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Abstract

The research proposes an autonomous solution using deep learning techniques inte-

grated on unmanned aerial vehicles (UAV) to effect a rapid and timely search in case

of a man overboard (MOB) where a person has accidentally fallen off a ship. The

UAV would be deployed from a ship. A light weight neural network model is to be in-

tegrated on a drone with limited processing resources. An image dataset was collected

using open source videos based on people in the water (positive) and their negatives,

object cropping was done by considering RGB spectrum. Three deep learning archi-

tectures have been developed considering the trade-off between the minimum memory

utilization (efficiency) and maximum accuracy (efficacy). It is hypothesized that a

small network can achieve results equivalent to a larger network when chosen on the

efficacy/efficiency trade-off. On experimental evaluation, the smaller numbers of pa-

rameters yield the best F1score performance. Neither the very large 379.7 MB ( 94

million parameters) nor very small networks 1.8 MB ( 0.03 million parameters) gave

the best performance; rather the mid-size network 48.5 MB ( 12 million parameters)

achieved best results.
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Chapter 1

Introduction

A man overboard (MOB) incident refers to the situation where, due to some unan-

ticipated event, a person falls from a ship or boat. These kinds of incidents have

to be addressed on a priority basis since conducting a rescue in limited time is very

critical. The reasons for the unfortunate incident can be varied; it can be due to a

ship accident, excessive drinking etc. Upon notification of an MOB, search and rescue

(SAR) operations must begin immediately but there are challenges to overcome for

this.

To contribute to solutions for MOB incidents, this thesis proposes to use a a vision

system deployed on an unmanned aerial vehicle (UAV), or drone, to detect people in

the water. The drone used is designed and operated by Hanseatic Aviation Solutions.

The Nvidia Jetson TX2 is a candidate payload processing unit. This was selected

because it is a typical advanced payload processor but it is still limited compared

to state-of-the-art laptops or work stations. The vision system requirement is a

lightweight neural network which is optimized in terms of both efficacy and efficiency.

There is another aspect of the drone solution proposed earlier, which is in regard

to doing the processing in the cloud rather than doing it on the drone itself. This

could solve the problem of limited hardware resources as the cloud has enormous

computational capability. However, this solution depends on the internet bandwidth

available. If there are bandwidth issues this could compromise a successful mission

outcome.

1.1 Background and Motivation

The motivation to investigate neural network interpretability with respect to efficacy

and efficiency was in the requirement to build an efficient vision-based detection sys-

tem and to deploy it on an UAV with acceptable efficacy. This is applied to marine

search and rescue (MSAR) operations in a man overboard (MOB) incident.

1
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The approach was based on the concept of distillation [10]. It was first proposed

by Geoffrey Hinton in the context of interpretability of deep neural networks. The

concept is to use a model to train another model with different properties. For

instance, using a ”large” model to train a ”lean”, limited footprint model, deployable

on an UAV.

In existing literature there are MSAR tools like rescue apparatus for sailboats[15],

rescue systems [7], MOB safety systems [25] and alert and location systems [11] but

they have the common issue of not being timely [12]. Sea-going vessels like cruise

ships, oil tankers, etc. are not optimal for MSAR of a MOB incident. These ships can

take 6-11+ minutes (depending on the ship length and speed) to execute the MOB

turn, then there is the transit to the estimated point of the MOB and finally, the

search begins. In currents, sea states and hypothermic temperatures a MOB has < 5-

10 minutes before succumbing to hypothermia, exhaustion or exposure. Shore-based

manned search and rescue vessels cannot be timely as it takes a while to mobilize

from a greater distance. Manned MSAR vessels are not small, hence they cannot be

deployed from all ships. With manned MSAR there is also the risk of the operators

being overcome by harsh sea conditions.

1.2 Summary of Proposed Solution and Contributions

The proposed solution is based on using the distillation network approach. The

motivation behind this thesis work is solely based on the reason that the distillation

model was originally proposed for interpretability, but here it is used for efficiency

instead.

The approach discussed here is using the full image classification, which is pro-

posed to be used with the object cropping tool. An object cropped from the frames

is to be given to the classification module for detecting whether the object is in the

frame. The main goal for now is not localization, but in the future this proposed ob-

ject cropping and classification modules together can be used for object localization.

Efficacy refers to the objective analysis of the network which is usually calculated

in terms of accuracy, precision, recall and F1-score. Efficiency pertains to the compu-

tational power consumption (not studied here), memory utilization, execution speed
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and throughput (images processed per unit time) of the neural network model. Un-

derstanding a model based on efficacy and efficiency measures is an interesting area,

research in this area can yield new and useful insights. These insights can be used to

build more efficient networks with roughly equal efficacy results.

In the distillation network approach [10] it was proposed that a teacher model

be trained on a large collection of images and a (distilled) student model, which has

the ‘knowledge’ of the teacher, without the memory requirements of a large model,

be deployed on-board the UAV. This distilled model is an optimized solution to

the efficacy versus efficiency trade-off. The student model module is implemented

in C++ on-board the Nvidia Jetson TX2 which is a candidate microprocessor on-

board the UAV. Figure 1.1 shows that initially images are fed into the distillation

architecture. Firstly, the teacher network is trained using transfer learning and using

this the student network is trained by using the distillation approach, detail of this is

described in the chapters as follows. Then by experimenting with different parameters

for this architecture the student models were trained and their session file was saved

specific to each session. The final deployment was done on the Nvidia Jetson TX2

which is eventually to be deployed on the drone.

The final research goal is to contribute in the direction of deployable neural net-

work for the embedded system which in our case is Nvidia Jetson TX2. In this area of

research it is hard to get to an interesting point where the efficacy and efficiency trade-

off is achieved because of the limited hardware constraints. The contribution is the

development and implementation of a learned vision system on-board an unmanned

aerial vehicle.

The architecture is explained in Figure 1.1 where the input data, which is set

of collected images to be fed into the teacher network. That network is trained

with transfer learning. This whole distillation module is designed on the basis of

transfer learning being used to train the cumbersome teacher model and eventually,

the distilled model learning from it. This module is explained in more detail in the

next chapter. Eventually, the outputs from the teacher network are saved as soft

targets which will be used to train the distilled model. In the next step, the student

model learns by computing loss with the given labels and with the soft targets of the

teacher model, which eventually is the minimization of two loss functions.
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Then, session files are generated for distilled model designs to achieve the most

optimal on the basis of efficacy and efficiency outcomes. A session file is a serialized

collection of a model’s parameters. The most optimal session file is deployed on the

payload processor on-board the UAV. The student model deployment module is coded

in C++ for fast execution.

Figure 1.1: Proposed architecture to be deployed on drone.

1.3 Thesis Outline

The objective of this thesis is to gain insights into the concept of interpretability of

neural networks with respect to the efficacy and efficiency of neural networks applied

to visual searches for people in the water. The rest of this thesis is organized as

follows: Chapter 2 describes the background and the related work; in Chapter 3, the

design and methodology of the proposed solution is described; in Chapter 4, the data

collection and data labelling for the training set is described; Chapter 5 details the

experiments supporting the research; in Chapter 6, there is a discussion of the results
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with some conclusions and finally, Chapter 7 discusses meaningful follow-on work.



Chapter 2

Background and Related Work

The literature review was performed in machine vision using deep learning techniques

to develop a system which is optimal in terms of model efficacy and efficiency. A

review of the existing literature demonstrates the novelty of the thesis contributions.

To start, relevant background is presented. The following sub-sections describe the

literature review that was done.

2.1 Convolutional Neural Networks

Figure 2.1: A basic single layer perceptron inspired from a neuron in brain

Convolutional Neural Networks (CNN) are state-of-the-art neural networks which

6
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aim to find patterns in images by convolving the images, which is a multiplication

of the image intensity with a filter matrix. CNNs are mainly used for multi or

binary-class classification analysis. A detailed explanation of the convolutional neural

networks is available here 1.

Back propagation is used to train these neural network. The weights from the

training are updated by adding derivatives calculated from the output towards the

input direction. The back propagation rule is applied mathematically by taking the

derivative using the multivariate chain rule.

State-of-the-art image classification with neural networks, based on convolutional

architectures, have achieved notable results. A select few are reviewed here. However,

they require non-trivial computational resources which is why these networks were

not popular prior to the big data era [2]. Architectures like Inception V3 [23] and

VGG 16 [20] have produced good results in terms of efficacy but they cannot run on

light-weight embedded systems with ARM processors. Their main short-coming is

the large number of parameters, and subsequently, the memory and processor speeds,

that these networks require. If the objective is deploying on embedded systems, the

recommendation is that these networks be pruned or distilled. With Inception V3,

which has 94 million parameters and a 98 MB serialized session file for inference ,

it is not possible to deploy this on embedded processors like the Nvidia Jetson TX2

(which was designed for computer vision and other AI applications). Even if it could

be deployed, the inference time would be large.

Behaviour-based computer vision solutions have been explored where a target is

tracked based on its behavior (e.g. hold a constant heading) and not so much on

its visual appearance. The literature survey of [18] shows the use of computer vision

to detect humans in the water. The work is focused on object detection performed

using background subtraction, optical flow and spatio-temporal filtering techniques

and once detected, a moving object could be classified as a human being using shape,

texture or motion-based features. With this approach, there is a high likelihood of

not detecting the human (false negative) if there is no movement in the human or

the case of a log that roughly resembles a human. However, in this thesis the video

1https://www.geekasservice.com/face-recognition-convolutional-neural-network-tensorflow/
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is captured at-altitude by a drone, so it is important to have an accurate (less false

positives and negatives) human detection system.

In this research, CNNs are used in the vision system for the detection of a MOB.

This algorithm is used with transfer learning and distillation which is described in

detail in the next sections. With regards to the research, the interpretability concept is

considered using both the efficacy and efficiency of the neural network models. Effort

is put into experimenting with different network architectures to get an appropriately

light weight network. Next, transfer learning and how it is used in the thesis is

presented.

2.2 Transfer Learning

Transfer learning [26] is a technique in machine learning that stores knowledge gained

while solving one problem and applying it to a different, but related, problem. With

regards to transfer learning there are different paradigms to train the network. One

way is to take the pre-trained weights as unchanging (frozen layer). The other method

is to train the network and update the weights as the information back propagtes

in the network. For instance, the saved final weights of a neural network trained

for image classification of birds in the morning could be used to initialize a neural

network that is training for image classification of bird species at different times of

the day (Figure 2.2, 2). In this way, the class A weights (birds in the morning) are

used to train the class B weights (birds at different times of the day) where the first

part of the network is frozen and the rest is updated with each iteration.

To detect humans, transfer learning with state-of-the-art image net classifiers were

used. VGG 16 was used initially for this and then a relatively smaller network, like

inception V3, was used and on top of it a few hidden layers were added to build the

teacher network

Weights from training a network using transfer learning with the best efficacy

results are saved. These weights are used to initialize another network for a similar

class. As a result, the network tends to learn more quickly than with random weight

initialization. Consequently, more incremental effort can be applied to determine the

2https://medium.com/@subodh.malgonde/transfer-learning-using-tensorflow-52a4f6bcde3e
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Figure 2.2: Transfer learning using pre-trained net weights.

weights for the new class. The next section discusses distillation of knowledge from

neural networks and why it is relevant to this research.

Transfer learning has been significantly applied to different domains, for example,

reinforcement [25] and unsupervised learning [2], for dimensionality reduction [18],

etc. Their requirements are unrelated to the the motivation of this research which is

limited on-board processing. There is no previously reported work on the optimization

of networks for a vision-based system to be deployed on an embedded processor like

the Nvidia Jetson TX2 – an objective of the thesis.

Transfer learning is used with the distillation approach where the unwieldy model

is trained with a state-of-the-art neural network like VGG16 or Inception V3.
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2.3 Distillation of knowledge from neural networks

The proposed solution uses the distillation network approach. The work is moti-

vated by the sole reason that the distillation model was originally proposed for in-

terpretability, but here it is used for efficiency instead. One solution is to use this

distillation approach [10], where a smaller student network (distilled) is trained by

the larger teacher network (unwieldy on an embedded processor). The construction

of the teacher and student networks, and their objective functions, are described next.

Distillation is a regularizer technique which prevents the network from overfitting

the solution by adding bias to the results. It is described in Figure 2.3, which shows

two models trained using the same set of training images. One is the teacher model

(cumbersome) and the other is the student model (light weight). This architecture

can be executed in many different ways; here we will first of all train the teacher

model with the training dataset, saving the predicted outputs. These will be used

to train the student model. The convolutional part of the teacher model weights is

initialized using the pretrained weights (transfer learning), and these are then fine

tuned by training on the collected dataset (train). Next, using the same collected

image dataset (train) the student model is trained by comparing the predictions with

the true labels (loss 1) and also by comparing the predictions with saved predicted

labels from the teacher model.

As shown in Figure 2.3, first, a trained teacher model, which gives soft labels as

output, is fine-tuned with the help of a temperature hyper-parameter, T . Setting the

appropriate value for the hyper-parameter is critical. The student network is trained

by minimizing two loss functions. Soft targets are the probabilistic outputs of the

neural network and these are computed by applying softmax to zi, these computed

targets are qi (Equation 2.1). The value for hyperparameter T is 1 in this work. In

Equation 2.1 the softmax function is applied after dividing the network output vector

value by T , and then dividing the exponent of the value by summation of exponents

over all the values of the vectors.

qi =
exp(zi/T )∑
exp(zj/T )

. (2.1)
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Soft targets from the teacher network output are used to train the student network

by minimizing the two objective loss functions as in [10]

loss1 = labels ∗ log(predstud) (2.2)

loss2 = predteach ∗ log(predstud) (2.3)

loss = loss1 + loss2 (2.4)

Therefore, the student network is trained by minimizing the loss function of Equa-

tion 2.4. The learning occurs in two steps. The first step is where the student learns

without any other network support. This is achieved by minimizing a cross-entropy

loss function of its predictions and the given labels as in Equation 2.2. In the second

step, the distilled model (student) is trained using the unwieldy model (teacher) as

mentioned in Section 2.3. Soft targets from the teacher model are computed by divid-

ing the logits with the temperature hyperparameter and then taking the softmax of

these (Equation 2.1). Next, the cross-entropy loss is calculated using the soft targets

calculated in Equation 2.1 and the softmax output from the student network. The

cross-entropy loss calculated for this in Equation 2.3 is minimized for optimization.

Using the objective function in Equation 2.4 this combined loss is minimized to get

effectively, a trained distilled network (student) with the fine-tuned parameters.

The teacher network is trained with the usual single objective loss function which

is calculated by comparing the true labels with the output of the teacher (unwieldy)

model after applying the softmax activation function. The combined objective loss

function for training the student network, as stated in [10], is only possible when the

correct labels are known for all or some of the transfer set, and then this method can

be significantly improved by also computing the objective loss function (Equation

2.3) to train the distilled model to produce correct labels. Equation 2.2 is the cross-

entropy with the soft targets and this cross-entropy is computed with the same high

temperature in the softmax of the student (distilled) model as was used for generating

the soft targets from the teacher (unwieldy) model. Equation 2.1 is the cross-entropy

with the correct labels. This is computed using exactly the same logits in softmax

of the distilled model but at a temperature of 1, both these objective functions are
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Figure 2.3: Distillation architecture with explicit loss functions emphasized.

based on the work of Hinton [10].

It was mentioned in [10] that the best results were generally obtained by using a

considerably lower weight on the second objective function. Since the magnitudes of

the gradients produced by the soft targets scale as 1
T 2 where T is the hyper-parameter,

it is important to multiply them by 1
T 2 when using both hard and soft targets. This

ensures that the relative contributions of the hard and soft targets remain roughly

unchanged if the temperature used for distillation is changed while experimenting

with meta-parameters.

Distillation and pruning techniques are widely used for creating networks that

are computationally cheaper while keeping the efficacy unchanged. Work on network
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distillation [10] ‘distills’ the knowledge from a large teacher network into a more

compact student network. These authors study the concept of interpretability in the

context of efficacy (accuracy, area under the curve and mean square error) only. Also,

pruning techniques in the literature have the same concerns with efficacy. There is

work in iterative growing and pruning for classification tree designs[9], feed forward

networks [4], text [6] and near-optimal generalization [13] for the purposes of efficacy

after reducing the network size. There is no consideration for efficiency either.

In the distillation [10] work there was significant work to train light-weight net-

works based on the efficacy results. Making predictions using a whole ensemble of

models is cumbersome and may be too computationally expensive to deploy to a large

number of users, especially if the individual models are large neural nets. Caruana

and his collaborators [ref?] show it is possible to compress the knowledge in an en-

semble into a single model which is much easier to deploy. This approach is further

developed using different compression techniques. But this area of research does not

align with distilling the knowledge from a single expensive neural network into a

light-weight network based on the efficacy and efficiency trade-off.

Therefore, distillation is used in this research to build neural networks that are

light-weight, out of the distilled networks that are trained. The networks are based

on efficiency as well rather than just the concept of interpretability. The next sections

details the efficacy measures used in this research. Subsequently, in the following three

subsections, measures of analyzing the model for efficacy and efficiency of the neural

networks is described. Subsections 2.1.4 and 2.1.5 pertain to efficacy and subsection

2.1.6 to efficiency.

2.4 Confusion matrix

The confusion matrix is a special case of a contingency table, with two dimensions:

”actual” (or ground truth) and ”predicted” (by the algorithm), across two classes.

Each permutation of dimension and class is a variable in the contingency table. In

machine learning (and other) classification approaches, a confusion or error matrix

quantifies the performance of the classification. Each row of the matrix represents

the instances in a predicted class while each column represents the instances in an

actual class (or vice versa). The name stems from the fact that it clearly shows if the
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classification algorithm is confusing two classes.

The confusion matrix capture the four performance measures for a predicted solu-

tion: true negatives (TN), false negatives (FN), false positives (FP) and true positives

(TP). ‘True labels’ are those assigned as a dataset ground-truth for a specific clas-

sification. ‘Predicted labels’ are the outcomes from the algorithm being tested. In

Figure 2.4 the matrix value true positive is where the predicted and true label cases

match (predicted and true labels are positive). False positive is where the predicted

and true label cases do not match (predicted label is negative and true label is pos-

itive). False negative is also a case where the predicted and true label cases do not

match (predicted label is positive and true label is negative). True negative is the

case where the predicted label matches the given one (predicted and true labels are

negative).

Figure 2.4: Confusion matrix definiton
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2.5 Efficacy measures

The four efficacy measures used here are the accuracy, precision, recall and F1-score.

Accuracy refers to the correctly classified examples divided by the total number of

examples available for classification as shown:

accuracy =
TP + TN

TP + FP + TN + FN
. (2.5)

Next, precision relates how precise the model is out of those predicted positives,

and how many of them are actually positive:

precision =
TP

TP + FP
. (2.6)

Recall calculates the proportion of true positives. It is the model performance

metric used to select the best model when there is a high cost for false negatives.

recall =
TP

TP + FN
(2.7)

The F1 − score seeks a balance between precision and recall. But what is the

difference between F1 − score and accuracy? Accuracy can be largely contributed

by a large number of true negatives which in most circumstances does not focus on

much, whereas false negative and false positive have associated costs (tangible &

intangible) thus F1 − score is a better measure because of the balance it achieves

between precision and recall and, for the dataset used here, there is an uneven class

distribution (larger number of true negatives).

F1− score = 2× precision× recall

precision + recall
(2.8)

2.6 Efficiency measures

Efficiency is an important concerns of this research given the limited computation

resources. Experimentation explores the memory required vs the model processing

times and the number of images processed per unit time by the neural network ar-

chitectures as additional performance metrics. These were the measures of efficiency.
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Research and development using the Tensorflow API version 1.9.1 (macros coded in

Python).

Remote server processing architectures are widely used for inference with deep

learning methods. For example, real-time video data surveillance performed in the

Cloud with on-board light-weight embedded processors like the Nvidia Jetson TX2.

Remote server processing [22] of imagery, when the network connection is good, be-

tween the UAV and remote server. Once the processing is complete, the inference is

transmitted back to the UAV.

As well, the use of remote server processing is, by necessity, less demanding given

embedded processors. Usually, the processing is developed on desktop processors

where there is ample computation resources to create the light-weight neural net-

works, Then, the light-weight neural networks are tested on the embedded processor.

Prototype solutions using neural networks for image classification have been re-

ported with hefty Intel graphical processing units (GPU) for the same problem of

detecting humans on the water [8]. They tried convolutional neural networks for the

full image, sliding window and precise localization. But, the deployment onto an UAV

has not been tested. This was a future work item for them. It is understood that

performing inference on powerful Intel desktop processors is obviously more efficient

than on a limited embedded ARM processor like the Nvidia Jetson TX2.

Consequently, the expanded interpretability which considers both efficacy and ef-

ficiency in this thesis is novel.

There is no real literature on methods that are currently used for detecting hu-

man on the water, which can be deployed on the UAVs with limited computational

resource. Significant work is happening to develop solutions where the processing is

performed remotely in the Cloud rather than on-board the UAV. So, the light-weight

neural network approach is quite novel and is a unique solution. Beyond using the

state-of-the-art architectures, there is additional focus to build a light-weight network

which is both efficacious and efficient. Convolutional neural networks will be used for

this vision-based problem.
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The next section discuses a methodology to explore how neural network-based

methods might be useful, or have a role, in maritime search and rescue.



Chapter 3

Design and Methodology

An objective of this research is insight into the trade-off between the efficacy and

efficiency of neural networks. Once that is understood, the next objective is to design

a network for the task of binary image classification. This requires a computationally

efficient neural network architecture which can be deployed on an embedded system

like an UAV. Neural networks are being used because the initial layers learn the

micro features whereas the next layers learn the macro features such as the edges in

an image or the different objects because of differences in feature vectors.

To achieve this, as justified in the previous chapter, the focus was on small con-

volutional neural networks for image classification. ‘Small’ makes it deployable on an

embedded processor like the Nvidia Jetson TX2. The distillation work of [10] was

explored towards this. They used a teacher and student network approach. Building

on [10], the distillation concept of interpretability is extended to also include network

efficiency, as defined earlier.

Next, the approach developed in this thesis for the research problem is described.

First, is the use of transfer learning to train the teacher network which is explained

in the transfer learning sub-section. Then, after the teacher network is trained, the

student network is trained which is described in the distillation sub-section. Finally,

a serialized session file of the student network is built which can be deployed, coded

as a C++ module, on the Nvidia Jetson TX2 embedded processor.

3.1 Approach

3.1.1 Step 1 : Architecture

Different deep learning networks were considered for training a neural network which

can be used for transferring the ‘knowledge’ to a light-weight neural network. The

state-of-the-art networks, VGG16 and InceptionV3, were explored to initialize the

18
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network weights using transfer learning. Consideration of the networks for transfer

learning was based on analyzing networks of different sizes, with accepted state-of-

the-art accuracy, on bench marked datasets like Imagenet. The weights of VGG16

and InceptionV3 were downloaded from the internet, with memory sizes of 553.4 MB

and 108.8 MB, respectively.

The teacher (unwieldy) model is trained using transfer learning. First, VGG16,

which is significant in size compared to InceptionV3, was attempted. With both net-

works, comparable efficacy results were achieved so the significantly smaller network,

InceptionV3, was preferred. Experiments were designed (and evaluated) based on

their cross-entropy and objective loss functions. Then, the transfer learning trained

teacher network was ‘distilled’ to create the light-weight student network.

Transfer learning, combined with the distillation architecture (with expanded in-

terpretability), is a novel approach. The transfer learning module was coded in the in-

terpretive scripting language, Python (version 3.6.5). Several mathematical libraries

were used. The open source library tensorflow 1.9.1 was used. The initial devel-

opement was performed on an Intel I7 8th Generation laptop with the Nvidia 1060

GEFORCE GTX GPU. The following section desribes the distillation step developed

with these resources.

3.1.2 Step 2 : The distillation approach

One of the objectives is to build a light-weight neural network, so the distillation ap-

proach [10] was pursued. Distillation was explored for its efficiency based on objective

measures of the trade-off between efficacy and efficiency of the models. The unwieldy

teacher model was trained with transfer learning which was subsequently used to train

the light-weight distilled student model. The student model was built to achieve the

best efficiency for a given efficacy. The transfer learning and distillation architecture

modules were implemented in Python. Their implementation is described next.
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3.1.3 Step 3 : Implementation description

The implementation was in the form of four developed modules: manager, teacher,

student, soft targets, hard targets, test, util, tensorboard logs, test and clustering. The

manager module administers reading in the dataset and calling the models for train-

ing. The teacher module trains the teacher model using transfer learning via Incep-

tionV3. The student module contains the complete model architecture with the ability

to modify based on the experimentation. soft targets and hard targets save the prob-

ability outputs of the teacher model and final outputs after applying argmax from

the student model, respectively. test, util and tensorboard logs are self-explanatory.

The clustering module contains the functionality to initially train a k−means model

on the images dataset. The clusters are based on the different environmental con-

ditions, which in this research consisted of morning, afternoon and night. But, this

clustering module is not used, as in this module for every single cluster, that cluster

specific images are supposed to be used and in some cases there might not be enough

images relevant to a particular cluster. For instance, using k−means with morning,

afternoon and night clusters there needs to be enough images for training the clas-

sifier corresponding to each cluster. Which is not a problem when training a single

convolutional light weight neural network with the complete set of image dataset.

The complete transfer learning based distillation architecture is implemented in

Python. When executed, it generates a session (.sb) file to deploy on the server. The

generated session file is a serialized binary session file which is language independent

and whose size depends on the number of parameters used. To implement the session

file on the UAV a deployment module, written in C++, reads the session file and

performs the inference. This C++ module is compiled and run on the Nvidia Jetson

TX2 on-board the UAV.

3.2 Embedded system

An embedded system has logic that is administered by an on-board processor. Com-

mon examples include microwaves ovens and modern automobiles – hardware systems

that execute software as part of their normal operation. Modern robots are examples
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of embedded systems i.e. actuators and sensors that are integrated with a micro-

processor for either reactive or deliberative control. Depending on how the hardware

selection is done, if used for video games, rendering video, or machine learning, one

will need something powerful. This is why the Nvidia Jetson TX1 and TX2 exist. Is

it as fast as a desktop loaded up with an i7 and a GTX 1080? No, but thats not the

point: a desktop built around an i7 6700K and a GTX 1080 will draw at least 300

Watts, whereas the Jetson TX2 only draws fifteen at full bore.

The Nvidia Jetson TX2 (Figure 1.1) is used here as it is the fastest, most power-

efficient embedded artificial intelligence (AI) computing device. Successful work on

satellite identification imaging [24], learning locomotion for quadruped robots [3] and

the well known AI Challenge [17] motivated the decision to use this processor. It is

a 7.5 Watt supercomputer which makes it possible to use AI on-board robots. It is

built around an NVIDIA Pascal-family GPU and loaded with 8GB of memory and

59.7GB/s of memory bandwidth. It works with a variety of standard hardware in-

terfaces that make it easy to integrate with many types of systems. The detailed

specifications of this processor are shown in Appendix A.3. All the necessary drivers

were installed onto the Jetson TX2 using jetpack 3.3.

Figure 3.1: The Nvidia Jetson Tx2 to integrate into the Hanseatic UAV.

Then, the TensorFlow [1] open source data flow programming tool was installed
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from github, using the bazel build tool [19] on the Jetston TX2. TensorFlow is used

for developing machine learning applications like convolutional neural networks. The

next section describes the proposed architecture designed for human classification.

3.3 Implementation architecture on the NVIDIA Jetson TX2

The Jetson TX2 was installed with the necessary binaries for the deployment. Jetpack

4.3 was installed initially but this was downgraded to 3.3 because it was incompatible

with the cuda, cuDNN version 7.1.5, required for TensorFlow 1.9.1.

After setting up the binaries on the Nvidia Jetson TX2, a deployment module

in C++ is used for inference with the distilled model session file. As shown in the

Figure 3.2, the distilled model session file is loaded and the computational graph is

added to the present session. Then, the images are loaded to run the inference. Next,

the output tensors from this model are used to calculate the predictions, which are

compared with the given labels and finally, the accuracy of the inference is noted.

C++ was used for the deployment, instead of Python, for performance. Python is an

interpretive language and C++ is an object-oriented language that can be compiled.

In the next chapter the image collection, cropping and labelling of the dataset for the

training and inference of the models is discussed.

Figure 3.2: deployment on embedded system using c++, creating a new sesison and
reading the saved session file to it, finally doing inference using the loaded model
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Image Dataset Collection, Cropping and Labelling

In this chapter, the dataset collection is described as well as its labelling. Significant

effort was expended to find images from the internet and other sources related to

humans in the water. Negative examples were also collected as there were no applica-

ble dataset repositories to train the models. After exploring different data collection

methods and ideas like vehicle dataset [21], the well known imagnet dataset [5], road

traffic dataset [14] and lung image dataset [16], the conclusion was that there were

no adequate datasets to draw from and that the internet was a good place to start.

This is described next.

4.1 Data Pipeline

After searching the existing literature extensively, it was difficult to find an appro-

priate repository/dataset related to humans in/on the water. In the event of a MOB

incident, the focus is on the rescue operation rather than capturing the MOB on

video. Therefore, it became necessary to collect the data from the internet and other

sources of related people activities in the water. Figure 4.1 shows the data pipeline

architecture for the man overboard vision problem. Keywords relevant to the prob-

lem statement were devised to search on the internet. Then, the results of this online

search were saved as video links in a text file.

4.2 Sources of Data Collection

Collection of on-line videos was done by designing a variety of keyword queries which

could yield the most appropriate results from the internet. Different combinations of

the following keywords were used: ”rescue”, ”swimming pool”, ”water”, ”dog swim-

ming”, ”ocean rescue”, ”sea rescue”, ”incredible rescue”, ”sailboat rescue”, ”human

rescue”, ”puppy rescue”, ”ocean”, ”boat rescue”, ”helicopter”, ”plastic in ocean”,

23
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Figure 4.1: data pipeline architecture

”debris floating”, ”large debris”, ”passengers possessions floating”, ”floating pipe

ocean clean up”, ”ocean trash solution”, ”USV”, ”AUV”, ”autonomous ocean ex-

ploration”, ”USV Ocean”, ”solar USV”, ”ocean gyre”, ”humpback whale rescue”,

”mermaids drone”, ”whale drone footage”, ”plastic ocean drone”, ”woman floating”,

”drone”, ”ocean drone footage” and ”shark rescue survivor”. The greatest contrib-

utors to the dataset was from online portals like Youtube, Google and other online

news services that may have videos of humans in or on open waters.

In Figure 4.2 the distribution of data sources is shown. The objective was to

collect videos, with as wide a variety, as possible. Then, the relevant parts from the

videos were assembled into one long (45 minute) video run.

The videos with links was saved, with every search query that was executed.

Then, the video links for relevant data (humans in/on the water) were downloaded
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Figure 4.2: Distribution of imagery data sources on the internet.

as videos through the freely available link converter, qdownloader1. After converting

these video links to videos, the ones with the best resolution, either 1080 or 720 pixels,

were saved (refer to Appendix A.1 for the list of video data links). Then, the videos

was manually segregated into categories.

4.3 Segregate Collected Videos into Two Categories

After collecting the video data they were segregated into relevant and irrelevant sets

as far as training was concerned. Category ‘poor’ (Figure 4.3) is irrelevant for train-

ing and category ‘good’ (Figure 4.4) is relevant for training. Within each of these

categories, there are further sub-divided into positive and negative examples. For

example, as shown in Figure 4-3, 4-3a shows a human on land and 4-3b shows a

bottle with garbage. These two images are completely irrelevant to the training. In

Figure 4.4, the positive image example is Figure 4-4b of a person in the water and

the negative image example is Figure 4-4a of a life jacket in the water. These two

1 https://qdownloader.net/youtube-video-downloader
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images are relevant for training purposes. The next task is to further analyze the

good (relevant) videos.

Figure 4.3: Category ‘poor’ for training the teacher model: (a) and (b) are positive
and negative examples, respectively.

4.4 Cropping Objects and Labeling

Only good (relevant) videos were further processed. Out of all the good videos, further

work was done to extract clips, out of long video sequences, to build an image dataset

with the maximum number of positive and negative image examples and still maintain

variety. The Vegas Pro tool (Windows OS) was used to assemble (concatenate) all

these clips into a new video which had positive and negative examples in no particular

order. This video was 44 minutes and 9 seconds in length. Then, each frame was

extracted from this one video using the same Vegas Pro tool. A final subset of these

frames were selected for still further processing. Objects in this final frame set were

manually cropped and labelled (positive, negative) to yield 591 positive (human in/on

the water) and 1060 negative (buoys, logs, life jackets, etc.) examples. Finally, this
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Figure 4.4: Category ‘good’ for training the teacher model: (a) and (b) are negative
and positive examples, respectively.

dataset of images was combined into one folder resulting in 1651 total images.

Giving the implemented architecture and the dataset, experiments were per-

formed. Discussion on the experiments follows in the next chapter.



Chapter 5

Experiments

The objective of the experiments is to gain insight into the concept of distillation to

assist in the efficacy-efficiency trade-off for neural networks.

The experiments were designed to address visual detection of humans in/on the

water as would be expected in a MOB incident. The rationale to use the network

distillation concept was discussed earlier. Effort was applied to build an image classi-

fier based on convolutional neural networks. The unwieldy teacher model (Table 5.1)

was trained with transfer learning. The pre-trained weights from the inception V3

network till the mixed middle layer were used for constructing the first part of teacher

network. The second part of this network is constructed by applying pooling, then

adding a global average pooling layer along with 3 fully-connected layers. As shown

in Table 5.2, the student network on the contrary was built with a much smaller

architecture.

The pre-trained weights from both the VGG16 and Inception V3 were considered

for transfer learning (Chapter 3) to train the teacher model. Inception V3, rather

than VGG 16, was chosen because the former had 23 million parameters as opposed

to the latter, with 138 million parameters. All the images are approximately 299×299

pixels so the image dimension to read in was 299× 299× 3. By using the Inception

V3 pre-trained weights until the mixed middle layer, and with three fully-connected

additional layers, the architecture was built as shown in Table 5.1. In this table the

left column describes the layer type and the right column describes the number of

neurons in that layer. After the last convolution layer, global average pooling was

applied since it acts as a structural regularizer that explicitly enforces feature maps

to be confidence maps of categories, and on top of this, three fully-connected layers

were added. After every fully-connected layer, batch normalization was applied to

keep the mean zero and to prevent the weights of previous layers from affecting the

next layers.
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teacher network
type input size
conv 299× 299× 3
conv 149× 149× 32
conv padded 147× 147× 32
pool 147× 147× 64
conv 73× 73× 64
conv 71× 71× 80
conv 35× 35× 192
3× Inception 35× 35× 288
5× Inception 17× 17× 768
2× Inception 8× 8× 1280
pool 8× 8× 2048
global average pooling 2048
fully connected 4096
batch normalization 4096
fully connected 1024
batch normalization 1024
fully connected 512
batch normalization 512
dropout 512
output 2

Table 5.1: Teacher network architecture designed to use transfer learning

Neural layers with 4096, 1024 and 512 neurons was used. This is based on the

heuristics of the neural networks. Finally, the output layer was added with just two

logits as output. The probabilities were interpreted using the softmax activation

functions.

Images of the same size as those used in the teacher network were considered for

the student network (Table 5.2). The 32-64-128 feature map sequence was used as

this gives the best results in terms of accuracy and is also widely used by other similar

state-of-the-art networks. Next, the number of neurons are downsampled to 64, and

then a fully connected layer with 64 and 128 neurons is finally used.

Experiments to explore both efficacy and efficiency were performed on three differ-

ent network architecture sizes. They are characterized by 96 million, 11 million and

less than a million parameters. The size of their generated session files are 380 MB,

48 MB and 1.8 MB, respectively. Their specifics are summarized in Appendix A.2.
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student network
layer name input size
conv 299× 299× 3
pool 150× 150× 32
conv 150× 150× 64
pool 75× 75× 64
conv 75× 75× 128
pool 38× 38× 128
fully connected 64
fully connected 128
output 2

Table 5.2: Student network architecture designed.

Their efficacy and efficiency measures were calculated to assess assess performance.

As mentioned earlier, the efficacy of a model is evaluated using measures like accu-

racy, precision, and F1-score. Efficacy was also more globally assessed with confusion

matrices (absolute and normalized) which were plotted to show the strength of the

classification algorithm and to understand which parts were penalized heavily. The

efficiency of a student model is measured through its memory utilization, process-

ing time, power consumption, memory utilization for computations, and throughput

(images processed / second).

The results and discussion on the experimentation is presented next.



Chapter 6

Results and Discussion

6.1 Efficacy Analysis

Experimentation in regard to the performance of the three distilled networks (of

different sizes) against the four efficacy measures towards insight on their inference

abilities was done. The efficacy measure, accuracy, is plotted as a function of session

file (model) size in Figure 6.1.

The four efficacy measures accuracy, recall, precision and F1-score with respect

to the model size in ascending order, 1.8 MB, 48.5 MB and 379.7 MB, are as follows.

Accuracy measures of the three models are 77.8%, 88.6% and 85.5%. Precision mea-

sures are 78.8%, 88.5% and 85.9%. Recall measures are 75.9%, 88.5% and 86.1%.

F1-score measures are 76.1%, 88.4% and 85.5%. The test dataset is made nearly

balanced so accuracy can be analyzed to compare the three models.

All the efficacy measures are calculated on the test dataset which is 166 images,

of which 57% are positive examples (human in the image) and the other 43% are

negative examples. After analyzing the accuracy of the models, 48.5 MB model was

selected to assess the predictions for which the model correctly predicted that 67 im-

ages contained humans (true positives) and 80 images did not (true negatives). The

model confused 9 images which actually had humans in the water (false negatives)

and 10 images which did not have human in the water (false positives). As shown in

Figure 6.2, these results show that the model has high efficacy.

The normalized confusion matrix is shown in Figure 6-3. It shows that out of the

negative examples, 11% are false positives and 89% are true negatives. Out of the

positive examples, 12% are false negatives and 88% are true positives.
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Figure 6.1: Comparing the three models on the basis of accuracy

The distilled neural networks used in the experimentation for all the architectures

are summarized in Appendix A.2. These are the architectures used to analyze the

efficacy of the neural networks presented in Figure 6.1. Table 6.2 pertains to the 48.5

MB distilled model which was chosen for implementation. Table A.4 in Appendix A.2

refers to the 379.7MB distilled model and Table A.5 in Appendix A.2 to the 1.8MB

distilled model.

The model of size 48.5 MB was analyzed so as to understand if the model learnt

anything from the teacher model (cumbersome) whose convolutional weights were

initialized using transfer learning. So in one architecture the model was trained using

transfer learning and in one without. This was specifically done to compare the two

loss functions in terms of their contribution towards learning of a model, teacher loss

(distillation) and student loss. For this an experiment was done once by training the

student network with the guidance of the teacher network and once without guidance.

The results were interesting. When the student model was tested for inference on the

testing image dataset, student efficacy results were found to be better than for the

one trained with teacher model guidance involving transfer learning. As can be seen
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Figure 6.2: Confusion matrix of the human-in-the-water classification with very few
false positives and false negatives. This means that the efficacy is high.

in Figure 6.4, the student model achieves around 90% accuracy when trained with

teacher guidance and around 82.5% with out teacher guidance. This is a significant

gain in terms of learning by having the teacher loss (distillation) function fine tuned

with transfer learning along with the student loss.

6.2 Efficiency Analysis

The memory requirements. execution times and image processing rates are defined

here as measures of efficiency.

To analyze the memory requirements on the embedded processor, which is an

ARM, the different models were tested for inference and their memory use was plotted

in Figure 6.4. The three different networks were of size 1.8 MB, 48.5 MB and 379.7

MB. The mean memory consumption of these three network models was 706.82 MB

for the smallest, 822.02 MB for the medium and 2414.94 MB for the largest network
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Figure 6.3: Normalized confusion matrix with less relative percentage of FP and FN

model. The three different models take different times for inference computational

processing, and the times are around 6, 9 and 31 seconds, respectively.

Other experiments were performed with the three network architectures to assess

how many images were being processed per second as another measure of efficiency.

As shown in the Figure 6.5, the smallest (1.8 MB) model processes 2 images per

second, the medium sized (48.5 MB) model processes 0.88 images per second and the

the largest (380 MB) model processes 0.22 images per second.

Figure 6.4 shows that as the network size increases, the memory requirement and

processing time both increase, as expected. Neural network size is based on the

number of parameters involved in the construction. Specifically, as the model size

increases from 48 MB to 380 MB, the required memory increases several times. This

is a point of concern when working with resource constraints. When the network size

is 1.8 MB, there is a marginal decrease in the memory requirement compared to the

48 MB case. This measure of efficiency shows that the difference in processing time
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Figure 6.4: Comparison of test accuracy with and without transfer learning

between the 1.80 MB and 48 MB cases is marginal. Given the 48 MB case gives much

higher efficacy (for the same efficiency as the 1.8 MB case) there is no reason not to

select the 48 MB student network model.

Next, the image processing rate metric, images processed per second, is analyzed

as another measure of network model efficiency.

It is equally important to analyze the results of the experiments in terms of num-

ber of images processed per second by the three neural network architectures. The

experiment shown in Figure 6.5 has neural network architectures of sizes 1.8 MB,

48.5 MB and 379.7 MB. The images processed per second were 2.0, 0.88 and 0.24,

respectively. The processing rate gradually decreased with the increase in network

size. This trend can be extended to networks of different sizes, and immense scope

lies in increasing the image process rate (efficiency) but at the cost of efficacy.

From the experiments, it was clear that with the network image classifier, the

price for efficiency was at the cost of efficacy. It was interesting to note that neural

network models of 1 MB and 48 MB (near 50x increase in memory) did not manifest

in significant differences in their run-time memory requirements. These were com-

pared to the full 388 MB neural network which used significantly more memory and

required more processing time.
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Figure 6.5: Different student models’ computational requirements. Note, the 48.5
MB and 1.8 MB model have nearly same memeory requirements.

The research was in the direction of a new paradigm to use the concept of distilla-

tion and the teacher-student networks. There were difficulties to set up the embedded

processor to build the TensorFlow API from the source code which required specific

CUDA requirements. The research reached the stage where experiments could be

executed to study the CNN efficacy and efficiency trade-off.

6.3 Contributions

The objective was the efficacy and eficiency in the interpretability of the neural net-

works considered. Towards this, available solutions were explored in the open litera-

ture on interpretability of neural networks. For the distillation technique selected, it
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Figure 6.6: Image processing rate for the three different size student network models
(from L-R: 1.8 MB, 48 MB and 380 MB). The drop is gradual.

was possible to explore the efficiency as well. As the implementation is ultimately on

an unmanned aerial vehicle, the limitations of an embedded processor (Nvidia Jetson

TX2) were considered. This stipulated a study that targeted light-weight neural net-

work solutions with constraints on memory and processing power. This, motivated

the efficacy and efficiency trade-off question.

With the distillation technique, a new paradigm to train the teacher network was

explored using transfer learning with two state-of-the-art classifiers: VGG 16 and

Inception V3. Inception V3 was ultimately chosen as it had much less parameters

compared to the more unwieldy VGG 16 network. Distilling the knowledge from

teacher to student has been the main point of exploration. This sucessfully yielded

a much smaller student network with the insights of the teacher network and could
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execute on the NVIDIA Jetson TX2 embedded processor.

Another important contribution was the 1651 images dataset produced for this

problem since the literature survey could not identify available repositories. Objective

keywords were compiled to facilitate the best internet searches. ‘Good’ videos were

downloaded from Youtube, Google and other portals. Manual efforts were applied to

crop and label these images. This dataset would be useful for follow-on research and

other colleagues working in the same area.
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Conclusion

The experimental evidence confirms that the hypothesis has been proved as the neural

network architecture of 48.7 MB achieved results similar to 388.8 MB; and for the

efficiency measure, the results were even better. Also, the task of building a vision

based system to be deployed on a drone was achieved. The solution is planned to be

deployed with a object cropping tool to confirm whether or not there is a human in

the cropped object image.

Extensive work has been undertaken by the deep learning community to solve

domain-centric problems namely, detecting objects, generating images, etc. There-

fore, this thesis focussed on neural network models that are both efficacious and

efficient as it would be of wider interest. State-of-the-art neural networks were used

in this thesis to train other networks using transfer learning. With the distillation

approach, light-weight neural networks were successfully trained and deployed on an

embedded processor.

Since the advent of the high performance computing platforms, there have been

used extensively to run computationally expensive operations. The emerging use of

machine learning in robotics has seen the focus shift from neural networks optimized

with efficiency considerations in addition to the usual efficacy. This area was ex-

plored with an example embedded processor, the Nvidia Jetson TX2, and using its

capabilities to drive the requirements for the neural network.

The MOB incident is a critical when it occurs, so the emphasis is not usually on

capturing imagery. Consequently, there is very little in the way of image repositories

or even related imagery to build a training set with. Nonetheless, an image set was

culled from internet sources of people in/on the water.

The result of experimenting with different network architectures was a model

which was very good in terms of both efficacy and efficiency. Though the research

objective was to develop network models that were on the order of tens of megabytes
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to megabytes, this process can be extended to reducing them to as small as kilobytes

– at the cost of efficacy.

For future work, the next step is to design an automated decision tree-based

search for the most optimized network given efficacy and efficiency requirements.

Also, pruning techniques could be studied to analyze the efficacy-efficiency trade-off.

Image cropping was labour intensive so future work could consider building an auto-

mated cropper for a video stream.
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Appendix A

A.1 Different quality of data collection

Here, all the datasets links have been provided that were collected during the re-

search, this has been summarized using three tables. And these are the initial set

of videos that were collected for extracting the frames out of these, which eventually

were cropped in regard to extracting objects from these frames. So the collected

videos and auxiliary images are basically of two types, one which refer to the good

quality data and the other which refers to the irrelevant data or something that can

be termed as garbage. The tables are shown with the two columns one with the index

and the other with the URL.

The first table Table A.1 corresponds to the Youtube video dataset which is the

useful videos dataset, having good amount of positive and negative examples. The

richness of this source is both in terms of variety and quantity.

The second table Table A.2 corresponds to the Youtube video dataset which is

the not relevant videos dataset, this is based on the quality of positive and negative

examples. Like in these videos there aren’t any good examples of human in water

and if there are human instances in here, then they are not in regard to our MOB

use case. An illustration of the quality in terms of positive and negative example in

here is, a man giving speech on a podium and debris in a plastic bottle.

The third table Table A.3 corresponds to a few good quality google image search

results which we consider quite relevant to our use case. Though we have taken just

a few out of these image set into our use case.
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Level 1 : Good quality video data
index URL
1 https://www.youtube.com/watch?v=JyfbFBDnKYM&t=29s

2 https://www.youtube.com/watch?v=fXgojI2VUCI&t=37s

3 https://www.youtube.com/watch?v=xGRWUQQJiIY&t=481s

4 https://www.youtube.com/watch?v=GWdiTpWaceo

5 https://www.youtube.com/watch?v=_OpO3x7HEXU&t=21s

6 https://www.youtube.com/watch?v=yDrx5zi_mYU

7 https://www.youtube.com/watch?v=bSG3kPa-jOU

8 https://www.youtube.com/watch?v=M_IpPOUhjTY&t=78s

9 ME40testinginopensearegion(Done)Project_40_9

10 https://www.youtube.com/watch?v=1xcEAx_CDqA&t=125s

11 https://www.youtube.com/watch?v=_y1MOfUWyXI

12 https://www.youtube.com/watch?v=UIPSkUsQynI

13 https://www.youtube.com/watch?v=BHE3bFlutPI&t=6s

14 https://www.youtube.com/watch?v=YyK8OerKEts&t=12s

15 https://www.youtube.com/watch?v=2kUNgD94CG0

16 https://www.youtube.com/watch?v=ivNnpbOR1BM

17 https://www.youtube.com/watch?v=UxcmklGk0OU&t=54s

18 https://www.youtube.com/watch?v=FuZGdVBCXIk

19 https://www.youtube.com/watch?v=3ge4KwcgkSY&t=54s

20 MeetSwarmDiver-MicroDivingUSVforOceanSwarming

21 https://www.youtube.com/watch?v=94KWh0W1h-A&t=1s

22 https://www.youtube.com/watch?v=GSMGKwZBaWM

23 https://www.youtube.com/watch?v=StNZ3XUBDYw&t=104s

24 https://www.youtube.com/watch?v=vqZ-Cg_zxoY&t=23s

25 https://www.youtube.com/watch?v=Q5KlkckWImg&t=11s

26 https://www.youtube.com/watch?v=Qbusgy13LhE

27 https://www.youtube.com/watch?v=ebA81ljL8cg&t=74s

28 https://www.youtube.com/watch?v=olYCEStQpHQ&t=32s

29 https://www.youtube.com/watch?v=BLG2v8yD0Fk

30 https://www.youtube.com/watch?v=LI2TkpRc1qM

31 https://www.youtube.com/watch?v=rhO548HxV2k

32 https://www.youtube.com/watch?v=txBTVAB0WJs

33 HedgehogRescue-seenthroughGoogleGlass

34 https://www.youtube.com/watch?v=CKPTHzEdpAU&t=28s

35 https://www.youtube.com/watch?v=OWvi_Y7UJJI

Table A.1: Good quality video clips set from Youtube

https://www.youtube.com/watch?v=JyfbFBDnKYM&t=29s
https://www.youtube.com/watch?v=fXgojI2VUCI&t=37s
https://www.youtube.com/watch?v=xGRWUQQJiIY&t=481s
https://www.youtube.com/watch?v=GWdiTpWaceo
https://www.youtube.com/watch?v=_OpO3x7HEXU&t=21s
https://www.youtube.com/watch?v=yDrx5zi_mYU
https://www.youtube.com/watch?v=bSG3kPa-jOU
https://www.youtube.com/watch?v=M_IpPOUhjTY&t=78s
ME40 testing in open sea region (Done) Project_40_9
https://www.youtube.com/watch?v=1xcEAx_CDqA&t=125s
https://www.youtube.com/watch?v=_y1MOfUWyXI
https://www.youtube.com/watch?v=UIPSkUsQynI
https://www.youtube.com/watch?v=BHE3bFlutPI&t=6s
https://www.youtube.com/watch?v=YyK8OerKEts&t=12s
https://www.youtube.com/watch?v=2kUNgD94CG0
https://www.youtube.com/watch?v=ivNnpbOR1BM
https://www.youtube.com/watch?v=UxcmklGk0OU&t=54s
https://www.youtube.com/watch?v=FuZGdVBCXIk
https://www.youtube.com/watch?v=3ge4KwcgkSY&t=54s
Meet SwarmDiver - Micro Diving USV for Ocean Swarming
https://www.youtube.com/watch?v=94KWh0W1h-A&t=1s
https://www.youtube.com/watch?v=GSMGKwZBaWM
https://www.youtube.com/watch?v=StNZ3XUBDYw&t=104s
https://www.youtube.com/watch?v=vqZ-Cg_zxoY&t=23s
https://www.youtube.com/watch?v=Q5KlkckWImg&t=11s
https://www.youtube.com/watch?v=Qbusgy13LhE
https://www.youtube.com/watch?v=ebA81ljL8cg&t=74s
https://www.youtube.com/watch?v=olYCEStQpHQ&t=32s
https://www.youtube.com/watch?v=BLG2v8yD0Fk
https://www.youtube.com/watch?v=LI2TkpRc1qM
https://www.youtube.com/watch?v=rhO548HxV2k
https://www.youtube.com/watch?v=txBTVAB0WJs
Hedgehog Rescue - seen through Google Glass 
https://www.youtube.com/watch?v=CKPTHzEdpAU&t=28s
https://www.youtube.com/watch?v=OWvi_Y7UJJI
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Level 2 : Bad video quality data
index URL
1 https://www.youtube.com/watch?v=WvfXqEF1kZU&t=26s

2 https://www.youtube.com/watch?v=itaU7maHT8o

3 https://www.youtube.com/watch?v=TNlY7u1x_zU

4 https://www.youtube.com/watch?v=PFwHcr_FMW8&t=14s

5 https://www.youtube.com/watch?v=w2H07DRv2_M

6 https://www.youtube.com/watch?v=lQR80yYHUzI

7 https://www.youtube.com/watch?v=5EO6a3D_6M8

8 https://www.youtube.com/watch?v=IEII36wCXnA

9 https://www.youtube.com/watch?v=SPGR_rczwX0&t=5s

10. https://www.youtube.com/watch?v=bVQ8i0UTbQg

Table A.2: Bad quality video clips set from Youtube

Level 1 auxiliary data source
index URL
1 https://www.google.ca/search?biw=1685&bih=892&tbm=

isch&sa=1&ei=CyBjXNLcI4r4jwThsolo&q=debris+on+sea+

pictures+taken+from+helicopter&oq=debris+on+sea+

pictures+taken+from+helicopter&gs_l=img.3...2771.

12061..12395...5.0..0.293.3294.0j26j1......1....1.

.gws-wiz-img.eHNwMKqJxJ4#imgrc=x6alYbtpsrVqGM:

2 https://www.google.ca/search?biw=1685&bih=892&

tbm=isch&sa=1&ei=GCBjXP_2O6K9jwTllqiwDA&q=boats+

in+ocean&oq=boats+in+ocean&gs_l=img.3..0.193070.

196878..197165...0.0..2.288.1887.0j13j1......2.

...1..gws-wiz-img.....0..35i39j0i67j0i8i30j0i24.

sX6fPzhcuko#imgrc=bYnzpra9sQqYmM:

Table A.3: Good quality auxiliary relevant image set

https://www.youtube.com/watch?v=WvfXqEF1kZU&t=26s
https://www.youtube.com/watch?v=itaU7maHT8o
https://www.youtube.com/watch?v=TNlY7u1x_zU
https://www.youtube.com/watch?v=PFwHcr_FMW8&t=14s
https://www.youtube.com/watch?v=w2H07DRv2_M
https://www.youtube.com/watch?v=lQR80yYHUzI
https://www.youtube.com/watch?v=5EO6a3D_6M8
https://www.youtube.com/watch?v=IEII36wCXnA
https://www.youtube.com/watch?v=SPGR_rczwX0&t=5s
https://www.youtube.com/watch?v=bVQ8i0UTbQg
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=CyBjXNLcI4r4jwThsolo&q=debris+on+sea+pictures+taken+from+helicopter&oq=debris+on+sea+pictures+taken+from+helicopter&gs_l=img.3...2771.12061..12395...5.0..0.293.3294.0j26j1......1....1..gws-wiz-img.eHNwMKqJxJ4#imgrc=x6alYbtpsrVqGM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=CyBjXNLcI4r4jwThsolo&q=debris+on+sea+pictures+taken+from+helicopter&oq=debris+on+sea+pictures+taken+from+helicopter&gs_l=img.3...2771.12061..12395...5.0..0.293.3294.0j26j1......1....1..gws-wiz-img.eHNwMKqJxJ4#imgrc=x6alYbtpsrVqGM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=CyBjXNLcI4r4jwThsolo&q=debris+on+sea+pictures+taken+from+helicopter&oq=debris+on+sea+pictures+taken+from+helicopter&gs_l=img.3...2771.12061..12395...5.0..0.293.3294.0j26j1......1....1..gws-wiz-img.eHNwMKqJxJ4#imgrc=x6alYbtpsrVqGM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=CyBjXNLcI4r4jwThsolo&q=debris+on+sea+pictures+taken+from+helicopter&oq=debris+on+sea+pictures+taken+from+helicopter&gs_l=img.3...2771.12061..12395...5.0..0.293.3294.0j26j1......1....1..gws-wiz-img.eHNwMKqJxJ4#imgrc=x6alYbtpsrVqGM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=CyBjXNLcI4r4jwThsolo&q=debris+on+sea+pictures+taken+from+helicopter&oq=debris+on+sea+pictures+taken+from+helicopter&gs_l=img.3...2771.12061..12395...5.0..0.293.3294.0j26j1......1....1..gws-wiz-img.eHNwMKqJxJ4#imgrc=x6alYbtpsrVqGM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=CyBjXNLcI4r4jwThsolo&q=debris+on+sea+pictures+taken+from+helicopter&oq=debris+on+sea+pictures+taken+from+helicopter&gs_l=img.3...2771.12061..12395...5.0..0.293.3294.0j26j1......1....1..gws-wiz-img.eHNwMKqJxJ4#imgrc=x6alYbtpsrVqGM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=GCBjXP_2O6K9jwTllqiwDA&q=boats+in+ocean&oq=boats+in+ocean&gs_l=img.3..0.193070.196878..197165...0.0..2.288.1887.0j13j1......2....1..gws-wiz-img.....0..35i39j0i67j0i8i30j0i24.sX6fPzhcuko#imgrc=bYnzpra9sQqYmM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=GCBjXP_2O6K9jwTllqiwDA&q=boats+in+ocean&oq=boats+in+ocean&gs_l=img.3..0.193070.196878..197165...0.0..2.288.1887.0j13j1......2....1..gws-wiz-img.....0..35i39j0i67j0i8i30j0i24.sX6fPzhcuko#imgrc=bYnzpra9sQqYmM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=GCBjXP_2O6K9jwTllqiwDA&q=boats+in+ocean&oq=boats+in+ocean&gs_l=img.3..0.193070.196878..197165...0.0..2.288.1887.0j13j1......2....1..gws-wiz-img.....0..35i39j0i67j0i8i30j0i24.sX6fPzhcuko#imgrc=bYnzpra9sQqYmM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=GCBjXP_2O6K9jwTllqiwDA&q=boats+in+ocean&oq=boats+in+ocean&gs_l=img.3..0.193070.196878..197165...0.0..2.288.1887.0j13j1......2....1..gws-wiz-img.....0..35i39j0i67j0i8i30j0i24.sX6fPzhcuko#imgrc=bYnzpra9sQqYmM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=GCBjXP_2O6K9jwTllqiwDA&q=boats+in+ocean&oq=boats+in+ocean&gs_l=img.3..0.193070.196878..197165...0.0..2.288.1887.0j13j1......2....1..gws-wiz-img.....0..35i39j0i67j0i8i30j0i24.sX6fPzhcuko#imgrc=bYnzpra9sQqYmM: 
https://www.google.ca/search?biw=1685&bih=892&tbm=isch&sa=1&ei=GCBjXP_2O6K9jwTllqiwDA&q=boats+in+ocean&oq=boats+in+ocean&gs_l=img.3..0.193070.196878..197165...0.0..2.288.1887.0j13j1......2....1..gws-wiz-img.....0..35i39j0i67j0i8i30j0i24.sX6fPzhcuko#imgrc=bYnzpra9sQqYmM: 
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A.2 Different distilled neural networks

The other two types of network sizes are 1.8 MB and 380 MB. Other than the 48 MB

network described in the experimentation section, the number of neurons are increased

from 128 neurons to 512. Finally, these 512 neurons are attached to just 2 output

layer neurons, this increases the network size to manifolds as the fully connected

layer connecting to convolutional part is the most expensive operation. Next, 380

MB network is built by modifying it by doing a 1*1 convolution and then connecting

the reduced feature map space to 128 neurons, which are finally connected to two

output neurons.

Student Network
Layer Name input size
conv 299× 299× 32
pool 150× 150× 32
conv 150× 150× 64
pool 75× 75× 64
conv 75× 75× 128
pool 38× 38× 128
fully connected 512
output 2

Table A.4: Neural network model of size 379.7 MB

Student Network
Layer Name input size
conv 299× 299× 32
pool 150× 150× 32
conv 150× 150× 64
pool 75× 75× 64
conv 75× 75× 128
pool 38× 38× 128
1*1 conv 1
fully connected 64
output 2

Table A.5: Neural network model of size 1.8 MB
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A.3 Hardware Specifications

Figure A.1: Hardware specifications of Nvidia Jetson TX2
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