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Abstract

Collagen fibrils are microscopic, rope-like, biological structures that provide mechani-

cal support to tissues within humans and other animals. It is still not fully understood

how these fibrils self-assemble from their molecular constituents. In this thesis, we ad-

dress questions of fibril formation and structure by applying continuum theories of soft

matter physics to the collagen fibril. We introduce a theoretical model which allows

us to predict structural and mechanical properties of collagen fibrils, and demonstrate

that these properties are consistent with experimental observation. Our model also

predicts coexistence between two different fibril phases, something which has been

alluded to in the literature for many years.
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Chapter 1

Introduction

1.1 Motivation

Collagen fibrils, which are microscopic, biological rope-like assemblies found in the

extra-cellular matrix of animals, have interested biologists for over 100 years1. They

play an integral role in providing mechanical and structural support to tissues through-

out the body of most organisms in the animal kingdom.

In contrast to the large experimental literature on collagen fibril structure, discus-

sion on the theory of fibril structure is much more limited. Descriptive geometrical

models have been put forth in attempt to ascribe observed fibril structure to the

underlying molecular details. However, few of these models have the ability to make

quantitative predictions, while at the same time providing concrete mechanisms for

how such structure emerges. This gap provides a general motivation for the work

I will present in this thesis: I will construct a collagen fibril model which can pro-

vide an equilibrium thermodynamic mechanism and quantitative predictions of fibril

structure.

My personal motivation in studying collagen fibrils is two-fold. First and fore-

most, I find the task of understanding how complex, hierarchical systems arise from

simple physical concepts to be both fascinating and satisfying. The collagen fibril is

a wonderful demonstration of how micro scale structure can self-assemble from nano

scale constituents. When I first became interested in physics, my impression was

that everything outside of textbook problems was impossible to describe accurately

with physical theory. Over the past few years, my research and modelling of collagen

fibrils has shown me that with slightly more advanced theory, artful approximations,

and a powerful computer, you can even model complex biological structure and cap-

ture (at least qualitatively, and in many cases quantitatively) the important physical

1To the author’s knowledge, the first documented discussion that connective tissue may be com-
posed of smaller, fibrillar units, is from 1903 [1].

1
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phenomena you are interested in. My second motivation is much less deep, in that

collagen fibrils are an important part of our daily lives. They are the main component

of cornea, tendon, skin, bone, and other tissues found throughout the body. Changes

in fibril structure and mechanical properties are therefore linked to certain diseases

and the associated health problems that come with them. An extensive and thorough

review on fibril structure, mechanical properties, and their relation to disease can be

found in ref. [2].

1.2 Outline

Chapter 2 of this thesis will provide an extensive background to the collagen fibril

literature. It will outline the current understanding of fibril structure and provide

context for the remaining chapters. In this chapter, I will introduce the basic building

block of collagen fibrils, the tropocollagen molecule, and discuss the hierarchy of

collagen structures found in humans and other animals. I provide a self-contained

overview of different features of fibril structure observed in experiment, including the

fibril radius, molecular orientation, molecular packing, and mechanical properties. I

will also briefly outline several theoretical models which have been applied to or built

specifically for predicting fibril structure and mechanical properties.

Chapters 3 and 4 have been copied verbatim from published and in-preparation

journal articles, respectively, and so are themselves more or less brief but self-contained

in their discussions and literature reviews. I have tried to keep the repetition between

these two chapters and Chapter 2 to a minimum where possible. In addition, I have

added extra sections to the beginnings and ends of these chapters to connect them

to the overarching research goal of constructing a predictive model of collagen fibril

structure.

In Chapter 3, we present a simple, liquid crystal model of collagen fibril structure.

This model considers only the molecular orientation within the fibril, and so ignores

the periodic D-band structure along the fibril axis. The mathematical framework

of this model was presented in previous work[3], and so we here expand on it by

introducing a more efficient numerical scheme to solve the underlying equations. We

also reduce the number of tune-able parameters through simple dimensional analysis.

With these new additions to the model, we explore parameter space and reconcile
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our model with limiting cases of experimental structure. This main content of this

chapter was published last year [4]. In the preface I outline my contributions as well

as differences between this chapter and the published work.

In Chapter 4, we derive a new model of collagen fibril structure. We combine

the liquid crystal model of Chapter 3 with techniques from the phase field crystal

literature [5], and the resulting model allows calculation of both molecular order and

the periodic axial D-band that is integral to collagen fibril structure. We combine

the existing numerical framework utilized in Chapter 3 with a global optimization

scheme to determine the equilibrium structure of this new model. We compare the

predictions of our model with experimental observations. A welcome enhancement of

this model over the previous model is the ability to “pull” on the fibril by straining

the D-band period. In the final piece of this chapter we compare the mechanical

response of our model to available experiment results.



Chapter 2

Background

2.1 Collagen fibril structure

2.1.1 Collagen molecules and their hierarchy

Collagen fibrils are at an intermediate level in the collagen structure hierarchy, which

spans scales from nanometer (single molecule) to micrometer (tissue) range. An

example of this hierarchy for tendon tissue is demonstrated in Figure 2.1. Typically,

different tissues have similar collagen building blocks on the nanometer scale (i.e.

molecules and fibrils in Figure 2.1), and variations in structure arise only on larger

(≥ μm) scales1. For example, in contrast to the fascicles and fibres in the tendon

hierarchy, collagen fibrils in cornea tissue form 2d sheets which stack on top of each

other (see e.g. [6]).

The smallest collagen member of tissue in all cases, the collagen molecule, consists

of three left-handed helical poly-peptide chains (commonly referred to as α chains[9]).

These three α chains are kept together via hydrogen bonding, and wind around each

other to form a right-handed triple helix [10, 11]. It is this final, right-handed triple

helix structure that is referred to as the collagen molecule. There are at least 28

different types2 of collagen molecules[14], with differences between types arising from

differences in amino acid sequence, the presence of non-helical (globular) domains at

the ends of the molecule, and small molecular interruptions at points within the triple-

helix structure[15]. Certain collagen types are more abundant in animals (with type I

being considered the most abundant), and not all of the 28 types of collagen molecules

aggregate together to form fibrils and the subsequent hierarchical structure shown in

Figure 2.1. Non-fibrillar structures include collagen networks (where molecules are

1When looking more carefully, there are actually differences on the nanometer scale as well (e.g.
collagen molecule types, which we discuss below), but for our purposes and in true physics fashion,
we end up coarse-graining these details away in our models

2Collagen types are labelled using roman numerals, and these roman numerals are chronological
with the date of each types discovery [12, 13].

4
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Figure 2.1: The hierarchical structure of collagen in tendon fibrils. The smallest
collagen unit is the collagen molecule, which is ∼ 1.3 nm in diameter and ∼ 300 nm
in length. The next level of the hierarchy is that of the collagen fibril, with diameter
≤ 500 nm. Higher level ordering of collagen (e.g. fascicles and fibres) vary between
different tissues. In this thesis, I focus only on the fibril level of the collagen hierarchy.
Figure reprinted from [7] under CC BY-NC-ND [8].

held together by inter-molecular chemical cross-links) and trans-membrane collagens

which adhere to different cell types and play a role in cell signalling [16].

The fibril forming collagen molecules (mainly types I, II, III, and V), also known

as tropocollagen[9], arise from the cleaving of globular domains off of the ends of the

three α chains, which allows the formation of the tropocollagen triple helical (chiral)

structure. The triple helix is ∼ 300 nm long and 1.5 nm in diameter. This rod-like

geometry forces the tropocollagen molecules to align nearly parallel to each other3,

analogous to lyotropic4 liquid crystal systems [17]. The tropocollagen chirality is

thought to provide a mechanism for the cylindrical (vs space filling) shape of collagen

fibrils [3], and we shall explore this concept of chirality-driven radial control further

3As I will demonstrate in this thesis, the specific orientation of tropocollagen molecules within
collagen fibrils is an interesting and partially unsolved question.

4Lyotropic liquid crystals transition from a disordered, liquid phase to liquid crystalline phases
through increased density. This is in contrast to thermotropic liquid crystals, in which the phase
transition is controlled by temperature.
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in this thesis.

As alluded to in the previous paragraph, collagen fibrils are composed of tightly

packed tropocollagen molecules. These fibrils have a cylindrical shape, though they

are flexible and so have mechanical properties similar to that of a rope [18]. The

radius of a collagen fibril is typically in the range of 15 nm to 200 nm, though fibrils

outside of this range have been reported (see section 2.1.5 below). Almost all fibrils

in the human body are predominantly made from type I tropocollagen molecules with

small amounts of types III and V present5. These fibrils are found in many tissues

throughout the human body including tendon, skin, and ligaments. Only fibrils found

in cartilage are found to be predominantly composed of type II tropocollagen. These

differences in molecular composition have been shown to control fibril ultra-structure

[19].

Although this thesis focuses on the structure and mechanical properties of single

collagen fibrils, it is worth mentioning that length scales greater than a micron in

the collagen hierarchy consist of different ways to bundle together or stack collagen

fibrils. These super-fibrillar bundles and networks provide a structural backbone

to many tissues including skin, tendon, ligament, and bone. The arrangement of

fibrils can vary widely even within tissues that are adjacent within the body. A clear

example of this is in the layers of the cornea, where fibrils may be either bundled

parallel to each other with a quasi-hexagonal lattice, or arranged in a random network

(the former is found in the stroma, the latter in Bowman’s layer) [20]. In contrast to

cornea and other soft tissues, fibrils in bone have small minerals interwoven within the

gaps of tropocollagen spacing to increase rigidity [21, 22, 23]. Super-fibrillar (tissue)

mechanical properties are important for understanding injuries such as tendon rupture

and more severe impact injuries [24], whereas both super-fibrillar structure and the

control of fibril mechanical properties and structure is important in understanding

collagen related diseases [25].

5The differences between these three tropocollagen molecules amount to different types and com-
binations of their constituent polypeptide chains which wind to form the triple-helix [14]
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2.1.2 Mechanical properties of single collagen fibrils

The importance of collagen fibrils in the human body is largely due to its role in the

mechanical properties of tissues. A vast literature exists on the study of mechanical

properties of collagen from molecular to macroscopic length scales, and these me-

chanical properties vary between the different levels of hierarchy (see ref. [26] and

the references therein). Reasons for these differences include the straightening and

relative sliding of fibrils within fibril bundles and tissues [6]. However, since the focus

of this thesis is on the properties of collagen fibrils, I will focus only on the mechanical

properties at the fibril level in this discussion.

There are several procedures which allow the measurement of different single fibril

mechanical properties, but for simplicity here I focus on the mechanics of small axial

extension of the fibril, as partially characterized by a Young’s modulus which linearly

relates the axial strain to the fibril stress. Experimental stress-strain curves measure

Young’s modulus of the fibril at small strains, and in some cases a second elastic

modulus is reported at higher strain [26] due to nonlinearities in the stress strain curve.

The value of Young’s modulus, Y , is dependent on the fibril environment. Fibrils

immersed in water (wet fibrils) have Y = 0.2− 0.8GPa; “dry” (partially dehydrated,

for ease of experimental study) fibrils have Y that are an order of magnitude larger

than wet fibrils [27]. The models of fibril structure and mechanical properties that I

present in this thesis are based on a liquid crystal framework, and so we expect our

predictions to align well with wet fibrils.

One important consideration to take into account is that all fibrils measured from

in vivo6 samples contain intra-fibrillar chemical cross-links7 [28] (typically the older

the tissue, the more cross-links present [29]) which are expected to affect mechanical

properties [30]. The presence of these cross-links is not considered in our model,

making it difficult to quantitatively compare the mechanical properties we predict

with those observed in studies of (cross-linked) in vivo fibrils. In the future, it would

be interesting to apply the theoretical framework of liquid crystal elastomers (i.e.

6In vivo collagen fibrils are those which have been extracted from an organism and studied
without modification. In vitro collagen fibrils are those which are self-assembled in e.g. test tubes
from tropocollagen.

7Cross-links, which are chemical bonds facilitated through either enzymatic or non-enzymatic
reactions [28], can be formed between molecules within the fibril, and between fibrils. In this thesis,
we are always considering cross-links within fibrils (intra-fibrillar).
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cross-linked liquid crystalline materials) [31] to enhance our model and so allow for

more quantitative comparison with ex vivo studies, though the non-ideal nature of

collagen cross-links may complicate this [32]. Alternatively, the ideal experiment

in which we could compare with the mechanical predictions of our model would be

measurements of single in vitro (i.e. non-cross-linked), hydrated fibrils. No such

studies exist that I am aware of, with the closest study being an in vitro study of dry

fibrils [33] which reported a Young’s modulus of 32MPa (though see ref. [27]).

2.1.3 Self-assembly of collagen fibrils: Fibrillogenesis

Models of collagen fibril structure that I will present in this thesis will involve several

parameters, all of which are controlled by the environment in which the fibril is im-

mersed in. In this section I provide an overview of the different environments where

fibrillogenesis (i.e. assembly of collagen fibrils through aggregation of tropocollagen

molecules) occurs. The two broad differences in fibril environment are within the liv-

ing organisms in vivo, or through extraction and solution processing of tropocollagen

in vitro. I outline the current understanding of both processes briefly, beginning with

in vitro fibril assembly. For a thorough overview of fibrillogenesis both in vivo and

in vitro, see the recent review by Holmes et al. [34].

I will not go into great detail on the many experimental procedures of producing in

vitro fibrils; instead I will just overview the basic processing required to reconstruct

fibrils[35, 36]. In vitro fibrillogenesis begins by obtaining fibrils/fibres of collagen

taken from an animal sample, removing non-collageneous proteins by treating the

fibrils with trypsin, and solubilizing the fibrils with an acidic solution. After this pro-

cedure has taken place, the resulting solution contains only tropocollagen molecules

and solvent (this is often checked by imaging samples of the tropocollagen solution

with electron microscopy) which has a pH � 3.8. To induce precipitation of fibrils

(i.e. to “reconstitute” the fibrils), slides coated with the tropocollagen solution can

either be dipped in NaCl solution or buffered solution (with pH � 4.8). The fibrils

that form from these methods generally depend on all experimental parameters in-

cluding ionicity, pH, and temperature of solution during the precipitation stage. A

thorough study of solution condition effects on in vitro fibrillogenesis can be found in

a series of papers by Wood[36, 37, 38].
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Possible mechanisms of in vivo fibril assembly are much more complicated than

those in vitro. For quite some time (roughly between 1930-1980), it was debated

whether fibrils were constructed within specialized cells known as fibroblasts [39], or

if aggregation of tropocollagen molecules into fibrils occurred in the extra-cellular

matrix analogous to the in vitro processes described above [40, 41]. The difficulty in

determining which mechanism is dominant in vivo stems from the two dimensional

nature of electron microscopy imaging, which makes it difficult to determine whether

fibrils are within or above the cell [41]. The debate was more or less settled when

careful sectioning and imaging of tendon fibroblasts revealed that fibrils are initially

formed within cavities on the cell surface[42]. It has since been confirmed that these

cavities (now known as “fibropositors” [43]) are also present in cornea tissue [44]. Once

fibrils of approximately 15 nm radius[43] have been formed within these fibropositors,

they are secreted into the extra-cellular matrix. Once they are in the extra-cellular

matrix, the fibrils may continue growing in radius and length through accretion of

extracellular tropocollagen molecules as in e.g. tendon fibrils, or remain nearly the

same size as in cornea fibrils (see section 2.1.5 for discussion of fibril radii seen in vivo

and in vitro). End-to-end fusion of fibrils can also occur in early stage fibril growth

[45].

2.1.4 D-band and the packing of tropocollagen molecules in fibrils

A defining feature of collagen fibril ultra-structure is the periodic banding pattern

that occurs along the long axis of the fibril, known as the fibril “D-band”8. This

D-band, shown in Figure 2.2, is a striking feature of collagen fibrils when viewed

using high resolution (i.e. sub-micron) imaging or scattering technique. It is so

named due to its periodically alternating bands of light and dark shading along the

long axis of the fibril. Measurements of the D-band period, D ∼ 67 nm, were not

made until the advent of the electron microscope [47]. Since this time, the D-band

has been characterized using multiple techniques including x-ray diffraction, electron

microscopy, and atomic force microscopy. Variations in the D-band period between

tissues within humans and other vertebrates are small, with tendon fibrils typically

8The name “D-band” (also known as the d-period) was first put forth in 1974 [46]. The “d” does
not appear to refer to anything deep, but instead is due to the fact that the letter D was used as
the variable referring to the length of the periodic banding, i.e. D = 67nm.
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Figure 2.2: (a) Atomic force microscopy image of collagen fibril network synthesized
in vitro from type I collagen. (b) Higher resolution image of a single in vitro fibril
showcasing the characteristic D-band striations with period of 67 nm. Figure reprinted
from [19] under license CC BY [51].

having D = 67 nm and other fibrils (most notably from cornea and skin) having

slightly smaller values of ∼ 64 nm [48, 49, 50]. The D-band of in vitro fibrils is similar

to that seen in vivo with exceptions arising only due to highly altered molecular

composition within fibrils [19]. The currently accepted molecular model for the D-

band was proposed by Hodge and Petruska in 1964 [11], and a sketch of this model

is shown in Figure 2.3. I will present here the conclusions of this model to illustrate

the current understanding of how D-band emerges from the packing of tropocollagen

molecules.

The key insight of Hodge and Petruska in constructing their model was to recognize

that the tropocollagen molecule (length ∼ 300 nm) is approximately 4.4D. This

allowed them to deduce that the centre of mass separation between molecules in a

straight line (analogous to lining up pencils by connecting the lead tip of one pencil

to the eraser of the other pencil) must be at least 5D. If there is a separation of 5D,

then the distance between two molecules in a straight line must be 0.6D. They then

chose a unit cell containing five tropocollagen molecules lined up parallel and stacked

on top of each other. Molecules perpendicularly adjacent to each other with respect

to the long axis of each molecule are longitudinally offset by a factor of D, forming a

staircase structure where each stair is D in length. Two periodically repeating units

emerge from the connecting a large number of unit cells along the long axis of the
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Figure 2.3: Schematic diagram of the Hodge-Petruska [11] model of the collagen
fibril. The fibril cylindrical axis is in the same direction as the schematic’s long axis
(horizontal across the page). Tropocollagen molecules (long triple helices) stagger
with respect to each other to form alternating gap and overlap regions, with gaps
being slightly wider than overlaps. In gap regions, only a four out of five molecules
are present in a cross-section perpendicular to the long axis of the fibril. In the
overlap region, all five molecules are present. The period of this alternating gap and
overlap is 67 nm (or 234 amino-acid residues). C and N labels at the ends of each
tropocollagen molecule indicate very small, non-helical end regions (“telopeptides”)
present in the tropocollagen molecule. Figure reprinted from [52] (Copyright 2008)
with permission from Elsevier.

five molecules indefinitely. In the first unit of length 0.4D, known as the “overlap

region”, all five tropocollagen molecules are present in a cross-section perpendicular

to the molecular orientation. The other unit of length 0.6D, known as the “gap”

region, has only four out of a possible five molecules present in the perpendicular

cross-section. Thus, the repeat of this gap-overlap structure provides an explanation

for the alternating striations viewed in Figure 2.2b.

The weakness of the Hodge-Petruska model is that it does not address how the five

molecules within the unit cell are arranged three dimensionally, and how the repeat-

ing unit cells are pieced together to form higher order fibrillar structure. It is possible

that they are exactly as depicted in Figure 2.3, i.e. two dimensional sheets with weak

curvature. These sheets could then wrap around the fibril axis into a quasi-hexagonal

packing, with a defect at the fibril centre due to the 5 molecule unit cell. Another

proposition dating back to 1968 is that each unit cell is actually structurally indepen-

dent, forming a collagen “micro-fibril” [53]. These five molecule micro-fibrils would

then aggregate to form larger fibrils. Electron microscopy of tendon collagen fibrils

has indicated that a cross-sectional length scale of approximately 4 nm is present in
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the mature fibril along with the 1.5 nm length scale arising from the diameter of in-

dividual tropocollagen molecules [54]. This 4 nm length scale has lead researchers

to conclude that the micro-fibril picture of collagen fibril structure is likely correct.

A more recent study of cornea collagen fibrils imaged using automated electron to-

mography has also indicated a 4 nm length scale is present [55], demonstrating that

micro-fibrils are present in fibrils extracted from different anatomical locations. To

the author’s knowledge, no quantitative data on the presence of micro-fibrils in vitro

exists; studies have indicated that small micro-fibrils of diameter 3− 15nm are later

formed into mature fibrils [56, 57] but it was not investigated whether these smaller

length scales were still present in mature fibrils (in addition, 15 nm appears to be too

large to be reasonably called a single micro-fibril). A crystallographic description of

the tendon micro-fibril unit cell using x-ray fibre diffraction was first obtained in 2006

[58], providing evidence that micro-fibrils of radius 2 nm are indeed present in within

tendon fibrils, and also that these micro-fibrils have a (radially) quasi-hexagonal ar-

rangement within the fibril as suggested in earlier work [54]. However, further details

on the packing of micro-fibrils (e.g. whether they are parallel or tilted with respect

to the long fibril axis) was neglected.

In this thesis, no importance is placed on the fibrils being composed of micro-fibrils

or individual tropocollagen molecules, as we are using continuum methods which

coarse grain the fibril at length scales larger than both molecules and micro-fibrils.

We only require that the building blocks of the fibril are chiral, which is true for both

molecules and micro-fibrils [58]. Any other molecular details will be encoded into

our coarse-grained parameters. For simplicity in the remainder of this thesis, I will

discuss fibril structure as if micro-fibrils do not exist (i.e. tropocollagen immediately

aggregates to form mature fibrils) as it will not affect subsequent discussion on fibril

structure unless otherwise noted.

2.1.5 Fibril radius: Experimental results and in vitro control

In this section, I review the literature on experimental measures of collagen fibril

radius, R. This review will be useful when comparing our model predictions of R to

those measured in experiment. This section also serves to illustrate the wide range

of fibril radii that have been measured experimentally. I will begin by discussing
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measurements of fibrils taken in vivo, and then discuss some in vitro measurements

of R along with some experimental findings on how to control the size of R.

In vivo collagen fibrils

Motivation to determine the radius of collagen fibrils began around 1910, when it

was hypothesized that sub-micrometer radii of collagen fibrils would be necessary to

explain the transparency of cornea tissue9. However, it was not until the advent of

the electron microscope that the first quantitative measurements of fibril radius were

reported. These initial measurements were all performed on corneal stroma tissue

stained with osmium tetroxide (to improve contrast), and indicate that stroma fibrils

have radii between the range of 15 nm to 25 nm depending on which animal the tissue

was extracted from10. More recent studies using electron microscopy[20, 61] and x-ray

scattering [62, 55] support this range of fibril radii. One important finding of that

is shared amongst these measurements is that qualitatively, the distribution of radii

within the corneal stroma is sharply peaked around its average value11.

From 1940 to the mid 1970s, researchers began studying fibril radii in tissues other

than corneal stroma. In 1977, Parry et al. produced an extensive review of the topic,

summarizing both their own and other prominent studies of collagen fibril diameter

distributions for over 20 different connective tissues [65]. This review illustrated that

different tissues may have vastly different distributions of collagen fibril radii, which

they broadly classified as either unimodal or bimodal. More recent studies confirm

the bimodality of collagen fibrils radial distributions in tendon and ligament tissue

[66, 67, 68]. In contrast to cornea, other connective tissues encompass much wider

ranges of fibril radii, from 15 nm to 250 nm [69]. In particular, tendon fibrils appear

to have the widest distribution of fibril radii.

In this thesis, I will address corneal fibrils and tendon fibrils as representative

extremes of collagen fibril ultra-structure Tendon fibrils have a wide range of fibril

radii, R ∈ [15 nm, 250 nm], whereas cornea fibrils have a very small range of fibril

radii, R ∼ 15 − 25nm. Other fibrils found in vivo generally have ranges of R which

are in between cornea and tendon. Thus, cornea and tendon provide useful upper

9see reference to H. Virchow in [59]
10for a brief review of these early results, see ref. [60]
11for quantitative proof see e.g. [63, 64]
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and lower bounds on R, which we may compare to our theoretical models of collagen

structure.

In vitro collagen fibrils and methods of size control

In vitro studies on collagen fibrils allows for systematic investigation of how fibril

ultra-structure changes with solution conditions. For example, understanding how

fibril radius changes with experimental parameters like pH and temperature will be

useful later when we look to reconcile our model predictions with experimental results.

The first quantitative measures of in vitro fibril radii distributions were performed

by Wood and Keech[36], demonstrating the large variations in fibril radius possible

through tuning different experimental parameters, and revealed that ionicity of solu-

tion strongly controls both the R distribution’s average and width, with R increasing

with ionicity (see also ref. [70] for a more recent study on pH and ionicity). Aside

from external solution conditions, it has also been shown that ratios of tropocollagen

types within the fibril serve to control R. In particular, inducing fibrillogenesis from

mixtures of types I and III or types I and V tropocollagen tends to decrease the av-

erage fibril radius [19, 71]. These in vitro studies of fibril radius will provide insight

into the connection between our model parameters and experimental conditions.

2.1.6 Twist

D-band and fibril radius are two “obvious” features of fibril structure, in that they

are very easily visible via standard imaging/scattering experiments. A third, less

obvious component to the fibril structure is that of the molecular (or micro-fibrillar)

orientation within fibrils. In section 2.1.4 above, I discussed the Hodge-Petruska

model which assumes that molecular orientation within the fibril is parallel to the

long (z) axis of the fibril. However, less than a decade after this model was proposed,

it was discovered that, at least on the surface of fibrils, tropocollagen orientation was

at a non-zero angle with respect to the fibril z axis (see ref. [72] and the references

therein). In this thesis, I refer to this angle at the fibril surface as the “surface twist”,

and denote it by ψ(R) (for reasons to become obvious in the next paragraph). The

discovery of this non-parallel molecular orientation on the fibril surface, ψ(R) �= 0,

has since lead to increased interest in the functional role of molecular orientation
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Figure 2.4: Molecular orientation of tropocollagen allowed in our double-twist model
of collagen fibril structure. (a) Schematic representation of the molecular orientation
of tropocollagen molecules (small cylinders) within a collagen fibril of radius R. (b)
Definition of the constrained director field, n(r), corresponding to the local orienta-
tion of tropocollagen molecules. n is constrained to be azimuthally symmetric, and
so its orientation with respect to the cylindrical (z) axis of the fibril is defined by the
local twist angle, ψ(r). Figure reprinted from [3] with permission from Royal Society
of Chemistry.

within fibrils [73].

To simplify visualization of the ensuing discussion, I will define a unit vector field,

n, which represents the local (average) orientation of molecules within a fibril of radius

R. In the theory of liquid crystals, this vector field is known as the director field. I

will further constrain n to have a “double-twist” form [3], which is parameterized by

a single function ψ(r) (see Figure 2.4)12. ψ(r) is referred to as the twist angle at a

given distance r from the centre of the fibril, with 0 ≤ r ≤ R. Note that ψ(R) is the

molecular orientation on the fibril surface, i.e. the surface twist. The double-twist

form of this director field and the resulting angle ψ(r) is an integral part of this thesis,

and will be revisited many times.

Initially, as mentioned above, interest in the molecular orientation was restricted

to that of the surface twist ψ(R) due to difficulties in probing the nano scale structure

within the fibril. Table 2.1 summarizes measurements of ψ(R) determined in different

tissues (see mainly [74] and the references therein), along with typical values of R.

We also note whether the radial distribution of the fibrils is unimodal or bimodal.

Notably, as with fibril radius, the two extremes of surface twist are those of tendon,

12This double-twist form assumes azimuthal symmetry in the fibril.
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(a) (b)

Figure 2.5: Two descriptive models of collagen fibril structure. (a) Constant angle
model, ψ(r) = ψ0, proposed by Galloway [77]. (b) Constant angle gradient model,
ψ(r) = ψ′

0r, proposed by Folkhard et al. [78]. See text for definition of ψ(r). (a)
reprinted from [77] with permission from Springer Nature.

with ψ(R) ∼ 5◦, and cornea, with ψ(R) ∼ 17◦.

Table 2.1: Radius and surface twist for several different in vivo fibrils.

Fibril type/location Radius R Surface twist ψ(R)

Tendon [74, 48] 10− 200nm (unimodal or bimodal) 5◦

Skin [74, 48, 75] 30 nm (unimodal) 18◦

Cornea [74, 55] 15 nm (unimodal) 15− 18◦

Cartilage [76] 10 nm and > 20 nm(bimodal) 3◦
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With the increasing amount of experimental data came an increased number of

speculations on what ψ(r) might be within the fibril. In Figure 2.5, I show two dis-

tinct models of what the inner fibril structure might be, along with their ψ(r) curves

(conveniently, both models obey the double-twist symmetry required to be parame-

terized by ψ(r)). The first model, proposed initially by Galloway [77] and shown in

Figure 2.5a, asserts that the inner molecular orientation is such that ψ(r) = ψ0 is

a constant. In particular, Galloway states that tropocollagen molecules (not micro-

fibrils) form concentric cylindrical shells in multiples of 5, such that the innermost

cylindrical shell has only five molecules (i.e. is a Smith micro-fibril [53]), the sec-

ond shell has 10 molecules, and this pattern continues on such that shell m has 5m

molecules. Galloway claimed that this model is consistent with the x-ray diffraction

data proposed by ref. [54] through semi-quantitative arguments (which were later re-

futed from more quantitative calculations [79]). A further shortcoming of this model

is that there is no clear mechanism for the constant twist of molecules. Given the

chiral nature of the tropocollagen, one would expect that molecules would twist with

respect to each other (analogous to chiral nematic phases in liquid crystals). This is

not the case for ψ(r) = ψ0 as the radial neighbours of each molecule are all aligned

at the same angle. Furthermore, it is not clear how such a model would limit the

growth of collagen fibrils radially to a single value (as is observed in cornea collagen

fibrils[63, 64]).

The second model (Figure 2.5b), proposed initially by Folkhard et al. to ex-

plain observed x-ray diffraction patterns of different fibrils[78] (and first visualized

by Raspanti et al. [80]), is that of a linearly increasing angle ψ(r) = ψ′
0r. This

model therefore proposes molecular orientation analogous to the linear double-twist

orientation found within liquid crystal blue phases [81]. Unlike the model proposed

by Galloway, this model has the advantage of naturally accounting for the chiral-

ity of the tropocollagen molecules. Furthermore, this linear twist provides a simple

mechanism for limiting radial growth [82, 3] (more discussion on this in section 2.2.2

below). However, this model has its own downfalls. With molecules holding different

angles at different distances from the centre of the fibril, r, it would appear that a

constant D-band is unattainable, as the effective axially-projected length of molecules

at each r would be different by a factor of cosψ(r). The only possible reconciliation
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of this model with the constant D-band observed in experiment is if the individual

tropocollagen molecules undergo axial strain such that molecules near the fibril centre

(surface) are under compression (tension) [48].

The two models discussed above both have their limitations in terms of reconcil-

ing experimental observation with the underlying molecular of collagen fibrils. This

leaves two options, either devise an experiment to better elucidate the inner molecular

orientation of molecules within the fibril, or build a theory which predicts structure

from more fundamental physical concepts. The former was (valiantly) attempted by

Holmes et al. in 2001 [55]. In this study, automated electron tomography was used

to reconstruct images of sawn cornea fibrils, as shown in Figure 2.6. The resulting

images indicated that molecules were twisting at angles up to ∼ 15◦ within the cross-

section, as is shown in the “slice” and “inverse transform” images in Figure 2.6. The

authors interpreted these images as being consistent with Galloway’s constant twist

ψ(r) = 15◦ model. However, from my perspective, the resulting slices, while informa-

tive, provide inconclusive information at best. It appears that a range of twists are

observed in all three slices, and most dominantly in the middle slice. I would go as

far as saying that ψ(0) = 0 in the middle slice. In order to truly resolve ψ(r), a much

higher imaging resolution would be required with more than three slices.

The above discussion highlights an intrinsic difficulty of determining nano scale

structure within complex, hierarchical materials. Typically, as is the case for the

experiment performed by Holmes et al. [55], the data measured must be interpreted

via fitting to a structural model, making any conclusions model dependent. If, on the

other hand, a predictive, theoretical model of collagen fibril structure was available

which matched reasonably well with experiment, the uncertainty in interpretation of

experimental data would be greatly reduced. This motivates the need for a predictive

model of collagen fibril structure derived from fundamental physical concepts. With

this in mind, I will now discuss some candidate models of fibril structure, before

moving on to the main results of my thesis.
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Figure 2.6: Three sawn slices of corneal collagen fibril structure as viewed by trans-
mission electron tomography. The top schematic illustrates the locations of the three
slices within the collagen fibril. The three rows underneath this schematic have the
longitudinal (x-y plane) images of fibril structure for the top, middle, and bottom
slices, respectively. The first column shows the raw 3D reconstruction of the mi-
crofibrillar orientation within the fibril. The second and third columns are the raw
and masked power spectrums of this reconstruction, respectively. The fourth column
is the resulting filtered image of the fibril structure. The mask (column three) applied
to the inverse transform was input by eye, and so the resulting inverse transform of
column four is biased. Reprinted from [55]. Copyright 2001 National Academy of
Sciences.

2.2 Previous Quantitative Models of fibril structure

In this section, I present models of fibril structure from the literature which are

quantitative, and provide energetic mechanisms which predict fibril structure. I be-

gin with two models which are molecular in nature, but fairly simplistic in that

they consider only specific packing structure of individual tropocollagen molecules.
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First, I will briefly mention a model utilizing Leonard-Jones type energetic relaxation,

where circular cross-sections containing tropocollagen molecules are allowed to relax

slightly [79]. The second model is a more sophisticated molecular dynamics approach

which explicitly coarse-grains the true amino acid sequence of individual tropocollagen

molecules to determine model parameters. These two models are fairly constrained

in what forms the structure may take due to the initial packing configuration, and so

are not entirely satisfactory to meet the above requirements of predicting larger scale

fibril structure.

The third model I will present is based on minimization of a free energy for

hexagonally packed chiral filaments [82], and so applies generically to collagen fibrils.

This model bears similarity to the main theory I will present in Chapters 3 and 4.

However, it includes an additional assumption of hexagonal packing and so introduces

elastic coefficients from the theory of solid elasticity [83], which we do not introduce

in our model. I conclude this background chapter with a brief discussion of how

these quantitative models fit in with the main models developed and presented in

this thesis.

2.2.1 Lattice models with ad-hoc energy relaxations

The first (pseudo) energetic model of collagen fibril structure was presented by Hulmes

et al. in 1995 [79]. In their model, they are most concerned with reproducing x-

ray diffraction data from an earlier study [54]. They approach this problem via

inputting several radial packing structures of collagen fibrils (consistent with the

Hodge-Petruska D-band model discussed in section 2.1.4), and subsequently relaxing

the lattice by minimizing a Leonard-Jones potential with parameters tuned to match

experiment (i.e. energy well depth and equilibrium distance). They concluded that

the most appropriate lattice which may reproduce experiment is that of a quasi-

hexagonal packing. This model is limited in its predictive power in that a very

simplistic energy relaxation scheme was used (i.e. Leonard-Jones), the different radial

packing arrangements were not compared energetically, the fibril radius was held

fixed at 50 nm, and no consideration of axial molecular orientation (i.e. ψ(r)) was

considered as the molecules were modelled as achiral cylinders.
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More recently, researchers have employed both coarse-grained [84, 85] and atom-

istic [86] molecular dynamics simulations of collagen microfibril structure in attempt

to elucidate microfibril mechanical properties, and also to relax the microfibril into

a minimum energy structure. The coarse-grained studies involved two major steps.

The first step was to measure the mechanical response of an atomistic tropocollagen

molecule (see ref. [84] for the definition of atomistic) under tensile strain, bending

strain, and shear strain (the latter requiring two tropocollagen molecules). The sec-

ond step was then to use the measured response of these three mechanical tests to

construct spring constants for a bead and spring model of microfibrils. Application

of this model was limited to a two dimensional, periodic unit cell containing 10 bead

and spring tropocollagen molecules (each molecule with 200 beads), and the corre-

sponding mechanical properties measured were within two orders of magnitude [87].

The author also claimed that this system displayed the same structure as the what is

observed in experiment, but no quantitative (or qualitative) evidence was provided.

A more sophisticated model of the collagen microfibril was presented in 2011

[86]. The key piece of information utilized in this model was earlier x-ray diffraction

studies of the microfibril [58], which provided a precise description of the microfibril

unit cell. Tropocollagen molecules with full amino acid sequences were placed on the

unit cell with periodic boundary conditions, and so the resulting structure was that of

an infinitely long, infinitely wide microfibril (in contrast to true collagen fibrils with

finite radius). This bulk microfibril was allowed to equilibrate for 8.5 ns to determine

its minimum energy configuration. With this bulk microfibril model, the authors were

able to extract a Young’s modulus within the range of values observed in experiment

[86]. This model also suggested a hierarchical deformation mechanism, where at small

strain, the microfibrillar twist reduced until the molecules were parallel with each

other, at which point the molecules themselves began to straighten. Furthermore,

the inclusion of the amino acid sequence in this model provides a solid framework to

investigate the effects of tropocollagen mutations which are related to collagen-based

diseases [88].

However, there are still limitations in this model for predicting structural proper-

ties of full sized collagen fibrils, which is what I am interested in for this thesis. One

issue with the atomistic model is that the microfibril structure was only relaxed over
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8.5 ns, and so it seems unlikely that it was able to reach an equilibrium configuration.

This short relaxation is due to the large computational cost associated with a fully

atomistic treatment of tropocollagen, and is unlikely to be addressed with anything

but faster computer processing speeds.

A second issue of this atomistic model is that a microfibril with periodic bound-

ary conditions in all directions is unable to capture the structure of collagen fibrils

observed in experiment for two reasons: a) One important observed quantity in fibrils

is the fibril radius, which is infinite in this model and b) it has been shown experi-

mentally that the orientation of microfibrils within the fibril is not a simple unit cell

structure [55] – a repeated unit cell of microfibrils is incompatible with fibril surface

twist and azimuthal symmetry. From these two observations, it is clear that the

model by Gautieri et al. [86] is fundamentally unable to reproduced the structure of

collagen fibrils.

The atomistic model described above was developed mainly as a tool to elucidate

the mechanical properties of collagen fibrils, and so was less concerned with structure

of the fibril. However, the authors themselves showed that the mechanical properties

of the microfibril were connected deeply with its structural properties13. Therefore,

it seems reasonable to assume that if a full sized fibril was pulled on, the response

would begin with a fibril-sized deformation mechanism, followed by microfibril and

molecular deformations. This further motivates the need for full sized fibril studies

on the relationship between mechanical response and fibril structure.

Given that the above model already requires considerable computational time to

determine structure and properties on the microfibril scale, it seems unlikely that

expanding this atomistic model to a full collagen fibril (or even multiple microfibrils)

will be possible with current computational resources. Therefore, to capture impor-

tant structure of the fibril such as the fibril radius and the molecular orientation, it

is likely that lower computational cost, coarse-grained approaches will be required.

13As discussed, this response began with low strain microfibril deformation, followed by high strain
molecular deformation
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2.2.2 Hexagonal packing of long, chiral filaments

An alternative approach to molecular models is to use highly coarse-grained contin-

uum theories to predict structural and mechanical properties of fibrils. In contin-

uum theory, the microscopic details of the constituent molecules (or microfibrils) are

largely ignored. Instead, only the symmetry of the constituent components of the

system are considered in constructing free energies. For collagen molecules, the most

important molecular symmetries are their chiral nature and their long aspect ratio.

Conveniently, generic models of long, chiral molecules forming into fibrous bundles

have been recently developed in the literature [82, 3]. These models are relevant to

collagen fibrils as they provide a theoretical framework which allows prediction of

fibril radius and molecular orientation, and build off of the continuum theory of liq-

uid crystals (in particular, the double-twist geometry of blue phase liquid crystals)

[81, 17]. Here I focus on a model presented initially by Grason and Bruinsma [82, 89].

This model considers a system of hexagonally packed, chiral filaments, and constructs

a free energy which respects these symmetries.

There are four components that must be considered in constructing a free energy

for chiral filaments. The first is the free energy of deforming a two dimensional

hexagonal packing structure which is taken directly from the theory of solid elasticity

[83], though with a re-definition of the (2D) strain tensor to account for the rod-like

filaments [90]. The second term is the Frank free energy of a chiral liquid crystal

phase, which penalizes any distortions of molecular orientation (represented by a

director field n(r) as discussed in section 2.1.6 above [17]). The third term is the

axial deformation energy associated with stretching and shearing filaments from their

(bundle or fibril) long axis, again taken from the theory of solid elasticity (this term

uses the standard definition of the 3D strain tensor). Notably, by varying the elastic

coefficients in this term one can model a filament bundle with either three dimensional

hexagonal solid symmetry, or two dimensional columnar liquid crystal (the latter

having no energetic penalty for shearing molecules along the bundle axis). The final

term of the free energy is that of a symmetry breaking term that is only found in

chiral, hexagonal systems [91].

The minimization of these four free energy terms corresponds to determining the
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equilibrium displacement u(r) of filaments from their hexagonal lattice site (i.e. lat-

tice point i having position vector ri = Ri + u(r) where Ri is a hexagonal lattice

vector), and the orientation of the filaments locally represented by the director field

n(r). To simplify this problem, a variational guess was taken on the form of both u

and n, the latter having the form of a double twist with ψ(r) = ψ′
0r, which is anal-

ogous to the fibril structure anzatz put forth by Folkhard [78, 80] (see section 2.1.6

above). An analytic approach to the energy minimization was taken by expanding

the free energy in terms of ψ′
0R, where R is the bundle radius. The authors found

that the chiral nature of the filaments provided a mechanism in which the equilibrium

bundle radius was finite in certain parameter regimes, and so equilibrium radius R

and surface twist, ψ′
0R were observed [89]. These two quantities are directly relevant

to collagen fibril structure, the former being obvious in that it corresponds to the

fibril radius R, and the latter corresponding to the surface twist ψ(R) discussed in

section 2.1.6.

This continuum model of hexagonally packed filaments shows great promise in

being used (either in current form, or with slight modifications) to predict fibril

structure, and has proposed a mechanism for radial control of fibrils due to the chiral

nature of the underlying tropocollagen molecules. However, to be applied to collagen

fibril structure, tweaks must be made both to the underlying free energy and the

director field anzatz leading to a linear ψ(r). The latter adjustment is easy to obtain

in practice, as instead of constraining ψ(r) to a specific functional form, one can just

minimize the free energy as functional of ψ(r) using standard calculus of variations

techniques. This would lead to even more general predictions of molecular orientation

within fibrils that could perhaps include constant angle fibril ultrastructure14 ψ(r) =

ψ0 as proposed by Galloway [77] and discussed in section 2.1.6 above.

The adjustment of the underlying free energy is perhaps a more complex prob-

lem. Scattering studies of fibril structure have indicated a quasi-hexagonal packing of

molecules/microfibrils within the fibril, and so removal of the 2D hexagonal packing

energy included in Grason’s model may provide a more accurate description of fibril

ultrastructure. However, the main difficulty in modelling fibril structure is how best

14Ultrastructure refers to the details which can only be viewed under high resolution (e.g. electron
microscopy) imaging. For a collagen fibril, this ultrastructure would include the fibril D-band and
the molecular twist.
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to describe the ubiquitous fibril D-band using continuum theory. It is not immedi-

ately clear how Grason’s model can be modified to account for this peculiar molecular

detail.

Comparison of Grason’s model to the phase field liquid crystal model

presented in this thesis

In this section, I briefly discuss the differences between the model of chiral filaments

[82, 89] presented above, with the models that I will present in the remainder of this

thesis, which for now I will refer to as the Phase-Field Collagen Fibril (PFCF) model

(though it is not until Chapter 4 that the “phase-field” prefactor of this nomenclature

is reasonable). There are three main differences between the Grason’s model and the

PFCF model. The first two are differences in the free energy structure, the final being

a difference in how the free energy is minimized with respect to ψ(r).

1. In contrast to Grason’s model, the PFCF model does not impose any positional

order of the molecules within a circular (2D) cross-section of the fibrils (perpen-

dicular to the cylindrical axis of the fibril). This is reasonable for collagen fibrils,

as experimental observation indicates that any sort of ordering of tropocollagen

in this 2D cross-section is quasi-hexagonal at most [55].

2. We add an additional term in the free energy (Chapter 4 only) to include the

D-band structure observed along the cylindrical axis of the collagen fibrils. This

additional term includes additional observable quantities which must be opti-

mized to minimize the free energy (a fibril D-band period and a fibril D-band

amplitude).

3. We allow ψ(r) to freely take any functional form, and chose ψ(r) such that the

free energy constructed is minimized.

With this distinction clearly stated, I now move on to the main work of my thesis.

Chapter 3 presents numerical investigations of a simplified model of collagen fibril

structure that neglects D-band (i.e. item 2 in the list above). Chapter 4 presents a

complete model of collagen fibrils which includes D-band structure.



Chapter 3

Polymorphism of stable collagen fibrils

This chapter is adapted from a paper my supervisors and I have published in Soft

Matter, volume 14, pages 4772 to 4783, 2018 [4], with permission from the Royal

Society of Chemistry. For this paper my contributions were to write the code used in

the numerical calculations, perform the analytical and numerical calculations, gener-

ate the figures, and write the first draft. I was an equal partner with my supervisors

in revising the paper. The main change between this chapter and the corresponding

paper is the replacement of the paper’s conclusions section with a summary section

which highlights the need for the more sophisticated model presented in Chapter 4.

Our motivation in writing this paper was to fully explore the predictive capabil-

ities of a purely liquid crystalline model of collagen fibril structure (the framework

of which having been developed previously, see ref. [3] for details). Previous work

with this model outlined the type of calculations that could be performed and found

marginal agreement between the model calculations and experimental observations of

cornea (but not tendon) collagen fibril ultrastructure [3]. Furthermore, the authors

did not demonstrate that the model could produce twist angles similar to those mea-

sured in tendon fibrils.Tendon fibrils are known to have values of surface twist which

are smaller than 10◦, but the results presented in ref. [3] did not include such small

ψ(R) values. However, this previous work did not fully explore the model parameter

space due to computational limitations and the large number of parameters. There-

fore, to fully explore the model predictions, we implemented a new numerical scheme

to minimize the collagen fibril free energy which can more efficiently calculate the

features of fibril ultrastructure for systematic parameter variation. This numerical

scheme requires an initial guess for the minimum energy fibril configuration, for which

we developed an analytical asymptotic approximation. We also reduced the number

of parameters in the model from 5 to 3 using simple dimensional analysis arguments.

These two improvements allowed us to completely map out the parameter space of

26
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the model, and to identify agreement with both reported tendon and cornea radial

structure.

3.1 Introduction

Tropocollagen is the most abundant protein in the human body, integral to the struc-

ture of fibrous tissues such as skin, tendon, and cornea. There are at least 28 different

tropocollagen molecules found in vertebrates [16], with types I, II, III, V, XI, XXIV,

XXVII capable of forming the rope-like mesostructures that are collagen fibrils [92].

The assembly of tropocollagen molecules into collagen fibrils depends on the local

environment. A suitable environment in vivo is within the extra-cellular space [93]

after procollagen, a precursor to tropocollagen, is secreted from cells and cleaved by

enzymes [94]. In vitro, ionicity, pH, and temperature of the solvent [36, 70], as well

as concentration [95], have been shown to affect whether fibrillogenesis occurs.

Since fibrils are approximately cylindrical with radius R, it is convenient to sepa-

rately consider their axial structure along the fibril’s cylindrical axis and their radial

structure within a circular cross-section. The axial D-banding has been well studied

and remains close to 67 nm for both type I [96] and type II [97] collagen. Conversely,

the observed radial ultrastructure of collagen fibrils depends on both the tropocol-

lagen type and the anatomic location of the fibril in vivo [80, 98, 99, 100], and on

solution conditions in vitro [36]. Factors such as temperature and ionicity of solution

[36], or fibril age in vivo [80, 65], affect the observed fibril radii.

In this work, we focus on radial structure. We are concerned with what constrains

the fibril radius, R, but also with the orientation of collagen molecules both on the

fibril surface and within the fibril.

Observing the orientation of molecules on the interior of a circular cross-section of

fibril is difficult experimentally, requiring diffraction studies [78] or electron tomog-

raphy [55]. However, careful high resolution imaging can reliably characterize the

molecular orientation at the surface of fibrils. Early work using transmission electron

microscopy to image freeze-fractured fibrils found that molecules at the fibril surface

were tilted with respect to the fibril axis, with the degree of tilt depending on where

the fibrils were found anatomically [72, 74]. Further work demonstrated that tendon
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Figure 3.1: Double-twist configuration for a cylindrical fibril of radius R. The green
lines represent the average orientation of collagen molecules for three different r ∈
[0, R]. The twist angle, ψ(r), is the angle between the average orientation and the
fibril (z) axis. The bottom cylinder illustrates the surface twist, ψ(R). The smaller
cylinders, outlined in grey, are cutaway views with r < R.

fibrils, while exhibiting a large range of R values (15 nm-200 nm), have limited molec-

ular surface tilt 	 5◦ [101, 79], while corneal fibrils, with a narrower range of R from

15 nm − 20 nm, exhibit much larger surface tilt, 	 18◦ [102, 103, 55]. Different hy-

potheses of radial molecular orientation have been proposed to fit these experimental

results [80, 55, 79] – but without consideration of thermodynamic stability.

Recently, an equilibrium liquid crystal model of radial collagen fibril structure

was developed to predict molecular configurations of tropocollagen within individual

fibrils [3]. Consistent with the surface tilt observations mentioned above, a double-

twist geometry of tropocollagen molecules was imposed within the fibril. With this

double-twist geometry (see Fig. 3.1), the twist angle of molecules with respect to the

fibril axis at a given radial distance, ψ(r), fully describes the molecular orientation of
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the tropocollagen molecules. The corresponding elastic free energy functional [104],

valid for arbitrary smoothly varying ψ(r), is parameterized by the costs of twist

distortion, K22, bend distortion, K33, saddle-splay distortion, k24, surface tension, γ,

and the preferred pitch of a cholesteric phase, 2π/q. By minimizing the free energy

per unit volume of fibril with respect to ψ(r), the equilibrium fibril radius, Req, and

the surface twist angle, ψ(Req) were determined for different values of the model

parameters. These Req and ψ(Req) were then compared with experimental findings.

The model [3] showed good agreement with corneal fibrils, which have small radius

and large surface tilt. However, it was unclear whether it could also capture the

smaller surface tilt and the broad range of radii observed for tendon fibrils.

The physical mechanism of collagen fibril formation in vivo, as well as the self-

assembly of tropocollagen molecules into collagen fibrils in vitro, is poorly under-

stood. In vitro studies [95] have demonstrated that uniform fibril formation will

occur without cross-linking or other non-equilibrium processes. This suggests that

an equilibrium description of fibrils is appropriate, at least for in vitro fibrillogene-

sis. The importance of collagen in biotechnology applications is therefore sufficient

motivation for us to further explore the equilibrium picture of radial fibril structure.

However, it is attractive to hypothesize that fibrillogenesis in vivo also exploits equi-

librium self-assembly processes. Better understanding whether and how equilibrium

processes could lead to observed radial collagen structures would help us identify

when non-equilibrium processes may also be affecting fibril structure.

In this chapter, we use an efficient numerical relaxational method to expand on

previous work with the double-twist model, which allows us to map out equilibrium

values of fibril radius, surface twist angle, and energy per unit volume of fibril within

the entire parameter space of stable fibrils. Using dimensional analysis, we show that

just three reduced parameters fully control the experimentally observable behaviour

of the system. We use this comprehensive approach to confront both corneal and

tendon fibril phenomenology.
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Figure 3.2: Geometric representation of (a) splay, (b) twist, and (c) bend distortions
in a liquid crystal nematic. These three distortions have free energy costs proportional
to the K11, K22, and K33 elastic constants discussed in the text. Figure reprinted
from [105] (Copyright 2014) with permission from Elsevier.

3.2 Model

3.2.1 Elastic free energy density

Individual tropocollagen molecules within collagen fibrils are essentially rod-like, with

a length of ∼ 300 nm, and a diameter of ∼ 1.5 nm. To describe the molecular orienta-

tion within fibrils, we use a director field, n(r), which is a unit vector that represents

the local, average orientation of molecules within the fibril.

Following earlier work [3], we propose that the fibril free energy depends on elas-

tic energy contributions from the orientation field n(r) together with an interfacial

energy. We use a leading order gradient expansion for the elastic contributions. The

elastic free energy density [104] of a chiral liquid crystal system with no external stress

is

fel =
1

2
K11 (∇ · n)2 + 1

2
K22

(
n · ∇ × n+

k2
K22

)2

+
1

2
K33(n× (∇× n))2 + k13∇ · (∇ · n)n

− 1

2
(K22 + k24)∇ · (n× (∇× n) + n(∇ · n)) , (3.1)

where we have taken fel = 0 in the cholesteric phase. From the last two terms, we

see that it is possible to have fel < 0 even when all elastic constants are positive. In

using this free energy, we assume that any gradients in n are slowly varying compared

to the molecular length scale (	 1.5 nm). Higher order gradient terms are thereby



31

Figure 3.3: Schematic of a cholesteric liquid crystal phase. p is the pitch of the
cholesteric, which is inversely related to q = 2π/p. Figure reprinted from Wikipedia
under CC BY-SA [108].

ignored [106].

Each term in eqn. 3.1 corresponds to a specific distortion. The terms with K11,

K22, and K33 correspond to the usual splay, twist, and bend deformations [107] shown

in Figure 3.2, and are always greater than zero. k2 is the “chiral strength” and can

be of either sign. k13 and k24 are the splay-bend and saddle-splay elastic constants,

respectively. The terms with k13 or k24 can be negative, and when integrated will ap-

pear as surface terms. They contribute to equilibrium phases that have a proliferation

of interfaces, such as a system of collagen fibrils.

3.2.2 Cholesteric and double-twist fibril phases

Equilibrium phases of collagen molecules are determined by the form of n that mini-

mizes the total free energy of the system. We consider two phases. The first is a bulk

cholesteric phase (see Figure 3.3), which has been observed for concentrated tropocol-

lagen solutions in vitro [95]. The director field is e.g. n = cos(qz)x̂+sin(qz)ŷ, where

q ≡ k2/K22 here determines the inverse cholesteric pitch of the cholesteric phase. In-

serting this into eqn. 3.1 gives f = 0. Since the cholesteric phase is a bulk phase, any

surface effects are negligible and the total free energy per unit volume, Echolesteric = 0,

for all values of the elastic constants. Any phase with bulk average free energy density

E < 0 is therefore thermodynamically stable with respect to the cholesteric phase.
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The second phase we consider has individual fibrils with a double-twist director

field [3],

n = − sinψ(r)φ̂+ cosψ(r)ẑ, (3.2)

where ψ(r) is the angle between the director field and the fibril axis. ψ(R) is then

the “surface twist” (molecular tilt) of a fibril of radius R. Since we are interested

in the radial structure, we ignore contributions from axial packing (e.g. D-banding)

of collagen molecules along the fibril. This amounts to an assumption that coupling

between radial and axial structure is weak (see Discussion). Excluding radial/axial

coupling greatly simplifies our calculations.

A surface energy term must be included to account for the cost of creating an

interface between individual fibrils and the surrounding fluid. For a single fibril, the

free energy per unit length is then

EL ≡ 2π

∫ R

0

rffibril(r, ψ(r), ψ
′(r))dr + 2πγR (3.3)

where 2πγR is the energetic cost of the interface between the fibril of cross-sectional

circumference 2πR and its surroundings [3]. (Note that while the bulk k13 and k24

terms of eqn. 3.1 integrate mathematically into surface contributions, they are distinct

from the interfacial cost γ.) The cross-sectional area of a single fibril is πR2. Thus,

E(R) =
EL

πR2
=

2

R2

∫ R

0

rffibrildr +
2γ

R
, (3.4)

where E is the total free energy per unit volume of fibril. We refer to the relationship

between E and R as the energy landscape.

Using the double-twist structure eqn. 3.2 in the elastic free energy density eqn. 3.1

gives the free energy density [3],

ffibril =
1

2
K22

(
q − ψ′ − sin 2ψ

2r

)2

+
1

2
K33

sin4 ψ

r2

− 1

2
(K22 + k24)

1

r

d sin2 ψ

dr
. (3.5)

where here q = k2/K22 is the chiral wavenumber of the double-twist phase. Note that

the K11 and k13 terms have dropped out since ∇ · n = 0 for double-twist.
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Minimizing eqn. 3.4 with respect to the function ψ(r) using standard calculus of

variations techniques [3], we arrive at the boundary value problem

(rψ′)′ = q +
K33

K22

sin(2ψ)

r
sin2 ψ − cos(2ψ)

(
q − sin(2ψ)

2r

)
, (3.6a)

ψ(0) = 0, (3.6b)

ψ′(R) = q +
k24
K22

sin(2ψ(R))

2R
, (3.6c)

where eqn. 3.6c is a natural boundary condition which follows from the functional

minimization procedure, and ψ′ ≡ dψ/dr. We must have ψ(0) = 0, as any non-zero

twist at r = 0 would imply singular ffibril and an infinite E from eqns. 3.4 and 3.5.

Dimensional Analysis

While there are five parameters which control the behaviour of our model, q, γ, K22,

K33, and k24, we can reduce this to three dimensionless variables (see Supplemental

section 3.7), K̃33 = K33/K22, γ̃ = γ/(K22q), and k̃24 = k24/K22, which we utilize for

the remainder of the chapter. This lets us express quantities of interest in terms of

dimensionless parameter combinations:

Ẽ = g1

(
qR, K̃33, γ̃, k̃24

)
, (3.7a)

qR = g2

(
K̃33, γ̃, k̃24

)
, (3.7b)

ψ(qr) = g3

(
qr, K̃33, γ̃, k̃24

)
, (3.7c)

where the functions g1, g2, and g3 are determined numerically, Ẽ ≡ E/(K22q
2), and

we solve ψ as a function of dimensionless radius qr. We have reduced our parameter

space from five to three dimensions, together with an inverse length q that sets the

scale for R.

The elastic constants for collagen solutions are not well documented. We use

values determined experimentally from liquid crystal systems with molecules similar

to tropocollagen molecules. For the poly-peptide α-helical chain poly-γ-benzyl-L-

glutamate (PBLG), the ratio of bend to twist elastic constant saturates at K33 	
30K22 for aspect ratios L/D � 100, where L is the length and the diameterD of PBLG

is between 1.5 nm to 2.5 nm [109]. The aspect ratio of tropocollagen, L/D = 200, then

leads us to use K̃33 = 30 for this chapter. (In Supplemental section 3.6 we explore
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the effects of different K̃33 values on our results for the surface twist.) Differences in

solution conditions, molecular composition, and concentration can in principle affect

K̃33 [110, 111, 112]; however, approximately the same ratio is observed over a range

of temperature and concentration in long-aggregates of lyotropic, chromonic liquid

crystals [113]1.

3.2.3 Energy Minimization

Using the methods detailed in Appendix B.1, we solve eqns 3.6 numerically with

a finite-difference relaxation scheme [114]. We have also derived an explicit (but

unwieldy) power-series solution, see Supplemental section 3.8. We use the leading

cubic terms of this power-series as an initial guess for our relaxation approach, and

use higher-order solutions as occasional checks that the relaxation approach has con-

verged. The iterated relaxation converges on the ψ(qr) that minimizes the dimen-

sionless version of eqn. 3.4 for a selected qR. We repeat this procedure for different

qR to determine the energy landscape, Ẽ(qR), for a given parameter set [3].

We are particularly interested in the dimensionless radius qReq that minimizes

Ẽ(qR). To find qReq, we used a standard golden ratio search. Our search bounds were

qR ∈ [10−5, 1]. If Ẽ(qReq) ≡ Ẽeq < 0 for a set of parameter values, then the bulk fibril

phase is an equilibrium phase with respect to the cholesteric for those parameters.

To avoid cumbersome notation, we will use the equilibrium result ψ(qr) ≡ ψeq(qr)

unless otherwise noted.

3.3 Results

3.3.1 Narrow equilibrium regime

In Fig. 3.4, we show the global energy landscape for double-twist collagen fibrils as the

dimensionless parameters γ̃ and k̃24 are varied. The ratio K̃33 = 30 is held constant.

The colour and contours represent the dimensionless minimum energy, Ẽeq, for double-

twist fibrils — green indicates equilibrium fibrils with respect to the cholesteric phase,

while red indicates meta-stable fibrils. We see that there is only a small region of

1Lyotropic liquid crystals gain orientational order with increasing concentration. Chromonic
liquid crystals are formed through aggregation of smaller, flat molecules which stack on top of each
other to form cylindrical structures.
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equilibrium fibrils, where we require −1 ≤ k̃24 � 1.2 and γ̃ � 0.2. The minimum

fibril energy Ẽeq increases monotonically with increased γ̃ or with decreasing k̃24.

Figure 3.4: Phase diagram of stable and meta-stable double-twist phases in the k̃24
vs γ̃ plane (with K̃33 = 30). The green region indicates the existence of double-
twist fibrils that are stable with respect to the cholesteric phase, with Eeq < 0.
The red region indicates meta-stable minima with respect to the cholesteric phase,
with Eeq ≥ 0. Contours indicate the values of the dimensionless free energy density
Ẽeq ≡ Eeq/(K22q

2). The inset white curve labelled “double-twist minima for R > 0”
demonstrates a typical relationship between E and R for values of γ̃ with k̃24 ≤ 1. For
k̃24 > 1 (above dashed white line), there is an additional, divergent global minimum
as R → 0, illustrated by the inset curve labelled “divergent minima at R = 0”. Gray
regions do not have any local minima with 0 < R < ∞. Note that k̃24 ≡ k24/K22,
γ̃ ≡ γ/(K22q), and K̃33 ≡ K33/K22.

The energies shown in Fig. 3.4 represents the energy of double-twist fibrils that

have a finite radius R. For larger values of γ̃ there is no local minimum at R > 0 (gray

region), and we would instead expect to observe a bulk cholesteric phase. This is also
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what we expect in most of the metastable regime, and arises because the energy cost

of the interface in a fibril phase is large due to the surface tension γ.

For k̃24 > 1, we observe a divergent minimum energy for R → 0. When both

a divergent minimum for R → 0 and a local minimum at finite R is present, we

illustrate the local minimum behaviour only (i.e. shading and contours in non-gray

regions with k̃24 > 1 represent the local minima). This divergent minimum arises

because sufficiently large k24 encourages interface proliferation in the fibril phase.

This can be seen explicitly with eqns. 3.4 and 3.5 using a linearly varying ansatz for

the pitch, ψ = rψ(R)/R. For ψ(R) 
 1 we obtain E = ψ(R)2(K22−k24)/R
2+2γ/R.

For k24 > K22 we obtain E → −∞ as R → 0. However, this singular solution is

for a continuum model where fibril radii are large with respect to the diameter of

individual molecules, d = 1.5 nm. We would also expect higher order gradient terms,

absent in eqn. 3.1, to change (and perhaps eliminate) the singular solution at R ≈ 0

for k̃24 > 1.

To confront our double-twist solutions with experimental measurements of colla-

gen fibrils, we investigate our model’s predictions of surface twist, ψReq ≡ ψ(qReq),

and fibril radius, Req.

3.3.2 Experimental observables: Surface twist and fibril radius

Fig. 3.5 shows the surface twist landscape. Corresponding with Fig. 3.4, the gray

regions at the upper left and to the right have no fibril phases. ψReq increases with

increasing γ̃ and decreasing k̃24, with blue lines of constant ψReq (in radians) shown.

Double-twist phases that are stable with respect to the bulk cholesteric phase occur

to the left of the black dashed line (Eeq < 0), as indicated.

Two surface twist values of particular interest are ψReq = 0.1 rad and ψReq =

0.31 rad, being typical surface twist angles observed in tendon fibril and corneal fibril,

respectively. We have labelled these two values of surface twist with blue dashed

lines in Fig. 3.5. Furthermore, other types of fibrils in vivo tend to have smaller

surface twists than corneal fibrils ≤ 0.31 rad, which gives the corneal dashed line in

Fig. 3.5 further meaning as an upper limit of surface twist values observed in vivo

[74, 72, 80]. Remarkably, this upper bound of surface twist approximately coincides

with the stable equilibrium regime of double-twist fibrils (i.e. the region to the left of
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Figure 3.5: Contours of surface twist ψReq ≡ ψ(qReq) (solid and dashed blue) in

radians, vs the reduced saddle-splay elastic constant k̃24 and the reduced surface
tension γ̃, all with K̃33 = 30. ψReq = 0.1 rad and ψReq = 0.31 rad are typical surface
twists observed in tendon and cornea fibrils, respectively, and are distinguished above
with dashed contour lines. Meta-stable (Eeq ≥ 0) and stable (Eeq < 0) fibril phases
with respect to the bulk cholesteric phase are separated by the black, dashed line.
The gray areas correspond to parameter space regions for which no stable or meta-
stable double-twist configurations are found. Note that k̃24 ≡ k24/K22, γ̃ ≡ γ/(K22q),
and K̃33 ≡ K33/K22.

the black dashed line in Fig. 3.5).

We also obtain reduced equilibrium fibril radii, qReq, as shown in Fig. 3.6. As

a consequence of eqn. 3.7b, we do not obtain the radii directly. We see that qReq

increases with increasing γ̃, and decreases with increasing k̃24 — the same qualitative

behaviour as ψReq . For fixed q the behaviour of Req as other parameters are varied is

immediately given: the radius decreases as k24 increases, or as the surface tension γ
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Figure 3.6: Contours of scaled equilibrium fibril radius qReq as a function of the
reduced saddle-splay elastic constant, k̃24, and the dimensionless surface-tension γ̃,
all with K̃33 = 30. qReq increases with increasing γ̃, and decreases with increasing k̃24.
Values of qReq to the left of the black, dashed line are stable with respect to the bulk
cholesteric phase (Ẽeq < 0). The gray areas correspond to parameter space regions
for which no stable or meta-stable double-twist configurations are found. Note that
k̃24 ≡ k24/K22, γ̃ ≡ γ/(K22q), and K̃33 ≡ K33/K22.

decreases. IncreasingK22 rescales γ̃ and k̃24 directly towards the origin, and can either

increase Req (for fibrils with small ψReq) or decrease Req (for fibrils with ψReq � 0.2 rad,

or 10◦). If we increase q and leave other parameters fixed, we see that the scaled

surface-tension γ̃ will decrease — leading to smaller qReq values. Since we have

increased q, we then obtain even smaller Req values.
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Figure 3.7: Non-linearity of the twist angle ψ(r) (0 ≤ r ≤ Req), where Req is the
fibril radius within the double twist fibril phase, for different parameter values. In
(a)-(c), six different double-twist configurations, ψ vs scaled radial distance qr, are
illustrated for the parameter values indicated in (d) – with corresponding labels from
1-6. 1, 3 and 5 are points on the k̃24 = 0.75 line; 2, 4, and 6 are points on the
k̃24 = 0.1 line. Both ψ and ψ′ increase monotonically with r for all parameter values.
The contours in (d) indicate the ratio of surface twist gradient at the surface to that
in the fibril centre, ψ′(qReq)/ψ

′(0) ≡ ψ′
Req

/ψ′
0, which captures non-linearities in the

double-twist configuration. As before, the black dashed line separates fibrils that are
stable with respect to the bulk cholesteric phase (left of line) from those which are
only meta-stable (right of line). The gray areas of (d) correspond to parameter space
regions for which no stable or meta-stable double-twist configurations are found.

3.3.3 Non-linearity of twisting within fibril

From our free energy functional, at the fibril centre collagen molecules are aligned with

the fibril axis, with ψ(0) = 0. For r > 0, we illustrate ψ(qr) for six parameter values

in Fig. 3.7a-3.7c. All of the curves exhibit two properties: 1) ψ(qr) increases mono-

tonically with qr, and 2) the twist gradient also increases with radius, i.e. ψ′′(qr) > 0.

With these two properties in mind, we quantify the double-twist nonlinearity with

the ratio of the twist angle gradient at the fibril surface, ψ′
Req

≡ ψ′(qReq), to the twist

angle gradient at the fibril centre, ψ′
0 ≡ ψ′(0), as shown in Fig. 3.7d. Nonlinearity in-

creases with increasing γ̃, and decreases with increasing k̃24. We see that equilibrium

fibrils may have significant twist nonlinearities, up to ψ′
Req

/ψ′
0 ≈ 3.
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3.4 Discussion

We identified dimensionless parameter combinations (eqn. 3.7) that reduced the num-

ber of independent parameters in our equilibrium free energy density (eqn. 3.4) for the

collagen orientation within double-twist fibrils (eqn. 3.2). We solved the dimension-

less equations numerically, and identified a narrow parameter regime (green region of

Fig. 3.4) that produces double-twist fibrils that are thermodynamically stable with

respect to a bulk cholesteric phase.

The parameters of our model are the coarse-grained elastic constants that deter-

mine the free energy costs of spatial-gradients of the collagen orientation (K22, K33,

K22, k24) together with a surface energy γ and a chiral wavenumber q. One dimen-

sionless parameter combination is relatively well determined by the long semi-flexible

configuration of individual collagen molecules (K33/K22 = 30). Remarkably, we find

that only two dimensionless parameter combinations (k24/K22 and γ/(K22q)) are then

required to determine both the surface twist ψReq (Fig. 3.5) and the dimensionless

radius qReq (Fig. 3.6) of equilibrium collagen fibrils.

We find that equilibrium surface twists should all satisfy an upper bound: ψReq ≤
0.33 rad (19◦), which approximately coincides with the maximum surface twist re-

ported in the in vivo literature [55].

3.4.1 Polymorphism of collagen fibrils

A surprise in considering Figs. 3.4, 3.5, and 3.6 is the wide range of equilibrium

configurations available to collagen fibrils over a relatively narrow parameter regime.

This polymorphism allows different aspects of fibril structure to be emphasized for

different parameterizations.

Collagen fibril stability

The thermodynamic stability with respect to the cholesteric phase is assessed by the

free energy per unit volume, as illustrated in Fig. 3.4. We see that the most stable

(lowest energy) fibrils are in the upper-left corner with a combination of small γ and

large K22 and q — above point “1” in Fig. 3.7, with k24 	 K22. Note that what is

presented is Eeq/(K22q
2), so that with large K22 and q the cohesion energy is even
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larger.

One consequence of selecting for more stable fibrils is that the expected surface

twist values would be quite small, according to Fig. 3.5. Interestingly, we would

expect a uniform twist gradient (Fig. 3.7) in this regime as well. In contrast, to allow

for fibrils with larger surface twist, γ̃ must be fine-tuned to values near the stability

boundary — close to point “3” in Fig. 3.7 — making fibrils with large surface twist

(and nonlinear ψ(qr)) less thermodynamically stable than their small twist, linear

counterparts. We note that all fibrils, which are stable with respect to the cholesteric

phase, have ψReq ≤ 0.33 rad.

The relationship between thermal stability and fibril radius is complicated by the

scaling of Req with q, as the contours in Fig. 3.6 depend on q as well as γ̃ and k̃24.

Thus, to investigate the relationship between thermal stability and fibril size, we look

at the two ways in which large (small) radius equilibrium fibrils can be generated from

our model. The first is to maximize (minimize) qReq at a constant q. From Fig. 3.6,

this would be achieved by fine-tuning γ̃ close to (far from) the stability boundary.

This approach would indicate that smaller fibrils are more thermodynamically stable

than large fibrils.

The second approach to generate large (small) fibrils is to decrease (increase) the

chiral wavenumber q at a constant qReq, while also keeping γ̃ and k̃24 constant. In this

approach, you would stay at the same point in Fig. 3.4 and 3.6, and so Eeq/(K22q
2)

and qReq would remain constant. As you decrease (increase) q, fibril radius increases

(decreases), but thermodynamic stability decreases (increases) as well. Thus, both

approaches to increasing fibril radius tend to decrease thermal stability. Given this

prediction, it is unclear what functional role large fibrils might have, if it is not to

increase stability. While large fibrils are expected to be individually stronger than

small ones, the packing fraction of large or small fibrils would be the same and so

would bulk moduli of closely packed fibrils.

Influence of Collagen types

Collagen fibrils in vivo generally contain a tissue-dependent mixture of collagen types

[115, 48]. For example, while well-studied tendon and corneal fibrils are predominantly

composed of type-I collagen they contain an admixture of type-III collagen [116]. The
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best characterized heterotypic mixtures in vitro has been blends of types I and III

collagen [117, 118, 19], though I/V [71, 119] and II/III blends [120] have also been

studied.

The distribution of collagen types within individual fibrils has been qualitatively

assessed from immunoassay double-labelling. Both type I and type III are seen on

fibril surfaces [118, 117, 19] indicative of homogeneity (the evidence is, however,

mixed[48]). Under the assumption that mixtures of collagen types are spatially homo-

geneous within a fibril, the elastic parameters of the mixture should be interpolations

between those of the pure collagen types [111]. In which case, our equilibrium picture

would apply to heterotypic fibrils — and the reduced elastic parameters of mixtures

would sit on curves between those of the pure types.

Varying the composition of heterotypic I/III fibrils leads to variations of fibril

radius [19] — from 0.1 μm (entirely type I) to 0.025 μm (entirely type III). Our model

can reproduce that either by moving the reduced parameters, e.g. γ̃, or by changing

q. Changes to γ̃ would be associated with a change in the surface twist, while changes

to q could be assessed in the cholesteric phase. However, neither surface twist nor

cholesteric q have been systematically characterized in type I/III mixtures.

D-band spacing

While we have assumed that the radial and longitudinal structures are decoupled, a

simple projective-coupling has been proposed in the literature [121, 48], corresponding

to the D-band period being reduced by a factor of cos(ψ) due to non-zero twist. For

our nonlinear double-twist model, the question immediately arises about how a single

D-band spacing can represent a continuously varying twist, ψ(qr). We hypothesize

that surface measurements of the D-band period via scanning electron microscopy or

atomic force microscopy would probe surface twist ψ(qR) while bulk measurements

of the D-band period via transmission electron microscopy or X-ray scattering would

probe a volume-average twist 〈cos(ψ(qr))〉. Combining both types of measurements

on the same set of fibrils would then provide additional insight into the nature of the

radial and longitudinal coupling.

Our model has a maximal surface twist of 0.33 rad, and a minimal twist of

0.002 	 0 rad, corresponding to at most a 5% difference of D-band spacing between
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fibrils according to the projective-coupling hypothesis. While surface twist of het-

erotypic I/III fibrils has not been characterized, the D-band spacing has been [19].

For 100% collagen-III (compared to pure collagen-I fibrils) there is a significant 39%

decrease in the D-band spacing. This exceeds our maximal surface twist effect, but

could be attributed to changes in the gap-spacing of the D-band [97] or to rope-like

ultrastructure [18] rather than to molecular tilt. Experimentally relating surface twist

measurements of fibrils to a more detailed assessment of longitudinal structure and

ultrastructure would be desirable to untangle these effects.

3.4.2 Experimental guidance on elastic parameters

The chiral wavenumber q can be directly assessed within cholesteric phases through

the cholesteric pitch P = 2π/q. Polarized light microscopy observations of rat tail ten-

don tropocollagen solubilized in acid show that cholesteric phases emerge at concen-

trations above 50mgmL−1, with decreasing pitch from P 	 20 μm at ∼ 50mgmL−1

to P 	 0.5 μm at ∼ 400mgmL−1 [122]. While we might expect variation in q for fib-

rils due to variable solution conditions [110, 111], we expect a similar range of values

q ∈ [0.1πμm−1, 4πμm−1].

The surface tension, γ, quantifies the cost of an interface between two bulk phases.

In our case, the interface is between individual fibrils and the surrounding aqueous

collagen solution. No experimental measurements of γ have been reported for colla-

gen. However, we assume surface-tensions are similar in magnitude to the nematic-

isotropic interface for liquid crystal systems. A lower bound of surface tension of an

isotropic-nematic interface is that of p-azoxyphenetole, for which γ � 0.5 pN μm−1

[123]. Conversely, a larger value of γ reported in this type of system is that of MBBA,

with γ = 24 pN μm−1 [124, 125]. Other experimental values fall within this range

[126, 127, 128]. Using Onsager’s theory of hard rods [110], a theoretical expression of

γ has been derived for isotropic-nematic interfaces near the phase transition [129]. Ap-

plying this result to our system, we obtain γ ∼ 2.3 pN μm−1 which is consistent with

the experimental bounds. Accordingly, we expect γ ∈ [0.5 pN μm−1, 25 pN μm−1].

To determine the value of the twist elastic constant, K22, for collagen fibrils, we

again use typical values of liquid crystal systems. For PBLG, a range of K22 values

from 0.6 pN to 6.2 pN [130, 131, 132] have been measured depending on the solvent
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used. In these measurements, no significant concentration [131] or molecular weight

[132] dependence has been observed. We therefore expect K22 ∈ [0.6 pN, 6 pN].

Experimentally determining the saddle-splay elastic constant, k24, is difficult due

to the surface-like nature that it represents in the free energy. The saddle-splay to

twist ratio has been estimated to be k24/K22 	 2 for nematic systems using deuterium

nuclear-magnetic-resonance [133] and polarization microscopy [134]. No measure-

ments of k24 for long, chiral molecules similar to tropocollagen have been reported.

Theoretical calculations predict that k24 =
1
2
(K11−K22) [106], which with K11 > K22

[135, 112] implies k24 ≥ 0. However, this result was derived through an interaction

energy, and thus is likely valid only for thermotropic systems in which energy favours

orientational order 2.

3.4.3 Comparison with in vivo fibril ultrastructure

Our theoretical equilibrium treatment highlights the importance of surface twist, since

it significantly constrains our model parameterization. (The comparison between ex-

periment and our model is not as definitive when looking at Req, because we can only

constrain the product qReq.) The surface twist angle measured in vivo is correlated

to the anatomical location of the fibril, as well as the type of tropocollagen found

within the fibril [74, 73, 98, 80, 48]. Two well-studied fibril types in vivo are corneal

fibrils, which have large surface twists 	 0.31 rad [55], and tendon fibrils, which have

fairly small surface twists 	 0.1 rad [54].

Corneal and other helicoidal fibrils

For the high surface twist of corneal collagen fibrils, with ψReq = 0.31 rad, we show

in Fig. 3.8 the values of Ẽeq, k̃24, and qR as a function of γ̃. These are determined

by calculating the ψReq = 0.31 rad contour line (i.e. k̃24 vs γ̃ line) in Fig. 3.5,

and mapping this relationship onto Figs. 3.4 and 3.6, to determine Ẽeq and ˜qReq,

respectively. Restricting ourselves to thermodynamically stable parameterizations,

with Ẽeq < 0, from Fig. 3.8 we expect that γ̃ ∈ [0.1, 0.2], k̃24 ∈ [0.6, 1.25], and

qReq ∈ [0.2, 0.4].

2This is in contrast to lyotropic systems, in which free energy and entropy drive phase transitions.
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Figure 3.8: Radial fibril structure and stability of corneal fibrils. Surface twist is
restricted to ψReq = 0.31 (i.e. along the 0.31 contour in Fig. 3.5) — the experimentally

measured surface twist of corneal fibrils. (a) Reduced saddle-splay k̃24 vs reduced
surface-tension γ̃ is indicated in black squares and dots, while reduced minimum
energy-density Ẽeq vs γ̃ is indicated by green triangles and dots. Dots indicate where
fibrils are only meta-stable with respect to the cholesteric phase, and shapes indicate
where fibrils are stable with respect to the cholesteric phase, Ẽeq < 0. (b) The
dimensionless fibril radius qR vs γ̃. The equilibrium radius that minimizes Ẽ, qReq,
is indicated by stars (when Ẽeq < 0) and dots (when Eeq ≥ 0). The minimum and
maximum fibril radii that are stable with respect to the cholesteric (i.e. qR values
such that Ẽ(qRmin) = 0, Ẽ(qRmax) = 0 and qRmin < qReq < qRmax), are indicated by
diamonds and triangles, respectively.

Human corneal fibrils have a typical diameter of 30 − 35nm [136, 103, 55]. We

consider a radius of R 	 0.015 μm for convenience. This then implies an approximate

range of expected chiral wavenumber q ∈ [13, 27]μm−1. This range abuts the expected

range from Sec. 3.4.2 at larger qReq, when γ̃ 	 0.1 and k̃24 	 0.75 – this is near point

“3” of Fig. 3.7.

Using γ̃ 	 0.1 and q 	 13μm−1, our expected range of K22 ∈ [0.6, 6] pN from

Sec. 3.4.2 implies γ ∈ [1.6, 16] pN μm−1. This is entirely within the expected range of
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γ ∈ [0.5, 25] pN μm−1. As mentioned, k24, is not well constrained — but nevertheless

k̃24 	 0.75 is close to the expected scale [133, 134].

Corneal fibrils are very close to the stability boundary between fibrils and the

cholesteric phase due to their large surface twists. This implies that only a very narrow

range of fibril radii are stable with respect to the cholesteric phase, with Ẽ < 0. In

Fig. 3.8 (b), in addition to qReq, we indicate the minimum and maximum values for

stable fibrils, qRmin and qRmax, respectively. For a given γ̃ and k̃24, qRmin and qRmax

are defined such that Ẽ(qRmin) = 0, Ẽ(qRmax) = 0 and qRmin < qReq < qRmax. We

see that precisely at γ̃ 	 0.1, there is only a very narrow range of stable fibril radii

available for corneal fibrils. Furthermore, a narrow range of corneal fibril radii is

observed [136] and is required for corneal transparency [137, 59].

In Fig. 3.10 of Supplemental section 3.6, we examine different values of K̃33 to

determine whether the correlation between narrow stability and large surface twist

is sensitive to our parameter choices. We find that this behaviour persists in a wide

range of K̃33 ∈ [10, 40], for ψReq 	 0.31 rad. From this, we hypothesize that the large

surface twist of corneal fibrils may be a result of being at the stability boundary,

which in turn is required to narrow the range of accessible fibril radii. Cross-linking

after fibrillogenesis could then mechanically stabilize corneal fibrils.

Other “helicoidal” or “C”-type[73] collagen fibrils also exhibit large surface twists

with ψReq 	 0.3 rad and a narrow unimodal distribution of fibril radii [48, 73, 80, 74].

These helicoidal fibrils are found in e.g. skin, interstitial stroma, and nerve and

tendon sheaths. They have a slightly shorter D-period, consistent with the projective

coupling hypothesis [48, 121]. Despite their similarity of surface twist, in each tissue

helicoidal fibrils exhibit a different unimodal radius – from 0.015 μm to 0.050 μm [48].

Larger radii than seen in corneal fibrils could be accommodated in our model by

smaller q, or by different points along the stability boundary of Fig. 3.5.

Interestingly, some originally helicoidal fibrils from skin that have been disasso-

ciated and reconstituted are no longer helicoidal [138, 50] — though see ref. [139].

This implies that fibrillogenesis conditions are important in determining their reduced

parameterization; parameters are not simply determined by the molecular type, but

also by the environment. While our approach can constrain reduced parameteriza-

tion with observations of fibril surface twist and radius, a direct assessment of elastic
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constants within the context of individual fibrils would require different approaches.

Tendon fibrils

For the low surface twist of tendon collagen fibrils, with ψReq 	 0.1 rad, we show

in Fig. 3.9 the values of Ẽeq, k̃24, and qR as a function of γ̃. These correspond

to mapping the ψReq = 0.1 rad contour line from Fig. 3.5 to Figs. 3.4 and 3.6,

respectively. Restricting ourselves to thermodynamically stable parameterizations,

with Ẽeq < 0, we expect that γ̃ ∈ [0, 0.07], k̃24 ∈ [−1, 1.1], and qReq ∈ [0.01, 0.2].

While most of these ranges are larger than those of corneal fibrils, the values of qReq

for tendon fibrils are significantly smaller.

Tendon fibrils in vivo have a large range of radii, from 0.02 μm to 0.2 μm [68, 140],

and the distribution varies with age and tissue type. Significantly, fibrils within the

same tissue exhibit a broad range of radii. Nevertheless, the average fibril tendon

radius R = 0.08μm from older mouse tails [140] is much larger than typical corneal

fibrils. This implies expected values of q ∈ [0.13, 2.5]μm−1. These chiral wavenumbers

are significantly smaller than for corneal fibrils, but are entirely within the expected

range from Sec. 3.4.2. Combining possible ranges, we then expect the surface tension

γ ∈ [0, 1]pN μm−1. This is in the lower end of, but largely within, the range expected

from Sec. 3.4.2.

However, to have a broad distribution of equilibrium tendon fibril radii within the

same section of tissue [68, 140] would imply a broad range of reduced parameters,

and hence of conditions during fibrillogenesis. Tendon fibrils in particular are almost

entirely comprised of type-I collagen, and so this variation cannot be attributed to

variations of composition. Rather, we believe that non-equilibrium processes are

involved in the determination of tendon fibril radii — as proposed by Kalson et al.

[140].

Fibrils with a small surface twist are expected to be quite stable with respect to the

cholesteric phase (see Fig. 3.4). This implies that fibrils at a broad range of different

radii around the equilibrium will also be stable with respect to the cholesteric, as

shown by the difference in magnitude of qRmin and qRmax in Fig. 3.9b. We note

that there is at least a 100-fold range of stable radii available between Rmin and Rmax,

with a narrower 5-fold range range between Req and Rmin. The observed 10-fold range
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Figure 3.9: Radial fibril structure and stability of tendon fibrils. Surface twist is
restricted to ψReq = 0.1 (i.e. along the 0.1 contour in Fig. 3.5) — consistent with

experimentally observed surface twist of tendon fibrils. (a)) Reduced saddle-splay k̃24
vs reduced surface-tension γ̃ is indicated in black squares and dots, while reduced
minimum energy-density Ẽeq vs γ̃ is indicated by green triangles and dots. Dots
indicate where fibrils are only meta-stable with respect to the cholesteric phase, and
shapes indicate where fibrils are stable with respect to the cholesteric, Ẽeq < 0. (b))
The dimensionless fibril radius qR vs γ̃. The equilibrium radius that minimizes Ẽ,
qReq, is indicated by stars (when Ẽeq < 0) and dots (when Eeq ≥ 0). The minimum
and maximum fibril radii that are stable with respect to the cholesteric (i.e. qR values
such that Ẽ(qRmin) = 0, Ẽ(qRmax) = 0 and qRmin < qReq < qRmax), are indicated by
diamonds and triangles, respectively. Due to the divergent behaviour of the double-
twist for k̃24 � 1 (see Fig. 3.4), only a small range of 0 < γ̃ < 0.07 is accessible for
ψReq = 0.1 rad.

of tendon fibril radii fits within the larger range of stable fibrils with respect to the

cholesteric.

Our hypothesis then is that non-equilibrium cross-linking works to stabilize fibril

radii that are away from Req, but only have the opportunity to act on fibrils that are

stable with respect to the cholesteric (betweenRmin and Rmax). Essentially we propose

that fibrillogenesis only takes place when fibrils are thermodynamically stable, while
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cross-linking can freeze (and so prevent) the subsequent slow relaxation of fibril radii

towards the minimal energy radius Req. We note that this thermodynamic stability

may also be of use during remodelling after damage for these load-bearing fibrils [141].

3.5 Summary and Future Work

We model collagen fibrils with a double-twist director field of molecular tilt, and

identify where a fibril phase is more stable than a cholesteric phase. The stability,

dimensionless radius qR, and surface twist of the fibrils ψ(qR) are controlled by two

dimensionless parameters, the ratio of surface tension to the chiral strength (γ/K22q)

and the ratio of saddle-splay to twist elastic constants (k24/K22). The fibril phase is

the equilibrium state with respect to the cholesteric phase only when the surface ten-

sion is small compared to the chiral strength. Within this limit, the fibril phase can

access a wide range of equilibrium configurations (Req, ψ(Req)). Current experimental

observations are consistent with our equilibrium picture, and indicate that controlled

equilibrium polymorphism of collagen fibrils may be significant biologically. We sug-

gest that corneal collagen fibrils are formed close to the fibril-cholesteric stability

boundary, with large surface twists, in order to achieve a narrow range of fibril radii

and to ensure corneal transparency. Conversely, tendon collagen fibrils are formed

away from the stability boundary, with small surface twists, but non-equilibrium ef-

fects are needed to explain the polydispersity of tendon fibril radii within individual

tissues. A key conclusion is that experimental characterization of a collagen fibril

population should always include both radius and surface twist measurements.

Though this model is able to capture the radial structure of collagen fibrils, it

does not explicitly consider the axial D-band structure, which is a dominant fea-

ture of fibrils. The Hodge-Petruska model of D-band (discussed in Chapter 2) [11]

indicates that the D-band arises from molecules within fibrils having a specific ar-

rangement parallel to the cylindrical fibril axis, which suggests that orientation and

D-band cannot be considered separately, but must instead be coupled together. This

coupling has been proposed as the reason why larger twist fibrils have shorter D-band

periodicity [48, 121]. In this chapter, we have assumed that the D-band is completely

malleable, and follows the double-twist with no cost to the overall free energy of the

fibril. However, it is not obvious that this is true; perhaps interaction of D-band
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and molecular twist is important in the self-assembly of collagen fibrils. To provide

insight into this question, and to fully understand the relationship between D-band

and twist, a more general model of fibril structure which couples the two together

must be constructed. In the next chapter of this thesis, we address these speculations

with a new model of collagen fibril structure which includes D-band.

3.6 Supplemental: Other K33 values

In Fig. 3.10 we show the surface twist vs reduced parameters k̃24 and γ̃ for a range of

K̃33 ≡ K33/K22 values: 10, 20, 30, and 40 for subfigures a)-d) respectively. We note

that K̃33 = 30 corresponds to Fig. 3.5 but is included for ease of reference.

3.7 Supplemental: Dimensional reduction

The free energy per unit volume of fibril is

E =
1

R2

∫ R

0

dr

[
K22r

(
q − ψ′ − sin 2ψ

2r

)2

+K33
sin4 ψ

r

]

− (K22 + k24) sin
2 ψ(R) +

2γ

R
. (3.8)

Multiplying eqn. 3.8 by 1/(K22q
2) gives the dimensionless free energy per unit volume

of fibril,

Ẽ =
1

R̃2

∫ R̃

0

dr̃

⎡
⎣r̃
(
1− ψ̃′ − sin 2ψ̃

2r̃

)2

+ K̃33
sin4 ψ̃

r̃

⎤
⎦

− (1 + k̃24) sin
2 ψ̃(R̃) +

2γ̃

R̃
, (3.9)

where we have defined the dimensionless quantities K̃33 = K33/K22, k̃24 = k24/K22,

γ̃ = γ/(K22q), r̃ = qr, R̃ = qR, ψ̃(r̃) = ψ(r), Ẽ = E/(K22q
2).

3.8 Supplemental: Power Series Solution

We first assume that a convergent power-series expansion of ψ(r) in powers of the

radius r exists. We then analytically continue this solution to negative r, in order to
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Figure 3.10: Calculated fibril surface twist ψ(qReq) ≡ ψReq for different values of
K33/K22. As K33/K22 increases, the surface twist values tend to decrease in size
for a given γ̃ and k̃24. In (a)) the double-twist model predicts the existence of fib-
rils with very large surface twist, 	 0.52 rad, which are stable with respect to the
cholesteric phase. The surface twist values shown in (b) and (c) predict a wide range
of equilibrium surface twist values (dependent on parameter values), consistent with
experimental observations. The 0.1 rad contour, labelled ψtendon

Req
, is a typical surface

twist value of in vivo tendon fibrils. Similarly, the 0.31 rad contour, labelled ψcornea
Req

, is
a typical surface twist value of in vivo corneal fibrils. The surface twist of both fibril
types is captured for each K33/K22 value shown, but as seen in (d), as K33/K22 � 40,
the 0.31 rad (cornea) surface twist line transitions completely into the metastable
regime. The gray areas in (a)-(d) correspond to parameter space regions for which no
stable or meta-stable double-twist configurations are found. Note that k̃24 ≡ k24/K22,
γ̃ ≡ γ/(K22q), and K̃33 ≡ K33/K22.

simply note that if ψ(r) is a solution to eqns. 3.6 then so is −ψ(−r) — i.e. ψ is an

odd function and will only have odd terms in its power-series expansion. (This result

is independently verified by the numerically relaxed solutions.)
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To simplify our derivation we will use the dimensionless formulation from the

previous Supplemental section 3.7 but will drop the tildes. Then the power series

solution for ψ(r) with only odd terms is of the form

ψ(r) =
∞∑
n=0

anr
2n+1, (3.10)

and satisfies

(rψ′)′ = 1 +
K33

2r
sin 2ψ +

(1−K33)

4r
sin 4ψ − cos 2ψ, (3.11)

where the trigonometric identities sin2 x = 1/2(1 − cos 2x) and sin 2x = 2 sin x cos x

have been used. Taylor expanding the trigonometric functions yields

(rψ′)′ =1 +
K33

2r

∞∑
n=0

(−1)n22n+1

(2n+ 1)!
(ψ)2n+1

+
(1−K33)

4r

∞∑
n=0

(−1)n42n+1

(2n+ 1)!
(ψ)2n+1

−
(
1 +

∞∑
l=1

(−1)l22l

(2l)!
(ψ)2l

)
. (3.12)

The general form of ψn in terms of ak is

ψn =

( ∞∑
k=0

akr
2k+1

)n

= rn
∞∑
k=0

( ∑
j1+j2+···+jn=k

aj1aj2 · · · ajn
)
r2k, (3.13)

where j1, j2, · · · , jn ≥ 0 are integer indices and we have used the Cauchy product

∞∑
n=0

anx
n

∞∑
m=0

bmx
m =

∞∑
k=0

k∑
l=0

albk−lx
k. (3.14)

Using this we obtain

∞∑
n=0

(2n+ 1)2anr
2n =

∞∑
n=0

cnr
2n

∞∑
k=0

p2n+1,kr
2k

+
∞∑
l=1

dlr
2l

∞∑
k=0

p2n,kr
2k, (3.15)
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where we have defined

cn =
(−1)n22n

(2n+ 1)!

[
K33 + 22n(1−K33)

]
, (3.16)

dl =
(−1)l22l

(2l)!
, (3.17)

pn,k =
∑

j1+j2+···+jn=k

aj1aj2 · · · ajn . (3.18)

Using eqn. 3.14, we re-write eqn. 3.15

∞∑
n=0

(2n+ 1)2anr
2n =

∞∑
n=0

n∑
j=0

cn−j p2(n−j)+1,jr
2n

+
∞∑
n=0

n−1∑
k=0

dn−k p2(n−k),kr
2n. (3.19)

We can determine each an recursively from the eqn. 3.19. We find that a0 = ψ′
0

is arbitrary. For n ≥ 1, eqn. 3.19 can be rearranged to give

an =

∑∞
j=0 cn−j p2(n−j)+1,j +

∑n−1
k=0 dn−k p2(n−k),k

[(2n+ 1)2 − 1]
, n ≥ 1 (3.20)

Since p2(n−j)+1,j, p2(n−k),k depend on all lower coefficients a0, · · · , an−1, calculating

ψ(r) to high order in r becomes increasingly difficult and is impractical for a broad

range of parameters. Nevertheless, we can use the leading cubic term as a starting

point for our numerical relaxation approach:

ψ(r) = ψ′
0r +

(3K33 − 4)ψ′3
0 − 3ψ′2

0

12
r3 +O(r5) (3.21)



Chapter 4

Phase field collagen fibrils: Coupling D-band and twist

This chapter is closely based on a first draft for a scientific paper that is being

developed, and so is fairly self-contained in its discussion of collagen fibril structure

and how this work may fit into the literature. The work presented in this chapter is

my own, with input on what figures and discussion might be interesting coming from

my supervisors. A new model of collagen fibril structure is presented which builds on

the model of the previous chapter. This new model not only considers the orientation

of molecules within the collagen fibril, but also their periodic D-band striations along

the cylindrical axis of the fibril, and so fills a major void in previous quantitative

models of radial structure which neglected this important feature.

4.1 Introduction

Collagen fibrils have an important place in the study and characterization of biological

materials, given their ubiquity in mammals as well as other vertebrates. These fibrils

are long and cylindrical in shape, with a wide range of possible radii, R ∈ 10−200nm

depending on anatomical location in vivo[65, 48] or experimental conditions in vitro

[70, 142, 19]. The lengths of these fibrils, L, are much larger than their radii, and so

a fibril can be locally thought of as a very long cylinder. The cylindrical structure of

fibrils arises from the dense packing of 300nm long, 1.5nm wide chiral tropocollagen

molecules [16], which are themselves composed of smaller peptides of a similar helical

nature and aspect ratio [10]. These molecules are aligned somewhat parallel with the

long axis of the fibril, though the precise orientation within the fibril is dependent on

anatomical location [72, 73].

The most well characterized feature of collagen fibrils is the presence of periodic

banding along the long axis of the fibril, known as the fibril D-band. The mechanism

of this D-banding structure is due to specific inter-molecular interactions which force

adjacent molecules to be offset vertically from each other, driving a staggering pattern

54
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(i.e. Hodge-Petruska model [11]). This staggering drives alternating regions of high

density and low density along the cylindrical axis. Bulk (e.g. scattering) measure-

ments of D-band suggest that a single D-band period is found throughout the radial

cross-section (i.e. D-band is constant in a circular cross-section of fibril) [143, 49].

In vivo, the period of the D-band remains fairly consistent between fibrils found in

different regions of the body, with period length between 64−67nm [96]. In contrast,

the D-band period of in vitro fibrils have much more variability [144], and can even

be manipulated by the ratio of collagen I to collagen III molecules in the formation

of the fibrils [19]. When pulled on at both the single fibril or tissue (fibril bundle)

scale, the D-band period typically increases with applied strain [6] and can serve as

measure of how much strain is being felt by the individual fibrils. In contrast to this

axial D-banding, the spacing of molecules in a circular (radial) cross-section of fibrils

is much more disordered [145].

Another experimentally accessible/interesting feature of collagen fibrils, the av-

erage orientation of molecules on the surface of the fibril, has received considerable

attention in the literature over the past two decades [80, 73, 3, 79, 4]. We refer to

this feature as the fibril surface twist, ψ(R). This surface twist generally forms a

small angle with respect to the long axis of the fibril, and likely arises from the chiral

nature of the fibril’s constituent tropocollagen molecules [3, 4, 82]. Although first

measured many years ago using freeze-fractured electron microscopy [72, 74], surface

twist has been widely neglected in the collagen literature, perhaps due to the diffi-

culty of measuring such a small scale feature compared to something as prevalent as

the fibril D-band. However, large differences in surface twist are observed in different

anatomical locations [48], and may be associated with radial size control of fibrils

[4]. The largest surface twist values are measured in fibrils extracted from cornea,

and the smallest surface twist values are measured in fibrils extracted from tendon.

These two tissues then serve as the two extreme examples of this feature. Corneal

fibrils have surface twist around 17◦. Tendon fibrils, in contrast, have surface twist

closer to 5◦. To the author’s knowledge, no measurements of surface twist have been

carried out on in vitro assembled fibrils. However, it has been inferred from D-band

measurements that the surface twist of in vitro fibrils is relatively small [138, 48].

Two descriptive models have been put forth in attempt to understand observed
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surface twist: the constant pitch model and the constant twist model [48]. Although

not explicitly said in either case, both models consider the local, average orientation

of tropocollagen molecules constrained to be in a double-twist orientation (see Figure

1 of [4]). Therefore, the tropocollagen orientation can generally be described by a

local twist field, ψ(r), which depends only on the distance r from the fibril centre.

The surface twist ψ(R) is the twist at the fibril radius, r = R.

The constant pitch model, first proposed by Raspanti [80], is that of a constant,

non-zero twist gradient starting with zero twist at the fibril centre, i.e. the local

twist is linear in r, ψ(r) = ψ′
0r. This model draws inspiration from chiral nematic

and blue phases having a constant pitch [81], and is attractive from a molecular

chirality perspective as it allows the tropocollagen molecules to twist with respect

to each other. Recent theoretical work [3, 4] using a generalization of this constant

pitch structure has indicated that a slightly non-linear (but monotonically increasing)

twist angle is thermodynamically stable, i.e. has a minimal free energy. However, this

twisted structure appears to be incompatible with the claim that D-band is constant

throughout the fibril phase. Using the projective coupling hypothesis put forth in the

literature (see e.g. page 1671 of [48]), the D-band d ∝ cosψ(r). Therefore, any local

gradients in twist will give rise to local gradients in D-band. It is possible, however,

that the molecules themselves are axially compressed near r = 0 and stretched near

r = R to maintain a constant D-band. As such, the constant pitch model assumes

an axially soft D-band.

The second model of molecular orientation in the fibril was first put forth by

Galloway [77], in which the twist angle of molecules remains constant throughout a

circular cross-section of the fibrils, i.e. ψ(r) = ψ0. This constant twist model has the

attractive feature of accommodating the D-band, since the twist angle is constant and

so d ∝ cosψ0 = constant. However, a new incompatibility arises in this structure, as

this constant twist phase suppresses the ability of the (chiral) tropocollagen molecules

to twist with respect to each other. This suppression of twist can be explained through

assuming the strength of the inter-molecular potential which give rise to the D-band

are much larger than the strength of the chiral interaction (i.e. it assumes a soft twist

field). However, no comparison of these two energy scales (D-band vs twist) has been

examined in the literature.
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These two descriptive models of collagen fibrils have motivated experimentalists

to measure the orientation of molecules within the fibril as well as on the fibril surface,

with the hope of understanding this frustration between the interactions driving the

D-band and those driving the molecular twist. Holmes et al. [55] used automated

electron tomography to measure the local orientation of the collagen molecules within

the fibril. They concluded from their experiments that the local molecular orientation

was consistent with a constant twist angle of roughly 15◦, and so supported the

constant twist angle model proposed by Galloway. In the discussion, we address this

claim further.

Although descriptive models are helpful in conceptual understanding of a physical

system, it would be ideal to have a model which is not only consistent with exper-

imental observation, but also arises from more fundamental physical concepts. In

recent years, quantitative model(s) of collagen fibrils have been developed using the

tools of theoretical and computational physics. Since the hierarchical scale of colla-

gen fibrils makes it difficult to build a fully molecular model of the fibril structure,

approximations must be used to simplify the phenomenology while still capturing

the important physics. Previous theoretical work on continuum modelling of colla-

gen fibrils employed techniques of liquid crystal physics to examine the local average

configuration of tropocollagen in a fibril, and was able to capture the upper limit of

surface twist observed in cornea fibrils [4] while also proposing a stability argument

for why large surface twist might lead to the more sharply peaked radial distribution

of cornea fibrils [146, 59, 147]. This work was consistent with the constant pitch,

ψ(r) = ψ′
0r, descriptive model of fibrils, but ignored D-band effects, and so was un-

able to provide a definitive answer on the underlying configuration of tropocollagen,

which should be influenced by both the molecular chirality and D-band interactions.

Computational approaches include atomistic molecular dynamics simulations of a

periodic lattice of tropocollagen molecules [86]. This approach is quite successful in

reproducing the experimental mechanical response of collagen fibrils. However, due

to the large computational cost of full scale atomic simulations of mesoscopic struc-

tures, only short time scales (a few nanoseconds) are accessible. To speed mechanical

convergence, the underlying structure of the tropocollagen molecules is put in by

hand using x-ray crystallographic data [58] of a collagen microfibril (consisting of five
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tropocollagen molecules). While molecular dynamics models can examine the change

in molecular configuration of tropocollagen while applying strain to the microfibril,

they are limited by the large computational time typical of atomistic calculations,

and so it are not able to relax to find novel equilibrium configurations (e.g. double

twist and/or D-band).

To the authors’ knowledge, there is no theoretical model of collagen fibril formation

which considers both the D-band structure and the molecular twist of the collagen

molecules. In this chapter, we construct such a hybrid phase field crystal liquid

crystalline model of collagen fibrils which couples the D-band and molecular twist.

We aim to answer two main questions:

1. How do tropocollagen molecules pack within the fibril to allow for a robust

D-band to be seen, while at the same time tilting with respect to the fibril axis?

2. How do the mechanical properties couple to the molecular orientation of tropocol-

lagen molecules when the fibril is pulled at one end?

In section 4.2, we develop our theoretical model of collagen fibrils using tech-

niques from liquid crystal and phase field crystal theories and reduce our model to

dimensionless form. In section 4.2.2, we touch on the numerical methods we use to

solve the fibril model we have constructed, and also develop a core - shelf - surface

approximation that can be used to simplify our calculations. In section 4.3, we ex-

plore the predictions of our model using our parameter estimates from section 4.2.

In section 4.4, we discuss how our results change the current understanding of the

interplay between the D-band of the fibril and the molecular twist within the fibrils,

and how tuning the strength of the coupling between the D-band and the twisting

of the molecules in the fibril can give rise to two different fibril phases. Finally, we

conclude in section 4.5.

4.2 Phase field collagen fibril model

4.2.1 Construction of the free energy

The free energy per unit volume of our model is the sum of four terms,

Ẽtot = ẼFrank + Ẽpfc + Ẽdw + Ẽsurf. (4.1)
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We provide here a brief derivation of these four terms. A more comprehensive deriva-

tion along with our model assumptions is included in Appendix A of this thesis.

The first term is just the volume averaged Frank free energy density within a

segment of fibril of length L̃ and radius R̃ with a double-twist director field n =

sinψ(r̃)φ̂ + cosψ(r̃)ẑ (see e.g. the previous chapter for details of double-twist struc-

ture),

ẼFrank =
1

πR̃2L̃

∫
Ṽ

(
1

2
K̃11(

˜̃∇ · n)2 + 1

2
K̃22(n · ∇̃ × n+ q)2

+
1

2
K̃33(n× (∇̃ × n))2 + k̃13∇̃ · (∇̃ · n)n

− 1

2
(K̃22 + k̃24)∇̃ · (n× (∇̃ × n) + n(∇̃ · n))

)
d3x̃

=
2

R̃2

∫ R̃

0

r̃dr̃

(
1

2
K̃22

(
q̃ − ∂ψ

∂r̃
− sin 2ψ

2r̃

)2

+
1

2
K̃33

sin4 ψ

r̃2

)
− (K̃22 + k̃24)

sin2 ψ(R̃)

R̃2
. (4.2)

Note that the K̃11 and k̃13 terms vanish as ∇̃ ·n = 0 for a double-twist configuration.

The second term, Ẽpfc, is motivated by phase-field crystal theory [5], being the

simplest coarse-grained free energy expansion to allow for periodic structure in density

perturbations. In this theory, a power series expansion of the free energy in terms of

gradients in an order parameter (typically density) is written out, as is usual in phe-

nomenological (Landau-like) field theories. The distinction of phase-field theories are

that they consider gradient terms that are higher than second order (at least to fourth

order in order to ensure stability). This enables simulation of fields which have some

preferred periodic order parameter gradient, as is the case for e.g. local density within

crystals, and allows one to extract mechanical and structural properties of crystalline

materials by applying a strain (through a lengthening of the preferred crystalline

period) without being inhibited by the short time scales of atomistic simulations.

In our case, we know that collagen fibrils have a one-dimensional periodicity along

the cylindrical fibril axis (the D-band). To model this, we assume that locally the

molecules would like to pack along their long axis with period d̃‖ = 67 nm. This local

orientation is not in the same direction as the fibril axis due to the local twist, ψ(r),

which gives rise to a coupling between the periodicity of the D-band and ψ(r). With

this coupling, the realized period of the D-band is 2π/η̃ �= d̃‖. We can write the
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phase-field crystal term as

Ẽpfc =
1

πR̃2 2π
η̃

∫
Ṽ

φ̃(r̃)

(
4π2

d̃2‖
+ ∇̃2

‖

)2

φ̃(r̃)d3x̃+ F̃surf

=
Λ̃δ̃2

2R̃2

∫ R̃

0

r̃dr̃

(
4π2

d̃2‖
− η̃2 cos2 ψ(r̃)

)2

(4.3)

where integration is taken over one period of the fibril’s length, 2π/η1. In going from

the first line to the second line in the above equation, we have assumed that D-band

variations φ are only occurring along the fibril (z) axis, consistent with experiment.

This assumption also allows us to write ∇̃‖ = cosψ(r̃)∂/∂z̃, and gives F̃surf = 0

(see section A.2 in the appendix for a detailed proof of this). Given the dominance

of the lowest mode modulation in experimental measurements of axial structure,

we have further approximated the D-band modulations by φ̃(z̃) ∼ δ̃ cos(η̃z̃). This

simplification allows us to integrate z̃ over the length of the D-band.

The third term, Ẽdw, is the standard double-well term which arises from expanding

the free energy in terms of an order parameter field, which for us is the D-band

modulation φ̃(z̃) = δ̃ cos(η̃z̃). We can write this as

Ẽdw =
1

πR̃2 2π
η̃

ω̃

∫
Ṽ

φ̃2(φ̃2 − δ̃20)d
3x̃

=
ω̃δ̃2

2

(
3

4
δ̃2 − δ̃20

)
, (4.4)

where ω̃ and δ̃0 are related to the second and fourth order terms in the Landau-

like power series expansion, respectively. If δ̃20 < 0, then Ẽdw > 0 and any energy

minimization scheme would drive δ̃ → 0 (since eqn 4.3 is positive definite with respect

to δ as well). We are only interested in the case in which δ̃ �= 0 as the no D-band

modulation case has been described in previous work, so we set δ̃20 > 0 in this chapter.

The final term of eqn 4.1 is the surface cost of creating an interface between the

collagen fibril and the surrounding medium. Assuming a constant surface tension γ̃,

and taking the fibril length to be infinite (and so ignoring end effects), the surface

energy per unit volume is

Ẽsurf =
2γ̃

R̃
(4.5)

1Note that for non-zero twist field, the fibril period does not equal the preferred period 2π/η �= d‖
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Combining eqns 4.2, 4.3, 4.4, and 4.5 gives the total free energy of the fibril as a

function of radius R̃, D-band modulation amplitude δ̃, D-band modulation period

2π/η̃, and twist angle field ψ(r̃).

In the remainder of this thesis, variables with a tilde on them will have units,

and those without will be reduced to dimensionless form. We can re-write eqn 4.1 in

dimensionless form by dividing through by K̃22q̃
2, measuring radial distance in r = r̃q̃

(and so R = R̃q̃), and inverse D-band in η = η̃d̃‖, to get the main model equation of

this chapter,

Etot =
2

R2

∫ R

0

rdr

(
1

2

(
1− dψ

dr
− sin 2ψ

2r

)2

+
1

2
K33

sin4 ψ

r2

)

+
Λδ2

2R2

∫ R

0

rdr
(
4π2 − η2 cos2 ψ(r)

)2
+

ωδ2

2

(
1

2
δ2 − 1

)
− (1 + k24)

sin2 ψ(R)

R2
+

2γ

R
. (4.6)

Examining eqn 4.6, we see that there are five free, dimensionless parameters which

control the behaviour of our system (see Appendix A.3 for a list of parameters defined

in terms of their dimensional counterparts). Three of these parameters, K33, k24, and

γ, have been mapped out in a previous study for the case of a no D-band (δ = 0) model

of fibril structure [4]. K33 = K̃33/K̃22 and k24 = k̃24/K̃22 are the ratios of the bend

and saddle-splay elastic constants to that of the twist elastic constant. Consistent

with our previous work we will fix K33 = 30, a value motivated by experimental

measurements on molecules with similar aspect ratios [109], but allow k24 to vary

freely due to lack of experimental data on similar molecules. γ = γ̃/(K̃22q̃) is the

ratio between surface tension and intrinsic twist of the molecules, and will also be a

free parameter of our model.

The final two (free) dimensionless parameters, Λ = 2Λ̃δ̃40/(3K̃22q̃
2d̃4‖) and ω =

2ω̃δ̃40/(3K̃22q̃
2), correspond to the coupling strength between the D-band and the

molecular twist (see eqn 4.3) and the strength of the D-band double well potential

(eqn 4.4), respectively. The former is proportional to the Young’s modulus at zero

twist. We expect the latter to be bounded by the polymerization energy of collagen

fibrils, as the double well energy stabilizes the D-band structure.

If we instead consider a bulk chiral nematic phase2 with director field n(r) =

2Also known as a cholesteric phase.
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cos(qz)x̂+sin(qz)ŷ and no D-band modulation (δ = 0), the energy per unit volume is

Echiral = 0. In principle, it is possible to extend our new model to allow for a density-

modulated chiral nematic phase, which would alter Echiral �= 0 and allow for a more

general comparison between fibril and chiral nematic phases. We do not attempt to

obtain such a generalization here. Instead, we note that whatever this energy (Echiral)

might be, it will only depend on the parameters Λ and ω, as the Frank free energy

and surface tension terms become zero in chiral nematics [3, 4].

4.2.2 Free energy minimization

We minimize eqn 4.6 with respect to ψ(r) for chosen initial values of R, η, and δ using

standard Euler-Langrange energy minimization [3]. This corresponds to solving the

free boundary value problem described by the Ordinary Differential Equation (ODE)

d

dr

(
r
dψ

dr

)
=Λδ2η2r(4π2 − η2 cos2 ψ) cosψ sinψ

+ 1− cos(2ψ)

(
1− sin(2ψ)

2r

)

+K33
sin(2ψ) sin2 ψ

r
, (4.7a)

subject to the boundary conditions

ψ(0) =0, (4.7b)

dψ

dr

∣∣∣∣
r=R

=1 + k24
sin(2ψ(R))

2R
. (4.7c)

Eqn 4.7b is required to ensure that r = 0 is not singular, and eqn 4.7c is a free

boundary condition. To solve eqns 4.7a-4.7c, we implement a standard numerical

finite-difference relaxation technique as discussed in Appendix B.1 (see also refs. [4]

and [114]). We will refer to this twist angle field which minimizes eqn 4.6 at a specified

R, η, and δ, as ψ∗(r).

If we calculate ψ∗(r) each time we take a step in R, η, δ space, we can define a cost

function, E∗(R, η, δ) = E(R, η, δ;ψ∗(r)) for a given parameter set (K33, k24, γ, Λ, ω)

which is identical to eqn 4.6, aside from requiring the twist field to be the minimizing

form ψ∗(r). By solving for ψ∗(r) with each optimization step, we can minimize

the three variable cost function E∗(R, η, δ) which is equivalent to minimizing eqn
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Figure 4.1: Local twist angle, ψ(r), vs re-scaled radial distance from the fibril centre,
r/R for two different values of dimensionless surface tension, γ. ψ(r) corresponds
physically to the local (average) angle that tropocollagen molecules would have with
respect to the cylindrical (z) axis of the fibril. The twist is constrained to always be
zero at the fibril centre, and the twist at surface of the fibril, ψ(R), is the value of
ψ(r) at r/R = 1 in the above plot. The surface twist values are ψ(R) = 0.131 and
ψ(R) = 0.195 for γ = 0.05 and γ = 0.1, respectively. We show the re-scaled radial
distance for ease of comparison between the two ψ(r) shapes, as the true fibril radius
is R = 0.079 for the blue dashed (γ = 0.05) curve and R = 1.779 for the orange
dash dotted (γ = 0.1) curve. Curves which are qualitatively similar to the blue
dashed (γ = 0.05) curve will be referred to as “linear twist” fibrils. Curves which are
qualitatively similar to the orange dash-dotted curve will be referred to as “frustrated
twist” fibrils. All other tune-able parameters are held constant at k24 = 0.75, Λ = 27,
and ω = 10.

4.6. We use the GNU Scientific Library’s Broyden-Fletcher-Goldfarb-Shanno (BFGS)

solver (with numerical derivatives) to perform the minimization [148]. All numerical

implementations are available online via GitHub [149], and in Appendix B we outline

in more detail the numerical algorithms used in this work and why we have chosen

these algorithms in particular.
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4.3 Results

4.3.1 Linear and frustrated twist in double-twist fibrils

In Figure 4.1, we showcase the equilibrium local twist angle, ψ(r), for two γ values,

while holding k24 = 0.9, Λ = 27, and ω = 10 constant. We have chosen the x-axis

of Figure 4.1 to be the re-scaled radial distance from the fibril centre r/R (where R

is the true fibril radius) for ease of comparison between the blue dashed (γ = 0.05)

and orange dash-dotted (γ = 0.1) curves. For γ = 0.05, ψ(r) is almost perfectly

linear in radial distance from the fibril centre, whereas for γ = 0.1, ψ(r) is highly

non-linear. As we shall demonstrate shortly, the qualitative difference between these

two curves are of great importance in our model, and so it will be helpful to assign

specific names to both of them. For the remainder of this chapter, ψ(r) curves which

are qualitatively similar to the blue dashed curve in Figure 4.1 will be referred to

as “linear twist” fibrils, while ψ(r) curves qualitatively similar to the orange dash-

dotted curve in Figure 4.1 will be referred to as “frustrated twist” fibrils (due to

the suppression of twist between fibrils). We also note here that both linear and

frustrated fibrils do in general have a non-zero D-band amplitude δ. In Figure 4.1 the

linear twist fibril structure (γ = 0.05) has D-band amplitude of δ = 0.975, D-band

period 2π/η = 0.996, and the frustrated twist fibril structure (γ = 0.1) has δ = 0.998,

2π/η = 0.985.

4.3.2 Characterization of Phase Transition at constant ω and Λ

In Chapter 3, we have examined the phase diagram of double-twist fibrils with no

axial D-band (i.e. Λ = ω = 0) in terms of γ and k24. Thus, to begin the parameter

space investigation of our new model, we first investigate the collagen phase diagram

while holding our new parameters Λ and ω at constant but non-zero values. For the

remainder of this section, we hold our (D-band) parameters constant, Λ = 27 and ω =

10. We have selected these values of Λ and ω as they allow us to demonstrate all of the

qualitatively distinct behaviour that our model predicts. We examine different values

of Λ in the subsequent section and systematically explore the Λ and ω parameter

space in the supplementary materials.

We start by presenting the equilibrium energy per unit volume, E, (obtained
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Figure 4.2: Contours of constant equilibrium energy per unit volume of fibril, E, in the
k24 vs γ plane. The energy increases with increasing γ and decreasing k24, but remains
smaller than zero for the everywhere in the figure. At a given k24, linear twist fibrils
are thermodynamically stable in the upper left hand corner of the phase diagram
(to the left of the thick black line). Frustrated twist fibrils are thermodynamically
stable to the right of the thick black line. The thick black line beginning at the
critical point (γ, k24)	(0.08356,0.4205) indicates coexistence between the linear twist
fibril phase and the frustrated twist fibril phase (similar to the coexistence line in a
liquid-gas phase diagram). A discontinuous phase transition from linear twist (left of
coexistence line) to frustrated twist (right of coexistence line) fibrils occurs when this
line is crossed in parameter space. Λ = 27 and ω = 10 for this figure.

by minimizing eqn 4.6) in Figure 4.23. The fibrils with the lowest E are in the

upper left hand corner, consistent with our previous no D-band model. However, by

allowing a non-zero D-band modulation, we find that a discontinuous phase transition

3In this chapter, “equilibrium” phases are those of the lowest energy which still have a double-
twist molecular orientation. It is entirely possible that within our parameter space, more stable
configurations such as a bulk cholesteric phase may occur.
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Figure 4.3: Contours of constant fibril radius R in the k24 vs γ plane. The thick
black line corresponds to the coexistence line between linear and frustrated twist
fibril phases. A discontinuous jump in R occurs across the coexistence line as γ is
increased at constant k24. γ strongly controls the size of fibrils, which range from
R = 0.001 near γ = 0.01 at k24 = 1 to R = 150 at γ = 0.3. We hold Λ = 27 and
ω = 10 constant.

appears between linear and frustrated twist fibrils, which was not present in the

previous model. The coexistence line of this phase transition is indicated by the

thick black line in Figure 4.2. To the left of the coexistence line, linear twist fibrils

are thermodynamically stable, while frustrated twist fibrils are thermodynamically

stable to the right of the coexistence line. The lower end of the coexistence line (i.e.

the critical point), is found at approximately (γ, k24)	(0.08356,0.4205). We also find

that with the presence of D-band modulations, E < 0 throughout parameter space

region shown in Figure 4.2 for the specified Λ = 27 and ω = 10 values, indicating

that some form of fibril (be it linear or frustrated twist) is always stable with respect
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to a chiral nematic phase with no cohesive D-band like interactions. As mentioned

in the last paragraph of section 4.2.1, introducing D-band interactions in a chiral

nematic phase will cause the chiral nematic free energy to depend on Λ and ω only.

Therefore, any phase transition line between a density-modulated chiral nematic and

either fibril phase will be along a constant Echiral contour in Figure 4.2. Determining

the value of Echiral, however, would require a more complete phase field theory which

allows for D-band interactions in the chiral nematic phase. We therefore take Echiral

as a constant but unknown value.

In Figure 4.3 we show contours of constant fibril radius, R, vs γ and k24. The

large increase in R with increasing γ indicates that a wide range of equilibrium fibril

radii may be accessible if γ is easily tuned. To the left of the coexistence (thick black)

line, the linear twist fibril structure is the equilibrium phase, while to the right, the

frustrated twist structure is the equilibrium phase. Thus we see from this constant R

contour plot that the linear twist phase has smaller fibril radius than the frustrated

twist phase in all cases. Below the coexistence line (k24 < 0.4205), there is no discrete

transition from linear to frustrated twist, and so there is also no discrete jump in R.

In Figure 4.4a, we examine the behaviour of R with increasing γ at a constant

k24 = 0.9 slice across the coexistence line. Meta-stability in the phases occurs when

two minima are present in the energy landscape (E(R, η, δ) in eqn 4.6). The lower

energy minimum corresponding to the equilibrium phase is indicated by a thick line,

and any meta-stability is shown by thin lines. So in Figure 4.4a, any thin lines to the

left of the jump in R (at smaller γ) correspond to meta-stable frustrated twist fibrils.

Conversely, any thin lines to the right of the jump in R (at larger γ) correspond to

meta-stable linear twist fibrils. We find a small but significant region of meta-stability

in the frustrated twist phase, and to a lesser extent, in the linear twist phase as we

cross the coexistence line. This region of meta-stability tends to increase with k24

along the coexistence line, which is why we have selected a fairly large k24 value in

Figure 4.4a. In Figure 4.4b, we follow the coexistence line from its starting (critical)

point at (γ, k24)=(0.08356,0.4205) up to the cutoff of k24 = 1, and show the ratio of

the coexisting linear and frustrated twist radii, R� and Rf , respectively. This ratio

increases monotonically with increasing γ and k24, and becomes as large Rf/R� = 50
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Figure 4.4: (a) Fibril radius R vs reduced surface tension γ at constant k24 = 0.9.
The thick black line corresponds to an equilibrium fibril radius, whereas thin black
lines correspond to radii of meta-stable fibrils. All radii in the bottom branch are in a
linear twist fibril configuration. All radii in the upper branch are in a frustrated twist
configuration. The thin meta-stable lines demonstrate that both fibril phases may
exist at the same point in parameter space, and so equilibrium (i.e. equal energy E)
coexistence of both the linear and frustrated phases are possible at a single point. The
equilibrium coexisting radii are denoted by an orange triangle (linear fibril phase, R∗

� )
and a green square (frustrated fibril phase, R∗

f ), near γ = 0.11. (b) Fibril radii of the
linear twist fibril phase, R∗

� , and frustrated twist fibril phase, R∗
f , along the coexistence

line in γ, k24 space (see e.g. Figure 4.3 for coexistence line). The gap in radius spans
nearly two orders of magnitude at large γ values (and so near k24 = 1) along the
coexistence line. In both (a) and (b), Λ = 27 and ω = 10. Here t = (k24(s)−kc

24)/k
c
24,

where k24(s) traces k24 out along the coexistence line, kc
24 = 0.4205 is the critical k24

value.

at k24 = 1. The x-axis of Figure 4.4b, t, is defined as

t =
(k24(s)− kc

24)

kc
24

, s along coexistence (4.8)

where kc
24 = 0.4205 is the critical k24 value, and (γ(s), k24(s)) trace out the coexistence

line.

In Figure 4.5 we present contours of constant surface twist, ψ(R), vs γ and k24.

ψ(R) increases monotonically with γ, similar to R. Unlike fibril radius, ψ(R) is

not monotonic in k24, particularly in the linear twist fibril phase to the left of the

coexistence line. In the linear twist fibril phase, ψ(R) ranges from ψ(R) = 0.01 rad

near γ = 0.01, up to ψ(R) = 0.18 rad near the coexistence line at k24 = 1. In the

frustrated twist phase (right of the coexistence line), ψ(R) = 0.18 near coexistence

and near γ = 0.3 becomes larger than 0.5 rad. We present the parameter space
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Figure 4.5: Contours of constant surface twist, ψ(R), in the k24 vs γ plane. ψ(R)
ranges from ψ(R) = 0.01 near γ = 0.01, and increases up to ψ(R) > 0.5 at γ = 0.3.
ψ(R) is monotonic in γ to the left of the coexistence (thick black) line, and monotonic
in both γ and k24 to the right of the coexistence line.

dependence of η and δ in (supplementary) Figures 4.16 and 4.17, respectively.

Figures 4.6a and 4.6b show the dependence of the fibril surface twist on γ at

constant k24 = 0.9 and along the linear/frustrated twist coexistence line, respectively.

The behaviour of ψ(R) in Figure 4.6a is quite analogous to the fibril radius behaviour

in Figure 4.4, with ψ(R) increasing monotonically (albeit much more slowly than

R) as γ is increased with constant k24 = 0.9. The lower ψ(R) branch corresponds

to the linear twist fibril phase, and the upper branch to that of the frustrated twist

phase. The meta-stability of the frustrated twist phase persists longer than that of the

linear twist phase, and equilibrium (i.e. equal E) coexistence between the linear and

frustrated twist phase occurs near γ = 0.11. In contrast to R, the surface twist along
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Figure 4.6: (a) Fibril surface twist ψ(R) vs reduced surface tension γ at constant
k24 = 0.9. The thick black line corresponds to an equilibrium surface twist, whereas
thin black lines correspond to ψ(R) of meta-stable fibrils. All data in the bottom (top)
branch are in a linear (frustrated) twist fibril configuration. The thin meta-stable
lines demonstrate that both fibril phases may exist at the same point in parameter
space, and so equilibrium (i.e. equal energy E) coexistence of both the linear and
frustrated phases are possible at a single point. The equilibrium coexisting ψ(R)
values are denoted by an orange triangle (linear fibril phase, ψ∗

� (R)) and a green
square (frustrated fibril phase, ψ∗

f (R)), near γ = 0.11. (b) Surface twist of the linear
twist fibril phase, ψ∗

� (R) and frustrated twist fibril phase, ψ∗
f (R), along the coexistence

line in γ, k24 space (see e.g. Figure 4.3 for coexistence line). The difference in twist
for the coexisting phases increases with γ and k24. In both (a) and (b), Λ = 27 and
ω = 10.

the coexistence line increases monotonically with distance from the critical point near

(γ, k24)=(0.08356,0.4205) in both the frustrated and linear twist phases.

4.3.3 Characterization of Phase Transition at varying Λ

In this section, we demonstrate that a discontinuous phase transition occurs while Λ

is increased for suitable choice of γ and k24 values. We have chosen two representative

pairs of (γ, k24)=(0.04,0) and (γ, k24)=(0.12,1) as a case study, with only the latter

pair displaying a discontinuous phase transition. In Figure 4.7, we illustrate the two

qualitatively different behaviours of our observables R, ψ(R), and ψ(r) for these two

(γ, k24) pairs as Λ increases, at a constant ω = 10. We show a more systematic

examination of our model as ω is varied in (supplementary) section 4.6.

In Figure 4.7a, the dimensionless radius, R, of the fibril initially decreases as Λ is

increased for both sets of (γ, k24) values. At (γ, k24)=(0.04,0.0), there is a smooth
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Figure 4.7: Radial structure of phase-field collagen fibrils. (a) Fibril radius, R, vs
the coupling strength Λ between axial and radial structure at constant ω = 10. The
solid blue line is for surface tension γ = 0.04 and saddle-splay k24 = 0. Similarly,
the solid orange line indicates (γ, k24)=(0.12,1). The thin line in both branches
indicates a region of meta-stability. (b) Surface twist, ψ(R), vs Λ for (γ, k24)=(0.04,0)
(blue solid line) and (γ,k24)=(0.12,1) (both branches of the orange solid line). Thin
lines correspond to meta-stable regions as in (a). (c) Local, average orientation of
tropocollagen molecules within a collagen fibril, ψ(r), vs radial distance from the fibril
centre r, re-scaled by the fibril radius R. The dashed blue line is for (γ, k24)=(0.04,0)
and Λ = 184. This corresponds to the turning point in (b) where surface twist ψ(R)
begins to increase with Λ. The dotted orange line is for (γ, k24)=(0.12,1) in the large
radius branch of (a) when both structures have equal energy (Λ = 27). The dot-
dashed orange line corresponds to ψ(r) for the small radius branch at coexistence,
Λ = 27.

transition from decreasing R with Lambda to monotonically increasing R at Λ = 74.

In Figure 4.7b, a similar initial decrease in surface twist occurs as Λ is increased.

However, the transition to increasing ψ(R) occurs at Λ = 184, and so for the region

74 < Λ < 184, there is a decrease in ψ(R) while R is increasing.

At (γ, k24)=(0.12,1.0), a discontinuity in both R and ψ(R) occurs at Λc = 27,

as can be seen in Figure 4.7a and Figure 4.7b, respectively. The overlapping of the

lower and upper branches of R and ψ(R) indicate that two energy minima exist

within the domain 11 ≤ Λ ≤ 43 (see Figure 4.8a below). Thin lines illustrate the

regions of meta-stability in both the small radius (Λ < Λc) and large radius (Λ > Λc)

fibril structures. This meta-stability is indicative of a discontinuous phase transition
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between the small and large fibril structures. From Figure 4.7a and Figure 4.7b, we

see that at the coexistence (i.e. equal energy) point Λc = 27, the radius and twist

of the small (large) fibril structure are R = 0.1188 and ψ(R) = 0.1652 (R = 3.766

and ψ(R) = 0.2352), respectively. When there is a discontinuous transition in our

observable parameters (as is the case for (γ, k24)=(0.12,1) in Figure 4.7 above), we

refer to fibrils which are in the lower branch (Λ < Λc for equilibrium fibrils) as being

part of the “linear” twist fibril phase. Similarly, we will refer to fibrils in the upper

branch as being members of the “frustrated” twist fibril phase.

In Figure 4.7c, we show average local twisting of tropocollagen molecules within

the fibril, ψ(r), as the radial distance r from the centre of the fibril increases. The

three curves in Figure 4.7c exemplify the inner structure of fibrils in three different

cases. The dashed, blue line in Figure 4.7c shows the structure of a fibril at Λ = 184

with (γ, k24)=(0.04,0) (i.e. when no discontinuous transition in R and ψ(R) is present

for variations in Λ). We have chosen Λ = 184 as it is near where R and ψ(R) begin

increasing with Λ, and shows intermediate behaviour between a linear twist fibril

and a frustrated twist fibril. For Λ < 184, ψ(r) would become more linear and

so the middle, flattened regime of the blue curve in Figure 4.7c would reduce in

size. Increasing values of Λ > 184 (and so stronger coupling between the D-band

modulation and the twisting of the molecules) cause ψ(r) to flatten out even more at

intermediate distances between the fibril centre and the fibril surface when compared

to the dashed blue curve in Figure 4.7c. However, no discontinuous transition occurs

for when tuning Λ for the parameter set of the blue dashed curve. Conversely, when (γ,

k24)=(0.12,1), we see a distinct transition in the structure of ψ(r) right at coexistence

point, Λc. This feature is illustrated in the two orange curves of Figure 4.7c. The

dotted orange line corresponds to the linear twist phase, and the dot-dashed orange

line corresponds to the frustrated twist phase, both of which are at Λc = 27.

Figure 4.8 shows the free energy per unit fibril volume, E, D-band period, 2π/η,

and D-band amplitude, δ, that concur with the radial configurations of Figure 4.7 (at

ω = 10). The thick orange line in Figure 4.8a is the equilibrium E at (γ, k24)=(0.12,1).

The thin orange lines in the region 11 ≤ Λ ≤ 43 which branch out at Λ = 27

correspond to the meta-stable energies of the linear twist phase (Λc > 27) and the

frustrated twist phase (Λc < 27). In contrast, E vs Λ for (γ, k24)=(0.04,0) (blue
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Figure 4.8: Free energy and axial structure of a phase-field collagen fibril. (a) The
free energy per unit volume of fibrils, E, vs the coupling strength Λ between axial and
radial structure for two sets of surface tension γ and saddle-splay k24 parameters at
constant ω = 10. The blue and orange curves correspond to (γ, k24)=(0.04,0) and (γ,
k24)=(0.12,1), respectively. Two free energy minima occur in the region 11 ≤ Λ ≤ 43.
The thin orange lines which emerge at Λ = 27 indicate meta-stable fibril structures
which arise from the presence of a second free energy minimum. (b) The axial period
of the D-band (density) modulations, 2π/η, vs Λ. 2π/η = 1 would correspond to a
perfect D-band (i.e. with no molecular twist). (c) D-band modulation amplitude, δ,
vs Λ. Any non-zero value of δ indicates that axial periodicity is present in the fibril.

line) has no region of meta-stability. For both parameter sets, the energy increases

rapidly for small Λ, and flattens out for large Λ. Unlike R and ψ(R), E does vary with

variations in ω as can be seen in (supplementary) Figure 4.18. However, this variation

is essentially linear in ω, as expected from eqn 4.4. In Figure 4.8b and Figure 4.8c,

we see that the dependence of D-band amplitude and period, δ and 2π/η also have

two distinct regions above and below the critical value Λc = 27 for (γ, k24)=(0.12,1),

and a single smooth transition for (γ, k24)=(0.04,0).
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In this section, we have shown that increasing the coupling strength Λ between

the twist and D-band allows for a discontinuous phase transition between the linear

twist fibril phase and the frustrated twist fibril phase. However, from e.g. Figure

4.8a, it is clear that this phase transition does not always occur, but instead depends

on the values of γ and k24 as well, which is consistent with the results of the previous

section. We have now identified three parameters which strongly control the structure

of collagen fibrils: γ, k24, and Λ.

4.3.4 Elastic properties of the phase field collagen fibril

In order to probe the mechanical response and elastic properties of our model, we

apply a strain, ε, to the collagen fibril. We define 2π/ηeq and Req as the equilibrium

(ε = 0) D-band period and radius, respectively. By setting η = ηeq/(1 + ε) while

at the same time requiring the fibril to be incompressible, R = Req/
√
1 + ε, we can

minimize eqn 4.6 with respect to δ and ψ(r) at these strained values of η and R.

With this procedure, we are assuming a quasi-static extension of the fibril, where

strain is applied slowly enough for δ and ψ(r) to relax to (strained) equilibrium at

each fixed strain. We expect this to apply to in vitro assembled fibrils that have not

been significantly cross-linked.

The resulting stress (defined as σ = dE/dε), δ, and ψ(R) for increasing ε are

shown in Figure 4.9, with γ = 0.04, k24 = 0, and ω = 10. In Figure 4.9a, the initial

relationship between stress and strain is linear for all values of Λ. As ε increases, the

fibril begins to stiffen until it reaches some maximum stress, σmax at strain ε(σmax).

In Figure 4.9b, the D-band amplitude initially increases slightly. As strain increases

past σmax, δ → 0 rapidly. In Figure 4.9c, the surface twist initially decreases slowly

with strain until ε = ε(σmax), at which point the twist increases slightly before δ → 0.

In (supplementary) Figure 4.23 the mechanical response for a fibril with γ = 0.12,

k24 = 1, and ω = 10 is characterized for Λ = 1.0 and Λ = 10.0. The behaviour

is qualitatively similar in between the two different (γ, k24) pairs, with δ → 0 as

strain increases, and an initially linear stress vs strain curve. For the remainder of

this chapter, any figures which are measured vs strain will be cut off at ε(σmax), as

decreasing stress with increasing strain is unphysical behaviour which corresponds to

our D-band amplitude δ → 0, and so the D-band strain becomes undefined near this
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Figure 4.9: Mechanical and structural response of straining the collagen fibril D-
band for an incompressible fibril. (a) Stress, σ = dE/dε, vs strain (ε) percentage
for Λ = 1 (red curve), Λ = 10 (green curve), Λ = 100 (light blue curve), and
Λ = 1000.0 (purple curve), all at γ = 0.04, k24 = 0, and ω = 10. The stress increases
linearly in all cases for small strain. As Λ increases, the stress becomes non-linear at
large strain. Notably, the initial slope in the stress (i.e. the Young’s modulus) does
not monotonically increase with strain. (b) D-band (density) amplitude δ vs strain
percentage. At small strain, the amplitude remains close to its equilibrium (ε = 0
value), while at large strain δ decreases rapidly to zero (δ = 0 corresponds to a fibril
with no D-band). (c) Surface twist ψ(R) vs strain percentage. ψ(R) decreases with
increasing strain initially, and increases slightly before the D-band disappears (δ = 0)
at the discontinuity in ψ(R).

point4. Notably, the value of δ, as well as σmax and the corresponding ε(σmax) are

the only quantities in our model which vary significantly with ω (see supplementary

Figure 4.24).

The linear relationship between σ and ε at small strain in Figure 4.9a and in

4Physically, this would represent mechanical instability of our model, and such large strains that
our model assumptions would not apply in detail.
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Figure 4.10: (a) Young’s modulus, Y , vs Λ for the parameter values (γ, k24)=(0.04,0)
in blue and (γ, k24)=(0.12,1) in orange. Both curves have ω = 10. The maximum
value of Y = 62000 occurs at Λ = 170 for the blue curve, and at the discontinuous
transition point (Λ = 27) for the orange curve. (b) The maximum strain obtained
before the stress begins to decrease, εmax, vs Λ. The minimum εmax × 100% 	 0.39%
occurs at Λ 	 220 for the blue curve, and is bounded below by εmax% > 1 at the
discontinuous transition point Λ = 27 for the orange curve.

(supplementary) Figure 4.23 allows us to extract a Young’s modulus at small strain

(linear regime), Y ≡ dσ/dε, from our model. In Figure 4.10a, we present Y vs Λ for

(γ, k24)=(0.04,0) (blue) and (γ, k24)=(0.12,1) (orange) at ω = 10. Both parameter

sets exhibit an initial increase in Y with Λ, which is to be expected from the pro-

portionality of the energy to that of Λ in eqn 4.6. If we compare the behaviour of

Figure 4.10a to Figure 4.7, we see that the maximum Y occurs just before the fibril

ψ(r) structure transitions from the linear twist phase to the frustrated twist phase.

In Figure 4.10b we show the strain at which stress is maximized, εmax to characterize

the amount of strain we can apply to our model before the fibril D-band breaks.
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4.4 Discussion

4.4.1 Linear twist phase vs Frustrated twist phase

In the collagen fibril literature, two possibilities for the inner molecular orientation

of fibrils are discussed. The first structure discussed, which we will refer to as the

constant pitch/variable angle model [48], corresponds to that of a linearly increas-

ing ψ(r) with r in our model framework similar to strands of a rope winding about

each other. At first glance, this linear ψ(r) fibril structure appears to be incompatible

with the robust, constant D-band that is typically observed in experiment, as it seems

any molecular twist should induce a local D-band d(r) = d0 cosψ(r) from geomet-

ric arguments. In previous work, we determined that an approximately linear ψ(r) is

compatible with experimental observations of fibril radius R and surface twist ψ(R) in

corneal and tendon fibrils. However, we did not consider the axial (D-band) structure

of the fibrils and so could not address whether the D-band would alter our picture of

fibril structure. In this chapter, we do indeed still see linear ψ(r), equilibrium fibril

configurations with D-band present (δ �= 0), suggesting that it may still be reasonable

to have linear twist with a constant D-band. For this to occur, it implicitly requires

us to assume that the tropocollagen molecules within the fibril are subject to minor

axial compression (tension) at the fibril centre (surface), as was hypothesized by Ras-

panti et al. [48]. We show in Figure 4.11 that the molecular strain for a fibril with

ψ(R) = 0.28 (see Figure 4.12 below) would range between −1.48% in the fibril centre,

and 2.41% at the fibril surface, r = R, where negative (positive) strain corresponds to

molecular compression (tension). The total compression or elongation that a 300 nm

tropocollagen molecule would have to experience to allow for such a strain is would

be 4 nm (compression) and 7.2 nm (elongation). Given the semi-flexible nature of

tropocollagen (persistence length ∼ 50 nm)5, it seems reasonable that the tropocolla-

gen molecules would not be held taut in the fibril with zero applied (external) strain,

and so small strain on each molecule would be insignificant energetically. We have

not explicitly accounted for the energetic cost of stretching individual tropocollagen

molecules in our continuum theory of fibril structure, but it contributes implicitly

5Persistence length quantifies the distance between two points along the arc length of a poly-
mer whose tangent vectors are still pointing, on average, in the same direction subject to thermal
fluctuations. See ref. [150] for a quantitative definition.
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Figure 4.11: Local, longitudinal strain of tropocollagen molecules within (a),(b) lin-
ear and (c),(d) frustrated twist fibrils required to accommodate a constant D-band
spacing. The molecular strain is defined as (2π/η− cosψ(r))/ cosψ(r) where the pre-
ferred, local D-band is cosψ(r), but the actual D-band (constrained to be constant
in our model) is 2π/η. (b) and (d) cross-section of fibril illustrating compression of
molecules (blue) at the fibril centre, r = 0 and the tension of molecules at the fib-
ril surface (red). Linear ψ(r) parameters used in (a) and (b): γ = 0.15, k24 = 0.8,
Λ = 0.9, ω = 20. Frustrated ψ(r) parameters used in (c) and (d): γ = 0.04, k24 = 0.5,
Λ = 600, ω = 20.

through our phase field free energy (Λ) term. Another molecular mechanism that

is coarse-grained into our Λ term is the energetic cost of increasing inter-molecular

distance (through e.g. Van der Waals interactions). It is a combination of these two

(and possibly other) mechanisms which allows the D-band to be strained. Therefore,

our estimate of molecular strain in Figure 4.11 is really an upper limit, assuming

(equilibrium) D-band strain is accommodated strictly by the elongation/compression

of individual tropocollagen molecules.

The second fibril structure, initially proposed by Galloway [77] and subsequently

by others [73, 151], is referred to as the constant angle model [48]. In our model

framework, this would correspond to a constant value of ψ(r) from the fibril centre

to the radius R. This constant angle model is attractive for it’s simplicity, as it

does not require the added assumption of molecular compression and tension to ac-

commodate a constant D-band throughout the fibril. Images of inner fibril structure

taken by transmission electron micro-tomography [55], where fibrils were digitally

reconstructed lengthwise into slices (analogous to flat sawn lumber), and these slices

were used to construct a radial dependence of molecular orientation, similar to that
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of our ψ(r) plots, appears to corroborate this constant angle model for corneal fib-

rils, with a constant twist of 17◦ observed. However, a constant angle structure is

counter-intuitive considering the chiral nature of tropocollagen molecules; the expec-

tation would be that molecules twist with respect to each other. The energetic cost

of suppressing the twist gradient must then be outweighed by the energy gained via

accommodating constant D-band. Surprisingly, we observe structure very similar to

Galloway’s constant angle model at Λ > 27 as seen in Figure 4.7c. In this frustrated

twist phase, ψ(r) has a sharply increasing twist for small distances from the fibril

centre r = 0, but then flattens out to a constant twist angle for the mid region of the

fibril before rapidly increasing in twist near r = R. Since this frustrated twist phase

only occurs at larger Λ, a constant angle phase implies a strong coupling between

the molecular orientation ψ(r) and the D-band period. The longitudinal molecular

strain is much smaller in the frustrated twist phase, as can be seen in Figures 4.11c

and 4.11d where the maximum compression and tension are −0.3% and 0.1%.

4.4.2 Parameter estimation

In order to simplify our discussion of model predictions and how they might be con-

sistent with experiment, it is necessary to constrain where possible what parameter

values are reasonable. The most experimentally accessible parameter of our model is

that of the inverse cholesteric pitch, q̃, which has been measured for chiral nematic

collagen systems in vitro. This parameter enters our model in several places, but

perhaps the most important (and implicit) of which is the definition of our dimen-

sionless radius, R = R̃/q̃ (recall that all dimensional variables in this chapter will

have a tilde over them). Experimental work on in vitro chiral nematic solutions of

collagen estimate q̃ ∈ [0.1πμm−1, 4πμm−1] [122]. However, given that q̃ itself changes

with e.g. pH, and fibril formation is controlled by pH, along with the understanding

that q̃ is by definition measured in the chiral nematic state (and so its effective value

in the fibril state has not been measured), it is entirely plausible to have q̃ values

slightly outside (but probably the same order of magnitude as) the above range.

Considering a generous upper estimate of q̃ = 30 μm−1 for collagen systems in

general, we can place upper bounds on our model R for both tendon (Rtendon
max ) and

cornea (Rcornea
max ) fibrils. For tendon fibrils with maximum radius of R̃ ∼ 200 nm
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observed in experiment, we have an upper limit on the allowed values of Rtendon
max ∼

6. From Figures 4.3 and 4.7a, we see that both linear and frustrated twist fibrils

would still be accessible considering only this radial cut-off. For cornea fibrils with

R̃ = 20 nm, we have a maximum cutoff of Rcornea
max ∼ 0.6, and so in general the cornea

ultrastructure is only accessible in the linear twist fibrils of our model if experimental

measures of cholesteric pitch are within an order of magnitude accuracy. (We will

explore values of q outside of this range to examine the ultrastructure and mechanical

properties of frustrated twist cornea fibril in the next section.)

The other experimentally intuitive parameter in our model is the dimensional sur-

face tension, γ̃. Ideally, we would use a surface tension measurement of collagen in

e.g. phosphate-buffered saline solution, but unfortunately no such measurement ex-

ists to the authors’ knowledge. To compensate for this in previous work, we imagined

our collagen fibrils being surrounded by an isotropic collageneous solution, and so

drew analogy to the surface tension between a nematic phase and its isotropic coun-

terpart, which is on the order of γ̃ ∼ 1 − 30 pN μm−1 [128, 124, 127, 129]. Another

reasonable substitute for the surface tension of collagen would be the surface tension

of a protein droplet in a buffered solution. We draw on recent experimental work

[152] which utilizes an optical trapping method to measure the surface tension of

protein droplets in HEPES (buffer) solution, and finds surface tension values on the

order of γ̃ ∼ 20 pN μm−1. Of course, our dimensionless surface tension γ = γ̃/(K̃22q̃)

also requires an estimate of K̃22 and q̃. The former is K̃22 	 6 pN as argued in pre-

vious work [4]. The upper bound on latter is mentioned above, but a single value

will be determined more precisely through comparison between our model and the

experimental phenomenology.

As mentioned in our methods section, we have held K33 = 30 and allowed −1 ≤
k24 ≤ 1. Our final two parameters, Λ and ω, will be used as fitting parameters when

comparing to experiment, but their exact values for collagen systems are not clear. It

seems reasonable to suspect that the coupling strength between D-band and twist, Λ,

would be larger for fibrils which typically have small ψ(r), as the presence of D-band

reduces the energetic benefit of molecular twist. ω only has a significant effect the

stability of our model at high strains (see supplementary Figure 4.24) and on the

D-band amplitude δ (see supplementary Figure 4.22), and both of these effects are



81

mainly qualitative. In particular, R, ψ(r) and η are not strongly affected as long as

ω � 1 as can be seen in (supplementary) section 4.6.

4.4.3 Comparison of ψ(R), η, R, and mechanical properties with

experiment

We began this chapter with the motivation to better understand the molecular orien-

tation of tropocollagen molecules within fibrils. What we have shown in the results

above, particularly in Figures 4.1 and 4.7c, is that there are two qualitatively differ-

ent fibril ultra-structures that our model predicts, linear twist and frustrated twist

fibrils. In order to narrow in on what ultrastructure best describes in vivo fibrils, we

fit our model to the two extreme cases of well studied fibril ultrastructure: tendon

and cornea fibrils. As shown in Table 2.1, the former typically have very small sur-

face twist ψ(R) 	 0.08 rad and have fairly wide distribution of radii, ranging from

R̃ = 20 nm to as large as R̃ 	 200 nm. The latter have ψ(R) 	 0.28 rad and a much

smaller range of radii, with a distribution that is sharply peaked near R̃ 	 15 nm. In

Figure 4.5, we see that surface twist in our model is strongly controlled by the dimen-

sionless surface tension, γ. We might then expect that corneal fibrils have larger γ

than their tendon counterparts, but to truly satisfy this claim we would also require

smaller R. From Figure 4.3, it is clear that increasing γ also leads to much larger R,

and so (as we will see below) γ alone cannot distinguish between tendon and cornea

fibrils.

Cornea Fibrils

In Figure 4.12 we show the molecular twist ψ(r) for two candidate cornea structures:

a linear twist cornea fibril and a frustrated twist cornea fibril. We have selected

parameters for these two phases (using the parameter space maps of Supplementary

Figures 4.18 - 4.22 as a guide) in attempt to best recreate experimental observation

of ψ(R) 	 0.28 rad and R 	 15 nm (see Table 2.1), though other parameter values

near these values also fit well with experimentally observed ultrastructure. For the

linear twist (blue dashed line), we choose parameters γ = 0.15, k24 = 0.8, Λ =

0.9, ω = 20, and q̃ = 24 μm−1. Furthermore, with K̃22 = 6pN (consistent with

Chapter 3) we obtain a dimensional surface tension of γ̃ = 22 pN μm−1, which is in
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Figure 4.12: Cornea fibril local twist angle, ψ(r), for a linearly twisted and frustrated
twist fibril. For the linear twist (blue dashed line), the parameters chosen are γ = 0.15,
k24 = 0.8, Λ = 0.9, ω = 20, and q̃ = 24 μm−1. For the frustrated twist (orange dash
dotted line), γ = 0.15, k24 = 0.8, Λ = 1.5,ω = 20, and q̃ = 150 μm−1. (Note that q̃
for the frustrated cornea twist is five times larger than the expected upper bound.)

very good agreement with the expected range of surface tension for protein droplets

in buffer solution [152]. For the frustrated twist (orange dash dotted line), we set

γ = 0.15, k24 = 0.8, Λ = 1.5,ω = 20, and q̃ = 150 μm−1 (note this q̃ value is larger

than expected). With this, we obtain a surface tension of γ̃ = 135 pN μm−1. Both

structures have surface twist of ψ(R) = 0.28 rad and dimensional radius R̃ = 16 nm,

well in agreement with experimental values.

In Figure 4.9, we showed that our model allows us to compute the stress strain

behaviour of a single fibril, as well as the orientation of tropocollagen within and

on the fibril surface. We can therefore go a step further with matching our model

fibril to experiment thanks to a recent study by Bell et al. [6] which measured the

twist of tropocollagen within strained fibrils using X-ray diffraction. In this study,

mechanical response of cornea fibrils with twist of ψ(R) = 16◦ 	 0.28 rad and typical

radii of R̃ ∼ 17 nm at zero stress. In general we would begin by fitting our model to

reproduce ψ(R) and R̃, but we have already found this ultrastructure in Figure 4.12

and so use the parameters listed in the caption there. In Figure 4.13, we compare our

model to their experimental results by applying a strain along the fibril axis, while
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Figure 4.13: Mechanical response of straining both linear and frustrated cornea fibrils.
The two curves correspond to our model predictions, under the constraint that the
fibrils are incompressible. We also include data from a recent experiment [6] in which
the twist and stress response of cornea tissue is measured under strain (see main text
for discussion of fit). For the linear twist (blue dashed line), the parameters chosen
are γ = 0.15, k24 = 0.8, Λ = 0.9, ω = 20, and q̃ = 24 μm−1. For the frustrated twist
(orange dash dotted line), γ = 0.15, k24 = −0.3, Λ = 1.5, ω = 20, and q̃ = 150 μm−1.
The calculated (zero strain) D-band periods for the linear and frustrated phases twist
phases shown are 2π/ηl = 0.985 and 2π/ηf = 0.979, respectively.

holding the total fibril volume constant as stated in section 4.3.4. Note that the twist

angle we present here is the volume averaged twist

< ψ >=
2

R2

∫ R

0

rψ(r)dr, (4.9)

to remain consistent with experiment.

In Figure 4.13, we measure a Young’s modulus, Y , of Y = 4.04MPa in the linear

twist cornea fibril, and Y = 20.4MPa in the frustrated twist cornea fibril.The lone

study (to the authors’ knowledge) of in vitro fibril mechanics reports Y ∼ 30MPa

[33]; our model is within an order of magnitude of this value. However, the maximal

strain we are able to apply to our model fibrils is typically in the kPa range, which is

approximately 100 times smaller than what is observed in experiment on in vitro fibrils
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[33]. Possible explanations of this difference between our model and experiment may

be related to non-equilibrium effects6, or slippage of fibrils under strain in experiment

[27]. More studies which investigate in vitro fibril mechanics would be ideal to further

support our calculations of Y .

Clearly, our model does not quantitatively agree with the experimental data of

Bell et al, regardless of whether the underlying structure is linear or frustrated. There

are two likely causes of this discrepancy. Either the experiment does not accurately

represent the physics we are simulating in our model, or our model is too simple.

The first cause is likely partly to blame, as the experimental data we compare to

is collected by pulling on cornea tissue (vs single fibrils in our work), which means

we cannot expect our stress strain curves to fit well with their results. This tissue is

composed of cross-linked fibrils, which we do not account for in our model. In addition,

only the first three strain points in their experiment (0%, 1.4%, and 2.8%) correspond

to D-band strain as their main deformation mechanism. As strain increases, fibrils

begin to slip with respect to each other, and so the dominate mechanism of mechanical

deformation becomes inter-fibrillar. Our model only considers mechanisms of intra-

fibrillar deformation, and so we can no longer expect our model to be compatible with

experimental observation at high tissue strain. However, this does not fully explain

the large difference between our model and experiment at small strain.

The second possible difference between our model and the experimental results is

due to our assumption of a constant D-band amplitude within the fibril. It has been

suggested that fibrils may have a region of lower density or disorder in their centre

(near r = 0) [153, 99]. If we modified our model to include this liquid-like core, the

constraint that ψ(r) = 0 at the core could be relaxed, as no ordered tropocollagen

would be present near r = 0. This region of the fibril could be most simply modelled

by changing the integration bounds of our free energy in eqn 4.6 to start at non-

zero r. Naively, we would expect that removing twist near r = 0 in the ψ(r) curves

(see e.g. Figure 4.12) would increase the average < ψ >, and at least increase our

model < ψ > to be closer to that of the experimental data in Figure 4.13b. We will

investigate this possibility in the near future.

6In this case, either experimentalists would have to decrease their strain rates, or we would have
to include dynamics within our intrinsically equilibrium model.



85

Figure 4.14: Tendon fibril local twist angle, ψ(r), for a linearly twisted and frustrated
twist fibril. Both linear (blue dashed curve) and frustrated (orange dash dotted curve)
are at coexistence (equal energy E), with γ = 0.04, k24 = 0.5, Λ = 600, ω = 20, and
q̃ = 4 μm−1.

Tendon Fibrils

In contrast to cornea fibrils mentioned above, fibrils with low surface twist and large

radii (i.e. tendon) are accessible at a wide range of Λ values. All of these fibril types,

regardless of whether they are linear or frustrated twist, appear to require relatively

small γ values as can be seen in (supplementary) Figure 4.20. We show in Figure

4.14 two possibilities of tendon fibril ultrastructure, which are on the coexistence line

at γ = 0.04, k24 = 0.5, Λ = 600, and ω = 20. The linear twist tendon fibril (blue

dashed curve) has a radius of R̃ = 28 nm and surface twist of ψ(R) = 0.069 rad.

The frustrated twist tendon fibril (orange dash-dotted curve) has R̃ = 107 nm and

ψ(R) = 0.094 rad. We have taken q̃ = 4 μm−1 to cast r into dimensional units. With

K̃22 = 6pN, we obtain a dimensional surface tension of γ̃ = 0.96 pN μm−1, which is on

the lower range of expected surface tension 7. Since both the frustrated tendon and

linear tendon are at equal E with the same parameter values (i.e. the same fibrillar

environment), it is possible to in fact have coexistence of two different equilibrium

7We quote dimensional results (e.g. γ̃ here and Young’s modulus below) to enough significant
figures that the model results may be reproduced as shown in this thesis. In comparing our results
to experiment, we would expect our model predictions to be accurate to two significant figures (at
most) due to uncertainties in what the true parameter values of our model are for collagen.
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Figure 4.15: Mechanical and structural properties of linear (blue dashed) and frus-
trated (orange dash dotted) tendon fibrils. Both linear and frustrated fibrils are at
coexistence (equal energy E), with γ = 0.04, k24 = 0.5, Λ = 600, ω = 20, and
q̃ = 4 μm−1. (a) Stress and (b) volume averaged twist of fibrils vs D-band strain.
Note that stress strain curves are cut off when strain σ reaches a maximum (where
the D-band amplitude δ → 0 and so D-band strain is no longer well defined). The
calculated (zero strain) D-band periods for the linear and frustrated twist phases
shown are 2π/ηl = 0.999 and 2π/ηf = 0.997

structures at in the same tendon tissue. This may lend a simple, equilibrium expla-

nation to the bimodal distributions of radii that have been observed in tendon [68].

Thus, we would expect that the larger tendon fibrils in bimodal distributions would

have frustrated twist molecular orientation, whereas the smaller fibrils would be lin-

early twisted. We also note that it is possible to obtain both linear and frustrated

twist tendon fibrils away from the coexistence point through variation in Λ and q̃, and

so tissue without this bimodal behaviour is still consistent with our results. In this

case, we would expect the larger the fibril, the more likely it is to be in the frustrated

twist phase.

In Figure 4.15, we show the result of straining the linear (blue dashed) and frus-

trated (orange dash dotted) tendon fibrils. The stress strain curve for both fibril

types appear to have two separate regimes of strain. The first regime consists of a
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linear relationship between stress and strain, with Young’s moduli of Y = 24.7MPa

and Y = 1.3MPa for the linear and frustrated twist fibrils, respectively. The sec-

ond regime is again fairly linear, with larger Young’s moduli of Y = 77.5MPa and

Y = 100.1MPa. These values are again well within the range of experimentally ob-

served moduli for uncross-linked fibrils [154]. We have cut off the strain curves at the

region where the slope of the stress becomes negative, which can be thought of as the

largest strain that can be applied to our model without melting the D-band. We note

that near this breaking point, the < ψ > behaviour begins to flatten out and actually

begins increasing again, as in Figure 4.9c. This is likely occurring due to the rapidly

decreasing D-band amplitude δ (not shown, but see Figure 4.9b), as δ ∼ 0 removes

the coupling between D-band and twist, allowing the twist to increase rapidly with

strain.

Though many studies exist which look at the large strain behaviour of tendon

tissue, to the author’s knowledge, no studies analogous to the studied performed by

Bell et al. [6] have been published using tendon (vs cornea) fibrils. In particular,

it would be interesting to see whether the small strain behaviour of uncross-linked,

single fibril stress strain curves would reproduce the two linear regime curves shown

in Figure 4.15.

Parameter control

When comparing the parameter values of cornea and tendon fibrils in our model,

we see that three parameters are much different between the two: q̃, γ, and Λ.

Many factors relating to differences in fibril environment could attribute to these

differences in parameter values. For instance, differences in pH and concentration

have been shown to modify the pitch of the tropocollagen chiral nematic phase in

vitro [122], which would provide a mechanism for altering q̃ between the two phases.

Further differences could be related to hydration level of the fibrils, proteoglycans

and even small temperature differences in different anatomical locations. Internally,

the fibrils themselves have slightly different composition of tropocollagen molecules

[16], which would also provide variation in our parameters. The largest difference

between cornea and tendon appears to be in the parameter Λ with Λc = 0.9 and

Λt = 600, respectively. However, when considering that Λ is a dimensionless number
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with an inverse square proportionality to q̃ (see list of dimensionless parameters in

the supplementary materials). It is therefore more prudent to look at how the ratio

of Λ̃ ∝ Λq̃2 differs in the two cases. We find that Λ̃t/Λ̃c = 18.5 	 20.

The deviation of the above Λ̃ ratio between cornea and tendon highlights the

importance of twist in the mechanical properties of our model. If we hold our twist

ψ(r) = 0, all radius dependence in eqn 4.6 drops out and we are left with a 1D phase

field crystal model, with Req → ∞ from the surface tension in eqn 4.6. This zero

twist free energy becomes

E(ε, ηeq, δeq) =
Λδ2eq
4

(
4π2 − η2eq

(1 + ε)2

)2

+
ωδ2eq
2

(
3

4
δ2eq − 1

)
(4.10)

where ηeq = 2π is the equilibrium inverse D-band period of the untwisted state, and

δeq = 1 is the equilibrium D-band amplitude. Expanding this energy in terms of the

strain ε,

E(ε) = E(0) +
1

2

∂2E

∂ε2
ε2 +O(ε3), (4.11)

it is clear that at small strains, Y = ∂2E/∂ε2, and so Y = 32/3π4Λ. If we write this

in dimensional parameters, we find that the ratio of Young’s moduli of cornea fibrils

to tendon fibrils is expected to be Ỹc/Ỹt = 18.5 	 20. However, from our discussions

above, with our model we find similar values of Ỹ in both cornea and tendon, even

though the zero twist model predicts cornea fibrils to have 18 times the modulus of

tendon fibrils. Furthermore, we find that two separate Ỹ can coexistence for the same

parameter values in tendon. This feature is not possible without the inclusion of twist

in our model.

Other fibril ultrastructure

We have focused on cornea and tendon fibril ultrastructure as the two extremes

of collagen fibril ultrastructure, and have showcased the phase field collagen fibril

model’s ability to capture both with a reasonable range of parameter values. Other

in vivo fibrils have surface twist values within the two ranges presented in this chapter

(between 0.07 rad and 0.28 rad), and so should be easily captured within the model,
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as a continuum of ψ(R) can be attained through parameter variation. Thus our

model can be used as to inform predictions on the inner molecular orientation of

tropocollagen in the fibril or mechanical properties. In vitro, the projective coupling

of the D-band and surface twist indicates that ψ(R) is small, even if the fibrils are

reconstructed with solubilized tropocollagen extracted from large surface twist fibrils

in vivo [138]. The dominant mechanism for decreasing ψ(R) in our model is through

decreasing surface tension γ̃. This may provide an explanation for the reduced ψ(R)

if the surface tension of the in vitro solution is less than the in vivo environment.

Unfortunately, no measurements of fibril surface tension in vitro or in vivo exist in

the literature to validate or reject this hypothesis.

4.5 Summary

In this work, we have constructed a new model of collagen fibril structure which

couples the local, radial orientation of tropocollagen molecules within the fibril, ψ(r),

to the D-band (density) modulations along the fibril axis. Our model predicts two

distinct fibril phases: i) a linear twist phase, where the molecules twist around the

fibril centre like strands in a rope, and ii) a frustrated twist phase, where the majority

of the molecules in the fibril remain at a constant twist angle with respect to fibril

axis. Structures similar to both of these phases have been proposed in the literature,

but until now no predictive model has been constructed in attempt to confirm that

either of these structures might be energetically favourable. In particular, the linear

twist structure has been rejected under the assumption that any non-constant twist

is incompatible with a constant D-band throughout the fibril cross-section, but we

show here that only a small strain on individual molecules would be required to

accommodate a constant D-band, as our linear twist phase does indeed have D-band

structure. By constructing a free energy with both local twist ψ(r) and D-band

modulations, we are also able to calculate the radius of the fibrils, R, the period of

the fibril D-band, 2π/η, and the amplitude of the fibril D-band, δ for both linear

and frustrated twist fibrils. Furthermore, we show that our model can be used to

probe the mechanical response of our model fibrils by straining the D-band period

and measuring the resulting stress on the fibril.
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4.6 Supplemental Figures

In this section we present figures which are not integral to the understanding of the

PFCF model, but still bear importance in understanding how our predictions are

affected by parameter space.

4.6.1 γ vs k24 phase diagrams

Figures 4.16 and 4.17 demonstrate the dependence of η and δ on (γ, k24) variations

similar to the main text Figures 4.2, 4.3, and 4.5 for E, R, and ψ(R), respectively.

4.6.2 Λ vs ω phase diagram sketches

Figures 4.18, 4.19, 4.20, 4.21, and 4.22 demonstrate the dependence of our model

results on Λ and ω. These figures consist of nine contour plots, and each contour

plot additionally has two sub-plots (above and to the right). The sub-plot to the

right of each contour plot contains a dotted, magenta curve which shows the relevant

observable (x-axis) vs ω (y-axis) at a constant Λ = 10. Notably, upon examining

all sub-plots to the right of the contour plots in Figures 4.19, 4.21, and 4.19, it is

clear that R, η, and ψ(R) are all completely independent of ω, respectively, as their

corresponding curves are constant with ω. E is linear in ω as expected from eqn 4.6 in

the main text, and δ only changes near ω ∼ 1. The sub-plot above each contour plot

contains a dotted, orange curve which shows the relevant observable (y-axis) vs Λ (x-

axis) at constant ω. The value of ω is chosen to accommodate non-converged solutions

present in the contour plots (white space – discussed below); for each contour plot

the y-tick of the chosen ω value is magnified and coloured in orange. From both the

contour plots and the constant ω sub-plots, none of the observables are independent

of Λ, consistent with the main text.

There are several regions in Figures 4.18 - 4.22 with numerical artefacts (white

space on the contour plots); their presence is due to the large computational cost of

scanning parameter space and the difficulty of automatically setting efficient initial

guesses for the optimization problem. At first glance, these artefacts may appear

problematic. However, the quantitative predictions of our model at large Λ are inde-

pendent of different ω values (aside from E and δ, as noted above). This independence
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Figure 4.16: Contours of constant D-band period 2π/η in the k24 vs γ plane. The
thick black line corresponds to the coexistence line between linear and frustrated twist
fibril phases. A discontinuous jump in the period occurs across the coexistence line
as γ is increased at constant k24. γ strongly controls the period of the D-band, with
larger γ corresponding to smaller period. The maximum value of 2π/η ∼ 1 occurs at
small γ. Note that to determine the true (dimensional) period of the fibrils, one only
needs to multiply the observed value of the contours indicated by d̃‖ = 67 nm. We
hold Λ = 27 and ω = 10 constant.

of ω is easily seen in slices of our model observables at constant Λ = 10 in Figures 4.19

- 4.20 (these dotted, magenta slices are shown on the right side of each of the nine

contour plots within each figure), which are constant in each observable at ω � 1.

Therefore, little information is lost in these numerical artefacts at large Λ as long

as at least one ω value has converged. For example, from the R data observed at

(Λ,ω)=(300,25) with (γ, k24)=(0.04,0.1) in Figure 4.19, we see that R 	 0.6 from

the constant ω = 25 slice (dotted orange curve above the contour plot), and so we
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Figure 4.17: Contours of D-band amplitude δ in the k24 vs γ plane. The thick
black line corresponds to the coexistence line between linear and frustrated twist
fibril phases. A discontinuous jump in δ occurs across the coexistence line as γ is
increased at constant k24. Notably, δ does not vary much with either parameter, with
its minimum value of δ ∼ 0.94 occurring near the left side of the coexistence line. We
hold Λ = 27 and ω = 10 constant.

may infer that at Λ = 300, (γ, k24)=(0.04,0.1), R 	 0.6 independent of ω. Therefore,

have included these figures not as a main result of our model, but as a helpful guide

to how our model depends on parameter space. For this reason, it is appropriate to

include these in the thesis as a demonstration of how we were able to effectively select

parameter values in the main sections of this chapter (e.g. in choosing parameters

for cornea and tendon fibrils in section 4.4.3). To eliminate all numerical artefacts

would require manually inputting initial guesses for the minimization of E for every

grid point which is white in the figures. Given the computational cost of doing this

for little important information, we have decided to forego this calculation.
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4.6.3 Mechanical response at different parameters

Figure 4.23 shows the mechanical response of our PFCF model with (γ,

k24)=(0.12,1.0) at different Λ (analogous to Figure 4.9 in the main text). Figure 4.24

examines the relationship between ω and the maximum stress that can be applied in

our system before the D-band amplitude δ → 0.
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Figure 4.18: Equilibrium free energy per unit volume E contours in the ω vs Λ plane
(main coloured plots), at several values of γ and k24. Each contour plot is accompanied
by a constant ω slice (above, with the chosen ω value highlighted in orange along the
y-axis of the corresponding main contour plot) and a constant Λ = 10 slice (to the
right). White space in the contour plots indicate non-converged solutions (in the
computational time allotted) due to poor initial conditions in the ω-Λ parameter
space scanning algorithm (see text for discussion).
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Figure 4.19: Equilibrium fibril radius R contours in the ω vs Λ plane, at several
values of γ and k24. Each contour plot is accompanied by a constant ω slice (above,
with the chosen ω value highlighted in orange along the y-axis of the corresponding
main contour plot) and a constant Λ = 10 slice (to the right). Consistent with the
main text, at large γ and k24 values, a radial discontinuity emerges with increasing Λ.
White space in the contour plots indicate non-converged solutions due to poor initial
conditions in the ω-Λ parameter space scanning algorithm (see text for discussion).
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Figure 4.20: Equilibrium surface twist ψ(R) contours in the ω vs Λ plane, at several
values of γ and k24. Each contour plot is accompanied by a constant ω = 15 slice
(above) and a constant Λ = 10 slice (to the right). Consistent with the main text, at
large γ and k24 values, a ψ(R) discontinuity emerges with increasing Λ. White space
in the contour plots indicate non-converged solutions due to poor initial conditions
in the ω-Λ parameter space scanning algorithm (see text for discussion).
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Figure 4.21: Equilibrium D-band period 2π/η contours in the ω vs Λ plane, at several
values of γ and k24. Each contour plot is accompanied by a constant ω = 15 slice
(above) and a constant Λ = 10 slice (to the right). Consistent with the main text, at
large γ and k24 values, a discontinuity in the D-band period emerges with increasing Λ.
White space in the contour plots indicate non-converged solutions due to poor initial
conditions in the ω-Λ parameter space scanning algorithm (see text for discussion).
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Figure 4.22: Equilibrium D-band amplitude δ contours in the ω vs Λ plane, at several
values of γ and k24. Each contour plot is accompanied by a constant ω = 15 slice
(above) and a constant Λ = 10 slice (to the right). Consistent with the main text,
at large γ and k24 values, a discontinuity in the D-band amplitude emerges with
increasing Λ. White space in the contour plots indicate non-converged solutions due
to poor initial conditions in the ω-Λ parameter space scanning algorithm (see text for
discussion).
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Figure 4.23: Mechanical and structural response of straining the collagen fibril D-
band for an incompressible fibril. (a) Stress, σ = dE/dε, vs strain (ε) percentage for
Λ = 1 (red curve) and Λ = 10 (cyan curve), all at γ = 0.12, k24 = 1.0, and ω = 10.
The stress increases linearly in all cases for small strain. As Λ increases, the stress
becomes non-linear at large strain. Notably, the initial slope in the stress (i.e. the
Young’s modulus) does not monotonically increase with strain. (b) D-band (density)
amplitude δ vs strain percentage. At small strain, the amplitude remains close to
its equilibrium (ε = 0 value), while at large strain δ decreases rapidly to zero (δ = 0
corresponds to a fibril with no D-band). (c) Surface twist ψ(R) vs strain percentage.
ψ(R) decreases with increasing strain initially, and increases slightly before the D-
band disappears (δ = 0) at the discontinuity in ψ(R).
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Figure 4.24: Maximum stress and corresponding strain values vs ω for Λ = 1 (red
curve) and Λ = 10 (tan curve). Dots are data points, and the lines connecting the
dots are a guide to the eye. Maximum stress is defined as the maximum value of stress
attained at any strain ε. This maximum stress is not necessarily at the largest strain,
indicating non-monotonic behaviour in the stress strain curves. This is not physical
and is due to the fibril D-band “breaking” (i.e. δ → 0, and so we use the maximum
stress as the upper value of strain we can apply to our model without breaking the
fibril. Note that the upper bound of strain allowed is ε < 0.05, which is why the
Λ = 1.0 curve flattens out at this value in (b). Other parameters in this calculation
are γ = 0.12 and k24 = 1.



Chapter 5

Conclusion and Future Outlook

5.1 Summary of results

In this thesis we have developed quantitative, predictive models of collagen fibril

structure and its mechanical properties by constructing fibril free energies using the

framework of statistical mechanics and soft matter physics. We minimize these free

energies using numerical techniques, and determine the resulting collagen fibril struc-

ture.

In Chapter 3, we used a purely liquid crystalline model of collagen fibril structure

to generate fibril structure which is consistent with those observed in experiment.

We found that both radius, R, and tropocollagen twist, ψ(r), generated from this

model were consistent with experiment. Model parameters could be tuned specifi-

cally to capture different fibril structures, and in particular the two extreme cases

of cornea fibrils (small, uniform R and large surface twist, ψ(R)) and tendon fibrils

(poly-disperse R and small ψ(R)) could be generated from this model. Furthermore,

this model demonstrated that the orientation of molecules within the fibril is well

represented by a mildly non-linear form of ψ(r), providing evidence for the constant

pitch model of fibril structure proposed in the literature [48]. However, our model

neglected the axial D-banding of collagen fibrils, and so was not a complete model

of fibril structure. Furthermore, we suspected that D-band structure would couple

to the ψ(r) field, and so our results may be significantly altered with the addition of

D-band structure.

In Chapter 4, we included D-band structure in our model through generalizing

the phase-field-crystal formalism [5], and found using geometrical arguments that

it is coupled to the molecular orientation field ψ(r) within the fibril. While our

model was still able to capture the R and ψ(R) values observed in the literature,

the coupling between D-band and ψ(r) introduced a new phase of fibril structure,

which we denote the frustrated twist phase (the original phase from both this chapter
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and the previous being named the linear twist phase). The differences between the

linear and frustrated twist phases lie in the form of ψ(r), which in the former case

is linear, while in the latter has an almost piece-wise ψ(r), which is linear near the

fibril centre r = 0 and the fibril surface r = R, but has zero slope in between the

centre and surface. We characterized the phase transition between these two phases,

and determined the stress-strain behaviour in both cases. We found that the Young’s

moduli Y were within the experimental range of suitable (non-cross-linked, hydrated)

fibrils. We found that the change in the average orientation of molecules within the

fibril vs applied D-band strain did not match up with experiment [6]. The reason

for this discrepancy is an inspiration for further modifications to the collagen fibril

models presented in this thesis.

5.2 Future outlook

Though the models presented in this thesis show promise in their predictions of col-

lagen fibril structure and mechanical properties, there are two modifications that can

be made (either together or separately) to this model which I think will enhance it

greatly.

The first modification of this model would be to introduce cross-links into the

system via an additional term in the collagen fibril free energy. Since the models of

this thesis are partially based off of liquid crystal theory, it may be possible to use

the rapidly developing field of liquid crystal elastomers [31] which considers ordering

of cross-linked polymer liquid crystals and their corresponding mechanical proper-

ties. If this cross-linking term were to be naively added to our existing phase field

collagen fibril model, it may enable us to better predict the mechanical properties of

cross-linked fibrils, and perhaps could explain the discrepancy we find between our

model and the experimental predictions [6] of average molecular orientation under

strain (mentioned in the above section). Current theories of liquid crystal elastomers

mainly consider rod-like molecules connected by Gaussian polymer cross-links; a more

sophisticated iteration of the theory may be required depending on the nature of the

collagen fibril cross-links.

Another possibility for introducing cross-links might be in an ad-hoc manner,

inspired by the works of Grason [82] which are discussed in Chapter 2. Collagen fibrils
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show radial (hexagonal) crystalline packing only at certain points along the axial (z)

D-band period where cross-links are most abundant [55]. If we were to assume that

hexagonal packing is a proxy for cross-linking, it might be reasonable to introduce z-

dependent elastic coefficients [83] and so a hexagonal packing of fibrils only at certain

fibril locations. This would incorporate the differences in disorder radially at different

z into our model. Currently, the maximum strain attainable in our model is as little

as %.4 in our tendon fibril structure (see Figure 4.15). I expect that inclusion of

cross-linking (through elastomeric or imposed local hexagonal packing treatments)

will allow us to increase this maximum strain by providing a second mechanism of

deformation (D-band and stretching of cross-links). My reasoning for this is through

analogy with a simple system of two springs with spring constants k1 and k2. If the

first spring (the D-band) is pulled on, it will only strain so far before it can break.

However, adding a second spring (cross-linking) to the first spring in series will allow

for a larger strain to be obtained before the system breaks. Though simplistic, this

analogy should be applicable at least qualitatively to the PFCF model with cross-links

at small strains, and will require implementation to determine whether it holds true

at large enough strains to significantly alter the mechanical response of the system.

The second modification that might be useful is motivated by evidence in the

literature that collagen fibrils may actually have a “hollow” cylindrical core near the

fibril centre [153, 99]. We could incorporate this into model in two different ways.

We could cut out the centre of the fibril in our model, and so the corresponding fibril

geometry would be a cylinder with collagen molecules arranged in a double-twist

fashion, but with an empty core. This approach would be analogous to the treatment

of defects in the director field formalism of liquid crystal theory, where singularities

in the director field at defects would be removed from the integration region, and

the energy there would be replaced by an isotropic core energy [150]. The question

of what the core energy might be in the fibril would add another parameter (and so

another level of complexity) to our model.

A second method of introducing an “empty” core fibril, would be to have a radially

dependent D-band amplitude which is zero within the core, and non-zero outside of
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the core, i.e.

δ(r) =

⎧⎨
⎩0 0 ≤ r ≤ Rc

δR Rc < r ≤ R.
(5.1)

From a mechanical perspective, this may be similar to having an empty core, as there

is no D-band present in the fibril centre. However, physically this could be interpreted

as a disorder core (no D-band) of tropocollagen in the fibril centre. It would also be

appealing in that it introduces no new free parameters, as both Rc and δR could be

determined from the free energy minimization (along R, η, and ψ(r)). It could be

entirely possible that the minimum free energy would be obtained for Rc = 0 (in

fact, this is likely true for the linear ψ(r) phase discussed in Chapter 4). However, if

would provide a more general variational guess to the fibril structure and so should

in certain cases reduce the free energy of fibril when compared to the Rc = 0 case.

Out of all the modifications suggested above, by far the simplest is the introduction

of a δ(r) which has the form of eqn 5.1. It requires little modification of the existing

model and numerical framework that has been developed, and does not add additional

parameters to the model. I suggest that this modification is investigated in the near

future to further improve our understanding of collagen fibril structure.
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[141] C Alves, A D Araújo, C L N Oliveira, J Imsirovic, E Bartolák-Suki, J S Andrade,
and B Suki. Homeostatic maintenance via degradation and repair of elastic
fibers under tension. Scientific Reports, 6(1):677, June 2016.

[142] J R Harris and A Reiber. Influence of saline and pH on collagen type I fib-
rillogenesis in vitro: Fibril polymorphism and colloidal gold labelling. Micron,
38(5):513–521, July 2007.

[143] F Berenguer, R J Bean, L Bozec, J Vila-Comamala, F Zhang, C M Kewish,
O Bunk, J M Rodenburg, and I K Robinson. Coherent x-ray imaging of collagen
fibril distributions within intact tendons. Biophysical Journal, 106(2):459–466,
January 2014.

[144] M Fang, E L Goldstein, E K Matich, B G Orr, and M M Banaszak Holl. Type
I collagen self-assembly: the roles of substrate and concentration. Langmuir,
29(7):2330–2338, February 2013.

[145] K M Meek. Corneal collagen—its role in maintaining corneal shape and trans-
parency. Biophysical Reviews, 1(2):83–93, June 2009.

[146] R A Farrell and R W Hart. Light scattering in the cornea. Journal of the
Optical Society of America, 59(6):766–774, June 1969.

[147] G B Benedek. Theory of transparency of the eye. Applied Optics, 10(3):459–473,
1971.

[148] M. et al Galassi. Gnu scientific library reference manual. In GNU Scientific
Library Reference Manual. 3rd edition, 2018.

[149] S. Cameron. pfcfibrils. https://github.com/samueljmcameron/pfc_fibrils,
2019.

[150] P M Chaikin and T C Lubenskii. Principles of Condensed Matter Physics.
Cambridge Univ. Press, Cambridge, 1995.

[151] D Silver, J Miller, R Harrison, and D J Prockop. Helical model of nucleation
and propagation to account for the growth of type I collagen fibrils from sym-
metrical pointed tips: a special example of self-assembly of rod-like monomers.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 89(20):9860–9864, October 1992.



117

[152] L M Jawerth, M Ijavi, M Ruer, S Saha, M Jahnel, A A Hyman, F Jülicher,
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Appendix A

Derivation of phase field collagen fibril model

In it’s most general form, the free energy of a material which is composed of chiral,

rod-like molecules, and has a crystalline density structure is given by the free energy

F =

∫
all space

d3r
(
f(Qij, ∂kQlm, φ) + g(∇‖φ,∇⊥φ) + h(φ)

)
, (A.1)

whereQij is the (tensor) order parameter, which is spatially non-uniform and non-zero

in any non-isotropic phase, and φ is the density order parameter which quantifies the

change in density from some reference phase, ρref (which is homogeneous in density).

There are two pieces to this free energy:

i The liquid crystal free energy, f(Qij, ∂kQlm, φ), which penalizes any non-

equilibrium distortions (e.g. splay, bend, twist) in the average molecular orien-

tation.

ii The phase-field crystal free energy, g(∇‖φ,∇⊥φ), which in general allows for

periodic modulations in the density below some transition temperature, Tm. ∇
is broken up into it’s parallel and perpendicular components with respect to the

local orientation of the rod-like molecules. A potential well term, h(φ), which en-

courages non-zero φ values below some transition temperature Tp (which could

in general be different than Tm) is also included.

A.1 Liquid crystal free energy

In what follows, I will make several large assumptions in the form of the first term in

eqn A.1.

1.a The first assumption concerns the liquid crystal free energy term, and in par-

ticular the order parameter Qij. Although we are interested in modelling chiral

(collagen) molecules, I will assume that the biaxiality of the molecules is small
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so we are in the “low chirality limit” [81]. In this limit, Qij is uniaxial, and can

be written as

Qij = λ(3ninj − δij), (A.2)

where λ is a position-dependent quantity related to the usual uniaxial scalar

order parameter S(r) = 1/2 〈3cos2θ − 1〉, and ni are the components of the

director field n(r) which gives the average, local molecular orientation. Since

a uniaxial Qij tends to minimize the bulk (gradient-less) components of the

liquid crystal free energy, we ignore these terms in our system, and consider

only the deformation free energy, which for uniaxial liquid crystals can most

recognizably be written in the form

ffrank(∇n) =
1

2
K̃11(∇ · n)2 + 1

2
K̃22(n · ∇ × n+ q)2 +

1

2
K̃33(n× (∇× n))2

+ k̃13∇ · (∇ · n)n− 1

2
(K̃22 + k̃24)∇ · (n× (∇× n) + n(∇ · n))

(A.3)

where I have assumed λ is constant and absorbed it into the definitions of the

elastic constants K̃ii and k̃ij.

1.b Since we are interested in modelling collagen fibril structure, I am going to as-

sume that the liquid crystal material is constrained to be within a cylinder of

radius R and infinite length, and so the elastic constants are essentially zero out-

side of the cylinder (as it is surrounded by some isotropic fluid). This changes

the domain of integration from all of space to just that of the cylinder. This

also has the consequence that the divergence terms (preceded by the elastic

constants k̃13 and K̃22 + k̃24) cannot be neglected, and introduces an interfa-

cial free energy per unit length Fs/L = 2πγR. This assumption is justified

as long as the interactions between individual rod-like molecules and the sur-

rounding isotropic fluid cause the molecules to aggregate, which we will take

to be true. Furthermore, with this assumption we are neglecting interactions

between cylinder (fibrils).

1.c The director field is constrained to be that of a double-twist structure, with

n = sinψ(r)θ̂ + cosψ(r)ẑ.
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1.d The density modulations φ are small enough perturbations as to not affect the

values of the elastic constants within the cylinder. Thus, to first order the liquid

crystal free energy does not depend on φ.

Thus, integrating over the first integral in equation A.1 with the above assump-

tions,

∫
all space

d3rf(Qij, ∂kQlm, φ) = 2πL

∫ ∞

0

rdrffrank(∇ndouble−twist)

= 2πL

∫ R

0

rdr

(
1

2
K22

(
q − ψ′ − sin 2ψ

2r

)2

+
1

2
K33

sin4 ψ

r2

)

− πL(K22 + k24) sin
2 ψ(R) + 2πγRL. (A.4)

A.2 Phase field crystal free energy

The most general terms obeying the symmetries of the rod-like molecules for the

second term in eqn A.1 is

g(∇‖φ,∇⊥φ) = −a‖(∇‖φ)2 + b‖(∇2
‖φ)

2 − a⊥(∇⊥φ)2 + b⊥(∇2
⊥φ)

2 + c(∇‖φ)2(∇⊥φ)2.

(A.5)

For thermodynamic stability, both b‖ > 0 and b⊥ > 0. a‖ and a⊥ can be of either sign

in principle, and could change sign according to some transition temperature Tm
1.

To ensure that non-zero density amplitude modulations are thermodynamically

favourable, we also include the third term in eqn A.1, which can most simply be

written as

h(φ) = dφ2(eφ2 − 1). (A.6)

The simplifying assumptions I make to reduce the number of terms in the above

two equations are:

1It could be possible that there are two transition temperatures, one for ordering parallel to the
molecules, and a second for ordering perpendicular to the molecules.
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2.a The local density modulations perpendicular to the rod-like molecules are unim-

portant and can be coarse-grained out of the free energy, so that I can set any

terms containing ∇⊥ to 0. For collagen fibrils in particular, this ignores the

hexagonal-like packing of molecules within the fibril, which occur over length

scales of ≈ 1 nm.

2.b The density modulations only occur along the axis of the cylinder, so φ(r) →
φ(z). This axis is in general not along the average local direction of the molecules

(ẑ �= n).

2.c The density modulations have a well defined period, which I will call η. This

allows us to average over a period of the structure.

The definitions of ∇‖ and ∇⊥ are given in terms of the local coordinates of the

average orientation of molecules x′, which I define with respect to the lab reference

frame x. The geometry of this local coordinate system is illustrated in Figure A.1.

The transformation x′ = Ax written explicitly is⎡
⎢⎢⎣
x′ + r

y′

z′.

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos θ sin θ 0

− sin θ cosψ(r) cos θ cosψ(r) − sinψ(r)

− sin θ sinψ(r) cos θ sinψ(r) cosψ(r)

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x

y

z

⎤
⎥⎥⎦ (A.7)

and the inverse transformation is⎡
⎢⎢⎣
x

y

z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
cos θ − sin θ cosψ(r) − sin θ sinψ(r)

sin θ cos θ cosψ(r) cos θ sinψ(r)

0 − sinψ(r) cosψ(r)

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x′ + r

y′

z′.

⎤
⎥⎥⎦ . (A.8)

Importantly, θ and r (and so ψ(r)) are held constant in this definition, and should

not be thought of as functions of x and y when defining local derivatives ∇‖ and ∇⊥.

With these transformations, I can define more concretely the gradient

∇‖ = ẑ′
∂

∂z′

= ẑ′
(
− sin θ sinψ(r)

∂

∂x
+ cos θ sinψ(r)

∂

∂y
+ cosψ(r)

∂

∂z

)
, (A.9)

With assumption 2.a, I don’t need to evaluate ∇⊥, but I will for completeness as it

draws attention to the fact that ∂/∂z terms exist in ∇⊥, so both assumptions 2.a and
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Figure A.1: Defining the local (primed) coordinates of the average molecular orien-
tation with respect to the lab (fibril) reference frame.

2.b are required to safely ignore any ∇⊥ terms, as

∇⊥ =x̂′ ∂

∂x′ + ŷ′
∂

∂y′

=x̂′
(
cos θ

∂

∂x
+ sin θ

∂

∂y

)

+ ŷ′
(
− sin θ cosψ(r)

∂

∂x
+ cos θ cosψ(r)

∂

∂y
− sin θ

∂

∂z

)
. (A.10)

Using assumptions 2.a and 2.b and the identities (∇φ)2 = ∇ · (φ∇φ)− φ∇2φ and

(∇2φ)2 = ∇·∇(φ∇2φ)− 2∇· (φ∇∇2φ)+φ∇4φ, I can re-write the phase field crystal

parts of the free energy as

∫
all space

d3rg(∇‖φ,∇⊥φ) =2π
Λ

2

∫ R

0

rdr

∫ 2π
η

0

dzφ(z)

((
2π

d‖

)2

+ cos2ψ(r)
∂2

∂z2

)2

φ(z)

+ Fsurf , (A.11)

∫
all space

d3rh(φ) = ωπR2

∫ 2π
η

0

dz

(
φ(z)

δ0

)2
((

φ(z)

δ0

)2

− 1

)
. (A.12)

The terms Fsurf are obtained through integration by parts, and in general cannot

be neglected for the same reasons that the divergence terms in the Frank free energy
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cannot be neglected. However, since all of these terms are integrated through a dot

product of d̂S = r̂ and some vector with direction V̂ = ∇̂φ = ẑ by assumption 2.b,

they are zero in our case. I have also taken the free parameter δ20 > 0, which is not

necessary in general. δ20 > 0 is equivalent physically to only looking at our system

below the critical temperature where density modulations occur (which is where we

are interested in investigating). The parameter d‖ is just the preferred period of

the density modulations, and will in general not be equivalent to the true period η

because of the cos2 ψ(r) term in eqn A.11.

A.3 Final form of the free energy per unit volume

In this section, I will use hats to denote dimensional variables, and no hats as di-

mensionless variables. For the dimensional case, I can write the free energy per fibril

volume (πR22π/η) bulk phase (i.e. array) of cylindrical, liquid crystalline collagen

fibrils as

Ẽ(R̃, η̃; ψ̃(r̃), φ̃(z̃)) =
2

R̃2

∫ R̃

0

r̃dr̃

⎛
⎝1

2
K̃22

(
q̃ − ψ̃′ − sin 2ψ̃

2r̃

)2

+
1

2
K̃33

sin4 ψ̃

r̃2

⎞
⎠

+
Λ̃δ̃20

R̃22π/η̃

∫ R̃

0

r̃dr̃

∫ 2π
η̃

0

dz̃
φ̃(z̃)

δ̃0

⎛
⎝(2π

d̃‖

)2

+ cos2ψ̃(r̃)
∂2

∂z̃2

⎞
⎠

2

φ̃(z̃)

δ̃0

+
ω̃

2π/η̃

∫ 2π
η̃

0

dz̃

(
φ̃(z̃)

δ̃0

)2
⎛
⎝( φ̃(z̃)

δ̃0

)2

− 1

⎞
⎠

− (K̃22 + k̃24)
sin2 ψ̃(R̃)

R̃2
+

2γ̃

R̃2
. (A.13)

Note that the reason we are interested in the free energy per fibril volume instead

of the total free energy, is that we assume the fibril phase has already been minimized

with respect to volume Vf = NfπR
2L, and since the total free energy is

F = NfπR̃
2L̃Ẽ

= Vf Ẽ, (A.14)

we need to find the minimum of F with Vf held constant.

If I take a single mode approximation for the density, φ̃(z̃) = δ̃ cos(η̃z̃) and replace
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all variables with their dimensionless forms

E =
Ẽ

K̃22q̃2
, (A.15)

R = R̃q̃, (A.16)

r = r̃q̃, (A.17)

ψ(r) = ψ̃(r̃), (A.18)

K33 =
K̃33

K̃22

, (A.19)

L =
L̃

d̃‖
, (A.20)

Λ =
2Λ̃δ̃20

3K̃22q̃2d̃4‖
, (A.21)

ρδ =
ρ̃δ

δ̃0
, (A.22)

δ =

√
3

2

δ̃

δ̃0
, (A.23)

η = η̃d̃‖, (A.24)

ω =
2ω̃δ̃40
3K̃22q̃2

, (A.25)

γ =
γ̃

K̃22q̃
. (A.26)

then this becomes

E(R, η, δ;ψ(r)) =
2

R2

∫ R

0

rdr

(
1

2

(
1− ψ′ − sin 2ψ

2r

)2

+
1

2
K33

sin4 ψ

r2

)

+
Λδ2

2R2

∫ R

0

rdr
(
4π2 − η2 cos2 ψ(r)

)2
+

ωδ2

2

(
δ2

2
− 1

)
− (1 + k24)

sin2 ψ(R)

R2
+

2γ

R
. (A.27)



Appendix B

Numerical methods

B.1 Free energy per fibril volume minimization with respect to ψ(r)

To minimize eqn A.27, we start by taking

δE

δψ
= 0 (B.1)

which gives the ODE

dψ

dr
+ r

d2ψ

dr2
=1− cos(2ψ)

(
1− sin(2ψ)

2r

)
+K33

sin(2ψ) sin2 ψ

r

+ Λδ2η2r(4π2 − η2 cos2 ψ) cosψ sinψ, (B.2a)

ψ(0) =0, (B.2b)

dψ

dr

∣∣∣∣
r=R

=1 + k24
sin(2ψ(R))

2R
. (B.2c)

There is no known analytical solution to this ODE system, and so it must be

solved numerically. Solving eqns B.2a - B.2c is a nonlinear boundary value problem

with nonlinear boundary conditions, and so simple ODE solvers (e.g. Runge-Kutta)

are not useful here. In previous work [3], a shooting method of solution was used

to solve the δ = 0 version of this boundary value problem. This method of solution

is very robust and can usually find a solution to a given boundary value problem.

However, it does not take advantage of any prior knowledge one might have about

the system. In our case, we expect that for a small perturbation in parameter space,

the functional form of ψ(r) should not change significantly. Therefore, we would like

a method of solution that uses this non-chaotic behaviour to our advantage.

With this in mind, we have selected a numerical relaxation method of solution,

which takes an initial guess of ψ(r), and attempts to relax this guess to an approximate

solution of eqns B.2a - B.2c. This is advantageous, as after we determine ψ(r) for

a specific set of parameters, we can use its form as an initial guess for a new set of
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parameters. In the remainder of this section, we outline the procedure of numerical

relaxation.

B.1.1 Discretization of ψ(r) and its ODE

To solve eqn B.2a with the boundary condition eqns B.2b and B.2c, We use an ODE

numerical relaxation technique [114]. The discretization has M points, on the evenly

spaced grid r1, ..., rM with spacing h. To simplify notation, we define a vector yk as

yk =

[
y
(1)
k

y
(2)
k

]
=

[
ψ(rk)

d
dr
ψ(rk)

]
(B.3)

where rk is grid point k (k = 1, 2, ...,M). We also define a vector function g(x,y)

with components

g(1)(r,y) =y(2), (B.4a)

g(2)(r,y) =
1

r

(
1− y(2) − cos(2y(1))

(
1− sin(2y(1))

2r

)
+K33

sin(2y(1)) sin2 y(1)

r

+ Λδ2η2r(4π2 − η2 cos2 y(1)) cos y(1) sin y(1)
)
. (B.4b)

With this notation, the finite difference version of eqn B.2a is

Ek = yk − yk−1 − (rk − rk−1)g[0.5(rk + rk−1), 0.5(yk + yk−1)] = 0, k = 2, 3, ...,M,

(B.5)

where the finite difference is symmetric about the midpoint of the grid points rk and

rk−1, and Ek = 0 at every k is an approximate solution to eqn B.2a (it is exact in

the limit M → ∞).

We define

E1 =

[
0

y
(1)
1

]
=

[
0

0

]
(B.6)

and

EM+1 =

⎡
⎣y(2)M − 1− k24

sin(2y
(1)
M )

rM

0

⎤
⎦ =

[
0

0

]
, (B.7)
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which correspond to the boundary conditions in eqns B.2b and B.2c, respectively.

This set of Ek for k = 1, 2, ...,M +1 is a non-linear system of 2M unknowns yk
1. To

solve this system, a multi-dimensional Newton’s method relaxation scheme is applied.

This requires an initial guess for the yk, which we take to be linear (i.e. ψ(r) = ψ′
0r

for some chosen ψ′
0) or constant (ψ(r) = ψ0). Then corrections Δyk are applied by

first linearizing the Ek near the initial guess,

E
(i)
k (yk +Δyk,yk−1 +Δyk−1) 	E

(i)
k (yk,yk−1) +

∂E
(i)
k

∂y
(j)
k−1

δy
(j)
k−1 +

∂E
(i)
k

∂y
(j)
k

δy
(j)
k (B.8)

(where i = 1, 2 and repeated superscript indices are summed), and then setting

E(y + Δy) = 0. The resulting form is a linear system of equations, Ax = b, where

the unknown x is the first order corrections Δyk to the current form of yk.

B.1.2 Block diagonal matrix form

It can be shown that the linear system above has a block diagonal form due to the

coupling of only two grid points k and k−1 in eqn B.8. There are M+1 blocks, total,

each of which can be conveniently defined in terms of a matrix S
(i,j)
k with i = 1, 2 and

j = 1, 2, 3, 4 (dimension 2× 4). From eqn B.8 above, the definition of S
(i,j)
k is

S
(i,j)
k =

∂E
(i)
k

∂y
(j)
k−1

, i = 1, 2, j = 1, 2 (B.9)

S
(i,j+2)
k =

∂E
(i)
k

∂y
(j)
k

, i = 1, 2, j = 1, 2 (B.10)

with k = 2, 3, ...,M .

The boundary conditions cause the first and last row of the (full) matrix to have

components which are defined differently, as eqn B.6 only depends on y1 and contains

only one equation2, while eqn B.7 only depends on yM and similarly only contains

one equation. For this reason, Taylor expanding these two equations gives rise to the

1E1 and EM+1 each only have one equation in them (vs two for general Ek) since 0 = 0 is
automatically satisfied.

20 = 0 is always true.
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matrix components

S
(2,j)
1 =

∂E
(2)
1

∂y
(j)
1

, j = 1, 2, (B.11)

S
(1,j)
M+1 =

∂E
(1)
M+1

∂y
(j)
M

, j = 1, 2. (B.12)

To illustrate this point further, I have below written the equation for the full

matrix with its block diagonal components in the case of M = 4 grid points.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S
(2,1)
1 S

(2,2)
1 0 0 0 0 0 0

S
(1,1)
2 S

(1,2)
2 S

(1,3)
2 S

(1,4)
2 0 0 0 0

S
(2,1)
2 S

(2,2)
2 S

(2,3)
2 S

(2,4)
2 0 0 0 0

0 0 S
(1,1)
3 S

(1,2)
3 S

(1,3)
3 S

(1,4)
3 0 0

0 0 S
(2,1)
3 S

(2,2)
3 S

(2,3)
3 S

(2,4)
3 0 0

0 0 0 0 S
(1,1)
4 S

(1,2)
4 S

(1,3)
4 S

(1,4)
4

0 0 0 0 S
(2,1)
4 S

(2,2)
4 S

(2,3)
4 S

(2,4)
4

0 0 0 0 0 0 S
(1,1)
5 S

(1,2)
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δy
(1)
1

Δy
(2)
1

Δy
(1)
2

Δy
(2)
2

Δy
(1)
3

Δy
(2)
3

Δy
(1)
4

Δy
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E
(2)
1

−E
(1)
2

−E
(2)
2

−E
(1)
3

−E
(2)
3

−E
(1)
4

−E
(2)
4

−E
(1)
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.13)

This block diagonal form can be solved very efficiently using standard linear algebra

techniques, see ref. [114] for details. Each time the matrix equation is solved, the

form of ψ(r) is updated, i.e. yk ←
bmyk+Δyk. This process is iterated until convergence is obtained. More specifically,

we define the error of the current iteration as

err =
1

2M

M∑
k=1

2∑
j=1

|Δy
(j)
k |

scalej
, (B.14)

where scale1 = 0.1 and scale2 = 4.0 are scale factors that should be (and are) around

the same magnitude as ψ(r) and dψ/dr, respectively. Once err < 1× 10−10, we

assume the current values of yk are an acceptable approximation to the solution of

eqns B.2a-B.2c.
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B.1.3 Computation of block diagonal (S
(i,j)
k ) elements

Using the definition g from eqns B.4a and B.4b, and taking the grid space h =

R/(M − 1) to be constant, the form of the E
(i)
k in B.5 are

E1,k = y1,k − y1,k−1 − h
(y2,k + y2,k−1)

2
, (B.15a)

E1,M+1 = y2,M − 1− k24
sin(2y1,M)

2rM
, (B.15b)

E2,k = y2,k − y2,k−1

− 2h

rk + rk−1

{
1− (y2,k + y2,k−1)

2
− cos(y1,k + y1,k−1)

(
1− sin(y1,k + y1,k−1)

rk + rk−1

)

+ 2K33

sin2
(y1,k+y1,k−1

2

)
sin(y1,k + y1,k−1)

rk + rk−1

+
Λδ2η2(rk + rk−1)

2

(
4π2 − η2 cos2

(y1,k + y1,k−1

2

))
· cos (y1,k + y1,k−1

2

)
sin
(y1,k + y1,k−1

2

)}
, (B.15c)

E2,1 = y1,1 (B.15d)
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Taking the relevant derivatives of these equations for k = 2, ...,M

S1,1 = −1, (B.16a)

S1,2 =
−h

2
, (B.16b)

S1,3 = 1, (B.16c)

S1,4 =
−h

2
, (B.16d)

S2,1 =
−2h

rk + rk−1

{
2K33

rk + rk−1

(
1

2
sin2(y1,k + y1,k−1)

+ sin2
(y1,k + y1,k−1

2

)
cos(y1,k + y1,k−1)

)

+ sin(y1,k + y1,k−1)

(
1− sin(y1,k + y1,k−1)

rk + rk−1

)
+

cos2(y1,k + y1,k−1)

rk + rk−1

+
Λδ2η2(rk + rk−1)

2

(
η2 cos2

(y1,k + y1,k−1

2

)
sin2

(y1,k + y1,k−1

2

)
+

1

2

(
4π2 − η2 cos2

(y1,k + y1,k−1

2

))
· ( cos2 (y1,k + y1,k−1

2

)
− sin2

(y1,k + y1,k−1

2

)))}
, (B.16e)

S2,2 = −1 +
h

rk + rk−1

, (B.16f)

S2,3 = S2,1, (B.16g)

S2,4 = 1 +
h

rk + rk−1

. (B.16h)

At the first boundary k = 1 (corresponding to r = 0),

S2,1 = 0, (B.17a)

S2,2 = 0, (B.17b)

S2,3 = 1, (B.17c)

S2,4 = 0. (B.17d)
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and at the second boundary k = M + 1 (corresponding to r = R),

S1,1 = 0, (B.17e)

S1,2 = 1, (B.17f)

S1,3 = −k24
cos(2y1,M)

rM
, (B.17g)

S1,4 = 1. (B.17h)

B.2 Energy minimization with respect to R, η, and δ

The energy per unit volume, E, defined in eqn A.27, is a function of R, η, δ, and

a functional of ψ(r). Consistent with the main text, we simplify the minimization

process by defining

E∗(R, η, δ) ≡ E(R, η, δ, ψ∗(r)) (B.18)

where ψ∗(r) is the ψ(r) function3 which minimizes E at given values of R, η and

δ. With the unknown ψ(r) still implicitly being determined at each R, η, and δ, it

is not possible to derive analytical forms for the derivatives of E with respect to R,

η, and δ. Therefore, the final minimization of E reduces to a simple three variable

optimization problem, with

∇E∗ =

⎡
⎢⎢⎣

∂E∗
∂R

∂E∗
∂η

∂E∗
∂δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0

0

0

⎤
⎥⎥⎦ , (B.19)

where the partial derivatives are evaluated numerically4. There are several robust

numerical optimization algorithms designed for this type of problem, including the

Conjugate Gradient Descent (CG) algorithm and the BFGS optimization algorithm

[155]. After initial tests of computational efficiency which indicated that the BFGS

algorithm was marginally faster at finding E∗ compared to the CG algorithm, we

elected to use the former. We use the BFGS2 algorithm5 provided by GNU Scientific

3We solve for ψ∗(r) using the numerical relaxation outlined in section B.1.
4The errors associated with these derivatives are typically ∼ 1× 10−8. The error estimate is

found by taking the maximum difference of O(dx3) and O(dx5) numerical derivatives, with code
modified from the GNU Scientific Library [148].

5The “2” in the algorithm name is a minor difference in one step of the algorithm and was
advertised as more efficient.
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Library [148]. I provide an outline of the underlying BFGS algorithm next, which

closely follows ref. [155].

B.2.1 BFGS algorithm for minimization

To simplify discussion here, I will define xk = (R, η, δ)T (with T indicating the trans-

pose of a vector or matrix)6, where k is current iteration of the algorithm, and so the

energy function is now E∗(xk). Regardless of the algorithm, all optimization schemes

attempt to find xk which minimizes E∗(xk) by taking a series of steps, sk = xk+1−xk.

The difference between algorithms such as CG and BFGS is the choice of direction

and magnitude for sk.

The calculation of the optimal step at each iteration is best understood by Taylor

expanding the energy to second order in sk,

E∗(xk+1) 	 E∗(xk) + s
(i)
k ∇(i)E∗(xk) +

1

2
s
(i)
k H(i,j)(xk)s

(j)
k , (B.20)

where H(i,j) is the Hessian matrix of second order derivatives and summation over

repeated superscript indices is implied.. For xk sufficiently close to the optimal value,

where ∇E∗(xeq) = 0, one can minimize eqn B.20 with respect to the step size to

obtain the optimal step size value,

s
(i)
k = −(H−1)(i,j)∇(j)E∗(xk) (B.21)

In higher order methods (particularly Newton’s method) [155], the Hessian is

computed either analytically or numerically. However, we do not have an analytical

form for the Hessian H in our model, and higher order numerical derivatives become

increasingly expensive and inaccurate to compute numerically. Therefore, we require

a different method of choosing the direction and magnitude of sk. This is where the

BFGS algorithm is useful.

In qualitative terms, the BFGS algorithm uses information at the previous iter-

ation k − 1 to build an increasingly accurate approximation to the Hessian at the

current step, k. At any given step k, define the current approximation to the Hessian

as Q
(i,j)
k . From eqn B.21, an approximation to the optimal step, tk 	 sk, would be

t
(i)
k = −(Q−1)(i,j)∇(j)E∗(xk). (B.22)

6In our calculations, we scale or “precondition” R, η, and delta to ensure that numerical error is
not too large. See Chapter 8 of [155].



133

This step can be further improved by taking adjusting the magnitude of this step with

a scalar, i.e. αktk, where αk is chosen to minimize E∗(xk − αtk)
7. Determining this

value of αk, the variables of the k+1 iteration can be computed as xk+1 = xk+αktk.

To improve the approximation to the Hessian at step k, Q
(i,j)
k , we can take the

derivative of eqn B.20 with respect to xk+1, substituting in the unknown value of

Q
(i,j)
k+1 in for the Hessian matrix. This gives an approximate relationship of the form

∇(i)
k+1E

∗(xk+1)−∇(i)
k E∗(xk) 	 Q

(i,j)
k+1(x

(j)
k+1 − x

(j)
k ). (B.23)

However, this relationship does not uniquely determine Q
(i,j)
k+1, which is n× n in size,

but eqn B.23 only constrains n variables. The matrix is also required to be symmet-

ric (as the true Hessian is symmetric), but this reduction in the number of unique

components (down to n(n + 1)/2 is still not enough for eqn B.23 to yield a unique

solution. The BFGS algorithm introduces an additional constraint that the inverse

of Q
(i,j)
k+1 is “close” to the previous Q

(i,j)
k , i.e.

minQ =

√√√√ n∑
i=1

n∑
j=1

(Q
(i,j)
k+1 −Q

(i,j)
k ). (B.24)

With this final condition, Q
(i,j)
k+1 can be calculated.

Once Q
(i,j)
k+1 has been determined, this whole process can be repeated for k+1, k+

2, ... until some convergence criteria are met. For our purposes we select the norm

|(∇E∗)| < 1× 10−8(1+E∗), a suitable value when considering the error accumulated

in taking numerical derivatives.

7This calculation of αk is known as a line search, and varies mildly between different algorithms.
The details are a bit too messy to get into here, but see ref. [156]


