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Abstract

Network measurement and monitoring are essential for learning the current network

state and act accordingly. Moreover, Software-Defined Networking (SDN) makes the

measurement and monitoring more accessible and flexible. However, existing mea-

surement schemes in SDN suffer from high measurement cost due to a fix sampling

rate while monitoring all the data plane elements. In addition, existing monitoring

schemes are not resilient in the presence of communication link and node failures.

Therefore, in this thesis, we propose a low-cost and resilient flow monitoring frame-

work in SDN.

We first propose a low-cost measurement algorithm, which reduces the measure-

ment cost by aggregating flows at a subset of switches. Next, we define a model to

optimization the measurement cost and accuracy. Furthermore, we observe that link

and node failures can impact measurement accuracy. Thus, we propose a resilient

monitoring framework called ReMon. In particular, we propose three algorithms to

recover from node and link failures, which are implemented in the SDN controller.

Then, we update the measurement scheme after recovering from a failure. The ex-

perimental results show that the proposed solutions outperform their counterparts in

terms of measurement and computation cost, accuracy, recovery time, and memory

usage.
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Chapter 1

Introduction

Network measurement and monitoring are essential for efficient traffic engineering

and Quality of Service (QoS). The purpose of it is to monitor network usage and

performance and check for slow or failing systems. The system then notifies the net-

work administrators of any performance issues or outages. Thus, a resilient, accurate,

and low-cost monitoring framework is essential. This thesis presents the design and

implementation of a flow-based monitoring framework in Software-Defined Network

(SDN).

1.1 Background and Motivation

In traditional network architecture, the control plane (that decides how to handle

network traffic) and the data plane (that forwards traffic according to the rules that

control plane assigned) are equipped inside the network devices (routers and switches),

which is shown in Figure 1.1(a). It makes the network configuration complex as the

network administrators have to manually configure individual network devices using

different specific commands. Furthermore, it reduces flexibility because of such lack

of automatic reconfiguration.

Software-Defined Network (SDN) [11] is a new networking approach that physi-

cally separates the network control plane from the data plane, and a programmable

controller can control several devices, which is shown in Figure 1.1(b). The controller

can use a protocol like OpenFlow [22] to contact the data plane elements. Network

administrators can easily configure switches by running predefined script in the con-

troller, and it will automatically apply to each switch. One of the main advantages of

SDN is its flow-based packet forwarding. The flow is traffic traveling from a source to

a destination, and each flow has a corresponding flow rule, which is installed in a flow

table of a switch. Besides, each flow has its counters. Thus, the network measurement

is more convenient because the network administrators need to get the statistics of

1
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the counters from the monitored data plane switches.

(a) Traditional network architecture (b) SDN architecture

Figure 1.1: The architecture of traditional network and SDN.

Typically, there are two types of network measurement in SDN: active and pas-

sive [33]. The active measurement injects a probe packet in the network. This probe

packet will traverse through a flow and learn the necessary network state of this

flow. On the other hand, the passive measurement directly read the counters based

on a sampling rate. The passive measurement does not insert any probe packets in

the network but requires full access and control on the devices. The active mea-

surement enables demand-based statistics gathering, where the accuracy depends on

the probing frequency. The higher the rate, the better the accuracy at the price of

measurement cost.

A hybrid measurement combines both the active and passive measurements. It

can either send probe packets with a fixed polling frequency or read the counters with

a fixed sampling rate. For instance, in the case of the measurement tool sFlow [8],

a monitoring agent is installed at each switch to send the measured traffic to the

monitoring controller. Thus, the controller or collector can poll statistics at a regular

interval, or an agent can push the statistics after observing a configured number of

flows.

Once we decide on the measurement scheme, we can measure a flow more than

once at multiple switches or once at a single switch. Sampling a single flow multiple

times may consume extra resources of the monitored switches. Furthermore, recent

work states that it is enough to measure a flow once at a single switch to achieve the

required accuracy [28]. However, a single switch can carry more than a single flow, in

such case, it is beneficial to measure the aggregated flows from a subset of switches

instead of monitoring every switch from a monitored network. Thus, it is essential to
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decide on which switches to monitor.

FlowCover [28] proposes a flow statistics aggregation heuristic to minimize the

measurement cost without degrading the measurement accuracy. It assigns a weight

to each switch based on the number of installed flows. Then, FlowCover selects

switches with the highest weight until all the flows are covered. Thus, FlowCover

reduces the measurement cost by reducing the number of monitoring switches. How-

ever, our initial experimental results reveal that the time complexity of FlowCover

is high, which can impact the measurement scalability. We furthermore observe that

the location of the chosen switch along the route of a monitored flow has an impact

on the measured accuracy (e.g., throughput). This critical measurement criterion is

missing in FlowCover. Thus, we need a flow monitoring algorithm that offers high

measurement accuracy while reduces both the measurement cost and computation

time.

The polling or sampling frequency also has an impact on the measurement ac-

curacy. For active measurement, the higher the polling frequency, the better the

accuracy at the price of measurement cost. On the other hand, the higher sampling

rate in the passive measurement consumes more resources of the monitored switches.

Thus, it is important to choose an optimal polling or sampling rate. However, ex-

isting works mostly rely on a fixed rate and impact both the measurement accuracy

and network health. There are a few exceptions, where the authors define an on-

demand polling/sampling rate. For instance, Payless [13] proposes a Markov process

based algorithm uses two consecutive sampling rates to predict the subsequent rate.

Sampling-On-Demand (SOD) [15] designs a model to decide which switches to be

sampled at what rate to maximize the measurement accuracy. However, our initial

experiment shows that while using Payless, the measurement accuracy drops when

utilization changes. On the other hand, the measurement cost of SOD is high as

it does not consider the measurement cost while optimizing the accuracy based on

the chosen sampling rate. Thus, we demand a sampling approach that can dynami-

cally adjust its sampling rate to offer high accuracy and low cost irrespective of the

utilization changes.
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Furthermore, we observe the fact that link and node failures can impact the mea-

surement accuracy while we monitor a subset of switches. In particular, after recov-

ering from a failure, the affected flows change their route; thus, the chosen set of

switches may not be the right set to cover the entire flow set. Therefore, it is not

only essential to recover from failure as soon as possible, but also necessary to update

the set of monitoring switches. However, no measurement and monitoring scheme

addresses this issue.

There are two types of failure recovery approaches: reactive and protective [16]

while using SDN. In a reactive scheme, a switch contacts the controller once detecting

link failure. The controller calculates a new route and installs new flows at the affected

switches. In the protective scheme, backup routes are installed to switches before a

failure occurs. Thus, switches can locally detect a failure and redirect the affected

traffic to the backup route to reduce the failure recovery time because it does not

need to communicate the controller. Fast Failure Group (FFG) [36] is a protective

failure recovery scheme available in the OpenFlow.

However, FFG requires a backup route from the affected switch to a destination.

There are network topologies that do not have such property. Thus, we can use

Crankback approach [35]. In Crankback approach, affected packets backtrack through

the primary route until reach a switch that has a backup path. All the affected packets

follow this packet-by-packet backtracking, which introduces significant delay. Thus,

we need a failure recovery scheme that can quickly recover from a failure in any

network topologies as long as the topology is connected. In addition, we need to

update the set of flow monitoring switches after recovering from the failure.

1.2 Objectives

The primary objectives of this thesis are as follows based on the above research gaps:

• Design and implement a new flow monitoring algorithm to reduce the measure-

ment and computation cost while offering high measurement accuracy. Com-

pare and contrast the proposed algorithm with its counterparts FlowCover and

the baseline approach. In the baseline approach, we need to monitor all the

available switches.
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• Design and implement a model to optimize the polling frequency to achieve high

accuracy while reducing the measurement cost. Then, compare its performance

with existing solutions.

• Design and implement a resilient flow monitoring framework in the presence of

link and node failures. Compare the performance of the proposed framework

with its counterparts.

• Implement proposed algorithms and frameworks in Mininet [4] emulator us-

ing two real topologies. Evaluate the optimization model using IBM CPLEX

optimizer [1].

1.3 Contributions

The primary contributions of this thesis are listed below:

• We propose a new flow monitoring algorithm, called Weighted Assisted Select-

ing (WAS), which reduces 30% measurement cost compared to the baseline

approach. It furthermore reduces more than 90% computation cost compared

to FlowCover and maintains the same level of measurement cost.

• We propose a new optimization model that balances the measurement accuracy

and cost. The model evaluation results show that our approach saves more than

50% cost compared to SOD and maintains the same level of accuracy. Next, we

implement a heuristic in Mininet, and the results show that our approach has

higher accuracy compared to Payless and saves 50% and 45% cost compared to

SOD and Payless, respectively.

• We design two new algorithms: Anchor Assisted Recovery (AAR) and Weight

Assisted Recovery (WAR) to recover from multiple link failures. The experi-

mental results show that AAR and WAR reduce more than 40% and 50% of

recovery time compared to Crankback and restoration approaches, respectively.

Furthermore, WAR and the proposed node failure algorithm Node Recovery

with Destination (NRD)) reduce memory usage at the switches compared to

Crankback. Finally, we update the flow monitoring algorithm, WAS, after re-

covering from failures to retain the measurement accuracy.
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1.4 Thesis Organization

The remaining of the thesis is organized as follows. Chapter 2 first presents the

necessary background to understand the proposed work. Then, we discuss on some

prior work of measurement and failure recovery in SDN. We illustrate WAS and

optimization model in Chapter 3. In the same chapter, we furthermore present the

evaluation results. In Chapter 4, we provide different link and node failure recovery

algorithms and corresponding evaluation results. At last, we give a concluding remark

and the future research plan in Chapter 5.



Chapter 2

Background and Related Work

In this chapter, we present the necessary background to understand the proposed

design and prior work. Section 2.1 provides the background on Software-Defined

Network including architecture and key concepts. Section 2.2 reviews different types

of network measurements. For each type, we briefly present several prior works. In

section 2.4, we first introduce sFlow in details and analyze its drawbacks. After that,

we present several prior works that consider adjusting the polling frequency/sampling

rate. Section 2.5 presents two types of failure recovery schemes in SDN. For each type,

we also present several prior works and analyze their drawbacks.

2.1 Software-Defined Network (SDN)

In a traditional network, it comprises some end-hosts that are connected to each

other through a set of devices. The network devices could be switches, routers, or

firewalls. Mostly, there are several different manufacturers, for example Cisco and

Dell. Each manufacturer has a complex and proprietary operating system. The

variety of such operating systems in network devices adds extra work to configure

devices. Besides, the multi-vendor environments require network administrators with

a high level of expertise. Hence, the network administrators need to have a wide

knowledge of different configuration interfaces, features, and commands on multi-

vendor devices. Furthermore, if we want to apply any change in the network, the

network administrators have to log in to each device and modify the configuration

using different commands. In a large network, this procedure creates a significant

overhead and reduce flexibility [17]. As a result, the new network architecture should

be easy to operate and flexible. Figure 1.1(a) presents an architecture of a traditional

network.

Software-Defined Network (SDN) [11] is a new networking approach that enables

the network to be intelligently and centrally controlled. SDN decouples the control

7
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plane from the data plane. A control plane has a global view of the network and it

controls multiple data-plane elements (router or switch). Besides, the controller in

SDN is programmable. Thus, once we decide the controller, network administrators

only need the knowledge of this controller. The controller will decide the operation

of each traffic and install a rule to data plane elements. The data plane elements

are several network devices. They simply forward the traffic based on the decision of

the controller [19]. In other words, the controller works as a ”brain” of the network.

”Brain” will decide the action and each device just follow the instruction, which is

like a ”muscle memory”. Figure 1.1(b) presents the architecture of SDN.

2.1.1 SDN architecture

Figure 2.1 presents the architecture of SDN in details. Typically, SDN has three lay-

ers: Infrastructure Layer, Control Layer, and Application Layer. Infrastructure Layer

consists of several network devices and end-hosts that are programmable. The middle

layer is where the controller is placed, called Control Layer. The communication be-

tween devices and controller(s) occurs via an open interface named Southbound API.

The top layer consists of several network application, called Application Layer. The

communication between these application and SDN controllers occurs via another

open interface, called Northbound API.

Infrastructure Layer

Infrastructure Layer hosts all network devices. A network device could be a phys-

ical/virtual switch, a router or a firewall. In the Software-Defined Network, such

devices are just simple forwarding device and follow the instructions of the controller.

Each device should support the same Southbound API so that the controller can

simply run one script and apply to each device [22].

Southbound API

Southbound API is one of the most important components in SDN. It establishes a

connection so that the controller(s) and devices can communicate with each other.
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Figure 2.1: SDN architecture.

Typically, a Southbound API is a protocol. One mostly accepted and deployed South-

bound API is OpenFlow [25]. To date, almost all of SDN controllers support Open-

Flow and most of the devices also support OpenFlow. Open Virtual Switch (OVS) [5]

is a widely used virtual switch. Besides, CISCO and Juniper also have their hardware

switches that support OpenFlow.

Control Layer

The control layer is the heart of the SDN environment. It takes responsibility for

configuring and managing the forwarding rules. Typically, the SDN controller can

be grouped into two categories: and a centralized controller and distributed con-

troller. The centralized controller normally has one controller, which takes care of

all switches. The drawback is obvious: a single point of failure, performance, and
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scalability. The distributed controllers have several controllers. Each of them takes

care of a subset of devices. Each distributed controller can also communicate with

each other. If a controller fails, other controllers can take over the switches of that

failed controller. But the problem of distributed controllers is high deployment cost

and complex synchronization [19].

Northbound API

Northbound API is the programming interface that establishes a communication be-

tween Control Layer and Application Layer. Essentially, it is a RESTful API that

runs on the controller and hosts application.

Application Layer

Application Layer consists of several tasks, including measurement and monitoring.

Network administrators also can covey their requirements in this layer. For instance,

network administrators once decide the controller, they can write a script and run

in the controller. When the controller gets the script, it installs the rules to devices

based on the feedback parameters from devices. This is the basic procedure in the

SDN environment.

2.1.2 OpenFlow

In this section, we provide a summary of the OpenFlow protocol and introduce how

an OpenFlow switch works as we use both the OpenFlow protocol and the OpenFlow

protocol enabled switches.

OpenFlow is first proposed in 2008 at Stanford University [22]. To date, Open-

Flow has several versions from 1.0 to 1.5. As a Southbound API, it establishes a

secure channel that enables communication between the SDN controller and Open-

Flow switches. They communicate with several messages. Since we use OpenFlow

1.3 in this thesis, we just consider OpenFlow 1.3. There are three types of OpenFlow

messages:

• Controller-to-Switch: manage or inspect the state of a switch.
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• Asynchronous (Switch-to-Controller): generated by a switch and used to

update the controller about network events.

• Symmetric (both-way): created by a switch or controller and does require a

response. For example, HELLO message.

There are two messages that we used in this thesis: Packet in and Flow removed,

which are asynchronous messages. A Packet in message is triggered when a new

flow enters a switch and there are no flow rules installed. Then, the switch sends a

Packet in message to the controller. The controller then decides the action for this

flow. This is the basic traffic forwarding procedure in SDN. Figure 2.2 shows the

workflow of a Packet in message. A Flow removed message is triggered when a flow

rule is expired. Switch informs the controller that a flow rule is expired along with

its counters. Hence, the controller gets statistics about this flow. Thus, we can use

these two OpenFlow protocols for flow measurement in SDN.

Figure 2.2: The workflow of a Packet in message.

2.1.3 OpenFlow Switch

In the previous section, we illustrated the basic traffic forwarding procedure in SDN.

In this section, we present the procedure follows in a switch.
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Figure 2.3 presents the architecture of OpenFlow switches. Each OpenFlow switch

contains a set of flow tables and each flow table contains a set of flow rules. Each flow

rule entry consists of three components: a match field, an action, and its statistics.

• match field: used to match against packets. This consists of the ingress port,

packet headers and optional metadata specified by programmers. A packet is

matched to a flow rule only if all match elements are matched

• action: represents which action will be executed if a packet is matched, e.g.,

forward packet to port(s), drop the packet, or forward to the controller.

• Statistics: contains a counter that records statistics of this flow, e.g., the

number of packets and the number of bytes traversed.

Figure 2.3: OpenFlow switch architecture.

2.2 Network Measurement Schemes

In this section, we discuss the measurement schemes in SDN. We briefly introduce

two types of measurements and present some prior work related to each type. After

that, we discuss hybrid schemes and also review some existing work.

2.2.1 Active Measurement Schemes

Active measurement monitors a flow by injecting probe packets into the network,

where the measurement accuracy depends on the probing frequency. The higher the

rate, the better the accuracy at the price of measurement cost. The ping application
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is one simple example of an active measurement that uses ICMP packets to measure

the end-to-end connection status and round-trip-time.

SDN-Mon [26] is an active monitoring framework, i.e., inserts probe packets to

the network to monitor a single flow from a switch. It uses a bloom filter to check

whether an incoming probe packet is collected or not. If it is collected, ignore that

packet; otherwise, collect it and add corresponding flow to the filter. Thus, SDN-Mon

needs to check every new flow entry to decide on the monitoring flow. In our WAS,

we first aggregate all flow entries by their source-destination. Thus, we do not need

to filter probe packets as SDN-Mon.

[34] indicates that flow-based measurement consumes too many resources (band-

width, CPU) because of the fine-grained monitoring demands. OpenNetMon (ONM)

[34] proposes an online flow monitoring approach for throughput, packet loss, and

delay using probe packets. Unlike other monitoring work, OpenNetMon needs to poll

each flow entries’ destination switch. There are two reasons: 1) it reduces resource

consumption and 2) polling the destination switch can gain better throughput ac-

curacy (we will illustrate in Chapter 3). However, OpenNetMon still monitors all

flow entries overall source-destination pairs, which may not scale with the increasing

number of flows and switches.

RFlow [18] is another active measurement scheme for WLAN. The authors men-

tion that the per-flow monitoring leads to low accuracy in long-term monitoring and

high overhead in short-term monitoring. Thus, they deploy a set of collectors, called

RFlow local agent, to gather the flow statistics. The local agent can verify long-

term and short-term flow by subtracting the current time from the time the flows

are entered. If the difference is greater than a threshold, it means this flow entry

is short-term monitoring. Thus, RFlow decreases the polling frequency to achieve

lower communication cost. RFlow may balance between the accuracy and overhead

in long-term and short-term measurement, but the solution needs to access every

switch.

2.2.2 Passive Measurement Schemes

The passive measurement does not insert any probe packets in the network, but it re-

quires full access and control on the devices. It just receives measured statistics from
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a set of configured switches. Thus, passive measurement reduces measurement over-

head at the cost of full access requirements on the monitoring switches. One example

is to use OpenFlow message. When a flow is expired, switch sends a flow removed

message to the controller with its statistics.

OpenTM [32] is the first traffic matrix estimation system for OpenFlow networks.

In addition to using flow removed message, OpenTM periodically samples counters

from switches. Hence, the total number of queries is bounded by the number of

active flows in OpenTM. The authors then propose different polling algorithms to

reduce the monitoring overhead. However, OpenTM samples all switches without

considering the cost.

In [41], the authors indicate that there is no measurement work that measures net-

work utilization without sending probe packets. Thus, they propose FlowSense (FS)

with zero measurement cost by using only the OpenFlow messages. In FS, a flow

can be in two states: flow arrival and flow completion. Each state can be indicated

by OpenFlow messages (Packet in and Flow Removed), respectively. FlowSense uses

Packet in to record a flow entry’s start time and Flow Removed to record its fin-

ish time. By subtracting these two, FlowSense can get the lifetime. In addition,

Flow Removed can also bring the statistic of this flow entry. Once a Flow Removed

message received, FlowSense can update current network utilization. The dependency

on the OpenFlow messages can impact the measurement accuracy that we will discuss

in the next section.

Payless [13] is another passive network measurement framework for SDN. The

authors point out the frequency of sampling switches determines the accuracy and

network overhead. They propose an algorithm to adjust the sampling rate that we

will be discussed in Section 2.4. In addition, to support such an algorithm, they also

make a set of RESTful API to transfer the data to the application layer. Payless also

uses standard OpenFlow messages and has the same drawback of depending on these

messages.

2.2.3 Hybrid Measurement Schemes

A hybrid measurement combines active and passive measurements. It can either send

probe packets with a fixed polling frequency or read statistics from counters with a
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fixed sampling rate.

sFlow [8] consists of a sFlow-controller and a set of sFlow-agents to offer both

the active and passive measurements. The sFlow-controller actively polls the selected

set of switches with a fixed polling frequency, whereas sFlow agents passively sample

switches’ counters with a fixed sampled rate. These days most of the switches come

with sFlow support. Thus, in this thesis sFlow is chosen to monitor the switches.

We conduct a simple test to show the performance of sFlow compared to OpenFlow

flow removed message. We use iperf [3] to generate traffic for five source-destination

pairs, each with an initial rate of one Mbps and double it at every ten seconds. Thus,

the total network utilization is five Mbps initially. We also set the flow entry’s hard

timeout to five and fifteen seconds to show the different performance of OpenFlow.

The measurement in the case of OpenFlow depends on it triggers only at flow removed

message received, which impacts the accuracy as we observe in Figure 2.4. OpenFlow

can update the utilization sFlow only when a flow removed message received. On the

other hand, sFlow presents a good accuracy on the entire measurement period, but

accuracy slightly changes at the points of utilization change.

Figure 2.4: The measurement granularity of OpenFlow and sFlow [31].

There are some other works that propose low-cost algorithms to reduce the mon-

itoring cost. Thus, we can use them either with the active/passive measurement. In

this thesis, we group them with hybrid schemes.

FlowCover [28] reduces measurement cost by reducing the number of monitoring

switches. CeMon [29] is a multi-controller version of FlowCover, i.e., the measurement
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task is distributed among a set of controllers. Partial Flow Statistics Collection

(PFSC) [38] also collects flow statistics from a subset of switches such that the flow

recall ratio on every switch reaches a predefined value while minimizing the number

of queried switches. Lonely Flow First (LFF) [40] is another flow-based monitoring

algorithm. The lonely flow is a flow entry which only passes through a single switch

because it has a minimum measurement cost. Same as FlowCover, LFF also monitors

a subset of switches but it considers switches with lonely flows first. We will discuss

these works in details in Section 2.3.

2.2.4 Summary of Measurement Schemes

Table 2.1 presents a summary of previous network measurement solutions in SDN.

It is apparent that there are more passive measurement schemes because of its low

cost. Furthermore, recent works mostly choose hybrid schemes because it can further

reduce the measurement cost. Hybrid measurement might become a trend as long as

we can design a low-cost algorithm. In this thesis, we implement the top two most

cited measurement schemes from each category and compare them with our work.

Table 2.1: The summary of types of network measurement schemes.

Active Passive Hybrid
SDN-Mon [26] ABW [23] sFlow [8]

OpenNetMon [34] OpenTM [32] LFF [40]
RFlow [18] TMFramework [39] FSBA [27]

OpenMeasure [20] CeMon [29]
FlowSense [41] PFSC [38]
eOpenFlow [12] FlowCover [28]

Random Samplig [10]
Payless [13]

Table 2.2 presents the performance of the top two most cited work from each type

of measurement schemes and our work. The measurement cost of active schemes is

significantly higher than the others. The passive schemes reduce the cost but just a

little. On the other hand, the hybrid schemes with low-cost algorithm significantly

reduce the cost, which we will discuss in details in Chapter 3. All three schemes

are mostly accurate with only a little difference. The computation cost is the time

complexity of the algorithm used in each work. FlowCover has a very high time
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complexity that we mentioned above. In terms of memory cost, we measure the

number of flow entries. Since SDN-Mon only monitors the destination switch of

each flow entry, the memory cost is lower than other schemes. We also monitor a

subset of switches as in FlowCover. All existing works measure the delay, throughput

(TP), and network utilization (UTL) while FlowSense measures only the network

utilization. We also consider the resiliency of each work. The resiliency indicates

whether a work can measure in the presence of link and node failures. None of the

prior work considers failure although it can affect the measurement. We will have

further discussion on this issue in Section 2.5.

Table 2.2: The performance comparison of measurement schemes.
Types of

Measurement Active Passive Hybrid

Frameworks SDN-Mon ONM FS OpenTM FlowCover
Our
Work

Measurement
Cost Very High Very High High High Low Low

Accuracy High High High High High High
Computation

Cost O(nm) O(nm) O(nm) O(nm) O(n2m) O(nm)
Memory
Cost < nm nm nm nm < nm < nm

Metrics

Delay
TP
UTL

Delay
TP
UTL UTL

Delay
TP
UTL

Delay
TP
UTL

Delay
TP
UTL

Resiliency No No No No No Yes

2.3 Low-cost Measurement Methodology

In this section, we introduce three low-cost algorithms that are mentioned in Section

2.2.3.

A naive monitoring scheme in an SDN environment is to monitor all available

switches. It measures each flow entry from every switch, which generates a large

number of control packets and increases the overhead with the increasing number

of flows and switches. The number of control packet will reach nm, where n is the

number of switches andm is the number of flow entries at a switch. Thus, aggregation

of flow statistics from a subset of switches can reduce the control overhead without

degrading the measurement accuracy.
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Figure 2.5: An example to illustrate the operations of low-cost algorithms.

FlowCover [28] proposes an algorithm to reduce the measurement cost by moni-

toring a subset of switches. It first assigns a weight to each switch proportional to

the number of flows passing through it. The switches are then monitored according

to their weight until all flow across the network is covered. In Figure 2.5, there are

five flows in this example. The weighted switch to flow list is:{1 : 3, 2 : 1, 3 : 3, 4 :

2, 5 : 3, 6 : 2}. FlowCover first chooses switch 1 because it has the highest weight,

which covers f1, f2, and f4. After that, FlowCover updates the weighted list, the

new is: 2:0,3:1,4:1,5:2,6:2. Thus, it selects switch 5 as the second monitoring switch.

At this time, all flows are covered. Thus, the final set of monitoring switches include

{1, 5}. The time complexity of FlowCover is O(n2m) because FlowCover needs to go

through all flow entries, assigns a weight, and picks the highest weighted switch. The

number of control packets is at most nm as it monitors a subset of switches instead of

all switches. However, the time complexity is of FlowCover is high. In this thesis, we

propose an algorithm, called Weight Assisted Selecting (WAS, whose time complexity

is reduced to O(nm) compared to FlowCover.

Lonely Flow First (LFF) [40] first monitors switches cover the lonely flows. In

Figure 2.5, only switch 2 has a lonely flow. Thus, LFF monitors switch 2 first to
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cover flow f2. After that, it chooses other switches as in FlowCover until all flows are

covered. The weighted list is: {1 : 2, 3 : 2, 4 : 2, 5 : 3, 6 : 2}. Thus, LFF next selects

switch 5 to cover f3, f4, and f5. At this time, only f2 is left, for which LFF can choose

any one of switches. Thus, the final set of monitoring switches includes {2, 5, 1}. The
time complexity of LFF is still O(n2m). Although it chooses some switches first, the

main operation is still the same as in FlowCover. The number of control packets of

LFF is at most nm.

Partial Flow Statistics Collection (PFSC) [38] also collects flow statistics from a

subset of switches. PFSC defines an optimization model that minimizes the number

of monitoring switches such that the flow recall ratio on every switch reaches a pre-

defined value β. The flow recall ratio is the ratio of the number of flows holding by

a monitoring switch to the total number of flows. In Figure 2.5, we have five flows.

Suppose we set β = 0.5, that means each switch must monitor at least 2.5 flows. In

this case, only switch 1, 3 and 5 meet this criterion. Thus, PFSC needs to monitor

these three switches. The time complexity of PFSC is O(nm) because it needs to

go through all flow entries once and selects switches. However, there is an overlap if

monitoring these three switches. Some flows are already covered by other switches.

2.4 Polling Schemes

Once we decide the type of measurements we will use and which switches need to be

monitored, we need to choose the polling frequency/sampling rate. Unfortunately,

none of the above works consider this issue except Payless. They all use a fixed polling

frequency/sampling rate. However, there is a major drawback of a fixed rate. In this

section, we first introduce the drawback of using a fixed rate. Then, we introduce

prior work that adjusts the polling frequency/sampling rate.

The network measurement tool sFlow has some drawbacks. sFlow [8] combines

both active and passive measurements. It sets a polling frequency which decides the

frequency for sending a probe packet and a sampling rate which decides the rate for

picking a packet out of some packets. However, sFlow provides a static measurement,

which can cause inaccuracy and extra overhead because we need a lower frequency

for high volume flows and higher frequency for low volume flows [24].

Payless [13] defines on-demand polling frequency using Markov-process based
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model. Once Payless receives statistics by Flow Removed message, it calculates the

difference between the current and previous counters. If the difference of byte count is

above a threshold, it means there is high volume traffic in the network. Payless then

decreases the sampling rate. The reason to decrease the rate, rather than increasing,

is the cost. A high rate can get slightly better accuracy than the low rate at the price

of high measurement cost [8].

OpenSample [30] leverages sFlow packet sampling to provide near-real-time mea-

surements. It first determines the probability of each flow entry. The probability is

based on the flow size (packets). The larger the size, the higher the probability. The

probability then decides the polling frequency for this flow. Thus, the high volume

flow will get a higher polling frequency, which is a conflict with Payless. The authors

indicate that the accuracy is low if we use low polling frequency for the high volume

of traffic. However, there are some works support Payless and the other supports

OpenSample. In this thesis, we follow Payless because one of our goals is reducing

the measurement cost.

Volley [24] is a violation likelihood-based approach for state monitoring in data

centers. The goal of Volley is to detect a state violation (e.g., DDoS attacks). How-

ever, a fixed polling frequency can mis-detect violations because violations may occur

between two polling operations. Thus, Volley dynamically adjusts polling frequency

based on how likely a state violation will be detected: the higher the polling frequency,

the higher the chance of occurring a state violation. Volley provides an algorithm to

estimate the state violation. The state violation is estimated by two factors: the cur-

rent sampled value and the changes between the two samples. When current samples

value is low, a violation is less likely to occur. When the change between two sample

values is large, a violation is more likely to occur.

Sampling-On-Demand (SOD) [15] is a new framework that provides adjusting

sampling rate on-demand. SOD installs a sampling management module at each

switch. This module allows the controller to determine sampling allocation. A sam-

pling allocation is a mapping that indicates which flow should be sampled by which

switch and at what rate. SOD designs an optimization model to indicate sampling al-

location. The model maximizes the utility gained by deploying a sampling allocation

such that all flow entries are covered and each switch does not exceed its capacity.
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However, SOD does not consider measurement cost. In our model, we consider cost

and the results show that our work can reduce 50% measurement cost compared to

SOD.

Table 2.3 summarize previous polling schemes. Payless and Volley use Markov

process, where they only consider the mean of two previous consecutive observations.

OpenSample considers the volume of flows while both SOD and our work consider

several attributes, including traffic volume, source-destination pairs and the capacity

of switches. In addition, all work consider either the accuracy or the cost. In this

thesis, we consider balancing both the cost and accuracy.

Table 2.3: The summary of the polling schemes
Polling
Schemes

Parameter
Considered

Adjust
Polling Freq Goal

Methodology
Used

Payless
Changes between

two samples Yes Cost Markov Process

OpenSample Packet size Yes Accuracy Not Used

Volley
Changes between

two samples Yes Accuracy Markov Process

SOD Attributes Yes Accuracy MC-GAP

Our Work Attributes Yes Accuracy and Cost MC-GAP

2.5 Failure Recovery Schemes

As mentioned before, the resiliency is another important factor during monitoring.

We conduct a simple test to show how failure can impact measurement accuracy. We

use iperf to generate traffic for five source-destination pairs, each with a rate of one

Mbps. We compare the measurement accuracy of our proposed monitoring scheme,

WAS, with and without link failures, with and without failure recovery algorithm,

which is shown in Figure 2.6. The results indicate that with a small number of link

failures, we can have a reasonable accuracy as it may impact a small amount of traffic.

However, the accuracy degrades with the increasing number of link failures. On the

other hand, if we apply some failure recovery algorithms, we can hold a good accuracy

even with several links failure. The accuracy only degrades with a lot of links failure.

Thus, a proper failure recovery algorithm is essential during monitoring as it helps to

increase accuracy.
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Figure 2.6: The link failure impact on the measurement accuracy.

Typically, there are two types of failure recovery schemes: reactive and protective.

In reactive schemes, a switch contacts controller to get a new flow entry after detecting

link failure. Thus, this on-demand recovery approach efficiently utilizes the memory of

a switch at the cost of extra communication delay to the recovery time. On the other

hand, protective scheme inserts flow entries for the available route before the actual

failure occurs. Thus, a switch can locally recover from a failure without contacting

the controller, which reduces the recovery time at the price of extra memory usage.

In SDN architecture, the OpenFlow protocol supports Fast-Failover Group (FFG)

[25] to implement the failure recovery at the data plane. FFG is a widely used

protective approach in SDN. Figure 2.7 presents the workflow of FFG. A switch

maintains a Fast Failover Group table with several action buckets. Each bucket is

associated with a port, and only a single bucket is executed at a time. The incoming

packet will be sent out from a port if this port is alive. In the case of a link failure, the

next active port and bucket are chosen to redirect the affected traffic. Nonetheless,

if there is no such backup route, the alternative redirecting approach is essential.

For example, in Figure 2.8 there are two routes from Source to Destination. The

green primary route (Source-A-B-Destination) and the red backup route (Source −
C − D − E − Destination). Thus, a FFG table installed at switch Source has two

action buckets. The first one watches link one and the second one watches link four.

Once link one between Source and A fails, it forwards the packet to link four. Thus,

the new route is Source− C −D −E −Destination. Suppose if link seven between
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Figure 2.7: The workflow of Fast Failover Group.

switch E and Destination fails, there is no backup route available to redirect the

traffic locally. In this case, Crankback is proposed.

Figure 2.8: An example topology [31].

Crankback [35] is another link failure recovery approach that supports topologies

without backup routes between every pair of switches. Crankback is another pro-

tective approach and can be thought as an extension of FFG. The affected packet

traverses backward until finds a switch having a backup route towards the destina-

tion. The packet carries a unique tag to inform switches about the failure. All the

subsequent packet for the same source-destination pair follows the alternative route.

In the previous example, once link seven fails, the packet is sent backward towards

the Source. Once the packet reaches switch C, the packet is forwarded to link eight
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because C has a backup route. The new route is Source−C−D−E−D−C−B−
Destination. Clearly, Crankback introduces extra delay and communication cost due

to packet-by-packet backtracking. Furthermore, the source still keeps sending packets

over the failed routes that backtrack to find an alternative path.

Neither FFG or Crankback can support multiple link failures as the former needs

an available backup route and the latter supports only a limited number of routes

(primary, backup, and Crankback routes). Thus, if a node experiences more than

two link failure, it needs an alternative solution. Finally, in the case of a single-node

failure, it is easy to update flow rules on the destination switches connected by the

links originating from that failed node. For instance, in the example topology from

Figure 2.8, if node B fails, A and C can use Crankback and FFG, respectively. It is

also possible to deploy a controller assisted reactive recovery scheme to improve the

recovery time in the case of Crankbacking.



Chapter 3

Measurement and Polling Schemes

In this chapter, we present a low-cost measurement algorithm and adjusting polling

frequency/sampling rate scheme. Section 3.1 introduces the low-cost measurement

algorithm: Weight Assisted Selecting (WAS). Section 3.2 presents the optimization

model for the polling frequency/sampling rate. Section 3.3 explains the experimental

setup. In section 3.4, we present and discuss the evaluation results.

3.1 Weight Assisted Selecting (WAS)

In this section, we present the low-cost measurement algorithm, called Weight As-

sisted Selecting (WAS). Suppose we have a network as a graph G = (V,E), where

E indicates the set of links and V = {v1, v2, ..., vn} is the set of switches. Hence,

n = |V | is the total number of switches and each switch carries m flows in average.

We set a dictionary S which contains the shortest path for each source-destination

pair. This process can be configured during the initial network setup. At the same

time controller can maintain this route information. The WAS algorithm is presented

in Algorithm 1.

In WAS, we first aggregate all flow entries based on their source-destination and

record corresponding weight. The weight based on the number of flow entries shared

by the same source-destination pair. After that, we sort all aggregated flow entries

according to their weight. We start with the flows with the highest weight. Usually,

it is enough to monitor a single switch along the path of a flow. Thus, it is possible to

consider only the destination to check all flows that share the same source-destination

pair. Then, we move to the next flow entry to pick a monitoring switch. We continue

until all flows are covered. If the corresponding monitoring switch is already chosen,

we move forward to the next group of flows.

For example, in Figure 2.5, there are five flows. In FlowCover, the final set of

monitoring switches includes {1, 5}. However, WAS does not assign any weight to

25
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Algorithm 1 Weight Assisted Selecting (WAS)

Input:

Aggregated Flows: S = {(src, dst) : (src, ..., dst), ...}
Output:

Monitored Switches: P

1: P = []

2: for each (pair, path) ∈ S do

3: (src, dst) = pair

4: if path ∩ P = null then

5: P .append(dst)

6: end if

7: end for

switches. WAS first aggregate all flow entries. Since there are no flows share same

source-destination pair, we just skip this step. Next, WAS picks the destination switch

if a newly installed flow is not monitored by any other switches and not aggregated.

Thus, WAS first picks 3 for the flow f1, which also covers the flow f2 and f3. Then, it

selects 6 for the next monitoring switch, which furthermore covers the last two flows.

The set of monitored switches for WAS is {3, 6}.
The main difference between WAS and FlowCover is that WAS considers the

number of flow entries with same source-destination pair as a weight of a flow; whereas

FlowCover considers the number of flow entries installed in a switch as a weight of a

switch. Thus, the computation complexity of WAS is O(nm) because we only need

to go through all flow entries once and the complexity of FlowCover is O(n2m).

3.2 Adjusting Polling Frequency/Sampling Rate (APS)

In this section, we present our optimization model for adjusting the polling fre-

quency/sampling rate. The goal of the model is to balance between the measurement

accuracy and cost based on the associated weight. Our model has two versions: offline

and online, which are presented in section 3.2.1 and section 3.2.2, respectively.
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3.2.1 Offline APS

In the offline version, we assume all the flows have already entered the network. Since

we already have a subset of monitoring switches from WAS, we can use those switches

to get the list of available flows. Let S be the set of monitoring switches determined

by WAS. For each switch s ∈ S, Cs is the sampling capacity of s in packets per

second (pps) and R is a set of possible sampling rates supported by the switches.

Also, let F be the set of flows be monitored. For each flow f ∈ F , df is the current

packet rate in pps and rf is the recommended sampling rate for a flow with rate df .

Furthermore, Pf is the path of flow f ∈ F . We define an accuracy function Asfr,

which indicates the accuracy for the flow f at switch s using rate r ∈ R. We also define

a resource consumption function RCsfr, which indicates the resource consumption of

the sampling flow f with rate r at switch s. Table 3.1 summarizes the symbols that

we use in offline APS.

The model for the offline APS is presented below.

maximize:

|S|∑

s=1

|F |∑

f=1

∑

r∈R
Asfrxsfr −

|S|∑

s=1

|F |∑

f=1

∑

r∈R
RCsfrxsfr (3.1)

subject to

|F |∑

f=1

∑

r∈R
dfr ≤ Cs, for each s ∈ S (3.2)

|S|∑

s=1

∑

r∈R
xsfr ≥ 1, for each f ∈ F (3.3)

s ∈ Pf , for each f ∈ F, s ∈ S (3.4)

r ≥ rf , for each f ∈ F (3.5)
∑

r∈R
xsfr = 1, for each f ∈ F, s ∈ S (3.6)

In the above formulation, Asfr, RCsfr, and xsfr are the accuracy function, the

resource consumption function, and the decision variable, respectively. xsfr = 1 if

switch s is chosen to sample flow f with the rate r. The objective function is to find a

feasible sampling rate r for each switch s that maximizes the total network accuracy

and minimizes the cost, which is not considered in [15].

Equation (3.2) ensures that the total sampling rate required from each switch

s ∈ S does not exceed its maximum sampling capability Cs. Equation (3.3) says that
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Table 3.1: List of symbols used in offline APS.

Symbol Definition

S Set of Monitoring Switches Determined by WAS

Cs The Sampling Capacity of Switch s in Packets Per Second (pps)

R Set of Possible Sampling Rates Supported by Switches

F Set of Flows be Monitored

df Current Packet Rate in pps for Flow f

rf Recommended Sampling Rate for rate df
Pf Path of Flow f

Asfr Accuracy for Monitoring Flow f at switch s using rate r

RCsfr Resource Consumption for Monitoring Flow f at switch s using rate r

xsfr Decision Variable

each flow f should be sampled by at least one switch. Equation (3.4) ensures switch

s should traverse in the corresponding flow and in the set of monitoring switches.

Equation (3.5) says that the sampling rate r should at least exceed recommended

sampling rate rf for current packets per second df for each flow f . Equation (3.6)

ensures that each switch can only choose exactly one sampling rate.

Definition 3.2.1. Multiple Configurations Generalized Assignment Problem (MC-

GAP) model

MC-GAP [14] is an extension of Generalized Assignment Problem (GAP). GAP

is a well-known Knapsack problem. The input of GAP is a set B of knapsacks and a

set I of items. Each knapsack has a size, and each item has a size and a utility. The

objective of GAP is to find a way to assign all items to a feasible knapsack, such that

the utility is maximum.

MC-GAP extends GAP by associating multiple configurations with each item.

The input of MC-GAP is a set B of knapsacks, a set I of items and a set C of

configurations. Each knapsack also has a size, and size for each item in each knapsack

using each configuration. The objective is to find a way to assign all times with a

configuration to a feasible knapsack, such that the utility is maximum. In [14], MC-

GAP is already proved as an NP-hard problem. The authors design a heuristic

algorithm to solve it.

Theorem 3.2.1. The offline adjusting polling frequency/sampling rate model is an

NP-hard problem.
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Proof. We can prove the NP-hardness by showing offline APS model is a MC-GAP

problem [14]. We can represent each switch as an MC-GAP knapsack whose size is

equal to the sampling capacity. Each flow can be represented by a MC-GAP item,

and each sampling rate as a MC-GAP configuration. The accuracy of sampling a flow

at a switch using a sampling rate can be represented by the value in the MC-GAP

utility of assigning an item to a knapsack with a configuration.

Since offline model is NP-hard, we propose a heuristic algorithm to solve it effi-

ciently based on the heuristic in [14]. The greedy algorithm is shown in Algorithm

2.

Algorithm 2 Greedy Select Polling Frequency
Input:

Monitoring Switches: S

Flows: F

Supported Sampling Rate: R

1: C ← []

2: while C �= F do

3: Find a switch s ∈ S such that a
∑|F |

f=1 Af(s,r) − b
∑|F |

f=1 RCsfr is maximum

4: Record r as sampling rate for switch s

5: C ← C ∪ f

6: end while

We assign a score to each switch, which equals to a
∑|F |

f=1 Asfr−b
∑|F |

f=1 RCsfr. The

first sum is total accuracy obtained by a switch and the second sum is a total resource

consumption. We maintain two ratios a and b for two sums, where a+ b = 1. These

two ratios are used to balance accuracy and cost. We consider accuracy and cost

are the same important if both are equal to 0.5. We can easily focus on one feature

by increasing its corresponding weight. We greedily choose a switch with maximum

score and record the flows that are sampled in this switch. We continue the process

until all flows are covered. The main loop iterates for O(n), where n = |F |. The

maximum accuracy switch s can be found in O(logm) time by a priority queue where

m = |S|. Thus, the time complexity of algorithm 2 is O(n logm).
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3.2.2 Online APS

In the online version, flows are added one at a time into the network. This flow could

be a newly installed flow or a modified flow because of a failure. When a new flow

is added, the controller needs to decide whether to sample it, at which switch, and

whether to change the sampling rate. Let f ′ be the newly added flow, df ′ be the

current packet rate (packets per second), Pf ′ be the path of the new flow, and rf ′ be

the recommended sampling rate for sampling a flow with d′f . The accuracy function

Asf ′r indicates the accuracy for sampling new flow f ′ at switch s using rate r ∈ R

and a resource consumption function RCsf ′r indicates the resource consumption for

sampling flow f with rate r. Table 3.2 summarizes the symbols that we use in online

APS.

Table 3.2: List of symbols used in offline APS.

Symbol Definition

f ′ Newly Added Flow

d′f Current Packet Rate in pps for New Flow f ′

r′f Recommended Sampling Rate for rate d′f
P ′
f Path of New Flow f ′

Asf ′r Accuracy for Monitoring New Flow f ′ at switch s using rate r

RCsf ′r Resource Consumption for Monitoring New Flow f ′ at switch s using rate r

xsf ′r Decision Variable

The online APS model can be formulated as:

maximize:

|S|∑

s=1

∑

r∈R
Asf ′rxsf ′r −

|S|∑

s=1

∑

r∈R
RCsf ′rxsf ′r (3.7)

subject to

|F+1|∑

f=1

∑

r∈R
dfr ≤ Cs, for each s ∈ S (3.8)

|S|∑

s=1

∑

r∈R
xsf ′r ≥ 1 (3.9)

s ∈ Pf ′ , for each s ∈ S (3.10)

r ≥ rf ′ (3.11)
∑

r∈R
xsfr = 1, for each f ∈ F ∪ f ′, s ∈ S (3.12)

This formulation is similar to the offline version. We consider new incoming flows
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instead of all flows in the offline version. The goal is to maximize the accuracy of

sampling new flow f ′ and minimize resource consumption. Equation (3.8) guarantees

that the total sampling rate required from each switch s ∈ S does not exceed its

maximum sampling capability Cs. Equation (3.9) ensures that new flow f ′ should be

sampled by at least one switch. Equation (3.10) says that switch s should traverse

in the path of new flow and in the set of monitoring switches. And Equation (3.11)

ensures that the sampling rate r should at least exceed recommended sampling rate

r′f for current packets per second d′f for new flow f ′. Equation (3.12) says that each

switch can only choose one sampling rate at the end.

The online version can also be used when there is link failure. Since we recover

from failure using some algorithms that we will talk about it later, we may add/modify

some flows and adjust monitoring switches. Thus, we can apply this formulation

in the presence of link failure. This online formulation is also NP-hard. In the

heuristic, we choose a switch that can monitor the new flow with maximum score.

The time complexity of the online version is O(logm) because we just find a switch

with maximum accuracy.

3.3 Evaluation Setup

In this section, we illustrate the evaluation setup that we use to evaluate WAS and

APS. We first evaluate the performance of WAS and compare the outcome with other

prior work in two real topologies. Next, we compare the performance of APS with

Sampling-On-Demand (SOD) and Payless.

To measure the performance of WAS, we implement it in two real topologies:

USNET [9] and Darkstrand [2]. The USNET topology consists of 24 switches and

42 links as shown in Figure 3.1(a) [9]. The second topology (Darkstrand) is shown

in Figure 3.1(b) [2], which consists of 28 switches and 31 links. We assume each

switch connected with a host and each host can be a source or destination. Thus,

USNET and Darkstrand can have at least 276 and 325 possible flows. USNET offers

at least two flows between any source-destination pairs. However, it is not the case

in Darkstrand. Thus, we can evaluate the performance of WAS in topologies with

different properties.

We evaluate our framework and all algorithms in Mininet 2.2.2 emulator in an
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(a) USNET

(b) Darkstrand

Figure 3.1: The USNET and Darkstrand topologies.

Oracle VirtualBox (VM) with an Intel Core i5 2.90 GHz (4 cores) CPU processor and

4GB RAM. The server runs in Ubuntu (64-bit) operating system. We choose Ryu [7]

4.30 controller as our single centralized controller in this thesis. And we can also

choose several distributed controllers like ONOS in our future work. We use Open

vSwitch [5] 2.11.90 as virtual switches. The data and control planes use OpenFlow

1.3 protocol to communicate.

We first evaluate the performance of WAS and compared with FlowCover in terms

of monitoring accuracy. For the sake of completeness, we also consider the baseline

approach, which monitoring all switches. In USNET topology, We randomly choose

five source-destination pairs. Here, we choose a source from the source set (green

nodes in Figure 3.1(a)) and a destination from the destination set (red nodes). We
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generate UDP traffic at a rate of 1 Mbps at the source node. We double this rate

at every ten seconds and monitor the link utilization using sFlow. We will test the

performance of TCP traffic in our future work. We set the sFlow sampling rate at

switches as one every 200 packets and the witch polling interval at the controller as 20

seconds. Then, we evaluate the measurement cost in terms of number of monitoring

switches. we assume the cost of monitoring a switch is constant. Thus, the number of

monitoring switches can represents measurement cost. We also consider the USNET

topology in the case of computation cost and accuracy. We measure the computation

time as the computation cost and total packets received as accuracy. For each result,

we calculate both the average and standard deviation. However, it is very small in

some results and does not included in some figures.

To test the performance of APS model, we use iperf traffic received by sFlow. We

compare the performance of APS with SOD and baseline approach in terms of the

accuracy and resource consumption using IBM CPLEX optimizer [1]. The baseline

approach is a static polling frequency set as default. We also try different a/b ratios to

shows the balance between accuracy and cost. In addition, to show the performance

of APS in the real Mininet environment, we implement our heuristic algorithm and

compare the accuracy and resource consumption with Payless and SOD.

3.4 Discussion on the Evaluation Results

3.4.1 Performance of WAS

Figure 3.2 shows the accuracy of sFlow over time in USNET topology. The result

shows that sFlow can measure link utilization accurately. However, sFlow also collects

some additional control packets including ARP and LLDP packets. That is the reason

why utilization monitored by sFlow is a little bit higher than real traffic. In addition,

we observe slight discrepancy of sFlow when utilization changes [31].

Next, we present the performance of WAS. In Figure 3.3, we present the mea-

surement cost of WAS in terms of the number of monitoring switches in USNET and

Darkstrand. WAS just needs to monitor one additional switch compared to Flow-

Cover in both topologies, where both approaches reduce around 30% measurement

cost compared to the baseline approach [31].
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Figure 3.2: The measurement accuracy of sFlow.

Figure 3.3: The measurement cost of different schemes.

However, the computation cost of FlowCover is significantly higher than that of

WAS, which is shown in Figure 3.4. FlowCover spends over 25 ms in both topologies

while WAS only takes 1 to 2 ms. However, 25 ms computation time is still acceptable.

Thus, we evaluated the computation time in a larger topology called, DFN, with 58

switches and 87 links. This time, WAS takes 37 ms while FlowCover takes over 1100

ms. Thus, WAS reduces the similar amount of measurement cost with significantly

less computation cost compared to FlowCover. In one word, WAS can reduce similar

amount of measurement cost and significant lower computation cost compared to

FlowCover [31].

Since FlowCover chooses a subset of monitoring switches based on the weight
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Figure 3.4: The average computation cost of WAS and FlowCover.

of a switch, that could impact the measurement accuracy. For example, suppose a

source sends 100 packets to a destination and 98 of them reach the destination. If

we monitor this flow at its source, the measured throughput is 100%. However, the

actual throughput is estimation
actual

= 98
100

= 98%. However, WAS measures the monitored

flows mostly in the destination across the chosen subset of switches, which enables

better throughput measurement compared to FlowCover.

Figure 3.5: The accuracy of WAS and FlowCover.

Thus, we conduct a simple test in USNET topology with ten source-destination

pairs. We set that each link has a 1% chance to lose packets. We increase the number

of flows and record the total successfully received packets and compare them to the

actual number of packets. Figure 3.5 shows that FlowCover measures extra packets
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compared to WAS that will impact the measured accuracy. Note that such a gap

between the actual and the measured number of packets increases with the increasing

number of flows in FlowCover. On the other hand, WAS is much closer to actual

traffic while measuring all flows at the destination.

3.4.2 Performance of APS

Figure 3.6: The accuracy score in USNET and Darkstrand.

Figure 3.7: The total cost score in USNET and Darkstrand.

In this section, we first present the APS model evaluation results. Figure 3.6

presents the total accuracy score in USNET and Darkstrand. We set four different

a/b ratios: 0.5/0.5 (considering accuracy and cost at the same level), 0.8/0.2 (more

weight to the accuracy), 0.2/0.8(more weight to the cost), and Sampling-On-Demand

(SOD) (only accuracy). The total accuracy score is the sum of accuracy that is
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obtained by sampling one flow at a switch. The result shows that the accuracy

scores are similar for all methods. Sampling-On-Demand(SOD) has a little bit higher

accuracy than others. However, the cost of SOD is very high, which is shown in

Figure 3.7. The ratio 0.2/0.8 has a very low cost and obtain similar accuracy score

compared to SOD. Besides, we test the ratio 0/1.0, but it is not accurate at all.

Figure 3.8: The real-time accuracy in USNET and Darkstrand.

At last, we implement the proposed heuristic in Mininet and compare with SOD

and Payless in terms of accuracy and cost. We dynamically add/remove flows with

an initial rate of 1 Mbps. Figure 3.8 presents the real-time utilization measured by

three methods. The baseline is the actual traffic that we generate. All three methods

show good accuracy most of the time. However, Payless is not accurate when a flow

is added or removed. APS with ratio 0.2/0.8 is better and SOD is the best.

Figure 3.9: The real-time cost score in USNET and Darkstrand.
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On the other hand, Figure 3.9 shows the real-time cost score. The baseline ap-

proach is sampling all monitoring switches with fix sampling rate. The cost of Pay-

less is a little bit lower than SOD while APS with ratio 0.2/0.8 provides a very low

cost. Both model evaluation and heuristic implementation results show that our APS

can reduce roughly 40% measurement cost compared to Sampling-On-Demand and

maintain similar accuracy. Thus, our solution provides a low-cost and high-accuracy

dynamically adjusting sampling rate solution.



Chapter 4

A Resilient Flow Monitoring Framework

In this chapter, we present a resilient monitoring framework, called ReMon [31], that

can successfully monitor traffic in the presence of link and node failure. Section

4.1 describes the architecture of ReMon. Section 4.2 presents our algorithms for

recovering from link failure. Section 4.3 presents an algorithm to recover from node

failure. In Section 4.4, we present the algorithm that updates WAS monitoring list

because failure may change the list. Section 4.5 explains the experimental setup. In

section 4.6, we present and discuss the evaluation results.

4.1 ReMon Architecture

In this section, we first provide an architectural overview of ReMon, which is presented

in Figure 4.1. The software enabled switches are configured to initiate OpenFlow

Packet in and Flow Removed messages. In the control plane of ReMon, we have a

statistics gathering module (central sFlow collector) to collect these probe packets to

learn the current network state. We use Weight Assisted Selecting (WAS) algorithm

to determine a set of switches to be polled and sampled. Then, we deploy sFlow agents

to query those chosen switches. Note that sFlow has two components; namely, sFlow-

controller and sFlow-agent. The former one is deployed in the ReMon controller, and

the latter one is in the switches. Once central sFlow collector receives statistics, it

immediately reports to the sFlow controller. We use sFlow-RT as our sFlow controller.

The sFlow controller then reports network status to the SDN controller or application

layer through RESTful API so that the network administrators can view it.

4.2 Link Failure Recovery Algorithms

In this section, we present two algorithms Anchor Assisted Recovery (AAR) and

Weight Assisted Recovery (WAR). These two algorithms can be used to recover from

39
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Figure 4.1: ReMon architecture.



41

a link failure if a switch does not have an alternative path towards a destination i.e.,

FFG does not work. These algorithms are hybrid as they combine both reactive and

proactive recovery schemes. A switch reports a link failure to the controller after

detecting it and the controller then proactively updates all routes affected by the

failed link.

4.2.1 Anchor Assisted Recovery (AAR)

In AAR (Algorithm 3), an anchor node is a switch that has more than two neigh-

bors. A switch with more neighbors more likely have alternative routes towards the

destination. A switch will inform the controller if it cannot recover from a failure

using FFG upon detecting a link failure. After that, the controller will recompute

alternative routes only at anchor nodes and install corresponding flow entries. The

anchor nodes can be configured during the network setup phase. At the same time

controller can maintain a list of anchor nodes for each flow.

Algorithm 3 Anchor Assisted Recovery (AAR)

Input:

Failure path: P = (src, ..., s1, s2, ..., dst)

Anchor list of (src, dst): anchor list

Output:

Alternative path: P

Affected switch: switch

1: for each switch ∈ P [src : s1] do

2: if switch ∈ anchor list then

3: if There is a new path pathnew to dst then

4: pathold ← P [src : switch]

5: P ← pathold + pathnew

6: return P, switch

7: end if

8: end if

9: end for

For example, in Figure 2.8, the anchor node is C along the route Source−C−D−



42

E −Destination. Suppose link seven between E and Destination fails, the affected

packets will take an alternative route from the anchor node C. Thus, the new route

will be Source − C − B −Destination instead of Source − C −D − E −D − C −
B − Destination in the case of Crankback. Thus, in contrast to Crankback, using

AAR a controller can insert new flow entries right after receiving a link failure event

instead of waiting for the affected packets to be backtracked to an anchor node. The

packets between the anchor and failed link still can use Crankback.

The computation complexity of AAR is O(n) for one route. Since a link failure

may cause more than one path failure, the total complexity is O(n3) because in the

worst case, there can be O(n2) source-destination pairs. The computation complexity

of AAR and Crankback are same, except that the former one reduces the recovery

time by exploiting the global network view and reactive alternative path computation.

4.2.2 Weight Assisted Recovery (WAR)

In WAR (Algorithm 4), we assign a weight to a switch based on its number of neigh-

bors. Similar to AAR, the controller will recompute the alternative routes only at

nodes with the highest weight. The controller can also assign weight during the net-

work setup phase. Thus, after detecting a link failure, the controller can choose a

set of switches with the highest weight to redirect the affected traffic through these

chosen switches.

For example, in Figure 2.8, switch C and B have weight three, whereas others

have weight two. Thus, in the case of a link failure, say link seven again, the affected

packet will take the alternative route from C. Thus, AAR and WAR differ in terms

of their switch selection approach. The computation complexity of WAR is same

as AAR. In AAR and WAR, the idea is to take the help of the controller to find

alternative routes for all possible flows affected by a single link failure instead of just

relying on FFG or Crankback.

4.3 Node Failure Recovery

In this section, we present an algorithm (Algorithm 5) Node Recovery with Destination

(NRD), which recovers from node failure. Instead of checking all flow entries and

updating all affected switches’ flow table, NRD checks only a subset of flow entries.
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Algorithm 4 Weight Assisted Recovery (WAR)

Input:

Failure path: P = (src, ..., s1, s2, ..., dst)

Weight list: Weight = (w1, w2, ..., wn)

Output:

Alternative path: P

Affected switch:switch

1: Update Weight

2: Label all switch ∈ P as unchecked

3: while ∃ unchecked switch ∈ P [src : s1] do

4: find a switch such that Weight[switch] is maximum and unchecked

5: if There is a new path pathnew to dst then

6: pathold ← P [src : switch]

7: P ← pathold + pathnew

8: return P, switch

9: end if

10: Label switch as checked

11: end while

When there is a node failure, NRD first goes through dictionary P and gets all affected

flow entries where the failed node is the source or destination. For each affected

path, we consider its destination instead of both source and destination. After that

we compute the new path using AAR or WAR. For this new path, we update a

flow entry at a switch one-hop away from the failed node instead of updating at all

previous switches.

In topology (shown in Figure 4.2), suppose switch B fails. All affected paths are:

f1 : Source−Destination, f2 : A−Destination, f3 : C−Destination, f4 : A−E and

their reverse path. After failure recovery, the new flow entries are shown in Figure

4.3. Under the naive method, we have to add one flow entry at switch Source, C,D,

and E for Source − Destination pair. And for route A − Destination, we also

need to insert new flow entry at switch A, Source, C,D,E. With the same idea, pair

C−Destination has to update flow entries at three switches and A−E has to update

four switches. We also need to consider the reverse route, so the updating flow entries
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Algorithm 5 Node Recovery with Destination (NRD)

Input:

Failure node: Node

Affected path: Path = (src, ..., Node, ..., dst)

1: Checking list: Checking ← []

2: Remove corresponding flow entries at sw ∈ Path

3: if Node ∈ path then

4: if Node �= src/dst then

5: swprev = Path[index(Node)− 1]

6: pathnew = AAR/WAR((swprev, dst))

7: while sw ∈ pathnew do (src, dst)

8: if (sw, dst) ∈ Checking then

9: Update flow entry at sw ∈ pathnew

10: Checking.append((sw, dst))

11: end if

12: end while

13: end if

14: end if

should be doubled. As a result, the total cost is 32 added flow entries.

However, in NRD we only consider the destination. For pair Source−Destination,

we have to add one flow entry at switch Source, C,D and E which is same as above.

But for pair A − Destination, we only need to add one new flow entry at switch

A because Source, C,D, and E already have a flow entry to Destination, which

was installed when updating pair Source − Destination. With the same idea, pair

C −Destination does not need to add any flow entries and A− E need to add four

flow entries. So the total cost is 18 adding flow entries. Such saving will increase

when the size of the network increases because we will have more source-destination

pairs.
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Figure 4.2: The node failure recovery example.

4.4 Updating WAS after link failure

The monitoring list needs to be updated after recovering from a link failure because

we install new flow entries using AAR/WAR/NRD. In this section, we present an

algorithm (Algorithm 6) to update WAS that dynamically update monitoring list

rather than rerunning the WAS algorithm.

When we install a new flow entry upon detecting a link failure, this flow entry

may need a new switch to monitor. Some switches, on the other hand, may no longer

need to be monitored because of removing the failed flow entries. As a consequence,

a link failure impacts the monitoring lists of WAS. Thus, we define Algorithm 6 to

update WAS after installing flow entries.

Let us consider Figure 4.2. Suppose link 2 between A and B fails, which will

impact all flow entries. We first compute new routes for the affected flows using AAR

or WAR. The new routes are shown in Figure 4.3, except f3. f3 still use original route.

Thus, we need to update the list of switches to be monitored. Suppose, the monitoring

switches are {Destination,B,D}. Note that f1, f2, and f3 are covered by the switch

Destination, f4 is covered by the switch D. Therefore, the current monitoring list

remains unchanged. However, we furthermore need to check the endpoints of the

failed link. If an endpoint is in the current monitoring list, we need to check whether
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Figure 4.3: The node failure recovery example after recovery.

we need to update it. For instance, B is in the list, which only monitor f3. However,

f3 also be monitored by Destination. Thus, B can be removed from the existing

monitoring list.

4.5 Evaluation Setup

In this section, we illustrate the evaluation setup that we use to evaluate ReMon. We

first evaluate the performance of AAR/WAR and NRD and compare the outcome

with Crankback and reactive approach.

To evaluate the performance of our link failure recovery algorithms, we first mea-

sure the performance of single-link failures. We use the same USNET and DFN

topologies as in Chapter 3 and iperf to generate UDP traffic at a rate of 1 Mbps

between ten source-destination pairs. In Fig. 3.1, the green and red nodes are the

source set and destination set, respectively. We randomly choose one from each set

as a source-destination pair and repeat the process ten times. We first randomly fail

one link from each pair and record their average recovery time. Then, we randomly

fail five links from both the primary and the backup routes to get end-to-end delay

and throughput compared to Crankback. At last, we evaluate how the structure of
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Algorithm 6 Updating WAS
Input:

Failure link: Linkfail = (fw1, fw2)

Monitoring List: M = (s1, s2, ..., sn)

Output:

Updating Monitoring List: M

1: while ∃ pathfail contains Linkfail do

2: pathnew = AAR/WAR(pathfail)

3: if ∃ switch ∈ pathnew is monitored then

4: pass

5: else

6: M .append(pathnew[destination])

7: end if

8: end while

9: if ∃ flow ∈ fw1 or fw2 and monitored only by fw1 or fw2 then

10: pass

11: else

12: remove fw1 or fw2 from M

13: end if

topology affects performance of link failure recovery. We randomly fail several links

for each topology and record number of monitoring switches determined by WAS.

To test the performance of multiple-link and node failure recovery, we keep using

ten testing pairs and choose failed nodes with the most number of neighbors. We

keep failing links one by one for each node until all links; thus, the associated node

is disconnected or failed. We record the failure recovery time, the memory usage

in terms of the number of flow entries, and the operation cost in terms of the total

number of added/removed flow entries. To enable network reachability, we increase

the number of FFG rules , which equals to the number of neighbors instead of just

two. Thus, we can recover from multiple-link failure using FFG. However, in ReMon

we two FFG entries are enough.
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4.6 Discussion on the Evaluation Results

Figure 4.4: The total link failure recovery time in USNET and Darkstrand.

4.6.1 Performance of Single-Link Failure Recovery

We first evaluate the single-link failure recovery time of four methods: AAR, WAR,

restoration, and Crankback both in USNET and Darkstrand. Since a single-link

failure may impact multiple routes, the recovery time here is the total link failure

recovery time is the time to update all affected routes. Figure 4.4 represents such

total recovery time. In USNET, the recovery time of AAR and WAR is around

34 milliseconds. On the other hand, the restoration approach, which just recompute

alternative route from controller, takes about 62 milliseconds, and the Crankback also

takes the longer time. We observe similar performance trend in Darkstrand topology.

Thus, AAR and WAR reduce more than 50% and 40% of the recovery time compared

to the restoration and Crankback approaches, respectively [31].

Next, figrue 4.5 presents the memory usage of ReMon and Crankback approach.

We use the total number of flow entries installed at switches to represent memory us-

age. Crankback needs to install flow entries for both primary and backup routes, and

also for the backtracking rules. However, we just need primary routes pre-installed

and insert backup routes if detecting failure. Thus, the memory usage of Crankback

is significantly higher than that of ReMon [31].

Then, we compare the performance of AAR and WAR. We use the total number

of switches checked in each algorithm to represent the failure recovery overhead. The
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Figure 4.5: The total number of flow entries used in USNET and Darkstrand [31].

result is shown in Figure 4.6, where we show the results for Darkstrand topology

because the performance is similar in USNET. The number of computation for WAR

is significantly lower than AAR in Darkstrand. The reason is the structure of the

topology. WAR only checks switches with higher weights, and those switches more

likely have alternative routes towards a destination. However, an anchor node in

AAR is a switch having more than two neighbors. Thus, AAR will need more time

to find the set of anchor nodes. Therefore, we conclude that if a topology with large

number of links, AAR and WAR will perform similarly. However, if the topology is

a less-links and more-switches one, like Darkstrand, WAR will be useful [31].

Figure 4.6: The performance comparison of AAR and WAR in Darkstrand [31].

AAR and WAR not only improve the resiliency but also improves the overall
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(a) USNET (b) Darkstrand

Figure 4.7: The average delay of different failure recovery schemes [31].

network throughput and delay. In figure 4.7, we present the average delay that AAR,

WAR, and Crankback in USNET and Darkstrand topologies. Crankback has the

highest delay in both topologies because it takes extra delay on backtrack process.

Besides, all the affected switches will still use this backtracking, which is not the

case in AAR and WAR. AAR and WAR just reconstruct all possible affected routes

for given link failure. We observe similar results in the case of throughput, which is

shown in Figure 4.8 [31].

(a) USNET (b) Darkstrand

Figure 4.8: The average throughput of different failure recovery schemes.

Next, we evaluate how structure of the topology affects the performance of link

failure recovery. Figure 4.9 shows the change in the total number of monitoring

switches in USNET with links failure while using ReMon. We first randomly fail
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several links from around the perimeter of the USNET topology. Thus, the affected

flows are likely redirected towards the center. Thus, multiple flows shared common

routes and a common switch. We can just monitor this common switch and cover

more flow entries than before. Hence, we see a decrease in the number of monitoring

switches. Then, we start failing link also from the center of the topology. The flows

then separate to different routes. It leads to an increase in the number of monitoring

switches as flows are spreading out [31].

Figure 4.9: The link failure impact on the measurement cost in USNET.

Next, we evaluate the performance in Darkstrand, which is shown in Figure 4.10.

Since we have to keep network connectivity, we just fail less number of links in Dark-

strand compared to the USNET topology. The number of monitoring switches always

decreases with the increasing number of link failures. The reason is, again, the struc-

ture of the Darkstrand topology. Darkstrand is a less-links and more-switches topol-

ogy. Thus, with more link failure, the flows are more likely to be grouped to common

routes and common switches. In that case, we can just monitor a less number of

switches and cover more flow entries than before. Therefore, we conclude that the

number of switches to be monitored will depend on the structure of a topology [31].

Recall that in USNET topology switches have alternative routes to any destina-

tion; thus, we can just use FFG to recover from a link failure. However, in Darkstrand

due to the structure of topology, we have to follow Crankback approach, which may

lead to more memory usage. On the other hand, the usage of link is much higher in

Darkstrand than such in USNET. With more links fail, the usage of link will increase
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Figure 4.10: The link failure impact on measurement cost in Darkstrand [31].

rapidly. However, we assume each link has very high capacity; so it is not an issue

in our evaluation. We will consider such capacity in the future when we deploy our

works in real testbed.

4.6.2 Performance of Multiple-Link and Node Failure Recovery

In this section, we present the performance of ReMon in the presence of multiple-

link and node failures. Figure 4.11 presents the memory usage in different topology

with multiple links failure. In USNET topology, Crankback costs too much memory

because it needs to insert group entries to all possible action buckets to recover

from multiple links failures. On the other hand, restoration takes much less memory

because it only needs one flow entry. Our ReMon’s cost is in between Crankback

and reactive schemes. However, in Darkstrand topology, restoration has the worst

memory usage with large number of links failure because it has to insert flow entries

to almost every switches after a link failure. All three methods also show that the

memory usage increases with the increasing number of link failure as we need to

add new flow entries at backup switches. We also observe that the memory usage

decreases for Crankback in Darkstrand in the case of node failure because such node

failure can release a large number of flows.

More specifically, Figure 4.12 shows the operation cost with links failure. Restora-

tion always has the highest operation cost because it needs to add new alternative

flow entries and remove old one. However, it is not the case for ReMon and Crankback
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(a) USNET

(b) Darkstrand

Figure 4.11: The memory usage with multiple-link and node failure.

because they do not need to remove old flow entries. Those old flow entries are FFG

rules used to recover. The situation gets worse in Darkstrand topology because of its

structure.

In Figure 4.13, the recovery time for node failure is least if using Crankback,

which gives a similar result when measuring single link failure (shown in Figure 4.4).

Restoration always takes the longest time to recover and Crankback takes a little bit

higher than ReMon because of extra delay for Crankback’s backtracking.
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(a) USNET

(b) Darkstrand

Figure 4.12: The operation cost with multiple-link and node failure.

Figure 4.13: The average node failure recovery time in USNET and Darkstrand.



Chapter 5

Conclusions

This thesis presents a low-cost and resilient monitoring framework in SDN. Section

5.1 reviews a summary of this thesis. Section 5.2 discusses the conclusions of this

thesis. At last, future work is presented in Section 5.3.

5.1 Thesis Summary

In Chapter 1, we described the importance of measurement and monitoring. We

briefly described the difference between the traditional and the SDN network archi-

tecture. We highlighted the drawbacks of traditional network architecture and how

SDN overcomes them. Next, we introduced two types of network measurement in

SDN and analyzed their pros and cons. Then, we presented the importance of polling

or sampling frequency and two types of failure recovery approaches. At last, we

introduced our objectives and highlighted our primary contributions.

In Chapter 2, we first provided the background needed to understand this thesis.

We described the SDN architecture and introduced the OpenFlow switch and pro-

tocol. Then, we described active and passive measurement schemes. We presented

three prior work for each type. Next, we described sFlow (a hybrid scheme that

combines both active and passive schemes) and explained the advantages of sFlow.

Then, we introduced a low-cost measurement algorithm and explained the benefit

of using such an algorithm. We furthermore presented the importance of adjusting

the polling frequency/sampling rate. We explained four prior work related to the

sampling rate. Finally, we presented the fact that failure can impact the accuracy of

the measurement. We further introduced two types of failure recovery approaches in

SDN.

Chapter 3 presented our low-cost measurement (WAS) and polling frequency/sampling

rate selection (APS) algorithms. We introduced WAS algorithm with an example.

Next, we introduced our optimization model and a heuristic for both the offline and
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online versions. In addition, we described how we implement our algorithms and

corresponding experimental setup. At last, we presented the performance of our

algorithms. We evaluated the accuracy and measurement cost of WAS and APS.

Chapter 4 presented our failure recovery model, called ReMon, which consists of a

set of algorithms. We first described the architecture of ReMon. Next, we presented

two link failure recovery algorithms: AAR and WAR and a node failure recovery

algorithm, NRD. Then, we introduced the algorithm that updates the monitoring

list once recover from a failure. Finally, we presented the performance of ReMon.

We evaluated the recovery time, memory usage, end-to-end delay and throughput

of ReMon. We compared the memory usage and operation cost of NRD with other

approaches.

5.2 Conclusions

In this thesis, we illustrated the importance of low-cost and resilient monitoring frame-

work. We proposed several algorithms to achieve these two goals.

The experimental evaluation showed that the proposed low-cost measurement al-

gorithm (WAS) can reduce 30% measurement cost compared to the baseline approach

and significantly lower the computation cost compared to FlowCover. We further no-

ticed that the accuracy of WAS is better than FlowCover because we considered

destination switches while monitor flows. The evaluation indicated that our polling

frequency/sampling rate solution (APS) can further reduce 50% measurement cost

and maintained the same level of accuracy compared to Sampling-On-Demand (SOD).

Finally, our experimental evaluation on failure recovery model (ReMon) showed

that ReMon had better performance that Crankback and reactive method in terms

of recovery time, memory usage, and network status for single-link failure recovery.

ReMon saved 50% recovery time, 30% memory usage and 60% operation cost com-

pared to its counterparts. ReMon also presented a better network status in terms

of end-to-end delay and throughput compared to Crankback. We also indicated how

the structure of topology can impact the performance of failure recovery. At last,

we showed the performance of ReMon in multi-link and node failure recovery. The

results showed that ReMon saved 30% memory usage compared to Crankback and

50% of operation cost compared to the reactive approach.
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5.3 Future Work

In this work, we focus on designing and implementing a low-cost and resilient moni-

toring framework in a virtual mininet environment. However, we have several avenues

for future research. Below are a few recommendations for future research directions:

• Real Testbed: In future, we will focus on the implementation of our work in a

real testbed. We can prepare several CISCO Nexus 9000 Series Switches as our

physical switches. We will test the performance of our work in physical devices

and compare them with the Mininet performance.

• P4 Based Measurement: We will focus on the implementation of our work

into a P4-based environment. Programming Protocol-independent Packet Pro-

cessors (P4) [6] is a new programming language in SDN, which was first intro-

duced in 2013. It enables both control plane and data plane programmability

while standard SDN only allows control plane programmability. Thus, P4 is a

target-independent and protocol-independent protocol while OpenFlow is just a

target-independent but not protocol-independent.

– Target-independentmeans the programmer can describe packet process-

ing functionality independently, e.g. OpenFlow allows the programmer to

define the action of each flow as long as the switch supports OpenFlow.

– Protocol-independent means devices should not be tied to any specific

network protocols. Obviously, OpenFlow does not fit this because Open-

Flow has to define the flows based on an existing protocol, e.g. OpenFlow

has to define the matching field for each flow entry, including IP address,

MAC address, etc. On the other hand, P4 enables a programmer to cus-

tomize matching fields and actions.

There are few prior works that implemented monitoring framework using P4.

UnivMon [21] presents a flow monitoring framework in P4 environment. The

author design a high accurate flow-based monitoring framework. INT [37] also

propose a P4-based monitoring system for the ONOS controller. The authors

design a packet-level monitoring framework with a graphical user interface.

Clearly, both works just design a solution for monitoring. They do not consider
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cost and resiliency. Thus, it can be a challenge to implement all our algorithms

into P4 environment.
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