
ANALYSING MARINE ANIMALS CHARACTERISTICS USING
CONVOLUTIONAL NEURAL NETWORKS

by

Parmeet Singh

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2019

c© Copyright by Parmeet Singh, 2019



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Abbreviations Used . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Background and related work . . . . . . . . . . . . . . . . 5

2.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Activation functions . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Transfer learning and pre-trained CNN architectures . . . . . . . . . 7

2.3 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Image Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Stochastic gradient descent (SGD) . . . . . . . . . . . . . . . 14
2.5.2 Adaptive Moment Estimation (ADAM) . . . . . . . . . . . . . 14

2.6 Performance and Evaluation Metrics . . . . . . . . . . . . . . . . . . 15
2.6.1 Student t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Intersection over Union (IoU) . . . . . . . . . . . . . . . . . . 15
2.6.3 Normalized Mean Squared Error . . . . . . . . . . . . . . . . . 15
2.6.4 Binary Classification Evaluation . . . . . . . . . . . . . . . . . 15
2.6.5 Penalized Cross-Entropy Loss . . . . . . . . . . . . . . . . . . 16

Chapter 3 Species identification and localization in marine animal
images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Overall comparison with existing approaches . . . . . . . . . . 20

3.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Size Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.4 Model Implementation . . . . . . . . . . . . . . . . . . . . . . 23
3.3.5 Ensemble Architecture . . . . . . . . . . . . . . . . . . . . . . 25
3.3.6 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4 Calculating Object Size in Images . . . . . . . . . . . . . 34

4.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Locating Ruler Graduations . . . . . . . . . . . . . . . . . . . 35
4.2.2 Detecting Ruler Graduations in Images . . . . . . . . . . . . . 38

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 5 Visual Fingerprinting for Lobsters . . . . . . . . . . . . . 42

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 6 Lobster Landmark Localization . . . . . . . . . . . . . . . 54

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.2 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.3 Wing Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

iii



Chapter 7 Fine-Grained Classification of Lobster Attributes . . . 67

7.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.1 Training Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.2 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . 82

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.1 Lobster Posture Classification . . . . . . . . . . . . . . . . . . 84
7.3.2 Crusher Claw Location Classification . . . . . . . . . . . . . . 88
7.3.3 Gender Classification . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.4 Tail classification . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.5 Abdominal somite bulge classification . . . . . . . . . . . . . . 100

7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

iv



List of Tables

3.1 Distribution of collected marine animal images . . . . . . . . . 22

3.2 Performance accuracy of CNN architectures using axis-aligned
bounding boxes. The classification accuracy of the ensemble
architecture is 81% which is better than classification accuracies
of the individual CNNs. The ensemble CNN gives a test IoU
score of 0.57 which is only marginally better than the individual
CNN IoU scores. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Performance accuracy for CNN architectures using rotatable bound-
ing boxes. The classification accuracy of the ensemble architec-
ture is 83% which is better than classification accuracy of the
individual CNNs. The ensemble CNN gives a localization accu-
racy of 0.80 which is only marginally better than the individual
CNN localization accuracy scores. . . . . . . . . . . . . . . . . 28

3.4 The mean absolute error (in pixels) for width and height us-
ing axis-aligned and rotatable bounding boxes. The rotatable
bounding boxes show lower mean absolute error in the predicted
height and width which was not unexpected. . . . . . . . . . . 29

5.1 Comparison of top-k accuracies using Siamese networks with
contrastive loss for one-shot versus a softmax-based classifier.
The contrastive loss based classifier had better top-3, top-5 and
top-7 accuracies compared to the softmax and cross-entropy based
classifiers as evident in the p-test values (< 0.05 threshold) . . 50

6.1 Comparison of normalized mean squared error (NME) for CNN
models considered for landmark regression performance across
five folds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Dataset (159 images) class, training and testing distributions for
gender classification . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Dataset (228 images) class, training and testing distribution for
abdominal bulge classification . . . . . . . . . . . . . . . . . . . 73

7.3 Dataset (355 images) class, training and testing distributions for
crusher claw location classification . . . . . . . . . . . . . . . . 75

v



7.4 Dataset (367 images) class, training and testing distributions for
tail classification . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Dataset (546 images) class, training and testing distributions for
posture classification. . . . . . . . . . . . . . . . . . . . . . . . 76

7.6 The number of classifier trainable parameters for the CNN net-
works considered – vanilla VGG has 1.6M and attention VGG,
2.8M. The attention modules have 1.2M more parameters which
is not significant in terms of computation cost compared to the
total parameters in the vanilla VGG i.e. 15M. . . . . . . . . . . 83

7.7 VGG (vanilla and with attention) performance shows similar test
accuracies of 85% for posture classification. Attention modules
do not make much difference. Both models though outperform
the baseline model which predicts the most common label. . . . 87

7.8 VGG (vanilla and with attention) performance shows similar test
accuracies of 85% for crusher claw location classification. Both
models outperform the baseline model which predicts the most
common label. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.9 VGG (vanilla and with attention) performance shows similar test
accuracies of 85% performance for gender classification. The
student t-test between both classifiers gives a p-value of 1.0 (>
0.05 threshold) indicating both models have similar accuracies. 94

7.10 VGG (vanilla and with attention) performance test accuracies
of 85% are similar for both models. Both models exceed the
baseline accuracy which predicts the most common label. . . . 100

7.11 VGG (vanilla and with attention) performance test accuracies
for abdominal bulge classification show similar accuracies and f1
scores. Both models exceed the baseline model which predicts
the most common label. . . . . . . . . . . . . . . . . . . . . . . 103

8.1 Lobster classification accuracies with proposed CNN architectures108

vi



List of Figures

2.1 The VGG16 architecture with five convolution blocks. The
fully-connected layers at the end have been removed. Trans-
fer learning can be achieved by initializing the VGG16 with
weights trained on the Imagenet [15] dataset and replacing the
fully-connected layers at the end of a regular VGG with extra
layers and subsequently, re-training the network with a custom
dataset. Transfer learning is commonly used for training where
the dataset is limited. . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The attention mechanism used in this thesis [67]. The feature
representations from intermediate VGG layers are passed as
input to the attention module. The outputs from the attention
heads are combined using the global attention gates. . . . . . 9

2.3 Example images generated for each of the marine animals from
image augmentation. . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Axis-aligned bounding boxes cannot tightly span the object of
interest if it is not aligned to the image’s horizontal or verti-
cal axes. Consequently, the box dimensions are not the best
measure of the object’s. . . . . . . . . . . . . . . . . . . . . . 21

3.2 Rotatable bounding boxes are a tighter fit for the object of
interest and thus a better measure of its dimensions. . . . . . 21

3.3 Automated size estimation using localization and ruler detec-
tion. Ruler detection determines the physical length that a
pixel represents. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Convolutional layered architecture with the regression and clas-
sification heads for simultaneous localization and classification
of objects in images. . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 The test classification accuracy remains similar for number of
hidden units greater than or equal to 4. The accuracy with no
hidden layer is less than test accuracies with units greater than
or equal to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 The IoU metric increases with increasing number of convolution
filters until it saturates at 256. . . . . . . . . . . . . . . . . . . 24

vii



3.7 IoC metric change for Resnet architecture. IoC is intersection
over union. The IoC increases during training time and con-
verges to 0.6. A higher IoC score indicates better localization
accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 The test classification accuracy using ensemble CNN is better
than Support vector machines using the dataset described in
section. 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Confusion matrix for the Resnet classification. The diagonal
cells show larger values indicating better classification accuracy
for each label. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 Confusion matrix for the Resnet classification using Support
vector machines. The diagonal cells show larger values indicat-
ing better classification accuracy for each label. . . . . . . . . 30

3.11 Weights assigned to ensemble architectures for prediction of:
(3.11a) bounding boxes and (3.11b) species classification. . . . 31

3.12 Visualization of convolutional layer feature activations when
the CNN is fed the input image (3.12a). Layers (3.12b) 5 and
(3.12c) 10 focus on the image edges and corners and (3.12d)
layer 20, the decision-making layer, focuses on the fish body. . 32

4.1 Detecting axis-aligned bounding boxes around the ruler in the
image. Axis-aligned bounding boxes do not tightly fit the ruler
when it is at an angle to the horizontal in the image. . . . . . 36

4.2 Detecting rotated bounding boxes around the ruler in the im-
age. Rotated bounding boxes tightly fit the ruler better when
the ruler is at an angle to the horizontal in the image. . . . . . 36

4.3 Transfer learning using pre-trained VGG16 network: The pre-
trained VGG-16 network (Figure 2.1) is appended with two
convolution layers and two max-pooling layers followed by a
convolutional layer with 1 × 1 filter (4 filters for axis-aligned
and 5 filters for rotatable bounding boxes). . . . . . . . . . . 37

4.4 The IoU metric increases with increasing number of convolution
filters until it saturates around 64. . . . . . . . . . . . . . . . . 37

4.5 The IoU metric increases with number of convolution layers and
saturate at around 2. This justifies using two convolution layers. 37

viii



4.6 Steps in the methodology to determine the distance between
ruler graduations. The cropped ruler section is overlaid with
a grid system and every grid box is binarized and their inten-
sity values are summed in the vertical direction. The resulting
sequence yields peaks in the values for the case of the ruler. . 39

4.7 The rotatable bounding boxes have a lower mean squared error
in height and width. . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Error in ruler graduation spacings relative to height and width
across different thresholding techniques. The adaptive Gaus-
sian thresholding yields the lowest relative and absolure error
compared to other thresholding techniques. . . . . . . . . . . . 40

5.1 Variations in lobster carapace patterns (circled in red): the top
row contains images of the same lobster from different views.
Similarly, the bottom row contains images of the same lobster
in different views. The top and bottom lobster can be visually
discriminated by the pattern on the carapace. . . . . . . . . . 43

5.2 The pre-trained VGG-16 network is appended with two convo-
lutional layers containing 256 filters and two max-pooling layers
with 4× 4 filters. . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 The test accuracy of the VGG-16 network was observed to in-
crease until up to 256 filters and remained similar after that.
This justifies using 256 convolution filters . . . . . . . . . . . . 47

5.4 The test accuracy of the VGG-16 network was observed to in-
crease until up to 2 convolution layers (keeping 256 filters) and
was similar after that. This justifies using 2 convolution layers 48

5.5 Siamese networks: pairs of images are input into the network.
The network has two convolution neural sub-networks which
are fed two separate images. The network learns to differentiate
between pairs from the same class and those from different classes. 48

5.6 Variation in test accuracy with k-value for given margin hy-
perparameters (m in Eq. 5.2). Increasing the margin value
increases the test accuracy to a point. . . . . . . . . . . . . . . 51

ix



5.7 Visualization of Euclidean space using principal component anal-
ysis of the embedding space learned by using different models.
Figures 5.7a and5.7b have low inter-class, and greater intra-
class, differences (undesirable) compared with Figures 5.7c which
has smaller intra-class, and larger inter-class, differences (desir-
able). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 Examples of lobsters wrongly identified mainly due to the oc-
clusions or extreme change in lighting such as camera flash . . 53

6.1 Alignment attention mechanism as mentioned in Yue et. al.[88].
The attention layers are placed in between the layers of the CNN
modifying the original structure of the CNN. . . . . . . . . . 56

6.2 A representative training image that shows 11 landmarks on the
lobster body. The manually drawn green bounding box shows
the lobster extracted from the background. This was required
for training the cascaded CNN. The image dataset was provided
by National Lobster Hatchery in United Kingdom.[1] . . . . . 57

6.3 Landmark regression using pre-trained VGG16 architecture. The
pre-trained VGG16 is appended with two convolutional layers
containing 128 3×3 filters and two max pooling layers. The fi-
nal layer is a 1x1 convolution layer with number of filters equal
to twice the number of landmarks i.e 22 in this case. . . . . . 57

6.4 The mean square error, in pixels, decreases with increasing
number of convolutional filters up to 128 and remained sim-
ilar beyond that. This justifies using 128 convolution filters.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 The mean square error (pixels) decreases with increasing num-
ber of convolutional layers up to 2 and remains similar beyond
that. This justifies using 2 convolution layers. . . . . . . . . . 58

6.6 Root-mean-squared error for landmark localization on different
model architectures. The cascade, attention and attention with
wing loss do not appear to have a significant difference. A t-
test between the vanilla VGG and attention with wing loss gives
a p-value of 0.059 (> 0.05 threshold) suggesting no statistical
difference between the two distributions. . . . . . . . . . . . . 61

x



6.7 Visualization of the attention head weights highlight image ar-
eas the attention mechanism focussed on. The red dots rep-
resent the ground truth landmark locations and the blue dots,
the predicted landmark locations. These 3 examples show the
attention mechanism focusses, correctly, on the landmarks . . 62

6.8 Visualization of the attention head weights highlight image ar-
eas the attention mechanism focussed on. Red dots represent
the ground truth, and blue dots the predicted, landmark loca-
tions. These 3 examples show the attention model struggles to
map the landmark positions – possibly due to the lobsters’ pose. 63

6.9 Visualization of the attention head weights highlight image ar-
eas the attention mechanism focussed on. Red dots represent
the ground truth, and blue dots the predicted, landmark loca-
tions. These 3 examples also show the attention model struggles
to map the landmark positions – possibly due to the lobsters’
pose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Gender as a classification class: (left) female; (right) male. The
female lobster has a wider tail compared to a male lobster. . . 68

7.2 The crusher claw has a larger curvature and a white spot in
between the claw teeth. The pincher claw is narrower than the
crusher claw. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Tail spread as a classification class: (a) partially closed; (b)
fully closed, and (c) fully open. . . . . . . . . . . . . . . . . . 69

7.4 Abdominal somite bulge is a classification class and health in-
dicator: (bottom) an unhealthy lobster with a bulge on the
first abdominal segment which is partially detached; (top) first
abdominal segment is normal and the lobster is healthy. . . . . 74

7.5 Abdominal somite bulge is a classification class and health indi-
cator: An unhealthy lobster with a bulge in the first abdominal
somite. The abdomen is detached as the internal white portions
are now visible. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.6 Crusher claw location is a classification class: (left) crusher claw
on the right side and (right) crusher claw on the left side. . . . 75

7.7 Posture is a classification class: (top) a non-aggressive pose and
(bottom) an aggressive posture with claws spread upwards. . . 77

xi



7.8 The modified VGG16 network developed in this thesis. Trans-
fer learning was used to initialize the pre-trained VGG16 (Fig-
ure 2.1) with weights trained on the Imagenet dataset and ap-
pended with two fully-connected layers. Then, the network was
re-trained with the custom dataset. The utility of tanh / relu
activation and dropout / batch normalization layers were eval-
uated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.9 Test accuracies for lobster traits with number of hidden lay-
ers. Results were only marginally better, across all datasets,
therefore, the choice was 2 across all classifiers. . . . . . . . . . 78

7.10 The test accuracy for gender classification increases with num-
ber of hidden units until it saturates around 128. Since the
difference between 64 and 128 was marginal, 64 hidden units
was selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.11 The test accuracy for abdominal somite bulge classification in-
creases with the number of hidden units until it saturates around
128. Therefore, 128 hidden units was chosen. . . . . . . . . . 80

7.12 The test accuracy for crusher claw location increases with the
number of hidden units until it saturates around 128. 32 hidden
units was selected as it yielded the maximum value. . . . . . . 80

7.13 The test accuracy for tail spread classification increases with
the number of hidden units until it saturates around 128. Since
the difference between 64 and higher units were marginal, 64
was selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.14 The test accuracy for aggressive posture classification increases
with the number of hidden units until it saturates around 256. 81

7.15 Lobster posture classification using: (7.15a) test accuracies and
(7.15b) f1 scores. There is no strong dependence on number
of attention heads for either. The attention modules are not
making much difference. . . . . . . . . . . . . . . . . . . . . . 85

7.16 Posture classification accuracies across different optimizers and
network architectures. The test accuracies generally increase
with decreasing learning rates. The attention VGG outperforms
the baseline for all architectures and learning rates. . . . . . . 86

7.17 Posture classification for both (7.17a) attention VGG and (7.17b)
vanilla VGG have test accuracies across classes that exceed the
acceptable benchmark of 75%. . . . . . . . . . . . . . . . . . . 87

xii



7.18 Lobster postures which are mis-classified due to their ambigu-
ous postures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.19 Lobster crusher claw location classification (7.19a) test accu-
racies and (7.19b) f − 1 scores are similar across the number
of attention heads K. The attention modules are not making
much difference. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.20 Crusher claw location classification accuracies using different
optimizers and network architectures. The test accuracies gen-
erally increase with decreasing learning rates. The attention
VGG exceeds the baseline across all architectures and optimizers. 90

7.21 Crusher claw location classification test accuracies for: (7.21a)
attention VGG exceed the 75% bench while for the (7.21b)
vanilla VGG the classification on the right side is less than the
benchmark 75% classification and well above that on the left
side. The reasons why are unclear. . . . . . . . . . . . . . . . 91

7.22 Examples of mis-classified crusher claw location. Mainly due to
the crusher claw being twister out of the horizontal plane and
possibly mistaken for the pincher claw. . . . . . . . . . . . . 93

7.23 Gender classification: (Fig 7.23a) test accuracies and f1 scores
(Fig 7.23b) are similar across the number of attention heads.
The attention modules are not making much difference. . . . . 94

7.24 Gender classification accuracies across using different optimiz-
ers and network architectures. The test accuracies generally
increase with decreasing learning rates. The attention VGG
outperforms the baseline for all architectures and optimizers. . 95

7.25 Gender classification test accuracies for both: (7.25a) attention
and (7.25b) vanilla VGG greatly exceed the 75% benchmark for
males. The female prediction with the attention VGG is less
than the 75% benchmark but better than random guessing. . . 96

7.26 Examples of lobster gender mis-classifications due to: (7.26a),
(7.26b) shadows on the male tail section and (7.26c), (7.26d)
females not at the egg-bearing stage. . . . . . . . . . . . . . . 97

7.27 Tail spread classification for: (Fig 7.27a) test accuracies and
(7.27b) f1 scores are similar across the number of attention
heads K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xiii



7.28 Tail spread classification accuracies using different optimizers
and network architectures. Vanilla VGG is similar to baseline
and outperformed by attention VGG when using 1e-2 learn-
ing rates with ADAM/SGD. With 1e-3 and 1e-4 learning rates
attention VGG and vanilla VGG are similar to one another.
The baseline is the accuracy obtained by predicting the most
common label. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.29 Tail spread classification test accuracy for closed and open tail
using (7.25a) attention and (7.25b) vanilla VGG exceeds the
75% benchmark. The test accuracy for partially spread tail
with attention or vanilla VGG is much poorer than random
guessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.30 Abdominal bulge classification: (7.30a) test accuracies and (
7.30b) f1 scores are similar across number of attention heads,
K. This means the attention modules do not make much dif-
ference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.31 Examples of lobster tail spread mis-classification: (7.31a), (7.31b)
and (7.31c) are partially open mis-classified as fully open and
(7.31d) closed tail mis-classified as partially open. The classi-
fier struggles to classify partially open tails which can be mis-
classified as fully open or closed. . . . . . . . . . . . . . . . . . 102

7.32 Abdominal somite classification accuracies using different op-
timizers and network architectures. The test accuracies for
vanilla VGG generally increase with decreasing learning rates.
The attention VGG exceeds the baseline for all architectures
and optimizers. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.33 Abdominal bulge classification test accuracy with: (7.33a) at-
tention and (7.33b) vanilla VGG is only better than random
guessing. The test accuracy for a normal abdominal classifica-
tion with both models exceeds the 75% benchmark. . . . . . . 105

7.34 Examples of incorrect abdominal bulge classification. In Figs.
7.34a,7.34b and 7.34c the abdominal bulge is falsely detected
possibly due to lobster activity. Fig 7.34d is a slightly different
angle of the lobster pose which may lead to false detection. . . 106

8.1 Shell disease spread across the carapace and tail is measure of
lobster health. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xiv



Abstract

The thesis explores the efficacy of convolutional neural network(CNNs) to categorize

lobster images for improving lobster grading and traceability. Traceability ensures

that lobsters are traceable to a sustainable source. Lobsters kept in unsuitable condi-

tions such as extremely low temperatures or densely packed crates have low chances

of survival leading to a lower grade ultimately affecting prices. The CNNs were able

to achieve high accuracies for assessment of lobster traits. Attention mechanisms

that learn to extract discriminating features were explored to improve the perfor-

mance of CNNs. The attention augmented CNNs had similar accuracies compared

to the vanilla CNN but were less sensitive to choice of architecture and learning rate.

The attention CNNs could map landmarks on lobster images(for sizing) with an ac-

ceptable error of about 2cm. Additionally, siamese networks, that were explored for

a black box approach towards uniquely identifying lobsters, were able to achieve a

top-3 accuracy of about 84%.
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Chapter 1

Introduction

This thesis reports on research and development to improve sustainability and trace-

ability towards the marine stewardship that maintains the ocean’s health and ensures

the fish or lobster consumed is traceable to a sustainable source. There are eco-

logical and economic sustainability reasons to assess and monitor stocks and stock

populations. Traceability aims to uniquely identify each animal for consumer quality

purposes. The methods developed here target the Canadian fishery due to the small

number of species involved. The aim of the project is to determine the count and

species of a catch as well as each species’ length and color (measure of quality) for

economic sustainability reasons. Another objective is to determine the gender and

characteristic dimensions for ecological sustainability. For traceability, species im-

agery was collected to assess whether say the carapace on a lobster can be uniquely

identified.

The Canadian Department of Fisheries and Oceans have expressed interest in such

technologies for in-shore waters as they have the same above ecological objectives. The

present use of trained human observers can only monitor 1.5-2.0% of the lobster fleet

activity not the 20% necessary to manage non-endangered species (lobster) or the

50% for endangered species (cod, cusk, jonah crab). Lastly, value chain stakeholders

have articulated their requirement for primary grading (size and quality) while at-sea

to guarantee lobster quality and value when it gets to market.

Steps are presented to automate some of the processing that happens at various

stages and to characterize lobster traits for lobster traceability. Chapter 3 presents

an approach towards separating out fish species such as cod or kusk from a lobster

catch. The approach presents a machine learning model that learns to perform species

classification and feature localization in images of marine animals. The output of

the model is a bounding box around the species in the image. Bounding boxes are

typically used in image analysis to isolate targets or regions of interest in an image.
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Two types of bounding boxes i.e axis-aligned (aligned with the horizontal and vertical

axes of the image) and rotatable, are evaluated on how tightly they enclose the region

of interest. If the bounding box is tight then its dimensions approximate the the length

and width of target of interest (in pixels).

In Chapter 4, a method is proposed to scale the size of objects in images, in pixels,

to their physical size. The method estimates the distance between two graduations

of a ruler inserted in the background. This makes it possible to scale the length and

width of bounding boxes from pixels to say millimeters for the marine animals in the

boxes 3. This technique is generally useful to size targets in an image.

Chapter 5 documents efforts to uniquely identify lobsters by using the lobster

images, extracted from images using the bounding boxes, above, as an input to a

deep learning model. The model outputs an n-dimensional vector in the Euclidean

space for every lobster. The model learns to minimize the Euclidean distance between

the output vectors for images of a given lobster and maximize its distance for images

of different lobsters. A lobster can then be uniquely identified by matching its image

with that of a lobster with the smallest Euclidean distance in the database. This

method is applied towards lobster traceability from point-of-catch to market.

In Chapter 6, various methods for mapping morphological landmarks onto the

various keypoints on the lobster image are explored. This landmark mapping makes

it possible to characterize lobster features such as the length from its eyes to the

end of the carapace, claw length, widths, abdomen lengths, etc. The Department

of Fisheries and Ocean stipulates a minimum carapace length for a lobster to be

legally purchased, sold or possessed[20]. The lobster carapace length, determined

using the methods from chapter 4, from the landmark mapping model could be used

to detect lobsters that are illegal to catch. This size information is also useful towards

monitoring lobster populations for traceability from point-of-catch to market.

In Chapter 7, lobster characteristics such as gender, side of the body the crusher

claw is located, first abdominal bulge, posture and tail spread are explored. These

attributes, determined from a visual inspection of the lobster, form part of a profile

that characterizes a lobster and are helpful towards tracing its point of origin. These

attributes are also useful towards monitoring lobster health and indirectly provide

an indication of the conditions the lobster was stored in. An abnormally distended
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lobster bulge at its first abdomen is an indication it was kept in cramped spaces and

thus in poor health.

The methods to detect bounding boxes in Chapter 3 have been used in subsequent

chapters to crop or extract the portion of an image that contains the lobster. The

sizing method described in chapter 4 is applied to the work documented in chapter 5

to scale a lobster’s morphological size in pixels to a standard unit of length. Chapters

5, 6 and 7 describe work to characterize lobster traits towards lobster traceability.

Chapter 5 describes a deep learning method that could uniquely identify individual

lobsters by assembling an n-dimensional vector, for every lobster, based on multiple

attributes. Chapters 6 and 7 characterize qualitative traits such as gender, level of

aggression in the posture, etc and quantitative traits such as claw size. All these

traits form a lobster database that can uniquely identify individual lobsters and thus,

contribute to lobster traceability.

The contributions of this thesis are as follows:

• A comparison of axis-aligned and rotatable bounding boxes has been made

towards size estimation of marine animals. A CNN architecture using transfer

learning that outperforms existing marine animal classification approaches has

been proposed.

• A novel approach is proposed to measure the dimensions of objects in images

using a reference object like a ruler. The approach crops out the ruler section

using a rotatable bounding box and subsequently, finds pixel distance between

ruler graduations.

• Chapter 5 is the validation that lobsters can be uniquely identified based on

visible carapace markings and the position of their spines. This was achieved

with a pair-wise comparison of different lobsters using a Siamese neural network

architecture optimized over several objective functions.

• The contribution of Chapter 6 is two fold: the first is to consider, and prove

viable, the use of deep learning towards automating the mapping of landmarks

on lobster images. The second is to design and implement a convolutional neural

network that uses attention mechanisms for geometric morphometry of lobsters.
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• The contribution of the Chapter 7 is two fold: the first is to consider, and prove

viable, the use of deep learning towards classification of lobster traits such as

gender, abdominal bulge, aggressive posture, etc. The second is to evaluate the

use of attention mechanisms on convolutionl neural networks towards improving

their accuracies.



Chapter 2

Background and related work

In this section, a background is presented on the deep learning architectures specif-

ically, convolution neural networks (CNN), that are used for classification and re-

gression tasks in later chapters. As well, optimizers such as the adaptive moment

estimation or ADAM[41] and stochastic gradient descent or SGD[7] used to learn the

weights of the CNNs, will be described. Performance and classification evaluation

evaluation used in the thesis are also defined here.

2.1 Convolutional Neural Network

A regular neural network consists of a series of hidden layers. The input to a network

is a single vector which is sequentially modified by these hidden layers. Each hidden

layer consists of neurons that provide an output value from applying a function to the

input values from the receptive field in the prior layer. This function is in the form

of a vector of weights and a bias. The hidden layers are also fully-connected layers

because each neuron in the one layer is connected to every other neuron in the next

layer. Learning is achieved through incremental changes to these weights and bias

via back propagation. Convolutional neural networks [45] are a category of neural

networks that modify input volumes with convolution layers, pooling layers and fully-

connected layers. Convolution layers contain a set of learnable filters that slide across

the width and height of the input volume during the forward pass. Pooling layers

down sample the spatial dimension of the input volume through averaging or ‘max

pooling’.

2.1.1 Activation functions

Activation units are one of the building blocks of a neural network which decide if

a neuron in the neural network should be activated. The activation function is a

non-linear and gives the neural network the capability to learn complex mappings

5
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from input features to network predictions[79]. Three types of activation functions

have been used in the thesis.

• Sigmoid function: The sigmoid activation function is given by equation2.1 as

f(x) =
1

1 + exp(−x)
. (2.1)

The sigmoid function is continuous, differentiable and a real-valued function

that ranges from 0 to 1. The gradient of the sigmoid function is zero, when

the output is close to zero and one, where the weights of the network do not

update or are very slowly updated. This problem is also called the vanishing

gradients problem.[30] The output of the sigmoid function is not zero-centered

because the gradient updates propagate in different directions leading to slow

convergence.[61]

• Hyperbolic tan (tanh): The tanh function is given by eq. 2.2

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
. (2.2)

The tanh function is differentiable, monotonic and real-valued (ranges from -1

to 1). The advantage of the tanh function, compared to the sigmoid function,

is that it helps in faster convergence because it is zero-centered [61]. However,

tanh activations suffer from the vanishing gradient problem, like the sigmoid

function, since the gradients are zero for output values equal to zero and one.

• Rectified linear unit (ReLU): The ReLU activation function is given by eq. 2.3

as

ReLU(x) =

x if x >= 0

0 otherwise.
(2.3)

The ReLU is a monotonic function that forces the negative values to zero and

avoids the vanishing gradient problem observed in sigmoid and tanh.[61]. The

ReLU is computationally faster since it does not involve any calculation of

exponentials or divisions.
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2.2 Transfer learning and pre-trained CNN architectures

Transfer learning[87] is a machine learning method that takes a model, trained on a

large dataset, and transfers its knowledge to a smaller dataset. Transfer learning is

useful when there is insufficient data to train a machine learning model. Similarly,

training an entire convolutional network from scratch can be difficult since it is un-

usual to find a sufficiently labelled data set for image classification. It is common to

pre-train a convolution neural network on a very large dataset, such as ImageNet[15],

which contains 1.2 million images across 1000 categories. The pre-trained model can

be used as a feature extractor where there is no need to re-train the model. The

extracted features are used as input to a new classifier which must be trained from

scratch. Alternatively, the pre-trained CNN can be fine-tuned by adding new classi-

fier layers re-training on a new dataset. Pre-trained CNN model architectures that

will be considered are described next.

VGG16: This is a deep convolutional network trained by the Visual Geometry

Group proposed by Simonyan and Zisserman [69]. The network uses 3 × 3 convo-

lutional layers stacked on top of each other. The first step is a convolution of the

image. Then, the image size is reduced through down sampling (max pooling). This

alternates until the two layers become fully- connected. The ‘16’ in VGG16 refers to

the number of convolutional layers in the CNN network. Figure 2.1 shows the VGG16

architecture with the fully-connected layers at the end removed. Each convolution

block consists of two convolutional layers and one pooling layer.

Figure 2.1: The VGG16 architecture with five convolution blocks. The fully-
connected layers at the end have been removed. Transfer learning can be achieved
by initializing the VGG16 with weights trained on the Imagenet [15] dataset and
replacing the fully-connected layers at the end of a regular VGG with extra layers
and subsequently, re-training the network with a custom dataset. Transfer learning
is commonly used for training where the dataset is limited.
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Residual Network: Resnet[28] allows the addition of hundreds of layers to a

network and is still able to achieve good performance (in terms of computation effort)

compared to VGG. Residual networks use residual mapping, or skip connections,

towards a deeper version of the network. At each layer, Resnet is implemented as

shown in Eq.2.4

y = f(x) + x (2.4)

such that f(x) is the convolution, or batch normalization, layers and x is the skip con-

nection that allows the gradient to pass backwards, directly. In principle, the gradient

could skip over all the intermediate layers and reach the bottom one without being

diminished. Therefore, Residual mappings assist in avoiding the vanishing gradient

problem that occurs in deep CNNs [30]. Residual networks also use batch normal-

ization layers which are intermediate normalization layers. These layers address the

problem of vanishing and exploding gradients.[4][21].

MobileNet: MobileNet [32] uses a 3× 3 depth-wise separable convolution which

has less computations than standard convolutions with only a small reduction in ac-

curacy. Depth-wise separable convolutions are made up of two layers: depth-wise

convolutions and point-wise convolutions. In depth-wise convolutions, filters are ap-

plied to each input channel. Point-wise convolution is a 1×1 convolution used to cre-

ate linear combinations of the output of the depth-wise layer. This two-step method

reduces the computation effort and learning model size. The depth-wise convolutions

filter the input channels but do not combine them to create new features whereas the

point-wise convolutions generate new features.

2.3 Attention Mechanism

In this thesis, an attention mechanism proposed by Rodriguez et al.[67] was used to

improve the classification accuracy of the vanilla VGG network. This is especially

helpful if the training dataset is small – which it is, in this case. Regular CNN

architectures do not deliberately extract detailed features from images. However, the

attention mechanism learns to focus on regions of the images that can assist the CNN

in learning discriminating features for image classification. This attention mechanism

is independant since it can adapt to pre-trained architectures like VGG[69] or ResNet.

The process consists of an attention module that can be added after each convolutional
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layer without changing the underlying information pathways of the architecture. This

is helpful since it augments architectures like VGG and ResNet with no additional

supervision and can be inserted into any trained network to quickly perform transfer

learning.

The attention mechanism is first used in Chapter 6 to improve the accuracy of

mapping morphological landmarks onto the various keypoints on the lobster image.

The attention mechanism is then used in Chapter 7 to improve the classification

accuracy of lobster traits like gender, crusher claw location, etc.

As shown in Figure 2.2, the original CNN can be augmented with attention mod-

ules at arbitrary depths. Each attention module contains K attention heads that

tap the feature activations at an arbitrary depth. The K attention heads make a

prediction based on these feature activations. The original network outputnet is then

corrected based on the output from the attention modules by means of the global

attention gates to yield the final output.

Figure 2.2: The attention mechanism used in this thesis [67]. The feature represen-
tations from intermediate VGG layers are passed as input to the attention module.
The outputs from the attention heads are combined using the global attention gates.

Rodriguez et al. [67] proposed the attention mechanism for fine-grained clas-

sification. However, the attention mechanism has been modified in this thesis for

landmark detection. The following equations describe the attention mechanism for
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both fine-grained classification and landmark detection.

The features activations, Zl, from layer l and of dimension Rc×h×w, such that c is

the number of channels of the feature activations, and h and w are the spatial dimen-

sions of the feature activation, are fed to an attention module containing K attention

heads. WH
l in Eq 2.5 is the convolution kernel with K filters. The softmax func-

tion changes an n-dimensional vector, z, of arbitrary real values to an n-dimensional

vector σ(z) where
∑K

i=1 σi = 1.

Zl is convolved with WH
l and then followed by a spatial softmax. Spatial softmax

is a channel-wise softmax operation performed to normalize attention scores across

the K attention heads. Hk
l represents the attention score given by the kth attention

head to the feature activations at layer l.

Hl = spatial softmax(WH
l•Zl). (2.5)

Here, • refers to the inner product operator. WOk
l in Eq 2.6 is a convolution kernel

for an attention head K which is applied on the feature activation Z l. WOk
l has filters

equal to the number of labels i.e the number of classes it needs to classify. Rodriguez

et al.[67] uses WOk
l to calculate class probability scores for the classification problem.

In case of the landmark detection problem, since this is a regression problem, WOk
l in

the model would have the number of filters equal to twice the number of landmarks(x

and y coordinate for each landmark). The output dimension of Ok
l after convoluting

Z l by WOk
l is R2×number of landmarks×h×w.

The convolution operation by WOk
l can be performed for all attention heads K in a

single pass by setting the number of output filters to be K×2×number of landmarks.

Ok
l represents the output vector from the feature activations extracted at layer l

and the kth attention head.

Ok
l = WOk

l∗Z l (2.6)

The olk Eq. 2.7 is obtained by an element-wise product between H l
k and Ol

k. H
l
k

has dimension h×w and Ol
k has dimension Rnumber of labels×h×w. In case of landmark

regression, Ol
k has dimension R2×number of landmarks×h×w Therefore, H l

k is repeated, i.e.

2× labels and for landmark regression H l
k is repeated, i.e. 2×number of landmarks.
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The output olk from Eq. 2.7 is the predicted classification scores from the kth

attention head weighted by the attention score H l
k and spatially averaged over the x, y.

In case of landmark detection, The output olk from Eq. 2.7 is the predicted landmarks

from the kth attention head weighted by the attention score H l
k and spatially averaged

over the x, y (Eq.2.7).

olk =
∑

H l
k ~Ol

k (2.7)

where ~ is the element-wise multiplication operator.

The output of the lth attention module ol (Eq. 2.8) is the sum of outputs from

the individual attention heads olk (Eq. 2.7) weighted by gHl
k
.

ol =
∑
k

gHl
k
olk (2.8)

gH in Eq. 2.9 is obtained by first convolving Z l with W l
g. The resulting dimension

after convolution with W l
g becomes R|H|×h×w where |H| is the number of attention

modules. The resulting output is multiplied element-wise with Hl followed by a

softmax operation.

gHl
k

represents the weight given to the output of each attention head K i.e olk.The

weight gHl
k

is a function of the feature activation Z l and the attention scores Hl.

glH = softmax(tanh(
∑
x,y

(W l
g?Z

l) ~Hl)) (2.9)

The output ol from each attention module is weighted using candidate values cl

(Eq. 2.10). cl is a function of the feature activation Z l.

cl = tanh(WGZ
l) (2.10)

where WG is the weight given to feature activation Z l.

The global attention gates, g, (Eq.2.11) are obtained by normalizing the set of

candidate scores for all attention modules by means of a softmax function. gol rep-

resents the weight given to the output predictions from the attention module l. i.e

ol
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gol =
ec

l∑|G|
i=1 e

ci
(2.11)

The final output, Eq.2.12, of the network is the weighted sum of original output,

outputnet, and output from the L attention modules ol.

final output = gnet ∗ outputnet +
∑
l

gl · ol (2.12)

In the case of classification, the final output is fed to a fully-connected layer

containing units equal to the number of labels to be classified with softmax activations.

In the case of landmark predictions, the final output is fed to a fully connected layer

containing units equal to the twice the number of landmarks (x and y coordinate).

2.4 Image Augmentation

The datasets used in this thesis are limited in size. However, deep learning frameworks

require large amounts of data to train on[48]. Therefore, the datasets have been

augmented using the imgaug [2] software image augmentation library. The following

image augmentations were performed(Figure 2.3): randomly rotated horizontally and

vertically; affine transformations like image translation from -10% to 10%; rotations

from -45◦ to 45 ◦; images sharpened with pixel intensity multiplicative ratios from

0.75 to 1.5; image brightness changed for each RGB channel by adding pixel intensity

from -10 to 10 and contrast normalization ratios ranging from 0.9 to 1.10. Pixel

intensity values in the images were normalized to be in the range of 0 to 1. Figure 2.3

shows example images of image data augmentation. The augmentation parameters

were chosen so they cover variations in target orientation, image brightness, contrast,

etc. in the dataset.
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Figure 2.3: Example images generated for each of the marine animals from image
augmentation.

2.5 Optimizers

Optimizers are used in deep learning to learn the weights of a model given a dataset.

Gradient descent is an example. Gradient descent finds the parameters of a function

that minimize the cost function by iteratively taking steps proportional to the negative

of the function gradient at a given point. The change in value of the parameter is the

gradient of the loss function multiplied by the learning rate or step size.
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Learning rate: The learning rate is a configurable hyperparameter which controls

the rate or speed at which the model learns. The learning rate does not change

during the training process. A large learning rate makes the model learn faster but

the model might learn sub-optimal weights because of oscillating loss values over

epochs. However, a small learning rate might not converge and thus, get stuck on

a sub-optimal solution. Therefore, the learning rate should not be too large or too

small to be able to find the optimal solution. [22]

2.5.1 Stochastic gradient descent (SGD)

Stochastic gradient is a variant of gradient descent [7] which calculates the function

gradient for a small subset of the whole dataset. Gradient descent calculates the

gradient of the entire dataset which can be computionally expensive compared to

SGD. SGD maintains a single learning rate for all weight updates.

2.5.2 Adaptive Moment Estimation (ADAM)

ADAM[41] is another variant of gradient descent which maintains a different learning

rate for each network weight parameter. When using different learning rates for

each network parameter, the parameters which get large gradient changes will have

their effective learning rates reduced, while parameters which get smaller gradient

updates will have their effective learning rates increased. This can possibly lead

to a faster convergence to the global extremum The learning rate for each network

parameter changes adaptively according to the mean and variance of the previous

gradients allowing it to factor in the rate of change of the gradient. Subsequently,

this algorithm can perform better on noisy data.

However, Keskar et al.[39] observed that the ADAM optimizer did not converge to

the optimum in certain settings and suggested that ADAM had lower generalizability

compared to SGD in terms of convergence to the local minimum.
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2.6 Performance and Evaluation Metrics

2.6.1 Student t-test

A student t-test is a method of statistical inferencing where a hypothesis is proposed

for the comparison of two datasets. First, a null hypothesis is formulated which states

that there is no effective difference between the mean values of both datasets. Then,

a p-value is calculated which is a measure that determines the probability of rejecting

the null hypothesis. Typical selected threshold values are 1 % or 5% (which is the

case here). If the p-value is greater than the threshold then there is strong evidence

in favour of the null hypothesis. However, if the p-value is less than 0.05 [94] then

the null hypothesis can be rejected.

2.6.2 Intersection over Union (IoU)

The intersection over union (IoU) was used to evaluate the accuracy of the axis-

aligned bounding boxes. it is defined as the ratio of the intersection (overlap) area

between two bounding boxes and the area of union of the two bounding boxes.

2.6.3 Normalized Mean Squared Error

The normalized mean squared error, NME, (Eq. 2.13) is a loss function that can be

used as an evaluation metric to compare convolutional neural network model perfor-

mance. It is defined as:

NME =

∑N
i=1

√
(x̂i − xi)2 + (ŷi − yi)2

N
(2.13)

such that N is the number of landmarks, x̂i, ŷi are the predicted landmark coordinates

and xi, yi are the ground truth landmark coordinates.

2.6.4 Binary Classification Evaluation

Binary classification models can be evaluated using accuracy as measured through

the f1-score. The f1-score is especially useful when the classes are unbalanced. It is

defined as follows:
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f1 = 2× precision× recall

precision + recall

such that precision and recall, respectively, are defined as follows: precision = TP
TP+FP

and recall = TP
TP+FN

(TP = true positives, FP = false positive and FN = false neg-

atives). The f1 score is thus the harmonic mean of precision and recall as defined

here.

2.6.5 Penalized Cross-Entropy Loss

Penalized classification imposes an extra cost on a CNN model for making classi-

fication errors on the minority class during training. This is applicable in binary

classification cases where the training dataset is heavily weighted towards one class

more so than the other.

The penalized cross-entropy loss (Eq. 2.14) is defined as:

ce(y, ŷ) = −
n∑
i=1

αiyi log(ŷi) (2.14)

such that yi is the image ground truth label, ŷi is the prediction confidence score

and αi is the penalty given for predicting class i. αi is inversely proportional to the

number of examples of class i in the dataset.

Test Accuracy

The simple definition for test accuracy used here is the ratio of correct predictions

normalized to total predictions:

test accuracy =
correct predictions

total predictions



Chapter 3

Species identification and localization in marine animal

images

3.1 Introduction

A catch from a fishing trawler can contain multiple animal species. They are usually

manually sorted, by species, then shipped to different factories for further classifi-

cation and processing. As part of this, there is a requirement to sort these animals

based on their physical maturity and size.

Sorting and classifying marine catch (fish, in this example) on the basis of their di-

mensions and species using pattern recognition algorithms is proposed. Consequently,

it is possible to automate the sort and classification steps of the fish processing with

computer vision to improve traceability, profit margins and product quality. The col-

lateral benefit is that the size distribution by species, of a catch, also has ecological

significance towards characterizing the fish population and its evolution. There are

earlier efforts in fish classification [66][47][62] however, there is much less on automated

estimation of the fish dimensions. This chapter explores methods to simultaneously

isolate (localize) the fish in a static image, from amongst other objects, through a

bounding box that contains the fish. Then, it determines its dimensions and classifies

the fish by species.

The next section is a description of existing work related to fish species classifica-

tion and sizing techniques towards this objective with intent to apply it to lobsters.

3.2 Related work

Rathi et. al. [66] performed classification of fish species. They perform pre-processing

steps of Otsu’s binarization [86], dilation and erosion to improve the quality of the

image. They add the pre-processed image as the fourth channel to an already existing

RGB image and use CNN for classification of fish images. Rathi et al. have used a

17
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custom CNN architecture which they trained from scratch. The work in this thesis

uses pre-trained CNN architectures which uses transfer learning to leverage the large

amount of training time from a different project.

White et. al. [84] determines the orientation of the fish based on the moments

of the polygon spanned by the fish silhouette. They determine the fish species based

on colour and shape. Then, they determine the length of the fish by mapping eight

points on the detected outline of the fish. Contrary to White et. al., this thesis plans

to determine the width and height of the fish by creating a bounding box around the

fish. The bounding box technique is robust to various types of fish. This technique

will be applied in this thesis to lobsters.

Larsen et. al. [47] perform classification of fish species based on shape and tex-

ture features. They estimate the parameters of an active appearance model using

geometric and texture-based features. Subsequently, they apply principal component

analysis (PCA) to these model parameters which yield features that they apply lin-

ear discriminant analysis [38] to for an accuracy of 76%. Their method is dependant

on building a separate model apart from the learned one for each species of fish.

The CNN architecture from this thesis creates an intrinsic model of the species for

classification and does not need a separate model.

Hsieh et al. [33] propose a technique to measure a tuna fish’s snork to fork length

using a Hough transform. The longest line measured by Hough transform in the

image is a measure of the fish length. They transform every point in image space to

Hough space. The co-linear points in the image space are presented in the Hough

space. Therefore, the weight of the largest peak must be the fish length. In other

words, this technique measures the longest length of an object in the image. However,

this will not work well if there are objects longer than the fish in the image whereas

the technique developed for this thesis do not have that limitation.

Costa et. al. [11] were able to estimate the size of the fish using external shape

analysis. First,they used the Canny operator in MATLAB [8]to create a binary image.

The Canny operator smooths the image through Gaussian convolution and applies a

two-dimensional first derivative operator to highlight regions with edges. The next

step was to create 200 equally spaced outline points along the perimeter of the animal.

The shape of each fish was then analyzed by elliptic Fourier analysis (EFA) on the



19

coordinates of each of the 200 outline points. EFA is based on Fourier decompositions

of the incremental changes in each of the x and y coordinates [12]. Their sizing

technique aligns with the thesis objective of localization of the fish in the image but

the limitation of this method is that the binary image is specific to a species and

sensitive to variations within a species.

Ogunlana et. al. [62] extracted fish sizes like the body length and width and the

five fin lengths; namely anal, caudal, dorsal, pelvic and pectoral. Then, they used

support vector machines (SVM) for species classification with a 78.59% accuracy,

which was significantly higher than what was obtained with artificial neural networks,

k-nearest neighbours and k-means clustering-based algorithms on the same dataset.

Their species classification method aligns with the thesis objective of marine species

classification but this approach does not take into account the color and texture

features of the marine animal which would further help classify it.

Hasija et. al. [27] use image sets to classify fish species using graph embedding

discriminant analysis unlike state-of-the-art methods which operate on single images.

Multiple views of the fish, as in this thesis’ approach, might achieve a better classifica-

tion of the fish’s species. Their classification method aligns with the thesis objective

of marine animal species classification. However, their algorithm is not immune to

distortion caused by noisy images which have a classification accuracy of 76 %.

Spampinato et. al. [71] perform fish species classification by extracting texture

and shape features. The texture features were extracted using gray-level histogram,

spatial Gabor filtering and properties of the co-occurrence matrix. The shape features

were extracted by using a histogram of Fourier descriptors of boundaries and curvature

scale space transformations. The species classification method by Spampinato et. al.

aligns with our goal of fish species classification. However, they do not utilize the color

features of the fish unlike the method developed in this thesis. The sizing method

used by Costa et al. also used Fourier descriptors which is similar by Spampinato et.

al. for fish species classification.

Benson et. al. [5] make use of Haar classifiers to count and classify the Scythe

Butterfly fish captured in underwater video images. The Haar classifiers were trained

to detect only a single species of fish. The proposed method trains on multiple fish

species.
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3.2.1 Overall comparison with existing approaches

The methods described above, except Rathi et al[66] do not use convolution neural

networks for classification and localization of marine animals. CNNs learns what

features to extract compared to using classical computer vision methods which use

hand-crafted features like Haar features as used by Benson et al[5], hand engineered

features like body length and width as used by Ogunlana et. al. or shape and texture

features by Larsen et al[47]. The features learnt by CNN are generic and independent

of any specific classification task and can be learned directly from observations of

the input images[48]. Rathi et al[66] use CNNs for fish classification but they train

the CNN from scratch on limited data (not too different from the approach in this

thesis). White et al.[47] determine the length of the fish by mapping eight points on

the detected outline of the fish. Similarly, the method proposed by Larsen et al.[47],

Costa et. al.[12] and Benson et. al.[5] is dependant on building a separate model

for each species of fish. The CNN architecture for this thesis is able to determine

length and width for any number of species of marine animals. Hsieh et al.[33] et

al. determine fish length by finding the length of the longest object in the image

using Hough transform. The CNN architecture for this thesis identifies the species in

the image and then calculates the species length independant of whether there is a

longer object in the image. The approach for fish classification proposed by Ogunlana

et. al.[62] does not use colour features unlike the CNN architecture proposed in this

thesis where features learnt are generic and independent of any specific classification

task. As shown in further section 3.4, the CNN architecture proposed in this thesis

is shown to be better in terms of test accuracy compared to the SVM technique used

by Ogunlana et. al.[62].

In the next section, an approach that uses pre-trained CNN for simultaneous

classification and localization has been described. The VGG16 was trained on the

ImageNet[15] dataset. Using the pre-trained CNN for feature extraction is a form

of transfer learning as described in section 2.2. The experimental methodology is

described next including the dataset details, feature extraction techniques and model

architectures used.
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3.3 Experimental Methodology

The CNN developed is trained to predict the species of the animal, in an input image,

as well as its location in the image. To predict the location of the object of interest

in the image, axis-aligned and rotatable bounding boxes have been compared for

tightness of the bounding box around the object. The axis-aligned bounding box is

aligned to the axes of the image coordinate system as shown in Figure 3.1. The axis-

aligned bounding box is parameterized by the coordinates of the lower left and upper

right corner of the rectangle. The size and aspect ratio of the bounding box does

not tightly span the real shape of the target when it is not aligned to the coordinate

axes of the image. For example, when the fish lies along the diagonal of the image,

the axis-aligned bounding box does not approximate well, the size of the object. The

rotatable bounding box is parameterized by the centroid of the rectangle and its

length, width and body axis orientation. The size of the rotatable bounding box is a

better indicator of the object size compared to axis-aligned boxes since the freedom

to rotate enables the box to span the outline of the target object more tightly. The

rotatable bounding boxes in Figure 3.2 are a tighter fit for the object of interest.

Figure 3.1: Axis-aligned bounding boxes cannot tightly span the object of interest
if it is not aligned to the image’s horizontal or vertical axes. Consequently, the box
dimensions are not the best measure of the object’s.

Figure 3.2: Rotatable bounding boxes are a tighter fit for the object of interest and
thus a better measure of its dimensions.
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3.3.1 Dataset

Static images of marine animals for five species namely Jonah crab, lobster, hal-

ibut, cod and cusk were culled from the internet (Table 3.1). The first stage in the

dataset processing was to manually draw bounding boxes around the object (its re-

gion of interest or ROI) with the labelImg software annotation tool[81] within each

image (Figure 3.1). Then, the second stage was to manually draw rotatable-bounding

boxes[54] around the object’s ROI with the roLabelImg software annotation tool.[9]

(Figure 3.2). Since the dataset is limited in size, image augmentation techniques as

mentioned in Section 2.4 were used to increase the training dataset.

Table 3.1: Distribution of collected marine animal images

label cod crab halibut cusk lobster

count 724 503 913 459 631

3.3.2 Feature Extraction

For feature extraction, pre-trained networks of VGG16 [69], VGG19 [69], Resnet [28]

and MobileNet [32] were used. The weights used for the pre-trained networks are

those from the ImageNet dataset [15]. The deeper layers of the pre-trained networks

were made trainable to improve the accuracy. The pre-trained networks branch out

into a regression head and a classification head.

3.3.3 Size Estimation

The width and height of the bounding box is a measure of the marine animal’s size

in pixels but it still needs to be scaled to a standard unit of length. To achieve

this, a ruler is inserted in the image field-of-view. The ruler is detected in the image

(Figure 3.3)[44] background and determines the length of a pixel and scales the width

and height of the bounding box to this.
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Figure 3.3: Automated size estimation using localization and ruler detection. Ruler
detection determines the physical length that a pixel represents.

3.3.4 Model Implementation

Figure 3.4 shows the architecture of the developed learning model. The classification

head contains a fully-connected layer containing 4 units followed by another fully-

connected layer of 5 units. For the first fully-connected layer, the test accuracies were

similar for neural network units greater than or equal to 4. Fig 3.5. The output of

the classification head are neural network units equal in number to the number of

distinct animal species considered (5, here) where each neural network unit gives the

probability that the image belongs to that species.

Figure 3.4: Convolutional layered architecture with the regression and classification
heads for simultaneous localization and classification of objects in images.
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Figure 3.5: The test classification accuracy remains similar for number of hidden
units greater than or equal to 4. The accuracy with no hidden layer is less than test
accuracies with units greater than or equal to 4.

The regression head contains a convolution layer with 256 3 × 3 filters followed

by a 4 × 4 max pooling layer. The IoU metric was observed to increase up to 256

filters Fig 3.6. The final layer of the regression head is a 1 × 1 convolution layer.

The output of the regression head are localization coordinates for the object. In the

case of axis-aligned bounding boxes, the coordinates are (x1, y1, x2, y2) where (x1, y1)

is the lower left corner and (x2, y2) the upper right corner of the bounding box.

Figure 3.6: The IoU metric increases with increasing number of convolution filters
until it saturates at 256.
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The size of the animal can also be estimated by creating a rotatable bounding

box around it. A rotatable bounding box fits an object oriented at an arbitrary angle

to the horizontal, better, than an axis-aligned one. The regression coordinates for a

rotatable bounding box are (xc, yc, h, w, θ) where (xc, yc) are the coordinates for the

centroid of the bounding box, (h,w) are its height and width, respectively, and θ is

the box’s orientation relative to the horizontal axis.

3.3.5 Ensemble Architecture

Ensemble learning uses multiple models to attain better predictive performance than

that obtained by any one model alone.[93]. Classification performance can be in-

creased by combining the predictions of multiple weak models instead of training a

single strong one.

Different ensemble architectures were used to process the outputs from the regres-

sion and classification heads.

The results from the classification heads of each of the CNN architectures (VGG16,

VGG19, Mobilenet and Resnet) were concatenated. Then, the resulting 20-dimensional

vector from concatenation of 5-dimensional (number of classes) vectors of four archi-

tectures each, was sent to the ensemble CNN for classification. The ensemble CNN

has a fully-connected layer of 5 units (equal to the number of species).

Similarly, the output from the image localization heads of each of the CNN ar-

chitectures (VGG16, VGG19, Mobilenet and Resnet) were concatenated. The result-

ing vector (20-dimensional for the axis-aligned and 25-dimensional for the rotatable

boxes) was sent to the ensemble CNN for object localization. The ensemble CNN

has a fully-connected layer containing neural network units equal to the number of

localization parameters (4 for axis-aligned and 5 for rotatable bounding boxes).

3.3.6 Training

Losses

Loss is used in the training to obtain the best weights for a model. Loss is optimized

(minimized) in the training through adjusting the CNN weights. The cross-entropy

loss (Eq.3.1) was used for the classification head and the mean squared error loss
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(Eq.3.2, 3.3) for the regression head. With the cross-entropy, ce, loss:

ce(y, ŷ) = −
n∑
i=1

yi log(ŷi) (3.1)

yi is the ground truth label of the image and ŷi is the predicted species score.

For the mean squared error loss for the axis-aligned bounding boxes:

mseax = −
n∑
i=1

((x̂i1 − xi1)2 + (x̂i2 − xi2)2+

(ŷi1 − yi1)2 + (ŷi2 − yi2)2)
(3.2)

(xi1, y
i
1) and (xi2, y

i
2) are the ground truth coordinates of the lower left and upper

right corners of the ith axis-aligned box and (x̂i1, ŷ
i
1) and (x̂i2, ŷ

i
2) are the predicted

coordinates of the lower left and upper right corners of ith axis-aligned bounding box.

Eq. 3.3 is the mean squared error loss for the rotatable bounding box:

mser = −
n∑
i=1

((x̂ic − xic)2 + (ŷic − xic)2+

(ĥi − hi)2 + (ŵi − wi)2 + (θ̂i − θ̂i)2)
(3.3)

such that (xc, yc) are the coordinates of the centroid of the ith box. (h,w,θ) are

the height, width and angle (relative to the horizontal) of the box. (x̂c, ŷc) are the

predicted coordinates of the center of the ith box. (ĥ,ŵ,θ̂) are the predicted height,

width and angle of the box relative to the horizontal.

The loss function used for training is the sum of the mean squared error from

the regression head and the cross-entropy loss error from the classification head. The

models were trained with a patience factor of 50 since it was observed that the test

accuracies did not improve beyond 50 epochs. The evaluation of the resulting model

is discussed in the next section.

Figure 3.7 shows the change in IoU value with increasing epochs while training.

This trend is indicative of a good model.

Five fold cross validation [43] was used for model evaluation. The original training

dataset was divided into five folds. At each iteration, four folds were used for training

and the fifth for testing and evaluation. The data augmentation described earlier was

performed on the training set but not on the test and evaluation set.
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Figure 3.7: IoC metric change for Resnet architecture. IoC is intersection over union.
The IoC increases during training time and converges to 0.6. A higher IoC score
indicates better localization accuracy.

3.4 Results

Figure 3.8 shows a comparison of test classification accuracy between support vector

machines[37] and ensemble CNN described in section 3.3.5. Both the support vector

machines and ensemble CNN were trained on the dataset described in section 3.3.1.

The ensemble CNN showed better classification accuracy than the support vector

machines.

Figure 3.8: The test classification accuracy using ensemble CNN is better than Sup-
port vector machines using the dataset described in section. 3.3.1
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The height and width of the object in pixels were determined in the images. To

compare the performance between axis-aligned (Table 3.2) and rotatable (Table 3.3)

bounding boxes, the mean absolute error in pixels of the height and width and the

predicted height and width was calculated (Table 3.4)

Table 3.2: Performance accuracy of CNN architectures using axis-aligned bounding
boxes. The classification accuracy of the ensemble architecture is 81% which is better
than classification accuracies of the individual CNNs. The ensemble CNN gives a
test IoU score of 0.57 which is only marginally better than the individual CNN IoU
scores.

CNN model localization IoU classification

train test train test train test

VGG16 0.92 0.78 0.79 0.56 0.98 0.76

VGG19 0.93 0.79 0.79 0.56 0.98 0.75

Resnet 0.80 0.77 0.58 0.54 0.73 0.76

MobileNet 0.85 0.80 0.65 0.57 0.59 0.59

ensemble 0.93 0.81 0.78 0.57 0.99 0.81

Table 3.3: Performance accuracy for CNN architectures using rotatable bounding
boxes. The classification accuracy of the ensemble architecture is 83% which is better
than classification accuracy of the individual CNNs. The ensemble CNN gives a
localization accuracy of 0.80 which is only marginally better than the individual
CNN localization accuracy scores.

CNN model localization classification

train test train test

VGG16 0.93 0.76 0.94 0.76

VGG19 0.94 0.79 0.90 0.73

Resnet 0.67 0.6 0.70 0.73

MobileNet 0.87 0.76 0.58 0.56

ensemble 0.95 0.80 0.99 0.836
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Table 3.4: The mean absolute error (in pixels) for width and height using axis-
aligned and rotatable bounding boxes. The rotatable bounding boxes show lower
mean absolute error in the predicted height and width which was not unexpected.

CNN model axis-aligned rotatable boxes

height width height width

VGG16 39.72 59.72 20.99 16.01

VGG19 39.98 61.04 18.94 16.69

Resnet 40.04 65.61 27.96 22.03

MobileNet 40.58 50.58 20.64 16.78

ensemble 40.57 56.95 17.19 13.00

Table 3.4 compares mean absolute error in predicted height and width (in pix-

els) between the two types of bounding boxes. The rotatable bounding boxes have

notably lower mean absolute errors than the axis-aligned ones. This suggests rotat-

able bounding boxes are a better measure of the target height and width which is

validation.

Figure 3.9 shows the confusion matrix for species classification. The classifier

misinterprets some cusk images as cod. However, that is not unexpected as cusk are

a type of cod.

Figure 3.9: Confusion matrix for the Resnet classification. The diagonal cells show
larger values indicating better classification accuracy for each label.
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Figure 3.10 shows the confusion matrix for species classification using the support

vector machine classifier. The predictions using support vector machines have lower

percentage number of true positives compared to the CNN ensemble classifier. The

cod is predicted with a test accuracy of 76% compared to ensemble classifier(which

predicts cod with accuracy of 95%). In the worst case, the test accuracy for halibut

and kusk is at least 71% and 68%, respectively. Generally, the ensemble CNN gives

better classification between species for all labels.

Figure 3.10: Confusion matrix for the Resnet classification using Support vector ma-
chines. The diagonal cells show larger values indicating better classification accuracy
for each label.

Figure 3.11a shows the weights learned by the ensemble architectures to localize

marine animals in an image. Lighter colors indicate a greater weight. The ensemble

architectures favour Resnet50 because of better localization accuracy compared to

VGG19 and Mobilenet.
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Figure 3.11b shows the weights learned by the ensemble architectures for classi-

fication of fish species. Again, the lighter colors indicate greater weights. Note, the

confidence in prediction of kusk and halibut is high for the Mobilenet ensembling

architecture prediction. Kusk and halibut are most easily distinguished fish types

from the other marine animals. Halibut is easily distinguished with its flat and long

body. Kusk is recognized from its unique top fin.

(a) Weights assigned to CNN architectures
to predict the bounding box corners that lo-
calize a species in an image. (xmin, ymin)
are the left bottom coordinates and (xmax,
ymax) are top right coordinates, respec-
tively.

(b) Weights assigned to the CNN architec-
tures for prediction of labels in the species
classification

Figure 3.11: Weights assigned to ensemble architectures for prediction of: (3.11a)
bounding boxes and (3.11b) species classification.

The ensemble classification accuracies and localization metrics are better than

individual CNN architectures for both axis-aligned and rotatable bounding boxes.

The ensemble classification had some value.

Visualization

Figure 3.12 shows heat map images that portray the activation of the convolutional

layers. This visualization is useful in understanding the image areas that the CNN

focusses on to make a prediction. As shown in Figure 3.12d, the CNN focuses more

on the fish area. Note, the final layer shows higher ’temperatures’ around the kusk

belly area and fin indicating the regions i.e the tail fin that discriminate the kusk

from the other fish. This is useful to ensure the CNN is learning generic fish features
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and not overfitting to a unique identifier like a tag or person in the background.

(a) Image with kusk fish in the cen-
tre.

(b) Feature activations from layer 5
focus on image edges and corners.

(c) Feature activations from layer 10
focus on image edges and corners.

(d) Feature activations from layer 20
focus on the kusk fish. The heat map
focuses most on the tail (red area)

.

Figure 3.12: Visualization of convolutional layer feature activations when the CNN
is fed the input image (3.12a). Layers (3.12b) 5 and (3.12c) 10 focus on the image
edges and corners and (3.12d) layer 20, the decision-making layer, focuses on the fish
body.

3.5 Concluding Remarks

This chapter reports on work that considers, and proves, the viability of using pattern

recognition towards automating species classification and sizing of marine animals.
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The pre-trained weights used in the convolution neural network were based on those

used in ImageNet which contained lobster, crab, and several types of fish though not

the cod, cusk and halibut that were of interest. The ensemble CNN architecture

outperforms existing approaches in fish classification such as SVM as proposed by

Ogunlana et. al. as shown in Figure 3.5.

The work evaluates axis-aligned (to the horizontal and vertical) and rotatable

bounding boxes for marine animal localization in static images as well as classification

based on size estimates. From an analysis of the mean absolute error in bounding

box heights and widths, it was clear that rotatable bounding boxes perform notably

better. Therefore, rotatable bounding boxes yield a better estimate of the marine

animal height and width. They will be used in the subsequent analysis on lobsters

for this thesis.

Future work builds on the achievements to date to collect and prepare more train-

ing data for the specific species of interest to increase the model accuracy. With

the methods described in the current chapter, it is possible to determine the size of

a marine animal in an image in terms of the height and width of its bounding box

(in pixels). However, in order to determine the actual size of the marine animal, it

is necessary to scale these pixel displacements to a standard measure of length (e.g.

inches or centimeters). In the next chapter, a technique to do just that was developed

and presented.



Chapter 4

Calculating Object Size in Images

A common way to determine the size of objects in images is to place a reference object

of known size, like a coin, in the image. Then, it is possible to determine the number

of pixels per unit length by scaling to the reference object in pixels against the known

length of the reference object. This ratio helps determine the object sizes in the image.

However,the known object such as a coin might be partially occluded by other objects

in the image. In this case, the height and width of a bounding box might not be a

good measure for the dimensions of the known object since the bounding box might

detect the object partially and there will be mismatch between the known size and

the detected size. However, if a ruler is used as the known object, then it is sufficient

to calculate the distance between graduated markings to determine the scale of the

image. In this chapter, a method is proposed to detect ruler graduations in the image

and then subsequently, determine the distance between consecutive graduations. The

next section explores existing work related to detecting ruler graduations in image

backgrounds.

4.1 Background and Related Work

Ueda et. al. [82] created a method to detect graduations on a ruler by transferring

the image to the frequency domain using the digital Fourier transform. However,

the algorithm was susceptable to noisy images. Zambanini et. al. [89] developed

an automatic method to determine the diameter of historical coins. They performed

a Fourier analyis on the pattern produced by a ruler positioned next to the coin.

However, since this method relies on finding frequencies of repeating patterns in the

image, it is susceptible to other repeating patterns in the image such as floor tiles.

Bhalerao et. al. [6] used discrete Fourier transforms to find the orientation of the

ruler in the image. Subsequently, they fit a sine curve to the determine the ruler

spacings in the image. Konovalov et. al.[44] were able to detect the absolute size of

34
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barramundi fish in images by detecting a ruler in the image background. Konovalov

et. al. used fast Fourier transforms and achieved a precision of 98% on a dataset

containing images of 445 images of barramundi fishes. The methods by Bhalerao et

al[6] and Konovalov et. al.[44] are also susceptible to confusion with other spatially

repeating patterns in the image.

In this chapter, another technique is proposed and developed where the ruler

section is first cropped from the image using a CNN. Then, this cropped image is

overlaid with a grid and each box in the grid is processed separately to detect the

ruler graduations. Unlike the existing work of Bhalerao et al[6], Konovalov et. al.[44]

and Zambanini et. al. [89], this method is more robust against (less likely to be

confused with) other spatially repeating patterns in the image. The next section

describes this method.

4.2 Methodology

4.2.1 Locating Ruler Graduations

The ruler can be localized within the image using a CNN that can find the ruler

portion with an axis-aligned or a rotatable bounding box around the detected ruler.

A rotatable bounding box is a better fit for a ruler placed at an arbitrary angle within

the image. In this section, a comparison is performed between the error resulting

from using axis-aligned and rotatable bounding boxes. This includes details of the

CNN trained to detect ruler graduations, the dataset, the model architecture and the

post-processing techniques used on the cropped image from the model to find the

inter-graduation distances.

Dataset

A dataset containing 350 images of lobsters along with a ruler was annotated with

axis-aligned 4.1 and rotatable bounding boxes 4.2 using a labelImg tool[59]. Since the

dataset is limited in size, image augmentation techniques as mentioned in Section 2.4

were used to increase the training dataset.
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Figure 4.1: Detecting axis-aligned bounding boxes around the ruler in the image.
Axis-aligned bounding boxes do not tightly fit the ruler when it is at an angle to the
horizontal in the image.

Figure 4.2: Detecting rotated bounding boxes around the ruler in the image. Ro-
tated bounding boxes tightly fit the ruler better when the ruler is at an angle to the
horizontal in the image.

Model architecture

Transfer learning using the pre-trained VGG16 convolution network (Figure 2.1, Sec-

tion 2.2) was applied to the detection of the ruler portion in the image. As shown in

Figure 4.3, a convolution layer with 64 3× 3 filters followed by a 4× 4 max pooling

layer was appended to the pre-trained VGG. This was followed by another convolu-

tion layer with 64 3×3 filters followed by a 4×4 max pooling layer. The intersection

over union was observed to increase until up to 64 filters and did not improve much

beyond that (Figure 4.4). The intersection over union was better with two convo-

lution layers, than one, and did not improve notably with three (Figure 4.5). The

final layer is a 1 × 1 convolution layer containing output channels equal to the four

corners of an axis-aligned bounding box around the object as defined by the lower left

and upper right coordinates. The input image is then cropped using the predicted

bounding box coordinates of the network. The mean squared error loss 3.2 and 3.3

for axis-aligned and rotatable bounding boxes, respectively, were used.
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Figure 4.3: Transfer learning using pre-trained VGG16 network: The pre-trained
VGG-16 network (Figure 2.1) is appended with two convolution layers and two max-
pooling layers followed by a convolutional layer with 1 × 1 filter (4 filters for axis-
aligned and 5 filters for rotatable bounding boxes).

Figure 4.4: The IoU metric increases with increasing number of convolution filters
until it saturates around 64.

Figure 4.5: The IoU metric increases with number of convolution layers and saturate
at around 2. This justifies using two convolution layers.
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4.2.2 Detecting Ruler Graduations in Images

The cropped RGB image is first converted to a grayscale image. This is followed by

conversion to a binary image. Different thresholding techniques for binarization such

as adaptive Gaussian, Otsu and mean value were explored. The cropped image is then

divided into blocks of 100 × 100 pixels. The block was summed across the vertical

axis. The resulting 1-D vector is normalized to a mean of 0 Fig 4.6. The number of

zero-crossings were calculated as they indicate the number of ruler markings (×2).

In binary image thresholding there are only two values. Pixel values are reduced

to one of the two depending on which side of the theshold they are on. In mean

thresholding, the threshold value is the mean of the pixel intensity. In adaptive

Gaussian thresholding, the threshold value is a weighted sum of all values considered.

The weights are defined as Gaussian functions. Otsu’s thresholding[86] assumes each

pixel either belongs to the foreground or the background class. It proceeds to find the

optimum threshold to separate these two classes such that the intra-class variance is

minimum and inter-class variance is maximum.

4.3 Results

Figure 4.7 shows the error in width and height using axis-aligned and rotatable bound-

ing boxes. The comparison between axis-aligned and rotatable bounding boxes for

localizing the ruler portion in the image shows that rotatable bounding boxes are

better to determine the mean squared error in height and width. The next step

was to determine the pixel length of ruler graduations in the image by dividing the

cropped section into a grid boxes and binarizing all the boxes through applying adap-

tive Gaussian, Otsu and mean. Subsequently, the pixels were summed across the

vertical axis, normalized the intensity values around a zero mean and counted the

number of zero-crossings. The number of zero-crossings is a measure of the num-

ber of ruler graduations in that box (×2). Since, every box in the grid may give a

different number of zero-crossings, the majority count from all boxes is considered.

The adaptive Gaussian thresholding gave the least error in ruler length measurements

(Figure 4.8). The adaptive Gaussian calculates the threshold for each image thus it

can adapt to different ambient lighting conditions and brightnesses to give a better

binarized image.
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(a) Lobster image with a ruler in the
background

(b) The ruler portion is localized in the
image.

(c) The detected ruler portion is cropped
out of the image.

(d) The cropped ruler portion is overlaid
with a grid.

(e) Each 100× 100 pixel box is converted
to a binary image.

(f) The binarized image is summed in the
vertical direction. The resulting sequence
shows a spike in value where the ruler
graduations are present.

Figure 4.6: Steps in the methodology to determine the distance between ruler grad-
uations. The cropped ruler section is overlaid with a grid system and every grid
box is binarized and their intensity values are summed in the vertical direction. The
resulting sequence yields peaks in the values for the case of the ruler.
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Figure 4.7: The rotatable bounding boxes have a lower mean squared error in height
and width.

Figure 4.8: Error in ruler graduation spacings relative to height and width across
different thresholding techniques. The adaptive Gaussian thresholding yields the
lowest relative and absolure error compared to other thresholding techniques.

4.4 Concluding Remarks

So far, methods to detect bounding boxes around marine animals, have been described

in Chapter 3. These have been used in subsequent chapters for cropping out portions

containing lobsters from images. The scaling method described in this chapter can be
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used to calculate the actual height and width against a standard measure of length for

detected marine animals in images (with rulers). In the next chapter, the method to

map morphologial landmarks on to lobters images is described. The scaling technique

described in this chapter is applicable for scaling lobster morphological sizes in pixels

to physical sizes.



Chapter 5

Visual Fingerprinting for Lobsters

Visual recognition of marine animal species, like lobsters, is used in research to moni-

tor their growth and population demographics. This is usually achieved by physically

tagging individual animals to identify and track them. However, tagging can some-

times cause physical harm or mobility restriction for the lobster, or other animal,

with hard exoskeletons and thus interferes with the purpose for their tagging to begin

with. Lobsters will periodically shed their exoskeletons which makes tracking them

through tags difficult. This chapter aims to identify individual lobsters based on the

patterns on their exoskeletons. Convolutional neural network architectures have been

identified as an effective tool towards that [73] [76].

5.1 Background

MacDiarmid et al.[55] performed a study on identification of individual spiny lobsters.

They observed that lobster body patterns are preserved at ecdysis (or moulting, when

the exoskeleton is shed) which enables persistent identification of individual spiny

lobsters throughout their lives. They marked 15 male and female Jasus edwardsii

lobsters with color coded tags and obtained high quality images of them before and

after moulting and observed that lobster body patterns are mostly preserved with only

slight modifications. They also observed that such body patterns vary considerably

among individual lobsters. This is true among other hard shell invertebrates as well.

The research by MacDiarmid et al.[55] confirms that lobster carapace patterns are

preserved through moulting. This means the lobster carapace patterns could act as

a visual fingerprint for a lobster throughout its life.

Gosselin[23] et al. examined 332 female crabs and observed that each crab retained

the pattern on its carapace after moulting. Three inexperienced observers were used

to match the cast-off shell against photographs of crabs based on the pattern on their

carapace. Their results indicate it is possible to identify individual lobsters based

42
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upon the carapace pattern since both crabs and lobsters belong to the crustacean

family.

This knowledge will be exploited to uniquely identify lobsters using vision-based

techniques like CNN architectures towards lobster traceability.

Hillman et al.[29] developed a method to identify individial marine animals (e.g.

dolphins) to compare new images with a group of previously identified images in their

database. The matching algorithm was based on the pattern of nicks and notches on

the dolphin’s dorsal fin. They extracted the shape of the fin and used curve fitting

methods to compare its shape against others in their database. They were able to

achieve 75% accuracy. Their work indicates the possibility of uniquely identifying

an animal within a species based on visual images - this concept is exploited in this

thesis.

All this work suggests that there are characteristic markings and shapes that

uniquely distinguish one member in a class of marine animals from another (Figure

5.1). Then, the next step is to find ways to automate this for lobsters. A similar

problem that has achieved some automation and has had more attention than marine

animal identification, is face recognition where the classes are individual people (where

gender and age are varied).

Figure 5.1: Variations in lobster carapace patterns (circled in red): the top row
contains images of the same lobster from different views. Similarly, the bottom row
contains images of the same lobster in different views. The top and bottom lobster
can be visually discriminated by the pattern on the carapace.

Facial recognition can be challenging due to human behaviours like poses and
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expressions as well as external conditions like ambient lighting which contributes to

image variation in the same face. Early facial recognition methods such as Bayesian

face[58] and LDA[3] attempted to minimize intra-personal face variations and max-

imize inter-personal ones. Guillaumin et. al.[24] used metric learning to map facial

images to vector spaces such that images from the same person are ’closer’ (in the

Euclidean sense) than those that are from other people. However, deep learning

approaches[73] [76] provided better tools to capture the complex nature of the intra-

and inter- person variability due to its greater learning capacity.

The dataset used in the thesis has approximately five images per lobster. However,

deep learning approaches require large datasets for the learning / training. Given a

limited dataset, one-shot or few-shot classification techniques are relevant for the

classifier to train on. Koch [42] et. al. used Siamese networks for one-shot image

classification. A Siamese network consists of two convolutional sub-neural networks

with shared weights. Pairs of images from the same class, and also from different

classes, are created in equal proportion for a single batch of training. The image

pairs are presented to the CNNs in the Siamese network. The structure of the CNN

is a series of convolution and pooling layers. The feature representations from the

layers are flattened to a one-dimensional vector. This flattened vector represents the

projection of the image onto a continuous vector space. The distance between the

two vectors is calculated using an Euclidean distance [14]. This distance is fed into a

fully-connected layer and then finally, optimized using the cross-entropy loss function.

Their results show the network correctly image differentiates pairs from the same class

and those that are from different classes.

Taigman et al. [78] developed a nine-layer convolution neural network that trained

on a dataset of four million images for 4000 distinct faces (or classes). They also

developed a face alignment system based upon 3-dimensional models of faces. They

achieved an accuracy rate of 97.35% on the LFW[34] dataset.

Sun et al.[73] developed their probabilistic classification model, DeepID2, to re-

duce intra-class and increase inter-class variations using face-identification and veri-

fication as supervision. The training inputs were pairs of images presented to a two-

convolution neural network with shared weights. DeepID2 is optimized using two

loss functions. The first addressed identification, which classifies the output of each
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CNN to n different identities (people). The identification loss, captured through the

cross-entropy (Eq. 5.1), requires knowledge of the identities’ distributions (number

of images / person), and is defined as:

CE = −1 ∗
n∑
i=1

ci ∗ log(ĉi) (5.1)

such that ci is zero for all i except the target class t (a particular person) which is

1 and ĉi is that target’s probability distribution. The second loss function, the face

verification loss, discriminates between feature representations for the two images in a

pair. The verification loss is a measure of contrast between images. This contrastive

loss was defined [25] as :

Constrastive Loss =


1

2
||fi − fj||2

2 if yij = 1

1

2
∗max(0,m− ||fi − fj||2

2) ifyij = 0.
(5.2)

Here, fi and fj are representations of images i and j. yij is a Boolean variable which

is 1 when both images are from the same class and 0 when they are from different

classes. Eq. 5.2 requires the distance be larger than a margin, m.

Sun et al [74] developed DeepID3 by modifying two deep neural network archi-

tectures VGG[69] and Inception[77] for face recogntion. Similar to [73], they used

the face identification (Eq. 5.1) and verification (Eq. 5.2) supervisory loss functions

during training. Zhou et al. [92] trained a 10-layer CNN on a much larger data set of

faces than DeepID [73] without joint verification and identification or 3-D alignment.

They achieved 99.50 percent accuracy with the LFW[34] data set (state-of-the-art

for the time) using the aforementioned data set which had five million labeled faces

of 20,000 individuals. Schroff et al. [63] presented a CNN architecture, FaceNet,

where triplet loss was used. The Siamese network was modified to take as input, a

set of three images at a time. The triplet images consist of an anchor, positive and

negative image. The anchor and positive images have the same identity whereas the

negative one is different from both the anchor and positive images. This triplet loss

aims to minimize the distance between the anchor and positive images and maximize

the difference between the negative and anchor images. However, it was not straight-

forward to choose meaningful positive and negative pairs. Naive sampling can lead to

choosing easy positive and negative pairs in the batch which causes a collapse in the
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Figure 5.2: The pre-trained VGG-16 network is appended with two convolutional
layers containing 256 filters and two max-pooling layers with 4× 4 filters.

training. Many of the aforementioned CNN architectures like DeepID3 were trained

with large data sets. The thesis’ approach was a Siamese network-based architecture

with pre-trained VGG (Fig 5.2) to address the the lobster recognition problem given

the smaller datasets used.

5.2 Methodology

The thesis’ approach to lobster recognition using deep learning networks is described

in this section. The available dataset is described first followed by the model archi-

tecture.

5.2.1 Dataset

The dataset used contains 560 images of 114 lobsters which is approximately 5 images

per lobster. Since the dataset is limited, image augmentation techniques as mentioned

in Section 2.4 were used to increase the training dataset.

5.2.2 Model Architectures

Softmax-based classifier

The pre-trained VGG16 network was appended with two convolution layers with 256

3×3 filters and two max-pooling layers (Figure 5.2). The test accuracy was observed

to increase notably until 256 filters and remained similar beyond that (Figure 5.3).

Additionally,the test accuracy was observed to increase notably until 2 convolution

layers(keeping 256 filters) and remained similar beyond that(Figure5.4). The final

layer is a dense one with units equal to the number of class identities and softmax

activation. The softmax function changes an n-dimensional vector z of arbitrary real
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Figure 5.3: The test accuracy of the VGG-16 network was observed to increase until
up to 256 filters and remained similar after that. This justifies using 256 convolution
filters

values to an n-dimensional vector σ(z) where
∑K

i=1 σi = 1 and σ(zj) =
e(zj)∑K

k=1 e
(zk)

. The

Siamese network that this feeds into is described next.

Siamese Network

The pre-trained VGG16 network was appended with two convolution layers with

256 3 × 3 filters and two max-pooling layers Fig. 5.2. Subsequently, a dense layer

containing 512 units was added. The weights used for the VGG16 are those from the

training on the ImageNet dataset.

In each batch, pairs of images were created so that half of the pairs were from the

same lobster (different camera aspect or type) and the other half were images from

different lobsters altogether. Both images in the pair were input to the aforementioned

CNN (Fig. 5.5). The CNN network outputs a 512-dimensional representation of each

image. The Euclidean distance between the two vectors was calculated. The objective

was to minimize the Euclidean distance if the image pairs were from the same class

and to maximize the distance if they are from different classes.

The loss functions used to optimize the distance between image pairs were the

binary cross-entropy (Eq. 3.1) and the contrastive loss functions (Eq. 5.2).
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Figure 5.4: The test accuracy of the VGG-16 network was observed to increase
until up to 2 convolution layers (keeping 256 filters) and was similar after that. This
justifies using 2 convolution layers

Figure 5.5: Siamese networks: pairs of images are input into the network. The
network has two convolution neural sub-networks which are fed two separate images.
The network learns to differentiate between pairs from the same class and those from
different classes.
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5.2.3 Inference

The test image was classified based on the training class which had the shortest

Euclidean distance to it. The algorithm for test image classification is given in 1

Data:

M(x) = embedding for image x

i = test image

Result: Find the class id of the test image

support set← unique labels in the training set

emi ←M(i)

for k in support set do
sumk ← 0

countk ← 0

for image j with label as k do
emj ←M(j)

dij ←|| emi − emj ||
sumk ← sumk + dij

countk ← countk + 1

end

averagek ← sumk/countk

end

predicted label← argmin(averagek)

Algorithm 1: Pseudo-code for the algorithm to determine

the closest label to the given test image

The models were trained with a patience number of 50, i.e if the validation loss (Eq.

5.1 and 5.2) does not decrease for a 50-epoch run, the training process is terminated.

The models were trained with a patience factor of 50 since it was observed that the

test accuracies did not improve much beyond that. The available data set was split

so that the training was applied to 75% of the images and the test accuracy was

reported on the other 25%.

Table 5.1 reports the top-k accuracy of softmax-based classifier and metric-based

classification (i.e Eq. 5.2). The top-k accuracy is the percentage of instances where

the true predicted labels lie in the top-k probabable predictions for that instance.
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Table 5.1: Comparison of top-k accuracies using Siamese networks with contrastive
loss for one-shot versus a softmax-based classifier. The contrastive loss based classifier
had better top-3, top-5 and top-7 accuracies compared to the softmax and cross-
entropy based classifiers as evident in the p-test values (< 0.05 threshold)

model softmax-based classifier contrastive loss

mean std dev mean std dev p-value

k = 1 0.56 0.06 0.57 0.025 0.97

k = 3 0.72 0.03 0.79 0.04 0.03

k = 5 0.81 0.03 0.87 0.02 0.002

k = 7 0.85 0.02 0.89 0.01 0.002

k = 9 0.88 0.03 0.90 0.01 0.22

Table 5.1 shows that the top-1 accuracy of cross-entropy and contrastive loss based

methods were marginally better than the softmax-based classifier. The top-3, top-5

and top-7 accuracy of contrastive loss-based methods were better than the softmax

and cross-entropy based classifiers. This means that with contrastive loss methods,

it is possible to identify unique lobsters with at least equal or greater accuracy than

softmax-based classifiers.

Figure 5.6 shows the variation in test accuracy with k-value for given margin

parameters, m, of the contrastive loss function (Eq. 5.2). The top-k accuracies

increase with increasing margin parameter to a certain point. Setting a very low

value to the margin parameter desensitizes the loss function to the image pairs i.e the

second part of Eq.5.2. However, setting a high value gives disproprotionate weight

to images of different lobsters in a pair at the cost of pairs with images of the same

lobster (favours inter- over intra- lobsters).



51

Figure 5.6: Variation in test accuracy with k-value for given margin hyperparameters
(m in Eq. 5.2). Increasing the margin value increases the test accuracy to a point.

Figure 5.7 shows the Euclidean space of features after applying principal com-

ponent analysis (PCA) on the feature space of the dataset embeddings learned by

the classifiers (embeddings are a low-dimensional space into which high-dimensional

vectors can be projected). Principal componant analysis reduces the dimensionality

of a dataset that contains lots of features to a dataset that contains most of the infor-

mation in the large data set. Siamese networks using constrastive loss show greater

inter-cluster distance and reduced intra-cluster distance compared to softmax based

features. This is the desired outcome.

Figure 5.8 shows wrongly identified examples by the siamese network. The exam-

ples are for images where the lobster is partially occluded such as a hand as shown in

figure 5.8a or extreme changes in lighting such as a camera flash as shown in figure

5.8b.

5.3 Concluding Remarks

The chapter demonstrates the use of convolutional neural networks to identify indi-

vidual lobsters. Horiguchi et al. [31] state that metric-based features perform well

when there is less data, as in the case here. An example is one-shot or few shot

classifications. This is further validated in the thesis results. Since there were only

five images per lobsters (i.e. less data), the metric-based features i.e contrastive loss

performed better than the softmax-based ones.
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(a) PCA of the lobster Euclidean space from
the softmax classifier. Inter-class differences
< intra-class differences (not desirable).

(b) Contrastive loss for m = 3 (eq. 5.2).
Inter-class differences < intra-class (not de-
sirable).

(c) Contrastive loss for m = 17 (eq. 5.2).
Note the desirably smaller intra-class, and
larger inter-class, differences compared to (a)
and (b), above. This is the best case.

(d) Contrastive loss for m = 20 (eq. 5.2) per-
forms worse than (c), which has the desirable
pronounced differences, but better than (b)
and (a).

Figure 5.7: Visualization of Euclidean space using principal component analysis of the
embedding space learned by using different models. Figures 5.7a and5.7b have low
inter-class, and greater intra-class, differences (undesirable) compared with Figures
5.7c which has smaller intra-class, and larger inter-class, differences (desirable).
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(a) The lobster is wrongly identified – possi-
bly due to occlusions in the image such as a
hand.

(b) The lobster is wrongly identified possibly
due to extreme change in lighting such as a
camera flash in in this case.

Figure 5.8: Examples of lobsters wrongly identified mainly due to the occlusions or
extreme change in lighting such as camera flash

As well, Siamese networks were used to create an n-dimensional vector for every

lobster. The method is essentially a black box technique to characterize lobsters. In

the next chapter, lobsters are characterized quantitatively using various methods for

mapping morphological landmarks on the lobster images. The landmark mapping

enables the characterization of quantitative lobster features such as the length of

lobster from the eyes to the end of the carapace, claw length and widths, abdomen

lengths,etc.



Chapter 6

Lobster Landmark Localization

6.1 Introduction

Biologists use morphometry for quantitive analysis on the size and shape of organisms.

Traditional morphometry consists of physical measurements like length, width, weight

and area. Landmark-based morphometry uses a set of anatomical positions to analyse

the shape [57] of a population. These anatomical positions are biologically meaningful

[68] points that are consistent across similar species of a population. Morphometry

is thus used to distinguish between species of similar shape. For example, Sontigun

et al.[70] used wing morphometrics to identify 12 blow fly species of Thailand. Truss

network measurements[72] are a set of distance measurements between landmarks on

the surface of an organism. The truss network system uses geometric morphometry

for stock identification. Stock identification can be used to cluster a population into

groups with different growth rates. As mentioned earlier, there are ecological and

economic sustainability reasons to assess and monitor stocks and their sizes.

This chapter reports on approaches to learn mapped landmarks on lobsters from

training images and ultimately to extract them. The approaches consider deep learn-

ing architectures that include vanilla CNN, cascaded CNN, and CNN augmented with

attention mechanisms. The next section outlines work related to landmark detection

on human facial features and the use of attention mechanism to enhance the test

accuracies of convolutional neural networks.

6.2 Background and Related Work

State-of-the-art research in deep learning using facial landmark detection algorithms

could be applied to feature recognition on marine animals [65]. Facial landmark

detection techniques map the coordinates of key facial features like eyes, nose and

mouth from images and videos. Earlier work towards this includes Active Appearance

54
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Models (AAM) [10] that create a statistical model using principal component analysis

(PCA). PCA learns the orthogonal bases that capture the variations of the face. Then,

the AAM finds the coefficients of the statistical model that best fits the test image.

Dollar et. al.[17] calculates object (landmark) pose in images with a cascade of

random fern regressors [51]. Each regressor takes as input the image patch around

landmarks predicted by the previous regression model. Xiong et al. [85] uses scale-

invariant feature transform[53] of image patches as input to multiple cascade regres-

sors to calculate facial landmarks at each stage. Sun et. al. [75] propose a three-level

cascaded regression method with a CNN classifier at each level. Their first CNN pro-

vides a robust initial estimate of the facial landmarks with the following two CNNs

refining the initial prediction towards higher accuracies. The work of Zhang et. al.

[90] uses a cascade of coarse-to-fine autoencoders. The first autoencoder calculates

preliminary landmarks from a low resolution version of the face. Then, subsequent

autoencoders refine the landmarks by taking the local features extracted around the

current landmarks. However, cascaded regression networks have shortcomings. For

example, the learning process is independant of other stages. To address that, Tri-

georgis et al.[80] proposed mnemonic descent which uses long short-term memory

networks to model the dependancies between iterations in the cascade learning.

Attention mechanisms in deep learning are inspired by the human ability to fo-

cus on a subset of the environment [46]. The human visual attention mechanism

can selectively focus on part of an image in high resolution while ignoring the rest.

Similarly, an algorithm that maps landmarks on lobsters could focus on the lobster

body in an image compared to its background. A CNN augmented with an attention

mechanism could potentially map lobster landmarks more accurately by learning to

focus on the lobster’s body.

Yue et al. [88] propose a fully end-to-end convolutional regression network, as

shown in Fig: 6.1, that yields facial landmarks in a single iteration. They introduce an

attention mechanism where the network learns to ”pay attention” to regions around

landmarks without using image patches. The network generates spatial attention

maps from the outputs of its multiple convolutional layers. The network explores

image features at different scales with an attention mechanism that uses intermediate

supervision to learn features that are relevant to facial landmarks. The total network
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loss is the sum of the regression loss at each level of the network. However, this

network needs to be trained from scratch. Therefore, this attention mechanism cannot

augment pre-trained architectures like VGG or Resnet which are used in this thesis.

Figure 6.1: Alignment attention mechanism as mentioned in Yue et. al.[88]. The
attention layers are placed in between the layers of the CNN modifying the original
structure of the CNN.

With that inspiration, the next section outlines the experimental methodology for

landmark localization of lobsters including dataset description, image augmentation

techniques and details of the CNN model architectures considered.

6.3 Experimental Methodology

6.3.1 Dataset

This training dataset was 350 lobster images from National Lobster hatchery in the

United Kingdom. [1]. Figure 6.2 shows a representative image from which 11 land-

marks were mapped: two on the claws, one on the eyes, one at the end of the carapace,

six between the segments of the abdomen and two on the tail. Bounding boxes span

the lobster in an image. Since the dataset is limited, image augmentation techniques

as mentioned in Section 2.4 were used to increase the training dataset.

6.3.2 Model Architectures

Vanilla CNN

For feature extraction, a pre-trained VGG16 CNN was used. The weights used for the

VGG16 are those from the ImageNet dataset. The deeper layers of the pre-trained



57

Figure 6.2: A representative training image that shows 11 landmarks on the lobster
body. The manually drawn green bounding box shows the lobster extracted from the
background. This was required for training the cascaded CNN. The image dataset
was provided by National Lobster Hatchery in United Kingdom.[1]

networks were made trainable to fine-tune the accuracy [87]. The pre-trained VGG16

CNN is appended with a convolution layer with 128 3× 3 filters followed by a 4× 4

max pooling layer. This was followed by another convolution layer with 128 3 × 3

filters followed by a 4 × 4 max pooling layer (Figure 6.3). The mean squared error

in pixels was observed to decrease with increase in convolution filters until up to 128

and remained similar beyond that (Figure 6.4). The mean squared error in pixels was

observed to decrease with increase in convolution layers until up to 2 and remained

similar beyond that. (Figure 6.5). The convolutional layer along with the pooling

layers were added to down sample the output feature. The final layer is a 1 × 1

convolution layer. The number of output channels for the 1 × 1 convolution layer is

twice the number of landmarks on the lobster (x and y coordinate needed for each

landmark).

Figure 6.3: Landmark regression using pre-trained VGG16 architecture. The pre-
trained VGG16 is appended with two convolutional layers containing 128 3×3 filters
and two max pooling layers. The final layer is a 1x1 convolution layer with number
of filters equal to twice the number of landmarks i.e 22 in this case.
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Figure 6.4: The mean square error, in pixels, decreases with increasing number of
convolutional filters up to 128 and remained similar beyond that. This justifies using
128 convolution filters.

Figure 6.5: The mean square error (pixels) decreases with increasing number of con-
volutional layers up to 2 and remains similar beyond that. This justifies using 2
convolution layers.

Coarse-to-Fine CNN Cascade

Inspired by [75] and [56], a cascade of CNN regressors that progressively refines the

output at each stage was created. First, an axis-aligned bounding box is detected



59

around the target (the box was manually placed there in an earlier step). The pre-

trained VGG16 network (Figure 2.1) was initalized with ImageNet weights[15] and

appended with additional convolution layers as shown in Figure 6.3. The last layer

of the modified VGG network is a 1× 1 convolution layer containing output channels

equal to the four corners of an axis-aligned bounding box around the object as defined

by the lower left and upper right coordinates. The input image is then cropped using

the predicted bounding box coordinates of the network. Secondly, another modified

VGG16 network, as shown in Figure 6.3, was used to detect an initial estimate of the

landmark points on the cropped image. The final layer is a 1 × 1 convolution layer

containing output channels equal to twice the number of landmarks on the lobster(x

and y for each landmark). The cropped images were re-sized to 448 × 448 pixels

with borders padded if necessary to preserve the original image aspect ratio. In the

final step, separate modified VGG16 networks, as in Figure 6.3, were trained for each

landmark point. The final layer of each network is a 1 × 1 convolution layer with

two channels (x and y coordinate for each landmark). The input to each of these

networks is a 90 × 90 pixel patch around the predicted landmark from the cropped

image. This patch size was chosen since the maximum deviation of the true landmark

and predicted landmarks was 90 pixels. All patches are re-sized to 224 × 224 again

to preserve the aspect ratio. The reason for choosing a patch size of 224 was that

a smaller size would lead to loss in image information and a large size would have

unnecessarily more computational overhead. These networks are trained to refine

the initial predictions with the input to the networks being small regions around the

landmarks.

Attention-Based Landmark Detection

The modified VGG16, shown in Figure 6.3, is augmented with the attention mech-

anism described in Section 2.3 with two attention modules (not shown) as follows.

The feature activations from ConvBlock3 and ConvBlock4 (Figure 2.1) are fed into

two separate attention modules with attention width K = 10. The last layer of the

modified VGG16 network is a 1 × 1 convolution layer with the number of output

filters equal to twice the number of landmarks (x and y coordinate) which is 22 in

this case (11 landmarks were regressed). The VGG16 network prediction is combined
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with the predictions from the two attention modules.

6.3.3 Wing Loss

The mean squared error function (also called the L2 loss) penalizes large errors moreso

than smaller ones (square of larger numbers is greater). The mean absolute error

function (also called the L1 loss) is more sensitive to outliers since it does not square

the errors but takes their absolute value. Feng et. al.[19] proposed a new loss function,

the wing loss as defined in Eq. 6.1, which magnifies errors in the range of (−ω, ω)

compared to the mean squared and mean absolute error. The value of ω can be

adjusted to define the range where loss needs to be amplified. The wing loss function

switches from L1 loss to logarithmic loss when the error is in the range of (−ω, ω)

and hence puts more emphasis on errors in the range of (−ω, ω).

wing(x) =

ω ln(1 +
|x|
ε

) if |x| < w,

|x|−C otherwise

(6.1)

such that C = ω ln(1 + |x|
ε

). With this method, parameters of modified VGG16

network augmented with the attention mechanism were optimized as described in

Rodriguez et. al. [67] using the wing loss [19] instead of the mean squared error.

The training and evaluation methodology was consistent for all the convolution

models. Five fold cross validation [43] was used for model evaluation. At each iter-

ation, four folds were used for training and the fifth for testing and evaluation. The

data augmentation (Section 2.4) was performed on the training set but not on the

test and evaluation set. In each iteration, the training was performed for 50 epochs.

In the next section, the results and conclusions from these experiments are de-

scribed.

6.4 Results

The normalized mean squared error is summarized for the models tested in Table

6.1. The ADAM optimizer was used. The results in Table 6.1 and Figure6.6 in-

dicate that the cascaded CNN approach and the attention augmented approaches

have lower average normalized mean squared error compared to the vanilla VGG16
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network. However, a t-test between the vanilla VGG and attention with wing loss

yields a p-value of 0.059 (> 0.05 threshold). This means that there is no significant

statistical difference between the two distributions. However the p-value is marginally

close to the 0.05 threshold so the attention-based methods might have some effect on

improving the vanilla VGG performance.

Table 6.1: Comparison of normalized mean squared error (NME) for CNN models
considered for landmark regression performance across five folds.

CNN
model

normalized mean squared error mean std

VGG16 18.44 16.93 33.77 12.73 16.61 19.70 7.28

cascade 12.50 11.11 11.75 15.96 11.88 12.64 1.71

attention 14.72 10.47 12.96 11.78 10.43 12.07 1.62

attention
wing loss

14.32 10.30 12.66 10.93 9.10 11.45 1.83

Figure 6.6: Root-mean-squared error for landmark localization on different model
architectures. The cascade, attention and attention with wing loss do not appear to
have a significant difference. A t-test between the vanilla VGG and attention with
wing loss gives a p-value of 0.059 (> 0.05 threshold) suggesting no statistical difference
between the two distributions.

Figure 6.7 show the landmarks predictions for lobsters along with heat maps visu-

ally highlighting the attention heads’ feature activations. The heat map temperature

is greater around the landmark locations indicating that the attention maps are learn-

ing to focus on these specific lobster regions – as desired.
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(a) Good e.g. 1: Ground
truth and predicted
landmark location
comparisons.

(b) 1st attention head heat
map (good e.g. 1).

(c) 2nd attention head heat
map (good e.g. 1).

(d) Good e.g. 2: Ground
truth and predicted
landmark location
comparisons.

(e) 1st attention head heat
map (good e.g. 2).

(f) 2nd attention head heat
map (good e.g. 2).

(g) Good e.g. 3: Ground
truth and predicted
landmark location
comparisons.

(h) 1st attention head heat
map (good e.g. 3).

(i) 2nd attention head heat
map (good e.g. 3).

Figure 6.7: Visualization of the attention head weights highlight image areas the
attention mechanism focussed on. The red dots represent the ground truth
landmark locations and the blue dots, the predicted landmark locations. These 3
examples show the attention mechanism focusses, correctly, on the landmarks
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(a) Poor e.g. 1: Ground
truth and predicted
landmark location
comparisons.

(b) 1st attention head heat
map (poor e.g. 1)

(c) 2nd attention head heat
map (poor e.g. 1)

(d) Poor e.g. 2: Ground
truth and predicted
landmark location
comparisons.

(e) 1st attention head heat
map (poor e.g. 2).

(f) 2nd attention head heat
map (poor e.g. 2).

(g) Poor e.g. 3: Ground
truth and predicted
landmark location
comparisons.

(h) 1st attention head heat
map (poor e.g. 3).

(i) 2nd attention head heat
map (poor e.g. 3).

Figure 6.8: Visualization of the attention head weights highlight image areas the
attention mechanism focussed on. Red dots represent the ground truth, and blue
dots the predicted, landmark locations. These 3 examples show the attention model
struggles to map the landmark positions – possibly due to the lobsters’ pose.
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(a) Poor e.g. 4: Ground
truth and predicted
landmark location
comparisons.

(b) 1st attention head heat
map (poor e.g. 4).

(c) 2nd attention head heat
map (poor e.g. 4).

(d) Poor e.g. 5: Ground
truth and predicted
landmark location
comparisons.

(e) 1st attention head heat
map (poor e.g. 5).

(f) 2nd attention head heat
map (poor e.g. 5).

(g) Poor e.g. 6: Ground
truth and predicted
landmark location
comparisons.

(h) 1st attention head heat
map (poor e.g. 6).

(i) 2nd attention head heat
map (poor e.g. 6).

Figure 6.9: Visualization of the attention head weights highlight image areas the
attention mechanism focussed on. Red dots represent the ground truth, and blue
dots the predicted, landmark locations. These 3 examples also show the attention
model struggles to map the landmark positions – possibly due to the lobsters’ pose.
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Figures 6.8 and 6.9 show the landmark predictions for lobsters along with heat

maps visually highlighting the attention heads’ feature activations. However, these

images show where the attention model struggles to map the exact landmark positions

possibly due to the lobsters’ unusual poses. An example of an unusual pose is when

the lobster tail is tucked under the abdomen (Figure 6.8d). The landmark predictions

are also slightly off when the lobster is placed at angle to the horizontal. (Figures 6.9a,

6.9g, and 6.8a). This suggests that the network performance is not rotational and

pose invariant. The network performance can be improved by training with lobsters

at different angles to the horizontal as well.

6.5 Concluding Remarks

The cascaded CNN approach uses a series of staged CNNs where each refines the

landmark predictions from the previous one. The input image to a CNN is an image

patch around the landmark predicted from the previous stage. The objective is to

learn detailed features around the landmark points for more accurate predictions with

subsequent stages. However, multiple cascaded regressors increase the computational

and memory requirements. These staged regressors cannot be trained simultaneously

since the input to subsequent CNNs depends upon the output from previous ones.

CNNs with attention mechanisms[67] [88] learn to ’pay attention’ to regions for fine-

grained inference.

The modified VGG16 augmented with attention mechanism Section. 2.3 performs

with similar accuracy to the cascaded CNNs. However, they predict landmarks in a

single iteration and use a single model. A t-test between the two models confirms

their similarity as the p-value is 0.33 (> 0.05 threshold). The attention mechanism

has the advantage of a simpler implementation for comparable results.

The attention mechanism augmented CNN trained with wing loss makes the train-

ing process robust to outliers like occlusions since it emphasizes errors by giving more

weight to smaller errors. However, the result with wing loss training shows similar

accuracies to CNNs with attention. A t-test between the two confirms this with a

p-value of 0.63 (> 0.05 threshold). This means the wing loss, while robust to outliers,

is not producing any gains in accuracy.

In this chapter, CNNs were evaluated for mapping morphological landmarks onto
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the various keypoints in the lobster image. The landmark mapping enables the char-

acterization of quantitative lobster features like the length of from the eyes to the

end of the carapace, claw length and widths, abdomen lengths, etc. In the next chap-

ter, methods will be presented to address qualitative lobster attributes like gender,

crusher claw location, etc.



Chapter 7

Fine-Grained Classification of Lobster Attributes

Properties such as gender, crusher claw location and abdominal somite bulge can char-

acterize lobsters (individually or as a population). These properties are immutable

i.e they do not change for a lobster in different environmental conditions. Mutable

properties like tail spread and posture can be considered measures of the conditions

the lobsters are kept in prior to entering the market.

Gender classification facilitates preservation of lobster populations. Female lob-

sters are considered a delicacy because their wider tail contains unfertilized eggs and

have more meat. Currently, lobster processing plants manually classify lobster gen-

der. The objective of this research and development is to automatically classify the

lobster gender from an anterior (visual) view. Gender can be determined through the

tail width – female lobsters have wider tails (Figure 7.1).

Visually, the lobster abdomen appears as a series of segments or somites. The

amount of bulge in the first abdominal somite is an indication of whether the lob-

ster has sustained injury. The visual classification of the first abdominal somite is

important to assess the handling of lobsters in a processing plant.

Lobster stored in colder water are less active when removed from the water. Lob-

sters kept at higher temperatures display a more aggressive posture (claws extended

upwards) when removed from the water. Lobster posture also gives some indication of

the conditions the lobster were kept. Cooler temperatures are more desirable towards

getting healthier lobsters to market.

Lobsters have two types of claws: pincher and crusher as shown in Figure 7.2.

Their crusher claw is used to break open food with hard shells like crabs or clams.

The crusher claw can be on either side of the lobster. The classification of which side

is another attribute in their characterization or profile.

Lobster tail spread can be categorized as closed, partly spread or fully spread

(Figure 7.3). Fully spread lobster tails are a sign of inactivity which is an indication

67
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Figure 7.1: Gender as a classification class: (left) female; (right) male. The female
lobster has a wider tail compared to a male lobster.

Figure 7.2: The crusher claw has a larger curvature and a white spot in between the
claw teeth. The pincher claw is narrower than the crusher claw.



69

of poor lobster health.

Figure 7.3: Tail spread as a classification class: (a) partially closed; (b) fully closed,
and (c) fully open.

This chapter explores convolution neural networks for image classification of lob-

ster based on five attributes: gender (male, female); detection and assessment of

the first abdominal bulge (enlarged, or not); classification of crusher claw location

(left, right); tail spread (partially closed, fully closed and fully open) and posture

(non-aggressive, aggressive).

An attention mechanism to improve the classification accuracy of the vanilla VGG

network is designed and used. Regular or vanilla CNN architectures do not deliber-

ately extract detailed features from images. However, the attention mechanism learns

to focus on regions of the lobster that differentiates their attributes . The attention

mechanism proposed by Rodriguez et. al. [67] does not change the underlying infor-

mation pathways of the CNN architecture. This means it can augment architectures

like VGG and ResNet with no additional supervision unlike the attention mechanism

proposed in [88]. Rodriguez et. al.’s attention mechanism can be easily inserted into

an existing trained network to perform transfer learning (Section 2.2). This is the

preferred approach for this thesis. Another relevant merit of the attention deficit

method is that good results can be obtained from small training datasets – all that

is available to this thesis.

The following section presents related work for fine-grained classification tech-

niques that use convolution neural networks.
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7.1 Background and Related Work

The gender of a lobster can also be classified by examining the first set of swimming

legs on the lobster’s underside. The female lobster has light almost feathery legs

whereas the male lobster’s are harder and bony. As mentioned earlier, the gender

can also be classified from the tail width (Figure 7.1) since female lobsters have wider

tails. There have been numerous studies and tools developed for classification of

gender in human faces that are applicable to general lobster classification. These are

briefly presented next.

Jaswante et al [40] performed gender classification on human facial images. They

use the Viola-Jones algorithm [83] to extract distances between landmarks such as eye-

to-mouth, between the eyes, nose width, and mouth width. These feature distances

are input into a neural network which is trained to predict the gender from the image.

Unlike the two step process of Jaswante et. al., CNNs predict the lobster gender in a

single step.

Levi et al [49] implemented a convolutional neural network for automatic age

and gender prediction on human faces. They tested their accuracy on the Audience

dataset [18]. Levi et al. trained the CNN from scratch and did not use any pre-

trained weights. For the thesis work there is only a small dataset which might be

insufficient to train a CNN from scratch. Dhomne et al.[16] used VGGNet[69] for

gender classification which could also be used well with limited training datasets.

Since there is a small dataset for the thesis work, a similar method will used on a pre-

trained VGG[69] to classify lobster properties such as gender, crusher claw location,

abdominal bulge, etc.

The tail width of the lobster is a discriminating feature for gender classification.

Fine-grained classification approaches are suited to find differences that visually sep-

arate male and female lobsters. Next, fine-grained classification methods that use

convolution neural networks are compared to the attention augmented convolution

neural networks [67].

Zheng et al. [91] classified fine-grained bird categories with a multi-attention con-

volution neural network (MA-CNN). MA-CNNs contain channel grouping networks

which take input feature representations from a convolution neural network such as
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VGG-16. It produces multiple parts like the bird’s head or tail by clustering the spa-

tially correlated input feature representations. The parts classifier network classifies

the image using the individual part. The channel grouping network and parts classi-

fier are optimized alternatively. However, unlike the attention augmented CNN [67],

the approach does not learn to focus on features at different scales. The attention

augmented CNN selects information at different scales by extracting features from

different layers of the CNN. MA-CNN uses features only from the last layer. This

could lead to the CNN performing poorer for different object sizes.

Han et. al. [26] used an attention module that uses attribute information like

gender, hair, etc. to choose category features in different regions of facial images.

Along with that, the network also has a category-guided attention module which

selects local image features based on category labels. These combined features provide

a richer feature set for fine-grained classification. However, the lobster dataset used

does not have any such attribute information. An attention mechanism [67] that does

not use any extra attribute information was used.

Lin et. al. [52] proposed a bilinear CNN architecture for fine-grained recognition

that used two features extractors and multiplied each of their outputs, at each image

location, to consider the pair-wise correlations between features. This enables learning

to focus on image regions for fine-grained classification. However, the two CNN

branches must be trained from scratch which is difficult with a small dataset. Apart

from that, the architecture does not consider features at multiple scales.

Jaderberg et al. [36] introduced a new learnable module called the spatial trans-

former network that improved fine-grained classification performance by learning an

affine transformation layer. This transformation layer learns to rotate or scale an

image to enhance the geometric invariance of the CNN model and then performs the

classification. The spatial transformer network, again, requires large training datasets

which is difficult as the present work only has a small one.

Cui et al. [13] proposed a method of capturing domain similarity using the Earth

movers distance (distance between two probability distributions in a region). This

showed better transfer learning can be achieved by fine-tuning with a similar dataset of

images. For example, if classification needs to be performed on a limited fish dataset,

then a network pre-trained with a similar dataset, such as marine animals, might give
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better accuracy than the smaller dataset alone. Cui et. al. pre-trained a CNN on

a subset from the Imagenet dateset based on the proposed similarity measures then,

used that to fine-tune a CNN for the target domain. There are no publicly available

lobster datasets that could be used to pre-train a CNN so this method was not as

applicable.

As informed by the related work, the next sections outline the experimental

methodology and describes the learning models used in this thesis.

7.2 Experimental Methodology

The following subsections describe the datasets (which drives the experimentation),

image augmentation and the learning models developed for training and prediction.

7.2.1 Training Datasets

The data collected for classification of lobster classes like gender, abdominal bulge,

crusher claw location, tail spread, and posture. Each class has its own dataset. Often

the classes in the datasets are unbalanced. The gender dataset, for example, has

75 % males and 25 % females. To combat such unbalanced classes, the penalized

cross-entropy loss (2.6.5) was applied.

Generally, about 80 % of a dataset was earmarked for training and 20% for testing.

The training set was increased by 2× more images through augmentation of the

original images. Therefore, the training set is 3× the original training set. The

distributions of the datasets will be presented in this section.

Gender

The training dataset for gender classification is based on multiple view of 114 individ-

ual lobsters which yielded a total of 159 images for this dataset. Approximately 73

% are male. Table 7.1 shows the ratio of male and female lobsters in this dataset. It

shows the number of original images used for training was 127. With the augmented

images, the total training set is 381 images. The 32 test images contain no augmented

images.
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Table 7.1: Dataset (159 images) class, training and testing distributions for gender
classification

class training testing

labels male female orig set orig + augmented orig set

ratio 0.75 0.25 0.79 3× 0.21

number 120 39 127 381 32

Table 7.2: Dataset (228 images) class, training and testing distribution for abdominal
bulge classification

class training testing

labels normal abnormal orig set orig + augmented orig set

ratio 0.67 0.33 0.79 3× 0.20

number 150 78 182 546 46

Abdominal Bulge

228 lobster images were side views which is useful to assess abdominal bulge. About

33% of these lobster images showed the first abdominal somite bulged out (Figure

7.4). Note, the tail of the bottom lobster is partially detached from the rest of the

body – corroborating that this lobster has sustained injury. For contrast, Figure 7.5

shows a different view where the first abdominal somite is detached from the lobster.

Table 7.2 shows the distribution of lobsters with and without abdominal somite bulge

in the dataset. The majority of the dataset does not have the abdominal somite bulge.

Crusher Claw Location

A dataset containing 355 lobster images was used to classify the side that the crusher

claw is located. Table 7.3 shows the percentage of lobsters that have the crusher claw

on the right side which is 52 % and 48 % have it on the left side. Generally, the

crusher claw has 50 % chance of being on either side of the lobster. This is another

feature that is part of a lobster’s profile and could help distinguish it from another

lobster. As shown in Figures 7.2 and 7.6, the crusher claw is larger than the pincher

claw and has higher curvature. As well, the crusher claw has white spots on the inner
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Figure 7.4: Abdominal somite bulge is a classification class and health indicator:
(bottom) an unhealthy lobster with a bulge on the first abdominal segment which is
partially detached; (top) first abdominal segment is normal and the lobster is healthy.

Figure 7.5: Abdominal somite bulge is a classification class and health indicator:
An unhealthy lobster with a bulge in the first abdominal somite. The abdomen is
detached as the internal white portions are now visible.



75

Table 7.3: Dataset (355 images) class, training and testing distributions for crusher
claw location classification

class training testing

labels left right orig set orig + augmented train orig set

ratio 0.46 0.54 0.79 3× 0.21

# 163 192 283 849 72

Figure 7.6: Crusher claw location is a classification class: (left) crusher claw on the
right side and (right) crusher claw on the left side.

surface.

Tail Spread

Table 7.4 shows the class ratio of the lobster tail spread in the dataset. The dataset

for tail spread classification contained 367 images of which: 125 are fully open; 57

are partially open and 185 are closed. Figure 7.3 shows examples of tails that are

partially open, fully open and closed. The fully closed tail spread is an indication of

activity and thus good health for a lobster.

Table 7.4: Dataset (367 images) class, training and testing distributions for tail
classification

class training testing

labels open partially open closed orig set orig set + augmentation orig set

ratio 0.34 0.15 0.50 0.79 2× 0.20

# 127 57 183 293 586 74
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Table 7.5: Dataset (546 images) class, training and testing distributions for posture
classification.

class training testing

labels aggressive non-aggressive orig set orig set + augmentation orig set

ratio 0.35 0.65 0.79 3× 0.21

# 79 149 182 546 46

Posture

The dataset for posture classification has 546 side view images (best view to assess

posture) of which 183 have an aggressive posture. Table 7.5 shows the dataset distri-

bution for posture classification. Fig. 7.7 shows examples where the top lobster has a

non-aggressive pose and the bottom one has an aggressive pose. An aggressive pose

is a sign of activity and therefore a lobster that is healthy.

7.2.2 Model Design

Vanilla CNN

For feature extraction, a pre-trained VGG16 CNN (Fig. 2.1) initialized with weights

trained on ImageNet dataset was used. The deeper layers of the pre-trained networks

were made trainable to fine-tune the accuracy.

As shown in Figure 7.8, the pre-trained VGG16 was appended with two fully-

connected layers. The number of fully connected layers chosen was two since the

test accuracy was marginally better for 2 hidden layers across most classifiers (Figure

7.9e). The final layer is a fully-connected layer with units equal to the number of

classes to be distinguished along with softmax activation. For gender classification,

the final fully-connected layer contains a single unit corresponding to whether it

is a male or a female. For abdominal somite bulge classification, a single unit is

used as well since it was necessary to classify whether the first abdomen bulges out.

Similarly, to determine which side the crusher claw was on, a single unit was used.

For tail classification, three units were used to classify whether the tail is fully spread,

partially open or fully closed.

For gender classification, 64 neural network units were selected for the first two
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Figure 7.7: Posture is a classification class: (top) a non-aggressive pose and (bottom)
an aggressive posture with claws spread upwards.

Figure 7.8: The modified VGG16 network developed in this thesis. Transfer learning
was used to initialize the pre-trained VGG16 (Figure 2.1) with weights trained on the
Imagenet dataset and appended with two fully-connected layers. Then, the network
was re-trained with the custom dataset. The utility of tanh / relu activation and
dropout / batch normalization layers were evaluated.
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(a) The test accuracy for gender classifica-
tion is maximum for 2 hidden layers.

(b) The test accuracy for abdominal bulge
classification is maximum for 2 hidden lay-
ers.

(c) The test accuracy for crusher claw lo-
cation classification is similarly optimal for
1 - 3 hidden layers. Accuracy is marginally
higher for 2 layers so this was chosen.

(d) The test accuracy for posture classifica-
tion is similar for 1- 3 hidden layers after
which it decreases. Accuracy is marginally
higher for 2 layers so this was chosen.

(e) The test accuracy for tail spread classifi-
cation is similar for 1 - 3 hidden layers. The
accuracy is only marginally higher for 2 so
this was chosen.

Figure 7.9: Test accuracies for lobster
traits with number of hidden layers. Re-
sults were only marginally better, across
all datasets, therefore, the choice was 2
across all classifiers.



79

Figure 7.10: The test accuracy for gender classification increases with number of
hidden units until it saturates around 128. Since the difference between 64 and 128
was marginal, 64 hidden units was selected.

fully-connected layers because the accuracy did not notably increase beyond that

(Figure 7.10).

For abdominal somite bulge classification, 128 neural network units were selected

for the first two fully-connected layers since the test accuracy did not increase notably

beyond that (Figure 7.11).

For crusher claw location classification, 32 neural network units were selected for

first two fully-connected layers since the test accuracy was maximum at 32 units

(Figure 7.12).

For tail spread classification, 64 neural network units were selected for first two

fully- connected layers since the test accuracy did not notably increase beyond that

(Figure 7.13).

For aggressive posture classification, the test accuracies appear similar because

of considerable overlap of the error bars as shown in Figure 7.14. However, there is

a general increasing trend in test accuracy until 256 hidden units. Therefore, 256

neural network units were selected for the first two fully-connected layers because the

test accuracy did not notably increase beyond that (Figure 7.14).
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Figure 7.11: The test accuracy for abdominal somite bulge classification increases
with the number of hidden units until it saturates around 128. Therefore, 128 hidden
units was chosen.

Figure 7.12: The test accuracy for crusher claw location increases with the number of
hidden units until it saturates around 128. 32 hidden units was selected as it yielded
the maximum value.
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Figure 7.13: The test accuracy for tail spread classification increases with the number
of hidden units until it saturates around 128. Since the difference between 64 and
higher units were marginal, 64 was selected.

Figure 7.14: The test accuracy for aggressive posture classification increases with the
number of hidden units until it saturates around 256.
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CNN with Attention Modules

The attention mechanism for CNNs proposed by Rodriguez et. al.[67] for fine-grained

classification was used in this thesis. The modified VGG16, as shown in Figure 7.8, is

augmented with the above-mentioned attention mechanism with two attention mod-

ules. The feature activations from ConvBlock3 and ConvBlock4 (Figure 2.1) are fed

into two separate attention modules with attention width K. K is a hyperparameter

whose value is set before the model is trained. The last layer contains units equal to

the number of classes to be classified.

The VGG16 network prediction is combined with the predictions from the two

attention modules with attention gates, g (Eq. 2.11).

7.2.3 Experimental Methodology

The modified VGG16 (Figure 7.8) model was evaluated against the same modified

VGG16 network augmented with attention modules to gage the impact of the atten-

tion modules. The pre-trained VGG16 (Figure 2.1) was appended with two fully-

connected layers. The efficacy of two activation layers, tanh and relu, for the layer

after both fully-connected layers were evaluated. After the activation layer, dropout

or batch normalization layers can be added. The batch normalization and dropout

layers can be used together. For the sake of simplicity either of these layers can be

used. Dropout layers are for model regularization and batch normalization for faster

convergence of deep neural networks. However, batch normalization can also act as a

regularizer [35]. Two dropout rates, 0.4 and 0.2, were used. Figure 7.8 shows the com-

bination of activation and dropout/batch normalization layers that were evaluated for

VGG and VGG with attention modules.

Table 7.6 gives counts of the trainable parameters for each classifier in the Figure

7.8 architecture. The attention VGG has 1.2M trainable parameters more than the

vanilla VGG. This is not significant in terms of computation cost compared to the total

parameters in the vanilla VGG i.e. 15M including the trainable and non-trainable

parameters.

The architectures were evaluated using both the ADAM (Section 2.5.2) and SGD

optimizers (Section 2.5.1). The ADAM optimizer was used since it converges faster

as explained in Section 2.5. However, experiments were also performed using SGD
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Table 7.6: The number of classifier trainable parameters for the CNN networks
considered – vanilla VGG has 1.6M and attention VGG, 2.8M. The attention modules
have 1.2M more parameters which is not significant in terms of computation cost
compared to the total parameters in the vanilla VGG i.e. 15M.

classifier model vanilla VGG VGG with attention

posture 1,610,177 2,814,728

crusher side 1,610,177 2,814,728

abdominal somite 1,610,177 2,814,728

gender 1,610,177 2,814,728

tail spread 1,610,307 2,967,430

since the ADAM optimizers do not always converge to the optimal solution.

As explained in Section 2.5, choosing a large learning rate can cause the loss value

to diverge or oscillate over successive epochs and not converge to the global minimum.

The training loss for vanilla VGG (Figure 6.3) was observed to diverge using learning

rate 1e-2 for all classifiers and also for some classifiers with learning rate 1e-3. The

vanilla VGG converged to the optimum for learning rate 1e-4. The attention VGG

performed consistently across all three learning rates. Therefore, the architectures

were evaluated across learning rates 1e-2, 1e-3 and 1e-4.

The binary classification models (except tail spread) were evaluated using accuracy

as measured through the f1-score described earlier (Section 2.6.4).

With the experimental methodology and their performance metrics determined,

the results from these experiment are presented next.

7.3 Results

The following subsections presents results for lobster classification for each of the

attributes, i.e gender, abdominal bulge, crusher claw location, tail spread and posture.

(1) The variation of the test accuracy with the number of attention heads (1, 3, 5, 7,

and 9) is presented. Beyond 9 attention heads, the computational overhead becomes

high with no discernible improvement in the mean test accuracy.

(2) Then, the test accuracies using the aforementioned vanilla and attention VGG

with different VGG architectures and learning rates were evaluated. Three learning
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rates, 1e-4, 1e-3 and 1e-2, were studied. The general trend across different classifiers is

that the attention VGG exceeds the baseline performance across all architectures and

learning rates. The test accuracy for vanilla VGG increases with decreasing learning

rates i.e the vanilla VGG performs best with learning rate 1e-2 (the highest). SGD

and ADAM optimizers were studied. As described in Section 2.5, SGD optimizers

were additionally considered because the ADAM optimizer fails to converge under

certain conditions. Having said that, similar test accuracies were observed for both

optimizers.

(3) Then, the VGG (vanilla and with attention) performance (mean and standard

deviation) was compared for training / testing accuracies and f1 scores against the

baseline.

(4) The results were rolled up in confusion matrices to show the classification perfor-

mance for true positives and true negatives for an attribute. A classification accuracy

of 75 % was arbitrarily considered acceptable for the purposes of comparisons since

it is midway between 50 % (random guessing) and 100 % (complete certainty).

(5) Finally, mis-classified examples for all attributes were presented and discussed

in an attempt to determine the weaknesses in the two CNN models developed and

studied.

7.3.1 Lobster Posture Classification

Figures 7.15a and 7.15b shows the variation of posture classification test accuracies

and f1 scores with the number of attention heads (1 - 9). The mean accuracy does

not increase beyond 9 attention heads (not shown). There is considerable overlap

in test accuracies for the the five values indicating that the test accuracy does not

depend strongly on the number of attention heads. A student t-test for k = 14 and

k = 5 gives a p-value of 0.56 which fails to reject the null hypothesis. Hence, the test

accuracies do not differ across k = 1 and k = 5.

Figure 7.16 shows the variation in test accuracy for posture classification across

different architectures for the modified VGG16 neural network (Figure 7.8). The

architecture is compared without (orange) and with (blue) attention modules. The

baseline (green) is the accuracy obtained by predicting the most common label in

the dataset. The trend in test accuracies of vanilla VGG is affected by the choice of
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(a) Test accuracies are similar with different
number of attention heads.

(b) f1 test accuracies are similar across dif-
ferent number of attention heads.

Figure 7.15: Lobster posture classification using: (7.15a) test accuracies and (7.15b)
f1 scores. There is no strong dependence on number of attention heads for either.
The attention modules are not making much difference.

architecture. The test accuracies generally follow an increasing trend with decreasing

learning rates over the range from 1e-4,1e-3 and 1e-2. The attention augmented VGG

follows similar accuracy trends across architecture and optimizers. The attention

VGG outperforms the baseline for all architectures and outperforms the vanilla VGG

at learning rate 1e-2 (the highest) across all architectures and optimizers. The vanilla

VGG performs best with the lowest learning rate, 1e-4.

Table 7.7 shows training and test accuracies and f1 scores for vanilla VGG and

VGG with attention modules for posture classification. Both models achieve compa-

rable test accuracies of 85%. A student t-test (Section 2.6.1) performed on the test

accuracies from five fold cross-validation across both models yields a p-score of 0.45

(> 0.05 threshold). This fails to reject the null hypothesis because the distributions

are equal. Therefore, the accuracies from both models are comparable.

Fig 7.17 shows a confusion matrix for the lobster posture classification. The non-

aggressive postures are classified with a mean 93% (3% standard deviation (std))

accuracy and aggressive postures are classified with mean 81% (6% std) accuracy

using attention VGG. The non-aggressive postures are classified with mean 91% (2%

std) accuracy and aggressive postures are classified with mean 77% (9% std) accuracy

using vanilla VGG. The test accuracies across both classes i.e aggressive and non-

aggressive posture, are better than the benchmark 75%.
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Figure 7.16: Posture classification accuracies across different optimizers and network
architectures. The test accuracies generally increase with decreasing learning rates.
The attention VGG outperforms the baseline for all architectures and learning rates.
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Table 7.7: VGG (vanilla and with attention) performance shows similar test ac-
curacies of 85% for posture classification. Attention modules do not make much
difference. Both models though outperform the baseline model which predicts the
most common label.

model vanilla VGG VGG with attention baseline

mean std dev mean std dev mean std dev

training accuracy 0.95 0.05 0.99 0.01 0.65 0.003

testing accuracy 0.85 0.04 0.86 0.06 0.65 0.003

training f1 score 0.94 0.05 0.99 0.01 0.35 0.001

testing f1 score 0.81 0.05 0.84 0.07 0.35 0.001

(a) Attention augmented VGG test accura-
cies across both classes are better than the
acceptable benchmark of 75%.

(b) Vanilla VGG test accuracies across both
classes are better than the acceptable bench-
mark of 75%.

Figure 7.17: Posture classification for both (7.17a) attention VGG and (7.17b) vanilla
VGG have test accuracies across classes that exceed the acceptable benchmark of 75%.
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(a) Example of aggressive posture mis-
classification possibly due to the raised tail
which is not as observable to the classifier.

(b) Example of aggressive posture mis-
classification possibly due to the raised head
which is not as observable to the classifier.

Figure 7.18: Lobster postures which are mis-classified due to their ambiguous pos-
tures.

Figure 7.18 shows examples that are incorrectly predicted by the classifier. The

mis-classified examples have lobsters in an aggressive mode as expressed through

an elevated tail or head which possibly leads to incorrect classification. For future

consideration, the classifier can be improved by including more examples of the lobster

in a partially aggressive mode (raised head or tail) in the training dataset.

7.3.2 Crusher Claw Location Classification

Figures 7.19a and 7.19b show test accuracies and f1 scores for crusher claw location

classification as functions of the number of attention heads (1 – 9). There is consid-

erable overlap in test accuracies for the the five values indicating that accuracy does

not vary strongly with the number of attention heads. A student t-test performed

for k = 1 and k = 7 yields a p-value of 0.28 which fails to reject the null hypothesis.

Hence, the test accuracies do not differ across k = 1 and k = 7.

Figure 7.20 shows the variation in crusher claw classification test accuracies across

different architectures for the modified VGG16 neural network (Figure 7.8). The ar-

chitecture is compared without (orange) and with (blue) attention modules. The
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(a) Test accuracies are similar across the
number of attention heads K.

(b) The f1 scores are similar across the num-
ber of attention heads K.

Figure 7.19: Lobster crusher claw location classification (7.19a) test accuracies and
(7.19b) f−1 scores are similar across the number of attention heads K. The attention
modules are not making much difference.

baseline accuracy is in green. The baseline accuracy is from predicting the most com-

mon label. The trend in test accuracies of vanilla VGG is affected by the choice of

architecture. The test accuracies of vanilla VGG generally follow an increasing trend

with decreasing learning rates over 1e-2,1e-3 and 1e-4. However, the attention aug-

mented VGG accuracies do not vary with architecture and optimizers. The attention

VGG outperforms the baseline across architectures and classifiers and also outper-

forms vanilla VGG when using learning rate 1e-2 across architectures and optimizers.

The vanilla VGG performs best with the lowest learning rate, 1e-4.

Table 7.8 VGG (vanilla and with attention ) performance shows comparable test

accuracies of 80% for crusher claw location classification. A student t-test performed

on the test accuracies from five fold cross-validation across both models gives a p-score

of 0.48 (> 0.05 threshold). This fails to reject the null hypothesis which means the

distributions are equal. Therefore, the accuracies from both models are comparable.

Figure 7.21 shows the crusher claw classification confusion matrices. The attention

VGG classifier correctly predicts the crusher claw side to the left with 77% (9% std)

and to the right side with 82% (9% std) test accuracy. The test accuracies across

both classes are better than the acceptable benchmark of 75%.

Figure 7.22 shows mis-classified crusher claw location examples by the classifier.

The examples are for images where the crusher claw is partially visible or in a plane
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Figure 7.20: Crusher claw location classification accuracies using different optimizers
and network architectures. The test accuracies generally increase with decreasing
learning rates. The attention VGG exceeds the baseline across all architectures and
optimizers.
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Table 7.8: VGG (vanilla and with attention) performance shows similar test accu-
racies of 85% for crusher claw location classification. Both models outperform the
baseline model which predicts the most common label.

model vanilla VGG VGG with attention baseline

mean std mean std mean std

train accuracy 0.84 0.01 0.95 0.03 0.54 0.002

test accuracy 0.81 0.04 0.79 0.02 0.54 0.002

train f1 score 0.83 0.02 0.95 0.02 0.35 0.001

test f1 score 0.80 0.04 0.79 0.02 0.35 0.001

(a) Attention augmented VGG test accura-
cies across both classes are better than the
acceptable 75% benchmark.

(b) Vanilla VGG test accuracies across both
classes are better than the acceptable 75%
benchmark only for the left claw.

Figure 7.21: Crusher claw location classification test accuracies for: (7.21a) attention
VGG exceed the 75% bench while for the (7.21b) vanilla VGG the classification on
the right side is less than the benchmark 75% classification and well above that on
the left side. The reasons why are unclear.
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that is at an angle to the horizontal plane. A good (with the lobster flat in the

horizontal plane) view of the crusher claw shows a white spot on the inside surface.

For future consideration, the classifier can be improved by including another label

for examples of crusher claws that are partially visible, thereby putting these lobsters

into a separate class.

7.3.3 Gender Classification

Figures 7.23a and 7.23b shows gender classification test accuracies and f1 scores

with the number of attention heads (1 – 9). There is considerable overlap in test

accuracies for the the five values indicating that accuracy does not vary strongly with

the number of attention heads. A student t-test for k = 1 and k = 3 yields a p-value

of 0.06 which fails to reject the null hypothesis. Hence the test accuracies does not

differ across k = 1 and k = 3.

Figure 7.24 shows the gender classification test accuracies across different archi-

tectures for a modified VGG16 neural network. The architecture is compared without

(orange) and with (blue) attention modules. The baseline is depicted in green. The

baseline accuracy is from predicting the most common label.The test accuracies of

vanilla VGG generally follow an increasing trend with decreasing learning rates over

1e-2,1e-3 and 1e-4. The attention VGG16 outperforms the vanilla VGG16 for all

optimizer and network architectures considered.

Table 7.9 shows gender classification train / test accuracies and f1 score for vanilla

VGG and VGG with attention modules. Both models achieve comparable test accu-

racies of 90%. A student t-test performed on the test accuracies from five-fold cross

validation across both models yields a p-score of 1.0 (> 0.05 threshold). This fails to

reject the null hypothesis which implies that the distributions are equal. Hence the

accuracies from both models are comparable.

Fig 7.25 shows the gender classification confusion matrix. The attention VGG

classifies the female with an accuracy of 62% (2% standard deviation) and the vanilla

VGG classifies with an accuracy of 79% (6% standard deviation). The test accuracies

across classes for male prediction is better than the acceptable benchmark of 75%.

However, the test accuracy for female prediction using attention VGG is less than the

acceptable benchmark of 75%. The female lobster is hard to classify possibly due to
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(a) The crusher claw is mis-classified as on
the left side – possibly due to the pincher
claw being only partially visible.

(b) Crusher claw is mis-classified as on the
right side. The crusher claw is twisted out
of the horizontal plane and thus appears
smaller, and thus mistaken for the pincher
claw, in a plan view classification.

(c) Crusher claw mis-classified as on the right
side. Same reason as in (b).

(d) Crusher claws that are mis-classified pos-
sibly due to an tilted view of the left claw not
providing the best perspective.

Figure 7.22: Examples of mis-classified crusher claw location. Mainly due to the
crusher claw being twister out of the horizontal plane and possibly mistaken for the
pincher claw.
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(a) Test accuracies are similar across the
number of attention heads K.

(b) f1 scores are similar across the number
of attention heads K.

Figure 7.23: Gender classification: (Fig 7.23a) test accuracies and f1 scores (Fig
7.23b) are similar across the number of attention heads. The attention modules are
not making much difference.

Table 7.9: VGG (vanilla and with attention) performance shows similar test accu-
racies of 85% performance for gender classification. The student t-test between both
classifiers gives a p-value of 1.0 (> 0.05 threshold) indicating both models have similar
accuracies.

model vanilla VGG VGG with attention baseline

mean std dev mean std dev mean std dev

train accuracy 0.99 0.01 0.98 0.02 0.75 0.009

test accuracy 0.91 0.05 0.90 0.02 0.75 0.009

train f1 score 0.99 0.01 0.97 0.03 0.35 0.001

test f1 score 0.86 0.07 0.84 0.05 0.35 0.001
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Figure 7.24: Gender classification accuracies across using different optimizers and
network architectures. The test accuracies generally increase with decreasing learn-
ing rates. The attention VGG outperforms the baseline for all architectures and
optimizers.
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(a) Attention VGG test accuracy for female
classification lesser than 75% benchmark but
better than random guessing.

(b) Vanilla VGG class-wide accuracy is bet-
ter than the acceptable 75% benchmark.

Figure 7.25: Gender classification test accuracies for both: (7.25a) attention and
(7.25b) vanilla VGG greatly exceed the 75% benchmark for males. The female pre-
diction with the attention VGG is less than the 75% benchmark but better than
random guessing.

some female lobsters not having wider tails when they are not bearing any eggs. The

test accuracy for female prediction is still better than random guessing.

Figure 7.26 shows images of mis-classified lobsters. The images have light shadows

around the tail regions and since the gender is determined by looking at the tail width,

this could be the possible reason for their mis-classification. The classifier could

incorrectly associate the shadow as an extension of the tail. For future consideration,

computer vision methods for contrast improvement, such as histrogram equalization,

can be used to remove shadows from the image before feeding to the classifier, which

should improve test accuracies for these cases.

7.3.4 Tail classification

Figure 7.27a and 7.27b shows tail spread classification test accuracies and f1 scores

with the number of attention heads (1 - 9). There is considerable overlap in test

accuracies for the five values indicating that accuracy does not vary strongly with the

number of attention heads. A student t-test performed for k = 7 and k = 9 yields
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(a) Male mis-classified as female. The
shadow on the tail section may be incor-
rectly associated with the tail and give it
an artificially wider (female) tail.

(b) Male mis-classified as female. Same rea-
son as (a).

(c) Female mis-classified as male. The nar-
rower female tail is due to it not presently
bearing eggs.

(d) Female mis-classified as male. Same rea-
son as (c).

Figure 7.26: Examples of lobster gender mis-classifications due to: (7.26a), (7.26b)
shadows on the male tail section and (7.26c), (7.26d) females not at the egg-bearing
stage.
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(a) The test accuracies remain similar across
the number of attention heads, K.

(b) The f1 test scores remain similar across
the number of attention heads, K.

Figure 7.27: Tail spread classification for: (Fig 7.27a) test accuracies and (7.27b) f1
scores are similar across the number of attention heads K.

a p-value of 0.16 (> 0.05 threshold) which fails to reject the null hypothesis. Hence

the test accuracies does not differ across k = 7 and k = 9. The attention modules do

not make much difference in the accuracies.

Figure 7.28 shows the variation in tail spread classification test accuracies across

different architectures for a modified VGG16 neural network. The architecture is

compared without (orange), and with, attention modules (blue). The baseline is

depicted in green. The baseline accuracy is calculated by predicting the most common

label. The test accuracies for the vanilla VGG are similar to the baseline accuracies

for learning rate equal to 1e-2. For learning rates 1e-3 and 1e-4, the vanilla VGG and

attention VGG have similar test accuracies and outperform the baseline. Attention

VGG outperforms baseline for all network architectures.

Table 7.10 shows tail spread classification training / testing accuracies and f1

scores for vanilla VGG and VGG with attention modules. Both models achieve com-

parable test accuracies of 85%. A student t-test performed on the test accuracies from

five-fold cross validation across both models yields a p-score of 0.39 (> 0.05 threshold).

This fails to reject the null hypothesis which implies that the distributions are equal.

Hence the accuracies from both models are comparable. The attention modules do

not make much difference.

Fig 7.29 shows a tail spread classification confusion matrix. Attention VGG7.29a
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Figure 7.28: Tail spread classification accuracies using different optimizers and net-
work architectures. Vanilla VGG is similar to baseline and outperformed by attention
VGG when using 1e-2 learning rates with ADAM/SGD. With 1e-3 and 1e-4 learning
rates attention VGG and vanilla VGG are similar to one another. The baseline is the
accuracy obtained by predicting the most common label.
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Table 7.10: VGG (vanilla and with attention) performance test accuracies of 85%
are similar for both models. Both models exceed the baseline accuracy which predicts
the most common label.

model vanilla VGG VGG with attention baseline

mean std dev mean std dev mean std dev

train accuracy 0.85 0.03 0.85 0.02 0.50 0.003

test accuracy 0.84 0.03 0.82 0.03 0.50 0.003

train f1 score 0.76 0.08 0.67 0.07 0.35 0.001

test f1 score 0.74 0.07 0.62 0.06 0.35 0.001

classifies the closed and open tail with mean 96% (4% standard deviation) and 96%

(2% standard deviation) accuracy respectively. The class-wise accuracy for fully open

and fully closed tail is greater than the acceptable benchmark of 75%. However, the

partially open tail are classified with accuracy 5% which is less than the acceptable

benchmark of 75%. The vanilla VGG7.29b also has less accuracy than the acceptable

benchmark of 75%. Both classifiers struggle with the classification of partially open

tails. This is not unexpected given the ambiguous nature of partially open tails. A

larger class of partially open tails might be a start to address this.

Fig7.31 shows examples of tails mis-classified by the VGG16. The mis-classified

images have partially opened tails which the classifier could consider as fully open

or fully closed since there is no intermediate stage clearly defined as partially open.

This is reflected in the confusion matrix as well. For future consideration, instead

of classifying three categories i.e open, partially open and closed, it would be more

effective to regress for a measure of tail spread on a scale of 0 to 1. Subsequently, the

categories can be assigned different ranges on the scale in an attempt to quantify the

degree of tail open-ness.

7.3.5 Abdominal somite bulge classification

Figures 7.30a and 7.30b show abdominal somite classification test accuracies and f1

scores with number of attention heads (1 - 9). There is considerable overlap in test

accuracies for the the five values indicating that accuracy does not vary strongly with

the number of attention heads. A student t-test performed for k = 1 and k = 9 gives a
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(a) Augmented attention VGG closed and
open tail classification is > 75%. The test
accuracy for partially open tail classification
accuracy is worse than random guessing.

(b) Vanilla VGG closed and open tail clas-
sification is > 75%. The test accuracy for
partially open tail classification accuracy is
worse than random guessing.

Figure 7.29: Tail spread classification test accuracy for closed and open tail using
(7.25a) attention and (7.25b) vanilla VGG exceeds the 75% benchmark. The test
accuracy for partially spread tail with attention or vanilla VGG is much poorer than
random guessing.

(a) The test accuracies remain similar across
number of attention heads K.

(b) The f1 scores remain similar across num-
ber of attention heads K.

Figure 7.30: Abdominal bulge classification: (7.30a) test accuracies and ( 7.30b) f1
scores are similar across number of attention heads, K. This means the attention
modules do not make much difference.
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(a) Partially open tail mis-classified as
fully open. Not much difference between
the two.

(b) Partially open tail mis-classified as
fully open. Same reason as (a).

(c) Partially open tail mis-classified as
closed. The full tail is not visible.

(d) Closed tail mis-classified as partially
open. Not much visible difference be-
tween the two.

Figure 7.31: Examples of lobster tail spread mis-classification: (7.31a), (7.31b) and
(7.31c) are partially open mis-classified as fully open and (7.31d) closed tail mis-
classified as partially open. The classifier struggles to classify partially open tails
which can be mis-classified as fully open or closed.
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Table 7.11: VGG (vanilla and with attention) performance test accuracies for abdom-
inal bulge classification show similar accuracies and f1 scores. Both models exceed
the baseline model which predicts the most common label.

model vanilla VGG VGG with attention baseline

mean std dev mean std dev mean std dev

train accuracy 0.97 0.02 0.92 0.05 0.69 0.003

test accuracy 0.79 0.04 0.82 0.04 0.69 0.003

train f1 Score 0.97 0.02 0.89 0.07 0.35 0.001

test f1 Score 0.73 0.05 0.79 0.05 0.35 0.001

p-value of 0.29 (> 0.05 threshold) which fails to reject the null hypothesis. Therefore,

the test accuracies does not differ across k = 1 and k = 9 and the attention modules

do not make much difference.

Figure 7.32 shows the abdominal bulge classification test accuracies across dif-

ferent architectures for the modified VGG16 neural network (Figure 7.8). The ar-

chitecture is compared without (orange), and with, attention modules (blue). The

baseline accuracy is in green. The baseline accuracy is obtained from predicting the

most common label. The trend in test accuracies of vanillla VGG is affected by the

choice of architecture. The test accuracies generally follow an increasing trend with

decreasing learning rates across 1e-2,1e-3 and 1e-4. The attention augmented VGG

accuracies do not change across different architecture and optimizers. The attention

VGG outperforms vanilla VGG when using learning rate 1e-2 across architectures

and optimizers. The vanilla VGG performs best with the lowest learning rate 1e-4.

Table 7.11 shows abdominal somite classification train / test accuracies and f1

scores of vanilla VGG and VGG with attention modules. Both models achieve com-

parable test accuracies of 80%. A student t-test performed on the test accuracies from

five-fold cross validation across both models gives a p-score of 0.24 (> 0.05 thresh-

old). This fails to reject the null hypothesis which means the distributions are equal.

Therefore, the accuracies from both models are comparable.

Figure 7.33 shows an abdominal bulge classification confusion matrix. The test

accuracies for predicting a lobster with no abdominal bulge using an attention VGG

Fig. 7.33a or vanilla VGG Fig. 7.33b is better than the acceptable benchmark
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Figure 7.32: Abdominal somite classification accuracies using different optimizers and
network architectures. The test accuracies for vanilla VGG generally increase with de-
creasing learning rates. The attention VGG exceeds the baseline for all architectures
and optimizers.
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(a) Attention VGG test accuracy is better
than random guessing but < the 75% bench-
mark to detect an abdominal bulge.

(b) Vanilla VGG test accuracy better than
random guessing but < the 75% benchmark
to detect an abdominal bulge.

Figure 7.33: Abdominal bulge classification test accuracy with: (7.33a) attention and
(7.33b) vanilla VGG is only better than random guessing. The test accuracy for a
normal abdominal classification with both models exceeds the 75% benchmark.

accuracy of 75%. However, the test accuracy for predicting a lobster with a somite

bulge using an attention VGG or vanilla VGG is less than the acceptable benchmark

accuracy of 75% but better than random guessing. It appears the abdominal bulge

is dependent on the lobster pose as well.

Figure 7.34 shows examples of images mis-classified abdominal bulges by the

VGG16. The images show lobsters in aggressive postures, which will distend the

abdomin, may be a reason for the mis-classification. For future consideration, the

lobster images with aggressive postures could be filtered out with the aggressive pos-

ture classifier in the Section.7.3.1.

7.4 Concluding Remarks

The vanilla VGG and VGG16 with attention modules across different network ar-

chitectures and optimizers were evaluated. The best architectures for both vanilla

VGG16 and VGG16 with attention modules all have similar accuracies across the

five classifiers i.e gender, abdominal bulge, crusher claw location, tail spread, and

posture. However, unlike the vanilla VGG16, the attention VGG16 outperforms the
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(a) False classification of abdominal bulge
possibly due to the lobster raising its tail

(b) False classification of abdominal bulge
possibly due to the lobster raising its head

(c) False classification of abdominal bulge
possibly due to different image perspective
angle.

(d) False detection of abdominal bulge pos-
sibly due to the lobster curling its tail.

Figure 7.34: Examples of incorrect abdominal bulge classification. In Figs.
7.34a,7.34b and 7.34c the abdominal bulge is falsely detected possibly due to lob-
ster activity. Fig 7.34d is a slightly different angle of the lobster pose which may lead
to false detection.
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baseline for all architectures and learning rates. The test accuracies for vanilla VGG16

generally increases for decreasing learning rates. The attention VGG allows larger

learning rates by possibly making the loss curve flatter unlike the vanilla VGG16 loss

curve which is sharper since the network fails to optimize with larger learning rates.



Chapter 8

Conclusion

It is possible for machine learning techniques, like convolutional neural networks, to

assess lobster attributes to high accuracies with a processing rate of 48 images per

second. The methods presented in Chapter 7 assess the qualitative traits of lobsters.

Table 8.1 summarizes the proposed CNN models’ achieved accuracies.

The CNN-based methods can map landmark points on a lobster and extract dif-

ferent morphometric distances on the lobster body such as carapace and tail lengths,

widths, etc. The carapace length is useful in faclilating lobster fishing regulations

that do not allow catching lobster below a certain length.

The mean squared error in landmark detection is 11.45 pixels which is achieved

using the attention-based CNN as explained in Chapter 6. The error is 4% of an aver-

age lobster length (300 pixels from the dataset or 25-30 in cm) which is an acceptable

error and provides a rapid means to assess a catch.

The methodology presented in Chapter5 using Siamese networks to identify unique

lobsters is able to achieve a top-3 accuracy of about 84%. In addition to high accu-

racies, the processing time taken by these machine learning models is near real-time

using a laptop with an Intel core i7-7700 processor with 16 GB RAM and GeForce

GTX 1060 GPU. This inferencing can be performed on the order of milliseconds which

Table 8.1: Lobster classification accuracies with proposed CNN architectures

attribute classification accuracy (%)

aggressive posture 85

crusher claw location 80

gender 90

tail spread 82

abdominal bulge 80

108
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is necessary in order to process lobsters at a pace expected in a processing plant.

Addtionally, the use of transfer learning to achieve high accuracies from small

datasets was demonstrated in several chapters. The use of pre-trained architectures

like VGG16, Resnet50, etc. to achieve high accuracies was demonstrated for classifica-

tion and regression tasks for lobster traits like lobster gender and landmark mappings,

respectively.

The other contribution was the use of an attention mechanism initially proposed

by Rodriguez et. al.[67] for fine-grained classification. This mechanism was modi-

fied for landmark localization and was demonstrated to perform better than vanilla

CNNs (Chapter 6). This mechanism can be added on top of neural networks without

changing the existing neural network pathways and thus it is possible to make use

of transfer learning. The attention mechanism was evaluated for fine-grained clas-

sification in Chapter 7 across different architectures and learning rates. The CNN

perfomed with similar accuracies both with, and without, the attention mechanism,

but the vanilla CNN was more sensitive to the choice of architecture and learning

rates compared to the attention CNN.

The machine learning methods presented in Chapters 6 and 7 assess the mutable

and immutable traits of lobsters. The immutable traits of the lobster are persistent

and include the crusher claw location, gender, abdominal bulge, landmark mapping

(Chapter 6) and lobster size(Chapter 3). These immutable traits can be components

of a profile that could be used to potentially tag individual lobsters towards greater

lobster traceability.

The more variable traits like tail spread and posture give an indication of the

conditions the lobsters are maintained in prior to market. They contribute less to

lobster traceability since these traits could change with the lobster’s environment.

The combined confidence score of the tail spread, posture and abdominal bulge at-

tributes is 0.6 (aggregate product of the test accuracies). This is useful because even a

50% reduction in filtering out lobsters in poor health results in a quality improvement

of 15% (assuming 30% of lobsters are in poor health for whatever reasons).

The lobster gender classifier can correctly classify female lobsters 70% of the time.

This is useful since female lobsters are a delicacy and sellers can demand higher prices

for 20% of their stock (on average, 30% of a lobster catch is female).
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The thesis provides a solution for lobster traceability and sustainability. The sus-

tainability is maintained by filtering female lobsters and lobsters whose carapace is

lesser than the regulated length. Currently, there are no automated methods for regu-

lating the lower limit in carapace length as well the female lobster catch. The trained

human observers can monitor 1.5-2% of the fleet and if the automation can capture

at least 50% of the lobster fleet, that would results in at least 10% increase in lobster

female population replenished into the ocean(aggregate product of 50%,30%,70%).

Additionally, the landmark detection algorithm can perform landmark localization

with an error of 0.5-1cm. Assuming the regulation length of 8cm, approximately 87%

of the lobsters under the regulation length can be replenished back into the ocean.

8.1 Future Work

In Chapter 7, a comparison was performed between VGG and the attention VGG for

five datasets across different architectures and learning rates. Although the attention

and vanilla VGG accuracies were similar, the vanilla VGG was observed to be more

sensitive than attention VGG for different architectures and learning rates. This ob-

servation is similar to the work by Li et al.[50] where they visualize the loss landscape

for Resnet-50 (Section 2.2) with and without skip connections. The Resnet-50 was

observed to have a non-convex and more chaotic landscape without the skip con-

nections and led to training problems. In the future, it would be more revealing to

perform a loss landscape comparison for CNN with and without VGG and observe

the effect of the attention mechanism on the geometry of the landscape.

Existing state-of-the-art methods make use of heatmap-based regression methods

for landmark localization. These methods are more robust to challenges such as

occlusions. It would be useful to observe the landmark localization performance on

the lobster dataset mentioned in Chapter6 using techniques by Newell et al.[60] and

Payer et al.[64].

There are other lobster body traits which could be classified and tracked for im-

proved lobster traceability as well as indications of lobster health. For example,

lobsters kept in cramped spaces do not have full length antennae because of the claws

of other lobsters. Lobsters may also be missing limbs or entire claws for the same rea-

son. Additionally, lobster shell disease is an indication of poor lobster health caused
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Figure 8.1: Shell disease spread across the carapace and tail is measure of lobster
health.

by a certain bacteria (Figure 8.1). This shell disease can be transmitted to other sur-

rounding lobsters. Future work may consider machine learning methods to classify

lobsters with shell disease and missing or partial claws, limbs and antennae which

can enrich the database for lobster traceability.
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