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ABSTRACT 
 Proposed is a partially observable Markov decision process (POMDP) model-

based schema as the basis of a fault manager system for use by autonomous 

underwater vehicles (AUV) undergoing long endurance missions with the operator far 

from the AUV. The thesis explains the reasoning behind using POMDP over traditional 

static look-up tables to achieve a more autonomous system. The objective was to 

develop POMDP models for two illustrative AUV sub-systems – depth and power-

management. These models were used as fault managers for a series of simulations for 

each sub-system, individually, and then when there are interactions. This novel solution 

demonstrated the validity of POMDP as the basis for a fault manager in accounting for 

the inherent partial observability of AUV states and their environments. Future work 

aims to expand this with more AUV sub-systems and test on hardware-in-the-loop 

simulators.  
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GLOSSARY 

❖ Action: the fact or process of doing something. Examples are turning a sensor off, 

sending out a communication message, adjusting the sampling rate of acoustic 

waves, alternating mission plan, etc.  

❖ Algorithm: a process or set of rules to be followed in calculations or other problem-

solving operations, especially by a computer.  

❖ Artefact model: Estimated model of system built on observations and predictions 

made by the control system by sensing the vehicle and its environment. 

❖ Autonomy: This refers to the intelligence of the machine to act independently of a 

human operator. It should also be noted that it incorporates the ability to resolve 

scenarios rather than run on a pre-set script. 

❖ Autonomous Vehicle: autonomous robotic mobile system that operates 

independently of an operator. 

❖ Autonomous Marine Vehicles: Autonomous vehicles that operate in marine settings. 

Includes aerial, surface and underwater vehicles. 

❖ Autonomous Underwater Vehicle: Autonomous vehicles that operate primarily 

underwater. 

❖ Backup step: This refers to a POMDP policy solver value iteration’s method of how 

updates propagates information in reversal temporal order through the value 

function.  

❖ Belief State: This refers to the probability distribution of the state of the system. It 

implies that the exact state is not known but can be estimated given observations 

and previous estimations. 

❖ Boyen-Koller: An algorithm for factorization of belief states for approximation in DBN 

interference. 
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❖ Bottom-lock: This is when the vehicle is positioned such that it can sense the seabed. 

I.e. the altitude, pitch, and roll are within range for the sensors to be pointed towards 

the seabed (same as DVL-lock). 

❖ Component: This is a physical piece of the system. For example, a battery or its wires 

are a component. 

❖ Complement Probability: Given P(A) the complement is P(A’) = 1 - P(A). 

❖ Conditional Probability: of an event B is the probability that the event will occur 

given the knowledge that an event A has already occurred. This probability is written 

P(B|A), notation for the probability of B given A. Note if B is independent of A then 

P(B|A) = P(B). 

❖ Continuous Models: A model based on continuous time. 

❖ Discrete Models: A model based on discrete timesteps. 

❖ Doppler velocity Log: is a sonar system that measures motion under water. It does so 

by measuring the velocity in relationship to the ground. DVL-Lock is when the DVL is 

able to sense the ground and can generate accurate velocity measurements (same as 

bottom-lock). 

❖ Fault: This is a change (usually degrading) in the system from the normal conditions. 

❖ Factorization: A method of simplifying probabilistic graphical models. 

❖ Fault Management System: This refers the entirety of the intelligence for mitigation 

of possible faults and failures of the system. 

❖ Global Minimum: In statistical analysis this is when the best-fit set of parameters is 

given the entirety of the model space and represents that most desired solution to a 

given problem. Solving these can be costly and often local minimums are used 

instead for simplicity and time/processing saving.  
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❖ Group: A specific group of states, observations, or actions that are mutually 

exclusive, for example, a group of depth states ‘shallow’ or ‘deep’ in reference to the 

position within the water column. 

❖ Intelligence: This refers to the computational algorithms and methods used to 

perform the mission. The more intelligent the system the more it is able to handle 

complex tasks with human intervention. 

❖ Inference: A conclusion reached on the basis of evidence and reasoning 

❖ Intractable: A intractable model is one that can be solved in theory (e.g. given 

enough time and resources), but for which in practice any solution will take too long 

and be too computationally heavy to be feasible. 

❖ Joint-Actions: These are the combined groups of actions that form all possible 

actions for the vehicle. For example, if actions groups are A, B, and C then the joint 

actions are: ϵ A1_B1_C1 to Ai_Bj_Ck. 

❖ Knowledge: Is inferred information about the vehicle and the environment that 

informs not only specific measurements but the relationships and context in which 

these measurements are acquired.  

❖ Local Minimum: In statistical analysis this is when the best-fit set of parameters is 

given for a specific subset of a model. Determining best fit algorithms can sometimes 

result in these local best-fit rather than the overall global best fit of the entire model 

space. 

❖ Look-Up Table: These are static pre-compiled lists of actions that a system can use 

when triggered by a specific situation.  

❖ Mission: The mission is an assignment that the system is being tasked to accomplish. 

This may include lesser value optional assignments. 

❖ Monte Carlo: are algorithms that use repeated random sampling to obtain numerical 

results. 
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❖ Non-observable variables: cannot be directly measured. These are instead inferred 

from other variables. 

❖ Observation: Observation for our purposes is a discrete value for a variable that is 

used by a POMDP model to predict its state. Observations can also mean sensor data, 

inferred knowledge from sensor data, or variables that can be measured directly or 

non-directly through combining data. 

❖ Partial Observant: Real-world applications such as autonomous robotics are 

inherently partially observant in that they can only inquire data from a limited set of 

sensors in order to determine their state and environment. This means they will only 

have a partial understanding of their state and environment. 

❖ Probabilistic Graphical Model: A framework for representing causal relationships 

between variables that have probability distributions. 

❖ Q-MDP: Modified MDP solver that uses a Q vector to account for belief of a POMDP. 

❖ Robot Operating System (ROS): is a service-oriented middleware that is open source 

and commonly used for robotics [1]. 

❖ Sub-system: A sub-system is a system that is part of the larger system.  

❖ System: A group of interacting elements or technologies having a functional 

relationship that when grouped or integrated provide some processes or services [2].  

❖ Space: A non-null set which represents all possible outcomes and probabilities. 

❖ Stochastic: having a random probability distribution that can be statistically modelled 

but may not be predicted precisely.  
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INTRODUCTIONS 
Autonomous underwater vehicles (AUVs) are effective platforms applied across 

marine sectors by military, commercial and scientific research. These vehicles function 

independently of operators to perform tasks such as route survey, mine counter-

measures, search for downed aircraft, and inspecting pipelines to name a few examples. 

  

1.1 Motivation 

AUVs can operate submerged for hours, in some cases days, without fatigue, in 

contrast to human divers performing similar tasks [3]. Unlike tethered remotely 

operated vehicles (ROVs) [3], AUVs can transit great distances (in some cases, up to 

1000 km [4]) from their human operators in, around, and underneath submerged 

structures.  

The marine sector comprises 3.2% of the global economy and is expected to more 

than double and reach $3-trillion (US) by 2030 [5]. Given this expected level of 

underwater activity, AUVs are predicted to become widespread in the maritime industry 

as necessary tools [2]. 

 

AUVs are limited by critical sub-systems such as power distribution and 

navigation. Underwater communications are limited primarily to acoustics due to the 

rapid attenuation of electromagnetic (e.g. radio and light) signals underwater [6]. Power 

capacity is limited underwater, traditional air-breathing diesel generators and other 

combustion-based power sources cannot be used. Consequently, the vehicle must carry 

its entire energy needs in the form of batteries. Navigation is also difficult in underwater 

settings, from no access to resources like Global Positioning Satellites (GPS) without 

surfacing. While submerged the vehicle must approximate its location using dead-

reckoning with, for example, an inertial navigation system (INS) which measures the 

vehicle acceleration vector to approximate its location. At the moment, underwater 

navigation is achieved with an INS, Doppler velocity log (DVL), compass and acoustic 

sensor working together. Additionally, underwater environments are unstructured and 
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dynamic, and the vehicle must navigate areas that range from cluttered debris, to 

featureless landscape without prior knowledge of the environment. With purchase costs 

upwards of hundreds of thousands to millions of dollars, vehicle failure or loss can result 

in considerable loss for owners and operators. 

As AUVs are increasingly applied to complex underwater missions in unstructured 

environments for extended durations [7], more robust intelligent control schemas and 

fault management systems are required. 

 

1.2 Thesis contributions 

The main contribution of this thesis research contribution is development of a high-

level proof-of-concept fault management system using a partially observable Markov 

decision process (POMDP) deliberative model-based implementation for autonomous 

underwater vehicles. This proof-of-concept is developed by building an AUV simulator 

framework to validate, a POMDP modeller and implementing a solver to generate 

policies for the fault manager. 

 

1.3 Thesis organization 

This thesis is organized into the following sections: Chapter 2 is a literature review 

that covers autonomous underwater vehicles, their challenges, fault-management, 

intelligence schemas, probabilistic graphical models and some implementations. 

Chapter 3 proposes the design of a new fault management tool using topics that were 

covered in the literature review such as model-based architectures and partially 

observable Markov decision processes. Chapter 4 describes the implementation based 

on this design. Chapter 5 presents simulations and their results using the implemented 

system. Chapter 6 discusses and draws conclusions from the simulations, and Chapter 7 

offers suggestions for future development of the system.  
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2 LITERATURE REVIEW 
This chapter begins by describing underwater operations and the limitations 

imposed by the environment. Then it covers autonomous underwater vehicles and their 

main sub-systems. Section 2.3 covers fault management. Section 2.4 and 2.5 present 

different intelligence schemas. Sections 2.6, 2.7 and 2.8 address the in-situ computation 

challenges, Bayesian statistics, and the Markov assumption. Section 2.9 reviews 

probabilistic graphical models that draw on the stochastic tools from the previous 

sections. Sections 2.10 and 2.11 review Markov decision processes and partially 

observable Markov decision processes, respectively. These sections also include 

methodology for generating policies and example implementations relevant to the 

thesis topic. 

 

Autonomous underwater vehicles operate in dynamic and uncertain environments. 

The environment imposes operational restrictions like limited communications [8], 

energy capacity [7], lack of universal references for localization and navigation, and 

spatial-temporal fluctuations that vary daily, weekly, monthly and seasonally.  

State-of-the-art AUVs have an important role as intelligent sensor platforms in this 

industry since they can operate over long and often dangerous missions, autonomously. 

However, to facilitate longer and increasingly more complex missions, a vehicle’s 

autonomy (on-board intelligence) must be enabled to work in this dynamic environment 

which can create unexpected issues. AUV fault management systems must be 

engineered to be robust in the face of uncertainty and the unexpected. 

Underwater operations are difficult due to complexities in their environment. 

 

2.1 Underwater operations 

The underwater environment is among the harshest to operate in from a technical 

and safety standpoint. Human operations over water carry the inherent risk of 

drowning. Autonomous underwater vehicles are important to the growth of this ocean 

industry given their ability to function without putting humans in harm’s way. The 

primary challenges AUVs face are: limited communications with the operator, 
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navigation and localization within the environment, and sufficient on-board energy 

capacity to carry out missions. 

 

AUVs use acoustic communications in their work where possible due to the rapid 

attenuation of electromagnetic (e.g. radio and light) signals underwater [6]. 

Nonetheless, acoustic communication channels are noisy and limited in bandwidth and 

range. Latencies, reflections, absorption, and scattering of acoustic signals make 

underwater acoustic propagation problematic at best [6]. As acoustic signals are the 

primary means of AUVs communicating with their operators, this means AUVs operate 

with little human support or intervention at longer ranges (tens of km) [7]. Therefore, 

AUVs must work mostly autonomously and can only communicate with operators at low 

bandwidths.  

 

Operations at sea are resource-intensive which means infrequent support to 

vehicles deployed for extended durations compared to land-based ones. Navigation is 

difficult with GPS only available while surfaced, limited navigational landmarks, and 

influences from the environment (currents, sea states, etc.) on vehicle positioning. 

Additionally, since most communications underwater must be conducted via acoustics, 

the inherent range (~ kilometers) and bandwidth (<10 kHz) are quite limited [9]. Typical 

energy conversion methods employed by other vehicles like internal combustion 

engines and solar cells are unavailable at depth to AUVs, due to the lack of oxygen and 

sun, respectively.  

 

These various environmental restrictions result in a system that must operate with 

minimal or no support. If a fault occurs, it is unlikely that it can be communicated to 

operators in a timely fashion or that operators are readily able to intervene to provide 

fault recovery. The system must also be intelligent and self-sufficient (i.e. truly 

autonomous) enough to operate independently on missions and to detect, identify and 

resolve anomalous (fault and failure) events. A fault is an abnormal condition or defect 
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at the component, equipment, or sub-system level which may lead to a failure. A failure 

is the state or condition of not meeting a desirable or intended objective and may be 

viewed as the opposite of success [10].  

Another environment that shares many of these limitations is space. 

 

2.1.1 Space operations 

Space vehicles have similar challenges to underwater ones. They operate with 

limited communications and access after deployment is in harsh and unstructured 

environments – difficult for an operator to access. Similarly, their missions are complex 

and require robust fault management [11]. Due to these commonalities between ocean 

and space, and the relatively more mature fault management systems applied to space 

vehicles, space vehicles provide a relevant reference for development of autonomous 

underwater vehicle fault management systems. 

 

2.2 Autonomous Underwater Vehicles 

AUVs are a class of autonomous vehicles with a wide range of applications in marine 

settings and operate primarily underwater. 

 

A system can be defined as “a group of interacting elements or technologies having 

a functional relationship that when grouped or integrated provide some processes or 

services” [2]. An AUV’s system is a set of components and/or algorithms working 

together towards a common goal. For example, physical components include batteries, 

sensors, actuators and logic (algorithms) like those used for power distribution, data 

acquisition, thrusters, and processing. The external environment could also be 

considered a system that acts, and is acted on, by the AUV. 

 

Growth in the marine industry means there is greater demand for complex and 

extended duration missions. AUV missions have become longer, riskier, and by 

extension, more complex with decreased human interaction [12]. An example of 

complex missions are naval mine counter-measures, where an AUV must survey large 
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areas (e.g. 10 nm x 10 nm) and determine if, and where, mine-like objects may be 

located [13]. Long endurance missions like under-ice surveys [14] are susceptible to 

vehicle failures due to the shear long mission duration. Such AUVs could benefit from 

robust on-board autonomy to determine recovery or mitigation strategies. For example, 

robust AUV autonomy must handle complex failures like unanticipated low power [8] or 

reduced hydroplane functionality [7]. With true AUV autonomy the vehicle can 

autonomously make decisions, enact these decisions through applied actions, evaluate 

the results of these actions and adapt. This is paramount for more complex and longer 

missions in dynamic underwater environments [8].  

 

AUVs can operate in different modes depending on their mission. For example, the 

vehicle may be set to a depth-keeping mode where it attempts to maintain a constant 

depth (relative to the water surface) within the water column. An application that may 

use this would be for collecting water samples [15]. Alternatively, another mode is 

altitude-keeping where the vehicle attempts to maintain a constant stand-off (distance) 

from the seabed. This is useful for missions like route surveys, where a map of the 

seabed is generated, or searches for objects like mines or wrecks, where it is desired 

that the sensor on-board the AUV be at a constant distance from the seabed to create a 

map. 

To enable AUVs to maneuver underwater, they are equipped with maneuvering and 

propulsion systems. 

 

2.2.1 Actuators 

AUVs often employ propeller-based propulsion systems. Some AUVs make use of 

gliding [16] or more bio-inspired propulsion such as fish-styled swimming [17]. AUVs 

that are torpedo-shaped often propel, like submarines, with a propeller pushing the 

vehicle forward. Their speeds usually range between 2 to 5 knots [7]. Fins (or 

hydroplanes) are used to maintain or alter the vehicle’s attitude (yaw, pitch, and roll, 

see Figure 2-1) in a three-dimensional space by changing their deflection angles to 
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generate more or less lift as required. Vehicles can change their depth in two modes. 

The first, commonly referred to as the ‘flying’ mode, uses changes in the vehicle pitch to 

change (fly to) depth, like an aircraft. Some AUVs are equipped with vertical thrusters, 

or hydroplanes, located at the center of hydrodynamic forces to change the vehicle’s 

depth without changing its pitch. The choice of one or the other depends on the mission 

and on-board payload sensor.  

 

AUVs’ have two types of buoyancy control systems. The first is a static buoyancy 

system usually in the form of syntactic foam (glass air bubbles embedded in a matrix) 

designed for underwater applications (e.g. at the top of a remotely operated vehicle). 

The second, is a variable ballast control system [18] which changes the mix of water or 

air in the on-board ballast tanks to achieve the desired buoyancy. This is used in 

submarines and large AUVs [19]. Often AUVs are slightly positively buoyant as a fail-safe 

to ensure the AUV surfaces in the event of a power loss. There are buoyancy systems 

that change over the course of the mission to help the AUV adaptively maintain trim as 

it transits into water with a different salinity or temperature (since these effect water 

density) [20]. AUVs can also make use of weights which are dropped for an emergency 

rise or large changes in weight in water due to payloads being deployed.  

 

Figure 2-1 Coordinate system for a six degrees-of-freedom AUV [90] 
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AUVs can acquire measurements on their environments, and themselves, 

through sensors.  

2.2.2 Sensors 

Sensors are instruments that make measurements on environmental and vehicle 

variables (i.e. salinity, pressure, accelerations, etc.). Satellite communication, radio, 

optical, and other electromagnetic signals are only possible when surfaced; due to the 

effects of water attenuation which can only propagate short distances. Consequently, 

AUVs primarily rely on acoustic energies and waves. Acoustic waves can propagate 

much further than electromagnetic waves underwater but are limited in bandwidth as 

their carrier frequencies are only 10’s of kHz (compared to MHz and GHz above-water). 

Additional complexities with acoustic waves include: reflections and refractions, and 

unique to acoustic are low sound speed, multi-path, internal waves, high ambient noise 

[6] [21], and convergence and shadow zones [22]. 

 

Given the general lack of underwater positioning references, underwater 

navigation is often achieved through dead reckoning. This is improved with inertial 

navigation systems (INS) that sense the vehicle acceleration vector and double-integrate 

that to determine displacement. Often, these INS are coupled with a speed-over-ground 

velocity measurement through a Doppler velocity log (DVL) sonar to slow the overall 

error growth. DVL-lock is a state where the DVL is within range to sense the seabed (or 

surface if pointed upwards) and thus contribute a speed-over-ground measurement to 

bound the error growth from a pure inertial measurement. DVL-lock may not be 

possible in deep water or if the AUV is operating at high altitudes with respect to the 

DVL range. Bottom-lock is when the AUV is within range to the seabed and 

appropriately angled for all desired sensors to measure the seabed, in lieu of other 

sensors DVL-lock can be assumed to be bottom-lock. Long duration missions could have 

the AUV surface for GPS calibrations to zero the accumulated error from dead 

reckoning. This creates overhead and consumes energy if the AUV is operating in deep 

water. As well, this is not an option if the AUV is operating under ice. 
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Deployed transponders can be used to determine the vehicle’s position through 

acoustic positioning similarly to GPS [6]. These can be fixed to underwater nodes, 

marine structures and surface vehicles. However, they require the external systems to 

be in place and have limited accuracy depending on range and setup. 

 

LiDAR (light detection and ranging) is a remote-sensing method using coherent 

light to measure range. This is limited due to the high attenuation of electromagnetic 

energy underwater. However, there are underwater LiDAR in the blue-green wavelength 

range that could achieve 50 meters, or more, range. Generally, LiDAR is used over short 

ranges for tasks like inspecting structures [23]. 3D lasers can be used for triangulation 

and achieving high resolution 3D images of underwater objects [24]. Optical short-range 

transmitter/receivers are a current research area to increase communication and data 

transfer in underwater systems [25]. While electromagnetic waves do not travel far 

underwater, they have higher bandwidths (by orders of magnitude) which allow for 

faster and larger data uplinks. 

 

Sensors have limits in their dynamic range and can be noisy. One way to address 

this is to use state-estimation methods that fuse the sensor measurements with other 

sensing modalities (e.g. INS fused with an acoustic sensor like a DVL) and to 

acknowledge their noisier character. For this, a sensor model is needed which also 

captures the sensor’s noisy measurements through a probabilistic model [26]. Sensors, 

and their subsequent measurement processing, require energy. AUV sub-systems for 

communications, actuation, ballasting, navigation (INS, compass and DVL), sensor 

processing, power management, etc. all require energy. Therefore, a critical AUV sub-

system is the power management system which administers how the energy (and 

subsequently, power) is distributed across the sub-systems. 
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2.2.3 On-board power management systems 

Underwater vehicles are limited in energy conversion options due to their 

environment. For example, solar panels can only be used when surfaced; however, the 

energy source from this method is low efficiency and is only enough to charge 

secondary batteries [16]  

Internal combustion engines cannot be used due to lack of oxygen, although closed-

cycle diesel engines and Stirling engines can be used for short durations, they are not 

typically implemented on AUVs [27]. Nuclear reactors are used on submarines but are 

generally less feasible on AUVs which are much smaller and do not have on-board 

operators. Another option are fuel cells [27]. 

However, energy sources specific to AUVs are generally batteries [27] [18].Sensor 

data acquisition, actuation, and processing energy requirements must be balanced with 

vehicle support sub-systems and mission requirements. Typically, the energy required 

for a mission is defined as follows (equation 2-1 and 2-2): 

𝑒𝑛𝑒𝑟𝑔𝑦 =
(𝑝𝑜𝑤𝑒𝑟𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + 𝑝𝑜𝑤𝑒𝑟𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑝𝑜𝑤𝑒𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)×𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 (2-1) 

or: 

𝑒𝑛𝑒𝑟𝑔𝑦 = (𝑝𝑜𝑤𝑒𝑟𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛  +  𝑝𝑜𝑤𝑒𝑟𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑒𝑛𝑠𝑜𝑟  +  𝑝𝑜𝑤𝑒𝑟𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) × 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (2-2) 

such that: 

Table 2-1 Energy requirements 

power type propulsion / actuation payload vehicle equipment 

sub-system 

propellers sensor embedded processor 

fins electronics  navigation (INS, DVL, etc) 

rudders data logger communications 

hullform drag   buoyancy control 

  energy storage 

  miscellaneous 

 

The total power for each of the three power types are usually known for a given 

vehicle state. Long-endurance missions require that more batteries must be onboard 
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which usually translates to a larger AUV hullform resulting in greater drag. There is an 

optimal tipping point between energy carried, endurance (includes payload sensor 

needs) and hullform [18]. 

 

The ability for successful, long-duration, and complex AUV operations, and to a 

lesser extent, vehicle survivability could be enhanced through on-board vehicle 

autonomy.  

2.2.4 Autonomy 

Autonomy refers to the on-board intelligence of the vehicle and its ability to operate 

without direct human supervision. This can be broken into four levels that distinguish 

the vehicle’s independence from its operators (see Figure 2-2). A system that is 

remotely controlled by a human operator has no autonomy, such as an ROV. A human-

delegated system (Figure 2-2) is one which follows mostly scripted instructions. Factory 

conveyor line robots often fall under this. Human-supervised (Figure 2-2) refers to 

systems that can make decisions but communicate with operators while performing 

tasks. For instance, autonomous spacecraft can operate independently but rely on 

operators for their prescribed recovery actions from complex faults [29]. A fully 

autonomous vehicle (Figure 2-2), however, may have limited or no operator to rely on 

and must make all decisions, implement its decisions through actions and evaluate and 

adapt as required. Due to the range and bandwidth limitations of underwater 

communications, an AUV must be as fully autonomous as possible [30]. 

 

Figure 2-2 Levels of autonomy increase from human operated to fully autonomous [31]. 

human operated

human delegated

human 
supervised

fully 

autonomous
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Given the limited communications with operators, a fully autonomous vehicle 

requires a robust fault manager as part of its autonomy to address unanticipated issues 

that may lead to mission failure or loss of vehicle. This is how AUVs can increase their 

endurance long missions.  

 

2.3 Fault management 

“A fault is an unintended or unanticipated change, i.e. an anomaly, or defect in the 

AUV’s system function or state which interferes with its nominal operation by causing 

performance deterioration. The fault can be by an incorrect step, process or damage to 

the AUV” [32]. A fault may lead to a failure. A failure is the state or condition of not 

meeting a desirable or intended objective and may be viewed as the opposite of success 

[10].  

A fault-management or fault-detection, identification, and recovery (FDIR) system is 

a methodology to determine if a fault or failure has occurred (detection), what the 

fault/failure is and how it affects the vehicle sub-systems (identify, diagnose, localize), 

and finally, devise the most appropriate action to mitigate its impact (recovery) on the 

vehicle and/or mission. 

 

Fault management systems are common in robotic and computerized systems. 

However, currently most fault management systems for AUVs operate with static pre-

set actions for faults [7] and thus cannot adapt to complex or unanticipated 

faults/failures. Faults and failures can be probabilistic [3] (i.e. their occurrence is not 

deterministic) and AUVs operate in a dynamic environment which can have uncertain 

effects on the vehicle [33], among them, trigger faults/failures. Fault management for 

AUVs would need to address this. 

 

A fault-management system can be distributed, decentralized, or coordinated [34].  



- 13 - 

 

• A distributed fault-management system is a single entity that may be spread 

(distributed) over multiple sub-systems to off-load computation effort, but it is 

essentially a single overarching system [34]. 

• A decentralized system has each sub-system maintain its own fault management 

[34]. 

• With a coordinated system, each sub-system maintains a fault management 

system with an overarching coordinator that provides oversight to ensure the 

sub-system recovery measures are consistent with the overall system and 

doesn’t have undesirable interactions with other sub-systems [34].  

The first step in fault management is to detect that a fault or failure has occurred. 

 

2.3.1 Detection: direct and indirect observations  

To sense the vehicle state, the fault management (or other) system makes 

internal and external measurements of the vehicle. Variables which can be measured or 

sensed directly by sensors are observable variables [35]. An example is a depth 

(pressure) sensor to determine the vehicle’s depth in the water column. The data that 

the sensor collects is a direct measurement that is part of the vehicle’s state. 

 

Non-observable variables are those that must be extrapolated or inferred, 

indirectly, by combining or interpreting data from other sources [35]. The INS measure 

the AUV acceleration vector, and with information from other sensors, can provide a 

hypothesis on the vehicle pose. 

 

Once it is established that a failure has occurred, the exact failure and its causes 

must be identified (diagnosed). 

 

2.3.2 Identification and diagnosis 

The fault management-system desired here must diagnose the cause of the 

fault. Inference, meaning a conclusion reached based on evidence and reasoning, is 

used to combine data and information from observable and partially-observable (in 
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Bayesian networks these are also referred to as non-observable) variables to diagnose 

the fault/failure. 

 

Inferring failure states can be difficult. Multiple known faults could manifest 

similar symptoms and unknown faults may also trigger the same indicators [36]. Sensor 

measurements are limited to what is available on the vehicle and may be affected by 

the fault. Failures are often inferred from multiple data sources [7]. For example, the 

DVL may fail to achieve DVL-lock (i.e. sense the seafloor) because the vehicle is at too 

high an altitude or the vehicle pitch or roll is so high that the seabed it is pointing at is 

not within detection range.  

Knowledge (Figure 2-3) is inferred information about the vehicle and the 

environment that informs not only specific measurements but the relationships and 

context in which these measurements are acquired. The fault manager can better 

determine failure states and fault causes by combining knowledge of the system to 

distinguish between faults. 

 

Figure 2-3 Sensor data to knowledge of vehicle state. Raw data is processed and combined 

into information that represents information on observable and non-observable variables 

that are used to infer knowledge of the state [31]. 

 

A cascade fault is when one failure triggers subsequent faults which may obscure 

the cause of the original fault [12]. 
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Fault detection and identification are often studied in tandem since detecting 

the existence of a problem is not particularly useful unless the nature or cause of the 

fault can be identified. Once the fault-management system has identified the root cause 

of the failure, it needs to devise an action to recover or mitigate its impact on the 

vehicle and mission. 

 

2.3.3 Recoverability 

The desired fault management system must make decisions and determine the 

best recovery or course of action given a failure and then implement the action. 

Depending on the fault, there may not be a best recovery and the system may be left in 

a long-term degraded state until operators can intervene. One method of recovery is 

control reconfiguration [30]. 

 

With control reconfiguration the fault manager reconfigures a system to mitigate 

repercussions from the fault. This may involve the selection of a new configuration or 

relying on alternative sensor inputs and actuator outputs to continue the mission [30]. 

For example, the control system could restart a degraded sub-system to reset to a 

default initial state. Alternatively, a vehicle may reconfigure to accommodate the fault. 

For example, it could redistribute the actuator control to account for a jammed fin on an 

autonomous underwater vehicle [30]. Another method would be to turn off 

unnecessary processes and sensors to limit power consumption if the fault was an 

unanticipated low-energy state. 

 

Fault management is necessary for AUVs to overcome failures and successfully 

(as much as possible) complete missions. To that end, different schemas have been 

developed to incorporate intelligence modelling for a vehicle’s autonomy. 

 

2.4 Intelligence modelling 

The fault management system determines how the system senses and interprets the 

vehicle and surrounding environment. The two common schemas are model-free and 
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model-based. The most common, and often simpler, implementation is the model-free 

one. 

 

2.4.1 Model-free based schema 

A model-free system does not have a unifying overview of itself and the 

environment. Often these systems are divided into behaviours that perform specific 

actions such as diving to a specified depth or transiting to a waypoint. Each behaviour 

represents a discrete observable action that can be performed [37] in response to a set 

of conditions.  

The model-free based systems can use rule-based tables for fault mitigation. 

Rule-based (or look-up) tables statically map a set of conditions, or rules, to a response 

action [9]. These rules are often pre-set by experts before a mission [32]. While these 

methods can be effective, they can be limited by the inherent partially observable 

(incomplete system representation from limited sensors) nature of the system and 

cannot predict and mitigate unknown (new) or future faults and failures [38]. Scalability 

of the look-up tables schemas are difficult when applied to more complex systems [39]. 

An alternative to model-free are model-based schemas. 

 

2.4.2 Model-based schema 

Model-based schemas generate models of the vehicle and its environment. 

These models are internal representations used to aid in the vehicle control and 

decision making. These models are generated by combining data from sensors, prior 

available hardware characteristics (sensor failure rates), a priori available measurements 

(e.g. water density from salinity, temperature and pressure), expert estimations 

(likelihood of system failures or issues), and inference from combining observations. 

They can also involve either models of the vehicle, or its sub-systems, that capture the 

evolution over a mission. Ideal models (built on how the system should operate) are 

sometimes referred to as the plant [40] or nominal models [41].  
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There are three types of model-based analyses: analytical, knowledge-based, and 

stochastic [12]. 

• Analytical models are for systems that operate on first principles such as 

feedback controllers. These are aimed at low-level hardware and component 

level operations [12]. 

 

• A knowledge-based approach uses a model built on in-depth knowledge and 

insight of the structure, components, and interaction of the components in the 

system. The model captures the ideal system [41] and compares it against the 

observed model (also known as the artefact [42]) to find inconsistencies 

(sometimes referred to as consistency-diagnosis [41]). If inconsistencies are 

found these are determined to be faults [12] [40]. 

 

• Stochastic models use probability distribution functions in their world model to 

account for the only partial observability and uncertainty in a dynamic ocean 

environment. This is achieved using statistical filters to update the probability 

distributions of the system’s model as measurements become available [12].  

 

Model and behaviour-based control schemas can be hybridized to create more 

complex and flexible control paradigms [9]. 

 

2.4.3 Model-behaviour hybrids  

Model-behaviour hybrid designs are common in modern robotics for modular 

design and greater flexibility [9]. Behaviours allow the system to encapsulate its controls 

and react quickly to unanticipated changes. This combined with a world model that is 

incrementally updated, allows the vehicle to logically choose behaviours to optimize 

mission execution. 

 

An example is an architecture that uses a controller, called a hybrid automata 

machine, which chooses actions to accomplish the mission goals. These finite-state 
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machines encapsulate states that are continuous models of complex behaviours [43]. 

Each model represents the behaviour’s actions and maps how the vehicle’s state will 

change over time. The control system determines how to transition the behaviours 

based upon pre-set state limits. 

 

Behaviours can also be blended for precise switching between states which grants 

greater control and smoother transitions between actions. The behaviour values are 

added based upon a sliding control which determines to what degree any given 

behaviour affects the robot’s final actions. An example of this blended state is a 

behaviour to ‘go-to-goal’ and ‘avoid obstacles’. While approaching an obstacle, the 

avoidance behaviour might assign higher priority for decision-making, but as the vehicle 

gains distance from the obstacle it would revert to its ‘go-to-goal’ behaviour.  

Control systems, including fault management ones, operate in two types of 

measurement and time modelling: discrete and continuous. 

 

2.4.4 Discrete and continuous systems 

Discrete systems model the world in discrete timesteps while continuous 

systems model the world as continuous functions. Discreet time is commonly used in 

robotics due to the finite sample rate of sensors. If a sample rate is sufficiently high to 

capture the highest frequency phenomena (i.e. the Nyquist frequency [44]) it is 

indistinguishable from a continuous model. This is a driver to determine the appropriate 

sampling frequency to use. 

 

The nature of computations requires systems to operate in discrete time. The 

system clock of the central processing unit (CPU) dictates the unit speed at which digital 

information can be processed. Digital-to-Analog Converters (DAC) and Analog-to-Digital 

Converters (ADC) allow for sufficiently sampled signals to be converted back and forth. 

Processing data in continuous time is generally more computationally intensive due to 

the high sample rate although to do otherwise may lead to not capturing vital 
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information between samples (i.e. the Nyquist rate was not achieved). Many systems 

process information in discrete time to minimize computation. 

 

Intelligence modelling can be built using different architectures for the system design. 

 

2.5 Architectures 

Each type of fault management schema can be further broken into reactive, 

deliberative, [32] or hybrid architectures. These architectures encapsulate how the 

intelligence of the vehicle is formulated and implemented.  

 

Software architectures are an implementation of the fault management to run the 

autonomous system. “An architecture provides a principled way of organizing a control 

system. However, in addition to providing structure, it imposes constraints on the way 

the control problem can be solved” [37]. There are different architectures ranging from 

simple reactive-based control schemas to complex learning algorithms. The type of 

architecture required depends on the existing capabilities of the autonomous vehicle, its 

desired capabilities, the mission, and the environment it interacts with. 

 

To start, reactive architectures are common due to their design simplicity. 

 

2.5.1 Reactive architecture 

Reactive architectures are generally fairly simple, they operate using a sense-

plan-act schema [45] that reacts to events with mostly pre-set responses. These 

architectures are useful for fast decision-making (e.g. obstacle avoidance) in dynamic 

environments. They are generally used with model-free or behaviour-based systems.  

Another architecture type is a deliberative architecture. 

 

2.5.2 Deliberative architecture 

Deliberative architectures are designed primarily for model-based systems 

where the system can plan its mission against models of the vehicle and its environment 
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[45]. These models facilitate deliberative mission-planning and predictions on mission 

execution.  

 

Some designs feature a hierarchical structure where the model is broken into 

layers, with each layer providing sub-goals and instructions that are propagated to 

subsequent layer(s) [37]. Sensors update the vehicle’s model and actions are filtered 

through the layers to arrive at the best course of action. The top-most layers focus on 

the end-goals of the mission. These long-term goals are processed into short-term goals 

for immediate actions. The bottom layers comprise of direct control actions. These 

architectures are suited for complex tasks but usually require complete world models 

and thus may be slower to execute, even for simple actions [37]. It can be difficult to 

develop or have complete world models to work with.  

 

An example of this is a deliberative layered architecture that is proposed for 

discrete and continuous-time systems based on consistency-based reasoning [46]. 

Consistency-based reasoning compares the ideal model of the system to the sensed one 

and searches for inconsistencies that could resulted from failures in the vehicle. This 

consists of five (5) main layers: data validation, propagation and prediction, hypothesis 

generation, hypothesis testing, and hypothesis discrimination. The steps are designed to 

parallel the processing steps for consistency-based reasoning [46]. 

The implementation of intelligent systems requires algorithms for processing 

information from data.  They can vary in computational complexity.  The deliberative 

architecture is of interest in this thesis.  

 

Algorithms and decision-making all require time and processing resources to 

execute. It is useful to compare different methods based on the computational difficulty 

to ensure the balance between accuracy and computational time (i.e. time it takes to 

solve the problem). 
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2.6 Computational Difficulty 

AUVs possess limited computational resources and as such can be limited in 

computing power. Algorithms are parsed into different groups based on the complexity 

of their solutions (see Figure 2-4).  

 

 

The various computational difficulty classes modelled in Figure 2-4 are as follows: 

• NC (Nick’s class): problems can be solved in poly-logarithmic time when 

parallelized with a polynomial number of processors [47]. 

• P-hard: problems cannot be solved in poly-logarithmic time when parallelized 

with a polynomial number of processors [47]. 

• P-complete: refers to problems both NC and P-hard. Assuming NC ≠ P [47]. 

• P-time: refers to algorithms that can be solved in polynomial time. 

• NP-time: refers to algorithms whose solutions can be checked in polynomial time 

[48]. 

•  NP-hard: refers to algorithms that are at least as difficult to compute as the 

hardest NP-time solution [48].  

• NP-complete: are algorithms that are both NP-time and NP-hard [48]. 

Figure 2-4 Computational complexity terms comparison [48] [47]. exp stands for exponential 

and P stands for polynomial. NP stands for nondeterministic polynomial. 
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• EXP time: refers to algorithms that can be solved in exponential time [48]. 

• EXP-hard; refers to algorithms that are at least as difficult to compute as the 

hardest exponential-time solution [48]. 

• EXP-complete: are algorithms that are both EXP -time and EXP -hard [48]. 

• PSPACE: are algorithms that can be solved in polynomial space [48].  

• PSPACE: refers to algorithms that are at least as difficult to compute as the 

hardest PSPACE solution [48]. 

• PSPACE: are algorithms that are both PSPACE and PSPACE-hard [48]. 

• recursive are algorithms that can be solved [48]. 

 

Algorithms that fall in polynomial time are generally seen as ideal with NC 

algorithms useful since they can be processed on parallel processors to further reduce 

their computational time. It is important to account for the computational complexity of 

the models in the autonomy. This will be further discussed in sections 2.10 and 2.11. 

An important statistical field for this thesis’ purposes are Bayesian statistics. 
 

2.7 Bayesian statistics 

Non-deterministic quantities that have inherent uncertainty can be modelled 

through random variables as probability distributions. With Bayesian statistics, 

inferences or hypotheses on such variables are updated as evidence (measurements) 

accumulate. The ‘belief’ in an event can be based on its prior state updated with 

measurements. Bayesian-based methods are powerful decision-making and inference 

tools for stochastic systems [35]. Bayesian statistics provide a framework to represent 

the internal ‘belief’ of a robot’s state, even in the presence of partial observability, 

which is inherent in systems where it is not possible to measure all variables that define 

its state (e.g. AUV underwater localization). 

 

Bayes’ theorem (equation 2-1) relates the probability of an event, conditioned on 

another related event, based on prior information and observations. It states that the 

probability of event A, given event B occurred, is equivalent to the conditional 
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probability of event B given A multiplied by the marginal probability of event A (the 

unconditioned prior) normalized by the marginal probability of event B (the evidence) 

(equation 2-3).  

𝑷(𝑨|𝑩) =  
𝑷(𝑩|𝑨)𝑷(𝑨)

𝑷(𝑩)
     (2-3) 

In addition to Bayes’ Theorem, another algorithm that is often used in stochastic 

modeling is the Markov assumption. 

 

2.8  The Markov assumption 

Markov’s assumption is that the future is conditionally independent (equation 2-4) 

of the past given the present [35]. 

(𝑋𝑡+1 ⊥  𝑋0:𝑡−1 ⊥  𝑋𝑇 )     (2-4) 

A process is said to be Markovian if it adheres to this assumption. Many dynamic 

probabilistic models use Markov’s assumption to reduce complexity over temporal 

models. Equation 2-5 shows that at each timestep the future timestep’s state 

probability distribution only depends on the current state’s probability distribution 

given that at each timestep, the current state’s probability distribution is updated [35]. 

𝑃(𝑋0, 𝑋1, … , 𝑋𝑇) = 𝑃(𝑋0) ∏ 𝑃(𝑋𝑡+1|𝑋𝑡)𝑇−1
𝑡=0    (2-5) 

Probabilistic graphical models, which are often used to represent stochastic models, 

can be Markovian for temporal variances [35]. 

 

2.9 Probabilistic graphical models  

Probabilistic graphical models (PGMs) are graph-based representations to compactly 

encode complex distributions over high-dimensional spaces. Each node of a variable is 

represented as a probability distribution (or mass) function [35]. Connections between 

nodes represent the causal relationships between them. A section of PGMs are 

described in the next few sections. The PGMs selected are variations of Bayesian 

Networks and in some cases are components of POMDPs which are of interest to this 

thesis. 
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2.9.1 Bayesian networks 

A Bayesian network is a 

type of probabilistic graphical 

model that uses Bayesian 

statistics to infer information 

about the system. Bayesian 

network representations are 

directed acyclic graphs (DAG) 

which capture probabilistic 

causal relationships between 

observable and non-observable 

variables through ‘edges’ or 

directed connections between 

the nodes (see Figure 2-5) [35]. 

In the example Figure 2-5 the observable nodes are the season, muscle-pain and 

congestion. The non-observable intermediate nodes are for flu, and hay-fever. The 

cause of the illness must be inferred from the symptoms and the time of year. 

 

Partially-observable (also known as non-observable) variables are of two types: 

targets and intermediate. Targets are information that is desired by the system while 

intermediate variables allow for help in managing the size of the conditional probability 

table, transparency to relationships and highlighted interactions between variables [49].  

 

A Bayesian network can be used to model temporal systems using a dynamic 

Bayesian network. 

 

2.9.2 Dynamic Bayesian networks 

Dynamic Bayesian networks (DBN) permit time evolution in the system [50]. DBNs 

model this by allowing new observations to be made, and prior belief distributions to be 

updated, via Bayes theorem and the Markov assumption. The structure of the DBN itself 

Figure 2-5 Example Bayesian network for diagnosing flu 

verses hay-fever given symptoms and season [35] 

hay fever flu 
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does not change but causal relationships between variables and the next timestep are 

represented [35]. For example, the vehicle’s position is affected by the previous 

timestep’s position and velocity if one uses dead reckoning. 

 

Dynamic Bayesian networks are used across a wide range of applications with 

stochastic temporal systems. One such example implementation was a tool for 

modelling AUV mission risk. 

 

2.9.2.1 AUTOSUB AUV MISSION-BASED RISK ANALYSIS TOOL 

An example of a DBN used in autonomous vehicles is a mission-based risk analysis 

tool that gives the likelihood of  vehicle loss given the mission and environment 

parameters [49]. While not a direct control system it demonstrates the stochastic 

nature of AUV missions and how DBNs could be applied. The DBN infers the risk of 

vehicle loss to determine if a situation puts the vehicle at risk. 

 

This was applied to the AutoSub AUV developed by the National Oceanography 

Centre (NOC) (Southampton, United Kingdom) for ocean research. Their 

implementation used a Bayesian belief network model combined with Monte-Carlo 

simulations to generate ‘risk-envelopes’ that create Kaplan-Meier survival plots [51] 

[52]. The Bayesian belief network drew on an expert panel to assign the required 

probabilities [53] [54]. Later, these values were updated using Bayesian networks that 

compare prediction versus the actual occurrence to better model the probability of 

vehicle loss [55]. 

This example demonstrates the applicability of stochastic temporal modelling to 

AUV missions and underwater environments. Another useful example of DBNs is for 

modelling of cascade failures. 

 

2.9.2.2 CASCADING FAILURE PROPAGATION 

DBNs were used to model cascade failures for their trade-off between analytical 

tractability and representation of propagating cascade failure events. The stochastic 
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model provides a representation of the physical model for the evolving cascading 

phenomena [56]. 

 

This example demonstrates the ability of DBNs to handle inference and determine 

the root causes of faults and failures which is  for fault management systems. A DBN 

that applies the Markov assumption to determine a system’s state is a Markov chain. 

 

2.9.3 Markov Chain Monte Carlo 

 A Markov chain Monte Carlo is a 

sequence of possible states that use 

the Markov assumption to make the 

conjecture that the current state only 

depends on the previous state. Monte 

Carlo meaning algorithms that use 

repeated random sampling to obtain 

numerical results. A transition function 

(equation 2-6) is applied so the 

probability of the next state [s’] is 

conditional on the current state [s] [35] (see Figure 2-6 A Markov chain example). This 

probabilistically models a system’s evolution to account for changes between states. 

𝑇(𝑠′
𝑖| 𝑠𝑖)                 (2-6) 

Markov chains can be applied to many problems since they can handle changes in 

states. A relevant example is the application of Markov chains to AUV risk assessment 

during critical mission phases. 

 

2.9.3.1 MARKOV CHAIN FOR CRITICAL PHASES IN AUVS  

A Markov model was applied to estimate risk to the vehicle during different phases 

in an AUV deployment, operation, and recovery. Faults were differentiated based on the 

mission phase [57]. This example demonstrates the strength of the Markov assumption 

to determine a vehicle’s state and risks in transitions for a fault management system. 

state 
A 

state 
B 

state 
C 

80%

20% 

Given state A, there is an 

80% chance of ending in state B and  
a 20% chance of ending in state C 

Figure 2-6 A Markov chain example 

https://en.wikipedia.org/wiki/Sequence
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Fault management systems must also act to mitigate fault and failure impacts on the 

mission. Decision networks are Bayesian networks that allow decisions or actions. 

 

2.9.4 Decision networks (DN) 

DNs are modified Bayesian networks that include ‘decision nodes’ and ‘value nodes’ 

[58]. Decision nodes are possible actions that affect variables with the value nodes 

representing the reward or cost of associated with the variable nodes and decision 

nodes. A policy is the analysis of the value nodes to map the best actions that have the 

highest reward or lowest cost to each possible state. Decision networks are useful for 

autonomous vehicles since they incorporate actions in the model and make 

comparisons to determine the optimal outcome.  

For example, a DN used to determine the best action to repair a faulted system is 

briefly described next. 

 

2.9.4.1 FAILURE COUNTER-MEASURES 

A decision network was applied to a case of a repairable hydraulic/ thermal system. 

The DN computed the system reliability, expected cost of the value nodes enacted, and 

the importance measure of components (meaning the criticality of the component 

failing). It then selected the ‘best’ countermeasure / repair for the system [58].  

 

This example demonstrates that a DN can be used to choose actions to mitigate 

faults. Another interesting example is the application of a DN as a countermeasure for 

external attacks. 

 

2.9.4.2 ATTACK/ DEFENSE COUNTERMEASURES 

A decision network was applied as a countermeasure to an attack / defense scenario 

of the Supervisory Control and Data Acquisition (SCADA) system. This application 

demonstrated that the DN can have complex modeling and a fault management system 

which was able to apply counter-measures to possible failures from external attacks 

[59]. This is a useful example since the faults / failures that a vehicle fault management 
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system may have to consider responses to external forces (e.g. interference from 

wildlife). 

 

Decision networks that model temporal variances and multiple actions over time are 

dynamic decision networks. 

 

2.9.5 Dynamic decision networks (DDN) 

DDNs, like their Bayesian network counterparts, are extensions of the decision 

process that account for temporal changes. They continually update their beliefs as each 

timestep provides new observations which can result in new actions to perform. 

DDNs are relevant for fault management, here, since they account for stochastic 

relationships between variables, fault mitigation actions, and the temporal evolution of 

the vehicle. An example is the Anomaly Resolution and Prognostic Health Management 

for Autonomy (ARPHA). 

 

2.9.5.1 ANOMALY RESOLUTION AND PROGNOSTIC HEALTH MANAGEMENT FOR AUTONOMY  

The ARPHA system is part of the VERIFIM project [29]. Its goal was to investigate 

methodologies for autonomous on-board FDIR by the European Space Agency and 

Thales/Alenia Italy [29]. This fault management system was developed for autonomous 

spacecraft and was demonstrated in a case study for the ExoMars Rover power system. 

This system uses dynamic decision networks to develop policies to determine the best 

response to a fault/failure incident [29].  

 

These DDNs were developed with an extended dynamic fault tree (EDFT) language 

[60]. ARPHA uses a junction tree to propagate observations and actions in the model 

and then computes the expected utility and future belief. A Boyen-Koller algorithm [61] 

provides the posterior probabilities over variables of interest to determine the system’s 

state and policy evaluation for actions to take [38]. 

 

Dynamic decision networks that apply the Markov assumption are Markov decision 

processes. 
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2.10 Markov decision processes 

Markov decision processes (MDP) 

are temporal dynamic decision 

networks with decision nodes, transition 

functions, and reward functions. They 

are Markovian processes since they 

assume the previous state is the best 

predictor of the current state (see Table 

2-2). MDPs are used to model decision 

processes given a probabilistic system state [s] that transitioned from the system’s initial 

state (prior) by applying an action, control or command. 

 

Markov decision processes are 

an augmentation of Markov chains; 

the difference is the addition of the 

choice of actions [a] and rewards 

for choosing those actions (see 

Figure 2-7). This process is captured 

in the state transition function (see 

equation 2-7). Additionally, the 

Markov assumption uses only the 

system state from the previous 

timestep to calculate the current 

probabilistic system state [62]. For 

example, given state A and action k, there is an 80% probability the new state is B, but 

there is also a 20% probability that the new state may be C if states B and C constitute 

the entire set of possible states resulting from applying action, k (Figure 2-7). 

𝑇(𝑠′
𝑖| 𝑠𝑖, 𝑎𝑗)                             (2-7)  

 

 
s:  finite number of AUV &  

environment states 

a:  finite set of actions the AUV can  
perform 

T:  state transition probability 
function      T(s’| s, a) 

R:  reward function R(s, a) 
h:  horizon 
ϒ:  discount 

Table 2-2 MDP tuple (s, a, T, R, h, ϒ) 

A 

B 

C 

80% 

20% 

Given state A and action k, there is an 80% chance of 
ending in state B and a 20% chance of ending in state 

C 

action: k 

Figure 2-7 Example of T(s’ |s, a) in which possible s’ 

are states B and C, s is state A and action is k 
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𝑅( 𝑠𝑖, 𝑎𝑗)                               (2-8) 

The reward function (see equation 2-8) gives a cost/benefit for performing an action 

given the state. For example, a positive reward may be given for the vehicle rising when 

its state is too deep in the water column and a negative reward when it descends. The 

horizon is a count of how many future steps to plan beyond the immediate one. For 

example, a horizon of 3 may have 3 sequential actions that are performed to result in 

the desired state. The discount is applied to the reward so future rewards are less than 

immediate rewards. This allows the control system to focus on immediately beneficial 

actions over future ones for a more responsive system. A policy can be created that 

maps all possible states given their prior state and the action applied. 

 

The utility function combines the reward and likelihood of an action transitioning 

the state to the rewarded one – the ‘Bellman Equation’ (equation 2-9). The optimal 

equation is the maximum utility action given the state (equation 2-10) [63]. 

𝑉(𝑠𝑖)  = 𝑅(𝑠𝑖) +  ϒ ∑ 𝑉(𝑠𝑖)𝑇(𝑠′
𝑖| 𝑠𝑖, 𝑎𝑗)𝑁

𝑗=1               (2-9) 

 

𝑃𝑜𝑙𝑖𝑐𝑦 𝜋(𝑠𝑖) =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

∑ 𝑉(𝑠𝑖)𝑇(𝑠′
𝑖| 𝑠𝑖, 𝑎𝑗)𝑀

𝑗=1         (2-10) 

Each timestep’s state is affected by the previous state and action. The reward 

received is affected by the state, the new state, and the action performed (Figure 2-8). 

 

 

S
0
 

A
0
 

R
0
 

S
1
 

A
2
 

R
1
 

S
2
 

A
2
 

R
2
 

Figure 2-8 Markov decision network over 3 timesteps [91]. 
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A policy generated for a system maps the states to actions that have the best utility 

function. A common way to generate the policy for an MDP is through a value iteration 

solver.  

 

2.10.1 Value iteration solver 

Value iteration calculates the utility of all actions for a given state. It then selects the 

action with the highest utility for the given state. The policy is generated by iterating 

through all possible actions a state might execute and map each state to an action and 

probable new state [64]. The MDP value iteration can be solved in polynomial time and 

is P-complete [65] [66]. 

Markov decision networks have been applied to several applications which are 

discussed next. 

 

2.10.2 Example control systems 

MDPs are increasingly applied to real-world systems since they model stochastic 

systems and provide actions to those systems as part of the vehicle’s autonomy. One 

example is an MDP applied to a faulted AUV. 

 

2.10.2.1 REAL-TIME OBSTACLE AVOIDANCE FOR UNDER ACTUATED AUV 

A Markov decision process was used to plan the kinematic motion of an 

underactuated AUV for real-time obstacle avoidance. This was performed in an 

unknown environment with no prior knowledge of obstacles and an unknown sea flow 

vortex was applied. The system used a combination of geometrical rough path-planning 

and MDP-based target path-tracking which was supported by reactive collision 

avoidance [67]. This example demonstrates the applicability of MDP for AUV fault 

management. 

Another example is MDPs applied to AUVs for tracking of targets. 

 

2.10.2.2 TRACKING A ROW OF DISCRETE TARGETS WITH AUVS USING MDP 

A Markov decision process was applied to a vehicle control system to determine 

search areas for naval mine countermeasures [68]. A grid is overlaid onto the area the 

AUV searches for targets in. Each individual target does not need to be found since mine 
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disposal (typically with underwater charges) affects an entire area and nearby 

undetected mines would also be neutralized. The search area was divided into cells, 

based on the overlaid grid, where each cell’s probability distribution relates the 

likelihood it contained targets. The MDP determined which cells to search for new 

targets and minimizes mission time given the likelihood of a cell containing a target and 

the distance from cells confirmed to contain a target [68]. 

 

This complex modelling is a useful example for AUV fault management as it 

demonstrates MDPs can be used to predict possible states, given current information, 

and devise actions accordingly. Collision avoidance for UAVs is another example of 

predicting faults and taking actions to mitigate them before they because issues. 

 

2.10.2.3 AUTONOMOUS COLLISION AVOIDANCE WITH DELAYED PILOT COMMANDS 

An MDP was used to compute the optimal wait strategy for an unmanned aerial 

vehicle’s (UAV) pilot control input. It determines whether an expected communication 

latency is larger than the optimal wait time, and if so, to autonomously maneuver the 

UAV to avoid the obstacle. This methodology must determine the likelihood of a delay 

and autonomously act, as opposed to wait for the pilot input [69].  

 

This example also demonstrates an MDP that chooses between actions set by the 

pilot (UAV would have pre-set missions) and those that benefit the vehicle health. 

Pre-planning collision avoidance is another relevant example for a fault 

management system. 

 

2.10.2.4 COLLISION-FREE TRAJECTORY GENERATION FOR UAVS 

An MDP-based algorithm combined with the backtracking method, was applied to 

optimally re-route a UAV to avoid both static and moving obstacles, track moving 

targets and solve for the best route to avoid them. A flatness-based trajectory planning 

method was applied to integrate the UAV physical constraints [70]. 
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This example demonstrates planning long-term actions to avoid obstacles. This is of 

interest to fault management since obstacle avoidance is local vehicle navigation.  

 

AUVs are uncertain about their state due to sensor limitations resulting in partial 

observability of themselves and their environment. Markov decision processes are 

limited as they assume the state is always known. Partially observable Markov decision 

processes address this gap. 

 

2.11 Partially observable Markov decision processes 

Partially observable 

Markov decision processes 

(POMDP) incorporate the 

MDP and the assertion that 

the system’s state is only 

partially observable and 

could be approximated with 

a belief distribution over all 

possible system states (see 

Table 2-3). A belief state is a probability distribution across the possible state space 

representative of the vehicle’s current state, given its past history of actions and 

observations [71]. 

An observation is a discrete value for a variable that is used by a POMDP model to 

predict its state. The probability of the making-an-observation function (see equation 2-

11) maps the conditional probability of making that observation given the state and 

action that was executed.  

𝑂(𝑜|𝑠′, 𝑎)      (2-11) 

This function along with the state transition function in the MDP model captures the 

uncertainty of the system’s state estimations [72]. This allows the MDP to model the 

uncertainty of the state as well as the transition in state from actions.  

 
s:  finite number of AUV and environment states 
a:  finite set of actions that the AUV can perform 
o:  finite set of observations the AUV can make 
T:  transition probability function T(s’| s, a) 
R:  reward function R(s, a) 
O:  probability of observation function O(o| s, a) 
b:  belief distribution of across all possible states 

for which state the vehicle is in. 
h: horizon 
ϒ:  discount 

Table 2-3 POMDP tuple (s, a, o, T, R, O, b) 
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For each timestep, given a series of observations, the belief distribution of the state 

is updated using equation 2-12 with the normalizing constant (𝜂) for the belief update 

defined in equation 2-13 [63]. 

𝑏′(𝑠′) =  𝜂 𝑂(𝑜|𝑠′, 𝑎) ∑ 𝑇(𝑠′|𝑠, 𝑎)𝑏(𝑠)𝑠𝜖𝑆     (2-12) 

𝜂 =
1

∑ 𝑂(𝑜|𝑠′,𝑎)𝑠′𝜖𝑆  ∑ 𝑇(𝑠′
|𝑠, 𝑎)𝑏(𝑠)𝑠𝜖𝑆

    (2-13) 

Like the MDP, each timestep of the state is affected by the previous state and 

action, and the reward is affected by the state, the next state and the action chosen. 

The action chosen is affected by the observations made, which are used to build the 

state belief since the state cannot be observed directly (Figure 2-9). 

 

A major draw-back of the POMDPs is their high-dimensional space. Additionally, 

when planning for a horizon of more than one timestep, the complexity is exponential 

since each state is probabilistic and the next timestep must account for the previous 

state being known. The conditional probabilities of the observation function can be 

generated from the vehicle’s sensor models [73].  

 

The process to generate a policy (maps belief states to best actions for maximum 

reward) is made more complex by the POMDPs lack of known state. This could be 
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Figure 2-9 Partially observable Markov decision network over 3 timesteps [91] 

(O=observation, S = state and A = action). 
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addressed by solvers that attempt to minimize the solving complexity while still 

generating optimal policies for large state spaces. 

 

 

2.11.1 Solvers 

There are POMDP solvers, however, many only approximate the POMDP due to 

its high-dimensionality. The solvers vary due to the models they are applied to, their 

execution speed, assumptions of the environment, etc. Some solvers only seek a local 

optimal and others are combined with state estimators like particle filters. Solving 

POMDPs is highly intractable generally, partly due to the optimal policy potentially being 

infinitely large [74]. POMDPs for finite horizon cases are PSPACE-complete [65] [75]. This 

makes their solving time grow exponentially [76] for larger state, observation, and 

action spaces. This could be an issue when applied to AUVs and as such alternative 

solving methods, such as approximate solutions, may be preferable. The following 

solvers were selected for review based on their precursor to other solvers, and their 

appropriateness to autonomous vehicle applications. 

Value iteration, with a known reward function, forms the basis for POMDP 

solvers and is discussed next. 

 

2.11.1.1 VALUE ITERATION 

Similar, to MDP value iteration, a POMDP value iteration calculates the utility 

relative to the payoff (reward) function [64]. However, POMDPs cannot directly 

determine the state. Instead, a piece-wise linear convex (PWLC) function must be 

developed. The PWLC maps the state belief and actions to the states they will end in 

[77]. Figure 2-10 shows a system with two states (0 and 1) and two actions (a1, a2). 

Initially, when b is within the first state, a1 (blue line) has the highest utility in reward. In 

the second timestep a2 (green line) would have the highest reward.  
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Figure 2-10 Value of a fixed action and observation [77]. The two possible states are 0 and 

1. The probability of being in either is given by the blue and green bar between 0 and 1. 

Each state has a utility function (blue and green lines). In the first timestep (left) given the 

belief b the highest utility value is from the action a1 (blue line). This results in the belief 

changing states from 0 to 1 in the next timestep (right). 

 

The value iteration algorithm defines the basics in many of the alternative 

solvers. However; it is time-consuming, intractable and consequently, inefficient. 

Additionally, the value iteration computes value functions for ALL belief states not just 

the relevant ones, some states will be unreachable from the current vehicle state. Other 

solvers search the subset of the state space with states, and actions that are attainable, 

desirable, and probable [64]. 

An alternative similar method to value iteration is policy iteration. 

 

2.11.1.2 SONDIK AND HANSEN’S POLICY ITERATION 

Policy iteration (proposed by Sondik [78]) iterates through possible policies using 

the utility function and attempts to improve the policy from the previous one. The 

policy iteration algorithm can converge to a policy arbitrarily close to the optimal policy 

[78]. The policy evaluation step converts a policy to an equivalent, or approximately 

equivalent, finite-state controller which allows the value function of a finite-state 

controller to be computed in a straightforward way. However; the conversion between 

these representations is complicated and difficult to implement, thus its limited use 

[79]. 
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Hansen proposed an improved policy-iteration algorithm and a new heuristic 

search algorithm that solves infinite-horizon POMDPs through searching for a policy 

space of finite-state controllers [79]. 

 

This solver, along with the previous solver, forms the basis of modern solvers 

however, they are unable to generally solve large state spaces. A solver that was 

developed to improve solutions for POMDPs was the witness algorithm. 

 

2.11.1.3 WITNESS ALGORITHM 

The witness algorithm explores a finite number of regions that are a partition of 

the state space imposed by the PWLC property of the value function [71] [80] [63]. It 

simplifies the solution of POMDPs to evaluating each action separately (rather than 

together like previous solvers) and then combines the value functions at the end. This 

solver was more efficient than previous versions however; it was still only efficient for 

smaller state spaces. Its improvements are often featured in other solvers. A larger 

improvement for solvers for larger state spaces was the point-based value iteration. 

 

2.11.1.4 POINT-BASED VALUE ITERATION 

Point-based value iteration (PBVI) selects a small set of representative belief 

points and iteratively applies value updates to those points. It applies explorative 

stochastic trajectories to select belief points, thus reducing the number of beliefs points 

necessary to find a good solution. PBVI focuses planning on reachable beliefs and due to 

its use of fixed belief points set, is able to perform fast value backups [81]. A further 

development of the PBVI is the implementation of Perseus. 

 

2.11.1.5 PERSEUS 

Perseus uses the randomized point-based value-iteration algorithm to operate 

on large belief sets that are sampled by simulating random trajectories through belief 

space. Approximate value iteration is performed on the belief set by applying several 

‘backup’ stages, which ensures that each backup incrementally improves the value of 
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every point in the belief set. A backup state refers to the value iteration’s method of 

updates to propagate information in reverse temporal order through the value function. 

Additionally, a single backup may improve the value of many belief points. Perseus 

backs up randomly selected subsets of points in the belief set, sufficient to improve the 

value of each belief point in the set. This reduces the computation burden on the back-

up stage which can be intensive [82]. 

 

Similar to PBVI augmentation of value iteration, an alternative to policy iteration 

is the method of point-based policy iteration. 

 

2.11.1.6 POINT-BASED POLICY ITERATION 

A point-based policy iteration (PBPI) algorithm for infinite-horizon POMDPs was 

implemented by combining policy iteration (Section 2.11.1.2) with point-based value 

iteration (Section 2.11.1.4). PBPI allowed for the faster convergence of policy iteration 

and the high efficiency of PBVI for policy improvement. PBPI is generally more robust 

and requires fewer points for solving than PBVI which leads to increased scalability and 

robustness compared to its predecessor [83].  

Alternatively, to variations on value and policy iteration are approximations of 

POMDP as MDP to solve for policies. One such solver is the augmented Markov decision 

process. 

 

2.11.1.7 AUGMENTED MARKOV DECISION PROCESS 

The augmented Markov decision process (AMDP) approximates the POMDP as a 

reduced MDP model to solve [64]. The AMDP compresses its space of beliefs to a mode 

incorporating the uncertainty of the distribution (i.e. distribution and entropy). It 

assumes that the “belief space can be summarized by a lower dimensional ‘sufficient’ 

statistic f, which maps belief distribution into a lower space” [64].The probability 

functions and reward functions for the augmented space are than learned. Once these 

new augmented functions are generated value iteration is used to generate the policy  

[64]. It then solves the policy of the approximated belief space as an MDP. This 
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however; is disadvantageous due to the compression of the model being 

computationally demanding [84].  

Another POMDP solver that uses an approximation of the POMDP as an MDP is 

the Q-MDP. 

 

2.11.1.8 Q-MDP 

A Q-MDP is a type of solver that approximates the solution of a POMDP by first 

solving the MDP and then applying the state belief distribution to the MDP policy to 

determine the POMDP policy [64]. The Q-MDP algorithm is the same complexity as MDP  

value iteration [75] [85] which simplifies its computational complexity to P-complete. 

The Q-MDP name is derived from the fact that single action value functions V(s, a) were 

historically referred to as Q-functions [80]. 

 

The Q-MDP makes the (usually false) assumption that after one step of control, 

the state becomes fully observable. This can be an issue since the algorithm assumes 

that any ambiguity will fall away in the next step, causing it to lean towards neutral 

actions and thus has difficulty in choosing information gathering actions [80]. However, 

while using direct control strategies in real world problems, Q-MDP policies perform 

very well [85].  

Equation 2-14 is the Q-MDP value update of the MDP value function and Equation 2-15 

is the Q-MDP policy update. 

𝑄(𝑠𝑖, 𝑎𝑗) = 𝑟(𝑠𝑖, 𝑎𝑗) +  ∑ 𝑉(𝑠𝑖) × 𝑇(𝑠′
𝑖| 𝑠𝑖, 𝑎𝑗)𝑁

𝑘=1    (2-14) 

Policy π = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

∑ 𝑏(𝑠𝑖
′)𝑄(𝑀

𝑗=1 𝑠𝑖, 𝑎𝑗)           (2-15)  

The Q-MDP solver is promising for the thesis application due to its ability to 

handle large state spaces with minimal computational complexity. PBVI, PBPI and 

Perseus are also plausible for this thesis’ application. Value iteration, policy iteration, 

and witness algorithm, while relevant to discuss due to them being much of the 

underlying processes of more modern solver implementation, are not suitable to be 

directly applied for the purposes here. The AMDP solver requires intense computations 
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for compression which an embedded AUV processor may not be able to handle and is 

thus less relevant for purposes here. 

 

Modern solvers often combine solvers with other methods (such as particle 

filters) or make assumptions to reduce complexity and solution state space. This with 

additional increases in computing power allows for more feasible application to real-

world problems.  

 

2.11.2 Example implementations 

While still primarily research tools due to their complexities and computation 

requirements, POMDP models are increasingly applied to real-world systems. This is due 

to their ability to account for decision-making, stochastic models, conditional 

relationships, probabilistic state transitions and system and environment partial 

observability. 

An example of this is a POMDP applied as a survivability agent (similar to a fault 

management system). 

 

2.11.2.1 AGENT SURVIVABILITY SYSTEM 

A POMDP model was applied to a survivable agent system for environmental 

threats, sensor observations, and the composite state of its agents. This system models 

large scale agent population and is assumed to exist in an unstable environment that is 

subjected to inadvertent and deliberately induced failures [86]. 

 

This application demonstrated the use of POMDPs for survivability which is 

similar to fault management in that it determines actions that best promote the health 

or survivability of the agent. Another implementation of POMDPs is for naval mine 

classification. 

 

2.11.2.2 MULTI-VIEW TARGET CLASSIFICATION WITH AUV 

A POMDP model was applied to the multi-view underwater mine classification 

problem. The POMDP policy adapted an AUV route to determine the number and 
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viewed aspects to confidently classify a mine-like object. The POMDP’s states 

correspond to target-aspect pairs for different object types. Actions incorporate AUV 

paths and classifying the object that is being interrogated. The reward function is 

defined to treat misclassifications equally, rather than heavily penalizing certain types 

[13]. This was evaluated using a set of synthetic aperture sonar data collected during 

NATO Undersea Research Centre experiments. The POMDP reactive method 

outperformed other deliberative methods of classifying targets [87]. 

 

This example demonstrates how POMDP models can be used to distinguish 

between similar objects. Fault management similarly differentiates between normal and 

faulted states that may manifest similar observations. 

Another example of an applied POMDP model is for UAV path-planning. 

 

2.11.2.3 PATH-PLANNING FOR UAV 

A POMDP control system was applied to passive detection in UAV path-planning. 

Both the state and action spaces were modelled in continuous time. The posterior 

probability distribution of the target state was estimated with an Unscented Kalman 

Filter. The control system was simulated in MATLAB [88]. 

Similarly to MDPs (Sections 2.10.2.3 and 2.10.2.4), POMDP models are useful to 

determine actions over time that mitigate failures such as collisions. 

 

These examples demonstrate the viability of POMDPs for real-world applications 

and autonomous vehicles in particular. 

 

In summary, from the literature review, underwater environments are complex, 

dynamic and only partially observable. AUVs are relevant and useful tools for 

underwater applications since they can act independently of operators. AUVs however, 

must be enabled with intelligent autonomy to facilitate complex and long-duration 

missions. To this end, fault management is important as it facilitates a vehicle’s ability to 

mitigate current and potential failures. The implementation of a fault management 
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system can vary in its: representation of time; model; design of the underlying 

architecture, and the way it makes decisions. 

 

Of interest are deliberative stochastic model-based systems that operate in discrete 

time. Fault management systems can implement these using partially observable 

Markov decision processes.  

 

POMDPs are part of a larger group of models called probabilistically graphical 

models which capture relationships between observable and non-observable stochastic 

variables. Non-observable variables can be inferred through their conditional 

probabilities with observable variables. PGMs are used in a wide range of applications 

including fault management and related problems like collision avoidance and 

classification of observed targets.  

 

POMDPs are directly used in some autonomous vehicle systems to path-plan, virtual 

survivability modelling, and mine classification. These examples demonstrate the 

robustness and capabilities of POMDPs over a wide array of tasks in dynamic 

environments. The POMDP model’s ability to capture stochastic systems and causal 

relationships, as well as determine the ‘best’ actions to achieve desired vehicle states, 

makes it a powerful tool for fault management.  

 

At the time of this thesis, there is no public literature on implementation of POMDPs 

for AUV fault-management. Therefore, this thesis proposes to develop a proof-of-

concept fault-management system that applies a partially observable Markov decision 

process fault manager for an AUV. The fault manager implementation uses a discrete-

time deliberative stochastic model-based system. 

 

The rest of this thesis is laid out as follows. Chapter 3 contains the methodology 

which covers the reasoning for the design and tools selected. Chapter 4 describes how 
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the system is implemented. Chapter 5 presents results from the revealing simulation 

test cases for the fault management system. Lastly, Chapter 6 presents conclusions and 

Chapter 7, recommendations for future work. 
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3 METHODOLOGY  
This thesis develops a stochastic, deliberative, model-based fault management 

system with partially observable Markov decision processes for autonomous 

underwater vehicles. A proof-of-concept implementation was tested by simulating two 

AUV sub-systems and developing POMDP models for the fault manager. These POMDP 

models were processed with a Q-MDP solver to create policies to select the best action 

at a given timestep and belief state. The AUV sub-systems chosen were fairly simple in 

terms of complexity but this was desired to focus on proving the application of applying 

a POMDP. While these specific sub-systems could be controlled by more simple control 

systems it is proposed that the model be eventually expanded to more complex sub-

systems such as navigation. 

 

To be consistent in the terminology (due to words having multiple meanings depending 

on context) from here on: 

• ‘observations’ refer to judgements on measurable discrete system variables that 

determines the state. For example, a depth sensor reading may read 50 meters 

and the observation the AUV might make on this is that the vehicle depth is 

‘deeper than desired’ 

• ‘actions’ refer to commands given by the POMDP fault manager to the AUV to 

enact. For example, an action may be to ‘abort the AUV mission and surface’. 

• ‘states’ refer to non-observable discrete variables that represent the vehicle’s 

health and pose in the environment. 

• ‘belief states’ refer to the probability distribution the POMDP fault manager has 

over all possible states. 

• ‘confidence of a state’ refers to the likelihood/probability of the vehicle state. 

• ‘measurements’ are simulated AUV sensor measurements to infer the 

observations. 

• ‘groups’ refers to the mutually exclusive values of states, observations, or actions 

variables, for example a group of energy capacities could include high energy 
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capacity, and low energy capacity. Joint-actions, joint-states, and joint-

observations are various combinations of the different groups (variable values). 

• bottom-lock and DVL-lock are equivalent for our purposes (normally bottom-lock 

would refer to all sensors but since DVL is the only one accounted for in this 

model it is used as the reference for bottom-lock). 

 

The fault management system models in discrete time with each timestep accessing 

new simulated sensor measurements. These measurements are used to generate 

observations for the vehicle. The fault manager uses these observations to update the 

belief state distribution of the vehicle. Once the belief state for the AUV is known, the 

policy would be used to select actions for the AUV to perform. The next timestep would 

update with new observations (i.e. actions are enacted almost immediately). 

 

This system was implemented in the open-source middleware Robot Operating 

System (ROS) [1]. ROS was selected because it is relatively easy to use and has available 

third-party robotics tools. 

 

The fault management system was developed around four main ROS nodes (see 

Figure 3-1). The mission-control node administers and runs each simulation in the 

mission-control input file (see section 4.1). The logger node generates log files from the 

simulations (see section 4.2). The POMDP node is the fault manager that generates 

actions to perform (see sections 3.2 and 4.3). Finally, the AUV simulator models a 

vehicle (Sections 3.1 and 4.4), makes observations from simulated sensor inputs, and 

enacts actions from the fault manager (POMDP). 
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3.1 AUV Simulator 

The AUV simulator consists of two sub-systems: depth and power management. 

They can operate independently of one another or have dependencies between them.  

 

The depth sub-system addresses the AUV depth and pitch where depth is a 

component of the AUV pose (state), has observations that are easy to interpret, and can 

easily integrate real-world data for test purposes. 

 

The power management sub-system is a critical AUV component since energy is 

a limiting factor in mission success. The energy consumed each timestep is generated by 

input values from a pre-set log file. A logical progression in the future would be to 

integrate the energy consumption over all sensors, motors, actuators, and processors. 

The power-management sub-system calculates the estimated time to mission 

completion by comparing against a pre-set total mission time and elapsed time since 

Figure 3-1 Implementation of AUV fault management system using ROS 
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mission start. This sub-system’s actions can limit energy use and abort the vehicle 

mission. 

 

The AUV simulator starts when the mission control sends it an initialization file 

(Figure 3-3a). This initialization file contains AUV parameters like maximum depth and 

initial energy capacity. Next, the simulator initializes the two sub-systems’ variables as 

defined in the initialization file. If the variables are not set for a sub-system, the vehicle 

disables that sub-system by default (facilitates independent sub-system testing, see 

Appendix C – Table). Finally, initial vehicle observations (judgements on measurements) 

are made and sent to the fault manager (POMDP node). 

 

AUV model from 
mission control 

initialize sub-
systems 

generate initial 
observations 

send 
observations to 
fault manager 

Figure 3-3a AUV simulator 

initialization. Receives AUV 

initialization file from the mission 

control. 

receives 
actions from 

fault manager 

update each sub-
system using 

actions 

makes 
observations on 

vehicle 

sends 
observations to 
fault manager 

 Figure 3-3b AUV simulator update 

for each timestep. 
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At each timestep (see Figure 3-3b) the simulator receives new actions from the fault 

manager. Then, the sub-system response to these actions are simulated and the AUV 

simulation model is updated. The simulator then acquires sensor measurements and 

processes these into observations. These observations are then sent back to the fault 

manager for inference (deliberation). The sensor measurements are taken from preset 

log files either generated or real-world bathymetry.  

 

The vehicle simulator passes the observations to the POMDP-based fault manager 

which then returns actions for the vehicle to enact (execute). 

 

3.2 POMDP 

The partially observable Markov decision process (POMDP) is the fault manager’s 

deliberative stochastic model-based schema. It models the vehicle’s state, possible 

actions, and observations. A POMDP system was chosen for a number of reasons.  

1. It captures the partial observability of the vehicle and its environment. Due to 

sensor limitations the vehicle does not know its state well. Additional 

information can be inferred from fusing and processing multiple sensors, but 

these have an associated error (noise). The POMDP maintains a probability 

distribution, across all possible states, to determine what the most likely one(s) 

may be.  

 

2. With Bayesian statistics inherent in the POMDP, it is possible to update the state 

distribution from the conditional probabilities of the observation (in the sense of 

measurements, not judgements) function (sensor model) and prior actions. 

 

3. Markov’s assumption asserts that the future state is independent of past ones 

and only dependent on the present one (see section 2.8). This simplifies the 

historical state information to retain. 
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4. The state transition is modelled as a probabilistic function to capture the 

uncertain nature of the transition given an action (see Section 2.10). 

 

5.  The POMDP models both independent 

and dependent sub-systems and 

determines actions for the vehicle.  

 

The fault manager implements its stochastic 

model by building and solving a POMDP model 

(see Figure 3-4). The POMDP model is 

generated from an input model file with 

information on actions, states, observations 

and the probability of making-an-observation 

(given state and action), transitioning-

between-states (given prior state, actions) and 

reward functions.  

The probabilities and rewards were set based 

on developer knowledge. A more accurate 

representation of an AUV would require detail 

knowledge of the sensors (to create higher-

fidelity models) and environment. For more 

information on how the POMDP model was 

built see Section 4.3.2. 

Once the model was generated, a solver 

was implemented to develop the policy. The 

Q-MDP [64] solver was implemented here. 

Section 2.11.1.8 covers Q-MDP in more detail. 

The Q-MDP operates by first solving an MDP 

and then updating the policy to account for 

build actions a, 
observations o, states’ 

s spaces  

POMDP model 
from mission 

control 

build probability of 
making-an-observation 

function O(o| s,a) 

build probability of 
transitioning between 

states function T(s’|s,a) 

build reward function 
R(s,a) 

solve for MDP policy 
using 

 T(s’| s, a), R(s,a) 

build belief state space 
with uniform 
probability 

inform mission 
control ready 

Figure 3-4 Fault manager initialization. 

Reads in POMDP model file given by 

mission control. 
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the partial observability given the state belief for 

each timestep. The POMDP would then generate an 

initial belief state (uniform probability over all 

possible states) and then informs the mission 

control to begin the simulation.  

 

Over the course of the simulation (see Figure 

3-5), at each timestep the simulated AUV would 

generate observations and pass them to the fault 

manager. These observations updated the belief 

state of the vehicle model, which using the policy, 

would determine an action. Then, the action would 

be performed by the simulated AUV and the process 

would repeat until the simulation ends. 

The simulation ends when there is no new 

simulated sensor data passed to the AUV. 

Additionally, if an abort is determined by the 

POMDP the vehicle will surface with the remaining 

power. If no depth sub-system was initialized, the 

abort triggers the end of the simulation.  

 

As previously mentioned, the solver implemented was the Q-MDP method. In the 

next section the use of this will be explored further. 

 

3.2.1 Q-MDP 

A Q-MDP solver [64] [80] [89] was chosen to generate the policy for several reasons.  

1. Value iteration of the Q-MDP is of the same complexity as MDPs [85]. This 

can greatly reduce solving complexity compared to solving a POMDP directly 

(polynomial, versus exponential time to solve). 

update state belief b(s) 
space using O(o|s,a) 

observations o 
made by AUV 

simulator 

solve for POMDP policy 
using MDP Policy 

b(s), O(o|s,a),  
T(s’|s,a), R(s,a) 

using POMDP policy 
determine ‘best’ actions 

given state 

send actions to 
AUV 

Figure 3-5 Fault manager update. 
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2. The solver handles large state and observation spaces which are necessary 

for the model. 

3. The model designed for the proof-of-concept did not include actions that the 

Q-MDP would discriminate against due to its solving method. 

4. Q-MDPs are well equipped to deal with real-world applications, like an AUV.  

 

Value iteration [64], policy iteration [78] [79], and witness algorithms [71] [80] [63] 

were not chosen due to their inability to solve large state spaces. The AMDP [64] [84] 

requires a computation intensive conversion between the POMDP and MDP spaces. The 

point-based value/policy iteration [81] [83] and Perseus [82] algorithms were not 

implemented as the Q-MDP was found sufficient and these offered no immediate 

foreseen benefit. (see Section 2.11.1). POMDPs have many other solvers and future 

work should compare solvers to determine the optimal ones for AUVs.  However, for 

this thesis’ purpose the Q-MDP was deemed sufficient.  

 

The Q-MDP solver [64] [80] [89] [85] solves the MDP first. Then, at each new 

timestep, the Q-MDP policy was solved by combining the vehicle belief state with the 

MDP policy and value function. Then, the Q-MDP policy determines the vehicle actions.  

 

This POMDP fault management and AUV simulator were implemented as ROS nodes 

in C++. 
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4 IMPLEMENTATION 
 The proof-of -concept fault manager and AUV simulator framework was 

implemented as four ROS nodes: Mission Control, Logger, AUV Simulator, and the 

POMDP (fault management system). These four stand-alone nodes communicate 

through publishing and subscribing to messages. Their interconnections are shown in 

the ROS rqt graph (see Figure 4-1) which shows the nodes’ messages that are published 

and subscribed to.  

 

Figure 4-1 ROS rqt graph of the AUV fault management system developed. 

 

The startup node is the mission control which sets up the other nodes. 
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4.1 Mission Control 

The mission control node manages the 

execution of multiple distinct simulations 

run in sequential order (see Figure 4-2). The 

mission control file (see Appendix B - 

Mission Control File) contains the file with 

the POMDP model (see Appendix A – 

POMDP Model File) to be built, the AUV 

simulation initialization file (see Appendix C 

– Table) and the path where the simulation 

results are written. 

 

Once the mission file has been read and 

parsed, the mission control sends the 

results folder path to both the logger and 

the POMDP nodes. Then, after a short wait, 

to ensure the message was received by the 

logger and that it has generated the files, 

the input model file is broadcast to the fault 

manager (POMDP node) to build and solve 

the POMDP model. Then, the POMDP node 

publishes a message, which the mission 

control node subscribes to, that a policy has 

been generated (if it failed to generate a 

policy the simulation will terminate). The 

mission control then sends the AUV 

simulation initialization file path to the AUV 

simulator node. Once the simulation is 

receive sim. end 
confirmation from  

AUV simulator node 

receive 
confirmation 
that POMDP 
model built  
successfully 

send AUV simulation 
initialization file to AUV 

simulator 

read mission 

mission file 

send POMDP model file to 
fault manager 

last 

mission? 

terminate nodes 

Figure 4-2 Mission control execution 

steps 
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complete the AUV simulator node publishes a finished message, subscribed to by the 

mission control node, which then reads the next mission file in the queue. If there are 

no more in the queue, the mission control node shuts itself down and terminates the 

other three nodes.  

 

4.2 Logger 

The logger generates and updates results files from the AUV simulation. This node 

starts when it receives the path to the simulation folder (location where the result files 

of the current simulation are stored) and generates the results files. Note, existing 

results files in the folder will be overwritten. Each new simulation should have its own 

results folder. 

Over the course of the mission, the logger receives messages from other nodes and 

appends a message as a new line in the selected file. The logger updates these files until 

either a new simulation folder is received, or it is terminated by the mission control. 

 

4.3 POMDP 

The POMDP is the fault management system and operates in three modes: the first 

builds the POMDP model from the input model file, the second solves for an initial 

policy of the MDP model, and finally, it updates its belief of its joint-state distribution 

and solves for the Q-MDP policy using observations from the AUV simulator.  

 

4.3.1 Actions, observations, and states 

A POMDP model comprises of actions, states and observations. A group is used 

to demonstrate a set of values that are mutually exclusive to one another that describe 

an action, state or observation. For example, a group pertaining to the altitude could 

include altitude low (meaning the vehicle is too close to the seabed), altitude ok 

(meaning the altitude of the vehicle is within the desired range), and altitude high 

(meaning the vehicle is too far from the seabed). This group of values cannot exist 

simultaneously (i.e. altitude is low and high). Combinations of the various groups 
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describe the extent of the observation, state, and action space, these are referred to as 

joint-actions, join-observations, and joint-states. 

 

Each AUV sub-system was modelled with its own groups for actions, 

observations and states. These were then combined in later simulations by created 

conditional dependencies between the probability functions and reward functions of 

the model. In Table 4-1, Table 4-2 and Table 4-3 these groups are described. 

Table 4-1 Possible action variables (groups) 

sub-
system 

action group possible actions description 

d
e

p
th
 

fin position DEFLECT_NONE  When there is no deflection the AUV’s 
pitch is constant. Deflection up 
increases pitch while deflection down 
decreases pitch. 

DEFLECT_DOWN 

DEFLECT_UP 

p
o

w
e

r-
m

an
ag

e
m

e
n

t power-
management 
mode 

POWER_NORMAL  When in power saving mode. Energy 
consumption is reduced by a set 
percentage from the initialization file. 
When the mode is set to abort the 
vehicle will end the mission by surfacing 
(unless no depth sub-system is present 
in which case it will end the simulation 
upon calling abort). 

POWER_SAVING_MODE   

ABORT 

 

Table 4-2 Possible observation variables (groups) 

sub-
system 

observation 
group 

possible observations description 

d
ep

th
 

al
ti

tu
d

e 

ALTITUDE_OK  The vehicle operates using altitude 
keeping. In the initialization file the 
minimum and maximum altitude 
thresholds are set.  
The vehicle is observed as low when the 
altitude is less than the minimum and 
high when greater than the maximum. 
The altitude is ok when within these 
thresholds. 
The altitude is unknown when: 
• The vehicle cannot achieve DVL-lock 

due to the altitude being greater 
than the DVL range (set in 
initialization file). 

•  The vehicle cannot achieve bottom-

ALTITUDE_LOW  

ALTITUDE_HIGH  

ALTITUDE_UNKNOWN 
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sub-
system 

observation 
group 

possible observations description 

lock due to the pitch angle being too 
great in either direction (i.e. greatly 
up or greatly down). 

•  A cascade failure from very low/ 
critical energy capacity has caused 
the sensor ‘failure’. 

vehicle 
depth 

DEPTH_GOOD  Depth is shallow when vehicle is less 
than a minimum depth value set in the 
initialization file. Vehicle is too deep 
when it exceeds its crush depth (also set 
in the initialization file). 

DEPTH_SHALLOW  

DEPTH_DEEP 

p
o

w
er

-m
an

ag
em

e
n

t 

p
it

ch
 

ch
an

ge
 

PITCH_UNCHANGING  The pitch is unchanging when the fin 
mode has no deflect. The pitch is 
increasing when deflected up and is 
decreasing when deflected down. 

PITCH_INCREASING  

PITCH_DECREASING 

p
it

ch
 

PITCH_GREATLY_UP  When the pitch has an angle of 0 it is 
considered level. If pitch is greater than 0 
it is up. A threshold is set on the 
maximum pitch to ensure bottom-lock is 
not lost. If the vehicle’s pitch exceeds this 
threshold (set in the initialization file) it is 
considered greatly up. Negative pitch is 
down and follows the same logic as up 
for maximum and greatly down. 

PITCH_UP  

PITCH_LEVEL  

PITCH_DOWN  

PITCH_GREATLY_DOWN 

en
er

gy
 

ca
p

ac
it

y 

CAPACITY_OK  Energy is ok when capacity exceeds a 
specified percentage (set in initialization 
file). Energy is low when less than the 
threshold. Energy is very low when less 
than half the threshold. Energy is critical 
when less than a quarter the threshold. 

CAPACITY_LOW  

CAPACITY_VERYLOW  

CAPACITY_CRITICAL 

p
o

w
e

r 
u

sa
ge

 

HOTEL_LOW  The hotel load is the energy consumption 
per timestep. 
A lower and higher rate is set in the 
initialization file. The power usage or 
energy consumption is low when below 
the lower rate and high when above the 
high rate. 
The fault manager uses this to increase 
the likelihood of a low energy state over 
time. 

HOTEL_OK  

HOTEL_HIGH 

es
t.

 m
is

si
o

n
 

ti
m

e 

FIRST_QUARTER  Estimates the mission into 1/4 portions.  
If low energy is detected in early mission 
time (i.e. first 1/4) the vehicle will abort 
as this is likely to be an issue with the on-
board power supply.  

SECOUND_QUARTER  

THIRD_QUATER  

ALMOST_DONE 
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sub-
system 

observation 
group 

possible observations description 

If the vehicle is in the last quarter, it will 
try and remain in normal energy usage 
unless it hits the very low energy 
threshold as this is seen as being close to 
being finished. 

p
o

w
e

r-
m

an
. 

m
o

d
e 

USAGE_NORMAL  Current power usage mode: the vehicle is 
set to. Power saving reduces energy used 
at each timestep while aborting causes 
the vehicle to surface and end 
simulation. 

POWER_SAVING  

ABORTED 

 

Table 4-3 Possible state variables (groups) 

sub-
system 

state 
group 

possible states description 

d
ep

th
 

vehicle 
depth 

DEPTH_GOOD  Depth is deep when either the crush depth is 
exceeded, or the altitude is measured to be too 
low.  
 

Depth is good when altitude is within 
thresholds, depth is within range, and low 
energy state is achieved.  
 

Depth is shallow when the vehicle either 
observes that the vehicle is too close to the 
surface, or the altitude is too high. The depth is 
also considered shallow if the altitude is 
unknown and the pitch is within its threshold 
limits as to not cause loss of bottom-lock and a 
cascade failure has not caused sensor failure. 

DEPTH_SHALLOW  

DEPTH_DEEP 

vehicle 
pitch 

PITCH_GREATLY_UP  When pitch has an angle of 0 it is considered 
level. If pitch is greater than 0 it is up. If at the 
threshold for the pitch the vehicle’s pitch is 
maxed.  
 

The threshold is set in the initialization file and 
is determined by the fault manager as the 
maximum angle the vehicle can achieve before 
losing bottom-lock due to excess pitch angle. 
 

If the vehicle’s pitch exceeds this threshold it is 
considered greatly up. Negative pitch is down 
and follows the same logic as up for maximum 
and greatly down. 

PITCH_UP_MAX  

PITCH_UP  

PITCH_LEVEL  

PITCH_DOWN  

PITCH_DOWN_MAX  

PITCH_GREATLY_DOWN 

p
o

w
e

r- m
a

n
a

ge m
e

n
t energy 

capacity 

POWER_GOOD  Energy is good when capacity exceeds a 
specified percentage (set in initialization file). POWER_LOW  
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sub-
system 

state 
group 

possible states description 

POWER_VERYLOW  Energy is low when less than the percentage 
threshold. Energy is very low when less than 
half the percentage threshold. Energy is critical 
when less than a quarter the percentage 
threshold. 

POWER_CRITICAL 

power-
man. 
mode 

USAGE_NORMAL  Current power usage mode the vehicle is set to. 
Power saving reduces energy used each 
timestep while aborted causes the vehicle to 
surface and end simulation. 

POWER_SAVING  

ABORTED 

est. 
mission 
time 

FIRST_QUARTER  Estimates the mission into quarter portions.  
If low energy is detected in early mission time 
(i.e. first quarter) the vehicle will abort as this, it 
is likely there is an issue with the on-board 
power supply.  
 

If the vehicle is in the last quarter, it will try and 
remain in normal power usage mode unless it 
hits the ‘very low’ energy threshold as this is 
seen as being close to being finished.  
 

Note: in a real mission completion would be 
measured by completed tasks but for our 
purposes this was simulated as time. 
 

The mission time is calculated through an 
elapsed time that is measured at each timestep. 
This is to better simulate a continuous time 
vehicle despite the simulator and fault manager 
working in discrete time. 

SECOUND_QUARTER  

THIRD_QUATER  

ALMOST_DONE 

 

4.3.2 Building the POMDP 

The fault manager builds the POMDP model when an input model file is received 

from the mission control. This model is separated into three parts (Figure 4-3). The first 

part is basic model information such as the name (to differentiate between other 

models in the results folders), horizon, analysis type, and reward function discount. 

Horizon is set to ‘1’ meaning at each timestep the vehicle chooses a new action, rather 

than plan for actions in advance. The Q-MDP solver was deemed sufficient for the 

analysis, but the system could be expanded to include other solvers for future 

development. The discount is for the calculation of the utility function in the Bellman 

equations (see section 2.10 and equation 2-9).  
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Another parameter 

is the modification value 

for the probability of 

transitioning-between-

states function and 

probability of making-an-

observation function. 

These multiply the value 

against all probabilities set 

for these functions. For 

example, a value of 90% 

would reduce all 

probabilities set by the 

statements by 10%. Later, 

these are used for 

simulations with reduced 

probability functions (see 

section 5.1.4). 

Next, the action, 

observation and state 

groups are read and used 

to generate all possible 

combined joint-actions, 

joint-observations and joint-states. 

 

The final part of the POMDP model set the probability and reward functions. The 

probability functions probability of making-an-observation and the probability of 

transitioning-between-states must sum to one (see equations 4-1, and 4-2 respectively). 

#Comment designated by # 

Model: model_name 

Horizon: 1 

Discount: 0.9 

Analysis: Q-MDP 

ModTrans: 1.0 

ModObservation: 0.9 

 

Action Groups: U 

AG1: A1, .. , Ai 

…  

AGU: B1, . ., Bj  

 

 

State Groups: V 

SG1: C1, .. , Ck  

… 

SGV: D1, . ., Dl 

 

Observation Groups: W 

OG1: E1, .. , Em  

… 

OGW: F1, . ., Fn 

 

Observation Probabilities statements 

O1 : Joint Actions : Joint States : Joint Observations : Probability  

… 

Ox : Joint Actions : Joint States : Joint Observations : Probability  

 

 

Transition Probabilities statements 

T1: Joint Actions : Joint Start State : Joint End State : Probability 

…  

Ty: Joint Actions : Joint Start State : Joint End State : Probability  

 

 

Rewards statements 

R1: Joint Actions : Joint State : Reward Value  

… 

Rz: Joint Actions : Joint State : Reward Value 

Figure 4-3 Example POMDP Model File 
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The values for the probabilities and reward functions are set via statements in the 

POMDP model file (see Figure 4-4). 

∑ 𝑜𝑖| 𝑠, 𝑎 𝑖=1
𝑁 == 1.0     (4-1) 

∑ 𝑠′𝑖| 𝑠, 𝑎 𝑖=1
𝑁 == 1.0      (4-2) 

 

 

Once the probability of observation, transition, and reward functions are set, the 

model is sent to the solver to generate a policy. 

 

4.3.3 Solving the POMDP 

The built POMDP model is then passed to the Q-MDP solver [64] [80] [89] [85] . 

This solver solves the model as an approximated MDP rather than a POMDP. It can only 

Updating Probability of Observation Function 

 

For Each Statement of Observations: 

       For Each Joint-Action that is True 

For Each Joint-State that is True 

For Each Observation 

If True 

      O(o| s, a) *= probability 

If False 

      O(o| s, a) *= 1 – probability 

 

Updating Probability of Transition Function 

 

For Each Statement of Transitions: 

       For Each Joint-Action that is True 

For Each Joint-Start-State that is True 

For Each Joint-End-State 

If True 

                     T(s’| s, a) *= probability 

If False 

       T(a’| s, a) *= 1 – probability 

 

Updating Reward Function 

 

For Each Statement of Rewards: 

      For Each Joint-Action that is True 

For Each Joint -State that is True 

       R(S,A) += reward 

Figure 4-4 Pseudo-code for POMDP probability of 

observation, transition and reward functions update 

for given statements in the POMDP file 
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do so by assuming the state is known. The MDP is then solved using a value iteration 

method. The resulting policy and value function are stored for later use by the Q-MDP. 

 

4.3.4 Execution of the POMDP 

Once an MDP policy is successfully attained, the POMDP informs the mission 

control that it is ready, and then waits for observations from the AUV simulator. These 

observations are used to update the belief probability distribution of the vehicle’s joint-

state space. Initially, the state belief distribution is uniform with all possible joint-states 

being equally probable. In each subsequent timestep, equations 4-3 and 4-4 (Section 

2.11) update the belief distribution. 

𝑏′(𝑠′) =  𝜂 𝑂(𝑜|𝑠′, 𝑎) ∑ 𝑇(𝑠′|𝑠, 𝑎)𝑏(𝑠)𝑠𝜖𝑆     (4-3) 

𝜂 =
1

∑ 𝑂(𝑜|𝑠′,𝑎)𝑠′𝜖𝑆  ∑ 𝑇(𝑠′
|𝑠, 𝑎)𝑏(𝑠)𝑠𝜖𝑆

    (4-4) 

 

Once the belief distribution is updated the previously solved MDP policy is run 

through the Q-MDP solver that updates the policy to account for the belief space of the 

vehicle (see Figure 4-5). An action is chosen based on the updated Q-Policy and sent 

back to the AUV simulator node for execution. 

 

Algorithm Q-MDP: 

 R= reward function 

 T= Transition function 

 b(s) = Belief  

 Q= Utility function 

N = number of joint-states 

 M = number of joint-actions 

 V = MDP Value Iterative Function 

    For each joint-state 𝑠𝑖: 

  For each joint-actions 𝑎𝑗 

                 𝑄(𝑠𝑖 , 𝑎𝑗) = 𝑟(𝑠𝑖 , 𝑎𝑗) + ∑ 𝑉(𝑠𝑖)𝑇(𝑠′
𝑖| 𝑠𝑖 , 𝑎𝑗)𝑁

𝑘=1   

   

               Policy = argmax
𝑎

∑ 𝑏(𝑠𝑖
′)𝑄(𝑀

𝑗=1 𝑠𝑖 , 𝑎𝑗)  

Figure 4-5 Pseudo-code for the Q-MDP solver 
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4.4 AUV simulator node 

The AUV Simulator node begins by reading in the initialization file (see Figure 4-6 

and Appendix C – Table) passed to it by the mission control. This file has parameters for 

each sub-system modelled. Once the vehicle is initialized it asks the sub-systems to 

make observations. These observations are generated using simulated sensor 

measurements from static pre-set log files for each sub-system. 

 

These observations are 

then sent to the fault manager. 

The AUV simulator waits until new 

actions are returned from the fault 

manager and then sends these to 

the appropriate sub-system for 

execution. Once the actions have 

been executed the vehicle will 

update its state and reads in the 

new sensor measurements from 

the log files and perform new 

observations. 

 

The simulation ends when 

either the log files have no new 

input, the power management 

system aborts due to critical power and the depth sub-system is not modelled, when the 

vehicle has surfaced, or when the energy has been exhausted (value of 0). 

 

4.4.1 Depth Sub-system 

The depth sub-system predominantly handles changes to the vehicle depth and 

pitch angle. First, the vehicle depth must be within an acceptable range. This range 

spans the vehicle’s minimum depth under the surface for safe operations and the 

#This is a AUV that has a depth system and power system 

AUV_NAME: AUV_PowerDepth_Integrated 

MISSION_TIME: 6000 

NOISE: 0 

ABORT_AT_COMMAND: 1 

CASCADE_FAILURE: 1 

 

#sub-system depth  

DEPTH_FILE: /basicshallow.log 

ALTITUDE_MIN: 6 

ALTITUDE_MAX: 10 

DVL_RANGE: 25 

MAX_DEPTH: 35 

MIN_DEPTH: 5 

START_DEPTH: 2 

NOISE_DEPTH: 2 

MOVEMENT_MAG: 5 

HIGH_ANGLE: 15 

LOW_ANGLE: 2 

ANGLE_CHANGE: 5 

 

 

#sub-system power  

POWER_FILE:  /power_basic63.log 

POWER_STORED: 4600 

POWER_RATES: 0.4 0.6 

LOW_POWER_MODE: 0.75 

Figure 4-6 AUV simulation initialization file example 
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maximum depth  before it reaches its crush depth (set in the initialization file). The 

seabed depth measurements are simulations and injected via a log file. The depth and 

other measurements are done via simulation; and are without a typical sensor model. 

This was done to simplify the system. In the cases of a additive noise a variance to the 

AUV depth are run through a Gaussian distribution with a variance typical of 100 meter 

depth sensor. 

 

The vehicle is designed to maintain constant altitude above the seabed. The 

minimum altitude is set to avoid running into navigation hazards (rocks, debris, marine 

structures, wrecks, etc.) on the seabed. The maximum altitude is the distance the 

vehicle can be from the sea bottom for its sensors to still work as intended (i.e. 

altimeter, DVL, etc.). The vehicle model also accounts for DVL-lock (or bottom-lock) by 

modelling the altitude as unknown when the vehicle pitch or roll exceeds a maximum 

angle, the altitude exceeds the DVL range, or a cascade failure has caused the sensor to 

‘fail’. The maximum angle and DVL-range are pre-set in the initialization file. 

 

The depth sub-system also considers the state of the vehicle pitch (Figure 4-7). 

The pitch can be nose-up, -down, or level. It also checks whether the pitch has a 

magnitude greater than a set maximum value. The system additionally observes if the 

pitch is changing over time. The vehicle pitch determines how the vehicle’s depth 

changes over time. If the pitch becomes too large it can cause problems with the 

sensors since the vehicle (and sensor) is no longer aligned with the seabed. This is 

modelled by assuming that the vehicle loses DVL-lock. 
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The AUV simulator assumes constant pre-set values for pitch angle changes; this 

is set in the initialization file (see Appendix C – Table). The depth sub-system has only 

one action group, changing its fin’s deflection: up, down or no deflection (zero angle-of-

attack). This mode is changed by the fault manager which updates the pitch accordingly 

(see Figure 4-8). 

 

The AUV depth is changed by the vehicle ‘flying’ and the pitch affecting how the 

vehicle changes its depth in the water column. The depth change is affected by a fixed 

fin mode = 1 then pitch += change in pitch 

    = 0 then pitch does not change 

    = -1 then pitch -= change in pitch 

Figure 4-8 Pseudo-code for pitch change 

pitch up 

pitch down 

level pitch 

maximum pitch 

minimum pitch 

pitch greatly up 

pitch greatly down 

Figure 4-7 AUV pitch observation definitions. ‘Up’ is in the positive 

direction, ‘down’ is in the negative direction and ‘level’ is pitch = 0. 
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incremental distance (set in initialization file) traveled each timestep scaled by the sin of 

the pitch angle (see equation 4-5).  

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑒𝑝𝑡ℎ += −𝑓𝑖𝑥𝑒𝑑𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 𝑠𝑖𝑛(𝑝𝑖𝑡𝑐ℎ 𝑎𝑛𝑔𝑙𝑒)  (4-5) 

 

Additive Gaussian noise can be applied to the vehicle depth measurements to 

simulate noisy measurements (see equation 4-6). Although depth measurements in real 

systems are generally of good fidelity this was to demonstrate the POMDP’s ability to 

account for noise in the sensing, actuation or interaction with the environment (sea 

states). The environmental seabed depth is read from an external file that is used to 

generate ‘measurements’ for the seabed depth at each timestep. The standard 

deviation for the simulations in the next section were given the range of 2 meters this is 

well within what can be attained for an off-shelf 100-meter depth sensor. The signal to 

noise ratio could not be modelled as a consequence of the noise being prescribed rather 

than measured.  

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑒𝑝𝑡ℎ = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑚𝑒𝑎𝑛 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑠𝑡𝑑𝑑𝑒𝑣) (4-6) 

 

Once a new depth has been calculated, observations are made on the vehicle 

state which includes the pitch, depth, and altitude (see Table 4-1, Table 4-2, Table 4-3 

for more information). The speed is approximately 2 knots with timesteps being 2s 

(depending on initialization file).  

 

The other sub-system in the AUV simulator was the power-management sub-

system. 

 

4.4.2 Power-Management Sub-system  

The power management sub-system monitors the energy capacity and 

consumption along with estimating the remaining mission time and when to abort the 

mission if there is an energy shortage  
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The power management sub-system first determines how far along the mission 

is. It achieves this by estimating the remaining mission time and comparing it to 

estimated mission time set in the initialization file. This is a simplification, see Section 

2.2.3 for typical energy modelling. The power management sub-system here uses the 

total from summing all three (3) power types (propulsion, payload sensor, vehicle 

equipment (equations 2-1 and 2-2)). For future consideration, in power saving mode, 

items like data logger, embedded processor and communications could be turned off or 

reduced to achieve lower power states.  

 

The power management sub-system updates itself by reading two 

measurements from the power log for the simulation. These measurements are the 

energy consumed for the timestep and the elapsed time since the previous timestep 

(this can be greater than a single timestep). These measurements were generated 

pragmatically using a random distribution relative to an overall distribution. 

 

The remaining energy on the vehicle is calculated based on the initial energy 

capacity (set in the initialization file) and the cumulative energy consumed over the 

simulation. The overall remaining energy, relative to requirements for the remaining 

mission, is assessed to be one of four observations: ok, low, very low, and critical low’. 

The AUV remaining energy observations are based on whether the percentage of 

remaining energy (remaining / total energy) (Table 4-4) is below a pre-set rate (for 

example rate of 40% means low 40%, very low 20%, critical 10%). 

 

ok   > rate x total capacity 

low   ≤  rate x total capacity 

very Low  ≤  rate / 2 x total capacity 

critically low  ≤  rate / 4 x total capacity 

Table 4-4 Energy capacity observation definitions 
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The rate of energy consumption is determined by how much energy was 

consumed during the timestep (measured from the simulation log file) compared to the 

time elapsed (see equation 4-7). Then, the energy rate is assessed to be high, normal, or 

low compared to pre-set rates in the AUV initialization file.  

 

𝑙𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑒 𝑥 
𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒
≤  

𝑢𝑠𝑒𝑑𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑡𝑖𝑚𝑒
≤  𝑢𝑝𝑝𝑒𝑟 𝑟𝑎𝑡𝑒 𝑥

𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒
          (4-7) 

 

The mission phase is determined by the estimated total mission time (set in the 

initialization file) and elapsed time. The elapsed time is determined from an input value 

in the log file that gives the time elapsed over the timestep. The elapsed time 

measurement was to simulate a real-world vehicle that would monitor elapsed time 

between discrete timesteps. The vehicle then determines if the mission is currently in 

it’s first, second, third, or final quarter of the mission phase.  

 

The fault manager can change the power-management mode of the vehicle. The first 

mode is for normal operations. The vehicle nominally operates in this mode. The second 

mode is power-saving which reduces the energy consumed each timestep at a fixed (set 

in the initialization file) rate. For example, if the low power rate is 75% then when this 

mode is engaged all energy consumption is reduced by 25% of what it was originally. 

This simulates the vehicle turning off unnecessary sensors or limiting computation 

processes. The last mode is for the vehicle to abort the mission. 

 

When the simulator only runs the power management sub-system (i.e. depth sub-

system not initialized and therefore, not engaged) simulation, once the capacity reaches 

critical the vehicle aborts and the simulation terminate. In the jointly-dependent 

combined power management and depth simulations, the vehicle starts to rise in the 

water column when the energy is very low and will surface when it reaches critically low. 

The maximum pitch restriction is lifted so the vehicle can rise faster. 
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The vehicle engages the power-saving mode at critically low energies. It will not 

engage this mode if the energy is only low and the vehicle is in the last quarter of its 

mission (since there is a good likelihood it can complete its mission before the energy 

capacity drops further). This power-saving mode simulates the vehicle turning off 

unnecessary processes/sensors or limiting their power consumption. The power-saving 

mode will always engage for very-low and critical observations. 

 

To test the proof-of-concept fault manager and AUV simulator framework several 

scenarios and POMDP models were developed. Each sub-system was tested 

independently. Several scenarios spanning different conditions (environmental and 

vehicle configurations) were developed and simulated.  

 

A subset of simulations for the depth sub-system have additive Gaussian noise on 

the depth measurements. These were paired with modifications to the POMDP models 

where the probabilities of the transitioning-between-states and making-an-observation 

functions had their pre-set probabilities in the model build reduced by 10%, 20% and 

40%. The objective was to explore the effects of noise on the system and how the fault 

management system responds to loss of certainty in its states given actions and 

observations from the noisy sensors. The actions and reward function remained 

unchanged. 

 

The depth and power-management POMDP models were combined, without 

modification, for a simulation that solved for their joint-states, joint-observations, and 

joint-actions but were non-interacting with each other. This was to show that the 

combined POMDP model works the same as the individual models if the actions, 

observations, and states are independent. 

 

A POMDP model of the two sub-systems was developed where the two sub-systems 

were dependent on one another. The scenario of dependency selected was such that 
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given the state of the power management system the depth sub-system would change 

its desired actions. This demonstrates how the model addresses interactions between  

sub-systems for an integrated fault management system. 

 

Finally, an interdependent model was generated that had the depth and altitude 

measurements fail when the power capacity reached very low or critical simulating a 

cascade failure.  
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5 SIMULATIONS 
To validate the POMDP fault management model, three simulation sets were 

performed through the AUV simulator. The first set was with just the depth sub-system. 

These simulations were performed for three environments with simulated and real data. 

Additionally, a comparison between the reduction of the POMDP probability functions 

for transitioning-between-states and making-an-observation were performed with one 

of the depth sub-system’s simulation environment model. The second set was with just 

the power-management sub-system. This model was run with different initial energy 

capacities to assess response to different energy levels. The final simulation set was a 

combined model with both the depth and power-management sub-systems engaged. 

 

For a complete list of simulations, their figures and initialization files please see 

Appendix C – Table. 

 

For the depth and power-management independent sub-systems, a Figure 5-1 type 

plot is produced to highlight, for each simulation, the belief states changing with time. 

This was not done for the combined models of depth and power management due to 

the joint-state space being too large to easily graph (> 1000 possible states for all 

permutations). 
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Figure 5-1 Simplified belief state depiction example. There are four possible states: A, B, C 

and D. At timestep 1 the probability distribution is uniform over all states (i.e. they are all 

equally 25% probable). At timestep 2 state A has the highest probability at 40%, state B at 

30%, state C at 20 % and state D at 10%. At the final timestep state A has a 60% 

probability of being the actual state followed by state B at 20%, state C at 15% and state D 

at 5%.  

The first set of simulations were conducted with the depth sub-system only. 

 

5.1 Depth sub-system simulations 

The depth sub-system tests were conducted for three environment types: shallow 

water, deep water that exceeds the AUV’s operational depth, and waters over an 

uneven seabed that varied rapidly compared to the AUV’s response time. These three 

sets span limiting cases of underwater bathymetry that an AUV may encounter to test 

the POMDP fault manager depth sub-system. The same POMDP depth model was used 

for all simulations. For each of the environment models using real-world measurements 

the data used was obtained from Bedford Basin in Halifax, Nova Scotia. 

 

Another series of tests were conducted where the probabilities of making-

observations and transitioning-between-states functions were augmented and another 

with additive Gaussian noise to the depth sensor measurements was combined with the 

augmentation.  

 

1

2

3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ti
m

es
te

p

Belief

State A State B State C State D



- 72 - 

 

 To demonstrate the vehicle’s responses in the water column from the fault 

management system a series of four (4) graphs are presented. They represent the 

vehicle and seabed depths as the vehicle senses the seabed, vehicle altitude-keeping, 

vehicle pitch angle, and fin mode. All depth simulations were run with the vehicle in 

altitude-keeping mode and depth changes were realized with the vehicle ‘flying’ (i.e. 

using changes in its pitch to change its depth). The altitude is lost when the vehicle loses 

DVL-lock which is represented by a DVL sensor. From here on bottom-lock will refer to 

DVL-lock. When the DVL cannot sense the bottom due to the vehicle’s altitude or pitch 

the vehicle loses bottom-lock. Changes in pitch are affected by the fin mode which is 

driven by the fault manager. The change in pitch, if required at any timestep, is a set 

incremental angle change (initialization file, Appendix C – Table) dictated by the fin 

mode. Additionally, for each simulation the evolving belief state over the course of the 

mission (see Figure 5-1) is plotted. 

The first group of tests were for the shallow water environment. 

 

5.1.1 Shallow water 

The first series of tests were for shallow water where the AUV’s DVL can sense 

the seabed and achieve bottom-lock. The first was a simple shallow water simulated 

environment model with a gradual incline in the seabed. 

 

5.1.1.1 SIMULATED SHALLOW-WATER ENVIRONMENT MODEL WITH GRADUAL INCLINE SEABED 
 

The environment model had gradual depth incline (approximately 20 °) although 

slight variation to the incline occurs in the seabed which drives the altitude-keeping AUV 

to rise. The AUV simulation was given a DVL range of 20 meters, and a high pitch angle 

of 15°. The altitude-keeping range is 8-12 meters. See Appendix C – Table for the 

initialization file. These parameters were chosen so the vehicle can generally see the 

seabed but is limited in pitch angle making it critical that it responds quickly to changes 

in the seabed to avoid collisions with it. 
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In Figure 5-2 (a), the vehicle initially dives until it reaches the desired altitude 

however; the incline of the seabed quickly forces the vehicle upwards. In Figure 5-2 (b) 

the altitude is initially unknown due to the seabed being outside the DVL’s range 

however, as it dives it is able to get altitude readings when it comes within range of the 

DVL. The fin mode can be seen in Figure 5-2 (d) correlating to changes in pitch as it is 

driven by the fault manager. During timesteps 30 – 40, the seabed forces the vehicle 

upwards and the response can be seen in the fin mode correctly pointing upwards. 

During this time there is slight oscillation in the pitch as the vehicle tries to rise faster to 

avoid the seabed while maintaining bottom-lock by not having the pitch exceed its 

maximum (15°).  

 

This simulation demonstrated the fault manager could drive the vehicle and prevent 

the vehicle from colliding with the seabed – which would be a failure. It was able to 

achieve altitude, and despite some oscillations, prevent the pitch from exceeding its 

limits.  
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Figure 5-2 Simulated shallow-water environment model with gradual incline seabed: AUV 

performance with fault manager (DVL range = 20m, altitude-keeping range = 8 – 12 m, high 

pitch = 15°). (a) The altitude-keeping AUV depth correctly tracks the seabed and changes 

depth based on vehicle pitch changes. (b) When the vehicle DVL is unable to achieve 

bottom-lock no altitude value is plotted. (c) Pitch is as expected given the depth changes. 

When pitch is < 0 the vehicle dives and when > 0 it rises. (d) Fin mode in driven by the fault 

manager to increases (+1), decrease (-1) or hold pitch (0). The desired altitude range is 

given by the green band in (b). 
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As shown in Figure 5-3 initially, the probability for all belief states are uniform 

distributed. During the oscillations (timesteps 35-45) the edge case of the vehicle trying 

to rise faster causes some oscillations in the pitch. We can see this in Figure 5-3 from the 

most confident state changing over a cycle of about 4 timesteps for each oscillation. 

From timesteps 56+, with each timestep the vehicle becomes more confident of its 

state. 
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This simulation showed the fault manager successfully controlling the vehicle and 

avoiding collision with the seabed. There are some issues with oscillations in the pitch 

due to conflicting diving parameters which prevent the pitch from becoming too great. 

However, this did not impede the vehicle from completing its mission. 

Figure 5-3 Simulated shallow-water 

environment model with gradual 

incline seabed (Figure 5-2): AUV 

belief distribution across all possible 

states. Steady-state in the belief 

achieved around timesteps 56+  
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The second shallow water environment simulation added noise to the depth sensor 

measurement. 

 

5.1.1.2 SIMULATED SHALLOW-WATER ENVIRONMENT MODEL WITH GRADUAL INCLINE SEABED WITH 

ADDITIVE NOISE APPLIED TO DEPTH SENSOR MEASUREMENT 
 

The shallow-water environment model from the previous simulation was repeated 

with an additive Gaussian noise applied to the depth sensor measurement. The noise 

was given a ±2meter standard deviation from the actual measurement which is line with 

real-world depth sensors depending on quality of sensor (for example, a hundred-meter 

depth sensor can have up to ±5-meter accuracy) . For more information please see 

section 4.4.1. The AUV simulation was given a DVL range of 20 meters, and a high pitch 

angle of 15 °. The altitude-keeping range is 8-12 meters. See Appendix C – Table for the 

initialization file. These parameters were chosen to match the previous simulation. 

 

In Figure 5-4 (a), the depth measurements have an additive noise induced. This noise 

is given a Gaussian distribution with a ±2meter standard deviation. In Figure 5-4 (b) the 

altitude is initially unknown due to the seabed being outside the DVL’s range however, 

as it dives it is able to get altitude readings when it comes within range of the DVL. 

During timesteps 30 – 40, the seabed forces the vehicle upwards and the response can 

be seen in the fin mode correctly pointing upwards. 
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Figure 5-4 Simulated shallow-water environment model with gradual incline seabed: AUV 

performance with fault manager (DVL range = 20m, altitude-keeping range = 8 – 12 m, high 

pitch = 15°, additive noise ±2 meters). (a) The altitude-keeping AUV depth correctly tracks 

the seabed and changes depth based on vehicle pitch changes. (b) When the vehicle DVL is 

unable to achieve bottom-lock no altitude value is plotted. (c) Pitch is as expected given the 

depth changes. When pitch is < 0 the vehicle dives and when > 0 it rises. (d) Fin mode in 

driven by the fault manager to increases (+1), decrease (-1) or hold pitch (0). The desired 

altitude range is given by the green band in (b). 
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It can be seen that Figure 5-5 there is a lower confidence in the state and slower 

build of confidence compared to the previous model’s belief (Figure 5-3) without an 

induced Gaussian noise. 

This simulation demonstrated that the additive noise induces observations that may 

not be true for the state resulting in a reduction of the confidence in the state of the 

POMDP model.  

The third shallow water environment simulation used real-world bathymetry.  

Figure 5-5 Simulated shallow-water 

environment model with gradual 

incline seabed (Figure 5-4): AUV belief 

distribution across all possible states. 

Oscillations between states from 

timesteps 35 – 50. Steady-state in the 

belief achieved around timesteps 61+.  
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5.1.1.3 SHALLOW-WATER ENVIRONMENT MODEL WITH ACTUAL BATHYMETRY 

 

The shallow-water environment model with actual bathymetry used real AUV 

measurements from Bedford Basin, Halifax, Nova Scotia. This AUV simulation was given 

a DVL range of 20 meters, and a high pitch angle of 15° (see Appendix C – Table for the 

initialization file. The altitude-keeping range is 7-10 meters. These parameters were 

chosen so the vehicle can generally see the seabed but is limited in pitch making it 

critical that it responds quickly to seabed changes. 

 

Figure 5-6 (a) shows the environment model has a fairly consistent depth resulting in 

the vehicle reaching a steady-state altitude fairly quickly.  
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Figure 5-6 Shallow-water environment model with actual bathymetry: AUV performance 

with the fault manager (DVL range = 20 m, altitude-keeping range = 7 – 10 m (green band 

(b)), high pitch = 15°). (a) The measured AUV depth tracks the seabed and changes depth 

based on the vehicle pitch. (b) When the vehicle DVL is unable to achieve bottom-lock, no 

altitude value is plotted – not the case here. (c) The vehicle pitch correctly does not change 

since the seabed depth barely changes. (d) Fin mode is driven by the fault manager which 

increases (+1), decreases (-1), or holds the pitch constant (0). The desired altitude range is 

given by the green band in (b). 
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In Figure 5-7 after the initial (approximately 35) timesteps the vehicle reaches a 

steady-state and the state becomes known due to the high belief in its state. The initial 

timesteps are from the vehicle diving, resulting in the state changing during the dive. 

Due to size, only the first 70 timesteps are plotted in Figure 5-7. 
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Figure 5-7 Shallow-water environment model with actual bathymetry (Figure 5-6): AUV 

belief distribution across all possible states. Towards timestep 35 the belief in the state of 

depth good pitch level becomes high (approximately 98%). Only the initial 70 timesteps are 

plotted since after timestep 35 the vehicle enters a steady state. 
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This simulation ran for approximately 173 000 timesteps. It demonstrated that with 

the Markov assumption the POMDP fault manager can solve for large time scales since it 

does not need to retain history information beyond the previous timestep. It also shows 

that if a system reaches a steady-state in observations, the state can be approximated 

as known (a POMDP requirement). This as reflected in the high confidence in its belief 

state.  

The shallow water cases, here, with both simulated and real bathymetry represent 

only one type of AUV environment.  Another common environment that AUVs 

encounter is deep water (i.e. the seabed depth exceeded the vehicle’s crush depth). This 

is studied next.  

 

5.1.2 Deep-water  
 

The second series of tests were for deep water environments where the AUV 

cannot sense the seabed and achieve bottom-lock. The water depth at some points 

exceed the vehicle’s crush depth. In that case, the fault manager had the vehicle 

maintain its depth until bottom-lock could be achieved again. The first simulation was a 

simple deep water simulated environment model with a seabed incline (approximately 

30° with variations in the incline). 

 

5.1.2.1 DEEP-WATER SIMULATED ENVIRONMENT MODEL 
 

The deep-water simulation had an environment model with a gradual depth decline 

and incline of (approximately 30°) in the seabed where the depth reaches a maximum of 

80 meters. The AUV had a DVL range of 18 meters, a high pitch angle of 15 °, a starting 

depth of 40 meters, and a crush depth of 50 meters. The altitude-keeping range is 8-12 

meters, and the vehicle’s speed is 2 knots with the timestep being 2s. See Appendix C – 

Table for the initialization file. The DVL range was chosen to sense the seabed initially 

but be unable to sense it during the deeper sections. The crush depth was chosen so the 

vehicle would track the seabed until it reaches the deeper portions of the simulations (in 

excess of 72 m). 
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In Figure 5-8 (a) at approximately timestep 40 the vehicle is unable to dive and 

maintain altitude-keeping and bottom-lock. The vehicle instead, correctly, maintains its 

depth above the crush depth until bottom-lock is re-acquired. The altitude is lost due to 

the seabed depth. In Figure 5-8 (b), during the timesteps where altitude cannot be 

attained the pitch oscillates (Figure 5-8 (c)) due to the conflicting requirements  of 

seabed tracking and maximum allowable depth, the fault manager (controlling the fin 

mode, Figure 5-8 (d)) oscillates between diving and ascending. This was not ideal; 

however, it did not affect the vehicle functionality for the depth sub-system. This could 

result in issues with other sub-systems such as power loss from fin changes. An addition 

of dampening and dead-banding for edge cases such as this would solve the issue. 
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Figure 5-8 Deep-water simulated environment model: AUV performance with fault 

manager (DVL range = 22 m, altitude-keeping range = 10 – 20 m, high pitch = 15°, crush 

depth = 50 m) (a) The measured AUV depth tracks the seabed until it loses bottom-lock 

(timesteps 35 – 70) due to seabed depth. (b) When the vehicle loses bottom-lock (timesteps 

35 – 70) no altitude value is plotted. (c) Vehicle pitch correctly oscillates when there is no 

bottom-lock (timesteps 41 – 70). (d) Fin mode oscillates for the same reason as in (c). The 

desired altitude range is given by the green band in (b). 
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The vehicle becomes unsure of its state during the loss of bottom-lock due to the 

seabed depth. This results in the vehicle oscillating between depth states (see timesteps 

41 – 70 in Figure 5-9). Once the seabed depth decreases the state evens out. Between 

timesteps 80 – 85 the fault manager is confident of its state as the vehicle operates at its 

ideal depth and altitude (Figure 5-8 (a) and (b)). The vehicle becomes less sure of its 

state between 85+ due to the rapidly rising seabed forcing the vehicle upwards. The 

vehicle is fairly confident of its state between timesteps 2 – 5 (Figure 5-9) with the state 

being DEPTH_ GOOD, PITCH_LEVEL. At timesteps 88, 91 and 98 the pitch goes to -20° 

(Figure 5-8 (c) and can be seen that the state (Figure 5-9) becomes DEPTH_DEEP, 

PITCH_DOWN_GREATLY which pitch angle is nose-down past the threshold. The 

DEPTH_DEEP is due to the rapidly rising seabed causing the vehicle having a lower 

altitude than desired. 
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This simulation shows the fault manager successfully keeping the vehicle from 

exceeding its crush depth due to loss of altitude (conflicting requirements) when the 

seabed becomes too deep to track. Another deep-water simulation was conducted 

using actual bathymetry measurements.  

Figure 5-9 Deep-water simulated 

environment model with incline 

seabed (Figure 5-8): AUV belief 

distribution across all possible 

states. Not confident in states 

between timesteps 30 – 80. Fairly 

confident between 2 – 5. Steady-

state between timesteps 80 – 84 
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5.1.2.2 DEEP-WATER WITH REAL-WORLD BATHYMETRY ENVIRONMENT MODEL 

The deep-water simulation has an environment model that was from an AUV 

collecting data from Bedford Basin, Halifax, Nova Scotia. The AUV was given a DVL range 

of 10 meters, a high pitch angle of 20 °, a crush depth of 15 meters, and a minimum 

depth of 3 meters. (see Appendix C – Table for the initialization file). The altitude-

keeping range was from 8 to 12 meters. The vehicle’s speed was 2 knots and the 

timestep was 2s. The DVL range was chosen so the vehicle could usually sense the 

seabed in order to track it. The crush depth was set to 15 meters, so the vehicle is 

unable to maintain altitude over some portion (the depth for this environment model 

was shallow so it was necessary to set shallow crush depths). The minimum depth of the 

vehicle was decreased to 3 meters since the environment model is fairly shallow. 

 

In Figure 5-10 (a), the vehicle and seabed depths are shown as a function of time. 

During timesteps 70 – 80, the seabed is very shallow, the fault manager oscillates 

between avoiding the seabed and achieving the minimum vehicle depth (set in the 

initialization file). This oscillation is caused by the edge case of trying to dive to avoid 

minimum depth while trying to attain the altitude range. During timesteps 380 – 400, 

the seabed depth becomes too deep and the vehicle can no longer achieve bottom-lock 

and loses altitude measurements (Figure 5-10 (b)). This results again in some oscillation 

due to the conflicting requirements of diving to achieve altitude range and maintaining 

the vehicle above the crush depth.  
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Figure 5-10 Deep-water with real-world bathymetry environment model: AUV performance 

with fault manager: (a) The AUV has some oscillation around timestep 40-80 due to conflict 

between minimum depth and minimum altitude. The vehicle achieves (b) altitude-keeping 

(green band) for most of the mission although it loses altitude and depth measurements 

around timesteps 370-400 due to increased seabed depth beyond vehicle crush depth.  (c) 

When the pitch < 0 the vehicle dives and when > 0 it rises. Pitch oscillations for reasons in 

(a). (d) Fin mode is driven by the fault manager which increases (+1), decreases (-1), or 

holds the pitch constant (0). The desired altitude range is given by the green band in (b). 
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When the vehicle has both the desired altitude range and depth range the belief in 

its state becomes confident (see Figure 5-11) approximately in timesteps 20-35, 130-

140, 155-210, 240-270, 275-305, 330-355, 510-525, and 560-585. This is due to the 

vehicle’s subsequent observations agreeing with past ones resulting in the vehicle 

entering a steady state. During timesteps where it is unable to achieve depth and 

altitude-keep or when the seabed is rapidly changing it becomes less confident in its 

states (see Figure 5-9). 

  



- 92 - 

 

 

 

  

Figure 5-11 Deep-water with real-world 

bathymetry environment model (Figure 

5-10) AUV belief distribution across all 

possible states. There are several bands 

approximately : 20-35, 130-140, 155-

210, 240-270, 275-305, 330-355, 510-

525, and 560-585 were the state is 

confidently known. During the other 

periods there is uncertainty in the 

state. 
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This simulation show that the fault manager was able to successfully keep the 

vehicle from exceeding its crush depth when the seabed was too deep for the vehicle to 

altitude-keep using an environment with actual bathymetry. It also shows that the belief 

in the state becomes more variable when it has conflicting parameters (i.e. keep the 

AUV above the maximum depth and achieving bottom-lock on a too deep seabed). This 

results in it prioritizing one set of parameters (minimum depth) to ensure vehicle health. 

 

The next series of tests used rapidly changing seabed depth to demonstrate the 

fault manager’s response to a variable environment. 

 

5.1.3 Variable seabed 

The third test series was for a variable seabed which has a rapidly changing 

depth. The AUV must respond quickly to avoid colliding with the seabed and, 

simultaneously, maintain bottom-lock. The first test used a simulated random 

environment model. 

 

5.1.3.1 VARIABLE SEABED WITH SIMULATED RANDOM ENVIRONMENT MODEL 

The first variable seabed depth test had a simulated random environment model. 

The AUV was initialized with a DVL range of 30 meters, a high pitch angle of 20 °, and a 

speed of 2 knots and timestep of 2s. It maintains an altitude-keeping range of 12 to 16 

meters, this was increased from previous models due to the rapid changes of the 

environment. (Appendix C – Table for the initialization file). The DVL range was chosen 

so the vehicle DVL could sense the seabed. The crush depth was set to 35 m, so the 

vehicle would have stretches where it is unable to altitude-keep.  

 

In Figure 5-12(a), the vehicle reacts to the rapid changes in the seabed depth. 

Around timestep 15, the vehicle narrowly avoids collision by rapidly increasing its pitch 

from the initial dive, due to the decrease in seabed depth. Later, around timestep 55, 

the vehicle scrapes the seabed because of an anomalous peak (simulating a shoal). 

These types of collision are difficult to avoid beyond setting the vehicle to a higher 

altitude-tracking threshold (which means poorer resolution sonar sensor 
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measurements). If this is an expected concern, the remedy is an obstacle avoidance 

(front-facing) sensor. In a real-world model, depending on the vehicle speed and 

structural material,  this could result in vehicle damage. However, it is assumed only 

minor damage resulted from this collision and the vehicle was able to continue its 

mission. Between timesteps 20-45, the vehicle DVL loses bottom-lock due to the pitch of 

the vehicle exceeding the maximum pitch angle tolerated for bottom-lock (15°) .The 

vehicle loses bottom-lock when the seabed depth rapidly deceases, and the vehicle is 

unable to follow fast enough to keep within range. 

In Figure 5-12 (c) and (d), the pitch and fin when the pitch becomes too large in 

response to trying to change vehicle depth to avoid colliding with the seabed (timesteps 

20-45). 

Here is shows how the speed of the vehicle effects tracking the seabed, if the seabed 

changes faster than the vehicle can follow the vehicle is unable to maintain altitude 

keeping.  
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Figure 5-12 Variable seabed with simulated random environment model: AUV performance 

with fault manager (DVL range is 35m, high pitch = 20°, altitude-keeping range = 12 – 16 m, 

crush depth is 35m). (a) The measured AUV depth tracks the seabed depth until the seabed 

rises quickly at timesteps 25 and 35 (near collisions).  (b) When the vehicle DVL loses 

bottom-lock (timesteps 25-45) due to high pitch, and when the seabed has descended 

beyond the DVL range and the vehicle’s speed is unable to match (timesteps 60 -80) there is 

no altitude value plotted. (c) When the pitch < 0 the vehicle dives and when > 0 it rises – 

vehicle pitch oscillates between timesteps 20-45 due conflicting requirements of rising and 

descending. (d) Fin mode is driven by the fault manager and increases (+1), decreases (-1), 

or holds the pitch constant (0). The desired altitude range is given by the green band in (b). 
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As shown in Figure 5-13, with rapid changes in the seabed (compared to the vehicle 

speed and its ability to respond) the vehicle never enters a steady-state condition. Due 

to this rapidly changing environment, the fault manager is less confident in any one 

state. The beliefs rapidly change as conflicting observations are made. 
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Figure 5-13 Variable seabed with simulated random environment model (Figure 5-12): AUV 

belief distribution across all possible states. The states fluctuate, and the system never 

enters a steady state. 
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 This simulation shows the fault manager can respond to a variable seabed 

environment. A variable environment can cause lower confidence in any one belief state 

due to the rapid changes between timesteps. The AUV vehicle is limited by its speed and 

angle change, this results in the possibility of the vehicle being unable to completely 

track the seabed where it is rapidly changing. 

A second simulation was performed on a variable seabed this time with real-world 

bathymetry. 

 

5.1.3.2 VARIABLE SEABED REAL-WORLD BATHYMETRY ENVIRONMENT MODEL 
 

This variable seabed simulation has an environment model from real-world 

bathymetry of Bedford Basin, Halifax, Nova Scotia. The AUV was given a DVL range of 30 

meters, a high pitch angle of 20 °, a crush depth of 35 meters, and a minimum depth of 

3 meters. The altitude range was between 12 and 16 meters. (See Appendix C – Table 

for the initialization file.). The DVL range was chosen so the vehicle could always sense 

the seabed and have bottom-lock. The minimum depth of the vehicle was decreased to 

3 meters since the environment model is shallow. 

 

In Figure 5-14(a), the vehicle and seabed depth were plotted on the same time scale 

to show the vehicle fault manager’s response to the seabed. From timesteps 70 – 80 the 

vehicle’s response has some oscillations in very shallow water. The fault manager is 

attempting to avoid the seabed and achieve the minimum vehicle depth (set in the 

initialization file). At this time, the seabed depth reaches 4.9 meters. Near timestep 450 

the depth of the seabed rapidly increases like a cliff face. The vehicle must ascend 

rapidly to avoid collision. Due to the rapid changes in the seabed the fault manager is 

constantly changing the fin mode (d) to alter the pitch Figure 5-14 (c) so the vehicle 

avoids the seabed Figure 5-14 (a) but maintains altitude (b).  
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Figure 5-14 Variable seabed real-world bathymetry environment model: AUV performance 

with fault manager (DVL range = 30m, high pitch = 20°, crush depth = 35m, min vehicle 

depth = 4m). (a) The AUV some oscillations during the edge case of trying to maintain 

minimum depth and altitude range during timesteps 40-70). A near miss is located around 

timestep 470. (b) Given a DVL range of 20 m in 32 m of water, the vehicle DVL achieves 

bottom-lock throughout the missions.  (c). When the pitch < 0 the vehicle dives and when > 

0 it rises.  vehicle rises. Pitch oscillations early in the run for the reasons in (a).  (d) Fin mode 

is driven by the fault manager which increases (+1), decreases (-1), or holds the pitch 

constant (0). The desired altitude range is given by the green band in (b). The desired 

altitude range is given by the green band in (b). 
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Figure 5-15 shows that with high frequency variability in the seabed depth, compared to 

the vehicle’s ability to respond, there are only specific stretches where the vehicle is 

certain of its state (timesteps 20 – 30, 20 – 25, 145 – 150, 165 – 205, 230 – 260, 270 – 

305, 320 – 350, 370 – 420, 440 – 460, 500 – 540, and 570 – 585). During the rapid 

changes the vehicle’s state distribution is varied and changes quickly from new 

observations being made. 
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Figure 5-15 Variable seabed real-

world bathymetry environment 

model (Figure 5-14): AUV belief 

distribution across all possible states. 

There are several bands 

approximately, timestep: 20-30, 20-

25, 145-150, 165-205, 230-260, 270-

305, 320-350, 370-420, 440-460, 500-

540, and 570-585 where the state is 

confidently known. During the other 

periods there is uncertainty in the 

state. 
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Like the previous simulated environment model (Section 5.1.3.1), the vehicle belief 

of its state fluctuates as the seabed rapidly changes depth. This results in observations 

to vary a lot between consecutive timesteps (i.e. observations may be that the vehicle is 

in shallow water to be followed by very deep water in the next timestep). This is due to 

the nature of the rapidly changing seabed. For example, at timestep 460 the seabed is 

about 20 meters but at timestep 470 the seabed is 15 meters. This rapid change in the 

environment causes rapid change in the prediction of the state. 

 

The variation in the belief state is due to rapid changes in the seabed causing 

reduced confidence. The vehicle however, was able to successfully navigate and achieve 

bottom-lock while avoiding collisions with the seabed. The next set of tests demonstrate 

the effect of modifying the POMDP model itself and how the vehicle fault manager 

responds. 

 

5.1.4 POMDP probability function modified and inclusion of noise 

The fourth set of simulations explore the reduction of confidence in the POMDP 

model and the addition of a noisy sensor model. These tests use the shallow-water 

simulated environment with a gradual seabed incline (see 5.1.1.1) and with additive 

Gaussian noise on the depth measurements(5.1.1.2). The parameters for these tests 

were all the same with the altitude range being between 4 and 8 meters. The DVL range 

was set to 20 meters, altitude range of 8-12 meters, speed of 2 knots, timesteps of 2s, 

and depth range between 5 and 35 with maximum pitch being 15°. These were chosen 

to match the parameters of the unmodified simulation in 5.1.1.1. 

 

These tests reduce the probabilities assigned to the POMDP model functions for the 

probability of making-an-observation and probability of transitioning-between-states, 

O(o|s,a) and T(s’|s,a), respectively. 

 

The reward function was not altered since the rewards are arbitrary and their values 

are only relevant compared to each other. If reward values are all reduced by a specific 



- 103 - 

 

percentage, the system will not alter the model’s behaviour since the rewards relative 

to one another are unchanged. 

 

The first set of tests explores a reduction in the probability of making-an-

observation function. 

5.1.4.1 OBSERVATION FUNCTION PROBABILITIES REDUCED BY 10%, 20% AND 40% 

These tests explore the impact of the probability of making-an-observation function, 

O(o| s,a), in the POMDP. It reduces the set probabilities in the POMDP model by a 

controlled amount. Three tests were conducted with reductions of 10%, 20%, and 40%.  

 

As shown in Figure 5-28 The three different simulations of reduced observation 

functions have the same trends. The 10% reduced is able to attain altitude keeping (b). 

The 20% reduced follows the 10% reduced although it is slower to react to changes. A 

40% reduction in the probability has the most dramatic effect with the vehicle having 

very little confidence in the observations made of the rising seabed and consequently, 

colliding with the seabed. Similarly, due to the high pitch angles from the few altitude 

measurements that were achieved, there are much more instances of fin mode changes 

resulting in an unstable pitch. This is due to the fault manager’s uncertainty in its state 

being reflected in its responses.  
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Figure 5-16 Observation probabilities reduced by 10%, 20% and 40%: AUV performance 

with the fault manager over a shallow gradual seabed incline. In all cases, the results are 

poorer with increase reductions in the observation probabilities. The desired altitude range 

is given by the green band in (b). 

In the 10% reduced model there is not much change from the original model in 

section 5.1.1.1. The vehicle is confident of its state throughout the simulation run 

(Figure 5-29). 
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In the 20% reduced model (Figure 5-18) the fault management system still has 

confidence in its belief state in the first half of the simulation however; as the seabed 

rises and forces the vehicle to adapt the fault manager becomes less sure of its state. 

During timestep 54 there is a large change in the belief state due to a highly erroneous 

depth measurement. This is interesting since it shows the noisy data results in a fault 

causing the vehicle to attempt to rectify its depth only to receive more accurate data 

and have to rapidly change its belief state and actions. 

Figure 5-17 Belief distribution for 

AUV performance for the fault 

manager over a shallow gradual 

seabed incline with 10% reduced 

probabilities of making-an-

observation (Figure 5-16).  Results 

are not too different from the 0% 

reduced probability case (Section 

5.1.1.1).  
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In the 40% reduced model the fault management system lacks confidence in the 

vehicle state. This is due to POMDP model not being able to place confidence in the 

observations due to the highly reduced probability of making those observations given 

any state or prior actions.  

Figure 5-18 Belief distribution for 

AUV performance for the fault 

manager over a shallow gradual 

seabed incline with 20% reduced 

probabilities of making-an-

observation (Figure 5-16). Some 

distinctions now seen between this 

case and the 10% reduced 

probabilities case.  
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These simulations clearly demonstrate how reducing the probability of observation 

causes the vehicle fault manager to have less confidence in its state. In the 40% case, 

the vehicle is unable to have confidence in any state.  

 

Figure 5-19 Belief distribution for AUV 

performance with the fault manager 

over a shallow gradual seabed incline 

with 40% reduced probabilities of 

making-an-observation (Figure 5-16). 

Results are notably poor compared to 

the 10% reduced case. There is no 

confidence in any state. 
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The next set of tests have a reduction in probabilities were applied to the 

transitioning-between-states function instead.  

 

5.1.4.2 TRANSITION FUNCTION PROBABILITIES REDUCED BY 10%, 20% AND 40% 
 

These tests explore the impact of the probability of transitioning-between-states,  

T(s’| s,a), POMDP function. It reduces the probabilities in the POMDP model by a set 

rate, namely 10%, 20%, and 40%.  

 

In Figure 5-32 (a), the simulations for reductions of 10% and 20% perform similarly. 

The 20% reduction simulation has more fin mode changes and greater variation in the 

pitch. The simulation with 40% reduction is unable to prevent collisions with the seabed 

or achieve bottom-lock for altitude readings. The lack of confidence in its state has the 

consequence of being unable to predict states. Similarly, the lack confidence in its 

actions means it is unable to change the state to a desired outcome. The fin mode varies 

rapidly for the 40% reduced model and the change in pitch to rise above the seabed 

comes far too late. 
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Figure 5-20 State transition probabilities reduced by 10%, 20% and 40%: AUV performance 

with the fault manager over a shallow gradual incline environment.  Generally, the AUV 

performance is poorer and more uncertain with increasingly reduced probabilities where 

the fault manager is unable to direct the AUV towards the desired outcomes. The desired 

altitude range is given by the green band in (b). 

In the 10% reduction (Figure 5-21) to the probability of transitioning-between-

states model there is little change from the original model in section 5.1.1.1. The vehicle 

can still have confidence in its state throughout the simulation. 
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The difference between a reduction of 20% (Figure 5-22) and 10% (Figure 5-21) is 

not significant although it is noticeable that the vehicle is slower to have confidence in 

new states. This results in lower confidence for any one state during most of the 

simulation where the states rapidly change. 

Figure 5-21 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 10% reduced 

probability of transitioning-

between-states (Figure 5-20).  

Results are not remarkable beyond 

the 0% reduced probability case. 
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In the 40% (Figure 5-23) reduced model the fault management system lacks 

confidence in the states, although it does have more confidence than it did for the 40% 

reduction to the observation function (see section 5.1.4.4). This makes sense as the 

observations drive the belief in the state although the fault manager determining the 

best actions would be problematic.  

  

Figure 5-22 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 20% reduced 

probability of transitioning-

between-states (Figure 5-20).  

Results are not unlike the 10% case. 
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This set of simulations show that reductions in the probabilities of transitioning- 

between-states has less impact on the vehicle belief state and how the fault manager 

chooses actions. The fault manager when the probabilities were reduced by 10% and 

20% was still able to function, however at 40% while still maintaining a better belief 

Figure 5-23 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 40% reduced 

probability of transitioning-between-

states (Figure 5-20).  Results are 

notably poorer than the 10 or 20% 

case.  However, they are not as poor 

as the 40% reduction in the 40% 

probability of making-an-

observation case. 
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distribution than 40% reduction in the observation function (section 5.1.4.4) the fault 

manager was unable to choose actions and the vehicle collided with the seabed. 

 

The next set of tests highlight the impact of reductions in probabilities for the 

transition-between-states and making-an-observation functions and the addition of 

Gaussian additive noise. 

 

5.1.4.3 OBSERVATION AND TRANSITION FUNCTIONS’ PROBABILITIES REDUCED BY 10%, 20%, AND 

40% 

 

The next series of tests explore the combined effects of the probability of 

transitioning-between-states, T(s’| s,a), and of making-an-observation, O(o| s,a), on the 

POMDP. It reduces the probabilities in the POMDP model at a set rate. Note, these 

probabilities are independent – not a joint-probability. Three tests were conducted 

using rates of 10%, 20%, and 40%.  

 

In Figure 5-36(a), the two simulations of reduced probabilities of 10% and 20% were 

similar. The reduced simulation of 20% had more fin mode (d) changes which causes 

more variation in vehicle pitch (Figure 5-36 (c)). The 40% reduction meant the vehicle 

was unable to avoid the seabed (Figure 5-36 (a)) and an extremely low pitch (Figure 5-36 

(c)) which results in complete loss of altitude (Figure 5-36 (b)). This makes sense given 

the results in sections 5.1.4.4 and 5.1.4.5. With both probability functions so greatly 

reduced, the fault manager was unable to determine its state or choose actions to 

properly drive the vehicle. 
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Figure 5-24 The probabilities of making-an-observation and transitioning-between-states 

functions are both eroded by 10, 20 and 40%: AUV performance with the fault manager 

driving the fin mode over a shallow gradual incline environment. (a) The 10% and 20% 

track the same general path. The 40% case has the AUV collide with the seabed. (b) AUV 

altitude follows the trends in (a). (c) Pitch oscillations increase at 20% reduction.  (d) Fin 

mode trends, expectedly, follow (c). The desired altitude range is given by the green band 

in (b). 

Similar to results in sections 5.1.4.4 and 5.1.4.5 the reduction of both probability 

(Figure 5-25) functions by 10% has minimal impact on the state belief. There is overall 

less confidence in any one state for each timestep compared to the original (un-

reduced) simulations in section 5.1.1.1. 
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The reduction of 20% for both probability functions results in a much less 

confident fault manager. This creates a more variable belief state as shown in Figure 

5-26. 

 

Figure 5-25 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 10% reduced 

probabilities in making-an-

observation and transitioning-

between-states (Figure 5-36). 

Minimal impact in the state belief.  
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Finally, similar to the results in sections 5.1.4.4 and 5.1.4.5, the reduction of 40% 

(Figure 5-27) results in a fault manager incapable of having confidence in any one state. 

 

Figure 5-26 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 20% reduced 

probabilities in making-an-

observation and transitioning-

between-states (Figure 5-36). At 20% 

reduction in both probabilities, the 

fault manager is less confident of its 

state. 
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These series of simulations demonstrated that reduction of the probability functions 

result in the system less sure of its measurements and the actions required. This is 

further explored in the next few simulations that repeat the reduction along with an 

additive Gaussian noise induced in the measurements. 

 

Figure 5-27 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 40% reduced 

probabilities in making-an-

observation and transitioning-

between-states and additive 

Gaussian noise (Figure 5-36). At 

40% reduction in both probabilities 

the fault manager is unable to have 

confidence in any one state. 
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5.1.4.4 OBSERVATION FUNCTION PROBABILITIES REDUCED BY 10%, 20% AND 40% WITH ADDITIVE 

NOISE 

These tests explore the impact of the probability of making-an-observation function, 

O(o| s,a), in the POMDP. It reduces the set probabilities in the POMDP model by a 

controlled amount. Three tests were conducted with reductions of 10%, 20%, and 40%. 

Additive Gaussian noise was induced in the AUV depth measurement, similar to that of 

the simulation in section 5.1.1.2. This was given a standard deviation of 2 meters (see 

equation 4-6 in section 4.4.1) from the actual measurement set in the initialization file 

(see Appendix C – Table).  

 

As shown in Figure 5-28(a) the measured AUV depth is noisy from the additive noise. 

The altitude follows and is likewise noisy. The three different simulations of reduced 

observation functions have the same trends as the previous simulation without noise 

(5.1.4.1). The again 40% reduction in the probability has the most dramatic effect with 

the vehicle having very little confidence in the observations made of the rising seabed 

and consequently, colliding with the seabed. Similarly, due to the high pitch angles from 

the few altitude measurements that were achieved, there are much more instances of 

fin mode changes resulting in an unstable pitch. This is due to the fault manager’s 

uncertainty in its state being reflected in its responses. The noise increases the 

uncertainty in the observations. 
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Figure 5-28 Observation probabilities reduced by 10%, 20% and 40% and additive Gaussian 

noise in depth measurements: AUV performance with the fault manager over a shallow 

gradual seabed incline. In all cases, the results are poorer with increase reductions in the 

observation probabilities. The desired altitude range is given by the green band in (b). 

In the 10% reduced model there is not much change from the original model in 

section 5.1.1.2. There is a reduction in the confidence of its state compared to the noise-

free model (section 5.1.4.1)The vehicle is confident of its state throughout the 

simulation run (Figure 5-29). 



- 120 - 

 

 

In the 20% reduced model (Figure 5-30) the fault management system still has 

confidence in its belief state in the first half of the simulation however; as the seabed 

rises and forces the vehicle to adapt the fault manager becomes less sure of its state. 

There is a decrease in the confidence compared to the previous section 5.1.4.1. 

Figure 5-29 Belief distribution for 

AUV performance for the fault 

manager over a shallow gradual 

seabed incline with 10% reduced 

probabilities of making-an-

observation (Figure 5-28).  Results are 

not too different from the 0% 

reduced probability case (Section 

5.1.1.2).  
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In the 40% reduced model (Figure 5-31) the fault management system lacks 

confidence in the vehicle state. This is due to POMDP model not being able to place 

confidence in the observations due to the highly reduced probability of making those 

observations given any state or prior actions.  

Figure 5-30 Belief distribution for 

AUV performance for the fault 

manager over a shallow gradual 

seabed incline with 20% reduced 

probabilities of making-an-

observation (Figure 5-28). Some 

distinctions now seen between this 

case and the 10% reduced 

probabilities case. 
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These simulations clearly demonstrate how reducing the probability of observation 

and additive Gaussian noise on the sensor measurement causes the vehicle fault 

manager to have less confidence in its state. In the 40% case, the vehicle is unable to 

Figure 5-31 Belief distribution for AUV 

performance with the fault manager 

over a shallow gradual seabed incline 

with 40% reduced probabilities of 

making-an-observation (Figure 5-28). 

Results are notably poor compared to 

the 10% reduced case. There is no 

confidence in any state. 
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have confidence in any state. The additive noise can also result in observations that are 

false causing the vehicle to perform unnecessary or counter-productive actions. It also 

results in a lower confidence of state due to conflicting observations. 

 

The next set of tests likewise have additive Gaussian noise however; the reduction in 

probabilities were applied to the transitioning-between-states function instead.  

 

5.1.4.5 TRANSITION FUNCTION PROBABILITIES REDUCED BY 10%, 20% AND 40% WITH ADDITIVE 

NOISE 
 

These tests explore the impact of the probability of transitioning-between-states, 

T(s’| s,a), POMDP function. It reduces the probabilities in the POMDP model by a set 

rate, namely 10%, 20%, and 40%. Additive Gaussian noise was also added to the AUV 

simulation depth measurements, similar to section 5.1.1.2. The depth measurement 

was assigned a standard deviation of 2 meters (see equation 4-6 in section 4.4.1) from 

the actual measurement (set in the initialization file, see Appendix C – Table).  

 

In Figure 5-32 (a), the measured AUV depth is sporadic due to the additive noise. 

The altitude likewise follows suit from the additive Gaussian noise. The simulations for 

reductions of 10% and 20% perform similarly. The 20% reduction simulation has more 

fin mode changes and greater variation in the pitch. The simulation with 40% reduction 

is unable to prevent collisions with the seabed or achieve bottom-lock for altitude 

readings. The lack of confidence in its state has the consequence of being unable to 

predict states. Similarly, the lack confidence in its actions means it is unable  to change 

the state to a desired outcome. The fin mode varies rapidly for the 40% reduced model 

and the change in pitch to rise above the seabed comes far too late.  
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Figure 5-32 State transition probabilities reduced by 10%, 20% and 40%: AUV performance 

with the fault manager over a shallow gradual incline environment.  Generally, the AUV 

performance is poorer and more uncertain with increasingly reduced probabilities where 

the fault manager is unable to direct the AUV towards the desired outcomes. The desired 

altitude range is given by the green band in (b). 

In the 10% reduction (Figure 5-33) to the probability of transitioning-between-

states model there is little change from the original model in section 5.1.1.2, and an 

decrease in confidence  compared to the noise-free model (section 5.1.4.2). The vehicle 

can still have confidence in its state throughout the simulation. 
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The difference between a reduction of 20% (Figure 5-34) and 10% (Figure 5-33) is 

not significant although it is noticeable that the vehicle is slower to have confidence in 

new states. This results in lower confidence for any one state during most of the 

simulation where the states rapidly change.  

Figure 5-33 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 10% reduced 

probability of transitioning-between-

states and additive Gaussian noise 

(Figure 5-45).  Results are not 

remarkable beyond the 0% reduced 

probability case.  
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In the 40% reduced model (Figure 5-35) the fault management system lacks 

confidence in the states, although it does have more confidence than it did for the 40% 

reduction to the observation function (see section 5.1.4.4). This makes sense as the 

observations drive the belief in the state although the fault manager determining the 

best actions would be problematic.  

  

Figure 5-34 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 20% reduced 

probability of transitioning-

between-states and additive 

Gaussian noise (Figure 5-45).  Results 

are not unlike the 10% case. 
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Figure 5-35 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 40% reduced 

probability of transitioning-between-

states and additive Gaussian noise 

(Figure 5-45).  Results are notably 

poorer than the 10 or 20% case. 

However, they are not as poor as the 

40% reduction in the 40% probability 

of making-an-observation case. 
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This set of simulations show that reductions in the probabilities of transitioning- 

between-states and a noisy sensor measurement has less impact on the vehicle belief 

state and how the fault manager chooses actions. The fault manager when the 

probabilities were reduced by 10% and 20% was still able to function, however at 40% 

while still maintaining a better belief distribution than 40% reduction in the observation 

function (section 5.1.4.4) the fault manager was unable to choose actions and the 

vehicle collided with the seabed. The Gaussian noise resulted in less confidence in state 

due to conflict between observations as compared to the noise-free model 5.1.4.2. 

The next set of tests highlight the impact of reductions in probabilities for the 

transition-between-states and making-an-observation functions and the addition of 

Gaussian additive noise. 

 

5.1.4.6 OBSERVATION AND TRANSITION FUNCTIONS’ PROBABILITIES REDUCED BY 10%, 20%, AND 

40% 

 

These series of tests explore the combined effects of the probability of transitioning-

between-states, T(s’| s,a), and of making-an-observation, O(o| s,a), on the POMDP. It 

reduces the probabilities in the POMDP model at a set rate. Note, these probabilities are 

distinct – not a joint-probability. Three tests were conducted using rates of 10%, 20%, 

and 40%. Additive Gaussian noise was also added to the AUV simulation’s depth 

measurements. This was assigned a standard deviation of 2 meters (see equation 4-6 in 

section 4.4.1) from the actual measurement set in the initialization file (see Appendix C 

– Table).  

 

In Figure 5-36(a), the measured AUV depth is sporadic with the additive noise. The 

altitude likewise follows suit from the additive noise. These two simulations of reduced 

probabilities of 10% and 20% were similar. The reduced simulation of 20% had more fin 

mode (d) changes which causes more variation in vehicle pitch (Figure 5-36 (c)). The 40% 

reduction meant the vehicle was unable to avoid the seabed (Figure 5-36 (a)) and an 

extremely low pitch (Figure 5-36 (c)) which results in complete loss of altitude (Figure 
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5-36 (b)). This makes sense given the results in sections 5.1.4.4 and 5.1.4.5. With both 

probability functions so greatly reduced, the fault manager was unable to determine its 

state or choose actions to properly drive the vehicle. 
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Figure 5-36 The probabilities of making-an-observation and transitioning-between-states 

functions are both eroded by 10, 20 and 40%: AUV performance with the fault manager 

driving the fin mode over a shallow gradual incline environment. (a) The AUV depth is 

sporadic due to the additive Gaussian noise. The 40% case has the AUV collide with the 

seabed. (b) AUV altitude follows the trends in (a). (c) Pitch oscillations increase at 20% 

reduction.  (d) Fin mode trends, expectedly, follow (c). The desired altitude range is given 

by the green band in (b). 
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Similar to results in sections 5.1.4.4 and 5.1.4.5 the reduction of both probability 

functions by 10% (Figure 5-37) has minimal impact on the state belief. There is overall 

less confidence in any one state for each timestep compared to the original (un-

reduced) simulations in section 5.1.1.2. The noise lowers the confidence of the belief in 

state; however, the fault manager is still able to act similarly to previous noise-free 

models (section 5.1.4.3). 
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The reduction of 20% for both probability functions results in a much less 

confident fault manager. This creates a more variable belief state as shown in Figure 

5-38. 

 

Figure 5-37 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 10% reduced 

probabilities in making-an-

observation and transitioning-

between-states and additive 

Gaussian noise (Figure 5-36) cause a 

reduction in confidence of its belief. 
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Finally, similar to the results in sections 5.1.4.4 and 5.1.4.5, the reduction of 40% 

(Figure 5-39) results in a fault manager incapable of having confidence in any one state. 

 

Figure 5-38 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 20% reduced 

probabilities in making-an-

observation and transitioning-

between-states and additive 

Gaussian noise (Figure 5-36). At 20% 

reduction in both probabilities, and 

the additive noise cause the fault 

manager is less confident of its 

state. 
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It was demonstrated that the combined reduction of probabilities for transitioning-

between-states, T(s’| s,a) and making-an-observation, O(o| s,a), on the POMDP fault 

manager led to a reduction in the confidence of the states at each timestep. In the 40% 

Figure 5-39 Belief distribution for 

AUV performance with the fault 

manager over a shallow gradual 

seabed incline with 40% reduced 

probabilities in making-an-

observation and transitioning-

between-states and additive 

Gaussian noise (Figure 5-36). At 40% 

reduction in both probabilities the 

fault manager is unable to have 

confidence in any one state. 
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case, the fault manager is unable to properly control the vehicle. The higher the 

probability of these functions, the less confident the fault manager is of the state and 

actions it needs to perform to ensure the vehicle’s performance. The additive noise 

increased the lack of confidence  

 

These tests concluded the depth sub-system only simulations, the next series of 

tests were for the power management sub-system. 

 

5.2 Power management sub-system simulations 

The second set of tests were with the power-management sub-system only. These 

tests were conducted for three energy levels to show the fault manager’s response to 

sufficient energy, insufficient energy (requires a power usage reduction), or critical 

capacity (requires the vehicle to abort its mission). Both the initial energy capacity and 

total estimated mission time are set in the initialization file (see Appendix C – Table). 

The energy consumption is a random distribution read from a log file. For more 

information see section 4.4.2. 

 

The vehicle’s energy usage is captured in a series of plots for each test. The first plot, 

(a), shows the energy capacity (Joules) over the mission. The second plot, (b), shows the 

estimated mission time left. Plot (c) shows the effect of the power management mode 

controlled by the fault manager. A value of 0 means energy usage is normal, 1 means 

the vehicle has entered a power-saving-mode where power usage is reduced by a set 

incremental rate defined in the initialization file (see Appendix C – Table), and 2 means 

the mission has been aborted. Plot (d) shows the energy consumed at each timestep. 

This was a variable input since energy consumption by sensors, actuators and 

processors is rarely constant. 

 

The first of these tests had sufficient energy to complete the mission. 
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5.2.1 Sufficient capacity with simulated energy consumption 

The sufficient-energy capacity test began with a capacity of 8000 Joules and finished 

with about 2500 Joules of energy. Since the energy was only measured to be low (as 

opposed to very low or critical) in the final quarter of the mission, the power-saving  

mode was not engaged since the fault manager determines there is likely sufficient 

energy to finish the simulation. The low energy rate was set to 40% (set in initialization 

file, see Appendix C – Table). This results in the low energy value to be under 3200 

Joules. A very low energy capacity is defined as under 1600 Joules and a critical capacity 

is 800 Joules. 

 

In Figure 5-40 (a) the AUV energy capacity decreases over the course of the mission. 

It does reach below 3200 Joules around timestep 55, but never drops below the very-

low or critical thresholds. The estimated time to completion is in (b). The total estimated 

mission time (set in initialization file) is inaccurate causing the mission to take longer 

than estimated. The power mode is shown in Figure 5-40 (c) – it never switches from 

normal usage. Although the energy capacity does reach a low energy threshold the 

usage remains normal since the vehicle is in the last quarter of its mission and the fault 

manager determines there is enough energy to finish the mission. Figure 5-40 (d) shows 

the energy usage measurement at each timestep.  

The belief state (Figure 5-41) is fairly steady with the main changes being the 

mission time. 
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Figure 5-40 Sufficient energy for given simulated energy consumption in (d) with the 

estimated mission time of (b). The fault manager drives the power sub-system with 

thresholds: low=3.2 kJ, very low = 1.6 kJ, and critical = 0.8 kJ. (a) Energy (J) decreases as 

expected, it does not go below the low energy state. (b) The estimated time to mission 

competition is longer than expected. (c) The fault manager driven power mode shows all 

zeros which means energy is consumed at the normal rate which is expected given 

sufficient energy. 
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Figure 5-41 Belief distribution for AUV performance with the fault manager (Figure 5-40): 

sufficient energy given simulated energy consumption. Belief state progresses with 

confidence as expected. 
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This model shows the vehicle operating with sufficient energy and will be used as a 

benchmark for the next two tests that operate at a reduced energy state. 

The initial energy capacity of the sufficient model was reduced by 30% for an 

insufficient energy model. 

 

5.2.2 Insufficient capacity with simulated energy consumption 

The insufficient energy capacity test was initialized with a capacity of 5750 Joules 

and finished with 630 Joules of energy. The low energy rate was set to 40% (set in 

initialization file see Appendix C – Table). This means the low energy value is under 2300 

Joules. A very low energy capacity is under 1150 Joules and a critical capacity is 575 

Joules. The power-saving-mode reduces the energy consumed by 25% (set in the 

initialization file). 

 

In Figure 5-42(a) the AUV energy capacity decreases over the course of the mission. 

It goes below 1150 Joules (very low) at around timestep 55 which activates the power-

saving-mode seen in Figure 5-42 (c). The vehicle manages to finish the simulation before 

crossing the critical energy level threshold. The estimated time to completion is shown 

in Figure 5-42 (b). The total estimated mission time (set in initialization file) is inaccurate 

causing the mission to take longer than estimated. Figure 5-42 (d) shows the energy 

usage measurement for each timestep. Once the power-saving-mode is engaged 

(timestep 55), there is a noticeable reduction in the energy consumed at each timestep 

(Figure 5-42 (d)). 

 

The vehicle is fairly confident (Figure 5-43) of its state in the first 85% of the mission, 

with the main changes coming from the mission time states. However, towards the end 

of the simulation when the energy capacity begins to reach the low and then very low 

levels the vehicle becomes less confident of its state. 



- 140 - 

 

 

 

Figure 5-42 Insufficient energy for given simulated energy consumption in (d) with the 

estimated mission time of (b).  The fault manager drives the power sub-system with 

thresholds: low= 5.75 kJ, very low = 2.3 kJ, and critical = 1.15 kJ). (a) The total energy 

(Joules) decreases as expected over the mission. At timestep = 55, the vehicle enters the 

power-saving mode. (c) The fault manager driven power mode (energy consumption rate: 0 

= normal rate, 1 = lower power rate) switches to power-saving mode at timestep = 55 

given insufficient energy. The yellow band is when the power-saving mode is engaged. 
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Figure 5-43 Belief distribution for AUV performance with the fault manager: insufficient 

(Figure 5-42) energy given simulated energy consumption. Belief state progresses with 

confidence as expected until the last 15% of the mission where the state becomes more 

uncertain due to the lower energy modes. 
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This simulation demonstrated the vehicle successfully responding to a very low 

energy state by reducing its energy consumption. This is further demonstrated in the 

next simulation where the vehicle reaches a critical energy level and must abort the 

mission. 

 

5.2.3 Critical capacity with simulated energy consumption 

The critical energy capacity test began with 5000 Joules and finished with about 420 

joules of energy. The low energy rate was set to 40% (set in initialization file, see 

Appendix C – Table). This results in the low energy value to be under 2000 Joules, the 

very low energy capacity to be under 1000 Joules and a critical capacity of 500 joules. 

The power-saving-mode reduces the energy consumed by 25% which is set in the 

initialization file. 

 

As shown in Figure 5-44(a) the AUV energy capacity decreases over the course of the 

mission as expected. It reaches below 1000 Joules around timestep 48 which activates 

the power-saving mode seen in Figure 5-44 (c). The energy capacity reaches critical 

around timestep 55 resulting in the fault manager calling for a mission abort and the 

simulation ending. The estimated time to completion is shown Figure 5-44 (b). The total 

estimated mission time (set in initialization file) is inaccurate causing the mission to take 

longer than estimated. Figure 5-44 (d) shows the energy consumed at each timestep. It 

is highly variable to simulate actual energy usage by different sensors, actuators and 

processors during the timestep. Around timestep 48 the energy consumption, while still 

variable, is reduced due to the power-saving-mode being engaged. 
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Figure 5-44 Critically low energy for given simulated energy consumption in (d) with the 

mission time in (b). The fault manager drives the power sub-system with thresholds: low= 

2.0 kJ, very low = 1.0 kJ, and critical = 0.5 kJ). (a) The total energy (J) decreases as expected 

over the mission (simulation). (b) The total estimated mission time is inaccurate from the 

start. (c) The fault manager driven power mode (energy consumption rate: 0 = normal, 1 = 

lower power) switches at timestep = 48 to power-saving mode and at timestep = 55 critical 

mode since it crossed that threshold. The yellow band is when the power-saving mode is 

engaged. The red band is when the abort has been triggered due to critical energy levels. 
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In Figure 5-45 , the vehicle is fairly confident of its state at the beginning with the 

main changes coming from the mission time quarter. However; towards the end of the 

simulation (timestep 35) when the energy capacity begins to reach low, very low and 

then critical capacities levels the vehicle becomes less sure of its state. From timestep 

46 onwards there are a few different states for each timestep that contend as the actual 

state.  

This simulation successfully shows how the fault manager attempts to complete the 

mission by reducing the energy consumed at each timestep but ultimately resorts to 

aborting to prevent vehicle failure. This becomes more significant in the next series of 

tests where the power-management and depth sub-systems are modelled together. 
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Figure 5-45 Belief distribution for AUV performance with the fault manager: critically low 

energy given simulated energy consumption (Figure 5-44). Belief state progresses with 

confidence as expected until timestep = 35 and from that point the state becomes 

progressively more uncertain due to the critically low energy. At timestep 46 the fault 

manager becomes even less confident in its state. 
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5.3 Combined depth and power-management sub-systems simulations 

The last series of tests were with the depth and power management sub-systems 

combined into a single POMDP model. Four separate tests were conducted. The first 

was of the vehicle operating with the sub-systems independent of one another. The 

second was of the sub-systems operating interactively with dependent operations. The 

third model is of the interacting sub-systems where a cascade model caused in the 

power-management sub-system resulted in failures in the depth sub-system. The final 

was the same model as the previous simulation, however the seabed became deeper 

towards the end of the simulation while the AUV was rising to surface. These models 

have both figures for the power-management and depth sub-system as in the previous 

sections however; due to the large belief state space (approximately 1000 possible 

states) the belief state figures are not shown.  

The first test was of the independent sub-system models. 

 

5.3.1 Non-interacting sub-systems POMDP model 

This model has each sub-system independent of the other. It combines the 

depth and power models into one POMDP model although no conditional probabilities 

or joint-rewards (i.e. connections) were added between the two sub-systems. The 

objective was to show how a combined model can operate like two separate ones. The 

altitude range was 8-12 meters, DVL of 20 meters, max and min depth ratings of 35m 

and 5 meters, speed was 2 knots, timesteps 2s and maximum angle 15° with a pitch 

change of 3°. These values were chosen to match those from section 5.1.1.1. 

 

The depth measurement simulation data used was the shallow water simulated 

environment model from section 5.1.1.1. The power management energy model (8000 

Joules stored) used was similar to the sufficient energy capacity model 5.2.1.  

 

As shown in Figure 5-46 and Figure 5-47 their actions are similar to the previous 

simulations of independently modelled sub-systems. This is due to the lack of 

interaction between them. One of the drawbacks of POMDP is the large state, 
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observation, and action spaces that occur, thus if sub-systems that operate 

independently can be parsed into separate models it can reduce the size of any one 

POMDP model and still perform similarly to a combined non-interacting model. 
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Figure 5-46 Non-interacting power management sub-systems POMDP model for given 

simulated energy consumption in (d) with the mission time in (b). The fault manager drives 

the power sub-system with 8 kJ energy to start. Similar responses to the system of section 

5.2.1.  
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Figure 5-47 Non-interacting depth sub-systems POMDP model with simulated shallow-

water environment a with gradual incline seabed. Near identical responses to the system of 

section 5.1.1.1. The desired altitude range is given by the green band in (b). 
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This model shows that when the sub-systems are independent there is little 

difference whether the fault manager uses separate models or combined ones since the 

sub-systems do not interact. This is useful to know since more sub-systems or larger 

state/actions/observation spaces can quickly increase the complexity of the POMDP and 

future implementations could reduce complexity by parsing out independencies of the 

sub-systems. 

This simulation also serves as a baseline for the next simulation that involves 

dependencies between the sub-systems. 

 

5.3.2 Interdependent sub-systems model  

This simulation combined the depth and power management sub-systems so 

that they were dependent on one another. It is proposed that when the AUV reaches 

very-low energy capacity it begins to move up in the water column. When it reaches 

critical it would attempt to surface. This uses the state and observations of the power-

management sub-system to effect change actions in the depth sub-system.  The altitude 

range was 8-12 meters, DVL of 20 meters, max and min depth ratings of 35m and 5 

meters, speed was 2 knots, timesteps 2s and maximum angle 15° with a pitch change of 

3°. These values were chosen to match those from section 5.1.1.1. 

 

The shallow-water simulated-environment model from section 5.1.1.1 was used. 

The power-management model used was the one with an initial energy capacity of 5200 

Joules and similar the critical capacity model from section 5.2.3 (65% of 5.2.1). This 

results in a low energy value to be under 2040 Joules. A very low energy value to be 

under 1040 Joules and a critical capacity of 520 Joules. 

 

In Figure 5-48 and Figure 5-49 the energy capacity reaches very low around 

timestep 49 triggering the power-saving-mode to be engaged in timestep 50 (Figure 

5-48(c), yellow band). The AUV begins a gradual decrease in depth (slow ascent) (Figure 

5-49(a)) at the same time with the pitch angle beginning to increase (Figure 5-49(c)). 

However; around timestep 58 when the vehicle reaches critical energy capacity (Figure 
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5-48 (a)) the mission is aborted in timestep 59 (Figure 5-48 (c), red band) which causes 

the vehicle to rapidly ascend (Figure 5-49 (a)) reaching the surface around timestep 62. 

The energy consumed during each timestep is reduced once the power-saving mode is 

engaged and similarly when the abort is specified (Figure 5-49(d)). The vehicle 

successfully surfaces at timestep 62 with approximately 260 joules remaining.  
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Figure 5-48 Interdependent sub-systems model: AUV performance with fault manager 

driving the power sub-system with initial energy = 5.2 kJ and defined thresholds: low 

power = 2.08 kJ, very low power = 1.04 kJ, critically low power = 0.52 kJ) and given energy 

consumption in (d). Responses like system in section 5.2.3. © The fault manager driven 

power rate (0=normal, 1= low power, 2=vehicle aborting the mission) with transition at 

timestep 50 to very low power and timestep 59 to critically low power and aborting 

mission. The yellow band is when the power-saving mode is engaged. The red band is 

when the abort has been triggered due to critical energy levels. 
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Figure 5-49 Interdependent sub-systems model: AUV performance with fault manager 

driving the fin mode for pitch changes. (a) When power-saving mode is triggered at 

timestep 50 (Figure 5-48), the AUV starts a gradual rise. At timestep 59, the energy is 

critically low which triggers an abort (fast rise), (c) This is achieved by pitching the vehicle 
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up. (d) The fin mode correctly enables all this. The desired altitude range is given by the 

green band in (b). 

This simulation is useful as it demonstrates the strength of a fault manager 

implementing a POMDP model. The POMDP is able to model the dependencies between 

the sub-systems and allow for more complicated reasoning and fault solving. This is 

further explored in the last simulation in which a cascade failure is modelled.  

 

5.3.3 Interdependent with cascade failure sub-systems model  
 

This simulation, like the previous one (see section 5.3.2), combines the depth 

and power management sub-systems so that they were dependent on one another. It is 

proposed that when the AUV reaches very low energy capacity it would begin to move 

up in the water column. When it reaches critical the vehicle would abort the mission 

and surface. This uses the state and observations of the energy capacity to effect change 

actions in the depth. The altitude range was 8-12 meters, DVL of 20 meters, max and 

min depth ratings of 35m and 5 meters, speed was 2 knots, timesteps 2s and maximum 

angle 15° with a pitch change of 3°. These values were chosen to match those from 

section 5.1.1.1. 

 

However, a cascade failure was introduced such that once the energy capacity 

had reached very low or critical the altitude and depth measurements would be lost due 

to sensor failure resulting in the vehicle being unable to measure its depth or altitude. 

The depth simulation data used was the shallow-water simulated-environment model 

from section 5.1.1.1. The power management model used was one with an initial energy 

capacity of 5200 Joules and similar to the critical capacity model from section 5.2.3 (57% 

of 5.2.1). This results in the low energy value to be under 2080 Joules. A very low energy 

capacity would be under 1040 Joules and critical capacity is 520 Joules. 

 

In Figure 5-50 and Figure 5-51, the energy level reaches very low around 

timestep 50 triggering the power-saving mode to be engaged (Figure 5-50(c)). The AUV 

begins a gradual ascent (Figure 5-51(a)) at the same time with the pitch angle increases 
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(Figure 5-51(c)). Due to the very low energy capacity, a cascade failure occurs where the 

sensors are not powered thus the vehicle does not know its depth and altitude (Figure 

5-51(a, b)). In Figure 5-51(a),  the actual vehicle depth is the ground truth vehicle depth 

while the measured AUV depth is what the vehicle is able to sense. This actual depth 

was to demonstrate the vehicle’s trajectory after the depth measurements have been 

lost. At timestep 60, when the vehicle reaches critical (Figure 5-50(a)), the mission is 

aborted (Figure 5-50(c)) with the vehicle rapidly ascends(Figure 5-51(a)) to the surface 

around timestep 62. The energy consumed at each timestep is notably reduced once the 

power-saving-mode is engaged and similarly when the abort is specified as seen in 

Figure 5-51(d). The vehicle successfully surfaces at timestep 62 with approximately 260 

Joules remaining.  
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Figure 5-50 Interdependent with cascade failure power-management sub-system POMDP 

model: AUV performance with fault manager driving the power sub-system with initial 

energy = 5.2 kJ and defined thresholds: low power = 2.08 kJ, very low power = 1.04 kJ, 

critically low power = 0.52 kJ). (a) At timestep 50, the power-saving mode is triggered and 

the AUV rises gradually. At timestep 60 the energy drops to critical and the mission is 

aborted and the AUV rises rapidly. The yellow band is when the power-saving mode is 

engaged. The red band is when the abort has been triggered due to critical energy levels. 
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Figure 5-51 Interdependent with cascade failure depth sub-system POMDP model: AUV 

performance with fault manager driving the fin mode for pitch changes. At timestep 50 the 

energy capacity is less than 20% resulting in the vehicle DVL is no longer powered and loss 

of depth and altitude measurements. The actual depth (a) is given to demonstrate the 

vehicle’s path. At timestep 50 the power-saving mode is triggered. The desired altitude 

range is given by the green band in (b).  
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5.3.4 Interdependent with cascade failure sub-systems model with declining seabed 
 

This simulation, like the previous one (see section 5.3.3), combines the depth 

and power management sub-systems with a cascade fault. This simulation however, 

used a seabed that became deeper towards the end of the simulation when the vehicle 

is undergoing failure. The altitude range was 8-12 meters, DVL of 20 meters, max and 

min depth ratings of 35m and 5 meters, speed was 2 knots, timesteps 2s and maximum 

angle 15° with a pitch change of 3°. These values were chosen to match those from 

section 5.1.1.1 and  5.3.3. The power management model used was one with an initial 

energy capacity of 5200 Joules and similar to the critical capacity model from section 

5.2.3 (57% of 5.2.1). This results in the low energy value to be under 2080 Joules. A very 

low energy capacity would be under 1040 Joules and critical capacity is 520 Joules the 

same as 5.3.3. 

 

In Figure 5-52 and Figure 5-53, the energy level reaches very low around 

timestep 43 triggering the power-saving mode to be engaged (Figure 5-52 (c)). The AUV 

begins a gradual ascent (Figure 5-53 (a)) at the same time with the pitch angle increases 

(Figure 5-53 (c)). Due to the very low energy capacity, a cascade failure occurs where the 

sensors are not powered thus the vehicle does not know its depth and altitude (Figure 

5-53 (a, b)). In Figure 5-52 (a), the actual vehicle depth is the ground truth vehicle depth 

while the measured AUV depth is what the vehicle is able to sense. This actual depth 

was to demonstrate the vehicle’s trajectory after the depth measurements have been 

lost. At timestep 60, when the vehicle reaches critical (Figure 5-52 (a)), the mission is 

aborted (Figure 5-52(c)) with the vehicle rapidly ascends Figure 5-53 (a)) to the surface 

around timestep 62. The energy consumed at each timestep is notably reduced once the 

power-saving-mode is engaged and similarly when the abort is specified as seen in 

Figure 5-53 (d). The vehicle successfully surfaces at timestep 62 with approximately 260 

Joules remaining.  
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Figure 5-52 Interdependent with cascade failure power-management sub-system POMDP 

model: AUV performance with fault manager driving the power sub-system with initial 

energy = 5.2 kJ and defined thresholds: low power = 2.08 kJ, very low power = 1.04 kJ, 

critically low power = 0.52 kJ). (a) At timestep 50, the power-saving mode is triggered and 

the AUV rises gradually. At timestep 60 the energy drops to critical and the mission is 

aborted and the AUV rises rapidly. The yellow band is when the power-saving mode is 

engaged. The red band is when the abort has been triggered due to critical energy levels. 
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Figure 5-53 Interdependent with cascade failure depth sub-system POMDP model: AUV 

performance with fault manager driving the fin mode for pitch changes. At timestep 50 the 

energy capacity is less than 20% resulting in the vehicle DVL is no longer powered and loss 

of depth and altitude measurements. The actual depth (a) is given to demonstrate the 

vehicle’s path. At timestep 50 the power-saving mode is triggered. The desired altitude 

range is given by the green band in (b). 
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In summary, each sub-system was tested separately. The depth sub-system was 

tested for three environment models (shallow water, deep water, and variable seabed) 

with each environment having a simulated environment model and a real-world model. 

The depth sub-system was also tested to show how changing the probabilities of 

making-an-observation and transitioning-between-states function changes the response 

of the vehicle fault manager and the effect of noise in the measurements.  

 

The power-management sub-system was tested with three initial energy 

capacities representing a mission with sufficient energy, insufficient energy requiring a 

reduction in energy consumption, and an insufficient energy requiring the vehicle to 

abort the mission.  

 

The sub-systems were combined into a single model and were additionally 

tested for three scenarios. The first was the sub-systems combined but acting 

independently. The second scenario was with both sub-systems combined and 

interacting so that when a very low or critical energy capacity is measured the vehicle 

attempts to surface. Finally, the third scenario is a combined model that was 

interdependent and had the additional complexity of a cascade failure causing sensor 

failures – loss of depth and altitude measurements. 

 

The fault manager successfully navigated the vehicle through all the simulations 

with the exception of the tests sets involving a reduction to the probability of functions 

by 40%. The fault manager was able to complete three different seabed topographies, a 

noise induced simulation with reductions of 10%, and 20% to one or both functions and 

all three energy capacity conditions. The fault manager was able to demonstrate that 

independent models that do not have interactions between states, observations, and 

actions, correctly, respond the same as two separate models. A fault manager model 

with: (1) non-interacting sub-systems and (2) interdependent sub-systems with a 

cascade failure, both successfully surfaced the vehicle.  
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CONCLUSIONS 
This thesis presents the development of a novel proof-of-concept fault 

management system using a partially observable Markov decision process, deliberative, 

and model-based, implementation for autonomous underwater vehicles. The POMDP 

fault management system was modelled in discrete time with each timestep simulating 

new sensor measurements. 

 

The POMDP was modelled for two sub-systems and were tested with an AUV 

simulator to demonstrate their efficacy as fault-manager models. The three groups of 

models tested were: (1) single depth sub-system, (2) a power management sub-system 

and (3) a combined model of the depth and power-management sub-systems. 

 

 The depth sub-system tests show the vehicle operating in three types of 

environments: shallow water, deep water, and rapidly variable seabed. These were 

tested with simulated and real-world sample data. These models show the POMDP 

model was able to successfully provide consistent actions to prevent the vehicle from 

grounding itself and maintain a desired altitude to perform a DVL-lock/bottom-lock.  

Additional tests were performed with the shallow simulated environment model and 

with additive Gaussian noise to its depth measurement and reductions in the 

conditional probability functions. These models show the impact of the probability 

functions on the POMDP model. For reductions of 10% and 20% the fault manager could 

still operate, albeit in a less confident belief-state however, at a reduction of 40% it was 

unable to maintain a belief-state distribution and correctly choose actions to drive the 

vehicle. 

 

 The power-management sub-systems show the vehicle operating at three energy 

levels, sufficient energy for the mission, low energy capacity that requires a power-

saving-mode to be engaged, and insufficient energy capacity that requires the vehicle to 

abort the mission. These models show the POMDP model was able to successfully 
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determine when the power-saving mode of mission abort should be engaged based 

upon the remaining energy capacity, energy usage, and estimated remaining mission 

time.  

 

 Finally, combinations of the depth and power-management sub-systems were 

demonstrated. The first was of non-interacting depth and power-management model 

that showed while both sub-systems were driving actions in the vehicle, they could do 

so without impact on the other’s states, observations and actions. Therefore, the 

combined independent model operates in the same manner as the separate 

independent models – not unexpectedly. This allows independent sub-systems to be 

modelled and independently controlled. 

 

The second was of an interdependent model that had the depth sub-system actions 

conditional on the power-management sub-systems state and observation. The fault 

manager was able to surface the vehicle when the energy capacity became too low. This 

integration is important for AUV fault management. While sub-systems may be 

concerned with different aspects of vehicle control, the overall vehicle state and health 

is dependent on all sub-systems. The last of the tests was of a cascade failure in which 

very low and critical energy levels caused the depth and altitude sensors to fail. This 

model showed how the vehicle is able to maintain actions while under cascading 

failures, and safely drive the vehicle to the surface. 

 

The fault manager was successful in driving a simulated AUV given a POMDP model 

for each of the sub-systems independently and with interactions. The Q-MDP solver 

allows the POMDP to be solved in polynomial time while still able to support larger 

joint-state, joint-action, and joint-observation spaces. The POMDP model provides 

intelligent decision making that captures the limited observability of the vehicle in its 

environment, probability of actions resulting in the desired state change, and 
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integration of different sub-system to provide actions that can successfully manipulate 

the vehicle.  

 

To conclude, a POMDP allows for intelligent modelling of interactive AUV sub-

systems leading to a more informed and autonomous fault management. This was 

validated against challenging bathymetry and power-management requirements with 

additional injected faults. In this thesis it has been demonstrated that the novel 

application of a partially observable Markov decision process model can be successfully 

applied to fault management for an autonomous underwater vehicle. 
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6.1 Recommendations 

Eight recommendations are made for further development of the fault management 

system implemented for this thesis. 

 

1. Expand the AUV simulator to include more sub-systems and a more accurate 

model based on an actual AUV (i.e. include yaw and roll, accelerations, variable 

speed, etc.) and a fully integrated sensor model. 

 

2. Expand the power-management sub-system to more accurately model an AUV 

and different forms of energy consumption integrated over different sources 

each timestep. 

 
3. Add damping or a dead band in the POMDP to reduce oscillations from cases 

where there are conflicting needs to dive and rise (i.e. seabed is too deep to 

follow).  This does not change the efficacy of the POMDP method.  

 
4. Explore alternative POMDP solvers for more efficient solutions. The Q-MDP 

solver used was deemed sufficient for the analysis. However, there is a plethora 

of solvers that could have actions to gather more data. Future work could 

investigate pros and cons of alternative solvers to address this. Of these, point-

based value/policy iteration and Perseus appear to have potential for the work 

here. 

 

5. Explore control usage combining dependent POMDP models working in tandem 

with non-interacting POMDP models. Due to the nature of POMDPs, an increase 

in  observations, states, and actions creates exponential growth in joint-state, 

joint-observation, and joint-actions space size. It was concluded that non-

interacting models work similarly when combined. Therefore, non-interacting 

sub-systems could run separately to reduce POMDP complexities. 
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6. Machine learning can be applied to learn the reward functions over the course of 

simulations to improve the probability functions and rewards. 

 
7. Test fault manager on an AUV in-the-loop simulator.  

 

8. Values for the transition, observation and reward functions were set arbitrarily 

based upon prior knowledge. A more concerted effort could be applied to 

analyze existing AUV behaviours to refine these probabilities. 
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APPENDIX A – POMDP MODEL FILE 
# Kathleen Svendsen 
# Depth and Power System 
 
Model: basic_PowerDepth 
horizon: 1 
discount: 0.9 
 
#options for analysis: None MDP QMDP 
analysis: QMDP 
 
#list my actions, i can list my actions into groups, these become joint actions  
NUM_ACTION_GROUPS: 2 
#depth 1 
AG: DEFLECT_NONE DEFLECT_DOWN DEFLECT_UP 
#power 1 
AG: POWER_NORMAL POWER_SAVING_MODE  ABORT 
 
#list my states------------------------------------------------------------------- 
NUM_STATE_GROUPS: 5 
# Depth, 2 
SG: DEPTH_GOOD DEPTH_SHALLOW DEPTH_DEEP 
SG: PITCH_GREATLY_UP PITCH_UP_MAX PITCH_UP PITCH_LEVEL PITCH_DOWN PITCH_DOWN_MAX 
PITCH_GREATLY_DOWN 
 
#POWER 3 
SG: POWER_GOOD POWER_LOW POWER_VERYLOW POWER_CRITICAL 
SG: USAGE_NORMAL POWER_SAVING ABORTED 
SG: FIRST_QUARTER SECOND_QUARTER THIRD_QUARTER ALMOST_DONE 
 
 
#list my observations------------------------------------------------------------------ 
NUM_OBSERVATION_GROUPS: 8 
#depth 4 
OG: ALTITUDE_OK ALTITUDE_LOW ALTITUDE_HIGH ALTITUDE_UNKNOWN 
OG: DEPTH_GOOD DEPTH_SHALLOW DEPTH_DEEP DEPTH_UNKNOWN 
OG: PITCH_UNCHANGING PITCH_INCREASING PITCH_DECREASING 
OG: PITCH_GREATLY_UP PITCH_UP PITCH_LEVEL PITCH_DOWN PITCH_GREATLY_DOWN 
 
#power 4 
OG: CAPACITY_OK CAPACITY_LOW CAPACITY_VERYLOW CAPACITY_CRITICAL 
OG: HOTEL_LOW HOTEL_OK HOTEL_HIGH 
OG: FIRST_QUARTER SECOND_QUARTER THIRD_QUARTER ALMOST_DONE 
OG: USAGE_NORMAL POWER_SAVING ABORTED 
 
 
 
 
#-----------------------------------------------------------------------------------------------------------  
#Observation probabilities 
# O: <a1 a2...an> : <state> : <o1 o2 ... om> : %f 
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#Depth Observations-------------------------------------------------- 
#how does no deflection affect the PITCH 
O: * : PITCH_GREATLY_UP :  PITCH_GREATLY_UP  PITCH_INCREASING : 0.99 
O: * : PITCH_GREATLY_UP :  PITCH_GREATLY_UP  : 0.9 
O: * : PITCH_GREATLY_DOWN :  PITCH_GREATLY_DOWN  PITCH_DECREASING : 0.99 
O: * : PITCH_GREATLY_DOWN :  PITCH_GREATLY_DOWN  : 0.9 
 
O: * : PITCH_UP :  PITCH_UP  : 0.7 
O: * : PITCH_DOWN :  PITCH_DOWN  : 0.7 
O: * : PITCH_UP_MAX :  PITCH_UP  PITCH_UNCHANGING : 0.85 
O: * : PITCH_DOWN_MAX :  PITCH_DOWN  PITCH_UNCHANGING : 0.85 
 
O: DEFLECT_NONE : PITCH_LEVEL :  PITCH_LEVEL  : 0.9 
O: DEFLECT_NONE : PITCH_LEVEL :  PITCH_LEVEL PITCH_UNCHANGING : 0.9 
 
O: DEFLECT_NONE : * :  PITCH_UNCHANGING : 0.9 
O: DEFLECT_NONE : PITCH_LEVEL :  PITCH_LEVEL PITCH_UNCHANGING : 0.9 
O: DEFLECT_NONE : PITCH_UP :  PITCH_UP PITCH_UNCHANGING : 0.8 
O: DEFLECT_NONE : PITCH_GREATLY_UP :  PITCH_GREATLY_UP PITCH_UNCHANGING : 0.8 
O: DEFLECT_NONE : PITCH_DOWN :  PITCH_DOWN PITCH_UNCHANGING : 0.8 
O: DEFLECT_NONE : PITCH_GREATLY_DOWN :  PITCH_GREATLY_DOWN PITCH_UNCHANGING : 0.8 
 
O: DEFLECT_UP : * : PITCH_INCREASING : 0.9 
O: DEFLECT_UP : PITCH_LEVEL : PITCH_UP PITCH_INCREASING : 0.7 
O: DEFLECT_UP : PITCH_LEVEL : PITCH_GREATLY_UP PITCH_INCREASING : 0.4 
O: DEFLECT_UP : PITCH_UP : PITCH_UP PITCH_INCREASING : 0.7 
O: DEFLECT_UP : PITCH_UP : PITCH_GREATLY_UP PITCH_INCREASING : 0.6 
 
O: DEFLECT_DOWN : * : PITCH_DECREASING : 0.9 
O: DEFLECT_DOWN : PITCH_LEVEL : PITCH_DOWN PITCH_DECREASING : 0.7 
O: DEFLECT_DOWN : PITCH_LEVEL : PITCH_GREATLY_DOWN PITCH_DECREASING : 0.4 
O: DEFLECT_DOWN : PITCH_DOWN : PITCH_DOWN PITCH_DECREASING : 0.7 
O: DEFLECT_DOWN : PITCH_DOWN : PITCH_GREATLY_DOWN PITCH_DECREASING : 0.6 
 
O: * : PITCH_GREATLY_UP   :   PITCH_GREATLY_UP : 0.9 
O: * : PITCH_GREATLY_DOWN :   PITCH_GREATLY_DOWN : 0.9 
O: * : PITCH_GREATLY_UP   :   ALTITUDE_UNKNOWN PITCH_GREATLY_UP : 0.9 
O: * : PITCH_GREATLY_DOWN :   ALTITUDE_UNKNOWN PITCH_GREATLY_DOWN : 0.9 
 
O: DEFLECT_DOWN : PITCH_UP_MAX : PITCH_GREATLY_UP : 0.8 
O: DEFLECT_NONE : PITCH_UP_MAX : PITCH_UP_MAX : 0.9 
 
O: DEFLECT_UP : PITCH_DOWN_MAX : PITCH_GREATLY_DOWN : 0.8 
O: DEFLECT_NONE : PITCH_DOWN_MAX : PITCH_DOWN_MAX : 0.9 
 
 
#depth related observations 
O: * : DEPTH_SHALLOW  : ALTITUDE_UNKNOWN : 0.8 
O: * : DEPTH_SHALLOW PITCH_UP_MAX  : ALTITUDE_UNKNOWN PITCH_UP_MAX : 0.8 
O: * : DEPTH_SHALLOW PITCH_DOWN_MAX   : ALTITUDE_UNKNOWN PITCH_DOWN_MAX : 0.8 
O: * : DEPTH_SHALLOW PITCH_LEVEL  : ALTITUDE_UNKNOWN PITCH_LEVEL : 0.8 
O: * : DEPTH_SHALLOW PITCH_DOWN   : ALTITUDE_UNKNOWN PITCH_DOWN : 0.8 
O: * : DEPTH_SHALLOW PITCH_UP     : ALTITUDE_UNKNOWN PITCH_UP: 0.8 
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O: * : DEPTH_SHALLOW : DEPTH_SHALLOW : 0.8 
O: * : DEPTH_SHALLOW : ALTITUDE_HIGH : 0.8 
O: * : DEPTH_SHALLOW : ALTITUDE_HIGH DEPTH_GOOD : 0.8 
O: * : DEPTH_SHALLOW : ALTITUDE_HIGH DEPTH_SHALLOW : 0.9 
 
O: * : DEPTH_GOOD : ALTITUDE_OK : 0.7 
O: * : DEPTH_GOOD : DEPTH_GOOD : 0.7 
O: * : DEPTH_GOOD : ALTITUDE_OK DEPTH_GOOD : 0.9 
O: * : DEPTH_GOOD : ALTITUDE_HIGH DEPTH_GOOD : 0.3 
 
O: * : DEPTH_DEEP : DEPTH_DEEP : 0.9 
O: * : DEPTH_DEEP : ALTITUDE_LOW : 0.9 
O: * : DEPTH_DEEP : DEPTH_DEEP ALTITUDE_LOW : 0.95 
O: * : DEPTH_DEEP : DEPTH_GOOD ALTITUDE_LOW : 0.95 
O: * : DEPTH_DEEP : DEPTH_DEEP ALTITUDE_UNKNOWN : 0.95 
O: * : DEPTH_DEEP : DEPTH_DEEP ALTITUDE_HIGH : 0.95 
O: * : DEPTH_DEEP : DEPTH_DEEP ALTITUDE_OK : 0.95 
#----------------------------------------------------------------------------------------------------------- 
#Observation probabilities POWER 
 
 
O: * : USAGE_NORMAL : USAGE_NORMAL : 0.95 
O: * : POWER_SAVING : POWER_SAVING : 0.95 
O: * : ABORTED : ABORTED : 0.95 
 
O: * : POWER_GOOD : CAPACITY_OK  : 0.7 
O: * : POWER_GOOD : CAPACITY_OK HOTEL_LOW : 0.9 
O: * : POWER_GOOD : CAPACITY_OK HOTEL_HIGH : 0.6 
O: * : POWER_GOOD : CAPACITY_OK HOTEL_OK : 0.8 
 
O: * : POWER_GOOD : CAPACITY_LOW HOTEL_HIGH : 0.5 
O: * : POWER_GOOD : CAPACITY_LOW THIRD_QUARTER : 0.7 
O: * : POWER_GOOD : CAPACITY_LOW ALMOST_DONE : 0.8 
 
O: * : POWER_LOW : CAPACITY_LOW  : 0.8 
O: * : POWER_LOW : CAPACITY_LOW  HOTEL_OK : 0.8 
O: * : POWER_LOW : CAPACITY_LOW  HOTEL_LOW : 0.7 
O: * : POWER_LOW : CAPACITY_LOW  HOTEL_HIGH : 0.7 
O: * : POWER_VERYLOW : CAPACITY_LOW  HOTEL_HIGH : 0.6 
 
O: * : POWER_VERYLOW : CAPACITY_VERYLOW  : 0.8 
O: * : POWER_VERYLOW : CAPACITY_VERYLOW  HOTEL_OK : 0.8 
O: * : POWER_VERYLOW : CAPACITY_VERYLOW  HOTEL_LOW : 0.7 
O: * : POWER_VERYLOW : CAPACITY_VERYLOW  HOTEL_HIGH : 0.5 
O: * : POWER_CRITICAL : CAPACITY_VERYLOW  HOTEL_HIGH : 0.6 
 
O: * : POWER_CRITICAL : CAPACITY_CRITICAL  : 0.7 
O: * : POWER_CRITICAL : CAPACITY_CRITICAL  HOTEL_HIGH : 0.9 
O: * : POWER_CRITICAL : CAPACITY_CRITICAL  HOTEL_OK : 0.8 
O: * : POWER_CRITICAL : CAPACITY_CRITICAL  HOTEL_LOW : 0.7 
 
#time observations 
O: * : FIRST_QUARTER : SECOND_QUARTER : 0.2 
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O: * : FIRST_QUARTER : THIRD_QUARTER : 0.05 
O: * : FIRST_QUARTER : ALMOST_DONE : 0.01 
O: * : FIRST_QUARTER : FIRST_QUARTER : 0.9 
 
O: * : SECOND_QUARTER : FIRST_QUARTER : 0.2 
O: * : SECOND_QUARTER : THIRD_QUARTER : 0.2 
O: * : SECOND_QUARTER : ALMOST_DONE : 0.05 
O: * : SECOND_QUARTER : SECOND_QUARTER : 0.8 
 
O: * : THIRD_QUARTER : FIRST_QUARTER : 0.01 
O: * : THIRD_QUARTER : SECOND_QUARTER : 0.2 
O: * : THIRD_QUARTER : ALMOST_DONE : 0.2 
O: * : THIRD_QUARTER : THIRD_QUARTER : 0.75 
 
O: * : ALMOST_DONE : FIRST_QUARTER : 0.001 
O: * : ALMOST_DONE : SECOND_QUARTER : 0.1 
O: * : ALMOST_DONE : THIRD_QUARTER : 0.3 
O: * : ALMOST_DONE : ALMOST_DONE : 0.7 
 
#cascade 
 
O: * : DEPTH_DEEP : DEPTH_UNKNOWN : 0.9 
O: * : POWER_VERYLOW DEPTH_DEEP : DEPTH_UNKNOWN POWER_VERYLOW : 0.9 
O: * : POWER_CRITICAL DEPTH_DEEP : DEPTH_UNKNOWN POWER_CRITICAL : 0.9 
O: * : POWER_VERYLOW DEPTH_DEEP : DEPTH_UNKNOWN POWER_VERYLOW ALTITUDE_UNKNOWN : 
0.9 
O: * : POWER_CRITICAL DEPTH_DEEP : DEPTH_UNKNOWN POWER_CRITICAL ALTITUDE_UNKNOWN : 0.9 
 
#-----------------------------------------------------------------------------------------------------------  
#Transition probabilities 
#   T: <a1 a2...an> : <start-state> : <end-state> : %f  P(S' : A, S) 
 
#Depth Transitions--------------------------------------------------------------------------- 
# no change in deflect no change in PITCH 
T: DEFLECT_NONE : PITCH_GREATLY_UP : PITCH_GREATLY_UP : 0.9 
T: DEFLECT_NONE : PITCH_UP : PITCH_UP : 0.9 
T: DEFLECT_NONE : PITCH_LEVEL : PITCH_LEVEL : 0.9 
T: DEFLECT_NONE : PITCH_DOWN : PITCH_DOWN : 0.9 
T: DEFLECT_NONE : PITCH_GREATLY_DOWN : PITCH_GREATLY_DOWN : 0.9 
T: DEFLECT_NONE : PITCH_UP_MAX : PITCH_UP_MAX : 0.9 
T: DEFLECT_NONE : PITCH_DOWN_MAX : PITCH_DOWN_MAX : 0.9 
 
#my PITCH changes my depth (regardless of my action) 
T: * : PITCH_UP DEPTH_DEEP : DEPTH_DEEP : 0.4 
T: * : PITCH_UP DEPTH_DEEP : DEPTH_GOOD : 0.6 
T: * : PITCH_UP DEPTH_GOOD : DEPTH_GOOD : 0.4 
T: * : PITCH_UP DEPTH_GOOD : DEPTH_SHALLOW : 0.6 
T: * : PITCH_UP DEPTH_SHALLOW : DEPTH_SHALLOW : 0.9 
 
T: * : PITCH_GREATLY_UP DEPTH_DEEP : DEPTH_DEEP : 0.3 
T: * : PITCH_GREATLY_UP DEPTH_DEEP : DEPTH_GOOD : 0.7 
T: * : PITCH_GREATLY_UP DEPTH_GOOD : DEPTH_GOOD : 0.3 
T: * : PITCH_GREATLY_UP DEPTH_GOOD : DEPTH_SHALLOW : 0.7 
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T: * : PITCH_GREATLY_UP DEPTH_SHALLOW : DEPTH_SHALLOW : 0.95 
 
T: * : PITCH_DOWN DEPTH_SHALLOW : DEPTH_SHALLOW : 0.4 
T: * : PITCH_DOWN DEPTH_SHALLOW : DEPTH_GOOD : 0.6 
T: * : PITCH_DOWN DEPTH_GOOD : DEPTH_GOOD : 0.4 
T: * : PITCH_DOWN DEPTH_GOOD : DEPTH_DEEP : 0.6 
T: * : PITCH_DOWN DEPTH_DEEP : DEPTH_DEEP : 0.9 
 
T: * : PITCH_GREATLY_DOWN DEPTH_SHALLOW : DEPTH_SHALLOW : 0.3 
T: * : PITCH_GREATLY_DOWN DEPTH_SHALLOW : DEPTH_GOOD : 0.7 
T: * : PITCH_GREATLY_DOWN DEPTH_GOOD : DEPTH_GOOD : 0.3 
T: * : PITCH_GREATLY_DOWN DEPTH_GOOD : DEPTH_DEEP : 0.7 
T: * : PITCH_GREATLY_DOWN DEPTH_DEEP : DEPTH_DEEP : 0.95 
 
#SG: PITCH_GREATLY_UP PITCH_UP_MAX PITCH_UP PITCH_LEVEL PITCH_DOWN PITCH_DOWN_MAX 
PITCH_GREATLY_DOWN 
 
#opposite deflect changes PITCH 
T: DEFLECT_DOWN : PITCH_GREATLY_UP : PITCH_GREATLY_UP : 0.4 
T: DEFLECT_DOWN : PITCH_GREATLY_UP : PITCH_UP : 0.3 
T: DEFLECT_DOWN : PITCH_GREATLY_UP : PITCH_UP_MAX : 0.8 
T: DEFLECT_DOWN : PITCH_UP_MAX : PITCH_UP_MAX : 0.4 
T: DEFLECT_DOWN : PITCH_UP_MAX : PITCH_LEVEL : 0.3 
T: DEFLECT_DOWN : PITCH_UP_MAX : PITCH_UP : 0.8 
T: DEFLECT_DOWN : PITCH_UP : PITCH_LEVEL : 0.8 
T: DEFLECT_DOWN : PITCH_UP : PITCH_DOWN : 0.4 
 
T: DEFLECT_UP : PITCH_GREATLY_DOWN : PITCH_GREATLY_DOWN : 0.4 
T: DEFLECT_UP : PITCH_GREATLY_DOWN : PITCH_DOWN_MAX : 0.3 
T: DEFLECT_UP : PITCH_GREATLY_DOWN : PITCH_DOWN_MAX : 0.8 
T: DEFLECT_UP : PITCH_DOWN_MAX : PITCH_DOWN_MAX : 0.4 
T: DEFLECT_UP : PITCH_DOWN_MAX : PITCH_LEVEL : 0.3 
T: DEFLECT_UP : PITCH_DOWN_MAX : PITCH_DOWN_MAX : 0.8 
T: DEFLECT_UP : PITCH_DOWN_MAX : PITCH_LEVEL : 0.8 
T: DEFLECT_UP : PITCH_DOWN_MAX : PITCH_UP : 0.4 
 
#SAME deflect INCREASE PITCH 
T: DEFLECT_UP : PITCH_GREATLY_UP : PITCH_GREATLY_UP : 0.9 
T: DEFLECT_UP : PITCH_DOWN_MAX : PITCH_GREATLY_UP : 0.9 
T: DEFLECT_UP : PITCH_UP : PITCH_DOWN_MAX : 0.7 
T: DEFLECT_UP : PITCH_UP : PITCH_UP : 0.6 
T: DEFLECT_UP : PITCH_LEVEL : PITCH_UP : 0.9 
T: DEFLECT_UP : PITCH_DOWN : PITCH_LEVEL : 0.7 
T: DEFLECT_UP : PITCH_DOWN_MAX : PITCH_DOWN : 0.9 
T: DEFLECT_UP : PITCH_GREATLY_DOWN: PITCH_DOWN_MAX : 0.9 
 
 
T: DEFLECT_DOWN : PITCH_GREATLY_UP : PITCH_UP_MAX : 0.9 
T: DEFLECT_DOWN : PITCH_UP_MAX : PITCH_UP : 0.9 
T: DEFLECT_DOWN : PITCH_UP : PITCH_LEVEL : 0.7 
T: DEFLECT_DOWN : PITCH_LEVEL : PITCH_DOWN : 0.9 
T: DEFLECT_DOWN : PITCH_DOWN : PITCH_DOWN : 0.6 
T: DEFLECT_DOWN : PITCH_DOWN : PITCH_DOWN_MAX : 0.7 
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T: DEFLECT_DOWN : PITCH_DOWN_MAX : PITCH_GREATLY_DOWN : 0.9 
T: DEFLECT_DOWN : PITCH_GREATLY_DOWN: PITCH_GREATLY_DOWN : 0.9 
 
#NO deflect 
T: DEFLECT_NONE : PITCH_GREATLY_UP : PITCH_GREATLY_UP : 0.9 
T: DEFLECT_NONE : PITCH_UP_MAX : PITCH_UP_MAX : 0.9 
T: DEFLECT_NONE : PITCH_UP : PITCH_UP : 0.9 
T: DEFLECT_NONE : PITCH_LEVEL : PITCH_LEVEL : 0.9 
T: DEFLECT_NONE : PITCH_DOWN : PITCH_DOWN : 0.9 
T: DEFLECT_NONE : PITCH_DOWN_MAX : PITCH_DOWN_MAX : 0.9 
T: DEFLECT_NONE : PITCH_GREATLY_DOWN: PITCH_GREATLY_DOWN : 0.9 
 
#Power Transition 
 
 
T: POWER_NORMAL : * : USAGE_NORMAL : 0.8 
T: POWER_SAVING_MODE : * : POWER_SAVING : 0.8 
T: ABORT : * : ABORTED : 0.8 
 
T: POWER_NORMAL : POWER_NORMAL USAGE_NORMAL : POWER_NORMAL USAGE_NORMAL : 0.6 
T: POWER_NORMAL : POWER_NORMAL USAGE_NORMAL : POWER_LOW USAGE_NORMAL : 0.3 
T: POWER_NORMAL : POWER_NORMAL USAGE_NORMAL : POWER_VERYLOW USAGE_NORMAL: 0.1 
T: POWER_NORMAL : POWER_NORMAL USAGE_NORMAL : POWER_CRITICAL USAGE_NORMAL: 0.01 
 
T: POWER_SAVING_MODE : POWER_NORMAL POWER_SAVING : POWER_NORMAL POWER_SAVING : 0.7 
T: POWER_SAVING_MODE : POWER_NORMAL POWER_SAVING : POWER_LOW POWER_SAVING : 0.2 
T: POWER_SAVING_MODE : POWER_NORMAL POWER_SAVING : POWER_VERYLOW POWER_SAVING: 
0.01 
T: POWER_SAVING_MODE : POWER_NORMAL POWER_SAVING : POWER_CRITICAL POWER_SAVING: 
0.001 
 
 
T: POWER_NORMAL : POWER_LOW USAGE_NORMAL : POWER_NORMAL USAGE_NORMAL : 0.2 
T: POWER_NORMAL : POWER_LOW USAGE_NORMAL : POWER_LOW USAGE_NORMAL : 0.6 
T: POWER_NORMAL : POWER_LOW USAGE_NORMAL : POWER_VERYLOW USAGE_NORMAL: 0.2 
T: POWER_NORMAL : POWER_LOW USAGE_NORMAL : POWER_CRITICAL USAGE_NORMAL: 0.1 
 
T: POWER_SAVING_MODE : POWER_LOW POWER_SAVING : POWER_NORMAL POWER_SAVING : 0.3 
T: POWER_SAVING_MODE : POWER_LOW POWER_SAVING : POWER_LOW POWER_SAVING : 0.7 
T: POWER_SAVING_MODE : POWER_LOW POWER_SAVING : POWER_VERYLOW POWER_SAVING: 0.1 
T: POWER_SAVING_MODE : POWER_LOW POWER_SAVING : POWER_CRITICAL POWER_SAVING: 0.05 
 
 
T: POWER_NORMAL : POWER_VERYLOW USAGE_NORMAL : POWER_NORMAL USAGE_NORMAL : 0.05 
T: POWER_NORMAL : POWER_VERYLOW USAGE_NORMAL : POWER_LOW USAGE_NORMAL : 0.1 
T: POWER_NORMAL : POWER_VERYLOW USAGE_NORMAL : POWER_VERYLOW USAGE_NORMAL: 0.6 
T: POWER_NORMAL : POWER_VERYLOW USAGE_NORMAL : POWER_CRITICAL USAGE_NORMAL: 0.2 
 
T: POWER_SAVING_MODE : POWER_VERYLOW POWER_SAVING : POWER_NORMAL POWER_SAVING : 0.1 
T: POWER_SAVING_MODE : POWER_VERYLOW POWER_SAVING : POWER_LOW POWER_SAVING : 0.3 
T: POWER_SAVING_MODE : POWER_VERYLOW POWER_SAVING : POWER_VERYLOW POWER_SAVING: 
0.7 
T: POWER_SAVING_MODE : POWER_VERYLOW POWER_SAVING : POWER_CRITICAL POWER_SAVING: 0.1 
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T: POWER_NORMAL : POWER_CRITICAL USAGE_NORMAL : POWER_NORMAL USAGE_NORMAL : 0.001 
T: POWER_NORMAL : POWER_CRITICAL USAGE_NORMAL : POWER_LOW USAGE_NORMAL : 0.01 
T: POWER_NORMAL : POWER_CRITICAL USAGE_NORMAL : POWER_VERYLOW USAGE_NORMAL: 0.2 
T: POWER_NORMAL : POWER_CRITICAL USAGE_NORMAL : POWER_CRITICAL USAGE_NORMAL: 0.8 
 
T: POWER_SAVING_MODE : POWER_CRITICAL POWER_SAVING : POWER_NORMAL POWER_SAVING : 
0.002 
T: POWER_SAVING_MODE : POWER_CRITICAL POWER_SAVING : POWER_LOW POWER_SAVING : 0.02 
T: POWER_SAVING_MODE : POWER_CRITICAL POWER_SAVING : POWER_VERYLOW POWER_SAVING: 0.3 
T: POWER_SAVING_MODE : POWER_CRITICAL POWER_SAVING : POWER_CRITICAL POWER_SAVING: 0.7 
 
 
 
 
#clock goes forward regardless (if had a navigation system this would be more in depth) 
T: * : FIRST_QUARTER : FIRST_QUARTER : 0.7 
T: * : FIRST_QUARTER : SECOND_QUARTER : 0.25 
T: * : FIRST_QUARTER : THIRD_QUARTER : 0.05 
T: * : FIRST_QUARTER : ALMOST_DONE : 0.01 
 
T: * : SECOND_QUARTER : FIRST_QUARTER : 0.1 
T: * : SECOND_QUARTER : SECOND_QUARTER : 0.7 
T: * : SECOND_QUARTER : THIRD_QUARTER : 0.25 
T: * : SECOND_QUARTER : ALMOST_DONE : 0.05 
 
T: * : SECOND_QUARTER : FIRST_QUARTER : 0.001 
T: * : SECOND_QUARTER : SECOND_QUARTER : 0.1 
T: * : THIRD_QUARTER : THIRD_QUARTER : 0.7 
T: * : THIRD_QUARTER : ALMOST_DONE : 0.3 
 
T: * : ALMOST_DONE : THIRD_QUARTER : 0.1 
T: * : ALMOST_DONE : FIRST_QUARTER : 0.001 
T: * : ALMOST_DONE : SECOND_QUARTER : 0.001 
 
#cascade------------------------------------------------ 
 
 
T: * : POWER_CRITICAL : DEPTH_UNKNOWN : 0.8 
T: * : POWER_CRITICAL : ALTITUDE_UNKNOWN : 0.8 
T: * : POWER_VERYLOW : DEPTH_UNKNOWN : 0.7 
T: * : POWER_VERYLOW : ALTITUDE_UNKNOWN : 0.7 
T: * : POWER_CRITICAL : DEPTH_UNKNOWN  ALTITUDE_UNKNOWN : 0.8 
T: * : POWER_VERYLOW : DEPTH_UNKNOWN ALTITUDE_UNKNOWN : 0.8 
T: * : POWER_CRITICAL : POWER_CRITICAL DEPTH_UNKNOWN  ALTITUDE_UNKNOWN : 0.99 
T: * : POWER_VERYLOW : POWER_VERYLOW DEPTH_UNKNOWN ALTITUDE_UNKNOWN : 0.99 
 
 
#myRewards 
#The rewards 
#   R: <a1 a2...an> : <start-state> : %f 
 
#Depth rewards----------------------------------------------------------- 
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#first lets cover deflection 
R: DEFLECT_NONE : DEPTH_GOOD : 5 
R: DEFLECT_NONE : DEPTH_GOOD PITCH_LEVEL : 35 
R: DEFLECT_NONE : PITCH_GREATLY_DOWN : -30 
R: DEFLECT_NONE : PITCH_GREATLY_UP : -30 
R: DEFLECT_NONE : DEPTH_SHALLOW PITCH_DOWN_MAX : 20 
R: DEFLECT_NONE : DEPTH_DEEP PITCH_UP_MAX : 20 
R: DEFLECT_DOWN : PITCH_DOWN_MAX : -25 
R: DEFLECT_UP : PITCH_UP_MAX : -25 
 
R: DEFLECT_UP : DEPTH_DEEP : 20  
R: DEFLECT_DOWN : DEPTH_SHALLOW : 20 
R: DEFLECT_DOWN : DEPTH_SHALLOW PITCH_LEVEL : 10 
R: DEFLECT_UP : DEPTH_DEEP PITCH_LEVEL : 5  
R: DEFLECT_NONE : DEPTH_DEEP PITCH_DOWN_MAX : 10  
 
R: DEFLECT_DOWN : DEPTH_GOOD PITCH_LEVEL : -10 
R: DEFLECT_DOWN : DEPTH_GOOD PITCH_UP : 10 
R: DEFLECT_DOWN : PITCH_GREATLY_DOWN : -25  
R: DEFLECT_DOWN : PITCH_GREATLY_UP : 10 
R: DEFLECT_DOWN : ALTITUDE_UNKNOWN PITCH_LEVEL : 20 
R: DEFLECT_DOWN : ALTITUDE_UNKNOWN PITCH_UP : 20 
R: DEFLECT_DOWN : ALTITUDE_UNKNOWN PITCH_UP_MAX : 20 
R: DEFLECT_NONE : ALTITUDE_UNKNOWN PITCH_DOWN_MAX : 20 
 
R: DEFLECT_UP : DEPTH_GOOD PITCH_DOWN : 10 
R: DEFLECT_UP : DEPTH_GOOD PITCH_LEVEL : -10 
R: DEFLECT_UP : PITCH_GREATLY_UP : -25  
R: DEFLECT_UP : PITCH_GREATLY_DOWN : 10 
 
R: DEFLECT_UP : DEPTH_DEEP : 20  
R: DEFLECT_DOWN : DEPTH_SHALLOW : 20  
 
R: * : DEPTH_SHALLOW : -30 
R: * : DEPTH_DEEP : -30 
R: * : DEPTH_GOOD : 20 
 
#Power 
R: POWER_NORMAL : * : 1 
R: POWER_NORMAL : POWER_GOOD USAGE_NORMAL : 10 
R: POWER_NORMAL : POWER_LOW THIRD_QUARTER : 5 
R: POWER_NORMAL : POWER_LOW ALMOST_DONE : 10 
 
R: POWER_SAVING_MODE : * : -1 
R: POWER_SAVING_MODE : POWER_GOOD : -10 
R: POWER_SAVING_MODE : POWER_LOW SECOND_QUARTER : 10 
R: POWER_SAVING_MODE : POWER_LOW THIRD_QUARTER : 5 
R: POWER_SAVING_MODE : POWER_VERYLOW : 20 
 
 
R: * : POWER_LOW : -5 
R: * : POWER_CRITICAL : -20 
R: ABORT : POWER_GOOD : -20 
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R: ABORT : POWER_LOW : -5 
R: ABORT : POWER_LOW FIRST_QUARTER : 10 
R: ABORT : POWER_LOW POWER_SAVING SECOND_QUARTER : 10 
 
R: ABORT : POWER_VERYLOW ALMOST_DONE: -5 
R: ABORT : POWER_VERYLOW USAGE_NORMAL THIRD_QUARTER: -5 
R: ABORT : POWER_VERYLOW POWER_SAVING THIRD_QUARTER: 10 
R: ABORT : POWER_VERYLOW FIRST_QUARTER: 20 
R: ABORT : POWER_VERYLOW SECOND_QUARTER: 10 
 
R: ABORT : POWER_CRITICAL POWER_SAVING : 20 
R: ABORT : POWER_CRITICAL USAGE_NORMAL : 5 
R: ABORT : POWER_CRITICAL  FIRST_QUARTER : 10 
R: ABORT : POWER_CRITICAL  SECOND_QUARTER : 10 
R: ABORT : POWER_CRITICAL  THIRD_QUARTER : 10 
 
 
R: ABORT : ABORTED : 1 
R: POWER_NORMAL : ABORTED : -40 
R: POWER_SAVING_MODE : ABORTED : -40 
 
R: DEFLECT_UP : ABORTED : 30 
R: DEFLECT_DOWN : ABORTED : -40 
R: DEFLECT_NONE : ABORTED : -40 
R: DEFLECT_DOWN : POWER_CRITICAL : -40 
R: DEFLECT_NONE : POWER_CRITICAL : -40 
R: PITCH_DOWN : POWER_VERYLOW : -40 
R: PITCH_LEVEL : POWER_VERYLOW : -40 
 
R: * : DEPTH_GOOD POWER_VERYLOW : -30 
R: * : DEPTH_SHALLOW POWER_CRITICAL PITCH_UP : 20  
R: DEFLECT_UP :  POWER_LOW PITCH_UP : 10  
R: DEFLECT_UP :  POWER_VERYLOW PITCH_UP : 15  
R: DEFLECT_UP :  POWER_VERYLOW PITCH_UP_MAX : 25 
R: DEFLECT_UP :  POWER_VERYLOW PITCH_GREATLY_UP : -10  
R: DEFLECT_UP :  POWER_VERYLOW DEPTH_SHALLOW PITCH_UP : 20  
R: DEFLECT_UP :  POWER_VERYLOW DEPTH_SHALLOW PITCH_UP_MAX : 30  
R: DEFLECT_UP :  POWER_VERYLOW DEPTH_SHALLOW PITCH_GREATLY_UP : -10  
R: DEFLECT_UP : POWER_CRITICAL PITCH_UP : 30  
R: DEFLECT_UP : POWER_CRITICAL PITCH_UP_MAX : 40  
R: DEFLECT_UP : POWER_CRITICAL PITCH_GREATLY_UP : 20  
R: DEFLECT_UP ABORT : POWER_CRITICAL PITCH_UP ABORTED : 40  
R: DEFLECT_UP ABORT : POWER_CRITICAL PITCH_UP_MAX ABORTED : 60  
R: DEFLECT_UP ABORT : POWER_CRITICAL PITCH_GREATLY_UP ABORTED : 60  
 
R: * : DEPTH_UNKNOWN POWER_VERYLOW : -30 
R: * : DEPTH_UNKNOWN POWER_CRITICAL PITCH_UP : 10  
R: DEFLECT_UP ABORT : DEPTH_UNKNOWN POWER_CRITICAL PITCH_UP ABORTED : 40  
R: DEFLECT_UP ABORT : DEPTH_UNKNOWN POWER_CRITICAL PITCH_UP_MAX ABORTED : 60  
R: DEFLECT_UP ABORT : DEPTH_UNKNOWN POWER_CRITICAL PITCH_GREATLY_UP 
ABORTED : 40 
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APPENDIX B - MISSION CONTROL FILE 

 

  

# depth 

# shallow 

/Analysis/Models/POMDP/basic_Depth.pomdp      :  /Analysis/Models/AUV/depth_shallow.auv           

:  /Analysis/Simulations/Sim_Depth_Shallow 

 

/Analysis/Models/POMDP/basic_Depth.pomdp      : /Analysis/Models/AUV/depth_bedfordbasin.auv      

: /Analysis/Simulations/Sim_Depth_befordBasin 

 

/Analysis/Models/POMDP/basic_Depth_noise.pomdp  : 

/Analysis/Models/AUV/depth_shallow_noise.auv  : Analysis/Simulations/Sim_Depth_Shallow_Noise 

 

# Deep 

/Analysis/Models/POMDP/basic_Depth.pomdp  : /Analysis/Models/AUV/depth_deep.auv                      

: /Analysis/Simulations/Sim_Depth_Deep 

 

# Erratic 

/Analysis/Models/POMDP/basic_Depth.pomdp  : /Analysis/Models/AUV/depth_erratic.auv    : 

/Analysis/Simulations/Sim_Depth_Erratic 

 

# Power 

/Models/POMDP/basic_Power.pomdp       : /Analysis/Models/AUV/power_Basic.auv    : 

/Analysis/Simulations/Sim_Power_Basic 

 

/Analysis/Models/POMDP/basic_Power.pomdp   : /Analysis/Models/AUV/power_lowCapacity.auv        

: /Analysis/Simulations/Sim_Power_LowCapacity 

 

/Analysis/Models/POMDP/basic_Power.pomdp    : /Analysis/Models/AUV/power_critical_abort.auv      

: /Analysis/Simulations/Sim_Power_Critical_Abort 

 

/Analysis/Models/POMDP/basic_Power_noise.pomdp : Analysis/Models/AUV/power_BasicNoise.auv 

: Analysis/Simulations/Sim_Power_Noise 

 

#  2 sub-systems depth and power 

/Analysis/Models/POMDP/basic_PowerDepth.pomdp     : 

/Analysis/Models/AUV/2PowerDepth_Basic.auv  : /Analysis/Simulations/Sim_PowerDepth_Basic 

 

/Analysis/Models/POMDP/integrated_PowerDepth.pomdp : 

/Analysis/Models/AUV/2PowerDepth_Basic_integrated.auv : 

/Analysis/Simulations/Sim_PowerDepth_Integrated 

 

 

# depth 

# shallow 

/Analysis/Models/POMDP/basic_Depth.pomdp      :  /Analysis/Models/AUV/depth_shallow.auv           

:  /Analysis/Simulations/Sim_Depth_Shallow 

 

/Analysis/Models/POMDP/basic_Depth.pomdp      : /Analysis/Models/AUV/depth_bedfordbasin.auv      

: /Analysis/Simulations/Sim_Depth_befordBasin 

 

/Analysis/Models/POMDP/basic_Depth_noise.pomdp  : 

/Analysis/Models/AUV/depth_shallow_noise.auv  : Analysis/Simulations/Sim_Depth_Shallow_Noise 

 

# Deep 

/Analysis/Models/POMDP/basic_Depth.pomdp  : /Analysis/Models/AUV/depth_deep.auv                      

: /Analysis/Simulations/Sim_Depth_Deep 

 

# Erratic 

/Analysis/Models/POMDP/basic_Depth.pomdp  : /Analysis/Models/AUV/depth_erratic.auv    : 

/Analysis/Simulations/Sim_Depth_Erratic 

 



 

 

 

APPENDIX C – TABLE OF SIMULATIONS PERFORMED 
thesis section -  Depth sub-
system simulations 

figure  generated time 
histories 

Initialization file for AUV simulator 

Section 5.1.1.1   
shallow water (simulated gradual 
incline, approx. 20 deg 

  

Fig. 5-2 measured AUV depth, 
seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig 5-3 belief distribution of 
states 

Section 5.1.1.2   
shallow water with additive 
noise(simulated gradual incline, 
approx. 20 deg 
 

Fig. 5-4 measured AUV depth, 
seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 
 

Fig. 5-5 belief distribution of 
states 

-1
8

3
- 
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Section 5.1.1.3 

shallow water (actual bathymetry)  
Fig. 5-6 measured AUV depth, 

seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig. 5-7 belief distribution of 
states 

Section 5.1.2.1 

deep water (simulated gradual 
decline and  incline, approx. 30 
deg, depth maximum 80 meters) 

Fig. 5-8 measured AUV depth,  
seabed depth 

  

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig. 5-9 belief distribution of 
states 
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Section 5.1.2.2 

deep water (actual bathymetry) 
Fig. 5-10 measured AUV depth,  

seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig. 5-11 belief distribution of 
states 

Section 5.1.3.1 

variable seabed (simulated 
random) 

Fig. 5-12 measured AUV depth, 
seabed depth 

 

AUV altitude 

AUV pitch 

fin position(-1 nose-
down, +1 nose-up, 0 
level) 

Fig. 5-13 belief distribution of 
states 
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Section 5.1.3.2 

variable seabed (actual 
bathymetry) 

Fig. 5-14 measured AUV depth, 
seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig. 5-15 belief distribution of 
states 

Section 5.1.4.1 

shallow water with a +10% 
increase in uncertainty for the 
probability of observation 
function 

O(o| a, s) 
 

Fig. 5-16 measured AUV depth, 
seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig. 5-17 belief distribution of 
states 
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Section 5.1.4.1 

shallow water with +20% increase 
in uncertainty for the probability 
of observation function 

O(| a, s) 
 

Fig. 5-16 measured AUV depth,  
seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig. 5-18 belief distribution of 
states 

Section 5.1.4.1 

shallow water with +40% increase 
in uncertainty for the probability 
of observation function 

O(o | a, s) 
 

Fig. 5-16 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-19 belief distribution of 
states 
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Section 5.1.4.2 
shallow water with  +10% increase 
in uncertainty for the probability 
of transitions function 

T(s’ | a, s) 
 

Fig. 5-20 Measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-21 belief distribution of 
states 

Section 5.1.4.2 
shallow water with  +20% increase 
in uncertainty for the probability 
of transitions function 

T(s’ | a, s) 
 

Fig. 5-20 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-22 belief distribution of 
states 
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Section 5.1.4.2 
shallow water with +40% increase 
in uncertainty for the probability 
of transitions function 

T(s’ | a, s) 
 

Fig. 5-20 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-23 belief distribution of 
states 

Section 5.1.4.3 
shallow water with +10% increase 
in uncertainty for the probability 
of transitions function 

T(s’ | a, s) and +10% increase in 
uncertainty for the probability of 
observation function 

O(o | a, s) 

Fig. 5-24 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-25 belief distribution of 
states 
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Section 5.1.4.3 
shallow water with +20% increase 
in uncertainty for the probability 
of transitions function 

T(s’ | a, s) and +20% increase in 
uncertainty for the probability of 
observation function 

O(o | a, s) 

Fig. 5-24 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-26 belief distribution of 
states 

Section 5.1.4.3 
shallow water with +40% increase 
in uncertainty for the probability 
of transitions function 

T(s’ | a, s) and +40% increase in 
uncertainty for the probability of 
observation function 

O(o | a, s) 

Fig. 5-24 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-27 belief distribution of 
states 
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Section 5.1.4.4 
shallow water with additive noise 
(std = 2) +10% increase in 
uncertainty for the probability of 
observation function 
O(o| a, s) 
 

Fig. 5-28 measured AUV depth, 
seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig. 5-29 belief distribution of 
states 

Section 5.1.4.4 
shallow water with additive noise 
(std = 2) +20% increase in 
uncertainty for the probability of 
observation function 
O(| a, s) 
 

Fig. 5-28 measured AUV depth,  
seabed depth 

 

AUV altitude 

AUV pitch 

fin mode (-1 nose-down, 
+1 nose-up, 0 level) 

Fig. 5-30 belief distribution of 
states 
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Section 5.1.4.4 
shallow water with additive noise 
(std = 2) +40% increase in 
uncertainty for the probability of 
observation function 
O(o | a, s) 
 

Fig. 5-28 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-31 belief distribution of 
states 

Section 5.1.4.5 
shallow water with additive noise 
(std = 2) +10% increase in 
uncertainty for the probability of 
transitions function 
T(s’ | a, s) 
 

Fig. 5-32 Measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-33 belief distribution of 
states 



 

 

 

- 1
9

3
 -

 

Section 5.1.4.5 
shallow water with additive noise 
(std = 2) +20% increase in 
uncertainty for the probability of 
transitions function 
T(s’ | a, s) 
 

Fig. 5-32 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-34 belief distribution of 
states 

Section 5.1.4.5 
shallow water with additive noise 
(std = 2) +40% increase in 
uncertainty for the probability of 
transitions function 
T(s’ | a, s) 
 

Fig. 5-32 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-35 belief distribution of 
states 
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Section 5.1.4.6 
shallow water with additive noise 
(std = 2) +10% increase in 
uncertainty for the probability of 
transitions function 
T(s’ | a, s) and +10% increase in 
uncertainty for the probability of 
observation function 
O(o | a, s) 

Fig. 5-36 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-37 belief distribution of 
states 

Section 5.1.4.6 
shallow water with additive noise 
(std = 2) +20% increase in 
uncertainty for the probability of 
transitions function 
T(s’ | a, s) and +20% increase in 
uncertainty for the probability of 
observation function 
O(o | a, s) 

Fig. 5-36 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position (-1 down, +1 
up, 0 level) 

Fig. 5-38 belief distribution of 
states 
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Section 5.1.4.6 
shallow water with additive noise 
(std = 2) +40% increase in 
uncertainty for the probability of 
transitions function 
T(s’ | a, s) and +40% increase in 
uncertainty for the probability of 
observation function 
O(o | a, s) 

Fig. 5-36 measured AUV depth, 
seabed depth 

 

AUV altitude 

AUV pitch 

fin position(-1 nose-
down, +1 nose-up, 0 
level) 

Fig. 5-39 belief distribution of 
states 
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thesis section -  
power sub-system 
simulations 

figure  generated time 
histories 

Initialization file for AUV simulator 

Section 5.2.1 

sufficient capacity 
with 8000 joules 
stored. 

Fig. 5-40 energy capacity 

 

time left 

power-management 
mode (2 – abort, 1 
power-saving  mode, 
0 normal usage) 
 

energy usage 

Fig. 5-41 belief distribution of 
states 

 

Section 5.2.2 

insufficient capacity 
with 5750 joules 
stored (approximate 
71% of section 5.2.1). 

Fig. 5-42 energy capacity 

 

time left 

power-management 
mode (2 – abort, 1-  
power-saving  mode, 
0 normal usage) 
 

energy usage 

Fig. 5-43 belief distribution of 
states 
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Section 5.2.3 

critical capacity with 
5000 joules stored 
(approximate 62% of 
section 5.2.1). 

Fig. 5-44 energy capacity 

 

time left 

power-management 
mode (2 – abort, 1-  
power-saving  mode, 
0 normal usage) 
 

energy usage 

Fig. 5-45 belief distribution of 
states 
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thesis section -  power 
and depth sub-system 
simulations 

figure  generated time histories Initialization file for AUV simulator 

5.3.1 
 independent model, 
sub-systems act 
independently using 
shallow-waters from 
5.1.1.1 and power 
capacity 8000 
(approximate 100% of 
3.2.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5-46 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position(-1 down, +1 up, 
0 level) 

Fig. 5-47 energy capacity 

time left 

power-management mode 

(2 – abort, 1-  power-
saving mode, 0 normal 
usage) 
 

energy usage 
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5.3.2 
 dependent model, 
depth sub-system is 
dependent on power-
management. When 
power capacity is low 
vehicle will rise in 
water column, when 
very low and critical 
vehicle will surface. 
Uses shallow-waters 
from 5.1.1.1 and 
power capacity 5200 
(approximate 65% of 
3.2.1) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-48 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position(-1 down, +1 up, 
0 level) 

Fig. 5-49 energy capacity 

time left 

power-management mode 

(2 – abort, 1-  power-
saving mode, 0 normal 
usage) 
 

energy usage 
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5.3.3 
 cascade failure model,  
depth sub-system is 
dependent on power-
management. When 
power capacity is low 
vehicle will rise in 
water column, when 
very low and critical 
vehicle will surface; 
however, altitude and 
depth measurements 
will be loss. Uses 
shallow-waters from 
5.1.1.1 and power 
capacity 5200 
(approximate 65% of 
3.2.1) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-50 measured AUV depth, 
seabed depth 

  

altitude 

pitch 

fin position(-1 down, +1 up, 
0 level) 

Fig. 5-51 energy capacity 

time left 

power-management mode 

(2 – abort, 1-  power-
saving mode, 0 normal 
usage) 
 

energy usage 
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5.3.3 
 cascade failure model,  
depth sub-system is 
dependent on power-
management. When 
power capacity is low 
vehicle will rise in 
water column, when 
very low and critical 
vehicle will surface; 
however, altitude and 
depth measurements 
will be loss. Uses a 
reversed shallow-
waters from 5.1.1.1 to 
demonstrate the rise 
in the AUV even while 
the seabed descend 
and power capacity 
5200 (approximate 
65% of 3.2.1) 

Fig. 5-52 measured AUV depth, 
seabed depth 

 

altitude 

pitch 

fin position(-1 down, +1 up, 
0 level) 

Fig. 5-53 energy capacity 

time left 

power-management mode 

(2 – abort, 1-  power-
saving mode, 0 normal 
usage) 
 

energy usage 
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APPENDIX D - ACRONYMS 

❖ AUV  autonomous underwater vehicle 

❖ ASV  autonomous surface vehicle 

❖ BN  Bayesian network 

❖ DAG  directed acyclic graph 

❖ DBN dynamic Bayesian networks  

❖ DN  decision networks 

❖ DDN dynamic decision networks 

❖ DVL  Doppler velocity log 

❖ FDIR fault detection identification and recovery 

❖ GPS global positioning system 

❖ MDP  Markov decision process 

❖ PGM  probabilistic graphical model 

❖ POMDP  partially observable Markov decision process 

❖ PBPI point-based policy iteration 

❖ PBVI point-based value iteration 

❖ ROS  robot operating system 

❖ ROV  remotely operated vehicle 

❖ UUV  unmanned underwater vehicle 

❖ UAV unmanned aerial vehicle 
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APPENDIX E - NOMENCLATURE 
❖ O: probability of making an observation function O(o| s, a) 

❖ R: reward function R(s, a) 

❖ T: probability of transitioning between states function T(s’| s, a) 

❖ V: value function V(s ,a) 

 

❖ a: finite set of actions that the AUV can perform 

❖ b: belief distribution of across all possible states for which state the vehicle is in 

❖ h: horizon 

❖ o: finite set of observations the AUV can make 

❖ s: finite number of AUV and environment states 

 

❖ η: normalizing constant of belief statement 

❖ π: policy of POMDP 

❖ ϒ: discount 

 

❖ ⊥: Independence 


