined angle of 45

degrees which is very fast and it maintained its detected angle range within a small

range of 3 degrees to prove its stability (shown in blue color). On the other hand,

the complementary filter took 4.61 seconds to reach 45 degrees. Also, the pitch angle

range detected by complementary filter varied a lot, sometimes reaching as low as -4

degrees (shown in pink color). Raw gyroscope sensor readings show the rate of change

of angle in every timeslot, hence could not be compared with these three results.

The in-motion pitch experiment result for predefined angle of 60 degrees is shown

in the figure 5.18 below. It can be seen from the figure that the accelerometer sensor

suffered from errors due to the movement which made it very unstable throughout
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Figure 5.17: In motion-pitch experiment 45 degrees

Figure 5.18: In motion-pitch experiment 60 degrees

the experiment. The Kalman filter took only 0.23 seconds to reach the predefined

angle of 60 degrees and it maintains its angle range within 2 degrees by eliminating

all the errors (shown in blue color). The complementary filter takes 4.65 seconds to

reach the angle of 60 degrees and the angle range hovered between 54 degrees to 65

degrees due to the incomplete error and noise elimination(shown in pink color). Raw

gyroscope sensor readings were once again ignored for the analysis of the filters.
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The table describing overall results from in-motion scenario for all the tested

predefined angles is shown below. As seen in the table, the convergnce time to the

Predefined
Pitch

(angle)

Detected
angle

range by
CF

Detected
angle range

by KF

Convergence
time for

CF
(in seconds)

Convergence
time for

KF
(in seconds)

SD of
CF

SD of
KF

15 12-17 13-16 5.61 0.07 3.400 0.753
30 25-41 28-33 3 0.61 6.699 0.758
45 -4-50 43-48 4.61 0.07 8.561 0.916
60 54-65 60-62 4.65 0.23 11.717 1.029

Table 5.6: Comparison of complementary and Kalman filter. Scenario : In-motion

predefined pitch angle of 60 degrees was significantly high for the complementary

filter compared to the Kalman filter in all cases. The complementary filter had

the convergence time between 3 to 6 seconds based on the predefined angle, where

as all the convergence time of the Kalman filter were less than one second. Also,

the detected angle range of the complementary filter was much higher than Kalman

filter which explained the stability of the Kalman filter as more precisive than the

complementary filter. The standard deviation calculation of all the predefined angles

also explain the same. The distribution of detected angle range is very close to the

mean for a Kalman filter than a complementary filter. Hence, the observation from in-

motion scenario of pitch angle experiment was that the Kalman filter could eliminate

the errors more efficiently than the complementary filter and also, the Kalman filter

is faster in converging to the predefined angles.

5.2.3 Memory Utilization

The experimental platform had a low powered processor and limited memory as

explained in the section 4.1. The memory consumption of each filter after implemen-

tation in the hardware platform is given below.

Complementary filter:

Flash used: 24014 of 131072 bytes (18.3%).

SRAM used: 6008 of 16384 bytes (36.7%).
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Kalman Filter:

Flash used: 26898 of 131072 bytes (20.5%).

SRAM used: 6336 of 16384 bytes (38.7%).

Complementary filter utilized 18.3% of total flash available where as Kalman filter

utilized around 20.5%. As Kalman filter has predict and update steps, it was expected

to consume more flash memory than the complementary filter. The RAM used by

complementary filter was around 36.7% which is slightly less than Kalman filter RAM

utilization at 38.7%.

Overall, the research concentrated on implementing complementary and Kalman fil-

ter algorithms in a low memory platform and the memory utilization shows that the

filters were successfully executed using the available memory to obtain high precision

pitch and roll angles.

5.2.4 Summary

As the results from roll and pitch angle calculation for both stationary and in-

motion scenario showed that the convergence time as well as the detected angle range

of Kalman filter was better than the complementary filter. The complementary filter,

being a simple filter among the two, might be the light-weight algorithm on the

calculation front, but it could not eliminate all the errors generated from sensors.

On the other hand, the Kalman filter being an iterative algorithm with predict and

update steps could yield a better result of roll and pitch angles while the device was

both stationary and in motion. The Kalman filter could eliminate the errors arising

from the sensors more efficiently. The raw accelerometer sensor values were quick to

converge with the predefined angles of the experiment in all cases, but suffered from

errors in both stationary and in-motion scenarios. The raw gyroscope sensor data

showed the rate of change of angle, hence it could not be considered in the analysis

of these algorithms. The memory utilization also showed that the research was able

to implement the complementary and Kalman filter in a hardware platform with a

low memory consumption and obtained a high precision roll and pitch angles.
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5.3 Advantages and Limitations

This section covers the benefits and limitations of the research. This research was

aimed at calculating a high precision roll and pitch angles when the hardware setup

used has a limited computation power and memory. The hardware setup used in this

research had a low computation power, but the research work was successful in config-

uring multiple complex filters such as complementary and Kalman in same hardware

setup at the same time. Also, the testing results prove the initial understanding of

Kalman filter performance.

The toy train might not look like an optimal setup to measure the roll and pitch

angles of an aircraft. But, the main goal was to analyze the complementary filter

and the Kalman filter algorithms by using the readily available accelerometer and

gyroscope sensor data, and incorporate them in these filters to obtain high precision

roll and pitch values. It is ultimately experimenting the algorithms with various

angles and scenarios. Once an efficient algorithm is decided with these experiment

results, the same algorithm could be fine-tuned to fetch similar performance if the

experiments were performed in an aircraft. Hence, the most important step in this

research was to consider all the different possible angles and scenarios at which the

experiment could be performed in a controlled setup. This was achieved by using the

IMU mounted on a toy train to replicate the vibrations , which in turn inserts error

and noise in the sensors. Using the toy train in the experiments was cost effective

as well. The testing of algorithms in an aircraft would have lead to a massive cost

in performing the experiments, as the complementary and Kalman filter algorithms

have several parameters that would have to be configured based on the experimental

conditions. Performing multiple experiments in an aircraft would be very costly just

for fine tuning the parameters of the algorithms.
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Conclusion

The goal of the research is to analyze the performance using a complementary filter

or a Kalman filter to estimate the roll/pitch of an aircraft. The hardware setup

included two sensors - an accelerometer and a gyroscope. Accelerometer provides the

acceleration of an object in motion in relation to gravity and a gyroscope measures

the rate of change of angle, also termed as an angular velocity [6]. But, these sensor

outputs suffer from errors due to the force and acceleration on an accelerometer as

well as drift errors on a gyroscope. Hence, the filters such as a complementary filter

or a Kalman filter can be applied to these sensor values to eliminate the errors and

obtain a precise pitch and roll estimation. When the Kalman filter was explored in

detail, there was a matrix called covariance of error in sensor measurement (R matrix)

using which the trust in sensor measurements could be changed. Hence, the research

initially investigated the impact of this matrix on roll and pitch estimation in order

to find a proper matrix for our extensive experiments. Followed by this first part of

research, a performance analysis of complementary filter and Kalman filter was made

for stationary and in-motion scenarios involving different predefined angles.

6.1 Detailed Conclusion

The covariance matrix for error in sensor measurement is a 2X2 matrix which

can be initialized diagonally to help the mathematical calculations [4]. In total, a

set of five different values of R matrix were analyzed to understand the behaviour

of the Kalman filter. These values were chosen based on the behaviour of IMU and

prior research work [33], [34], [35], [36]. Both the pitch and roll experiments were

performed by configuring the R matrix at the angle of 45 degrees. This angle is used

as an example to set a baseline to perform the experiments.

55
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The summary of R matrix effect on Kalman filter is shown in the figures 6.1

and 6.2 for roll and pitch angles respectively. Small values of R matrix shows a

quick convergence time (in seconds) with the predefined angle, but suffers from high

sensitivity. This can be seen from having a high standard deviation. Higher values

of R matrix makes the Kalman filter slow in converging to the predefined angle. But

the output from the filter is stable as seen by smaller values of standard deviation.

Figure 6.1: Effect of R matrix values on roll angle calculation of Kalman filter

Figure 6.2: Effect of R matrix values on pitch angle calculation of Kalman filter
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As the second part of research, the performance of complementary filter and a

Kalman filter was thoroughly analyzed. In total, there were 16 experiments that

were carried out to analyze the performance of complementary filter and Kalman

filter with predefined angles as the baseline. Analysis of the filters was divided based

on two scenarios : stationary and in-motion for both pitch and roll angle calculation.

In the stationary scenario, both roll and pitch angle experiments showed that the

Kalman filter was quick to reach the predefined angle along with the baseline of

raw accelerometer measurements. But, the raw accelerometer sensor values suffered

from errors which is shown by small deflections even in stationary scenario where

there was no movement. The in-motion scenario impacted accelerometer sensor with

severe errors which are evident from the graphs (figures 5.7 to 5.10 and figures 5.15 to

5.18 ) which shows lot of deflections when the accelerometer sensor data was plotted.

Complementary filter was slow compared to Kalman filter and always took more time

to converge to the predefined angle in all cases of pitch and roll angle calculations.

Also, the output from Kalman filter was more stable compared to the output from

complementary filter which proves the noise removal capcity of Kalman filter is better

than complementary filter. Standard deviation was calculated for the output from

both the filters also showed the roll and pitch angles measured by Kalman filter were

more closer to the mean. From these experiments, it was evident that Kalman filter

could produce high precision roll and pitch angles in both stationary and in-motion

scenarios, when a similar research methodology is followed.

6.2 Future Work

There are multiple items in pipeline as the upcoming plan in this research. A

aircraft device manufacturing company - Airbly Inc, situated in Charlottetown, PEI,

Canada has agreed to test the solution proposed in this research in a real world

scenario using a private aircraft. This opens up an excellent opportunity for the

further research. As per the latest communication with the company, the testing

results might be available by August 2019. Once the results are gathered, a further

analysis of Kalman filter can be made with fine tuning the R matrix parameters to
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obtain a precise roll and pitch angle. In this stage, we are also planning to explore

more R matrix values to gain a better understanding of its impact on Kalman filter.

Also, the raw accelerometer and the raw gyroscope data collection with the hardware

setup used in this research in an actual aircraft can be further analyzed to apply any

other type of filters to obtain an optimal solution suitable for processors with limited

computation and memory. There is also a plan to calculate the yaw angle using the

existing sensors in the hardware setup which can also be tested in different scenarios

used in this research. The yaw angle calculation can also be verified in the real world

scenario as the plan is to integrate it with the existing solution before the roll and

pitch calculation is tested in a private aircraft.
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Appendix A

R Matrix Evaluation - Individual Results

A.1 Pitch Angle Calculation

(a) Pitch.R0 0 (b) Pitch.R25 50

(c) Pitch.R100 200 (d) Pitch.R400 600

(e) Pitch.R800 1000

These are the individual test results from pitch angle experiment R matrix evalu-

ation. As explained in section 5.2.1, the sensitivity of the Kalman filter decreases as

the R matrix values increases. It is evident from the above figures as well. With the

predefined angle of 45 degrees, the sensitivity increases as R matrix values increases.

The first figure has the maximum amount of variations where the R matrix values

were completely eliminated. In the next figures, Kalman filter becomes more stable

as R matrix values increases.
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A.2 Roll Angle Calculation

(a) Roll.R0 0 (b) Roll.R25 50

(c) Roll.R100 200 (d) Roll.R400 600

(e) Roll.R800 1000

These are the individual test results from roll angle experiment R matrix evalua-

tion. As explained in section 5.2.2, the sensitivity of the Kalman filter decreases as

the R matrix values increases. It is evident from the above figures similar to pitch

angle experiment. The predefined angle is 45 degrees. The first figure has the maxi-

mum amount of variations where the R matrix values were completely eliminated. In

the following figures, the Kalman filter becomes more stable as the R matrix values

increases.
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