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Abstract

The determination of residual strains in materials after an applied load is an important
quantity for the understanding of the deformation behaviour of materials. There exist
many quantifying techniques to measure residual strains however these techniques have
limitations when micro scale measurements are of interest. In this study a technique
is developed capable of quantifying localized deformation at the microstructural level
by utilizing a micro-array of pre-defined circles on the internal non-bonded interface
of a split sample. By performing an indentation test on the circle array, the circles
will deform along with the material. By measuring the major and minor axes of the
plastically deformed circles, the residual principal total strains are determined.

The results from this non-bonded interface technique (NBIT) are then compared to results
from a validated non-linear finite element (FE) model. Experimental homogeneous
and split samples made of AISI 4340 steel were used. FE analysis was used to examine
the effect of the internal non-bonded interface which showed that the split interface
caused less than a 10% difference between the split and whole samples when measuring
principal major and minor strains.

The residual principal major and minor strain were experimentally examined for 588.6N,
981.0N, and 1471.5N indentation forces and compared to the FE model. The results of
which ranged from a percent difference of 25.99% for the principal minor strain from
the 1471.4N indentation, to 69.94% for the principal minor strain from the 981.0N
indentation. The large difference between the experimental and FE model was explained
by the inability of the FE model to simulate the local nonhomogeneous nature of a multi-
phase material, as well as the measurement errors caused by human involvement. From
all of this analysis it was determined that NBIT can be utilized as a reliable internal
residual strain analysis technique which has the capabilities of experimentally resolving
residual principle micro strains with the main limitations being the circle measurement
accuracy.
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Chapter 1

Introduction

Indentation testing is one of the most commonly used techniques for materials character-

ization. After an indentation test occurs, residual deformations and strains are present

in the material which typically remain unquantified. In general, residual strains within

a material specimen can be beneficial or detrimental which is dependent upon the exact

quantity. For example, if there is a fair amount of residual strain as from a shot-peening

process, then the results will be beneficial where the surface properties improve due to

the induced compressive layer. However, if there is too much residual strain, then the

material can exhibit micro-cracking as well as ablation which compromises the integrity

of the material. Therefore, measuring the exact quantity of residual strain within a

material sample after an indentation test can be beneficial, especially in the field of new

materials development and characterization.

There exist experimental residual strain analysis techniques which can analyze such

a quantity, however, there is a general trade-off between measurement resolution to

depth of analysis. On the scale of a standard indentation, current residual strain analysis

1
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techniques prove difficult to produce high resolution residual strain results. Therefore,

this work presents a comparison between a new experimental residual strain analysis

method called the non-bonded interface technique (NBIT), and a non-linear finite

element (FE) model.

NBIT is a development based upon the bonded interface technique (BIT), where the

experimental setup for BIT is shown in Figure 1.1 a. BIT utilizes two square samples

of material, held together internally using an adhesive layer, and externally using a

vice. An indentation is placed along the internal interface, where the residual internal

deformations and damage can be directly observed once the adhesive layer is chemically

removed. This technique was developed by Guiberteau et al [1] in 1994 and was used

for several years in research for analyzing residual damage in brittle ceramics. That was

until 2001 when Helbawi et al [2] determined that the split sample was not an accurate

representation of a whole sample due to the bonded interface.

Therefore, in 2016, Almotairi [3] modified BIT to become NBIT as shown in Figure 1.1

b. This modification removed the bonded interface to allow for a direct contact between

the two free surfaces. Almotairi also introduced a quantitative technique commonly

used in sheet metal fabrication called the circular grid analysis technique [4]. The grid

of circles for NBIT is applied to the internal interface using a focused ion beam (FIB)

in order to resolve the internal residual major and minor strains. NBIT was utilized by

Almotairi for analyzing the crack propagations in hard chromium coatings as well as

for a preliminary examination on internal residual principal major and minor strains

[3]. What was not completed with NBIT was an examination on the effect of the split

interface, as well as any comparison between the experimental residual strain results

from NBIT to any of the current existing residual strain analysis techniques.

This research is significant as it presents a comparison between current simulated residual

strain analysis methods being the FE analysis, with the novel experimental method of
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Figure 1.1: Experimental set-up diagrams of (a) Bonded interface technique and (b)
Non-bonded interface technique

NBIT. The results of which will show agreement between the macro scale measurements

from the FE model with micro scale measurements from NBIT.

1.1 Objectives

The objectives for this work are

• Investigate a novel technique to determine residual deformations at the material

microstructural level using a micro-grid pattern on a split non-bonded interface.

• Create an accurate and experimentally validated FE model to determine the effect

that the split interface has on the displacement, strain, and stress continuity across

the interface.

• Compare analytical and experimental indentation data with the FE model.
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• Examine residual strain distribution of AISI 4340 steel subjected to three indenta-

tion loads.

1.2 Thesis Outline

This work will be divided into 5 chapters. Chapter 2 will cover fundamental concepts in

residual strain analysis, elastic and plastic deformation theory, and will review applicable

FE theory. Chapter 3 will discuss the experimental procedure, circle optimization, and

experimental setup along with the simulation methods used to discover optimal material

model, material parameters, timestep, contact algorithm, element formulation, and

element size for the FE model. Chapter 4 will present the experimental and FE results

discovered via this work as well as discuss their significance. Chapter 5 will provide the

summary of conclusions, contributions, and recommendations for future work.



Chapter 2

Background and Literature

Review

2.1 Residual Strain Analysis

There are many different methods of residual strain analysis as the typical requirement

is to measure a property of the material before and after a force is applied. Industrially

these methods can be classified as either destructive or non-destructive. Both of these

classifications can have techniques that measure either the residual elastic strain or

the total strain being the combination of both residual elastic and plastic strain. The

methods of x-ray diffraction (XRD) and the hole drilling technique measure the residual

elastic strain which through Hooke’s Law can be used for direct relation to the residual

stress field within the sample. Other methods can also resolve the internal stress either

through calibrated comparisons such as the acoustic wave analysis technique and the

magnetic methods or through a finite element (FE) analysis such as from the contour

5
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method. One of the main focuses for these methods is the resolution of the determined

results. The main factor that attributes to the resolution is the achievable gage dimension

of the method. This gage dimension value is the length or diameter of the material being

analyzed at any given time. Therefore, the smaller the gage dimension, the higher the

resultant resolution will be.

2.1.1 Non-Destructive Techniques

The non-destructive testing methods are highly sought after for use in industry as they

do not require the sample to be damaged, and in some cases can be used as a portable

analysis technique. These non-destructive methods include x-ray diffraction, synchrotron

x-ray diffraction, neutron diffraction, micro-Raman spectroscopy, acoustic wave analysis,

and magnetic methods.

X-ray diffraction (XRD) techniques are one of the most common methods for residual

strain analysis. This method uses a beam of monochromatic x-rays to excite the atomic

structure of the desired specimen. Upon excitation, diffraction occurs where the emitted

x-rays can be recorded and if a defined atomic plane is present the diffracted x-rays

will constructively interfere causing large peaks in the recorded intensity. The general

outline for this process is shown in Figure 2.1. This method can be used to measure the

interatomic plane spacing through Bragg’s law [5] which is defined as

nλ= 2d sinθ (2.1)

where n is a positive integer representing the constructive order of reflection, λ is the

wavelength of the incident x-ray, d is the interplanar spacing, and θ is the scattering

angle.

Due to the simplicity of Bragg’s Law, XRD is largely used for material characterization
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θ
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Incident X-Rays Diffracted X-Rays

d

Figure 2.1: General outline of diffraction techniques where this example shows incident
and emitted x-rays

however, it is also a useful technique for residual stress analysis. This is because as

a sample is increasingly strained, the interatomic spacing will change. By comparing

the measured to natural interatomic spacings, strain can be resolved which through

Hooke’s law can also be used for determining stress. This method is capable of a spatial

resolution on the micron scale however the depth of penetration is limited to surface

analysis (5-10µm depth) especially for polycrystalline materials [6, 7]. This small

penetration depth can be mitigated by using a newer technique called synchrotron x-ray

diffraction. Synchrotron x-ray diffraction is identical to the standard x-ray diffraction

method however the initial energy from the x-rays are much higher due the use of a

synchrotron. Therefore, this method is capable of a larger penetration depth on the

order of 100µm as well as a small gage dimension of 20µm [7, 8].

Another similar method to x-ray diffraction is the neutron diffraction method. Due to

the lower interaction of neutrons compared to x-rays, larger penetration depths are

achievable with a maximum around 20mm [9, 8]. This low interaction increases the

required time for analyzing a sample which causes a large gage size of over 100µm [7, 8].

The long count times and increased gage size can be a disadvantage for small penetration

depths as other methods can provide faster counts with more precise results. For deeper
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analysis however, the count times can be advantageous as other techniques which can

achieve the same penetration depth are typically destructive and are more tedious.

Therefore, the neutron diffraction method is a useful technique for thick specimens

which contain gradual stress gradients. The main disadvantage to this method is the

requirement of a nuclear reactor for neutron generation and therefore most neutron

experiments are completed within nuclear research facilities.

Micro-Raman spectroscopy is a technique that emits a focused beam of monochromatic

light onto a desired surface. The incoming photons interact with the atoms of the material

where the incoming energy is absorbed and scattered much like x-ray diffraction. This

scattered light is either from elastic or inelastic scattering. The elastic scattering is when

the resultant light has the same frequency as the initial light and is termed Rayleigh

scattering. Inelastic scattering is when the frequency of the emitted photons is different

than the incident photons and is termed Raman scattering [10]. Raman scattering

consists of about 1/1000th of the total incoming energy while Rayleigh scattering contains

the rest [10]. This micro-Raman technique measures this Raman scattering intensity

to produce a total Raman spectrum as the frequency of the emitted light changes. For

measuring residual strain this method uses the change in interatomic forces which

causes the vibrational mode of the atoms to change and therefore the inelastically

scattered energy will be different between a strained and unstrained sample [11]. These

vibrational differences show themselves as a frequency shift in the resultant Raman

spectrum [12]. By comparing the shift that occurs, the residual strain can be retrieved

and much like XRD, the stresses can be resolved through Hooke’s law. Micro-Raman

spectroscopy is capable of providing spatial resolution on the sub-micron scale however

the depth of penetration is also on the sub-micron scale and therefore this method is

solely used for surface analysis [13, 7].

The acoustic wave analysis method sends a sound wave through the bulk of the material
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where the resultant velocity of the wave is recorded and is dependent upon the strain

within the material [14]. By comparing the velocity from the strained to strain free

sample the residual strain can be determined. By comparing these residual strain values

to existing calibrations, the residual stress can also be determined. Due to the small

change that the stress has on the sound wave even when the stress is on the order of the

materials yield strength, the waves must be long [14]. Therefore, this method produces

an inverse relation between the desired resolution and the accuracy of the results [7].

For the results from this method to be considered accurate, the resolution must be in the

order of 1-10mm [7]. This method may not achieve the spatial resolution comparable

to other methods however its ease of use allows it to be a portable analysis technique

widely used in industry for residual stress analysis as well as internal crack monitoring.

The final set of non-destructive methods commonly used are the magnetic methods.

These methods are used solely for magnetic materials and can be classified as either

active or passive analysis [15]. In active magnetic analysis a moving magnetic field

is applied to the material and the resultant magnetic response called the magnetic

Barkhausen noise (MBN) emission is recorded. Peaks in the MBN emission are produced

when a change in the magnetic field occurs such as around grain boundaries, dislocations,

or any other micro-structural feature [16]. This is useful as the MBN will increase in the

presence of residual strain. As active magnetic analysis applies a strong magnetic field,

passive magnetic analysis uses the existing magnetic field from the earth [17]. This

method works in a similar manner to the active MBN method where the micro-structural

properties cause fluctuations in the measured magnetic response. The magnetic methods

have historically been used for larger specimens as the spatial resolution was on the

order of over 1mm [7]. With newer advancements in measurement equipment however,

Robert et. al. [18] has been able to successfully use the passive magnetic method with a

spatial resolution of 10µm. The recorded MBN from both the active and passive methods
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are resolved to residual stress through controlled testing, where various loadings are

applied to a sample which generate a calibration curve relating the residual stress to

MBN [19].

2.1.2 Destructive Techniques

Although the destructive techniques may not be highly utilized in industry, they still

play an essential role in determining residual stress or strain especially in research and

development. The destructive methods tend to be capable of large penetration depths

and their main analysis factor is by measuring material relaxation. The destructive

methods commonly used are the contour method, hole drilling and slitting methods, as

well as the sectioning method.

The first residual strain analysis method was introduced by Mathar [20] and is the

destructive hole-drilling method. The main purpose of this method is for surface stress

analysis specifically when the sample is in a state of biaxial strain [21]. This method

uses circular strain gauges on the surface of the specimen and by drilling a hole in the

center the strain gauges will record the material relaxation that occurs. This method

was first introduced as a surface analysis method however with current advancements, it

can now be used for deeper analysis. Deep hole drilling methods use a drill to produce

a deep hole in the specimen. The hole diameter is measured at various depths and then

material around the hole is removed through electro-discharge machining (EDM) [22].

After material relaxation occurs caused by EDM the hole diameter is then measured

again at the same depths [22]. Using this method can produce strain values at large

depths on par with the contour method however the spatial resolution for the deep hole

drilling method is around 10mm [7]. As the elastic strain is the recorded measurement,

the stresses can also be resolved using Hooke’s law.

The contour method was first introduced by Prime [23] in 2001. This method uses
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Bueckner’s superposition principle [24] which states that when a sample is split and the

material begins to deform due to relaxation, if the deformations are reversed to their

original positions then the original strain within the sample will be present. Therefore,

this method splits a sample of material at a desired location and measures the resultant

material relaxation typically using a coordinate measurement machine [25]. The mea-

sured displacements are then used as boundary conditions in an FE model in order to

recreate the original residual strain. The results from the FE model are then used as

the initial residual strains which allows for extremely large penetration depths up to

1m [7] as well as good spatial resolution where the limiting factors are accuracy of the

measurement tools and the smallest achievable size of the elements in the FE model.

The main disadvantage to this method is that due to the required use of FE software, it

can be cumbersome to achieve accurate results because the correct material model and

parameters are difficult to accurately determine.

As seen with the previous destructive techniques the samples material relaxation is

recorded and translated to stress and strain. This is the typical requirement for destructive

techniques however one method first introduced by Guiberteau et al. [1] called the

bonded-interface technique (BIT) does not measure relaxation. BIT uses a pre-sectioned

sample of material and has been used in research for examining internal residual damage

especially for brittle materials [26, 27, 28]. This method uses two square samples of

material that are polished and bonded together using cyanoacrylate. An indentation is

performed along the split interface after which the cyanoacrylate is chemically removed.

The result allows for a direct observation of the internal residual deformation. This

method has been utilized in research for many years as the bond layer was assumed to be

negligible in terms of the material response [2]. This has since been disproven by Helbawi

et al. [2] who discovered that for brittle materials such as ceramics the bond layer

violates the primary assumptions of an axisymmetric, continuous, and homogeneous
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material continuum [2]. Helbawi et al. [2] found that regardless of bond layer thickness,

discrepancies remained between FE and experimental results. Therefore, the main cause

of discrepancy was determined to be the bond layer itself. These findings do not mean

that BIT or other sectioning analysis methods cannot be useful, it just means that the

findings from these methods must account for the interface.

Almotairi [3] began using a modified BIT method which used a circular grid analysis

technique commonly found in sheet metal fabrication [4] on the internal surface of a

non-bonded specimen. Almotairi demonstrated that this modification could be used

to resolve principal major and minor residual internal strain by measuring the plastic

deformation of the circles from an applied force. Although Almotairi used this modified

BIT method, no examination was completed regarding the effect of the split interface as

well as no comparison of the residual principal strain results to any other analysis method.

This is necessary because free surfaces will be present at the interface without the bond

layer applied. These free surfaces are known to attract dislocation movement resulting

in a reduced resistance to deformation [29]. Due to this reduced deformation, a sample

with a split interface is thought to be an inaccurate representation of a whole sample,

however, this has yet to be experimentally tested. This work aims to use an FE model to

examine the effect of the split interface as well as to compare to the experimental NBIT.

With this novel NBIT, free surfaces will remain however the present work will show the

experimental verification of the split interface as well as the computational model being

verified by the quantitative experimental data to achieve an increase in confidence for

this method. NBIT can be used in future research when residual micro or macro scale

strain measurements are of importance with a highly adjustable spatial resolution to be

determined by the researcher and available equipment.
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2.2 Indentation Theory

2.2.1 Elasticity

There have been many developments in terms of elastic deformation theory, however

the concepts derived by Heinrich Hertz in 1881 [30] are still one of the main elastic

analysis methods in use to this day. Hertz presented the formulation for purely elastic

contact between two circular bodies each with their own radii and material properties.

To produce these formulations, Hertz [30] made various boundary conditions such as

• The displacements and stresses between two contacting surfaces must satisfy the
differential equations of equilibrium of elastic bodies, and that the stresses must
vanish at a great distance from the contact surface

• The tangential components of stress must vanish on both the surfaces

• The normal component of the force must vanish outside the contact surface; but
inside the contact surface, the force and counterforce are equal

• The distance between the two surfaces must vanish in the circle of contact, and be
greater than zero outside of it

The overall boundary condition for displacements (uz) within the contact area that were

found to satisfy these conditions is written as

uz1 + uz2 = δ−
�

1
2R∗

�

r2 (2.2)

where r is radial distance from center of contact, δ is the distance of mutual approach

or occasionally termed the load point displacement, and R∗ is the relative curvature

between two spherical contacting bodies found by

1
R∗
=

1
R1
+

1
R2

(2.3)

where R1 and R2 are the radii of the two contacting bodies. A schematic depicting the
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variables for the case of a sphere contacting a flat plate (R2 =∞) is shown in Figure

2.2.

δ
Original
Position

Final
Position

R1

uZ1

uZ2a
r

Figure 2.2: Schematic of Hertzian contact between a sphere and a flat plate [31]

This figure shows one of the important features of the Hertzian theory. If one of the

spherical bodies in contact is said to have an infinite radius, then it can be analyzed

such as if it were an infinitely long flat plate. This is useful as it can be used for directly

analyzing the elastic deformations from an indentation test. To increase clarity in the

coming definitions, properties related to the spherical indenter or substrate will be

denoted with subscripts i or s respectively. The load point displacement seen in Equation

2.2 is also an important feature to the Hertzian contact theory as it is used for defining

the displacement of the indenter which is defined as

δ =
3P

4aE∗
(2.4)
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where P is the applied force, a is the contact radius found through

a3 =
3PR∗

4E∗
(2.5)

and E∗ is the equivalent elastic modulus given by

1
E∗
=

1− ν2
i

Ei
+

1− ν2
s

Es
(2.6)

As shown in Figure 2.3, Hertz [30] also found that for the case of a sphere on a flat plate,

the normal pressure distribution directly beneath the spherical indenter that would

satisfy Equation 2.2 can be written (for r ≤ a) as

pr =
3P

2πa2

⌜

⎷

1−
r2

a2
(2.7)

Other related equations of interest are typically the indentation force as a function of

P

P(r)

a

Figure 2.3: Indentation example showing the parabolic pressure curve caused by an
applied force

contact radius produced by rearranging Equation 2.5 shown as

P =
4E∗a3

3R∗
(2.8)
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as well as the indentation force as a function of distance of mutual approach produced

by rearranging Equation 2.4 for a and substituting into Equation 2.8 to produce

P =
4
3

⎷
R∗E∗δ

3
2 (2.9)

Hertz also found that the displacements which satisfy Equation 2.7 can be calculated

within the contact circle (r ≤ a) by

uz(s) =
1− ν2

s

Es

3P
8a3

�

2a2 − r2
�

(2.10)

as well as outside the contact circle (r ≥ a) by

uz(s) =
1− ν2

s

Es

3P
4πa3

�

�

2a2 − r2
�

sin−1
�a

r

�

+ r2 a
r

⌜

⎷

1−
a2

r2

�

(2.11)

As a force is being applied, the points that lay on the surface of the specimen also move

radially as the indenter moves into the specimen. Inside this contact circle (r ≤ a) the

radial displacement can be calculated by

ur(s) =
(1− 2νs) (1+ νs)

3Es
a2

r
3
2

pm

�

1−
�

1−
r2

a2

�

3
2
�

(2.12)

and the radial displacement outside the circle of contact (r > a) which will have the

points displacing towards the center of contact by

ur(s) =
(1− 2νs) (1+ νs)

3Es

a2

r
3
2

pm (2.13)

As the parabolic pressure within the contact is occurring identically between the con-

tacting bodies, the normal displacements for each body found from Equation 2.10 can
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be substituted into Equation 2.2 to produce

3P
8a3E∗

(2a2 − r2) = δ−
1

2R∗
r2 (2.14)

Upon further examination of the contact between an indenter and substrate, the resultant

curve that is formed between the contacting surfaces is dependent upon the specific

materials used for each body as well as the forces applied. This is because as a force

is applied to the indenter, the specimen and indenter will begin to deform. Therefore,

the resultant contact curve is a function of the elastic properties of the indenter and

specimen as seen from Equation 2.5. Another way to view the Hertzian theory however

is to look at the resultant contact curve, and use an indenter radius which would produce

that curve as if it were perfectly rigid, as shown in Figure 2.4 denoted by Rri gid . This

can be utilized for all Hertzian equations such that the relative curvature denoted by

R∗ simply becomes Rri gid . This change also changes the distance of mutual approach

where now the distance of mutual approach applies to all points on the indenting body.

Therefore, by now assuming a rigid indenter the Hertzian contact radius can be found

by using

a3 =
3
4

P
�

1− ν2
s

�

Rri gid

Es
(2.15)

where there is now no material influence from the indenter. Using this method is not ideal

for every situation, however for contact scenarios where the ratio Rri gid/Ri approaches

unity such as a diamond indenting a steel or aluminum substrate, the indenter can be

assumed rigid with marginal error.

Aside from the displacements caused by a purely elastic contact, Hertz also began

developing the basis for the stresses. These stresses are typically normalized via the

mean pressure (Pm) where Pm = P/(πa2). Hertz found that the radial stress on the
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a
Ri

Rrigid

Figure 2.4: Indentation example showing contact radius, initial radius, and rigid radius
[31]

surface of the substrate can be defined inside the contact area (r ≤ a) by

σr

pm
=

1− 2νs

2
a2

r2

�

1−
�

1− r2

a2

�

3
2
�

−
3
2

⌜

⎷

1−
r2

a2
(2.16)

and outside the circle of contact (r > a) by

σr

pm
=

1− 2νs

2
a2

r2
(2.17)

The hoop stress on the surface of the specimen is always a principal stress, and outside

the circle of contact (r > a), the hoop stress is equal in magnitude to the radial stress

shown as

σθ = −σr (2.18)

Within the interior of the specimen, much work has been completed by Huber [32] who
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derived the internal stresses which can be calculated from

σr

pm
=

3
2

1− 2νs

3
a2

r2

�

1−
�

z
⎷

u

�3
�

+
�

z
⎷

u

�3 a2u
u2 + a2z2

(2.19)

+
z
⎷

u

�

u
1− νs

a2 + u
+ (1+ νs)

⎷
u

a
tan−1
�

a
⎷

u

�

− 2
�

σθ
pm
=
−3
2

1− 2νs

3
a2

r2

�

1−
�

z
⎷

u

�3
�

+
z
⎷

u

�

u
1− νs

a2 + u
(2.20)

− (1+ νs)
⎷

u
a

tan−1
�

a
⎷

u

�

+ 2νs

�

σz

pm
=
−3
2

�

z
⎷

u

�3 a2u
u2 + a2z2

(2.21)

τrz

pm
=
−3
2

(rz)2

u2 + a2z2

a2⎷u
a2 + u

(2.22)

where

u=
1
2

h

�

r2 + z2 − a2
�

+
q

(r2 + z2 − a2)2 + 4a2z2
i

(2.23)

Something to note is that for values of z = 0 and values of r/a < 1, the value of u will

be zero, however the value of stress directly below the indenter can be calculated by

taking a small value of z. By using Equations 2.19 - 2.22 the principal stresses can be

determined through

σ1,3 =
σr +σz

2
±

⌜

⎷�σr +σz

2

�2

+τ2
rz (2.24)

σ2 = σθ (2.25)

τmax =
1
2
[σ1 −σ3] (2.26)
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2.2.2 Plasticity

Due to the elastic deformation consisting of the linear section in a stress strain curve,

many numerical models were able to be created that could accurately predict the resultant

deformation. Once yielding begins to occur, plasticity effects begin and therefore the

resultant deformation becomes much more complex. For this reason, there has not

been nearly as much advancement towards the number of numerical models for plastic

deformation as seen with elastic deformation. The deformations and stress field of

an elastic-plastic material will be similar to that of a purely elastic material, however

since the material will now undergo permanent plastic deformations, the resultant

deformations and stress field will be more dependent upon the elastic modulus and the

yield strength of the material. Unlike elastic contact, elastic-plastic contact does not

have a unified mathematical model to describe the deformations or stress field caused

by an indentation. Currently the main method for viewing an elastic-plastic stress field

is by using finite element (FE) analysis which will be discussed further in section 2.3.

Albeit not as informative as FE analysis there are three methods that can be used to

analyze the elastic-plastic response from an indentation. These are the elastic constraint

factor, expanding cavity model, and rigid plastic slip line theory.

Timoshenko [33] has found that for an indentation, there is a maximum stress point

below the indented surface where the plastic yield will first occur. This maximum can be

seen in Figure 2.5 where the maximum shear stress is seen to occur at a distance below

the surface that is equivalent to 0.47a, where a is the radius of the circle of contact. The

value for the stress at this point depends upon the materials Poisson ratio however for

common materials such as steel with a Poisson ratio of approximately 0.3, the stress

at the maximum point will then be approximately 0.47Pm [34]. This max stress can

then be related to the yield criterion being 0.5Y such that 0.47Pm = 0.5Y which can be

reduced to Pm = 1.1Y [34].
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Figure 2.5: Indentation stress field lines as function of indenter radius [35]

If the mean pressure within the material does not exceed 1.1Y , the material response

will be fully elastic. However, once the pressure increases beyond 1.1Y , plasticity will

begin to take effect until a fully plastic response is achieved. This can be seen visually in

Figure 2.6 where the line from point O to A represents a fully elastic response, L is when

the material begins to yield, the line from L to M is where the material is exhibiting

elastic and plastic behavior, and the final line from M to N depicts a fully plastic response

where M is the point of full plastic yielding [34]. This figure can be simplified down to

Pm = cY where c is the elastic constraint factor first introduced by Tabor [36]. Tabor

experimented with several different standard materials such as mild steel, copper, and

aluminum, and found that all of these materials began to fully yield when c ≈ 3.0.

The reason in Figure 2.6 that the mean pressure eventually stops increasing between

points M and N with increasing load is because of the fully plastic response. Underneath

the indenter when the area is fully plastic, increasing the indenter load advances the

plastic zone further into the elastic zone. This sort of plasticity zone movement can be

described more accurately by analyzing the expanding cavity model.
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Figure 2.6: Load curve of a plastic material deformed via a spherical indenter [34]

The expanding cavity model utilizes the initial observations from Samuels and Mulhearn

[37] and Mulhearn [38] who found that the internal displacements that occur due to

material flow underneath a blunt indenter are approximately radial from the point at

which the indenter first contacts the sample as shown in Figure 2.7.

Since the displacements are radial away from the indenter, this can be used for the

expanding cavity model which has been developed by Johnson [39] who used the initial

developments from Hill [40] and Marsh [41]. This method assumes that directly below

the indenter there is a hemispherical core of material applying a hydrostatic pressure

onto the inside surface of the outer elastic region [39]. Past this region, the stresses and

displacements are assumed to have radial symmetry and therefore are the same as an

infinite elastic perfectly-plastic solid which contains a spherical cavity under pressure

[42]. As seen in Figure 2.8, the expanding cavity has a radius of rc, where rc must be

greater than the radius of the initial core of material, and has an incompressible plastic

zone. The reason that the plastic zone is assumed to be incompressible is so that for
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Figure 2.7: Results from Samuels and Mulhearn [37] showing hemispherical strain
contours for Brinell (a) and Vickers (b) indentation

analysis, it can be said that during an indentation increment where the indenter moves

a distance dh into the sample, the volume of the material displaced must be equal to the

displacement of particles at the elastic-plastic boundary [42]. By using this principal,

Hill [40] was able to develop equations for the stress within the plastic and elastic zones

during an indentation. More importantly there is also an equation found where the

pressure of the hydrostatic core caused by a spherical indenter as seen in Figure 2.8 can

be described by

P̄
Y
=

2
3

�

1+ ln
��

E
Y

1
2

a
R
+ 4 (1− 2ν)
�

1
6 (1− ν)

��

(2.27)

Another method which can be used for plasticity analysis is the rigid plastic slip line

theory which is typically used for analyzing machining, however it is also useful for

indentation analysis [44]. This theory can be used to help relate the yield strength of a
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Figure 2.8: Expanding cavity schematic from a spherical indenter [43]

material and average pressure caused by contact from a rigid indenter to the magnitude

of deformation occurring [45]. The slip lines as seen from lines BFC and DFH in Figure

2.9 represent the lines of maximum shear stress and intersect with the free surface at

45◦ and with each other at 90◦ [44]. These slip lines also intersect with the indenter at

angle γ which is defined by

γ=
1
2

cos−1 µσn

k
(2.28)

where µσn is the tangential frictional stress, and k is the shear flow stress [44].

In the current research, this method has been compared to simulations ran using the

FE method, and the results as reported by Jackson [45] are fairly similar. This theory

however, is based upon the assumptions that the applied load is quasi-static, no body

forces are being applied, the von Mises yield criterion is the method to which the material

yields, the material is perfectly plastic, and friction is considered negligible [45].

As developed by Hill et.al. [47] the amount of material that is displaced by the indenter
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Figure 2.9: Rigid slip lines from a pyramidal indenter showing maximum shear stress
lines [46]

is accounted for by upward flow shown by the arrows in Figure 2.9. As this theory

utilizes the idea that shear stress is the main cause for plastic deformation, the slip lines

can be used to represent the possible plastic flow. By using this theory, the pressure

caused by the indenter can be found by

P̄
Sy
=

4

3
⎷

3

�a
r

�−2
�

1
3

�a
r

�3
−
�

1+ cos−1
�a

r

��

�

1−
�a

r

�2�
3
2

)−
a
R
+
π

2
+ 1

�

(2.29)

which similar to the expanding cavity model, can be used to relate to the mean contact

pressure which can then also be used to determine hardness. It should also be noted

that since this method assumes shear stress is the mode of failure, the pressure seen

in Equation 2.29 is normalized by the materials maximum shear stress, whereas the

expanding cavity model normalizes the pressure by the materials yield strength.
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2.3 Finite Element Theory

The use of numerical simulations to predict physical phenomenon have been of contin-

ued interest since the evolution of computational systems. Finite element (FE) modeling

is one such numerical simulation technique which uses the discretization of a finite

number of elements where their respective corresponding constitutive equations are

solved to produce an approximation of a real-world phenomenon. This description of ap-

proximation should not be understated as the mathematical models that represent these

natural phenomenon are idealized representations and should not be misinterpreted

with physical reality [48]. It is for this reason that FE results cannot be directly accepted,

without validation. The typical validation and verification process for a solid-mechanics

analysis is illustrated in Figure 2.10, where the verification process separated via the

dashed outline is a large part of the overall validation process.

Physical
reality

Conceptualization

Mathematical
model

Numerical
solution

Extraction and
error estimation

Errors
acceptable?

Discretization

No Yes
Prediction

Compare prediction
with experiment

Criteria
Met?

No

Yes

Pass

Fail

Figure 2.10: Validation process for FE analysis with verification process in dashed
section [48]

The purpose of a verification process is to determine if the computed data is within

acceptable error levels [48]. An example of verification would be much like a mesh
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convergence study. This is where element sizes are decreased until the resultant data

of interest converges onto a solution. If the data of interest which could range from

the measured displacement of a single node to the maximum stress within a specific

element is within the acceptable error than the element size which produced those

results is accepted. This verification process is a single part of the entire validation

process and is focused more on the solution of the mathematical model than the physical

reality it is representing [48]. The validation process is where the mathematical models

are compared to physical experiments. Therefore, for an ideal FE model, physical

experiments must be done in order for the validation and verification to be successfully

completed.

For this work, FE analysis has played a large role for analyzing the physical phenomenon

of indentation for measuring residual strain. Therefore, this section will discuss the

basic theory behind FE analysis. Section 2.3.1 discusses the linear analysis method

and how the stiffness matrix is formed. Section 2.3.2 discusses non-linear analysis

along with the explicit and implicit time integration methods. Section 2.3.3 discusses

mesh formulations. Section 2.3.4 discusses various material models along with their

differences. Section 2.3.5 discusses the various contact algorithms available with the LS-

DYNA hydrocode, while section 2.3.6 discusses the effects of friction on FE indentation

results.

Two major software packages used for the FE analysis are Altair HyperWorks and LSTC

LS-DYNA. Altair HyperWorks has a more user-friendly interface along with more helpful

online forums than compared to LS-DYNA. This allows HyperWorks to be the optimal

choice for problem set-up, meshing, and results analysis. This also leads HyperWorks

to be highly useful for linear simulations however for the more complex phenomenon,

LS-DYNA is the better choice as it is one of the leading simulation packages for non-linear

analysis used in industry. For these reasons discussed HyperWorks was used in this work
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for basic problem set-up as well as mesh generation and result analysis while LS-DYNA

was used for its industry leading non-linear solver. It should be noted that the entirety

of this work was completed using the ls-dyna_smp_d_R901_winx64_ifort131 solver.

2.3.1 Linear Analysis

A linear analysis begins by the discretization of the problem into a set of nodes and

elements. For modern FE analysis there are many different element types such as 1-

dimensional bar, 2-dimensional triangular, and quadrilateral elements, or 3-dimensional

tetrahedral, pentahedral, and hexahedral elements. As an element is simply the shape

that forms with a specific set of nodal connections, any given node is likely to be

connected to multiple elements. To maintain the elemental type as well as relation to

other elements, all nodes are defined in both the elemental local coordinate system, and

the models global coordinate system. Upon completion of the FE analysis the nodal

displacement results will be the primarily determined outcome however in order to

determine the results between individual nodes, a nodal shape function is used as an

interpolation method. Shape functions come in various forms such as linear, quadratic,

or cubic and also varies depending upon the type of element chosen. Regardless of the

element type and interpolation method, the element is transformed into a normalized

coordinate system with axes denoted by ξ, ζ, and η where the center of the element is

at a position of (0,0,0) and the furthest points of the element are at a value of -1 or +1

with an example shown in Figure 2.11. This drastically simplifies the FE solution as the

shape functions will remain constant for a given element type and interpolation method

making it an efficient computational process. Therefore, when the solver computes the

Jacobian matrix, the interpolated results within the original Cartesian coordinate system

can be directly translated by using the shape functions normalized coordinate system.

Once the shape functions are determined the stiffness matrix can then be computed.



29

η

ζ

ξ
(1,1,-1)

(-1,1,1)

(1,-1,1)

z

y
x

Figure 2.11: Transformation from Cartesian to normalized coordinate system

For a single element, the forces (q) and displacements (a) acting on its nodes can be

arranged in the forms of
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(2.30)

where e is the element identifier and n is the number of nodes within the element [49].

These forces and displacements are then related through

qe = keae + f e
p + f e

ε0
(2.31)

where ke is the elemental stiffness, f e
p is the elemental force required to balance a

distributed loading, and f e
ε0 is the elemental force required to balance initial strains.

As qe and ae contain the same number of components or degrees of freedom [49], the
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stiffness matrix will always be a square matrix in the form of

[ke] =
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⎜
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(2.32)

Once the stiffness matrix for each element is computed, the global stiffness matrix is

assembled which sums all of the elemental stiffness matrices together to form a stiffness

value for each node. The FE solver will then apply the boundary conditions to the global

stiffness matrix which will adjust specific nodal stiffness values. With a complete global

stiffness matrix, the linear solver then computes the nodal displacements of each and

every node. From this resultant displacement data, the stresses within an element can

be determined by

[σe] = [D][B][ae] (2.33)

where [D] is the materials elasticity matrix and [B] is the interpolation matrix found

through the use of the shape function.

2.3.2 Non-Linear Analysis

Non-linear analysis as an FE method is used for more complex problems and therefore

is more difficult to set-up, but if done correctly will typically yield better results than

a purely linear solution. The downside to this non-linear method is that it increases

the amount of computational power required which also increases the amount of time

required to complete an analysis. Therefore, a linear solution should be used if the

scenario is applicable as it will use less resources therefore requiring less time. There are

however, several different aspects that can justify when it is appropriate and necessary

to use a non-linear analysis. The four main scenarios are if an analysis is going to

undergo material non-linearity, geometric non-linearity, force non-linearity, or a contact
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non-linearity [50].

These scenarios arise due to the relations between the boundary conditions, displace-

ments, stresses, and strains. A material non-linearity will arise when the relation between

the stress and strain becomes non-linear such as during plastic deformation. Geometrical

non-linearity will arise when the relation between the displacements and strain becomes

non-linear such as with sufficiently large deformations of a mesh. The force and contact

non-linearities come from boundary conditions that effect the stresses and displacements

respectively in a non-linear fashion. These occur because the contact condition changes

the displacements based on the deformations of the mesh, and the force condition

changes with the deformations which affect the stress. All of these scenarios cause the

stiffness matrix to change from being constant, to being dependent upon the strain and

displacements [51].

For an analysis which exhibits any of the non-linearities discussed, there are currently

two different methods that a solver will use to complete the analysis. These methods

are an explicit or implicit time integration. Both methods use incremental solutions

to determine how the stiffness matrix updates based on the non-linearities and then

uses the updated matrix to perform the subsequent iteration. There are some significant

differences however which cause the explicit method to be used for wave propagation or

high velocity impact problems, and cause the implicit method to be used for structural

analysis, or more generally any analysis which exhibits low frequency responses [52].

Time Integration

The time integration methods used in modern FE analysis are based upon the classic

Newmark integration method. For the sake of simplicity and increased clarity within

this section, the following explanations will solely lie on the nodal displacements. For

Newmark integration, a mass matrix M and dampening matrix C are assumed to be
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given and utilized to determine the dynamic equilibrium at the end of step state through

the formulation [52]

ḡn+1 = {qi,n+1 − qe,n+1}+M d̈n+1 +C ḋn+1 = gn+1 +M d̈n+1 +C ḋn+1 = 0 (2.34)

where ḡn+1 and gn+1 are the dynamic and static out of balance forces respectively, and

qi,n+1 and qe,n+1 are the static internal and external forces respectively. The Newmark

time integration also utilizes the formulations

dn+1 = dn +∆t ḋn +
∆t2

2
{(1− 2β)d̈n + 2β d̈n+1} (2.35)

ḋn+1 = ḋn +∆t{(1− γ)d̈n + γd̈n+1} (2.36)

where γ and β are Newmark constants that define whether the integration will be either

implicit or explicit.

The implicit method relies on the trapezoidal rule which uses γ= 1/2 and β = 1/4 to

obtain

dn+1 = dn +∆t ḋn +
∆t2

4
{d̈n + d̈n+1} (2.37)

ḋn+1 = ḋn +
∆t
2
{d̈n + d̈n+1} (2.38)

which can be combined to produce

dn+1 = dn +
∆t
2
{ḋn + ḋn+1} (2.39)

From here, Equations 2.38 and 2.39 can be combined with Equation 2.34 to form

ḡn+1(dn+1) = ḡn+1(qi,n+1(dn+1), dn+1) = 0 (2.40)
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This equation is solved for implicit analysis through a prediction and Newton-Raphson

correction step which results in a solution of

∆dn+1 = −K̄−1
t,n+1 · ḡn+1 (2.41)

where K̄ is the dynamic tangential stiffness matrix which also contains the effects of the

mass and dampening matrix.

The explicit method however uses Newmark constant values of γ= 1/2 and β = 0 to

obtain

dn+1 = dn +∆t ḋn +
∆t2

2
d̈n (2.42)

ḋn+1 = ḋn +
∆t
2
{(1− γ)d̈n + γd̈n+1} (2.43)

where Equation 2.43 can be substituted into Equation 2.34 and solved to produce

d̈n+1 = −M−1(gn+1 +C ḋn) (2.44)

Therefore, at the end of the timestep, Equations 2.44, 2.43, and 2.42 will produce

d̈n+1, ḋn+1, and dn+1 respectively. As the explicit time integration utilizes the mass

matrix which has the potential to be diagonalized, but is also generally smaller than the

stiffness matrix used in the implicit time integration, the inversion of the mass matrix

is significantly easier comparatively. Therefore, for a given timestep, the amount of

computational resources will be reduced by using the explicit method.

The main issue with the explicit method however is that it is prone to run away errors

and therefore, to combat this issue, a significantly smaller timestep is required compared

to the implicit method. This small timestep is why the explicit method is useful when

analyzing high velocity impacts or wave propagations however for lower frequency
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analysis, the implicit method is generally the chosen time integration method.

2.3.3 Mesh Formulations

As described by Anderson et.al [53] there are two different mesh formulations that use

the material reference and spatial reference and are the Lagrangian and Eulerian formu-

lations respectively. These two mesh formulations use different approaches for solving

the deformations of the FE continuum. These methods have been heavily described

in literature by Benson [54] however a brief overview of their distinct differences will

follow.

The Lagrangian formulation is known as the material reference as this method ties

the defined material to the mesh itself [55]. Therefore, as deformations occur both

the material and the mesh deform together which can be seen in Figure 2.12. This

Lagrangian formulation has also been defined by Zhangxin [56] as an element whose

degrees of freedom are all given via function values. This means that for a given

displacement the mesh and material move together however while equilibrium iterations

are performed, the mesh and material are fixed in place [52]. This has its strengths as it

is computationally less intensive than the Eulerian formulation, but if the deformations

become too intense, numerical instabilities can occur due to the degraded quality of

the mesh and the solver can fail or become stuck in a convergence loop. This degraded

mesh quality can be fixed as programs such as LS-DYNA have capabilities to perform

adaptive re-meshing once the mesh becomes too deformed. Adaptive re-meshing is

highly resource intensive, however there is also a niche area where a user may create

a pre-deformed mesh that upon further deformation improves the mesh quality. The

alternative to these mesh improvement methods would be the use of the Eulerian

formulation or potentially the Arbitrary Lagrangian Eulerian (ALE) formulation.

The Eulerian formulation is known as the spatial reference and is where the material
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and mesh are not directly tied to each other, and the material moves through the mesh

as it is deformed [57]. This can be seen schematically in Figure 2.13. For this reason

the Eulerian mesh is capable of simulating large deformations without the risk of mesh

quality degrading and is also capable of simulating natural free surface creation [54].

For these reasons, the Eulerian formulation is used mostly for fluid dynamics, and in

other situations where large deformations occur such as deep indentations, some metal

forming processes, and scratch tests to name a few.

Y

X

Point Load

t = t0

Y

Xt = t0+Δt 

Lagrangian 

Figure 2.12: Lagrangian mesh formulation showing before (left) and after (right)
deformation

The ALE formulation is fairly complex however a basic description is that it uses the

positives from both the Eulerian and Lagrangian formulation by using the spatially free

aspect of the Eulerian formulation and the time-step of the Lagrangian [54]. Once

the Lagrangian time-step is successfully completed, this formulation uses an adaptive

re-meshing technique which is used to associate the deformed Lagrangian mesh to

the spatially free Eulerian Mesh [54]. Another method that combines Eulerian and

Lagrangian formulations was completed by Anderson [53] who performed indentation

testing on a workpiece and used the Hybrid Eulerian-Lagrangian formulation. This

method is where the area of interest under the indenter is using the Eulerian formulation,
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Figure 2.13: Eulerian mesh formulation showing before (left) and after (right) defor-
mation

and the remaining area is using the Lagrangian formulation. According to Anderson, by

using this hybrid method, the model does not require adaptive re-meshing to transfer the

deformations and improves the simulation time by around 50% compared to a purely

Eulerian formulation.

2.3.4 Material Models

When running a simulation using a FE analysis, the material model chosen can have

a significant impact on the results. Therefore, careful consideration must be taken to

ensure that the chosen material model is an accurate representation of the material that

is going to be used in the desired application. The most basic material model is a purely

elastic model, which can be used for scenarios where the elastic limit of the material

will not be approached, and where strain-rate, thermal effects, and equation-of-state

are not required. As the material models become more complex for simulations that

require plasticity to be accounted for, there are many different models available however

the power-law, and Johnson-Cook models are two of the most commonly used material

models for elastic-plastic materials. LS-DYNA specifically has over 200 different material
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models which is continually increasing as newer models are developed.

The power-law is a highly utilized material model as it can be used to simulate isotropic

plasticity with strain-rate effects by using a power-law hardening rule. This power-law

model can simulate the effective stress σy through

σy = kεn = k
�

εyp + ε̄p

�n
(2.45)

where εyp is the elastic strain needed to yield the material, ε̄p is the effective plastic

strain, k is a strength component, and n is a hardening component. The disadvantage to

this model is that it cannot consider thermal effects, failure effects, or equation-of-state

effects if they are required.

The Johnson-Cook material model was developed by Gordon Johnson and William Cook

in 1983 [58] and is used when strain-rate, thermal effects, equation-of-state, and failure

effects are required. This method is more computationally intensive however if the

required effects are needed then this is the better model. The Johnson-Cook material

model defines effective stress as:

σy =
�

A+ Bε̄n
p

�

(1+ C ln ε̇∗)
�

1−
�

T − T0

Tm − T0

�m�

(2.46)

where A is the yield stress, B and n are strain hardening coefficients, C is the strain rate

constant, ε̇∗ is the effective plastic strain rate, and m is for representing thermal softening

[58]. These constants are defined by the user which are obtained via experiments, with

many values of commonly used materials already tabulated by Johnson and Cook

[58]. This model has been heavily used and proven in literature, especially for use in

indentation testing on elastic-plastic materials such as Anderson et.al [53] who used a

diamond indenter on a steel workpiece for deep indentations, Doman et.al. [59] who

used a ceramic indenter on a steel workpiece for shallow indentations, Wang et.al [60]
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who used a tungsten carbide indenter on a Ti-6Al-4V sample, and many more.

If the Johnson-Cook model is the best option to use for a certain scenario, but thermal,

equation of state, and failure effects are not required then there is also a simplified

Johnson-Cook model which is simply defined as

σy =
�

A+ Bε̄n
p

�

(1+ C ln ε̇∗) (2.47)

Utilizing this material model will reduce computational requirements by 50% compared

to the full Johnson-Cook model [61], but is still more computationally intensive than

the power-law material model.

2.3.5 Contact Analysis

The ability to simulate contact or impact scenarios is a major part of FE analysis. LS-

DYNA specifically, is one of the leading applications for use in car crash simulations with

a big focus on air-bag deployment. The methods they use to simulate these scenarios

are easily used to simulate a less complex contact problem such as an indentation test.

The three main methods that are used to simulate a contact or impact scenario are the

kinematic constraint method, penalty stiffness method, and the distributed parameter

method.

The penalty stiffness method is the most commonly used contact algorithm which was

introduced in 1988 by Kikuchi and Oden [62] and utilizes ideas such as the use of a

normal spring by Hallquist et.al. [63] which was proposed in 1985. This penalty method

is computationally implemented by applying springs normal between each node on the

"slave" interface, and the "master" interface surface as shown schematically in Figure

2.14. This produces an interface force between the slave nodes and the master surface.
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This interface force is proportional to the amount of penetration and is defined as

fs = −lkini (2.48)

where fs is the interface force applied to the slave node, l is the depth of interpretation,

ni is the normal vector from the point of contact, and ki is the stiffness factor which for

a brick element is given by

ki =
fsiKiA

2
i

max(shell diagonal)
(2.49)

where fsi is a scale factor, Ki is the bulk modulus, and Ai is the area of the element face.

1 2

k1 k2l1 l2

Nodal Forces

Figure 2.14: Schematic of slave nodes penetrating master surface

Once the solver then computes the unique stiffness modulus for each nodal spring system,

the individual stiffnesses are then compiled into the global assembly matrix. Issues can

occur with this method if the nodes on the master interface directly contact the nodes

on the slave interface. As the penalty method is expecting a node to surface contact,

it will be numerically unstable at these positions, so care should be taken to avoid
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this situation by adjusting the mesh size and/or positioning. This method of contact

simulation is versatile as the penetration detection can be adjusted by adjusting the size

of the timestep, and the stiffness value can be adjusted from the scale factor. There is a

limit however to how effective this method can be. If there is a large enough difference

between the elastic moduli of the contacting bodies, then the penetration can become

too large for a timestep and therefore produce inaccurate results. Therefore, instead

of lowering the stiffness scale factor, a soft constraint penalty formulation can be used.

This formulation method uses the Courant-Friedrichs-Levy stability criterion in order to

calculate a new stiffness value given by

ksc(t) = 0.5 · SOFSCL ·m∗ ·
�

1
∆tc(t)

�2

(2.50)

where ksc is the soft constraint stiffness, SOFSCL is a scale factor, m∗ is a mass function

of the slave and master nodes, and ∆tc is the initial timestep. If the amount of time to

successfully complete a timestep increases upon iteration, then the timestep is reset to

its initial value to improve stability. Upon implementation, this contact formulation will

typically use the largest stiffness value between ki and ksc.

Aside from the standard penalty stiffness, and the soft constraint formulations, there

is also a general segment-penalty formulation that is highly used as well. This method

is similar to the soft-constraint formulation however instead of a nodal mass function,

this method is based on segment masses on the slave (m1) and master (m2) surface.

This can be a more useful contact algorithm as it does not contain the issue of direct

node on node contact that the standard penalty stiffness formulation contains because

this method checks for segment penetration instead of nodal penetration. The stiffness
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formulation for this method is given by

kcs(t) = 0.5 · SOFSCL ·

⎧

⎨

⎩

SFS
or

SFM

⎫

⎬

⎭

·
�

m1m2

m1 +m2

�

·
�

1
∆tc(t)

�2

(2.51)

where SFS and SFM are independent slave and master penalty scale factors respectively.

For this formulation, ∆tc is still the initial timestep however this formulation allows for

a 5% increase while still maintaining stability.

This penalty stiffness method is the standard method used within LS-DYNA however

when using the implicit non-linear solver, there is also the option of using mortar contact.

This contact scheme was initially created to improve upon metal forming analysis

however, it has since been expanded into a general contact formulation [64]. Mortar

contact determines if one segment has penetrated another segment and calculates the

resultant contact pressure by

σn = αβsβmεKs f

�

d
εd s

c

�

(2.52)

where α is the stiffness scaling factor determined by the product of the scale factor of

the slave surface (SFS), and a sliding scale factor (SLSFAC), Ks is the stiffness modulus

of the slave segment, ε is a constant equal to 0.03, d s
c is the characteristic length of the

slave segment in contact, d is the penetration length, βs and βm are stiffness scale factors

for the slave and master segments respectively, and f is a piecewise function given by

f

�

d
εd s

c

�

=

⎧

⎪

⎨

⎪

⎩

1
4

�

d
εds

c

�2
x < dmax

2εds
c

cubic function dependent upon IGAP x ≥ dmax
2εds

c

(2.53)

where IGAP is a user input parameter for the contact card in LS-DYNA.
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This method unlike the kinematic constraint method, can handle hourglassing effects.

Hourglassing effects, as shown in Figure 2.15, arise in under integrated elements sub-

jected to pure bending causing zero-energy deformation [64]. This causes the overall

mesh to maintain its shape while individual elements become severely distorted. Hour-

glassing can be avoided all together by using higher-order elements however as the

integration points increase, so does computational requirements. The penalty stiffness

method can also achieve the conservation of momentum from a contact without the

need of impact and release conditions [64].

Hour Glass
Element

Original
Element

Integration
Point

Integration
Point

Figure 2.15: Schematic of an under integrated hourglassing element

The kinematic constraint method applies constraints to the global equations by trans-

ferring the displacement components of the slave nodes along the contact interface

[64]. By doing this, the normal degree of freedom on the interface is eliminated, and

during explicit analysis, the mass of each element is lumped together such that the

global degrees of freedom on each master node are coupled [64]. This method then

uses impact and release conditions to ensure that the momentum from the impact is

conserved. The issue with this method is that under an application of high loading, kinks

can appear in the mesh where a master node has penetrated the slave surface without

any form of resistance, and therefore does not conserve the momentum of the contact
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[64]. As discussed, this method also produces issues when hour glassing is of concern.

The distributed parameter method uses half of the slave elements mass for each element

in contact, and distributes this to cover the master surface area which is determined

via the internal stress of each element receiving the mass [64]. After the distribution

of mass and pressure, the acceleration of the master surface can then be updated, and

constraints can then be applied to the slave node accelerations and velocities [64]. This

will ensure that the slave nodes simply move along the master surface. This method does

not utilize the “put back on” approach that other methods use that allow a small amount

of penetration and then place the slave nodes back on the master surface. Instead the

calculations of the slave element volumes ignore any intrusion into the master surface.

2.3.6 Role of Friction on Indentation

As seen previously in Section 2.2.1 when discussing Hertzian contact for a purely elastic

material, a contact with zero friction is assumed. Realistically this is not the case and

there will always be some form of friction between two materials especially if the

two materials are dry metals. Therefore, an analysis on the role that friction plays

on indentation testing is necessary. Historically it has been assumed that due to the

normality of indentation forces, the friction between the indenter and specimen has

minimal effect on the resultant overall normal forces and stresses. For sharp indenters,

Bucaille et.al. [65] determined that the effect of friction plays a large role in the normal

forces at the tip of a sharp indenter if the tip half-angle is equal to or under 50◦, but above

60◦shows a negligible amount of normal force variation. Alcalá [66] determined that

materials that exhibit a significant amount of material pile-up around the indentation

site can be significantly affected due to frictional variations, whereas materials with

less significant pileup shows negligible results due to friction. In contrast to these two

findings, Tan and Shen [67] found that friction had a distinct effect, where including
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friction as opposed to a free-sliding surface provided a harder response. Harsono et.al.

[68] examined the work from these previous studies and performed work of their own

to find that using an indenter tip with a half-angle of 60◦on a material that has a strain

hardening coefficient greater than 0.2 showed that friction may be neglected, and for

the alternatives friction should be considered. Therefore, the role of friction on a sharp

indenter has been examined, however due to the absence of a sharp tip, the role of

friction for a spherical indenter should be examined as well.

A spherical indenter unlike a sharp-tip indenter does not have a central stress concentrator

at the tip. With a smooth indenter surface the effects of friction should be minimal,

however as found by Carlsson et.al [69] for material characterization using Brinell

indention, the difference between frictionless and full adhesion are less than 10%, but

the stress and strain field can vary significantly. This has been additionally reinforced by

Mesarovic and Fleck [70] who noted the same outcome but also noted that for material

characterization, friction should also be included for elastic-plastic materials. Therefore,

if the stress field underneath an indentation is of significant interest then the friction

between the indenter and the workpiece should be accounted for.



Chapter 3

Experimental and Simulation

Methods

3.1 Experimental Technique

3.1.1 Material Characterization

As this work aims to increase confidence towards NBIT being a successful modification

of BIT, a popular elastic-plastic material was chosen as the substrate. Hot-rolled AISI

4340 steel was chosen due to its popularity, availability, and elastic-plastic properties.

The chemical composition was gathered via inductively coupled plasma testing with

results shown in Table 3.1a. These composition results show good agreement with the

standard AISI 4340 composition ranges found in ASM Handbook Volume 1 [71]. X-ray

diffraction experiments were completed using a Bruker D8 Advance system with Cu-Kα

radiation with a wavelength, tube current, and tube voltage of 0.154nm, 40kA, and 40kV

respectively. The resultant peaks were compared to a standard Fe-Ni-Cr steel pattern

45



46

where the angle of the major peaks coincide however intensities differed due to texturing

on the surface of the solid sample [72].
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Figure 3.1: XRD pattern of experimental 4340 sample with standard Fe-Ni-Cr pattern

Hardness testing was done using the Rockwell B hardness (HRB) scale with a 1/16"

WC-6wt% Co indenter which follows the Rockwell hardness equations as

HRB = 130−
h

0.002
(3.1)

where h is the height difference created by the residual deformation within the sample.

Using this method produced an HRB value of 92.2. This is lower than the expected

HRB value of 99.0 [71] for a standard AISI 4340 steel sample. A sample of the AISI

4340 steel was then split and magnetically ground to ensure the faces were parallel.

One of the parallel surfaces was then polished using 400 and 600 grit SiC abrasive

paper, and finished with 9µm, 3µm, and 1µm diamond polishing pastes. Microstructural

analysis was completed using a 2% nital etchant composed of 2% HNO3 and 98% ethanol.



47

The etchant revealed a tempered structure that contains a combination of ferrite and

coarse pearlite shown in Figure 3.2. When compared to existing micrographs [73] this

sample of AISI 4340 steel must have been normalized and subsequently annealed where

the annealing temperature was held just below the austenizing temperature. Due to

this annealing temperature the growth rate of pearlite was high which created large

pearlite nodules [73]. The presence of coarse pearlite causes a reduced resistance to

deformations and therefore accounts for the decreased HRB value. The mechanical

properties of the AISI 4340 steel sample are shown in Table 3.1b.

25μm

Pearlite

Ferrite

Figure 3.2: Microstructure of 4340 steel sample
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Table 3.1: AISI 4340 chemical and mechanical properties

a) Chemical Composition (weight %)

Fe C Ni Cr Mn Mo Si

96.16 0.41 1.640 0.850 0.748 0.249 0.321

b) Mechanical Properties

Young’s Modulus (GPa) 205 [74]
Hardness (HRB) 92.2
Poisson’s Ratio 0.29 [74]
Density (g/cc) 7.85 [74]

3.1.2 Sputtering Process

For standard sheet metal fabrication, the circle array that is used for residual strain

analysis is relatively large and therefore can be created via several standard methods

such as screen printing or photo emulsion [4]. The area of interest for strain analysis in

the current work is much smaller than conventional circular grid analysis and therefore

to create the circle array a Hitachi FB-2000A focused ion beam (FIB) was used. The

FIB uses a high energy beam of gallium ions to sputter the surface of a substrate. This

sputtering technique is able to precisely remove material at a desired location where the

accuracy of material removal is dependent upon the beam spot size. Due to the existence

of the beam spot, a raster image can be imported into the FIB and used as a template for

material removal where a pixel from the raster image is translated into a single beam

spot location [75]. The beam current for this process is the main determining factor for

material removal and therefore two separate beams were used in this process. A 0.029nA

M-50 beam was used for surface observation and a 13.6 to 14.0nA M1-500 beam was

used for material removal. The M-50 beam produces minimal material removal but

allows for a secondary ion image to be safely viewed whereas the M1-500 beam will

quickly sputter the surface which meant viewing from this beam directly sputtered the

sample. Aside from the beam current, several other parameters can be adjusted such as
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the dwell time, frame count, and magnification. The dwell time is the amount of time

the ion beam is active at a single beam spot location, the frame count is the number

of times the ion beam repeats the desired raster pattern, and the magnification is used

to change the resolution of the beam spot. For the current system, the dwell time is

statically defined as 128µs and therefore the frame count and beam spot magnification

are the two different parameters that can be adjusted to achieve a desired pattern.

These two parameters are important as adjusting the magnification causes a change in

the beam spot size, while adjusting the frame count causes a change in the amount of

material removal. This can be seen more clearly in Figure 3.3. This figure shows that

even though the width of the sputtered line is identical at 2µm between the two images,

the smaller spot size of 0.248µm/px seen on the right can more accurately reproduce

the desired line. This increased accuracy does come at a cost in terms of increased

fabrication time of the circle array. This is because as accuracy increases, the amount of

beam spot locations required increases as well. Therefore, since the current system uses

a static dwell time, the required fabrication time significantly increases. Fabrication time

can then be reduced by reducing the frame count, however the increase in fabrication

time due to the smaller beam spot size exceeds the decrease in fabrication time from the

reduced frame counts. Therefore, the fabrication time is still typically higher. In order

to get the best results for this work, the optimal values for these two parameters must

be determined.

To determine the optimal parameters several different circles were created using the

system dwell time of 128µs with a range of frame counts from 75 to 300 and a range of

beam spot sizes from 0.496µm/px to 0.062µm/px. The circles created using a frame

count of 150 with the 0.496µm/px beam spot size are shown in Figure 3.4 a and b.

These parameters produced circles whose edges were not easily identifiable due to the

large spot size however the fabrication time per circle is approximately 1min. Figure 3.4
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0.496μm spot size 0.248μm spot size

Figure 3.3: Close up SIM images of the center cross within the FIB circles showing
difference in beam spot size of 0.496µm/px (left) and 0.248µm/px (right)

c and d used a lower frame count and an increased resolution of 75 and 0.062µm/px

respectively. The increase in resolution means the beam spot size is concentrated onto

a smaller portion of the sample and therefore can mill out material significantly faster.

Even with a lower frame count this sample shows a significant increase in material

removed and the circles edges from the SIM image are well defined however the edges

seen from the optical image are less defined due to increase in roughness within the

raster area. As discussed previously, the increase in accuracy requires an increase in

fabrication time where this single circle required approximately 6.2min to complete. By

ranging values between the two circles discussed, the parameters of 150 frame count

with a beam spot of 0.248µm/px were used and are shown in Figure 3.4 e and f. These

parameters show the circle edges slightly defined in the SIM image but much more

easily identifiable using optical microscopy. This single circle required approximately

1.8min of fabrication time which is significantly less than the 0.062µm/px circle but not

significantly more than the 0.496µm/px circle. Therefore, since the strain measurement

from these samples will be conducted using optical microscopy, and the total desired
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number of circles per sample is 144, the optimal parameters were determined to be a

frame count of 150, a system magnification of 128µm which creates a beam spot size of

0.248µm/px, and a dwell time of 128µs shown in Figures 3.4 e and f.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Circles created via the FIB using 150 frame count with 0.496µm/px beam
spot size from secondary ion microscopy (a) and optical microscopy (b), circles created
using 75 frame count with 0.062µm/px from secondary ion microscopy (c) and optical
microscopy (d), circles created with 150 frame count and 0.248µm/px beam spot size
from secondary ion microscopy (e) and optical microscopy (f)
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3.1.3 Experimental Set-up

The experimental process for this work can be split into two separate sections being

normal indentation on a whole sample, and indentation on a split sample. For the whole

samples, cubes of AISI 4340 steel were machined to have equal dimensions of 12mm.

The top and bottom surfaces of these samples were also magnetically ground to ensure

the faces were parallel. Once ground the samples were then polished using an auto

polisher with 400 and 600 grit SiC paper. The samples were then finished off with 3µm

and 1µm diamond polishing paste. A Buhler 574 hardness tester was then used which

followed the load curve shown in Figure 3.5. The minimum load used is a constant

at 98.1N (10kgf) however the maximum indentation force was set to either 588.6N

(60kgf), 981.0N (100kgf), or 1471.5N (150kgf) depending on the desired outcome. The

residual indentation diameter was measured for each test though, and the HRB value

was also recorded from the 981.0N load.
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Figure 3.5: Standard load curve for Rockwell hardness tester
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The split samples were created in a similar manner however they were machined to

have dimensions of 12 x 6 x 12mm. The 12 x 12mm faces were magnetically ground

and polished using the same procedure as the whole samples top surface. Once polished,

one of the internal surfaces of the split sample had a circular grid sputtered onto it from

the FIB. An example of the pattern input into the FIB as well as the resultant pattern on

the internal surface is shown in Figure 3.6.

Figure 3.6: Circular grid from FIB on internal surface with raster input overlay

Once sputtered, two of the split samples were then clamped together to hand tight.

After clamping two halves together it was found that the top surfaces of the clamped

sample were typically not perfectly aligned. To ensure that the load from an indentation

along the interface was transferred properly, the top surfaces required aligning. Prior

to aligning however the exact location of the FIB array was marked on the outside of

the sample. Once the location was marked the top surface alignment was completed by
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using 240 and 320 grit paper on a manual polishing table. The aligned surface was then

polished using 400 and 600 grit SiC paper and finished with 3µm and 1µm diamond

polishing paste. The clamping force from this procedure was recorded using a Phidget

button load cell which produces a load dependent voltage ratio that is transformed into

a calibrated force via a Python script. This load cell was able to record loads up to

1961.3N (200kgf) however due to the use of a vice, the force gauge could not be used if

the top surface was to be aligned and polished. To be able to confidently compare the

experimental and simulated results, a clamping force was required. Therefore, a set of

10 separate tests were completed where each test consisted of tightening the vice to

"hand-tight" and recording the resultant clamping force. The results from this test are

tabulated in Table 3.2. A t-test was used with the results from this normally distributed

data set to produce a 99% confidence interval for the clamping force of 867.6 ± 86.7N.

Table 3.2: Force results from "hand-tight" clamping
Test Force (N)
1 849.55
2 1026.13
3 933.91
4 806.38
5 811.23
6 984.92
7 679.34
8 856.41
9 730.84
10 996.70

Once the split sample is clamped and the top surface is aligned and polished, the

existing marks were utilized to create a line on the surface perpendicular to the interface

indicating the location of the FIB array. As the FIB array is approximately 0.75mm

wide, the proper measurement of the FIB location is essential. After marking the top

surface, the sample is then indented along the split interface using the same loads as

the whole samples. This process is non-trivial because if the indenter is misaligned
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with the interface then the indentation load is not evenly distributed between the two

samples and therefore will produce a non-symmetric indentation. Also, if the indenter

is misaligned with the surface mark the FIB array will not produce meaningful results,

hence a live USB microscope was used to align the indenter with the split interface and

the marking along the surface. The experimental set-up for this split sample is shown in

Figure 3.7.

Figure 3.7: Experimental set-up of the non-bonded interface method

Once the indentation was completed the circles which sustained plastic deformation

were transformed into ellipses. These ellipses can be used to determine the true principal
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strain by measuring the major and minor axes.

εMa jor = ln
� LMa jor

L0

�

(3.2)

εMinor = ln
�

LMinor

L0

�

(3.3)

where LMa jor is the length of the major axis, LMinor is the length of the minor axis, and

L0 is the length of the original circle diameter which is known prior to testing.

3.2 Finite Element Model Development

3.2.1 Quarter Mesh Setup

The FE model for this work was created in three separate stages. First a quarter model

without an indenter was created and used for determining the optimal element size

and material model. Secondly, an indenter was then added to determine the proper

contact algorithm and allow the adjustment of the material model parameters. Thirdly, a

half model was then created using the optimal parameters determined from the quarter

model.

Within the current field of simulating indentation testing, 2-dimensional axisymmetric

elements are more commonly used to improve simulation time and simplify the model-

ing [76, 77, 45]. This is useful when analyzing the results for a homogeneous sample,

however, the current work aims to simulate a split interface, hence a 3-dimensional

model is required. Although not as common as the 2-dimensional model, 3-dimensional

indentation models have been used as well. As 3-dimensional models are significantly

more resource intensive than the 2-dimensional models, element transitions in the X and

Y axis along with element biasing in the Z axis are commonly used to reduce computa-

tional requirements. This can cause issues as the area of interest beneath an indentation
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requires small elements to produce quality results, which means that a large Z axis bias is

required. This produces small elements where desired beneath the indenter but also pro-

duces many elements sufficiently far from the indenter where they are not desired. Due

to these undesired element sizes, significantly more computational resources are used

than actually required. To improve this necessary bias in a 3-dimensional indentation

model, a mesh was created for this work which uses transitions in the X, Y, and Z axis.

An exploded view of these triaxial transitions is shown in Figure 3.8. This transitioned

model uses 3-dimensional 8-node constant stress solid elements with hourglass control

from the Belytschko-Bindeman assumed strain stiffness form for 3D elements as defined

by LS-DYNA.

Figure 3.8: Exploded view of triaxial mesh transitions

By using these triaxial transitions the number of elements was able to be significantly

reduced while also maintaining an optimal element size where desired. To determine the
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optimal mesh size within the area of interest beneath the applied load, a mesh conver-

gence study was completed. This study used a parabolic pressure as the applied load as

defined by Hertz seen in Equation 2.4. By using the parabolic pressure distribution, the

contact radius and nodal forces are pre-defined. This allows for the nodal displacements

to be the only deformation that is affected by the material properties and the mesh.

For this work the quarter model used the -ZX and -ZY planes as symmetry boundary

conditions. The outer nodes on the +ZX plane were constrained from displacements in

the Y axis and rotation in the Z and X axes. The outer nodes on the +ZY plane were

contained from displacements in the X axis and rotation in the Z and X axes. The bottom

of the sample was constrained from displacements in Z axis and rotations in the X and Y

axes.

By using mesh sizes ranging from 100µm to 6.25µm with a purely elastic material model

using parameters defined in Table 3.1b with a contact radius of 0.1mm and a total force

of 300N, the resultant FE model produced a converged displacement of 0.0101mm as

shown in Figure 3.9. This figure shows that the mesh quickly converges to 10.1µm

displacement for element sizes less than 50µm. To ensure proper convergence, the

maximum internal stress was also analyzed as shown in Figure 3.10. This figure shows

that the maximum internal stress does not converge until reaching element sizes equal

or less than 12.5µm. From these results it is also shown that the simulation time of the

6.25µm element size model exhibits a 24-fold increase over the 12.5µm element size

model. Therefore, the converged element size within the area of interest was determined

to be 12.5µm.

Although the mesh size and purely elastic material model were verified, the actual use of

the triaxial transitions were not. As it is known that elongated or distorted elements can

be of bad quality and therefore cause inconsistent FE results [78], the triaxial transitions

require verification as the transitions contain elongated elements. Therefore, by using
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Figure 3.9: Mesh convergence for displacement
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Figure 3.10: Mesh convergence for stress

the quarter model with the element size of 12.5µm within the area of interest along

with a purely elastic material model, the results can be compared to the Hertzian elastic



61

contact theory.

The Hertzian model allows for calculation of the load point displacement however the

current comparison utilized a rigid indenter and therefore the load point displacement

and the displacement of the node directly beneath the indenter will be equivalent.

The Hertzian normal force was found by using Equation 2.9 with the same material

parameters, contact radius, and the resultant load point displacement as the FE model.

Using these parameters, the Hertzian model produced a required indentation force of

302.92N to displace 10.1µm of material. Comparing this to the FE model which required

a 300N force to displace 10.1µm, this produces a 0.97% difference between the FE

model and the Hertzian theory. Therefore, the triaxially transitioned mesh can be said to

be verified. From this result, the element transitions, elements size, and elastic material

model were verified. The next step for development is to add the indenter and determine

the optimal contact algorithm.

The indenter for this work was initially modeled as a quarter of a half-sphere as seen in

Figure 3.11 along with a purely elastic material model using coefficients seen in Table

3.1b. One of the most popular contact algorithms is the nodal contact scheme, hence

it was initially chosen as the basis for the current work. Nodal contact however has a

known vulnerability regarding a direct node on node contact. Therefore, the smallest

element size for the indenter was initially chosen to be 20µm to avoid direct contact

between the majority of the nodes. This direct contact is unavoidable on the center node

though due to the use of the symmetry plane boundary conditions.
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Figure 3.11: Finite element model of solid spherical indenter

3.2.2 Finite Element Model Refinements

Indenter Properties

As the goal of this work is to simulate a half-model, the solid indenter shown in Figure

3.11 was found to be sufficiently large to exceed the available computational resources of

the current system. As this was determined early on in the current work, the experimental

indenter and FE indenter were changed from hardened steel to WC - 6wt% Co. Therefore,

as WC has a high elastic modulus as seen in Table 3.3, the indenter could be modeled

using rigid elements. This allowed for a 2-dimensional indenter to be used which

significantly reduced the number of elements as well as simplified the respective material

model allowing for an additional relief in computational resources.

To ensure that the rigid indenter would properly compare to the non-rigid counterpart,

an indentation was simulated using a 588.6N force. The material model for the substrate

was also changed to the simplified Johnson-Cook model using the standard parameters
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Table 3.3: Mechanical properties of 1/16" WC - 6wt% Co ball indenter

Young’s Modulus (GPa) 633
Poisson’s Ratio 0.20
Density (g/cc) 14.8

defined by Johnson and Cook [58] in order to simulate plastic deformation, and be able

to record the residual deformations from the indentation. For this analysis, the material

model of the indenter was varied between fully rigid and non-rigid elastic. The solid

indenter model shown in Figure 3.11 is using the elastic indenter model, while the shell

indenter shown in Figure 3.12 is using the fully rigid material model.

Figure 3.12: Finite element model of rigid shell spherical indenter

The resultant deformation curve of the center nodal point in the substrate from the

indenter is seen in Figure 3.13. The results of this show a 5.0% difference in residual

displacement. It is also shown in Figure 3.14 that the internal von Mises stress correspond

well with each other. Therefore, even though the material model and contact algorithm

are yet to be verified, the rigid indenter has proven to be a good approximation of

the non-rigid indenter. From this comparison it was also found that the fully rigid
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shell indenter required approximately 35% less computational resources, as well as

approximately 50% the amount of time required to complete the analysis. Therefore,

using the rigid shell indenter for the subsequent simulations will significantly reduce

the amount of time required for determining additional refinements.
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Figure 3.13: Center nodal displacement from rigid and non-rigid indenter
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von Mises Stress (GPa) von Mises Stress (GPa)Elastic Solid Indenter Rigid Shell Indenter

Figure 3.14: Internal surface of quarter model showing von Mises strain between the
elastic model and the rigid model.

Contact Algorithm

To properly determine the correct contact algorithm for this work, the interpenetration

between the indenter and sample was analyzed along with the stability of the contact.

The first algorithm chosen was the non-mortar nodal penalty stiffness contact which

checks whether a node has penetrated a surface. This contact scheme allowed for

large interpenetrations of 5µm between nodes at the center of contact due to the direct

node-on-node contact. A wide variety of stiffness values were used with this method

in an attempt to reduce the interpenetration however once the stiffness value exceeds

a certain threshold, the stability of the contact significantly decreases which causes an

increase in simulation time and produces significant noise in the force vs displacement

curves. Therefore, while maintaining the penalty stiffness formulation, the contact

scheme was changed to surface to surface contact. This contact scheme checks to see

if a surface has penetrated another surface and therefore the nodal interpenetration
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was not as significant. This contact scheme allowed for a maximum interpenetration of

1µm and therefore is the superior choice compared to the alternative. Along with this

surface to surface contact was the option of using mortar designation. Mortar contact

is an LS-DYNA option which is recommended for use in implicit analysis. This option

is a penalty-based surface to surface contact algorithm which when activated allowed

for a maximum interpenetration of 0.38µm. As the penalty stiffness requires some

interpenetration in order for contact to be detected, this value was accepted without

further stiffness value alterations. Therefore, for the current work, the use of the surface

to surface mortar contact scheme was chosen.

Time Step

As the current work utilizes an implicit solver, the time step is able to be manually

adjusted. As previously discussed, the timestep can have a large effect on the deformation

results from the contact algorithm, especially when contact is first occurring. Therefore,

a small timestep is initially desired in order to best suite the contact algorithm, where

the timestep can then increase as the stability increases as well. To determine the

optimal minimum timestep, four identical FE simulations were conducted which utilize a

minimum timestep of 0.01, 0.1, 1.0, and 10.0ms respectively. As the timestep increases

after a stable contact iteration, the overall simulation time did not significantly change.

To analyze these results though, the interpenetration of the indenter and the substrate

was measured. The results from this analysis are shown in Figure 3.15 which shows

that as the minimum timestep increases, the contact becomes less stable however the

difference appears to be negligible. These results also only show the minimum timesteps

from 0.01, 0.1, and 1.0ms. This is because the 10ms minimum timestep was unable to

detect the initial contact and therefore the indentation did not even occur.

Therefore, as the difference in interpenetration caused by the timestep is determined to
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Figure 3.15: Interpenetration of indenter and substrate using increasing initial timesteps

be negligible, the 1ms minimum time was chosen. As the minimum time is important for

properly simulating first contact, the maximum timestep is also important as it maintains

the boundary at which the solution is computed. If the maximum timestep is small,

then the solution will be more accurate as more data points will be computed. The

downside to this is that the amount of data points can be excessive and therefore be

computationally excessive. If the timestep is too large, then significant events such as

an indenter reaching its maximum displacement may be completely missed due to it

occurring between the timestep iterations. Therefore, to optimize the maximum timestep

in order to maintain accurate results while not producing excessive data points, three

identical simulations were created which utilize a maximum timestep of 100, 1000, and

2500ms respectively. The results from these simulations are shown in Figure 3.16. The

figure displayed shows the displacement of the workpiece directly below the indenter

through the simulation. These results show that the overall trend agrees between the

timesteps however the 2500ms timestep misses several smaller points that the other

timesteps account for.
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Figure 3.16: Maximum displacement curve of workpiece from changing max timestep

From this analysis, the overall simulation time was also compared. It was found that the

0.1, 1.0, and 2.5s maximum timestep required 250, 118, and 35 minutes of simulation

time respectively. Although the displacement curves are similar and the 2.5s maximum

timestep requires less overall time, the 1000ms maximum timestep was chosen as the

increase in simulation time was fairly insignificant compared to the requirement of

accurately simulating the experimental load curve.

Material Model

The material model used for verification of the mesh was the purely elastic model. The

experimental sample however is AISI 4340 which undergoes elastic-plastic deformation.

As discussed in Section 2.2.2 there are no analytical models for elastic-plastic deformation.

Therefore, the material model must be an elastic-plastic model defined by LS-DYNA

where the results can be compared to experimental indentations. LS-DYNA has a large

number of material models able to deal with plasticity effects however current research

shows that the Johnson-Cook material model is popular for AISI 4340 especially for use

in indentation testing [53, 59, 60]. This current work began using the Johnson-Cook
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model however due to temperature effects being negligible for standard indentation

testing, the simplified Johnson-Cook model was quickly adopted. This simplified model

requires 50% less computational resources and removes the temperature dependency

from the full model.

To properly determine the optimal Johnson-Cook material model parameters, a sample

of AISI 4340 was used to produce a set of ten indentations using a maximum load of

588.6N. This experiment allowed for the residual radius of the indentation as well as the

difference in indentation depths (h) value from the hardness equation seen in Equation

3.1 to be determined. From these results, the difference in indentation depths produced

a sample mean of 43.5µm with a standard deviation of 0.49µm and sample mean of the

indentation radius of 301.6µm with a standard deviation of 3.4µm. Using these values,

a t-test can be used to produce confidence intervals using

C I = x̄ ± tn−1,α/2
s
⎷

n
(3.4)

where x̄ is the sample mean, α is the significance level, n is the sample size, and s is

the sample standard deviation. Therefore, with sample means and standard deviations

from these results, and using t9,0.01 = 2.82, the confidence intervals for the h value and

radius are found to be

C Ih = 43.5± 0.44µm (3.5)

C Iradius = 301.6± 3.9µm (3.6)

As AISI 4340 steel has been used with the Johnson-Cook model, current research shows

that the standard Johnson-Cook coefficients found initially by Johnson and Cook [58]

produce quality results. When using the standard Johnson-Cook material coefficients
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Table 3.4: Comparison of coefficients for the Johnson-Cook material model

JC Parameter Rule Values [79] Standard Values [58]

A 396 MPa 792 MPa
B 820 MPa 510 MPa
n 0.397 0.260
C 0.014 0.014

on the current FE model, the resultant h value and residual radius were found to be

28.1µm and 252µm respectively. This produced a 35.4% error in the h value and a

16.4% error in the residual radius. Therefore, the standard Johnson-Cook coefficients

would be insufficient at producing quality results compared to the experimental samples.

After further research it was found that Rule [79] determined that the Johnson-Cook

coefficients for a material can differ significantly if the preprocessing of the material is

varied. Rule [79] produced different Johnson-Cook coefficients found through Taylor

testing AISI 4340 steel where they can be seen compared to the standard coefficients in

Table 3.4.

By using the Rule coefficients for the Johnson-Cook model, the FE results produced an h

value of 42.6µm and a residual radius of 305µm. This produced a 2.1% error in the h

value and a 1.1% error in the residual radius. Therefore, the Rule coefficients produce

quality results. Although these coefficients work well using the 588.6N indentation

force, higher forces will be used as well. Therefore, testing was also conducted using

the 981.0N indentation load. This testing used a single indentation and compared

the residual depth, radius, and HRB value between the experimental and FE results

using the standard Johnson-Cook model coefficients and the Rule coefficients. The

results from this testing can be found in Table 3.5. These results show that even at

the higher indentation forces, the Rule coefficients maintained close agreement to the

experimental results, while the Johnson-Cook standard coefficients do not. Therefore,

the Rule coefficients were determined to be the optimal coefficients to compare this
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Table 3.5: Experimental and FE results from HRB test using various Johnson-Cook
coefficients

Parameter Experimental Results using Rule Results using Standard

Hardness (HRB) 92.2 92.0 104.7
Depth (µm) 87.7 87.0 58.1
Radius (µm) 377.7 384.0 320.0

model to the experimental results.

3.2.3 Split Finite Element Model

The split FE model was created by using the optimized quarter model mesh and mirroring

it about the ZX plane. This created a free interface between two separate specimens.

As the split model uses the optimal parameters from the quarter model, this mesh

was created using the same 3-dimensional 8-node constant stress solid elements with

hourglass control from the Belytschko-Bindeman assumed strain stiffness formulation.

The material model is the simplified Johnson-Cook model using coefficients determined

by Rule [79]. The contact algorithm is the mortar contact which uses a soft surface

to surface contact scheme. It should be noted that because of the various indentation

forces that will be used, the resultant deformation will increase with increasing force.

Therefore, three separate split models were created to accommodate for the increased

deformation so as to not have direct contact with mesh transitions. This means that

the deformation of the mesh was contained within the small element area around the

indentation. The mesh configuration for the 588.6N indentation force can be seen in

Figure 3.17.

Even though there are three separate models, all of the models have identical boundary

conditions. Each half model exploits the half symmetry of the experimental model by

using the ZY plane as a symmetry plane. This symmetry plane constrains the surface

nodes from displacements in the X axis and rotations in the Z and Y axes. The bottom
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Figure 3.17: Close up of split mesh showing continuous indenter and discontinuous
substrate

of the samples is constrained from displacements in the Z axis and rotations in the X

and Y axes. The ZX plane was then used to produce the clamping boundary conditions.

One of the outer surfaces in the ZX plane was constrained from displacements in the

Y axis and rotations in the Z and X axes. The other outer surface in the ZX plane was

then used to produce the 833.9N clamping force by applying a nodal force in the +Y

direction on each of the surface nodes. This can be seen schematically in Figure 3.18.
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Unconstrained
split interface

833.9N clamping
force in +Y

Indentation force load

Constraints
Displacements: Z axis
Rotations: X and Y axes 

Constraints
Displacements: X axis
Rotations: Z and Y axes 

Constraints
Displacements: Y axis
Rotations: Z and X axes 

Figure 3.18: Boundary conditions of split mesh



Chapter 4

Results and Discussion

As the circular grid analysis method has been historically used on the surface for sheet

metal fabrication, it has proven reliability in terms of residual principal strain measure-

ments. Its current use within NBIT is different however due to the required change in

circle array fabrication as well as the circles being on an internal surface which is in

continuous contact with an opposing surface during the indentation process. Therefore,

a preliminary study on the measurement accuracy of the circles as well as the integrity

of the circles from an indentation can be conducted, for which a sample of AISI 4340

steel was created. This sample was a standard homogeneous sample where the top

surface was polished. A FIB array was placed on the polished surface and a 981.0N

indentation was conducted on the array. This experiment was to test the quality of the

FIB results without the use of the vice, or split interface interfering with the material

response. The top surface after indentation is shown in Figure 4.1 which shows the FIB

arrays and how the major and minor axes were measured. These measurements were

used for producing the residual principal strains however the center position of each

circle or ellipse in relation to the center of the indentation was also measured.

74
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Figure 4.1: Top surface residual strain analysis showing radial distance as well as major
and minor measurements

The major and minor axes were manually measured with the aid of Image-Pro software.

The use of manual measurement imposes two potential sources of error. The first

is that the software directly measures pixel length and then translates it to microns

through certified calibrations. Therefore, there is a measurement limitation which is

dependent upon the pixel density of the initial image. The average measurement error

was approximately 0.3µm which translates to a strain error of ±0.02µm/µm. The

second source of measurement error is that the current manual measurement of the

major and minor axes rely on the ability of the researcher to determine exactly where

the true major and minor axes are positioned. Therefore, due to human error the true

length cannot be guaranteed to be the quantity measured. The strain error imposed

from this human measurement is approximately ±0.02µm/µm as well. Therefore, the

total estimated error caused by the manual measurement is about ±0.04µm/µm.

The reported measurement error could likely be greatly improved by using an automated

system such as a digital image correlation method. As the circular grid analysis technique
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is an existing method used in industry, there exist such image correlation methods

however, the small scale of the circles used in this work may be the limiting factor. If

such methods are implemented however then this improved method could automatically

detect the true major and minor axes and give their respective dimensions which could

significantly reduce the imposed error caused by human involvement and reduce image

processing time significantly. For the current work it should also be noted that because

the strain is calculated via the natural logarithm, the smaller the calculated strain values

correlate to a larger potential error.

To compare the results from this experiment, a quarter homogeneous FE model was used

to simulate a 981.0N indentation. The resultant top surface can be seen in Figure 4.2.

This figure shows large residual strains within the indentation however once outside of

the contact area, the residual strains are small in comparison where they range from

0.025 at a radial distance of 400µm to zero as the radial distance approaches 1000µm.

Edge of contact

1000μm

400μm

981.0N Whole Sample - No Clamp

Figure 4.2: FE result showing residual major strain of top surface from a 981.0N
indentation
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Due to the axisymmetric nature of an indentation test on a homogeneous sample, all the

elements on the surface can be used for analysis by determining their radial distance

from the center of the indentation and recording the corresponding major residual strain

at each location. This was also completed for the experimental results where the radial

distance was measured from the center of each ellipse to the center of the indentation.

At each location the residual principal major strain was recorded. The comparison

between the experimental and FE results are shown in Figure 4.3. This figure starts

from the edge of contact at 400µm and shows that the residual principal major strain

decreases as the distance increases. From this figure it was determined that the average

difference in major strain between the experimental and FE results is 0.0035 which is

54.8%. As discussed previously, the errors imposed by the manual measurements are

relatively large due to the small strain values on the surface, this combined with the

fact that the FE does not account for microstructural variations is why even though the

percent difference is relatively large, most of the experimental data points are within

the expected error range from the FE results. It should also be noted that for this top

surface analysis, the pile-up effect around the indentation is not accounted for in the

measurement of the ellipses. Therefore, it is possible that the first few data points true

strain values could be slightly different, however the effects are expected to be negligible

in comparison to the measurement error. Even so, it can be seen in Figure 4.3 that the

trend of the experimental data correlates well with the FE model.
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Figure 4.3: Experimental and FE major residual strain results from top surface analysis

4.1 Effect of Split Interface

The use of the split interface is one of the novel components of NBIT. To examine the

effects of the split interface it is first necessary to experimentally examine the effect of the

vice. For this analysis, several indentation experiments were conducted using a 588.6N

normal force on a whole sample of 4340 steel with and without applied force from the

vice. This is necessary as research has yet to show whether the vice itself produces any

significant differences in indentation response. When comparing a homogeneous steel

sample with no external force from the vice to a homogeneous steel sample clamped with

a force measured to be 834N via an external force gauge, the results indicate a negligible

difference in deformation. The homogeneous steel sample without an external force

from the vice produced a residual indentation radius of 304.2µm. The homogeneous

steel sample which had a vice force of 834N produced a residual radius of 304.5µm.

This difference in residual radius is within the measurement error of ± 0.3µm. A quarter
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3-dimensional model was used to replicate this whole homogeneous sample and using

the experimental parameters as inputs resulted in a residual radius of 305µm. The

residual indentations for these samples are shown in Figure 4.4. Therefore, since the

radius of the residual indentations with or without a clamping force are within error

of each other, the clamping force does not have a significant impact on the residual

deformation. This can be attributed to the fact that the stress caused by the clamping

force is approximately 5-6MPa which is significantly lower than the stress caused by the

indentation itself.

304.5μm

250μm250μm

304.2μm

250 μm250μm

305μm

Experimental No Clamp Experimental 833.9N Clamp Finite Element No Clamp

Figure 4.4: Residual indentation radii comparison of experimental sample with and
without a clamping force and FE sample without a clamping force

To continue the analysis on the split interface, six experimental split samples of AISI 4340

steel were created. A 588.6N indentation test using a hand tight clamping force to hold

the two half specimens together was then completed. The resultant residual indentation

radii were measured and by using Equation 3.4 with t5,0.01 = 3.36, a confidence interval

of 304.6 ± 1.5µm was determined. By comparing the split samples to the whole samples

from section 3.2.2, the null hypothesis that the population means of both experimental

indentation radii were identical could not be rejected with a 0.01 significance level. This

potentially means that the split and whole samples residual radii are identical.

For further comparison a quarter homogeneous FE model was used with a 588.6N
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indentation. This FE model produced a residual indentation radius of 305µm. This

is the same value produced from the experimental samples. As the FE model and the

experimental results match, this comparison indicates the split interface has little effect

on the response of material deformation. To better analyze these results a quarter

homogeneous FE model is compared to a clamped half non-homogeneous FE model.

The residual von Mises strain within the homogeneous unclamped sample and the split

clamped sample are compared and shown in Figure 4.5. From this comparison it is

shown that the residual strain differs slightly in terms of the contour shape however the

average difference between the split and unsplit von Mises strain below the indentation

is 0.0076 or 8.97% on the split interface. The split and unsplit samples are in good

agreement in terms of the residual strain however the difference in strain between the

two does increase along the top surface just inside of the indentation radius.

588.6N Whole Sample - No Clamp 588.6N Split Sample - 833.9N Clamp

100μm 100μm

Figure 4.5: Internal von Mises strain between whole unclamped sample (left) and split
clamped sample (right)

This difference in von Mises strain inside of the indentation radius along the top edge

can be better understood by examining the perpendicular displacements of the split

interface. As shown in Figure 4.6, there are positive displacements going into the
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material sample which allow for the interface to separate. This separation is small with a

maximum separation distance of 1.92µm, and as also shown in the figure, the separation

is localized in that one region. The majority of the interface exhibits a displacement of

-0.14µm which is a displacement towards the interface causing the two internal surfaces

to come into contact, allowing for good energy transfer across the interface.

100μm

Figure 4.6: Perpendicular displacement of split interface

For further examination, the perpendicular strains can also be examined from the

interface as it is expected to show the largest difference compared to a whole sample due

to the free surface attracting dislocation movement [29]. Therefore, as shown in Figure

4.7 the overall strain contours are similar however the consistent difference is present

shown along the top edge inside the contact zone due to the +Y axis displacements.

Even so, when analyzing the area of interest below the indentation, the average difference
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588.6N Whole Sample - No Clamp 588.6N Split Sample - 833.9N Clamp

100μm 100μm

Figure 4.7: Perpendicular strain comparison between whole and split samples interface

between the whole and split in terms of strain is 0.0066µm/µm or 15.1 %. This indicates

that the maximum difference caused by the split interface in terms of residual strain is

15.1%. That is however, for the strain perpendicular to the interface. A more important

analysis is that of the difference in the major and minor residual strain results due to

the split interface, as these results are what will be determined experimentally.

As shown in Figures 4.8 and 4.9, the overall strain contours are highly comparable with

small differences such as the expected difference near where the interface separates in

the split samples, as well as a slight reduction in the maximum principal strain zone

below the indentation. When examining the average differences between the split and

whole samples, the principal major strain has an average strain difference of 0.0031

µm/µm or 9.24 %, whereas the principal minor strain has an average difference of

0.0054 µm/µm or 7.71%.

Therefore, these comparisons show that when analyzing the experimental principal

major and minor strain results, the split interface is expected to introduced a less than

10% difference when compared to a whole sample. Further confidence in this technique
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588.6N Whole Sample - No Clamp 588.6N Split Sample - 833.9N Clamp

100μm 100μm

Figure 4.8: Principal major strain comparison between whole and split samples interface

588.6N Whole Sample - No Clamp 588.6N Split Sample - 833.9N Clamp

Figure 4.9: Principal minor strain comparison between whole and split samples interface

can also be achieved from analyzing the experimental displacements on the internal

surface after an indentation occurs, and using a quarter homogeneous FE model as a

comparison. To achieve this analysis an experimental split sample was subjected to

a 588.6N indentation along the split interface. After indenting the vice pressure was

removed, and the two halves were then separated. The internal surface before and after

deformation is shown in Figure 4.10. This figure shows the FIB array before and after

indentation and contains an outline of an undeformed circle before indentation on the
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left and the same circle after indentation where it becomes an ellipse on the right. Prior

to indentation the surface on the left is shown to be smooth with undeformed circles

created via the FIB. After the indentation was completed the circles within the plastic

boundary become deformed into ellipses.

Figure 4.10: Optical micrograph of the FIB array before (left) and after (right) a 588.6N
indentation load

Due to the relatively small plastically deformed area from the 588.6N indentation,

several circles remained undeformed as well as maintained their original positions.

Using these circles as reference points, the center positions of all the circles before and

after the indentation can be determined and used for creating a displacement field.

This experimental displacement field can then be compared to the simulated results as

shown in Figure 4.11. This figure is a composite image with three separate layers. The

optical micrograph from after the indentation shown in Figure 4.10 is used as the base

layer on the left. The experimental displacement point data results are used as a top

layer over the base circular layer indicating the physical relationship between the point

data to the experiment. The final layer is the FE displacement results on the right side

where the color of the FE and experimental point data use the same color mapping. This

comparison between the experimental and FE model produced an average difference in
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displacement of 3.92µm.
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Figure 4.11: Internal surface composition of experimental displacement point data
with FE results

The average displacement difference can be better examined by looking at the circular

gird and analyzing the percent difference between each individual circle as shown in

Figure 4.12. This figure contains two plots where the plot on the left measures the

percent difference between each experimentally displaced circle and the corresponding

location from the FE results. The percent difference results are then color mapped

where a difference of less than 25% is blue, less than 100% is orange, and greater than

100% is red. The percent difference is then plotted against the circles distance from the

indentation center. The plot on the right is simply the center point locations of each

circle within the deformed array however the circles maintain their respective color

map from the plot on the left. From this figure it is shown that the percent difference

between individual circles can be higher than 200% however when isolating specific

difference groups the circles which maintained the smallest percent difference are within
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the area of interest beneath the indentation giving rise to an increase in confidence for

this method.
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Figure 4.12: Internal surface composition of experimental displacement point data
with FE results

4.2 Internal Residual Strain

In this section the internal strains using the FIB circles will be analyzed and compared

to the FE results using loads of 588.6N, 981.0N, and 1471.5N. The basic results of these

simulations are shown in Table 4.1 to show the non-constant difference between the

experimental and FE results from the various indentation loads.

From the indentation load however, the resultant major and minor principal strains were

Table 4.1: Summary of experimental and FE results for residual diameter and depth

Force
Radius (µm) Depth (µm)

FE Model Experimental % Diff. FE Model Experimental % Diff.

581.6N 305 304.7 0.1 53.5 60.7 11.8

981.0N 384 377.7 1.7 86.9 87.7 0.9

1471.5N 462 465.2 0.7 128.4 153.8 16.5
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determined by measuring the major and minor axis. A MATLAB script was created which

used the center point Y and Z value of the FIB circles and found the closest element

centroid location from the FE results. Once the identical location was determined

between the experimental surface and the FE surface, the major and minor strain values

at that location were compared.

4.2.1 Low Indentation Force (588.6N)

By using optical microscopy, the major and minor axes of each circle were measured.

These values were compared to the FE results as shown in Figures 4.13 and 4.14. These

figures are comparable to Figure 4.11 however instead of comparing displacement data,

they are comparing residual principal major and minor strains. Figure 4.13 shows the

shape of the FE and experimental strain contours are similar. There is low strain directly

beneath the indenter, which eventually increases and then decreases again as the depth

increases. For the major strain, Figure 4.14 shows that both the FE and experimental

results have the maximum major strain occurring near the residual contact edge as

well as a low residual major strain directly beneath the center of indentation. As both

the major and minor residual strain data in general correspond well with each other,

indicating that the use of the vice and split interface can be used as a representative for

a whole unsplit specimen.
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Figure 4.13: Experimental minor strain point data compared to FE minor strain results
from a 588.6N indentation
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from a 588.6N indentation
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Although the shape of internal strain fields show good agreement, the exact values are

difficult to compare when viewing the entire surface. An analysis of the data points

that lie along the Z axis can be examined as well to show how strain changes with

increasing depth as shown in Figures 4.15 and 4.16. These figures show the major and

minor strains respectively for the FE split, FE whole homogeneous, and experimental

samples. The FE split and FE homogeneous trends from both residual major and minor

strain show good agreement. The experimental results follow similar trends, however

some individual data points show large variations. The average difference between the

experimental and simulated results were 0.015 or 53.72% for the major strain and 0.017

or 28.5% for the minor strain.

Figure 4.15: Residual major strain as function of depth for experimental and FE results
from a 588.6N indentation
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Figure 4.16: Residual minor strain as function of depth for experimental and FE results
from a 588.6N indentation

From Figures 4.13 - 4.16 there are some outlying experimental data points that do not

correspond well when compared to the FE results. Some of these discrepancies heavily

attribute to the large difference in the major and minor strain results. To investigate

these large discrepancies in strain values the 588.6N experimental sample was etched

with a 2% nital solution to examine its microstructure as shown in Figure 4.17. This

micrograph shows the deformed ellipse is mainly in a pearlite grain however there

are sections of the ellipse which are irregularly deformed and are within ferrite grains.

The irregular deformation is shown to be attributed to the non-homogeneous material

response between the two compositions. This irregular deformation causes the manual

measurements of the major and minor axes to become skewed and is believed to be the

main reason for the large discrepancies between the experimental micro and FE macro

strain results. For further examination, a similar analysis was completed using a 981.0N

indentation force.
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Ferrite

Figure 4.17: Microstructure of substrate showing non-uniform deformation of ellipse
in 588.6N sample

4.2.2 Medium Indentation Force (981.0N)

By increasing the indentation force to 981.0N, the amount of internal deformation

will increase as well. This increase in internal deformations should give rise to an

increase in recorded residual total strain values. By following the same analysis as the

588.6N sample, the residual total strain comparison between the experimental and FE

results are shown in Figures 4.18 and 4.19, which show the residual principal minor

and principal major strain comparison respectively. From Figure 4.18 it is shown that

the areas of highest strain are similar between the experimental and FE where they

decrease at approximately the same rate with increasing distance from the indentation.

Figure 4.19 did not produce as good a comparison as the 588.6N load case. The color

mapping appears to be fairly sporadic showing large major strain values which do not

correlate well with the FE model. In terms of exact comparisons, the residual minor
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strain produces a difference of 0.0427 or 34.81% whereas as the residual major strain

produces a difference of 0.0264 or 69.94%.
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Figure 4.18: Experimental minor strain point data compared to FE minor strain results
from a 981.0N indentation
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Figure 4.19: Experimental major strain point data compared to FE major strain results
from a 981.0N indentation

These differences between the experimental and FE analysis are larger than the differ-

ences seen from the 588.6N indentation. The reasoning for this increase in difference

can be attributed to the increase in deformations caused by the increase in indentation

force. As seen in Figure 4.17 the 588.6N indentation caused variances in the thickness

of the ellipse lines as well as variances in the uniformity of the ellipses. Therefore, it can

be said that by increasing the deformations, the residual strains within the softer ferrite

grains will be even higher and therefore cause even further non-uniformity within the

measured ellipse. This can be examined much like Figure 4.17 where the surface of the

981.0N indentation was etched using the nital solution and the resultant microstructure

around the deformed ellipse is shown in Figure 4.20.

From this micrograph, the resultant deformation is as expected such that the portion

of the ellipse which is in the ferrite grain is exhibiting an increase in deformation as

compared to the pearlite section of the same ellipse. This non-uniformity between the
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Figure 4.20: Microstructure of substrate showing non-uniform deformation of ellipse
in 981.0N sample

microstructural phases is the cause of these large discrepancies and as such, it is expected

that they will increase by using additional force during the indentation process.

4.2.3 High Indentation Force (1471.5N)

As the Buhler hardness tester is limited to a maximum indentation force of 1471.5N,

this is the highest force able to be utilized for this current work. Based on the previous

experimental results, the 1471.5N indentation should produce even greater internal

deformations which should result in an even greater difference between the experimental

and FE results. These comparisons are shown in Figures 4.21 and 4.22 which show

the comparisons between the experimental and FE principal minor and principal major

strains respectively. From these figures an area absent of data is present which is due

to the measurements not being taken promptly, which allowed for 7 circles to be lost
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due to corrosion. The remaining 137 circles were able to be measured however and

used for the comparisons. From these comparisons, the average difference from the

minor comparison is 0.0370 or 25.99% and the difference from the major comparison is

0.0301 or 38.83%.
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Figure 4.21: Experimental minor strain point data compared to FE minor strain results
from a 1471.5N indentation
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Table 4.2: Summary of experimental and FE differences for major and minor strain

Force
Minor Major

Difference % Difference Difference % Difference

581.6N 0.0167 28.51 0.0153 53.72

981.0N 0.0427 34.81 0.0264 69.94

1471.5N 0.0370 25.99 0.0301 38.83

Comparing these results to the 588.6N and 981.0N indentation results all summarized

in Table 4.2, the largest indentation force shows a high strain difference, but the lowest

percent difference between the experimental and FE results. The reasoning for this is

thought to be because of several different factors. First, there is little to no repeatability

done with this study on the internal strain, and therefore the average results may vary.

Secondly, the error from the manual measurement method can cause large variations

in the recorded value as seen in Figure 4.23. The curves shown in Figure 4.23 show

the minor and major strain values below the center of the indentation, where they

would ideally be a smooth line. This is not the case however due to the measurement

error, where it is clear that the curves have significant noise. Thirdly, the difference in

mechanical properties between the ferrite and pearlite would also become much more

apparent under an increasing indentation force. As the indentation forces increase, the

deformation of the ferrite is significantly higher compared to the pearlite which is why

the ellipses become non-uniformly deformed. The resultant deformation of an ellipse

from the 1471.5N indentation is shown in Figure 4.24. This increasing deformation of

the ferrite grains appears to be the case up to and including the 1471.5N indentation,

however, from the 1471.5N results, the pearlite could also now be deforming sufficiently

to reduce the phase dependent deformations. The use of the FE model as a comparison

also causes some issues especially with the difference in displacement being 25.4µm for

the 1471.5N indentation. As the FE strain results are first dependent upon the resultant

displacements, the difference could be because of the chosen material model parameters.
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Figure 4.23: Centerline residual major and minor strain results for separate indentation
forces

Even with all of these potential differences between the experimental and FE model

the percent difference is continually decreasing with increasing force and is explained

simply by the fact that the strain difference is not increasing linearly with the amount

of strain in the sample. Therefore, when determining the percent difference between

the experimental and FE analysis, the amount of influence that the strain difference has

on the recorded strain value is decreasing with increasing indentation force. It should

also be noted that from Table 4.2, the strain difference between the experimental and

FE results stay within the approximate measurement error of ±0.04 with the exception

being the minor strain difference from the 981.0N sample. From this result the 981.0N
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Figure 4.24: Microstructure of substrate showing non-uniform deformation of ellipse
in 1471.5N sample

sample was reviewed further where it was found that several individual circles from

that sample were measured to have vastly differing strain values and therefore the large

difference was found to be a combination of the microstructural differences as well as

the differences caused by manual measurement.

Although the focus from these comparisons has been on the strain and percent differences

between the experimental and FE results, they are not the sole determining factor of

the effectiveness of this method. As it has been shown that the split interface causes

minimal difference in the residual strain along the split surface, the comparisons serve as

a rough affirmation towards the confidence in the experimental results. This is because

as previously discussed, the FE model is useful for determining the macro strain results

that are not dependent upon any form of microstructural inhomogeneity. Therefore,

NBIT results are expected to not compare well especially with the use of a multi-phase
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material where the mechanical properties of the separate phases will heavily influence

the local micro strains within the sample.



Chapter 5

Conclusions

The measurement of residual strain is an important analysis technique for determining

the amount of deformation and where failure may occur within a material. There are

currently a diverse number of measurement techniques; however, as the technology in

materials science improves, the requirements for even finer residual measurements will

be imperative. Therefore, the purpose of this work was to use the novel method of NBIT

for determining residual microstructural deformations and residual strain distributions,

create a non-linear validated FE model to determine the effects of the split interface,

and compare the analytical and experimental results to the FE model for three separate

indentation loads.

As the first objective of this work was to investigate the novel method of NBIT, several

experiments were conducted using the focused ion beam (FIB). These experiments were

conducted in order to determine the optimum process parameters for analyzing the

resultant residual strain along the free interface. The optimum process parameters were

determined to be a beam spot size of 0.248µm/px, a dwell time of 128µs, and a frame

100
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count of 150. Using these process parameters allowed for the comparison between the

top surface experimental and FE results. From this comparison it was determined that

the circles created via the FIB could be utilized for determining the major and minor

residual strains from an indentation test. This comparison also gave rise to the issue of

measurement accuracy where the small strain values outside of an indentation along

the top surface are small enough to become significantly effected by the measurement

accuracy. It was still determined however that the general trend of the residual top

surface strain compares well between the experimental and FE model. Therefore, the

general use of the FIB circles for use in residual strain analysis was investigated.

The second objective of this work was to create an accurate and experimentally validated

FE model which can be used for the analysis of the split interface. To be able to

complete this final analysis of the split interface, the FE model had to go through several

development stages. The finite element model was first created as a whole homogeneous

model which was quartered and simplified using symmetry boundary conditions. Proper

element size was determined through an analytical comparison to the Hertzian model,

using the parabolic pressure distribution in place of an indenter. An indenter was then

added to determine the proper contact algorithm to reduce the amount of indenter-

substrate interpenetration. After the contact algorithm was determined, the model

was then changed to the use of the Johnson-Cook elastic-plastic material model. The

parameters for which were determined through experimental comparisons and were

determined to be the parameters first determined by Rule [79]. Once the optimal

parameters were determined and the quarter model was validated via the experimental

results, a half model was then created.

Prior to analyzing the split interface, the effect of the vice had to be examined. To do

so, two whole samples of AISI 4340 steel were indented using a 588.6N indentation

load. One sample was clamped with a force measured to be 833.9N, while the other
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sample was not clamped. The residual indentation radii of which were examined and

produced values of 304.7µm and 304.2µm for the clamped and unclamped samples

respectively. These results were also then compared to a homogeneous FE model using a

588.6N indentation load without any clamping force where the FE model had a residual

indentation radius of 305µm. From this it was determined that the clamping force from

the vice produced an approximately 5-6MPa which is significantly less than stress caused

by the indentation itself, and therefore the vice produces negligible difference in the

results.

For analysis on the split interface the results from the FE half model were compared

to the FE quarter model. The comparison of the internal von Mises residual strain

found a difference of 8.76%. The internal residual Y-axis perpendicular strain was also

compared for examining the differences caused by the free interface. The perpendic-

ular analysis found that the overall trend was fairly similar however the half model

produced slightly lower values with an average difference of 0.0066µm/µm or 15.1%.

The effect of the interface on the residual principle major and minor strain was also

examined and found that the split interface caused a difference of 0.0031µm/µm or

9.24%, and 0.0054µm/µm or 7.71% for the major and minor strain respectively. As the

strain difference is relatively low at less than 10% especially for what will be measured

experimentally, and the overall trend within the split interface is a good comparison to

the whole model, the interface can be said to produce little difference in the material

response.

The third and fourth objectives were to compare these FE results with the experimental

results using the FIB at three separate loadings. The experimental samples used for

this analysis were composed of AISI 4340 steel and were created with two separate

dimensions. The first set of samples were perfectly cube and used as a homogeneous

sample. The second set of samples initially had the same dimensions as the first except
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that they were then split in half. Circular arrays were placed on the internal surface of

the split samples. This array was created via a focused ion beam for which the optimal

parameters were also determined. One parameter which was kept constant was the

diameter of the individual circles. This was kept constant to have a consistent resolution

as well as simplify the overall experimental method. If desired however, this circular

placement method has the capability of placing circles on the single or sub micron scale

and therefore, allows NBIT to have one of the most diversified measurement resolutions

compared to other methods.

The first experiment conducted was a continuation of the split interface analysis where

the experimental homogeneous and split samples were compared in terms of their

residual indentation radius. Six split samples were analyzed, and a hypothesis test was

conducted at a 0.01% significance level and determined that the population means of the

homogeneous and split samples residual radii could be the same, further continuing the

conclusion that the split interface causes minimal change in the material deformation.

The second set of experiments conducted for this work utilized the circles which were

used for measuring the amount of residual total strain. The use of circles allowed for

the measurement of both the principal major and principal minor strain values. The

measurements of which were completed via an optical microscope with an approximate

strain error of ±0.04µm/µm. This experimental indentation was done via a hardness

tester with various loadings of 588.6N, 981.0N, and 1471.5N. The experimental split

samples were compared to the homogeneous finite element model in order to compare

the effect of the split interface on the residual strain values. Indentation forces of 588.6,

981.0, and 1471.5N were used and the standard circular grid analysis method was used

to present the internal residual strain from each of the indentation forces. The 588.6N

experimental split sample was used to create a displacement field which produced an

average difference of 3.92µm when compared to the FE homogeneous sample. The
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residual strain results from this work compared the micro scale experimental strain

results from a split sample to the FE macro scale strain results from a homogeneous

sample. This comparison showed a difference in internal residual minor and major

strain of 28.5% and 53.7% respectively for the 588.6N sample. The 981.0N sample

produced differences of 34.8% and 69.9% for the minor and major strain respectively.

The 1471.5N sample produced differences of 26.0% and 38.8% for the minor and major

strain respectively.

Although it was found that these differences are fairly large when analyzing the per-

centages, the difference in strain values are still typically within the measurement error

of ±0.04µm/µm. Along with the differences, it was also found that there are several

possible explanations as to why some of the data points exhibited a larger difference in

comparison. These reasons could be due to the multiphase nature of AISI 4340 steel

causing a micro scale non-homogeneous material response between the pearlite and

ferrite grains. This would cause an increase in difference when compared to the macro

scale response from the FE model. It is for this reason that caution should be taken when

attempting to apply FE results to microscale non-homogeneous materials. Aside from

the material itself, differences between the experimental and FE results could arise due

to the manual measurement used within this work. Although an error of ±0.04µm/µm

strain was determined, it is not a set constant value due to human involvement in the

measurements and therefore could allow for large variations in what the value should

be.

The results from this work show that the free interface within NBIT causes a small

difference in the material response from an indentation, as well as a small difference in

residual strain when compared to a FE model. From these results, NBIT can be utilized

in future research as it has a large range of possible spatial resolutions from a gauge

size of 256µm to potentially sub-micron level depending on the power and accuracy of



105

the FIB as well as the accuracy of the microscope used for the measurements.

5.1 Future Recommendations

For future work, if further comparison is desired between NBIT and a finite element

model, the use of a single phase material should show a better comparison. Also, upon

further review, the Johnson-Cook material model could also be replaced with a newer,

more advanced plasticity model which would be able to better represent an experimental

sample. Aside from those two recommendations, the development towards an accurate

ellipse detection or some form of image correlation which would allow for automatic

detection of the residual major and minor axes would increase the efficiency and accuracy

of this method significantly and allow for continued testing for better reliability.

Publications generated from this work:

1. Journal of Engineering Materials and Technology
• A Novel Method of Residual Strain Analysis via a Non-Bonded Interface

Technique in Combination with the Circular Grid Analysis Method

2. Canadian Congress of Applied Mechanics 2019 Conference Proceedings
• Comparison Between a Novel Residual Strain Analysis Method and a Finite

Element Model
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