
CONSTRUCTIVE PROCEDURAL CONTENT GENERATION
USING IMAGE DATABASES

by

Utku Gultopu

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

February 2019

c© Copyright by Utku Gultopu, 2019

Table of Contents

List of Figures . iii

Abstract . v

Chapter 1 Introduction . 1

Chapter 2 Background to the Angry Birds Game 3

Chapter 3 Image Capture and Pre-processing 5

Chapter 4 Algorithm . 13

Chapter 5 Example of the Build Process 33

Chapter 6 Conclusion . 41

Appendix A Level Screenshots . 43

Appendix B Parameter Values . 64

Bibliography . 65

ii

List of Figures

Figure 2.1 A structure built using the PCG of Jiang et al. [4]. 4

Figure 2.2 A structure built using the PCG of Ferreira et al. [2]. 4

Figure 3.1 Flowchart demonstrating the process of vectorizing the raster
image . 6

Figure 3.2 Input cow image . 7

Figure 3.3 Cow image converted to black-and-white 8

Figure 3.4 Black-and-white cow image after being denoised 9

Figure 3.5 Black-and-white cow image after being denoised and converted
to Scalable Vector Graphics 10

Figure 3.6 Vectorized cow image with a ‘polygon‘ element, instead of a
‘path‘ element . 11

Figure 4.1 White bird . 16

Figure 4.2 Blue bird . 17

Figure 4.3 Yellow bird . 17

Figure 4.4 Red bird . 18

Figure 4.5 Black bird . 19

Figure 4.6 Example of a structure with inadequate number of blocks for
pig insertion . 24

Figure 5.1 The raw, unedited cow image 33

Figure 5.2 Edited cow image . 34

Figure 5.3 Vectorized cow image . 35

Figure 5.4 The mesh on the cow image 36

Figure 5.5 Individual loops in the mesh that will contain a primary block
and that won’t . 37

Figure 5.6 Generated structure with only primary blocks 38

iii

Figure 5.7 Generated structure with primary blocks and the inserted plat-
form blocks . 39

Figure 5.8 Generated structure with primary blocks, the inserted platform
blocks and pigs . 40

Figure A.1 Sample input image and output level: Cat 44

Figure A.2 Sample input image and output level: Cow 45

Figure A.3 Sample input image and output level: Dog 46

Figure A.4 Sample input image and output level: Hedgehog 47

Figure A.5 Sample input image and output level: Taj Mahal 48

Figure A.6 Sample input image and output level: Triumphal Arch 49

Figure A.7 Sample input image and output level: Parthenon 50

Figure A.8 Sample input image and output level: Louvre Pyramid 51

Figure A.9 Sample input image and output level: Grime 52

Figure A.10 Sample input image and output level: Jack-o-Lantern 53

Figure A.11 Sample input image and output level: Haunted House 54

Figure A.12 Sample input image and output level: Candy Bowl 55

Figure A.13 Sample input image and output level: Chimneys 56

Figure A.14 Sample input image and output level: Water Wheel 57

Figure A.15 Sample input image and output level: Combine Harvester . . . 58

Figure A.16 Sample input image and output level: Inclined Plane 59

Figure A.17 Sample input image and output level: Catamaran 60

Figure A.18 Sample input image and output level: Ferry 61

Figure A.19 Sample input image and output level: Galleon 62

Figure A.20 Sample input image and output level: Rowboat 63

iv

Abstract

Procedural Content Generation (PCG) attempts to define an automated process for

designing game content. Angry Birds represents a physics based game in which

interesting game play comes from the challenge and/or fun associated with destroying

structures using various types of ‘angry birds’. This thesis proposes and demonstrates

an approach to automating the design of the structures using a database of source

objects. The hypothesis is that the resulting structures will retain some properties

that remind the game player of the original object, making it ‘fun’. On the other

hand, these structures also tend to be more varied than those produced using current

approaches to PCG for the Angry Birds game. The approach is demonstrated using a

database of 20 images, resulting in content that we believe improves on the longevity

and enjoyment of the game relative to current practice.

v

Chapter 1

Introduction

Procedural Content Generation (PCG) for games attempts to build game content

through some automated algorithm as opposed to having to design everything a

priori. This means that the game designer does not need to prescribe absolutely all

the content, but can concentrate on establishing the overall properties of the game.

PCG has been extensively applied to automating the process of creating realistic

visual properties in video games, such as vegetation (for example, the SpeedTree

algorithm by Interactive Data Visualization Inc.). In this thesis, I am interested in

the case of PCG for designing structural properties of the physics style game ‘Angry

Birds’.

PCG for this purpose might be characterized in terms of constructive, generate-

and-test or search based methods (although several other characterizations might be

considered [7]). Constructive frameworks create content once, and therefore empha-

size producing the same content each time. Moreover, any content generated this

way must be ‘correct’. Generate-and-test schemes iterate between generating content

and testing for the satisfaction of specific test criteria. Depending on which tests are

satisfied/not satisfied all or part of the generated content is modified, with the process

terminating once satisfying content is identified. Finally, search based methods imply

that feedback on the content takes the form of a real-valued performance vector that

can be used to direct an iterative search process for appropriate content.

In this work, I will be interested in the specific case of generating the structural

content for targets in the Angry Birds physics style of game. An open source game

engine already exists for this game,1 where this has been used to demonstrate vari-

ous approaches to building structural content or defining strategies for ‘angry bird’

deployment. Past research has concentrated on the design of fitness functions for

evolutionary computation (EC), so that individuals from the evolutionary method

1https://aibirds.org

1

2

design structures that are in some way guaranteed to be stable [1], [2]. To do so,

such an approach need their own physics simulation in order to test the many con-

figurations of structure that the EC method produces. Refinements to this approach

include developing probabilistic models for which block (structures) are more likely

to be stable [5] and assuming specific build heuristics for guaranteeing the stability

of the resulting structures [6].

My approach will build on the previous research by assuming heuristics to ensure

the stability of structures. However, rather than use some random process to define

the build for structures, I will make use of silhouettes derived from real images to

represent the outline of the structure. I will then fill the silhouette with blocks to

provide an initial build. This can then be refined using the heuristics to provide

stability to the resulting structures, i.e. introduce rectangular horizontal blocks to

overhangs. Finally, I provide a heuristic for automatically placing ‘pigs’ within the

structure. This represents an example of a constructive approach, although the same

source image might give multiple ‘builds’ through changing the basic building block,

or changing the aspect ratio.

This thesis develops by presenting background to the game play and basic history

of the Angry Birds game, Chapter 2. The approach I adopt for providing automatic

content generation from image data is detailed in Chapter 3. Chapter 4 provides

the detailed description for the algorithm I adopt for building structures from the

image. Chapter 5 provides an summary to the various outputs produced by the

content generator for a specific source object, with thesis Conclusions and Future

work appearing in Chapter 6. For completeness Appendix ?? provides a complete

summary of the source object images and resulting Angry Birds structures.

Chapter 2

Background to the Angry Birds Game

Angry Birds is an example of a physics based puzzle game defined in terms of a 2-D

scene and played on a wide range of mobile and personal computing devices. The game

was originally created by Rovio Entertainment1 and initially released in 2009. The

original objective of the game is to have birds rescue their eggs from green-coloured

pigs. The pigs are positioned in a structure constructed out of blocks, with different

coloured blocks having different properties. During game play, the user defines how

a sling shot is aimed/parameterized to fire the birds at the structures. Different

coloured birds have different ‘strengths’, and as the player progresses through levels

of the game, more complex structures are encountered, and a greater range of bird

types are made available.

More points are awarded to the player for successfully killing the pigs and destroy

as much of the structure using as few of the birds as possible. Most birds also have

properties that can be triggered during flight. For example, the black and white birds

have the ability to make explosions. The work of this thesis will assume the open

source ‘Angry Birds AI’ game engine.2 This was originally designed for testing AI

agents that attempted to design good strategies for launching the angry birds. As

such the AI agent would not have prior knowledge of the structures. The ‘Angry Birds

AI’ game engine has been used for competitions at international AI and computer

gaming conferences since 2012. I will instead be interested in developing content for

the structures in which pigs are placed, or level generation3. Ultimately, the goal is

to provide automatic content that is ‘fun and challenging’ to play.

The hypothesis of my approach is that by using silhouettes extracted from real-

images, I can provide content that is both challenging and fun. There will be lots of

repeating patterns, and positions for pigs, and there will be the potential for structures

1https://www.rovio.com
2https://aibirds.org
3https://aibirds.org/other-events/level-generation-competition.html

3

Chapter 3

Image Capture and Pre-processing

We start by selecting an image that has the potential to be a good candidate for

constructing a level. This potential is primarily determined by the shape of the outline

of the object represented by the image, as the content, lighting, coloring, resolution,

size and even format is not of any concern of us for the purposes of generating a level.

This is because the only use of the input image, the raster image, for us is to convert

the input image into a vector image, specifically a Scalable Vector Graphics (SVG)

image, before executing the code that actually generates a Science Birds structure.

Since this code operates on an SVG image, specifically an SVG image with a polygon

element, all the operation that we do before feeding an SVG image that contains a

polygon element to the code can be simply understood as the ”preprocessing stage”

for constructing a Science Birds structure. Nevertheless, in order to start with a

raster image and attain a Science Birds structure, all the steps in the preprocessing

stage are necessary. These steps are listed in Figure 3.1.

Some of the steps in the flowchart are explained in detail below:

1. Converting a raster image to black-and-white: The reason for this is actually

clear. We have stated that the content, lighting, coloring, resolution size or

format of the image is of no concern to us, as we have stated that the only

use of the image is the outline of the structure represented in that image. We

have also stated that the raster image, for the purposes of generating a Science

Birds structure is of no use to us, since it is not possible (or, straightforward)

to obtain the outline data of the image from the raster image. Since that’s the

case, content, lighting and similar are simply redundant information for all of

our purposes. Hence, in order to have an easier and more precise conversion

from raster to vector, converting a raster image to black-and-white is a useful

first step.

For example, if the given input image is the image in Figure 3.2, after the end

5

7

Figure 3.2: Input cow image

of this step, the image in Figure 3.3 will form.

2. Denoising this black-and-white image: Although converting a raster image to

black-and-white comes a long way for vectorizing that image, the black-and-

white image after the conversion is in fact, noisy. That is, the image is in black-

and-white and for the most part, represents the shape of the structure that is

depicted in the original raster image. However, there is same granularity, some

noise, on the edges of the structure after the conversion. This is, of course

something that is not desirable, since this only makes it harder to trace this

image. That is, tracing the image in this state can result in multiple, irrelevant

curves in the output, instead of a single curve that represents the structure.

This is not something we want, since the irrelevant curves will simply result

in erroneous structure constructions. Hence, in order to remove this unwanted

effect, we simply denoise the resulting black-and-white image and hence, we

obtain a smooth black-and-white image that is much more suitable for producing

a fine and sharp vector image.

8

Figure 3.3: Cow image converted to black-and-white

After this step, the image in Figure 3.4 is formed.

3. ”Tracing” this denoised, black-and-white image in order to obtain an SVG im-

age: Theoretically, the raster image can be traced into a vector image using any

method. Specifically, we are using the open source program named Potrace,

written by Peter Selinger, for this task. One of the rather important reasons

for converting the original raster image to black-and-white, instead of directly

tracing it (that is, creating a vector image out of it) is that the tracer (vec-

torizer) software that we use, Potrace, works only on black-and-white images.

That is, the behavior of Potrace for non black-and-white images is undefined.

Hence, we opt to use a black-and-white image as the input for Potrace. That is

the main reason that we convert the original raster image into black-and-white,

instead of feeding it to Potrace as is.

After this step, the image in Figure 3.5 is formed.

4. Potrace traces the raster image into a vector image successfully. However, in

the output, it uses SVG path elements. For general purposes, this is perfectly

9

Figure 3.4: Black-and-white cow image after being denoised

fine. However, the main reason that we need the SVG is in order to be able

to cleanly determine the outlines of the structure represented by the raster

image. The reason for doing this is as follows: When the image is in one of

the raster formats, determining the outline of the structure represented by this

raster image is not very straightforward. However, since all we need for the

purpose of generating a Science Birds structure is the outline of the structure

represented in the raster image, we need a way to attain the information about

the outline of the structure represented in the raster image. This is where the

SVG, specifically an SVG with a polygon element, comes into play. Normally

raster images represent an image as a collection of pixels. Basically, in a raster

image, there is no notion of a shape. That is, in a raster image, mostly the

image is represented as a collection of independent picture elements (pixels).

Hence, in a raster image, it is not straightforward at all to determine what sort

of shape is being represented by this image. In other words, there is no proper

notion of a ”shape” in a raster image.

10

Figure 3.5: Black-and-white cow image after being denoised and converted to Scalable
Vector Graphics

11

Figure 3.6: Vectorized cow image with a ‘polygon‘ element, instead of a ‘path‘ element

After this step, the image in Figure 3.6 is formed.

On the other hand, vector image formats are the opposite of raster image formats.

While raster image formats usually represent an image as an unrelated collection of

picture elements, a vector image format, on the other hand, represents an image as

a collection of shapes. It is this fundamental difference in the approach of image

representation that differentiates the raster and the vector image formats. Since a

vector format represents an image as a collection of shapes, a vector image is not as

prone to alterations in the image quality as a result of altering the viewing point of

the image. For example, a vector image is almost immune to degradation in quality

when zooming in the image. It simply shows the zoomed in detail of the image as

represented among the shape declarations of the vector image. It is precisely this

characteristic of vector images, specifically SVG, that catches our attention. As we

have stated before, for the purpose of generating a Science Birds level from an input

12

raster image, all the information that we need from that raster image is simply the

shape, that is, the outline, that this raster image represents. This outline information

is best conveyed to the level generator with an SVG image that represents the image

with an SVG polygon element. Hence, this is precisely the reason that we need an

SVG image with a polygon element in order to cleanly attain the information about

the outline of the structure represented in the raster image.

Chapter 4

Algorithm

After obtaining the Scalable Vector Graphics (SVG) image which as detailed in Chap-

ter 3 is produced by:

1. Converting the raster image into black-and-white

2. Denoising it

3. Tracing it

we feed this SVG image into the main script. In the main script, the following

happens:

1. The configuration file is read in order to determine where should the output

level file be written to. The output level file is an XML file which contains a

description of a Science Birds level.

4.1

Note that Science Birds developers have opted not to be very strict about the

validity of XML in the level files. That is, some elements in the level actually

turn the XML into invalid XML. Nevertheless, the level is still openable and it

is still playable. Some examples to these invalid elements would be the elements

Camera and Slingshot. Although these elements do not have a separate closing

element, they don’t end with /> as they should be in valid XML. Instead, they

end with >, just like a self-closing tag in HTML. However, precisely speaking,

a Science Birds level file is not an HTML file, it is an XML file. Hence, the

aforementioned non-conforming elements should have either:

(a) Had a closing tag.

or

13

14

Listing 4.1: A Science Birds level template

<?xml ve r s i on =”1.0” encoding=”utf−8”?>

<Level>

<Camera x=”” y=”” minWidth=”” maxWidth=””>

<Birds>

<Bird type=”” />

. . .

</Birds>

<S l i ng sho t x=”” y=”” >

<GameObjects>

<Block type=”” mate r i a l=”” x=”” y=”” r o t a t i on=”” />

. . .

<Pig type=”” x=”” y=”” r o t a t i on=””/>

. . .

<Platform type=”” x=”” y=”” scaleX=”” scaleY=”” />

. . .

<TNT type=”” x=”” y=”” r o t a t i on=”” />

. . .

</GameObjects>

</Level>

15

(b) Ended the single tag elements with >, instead of />.

in order to ensure that the XML files of Sciene Birds levels are, indeed, valid

XML files.

The sample level file structure scheme above demonstrates what a generic level

would be similar to. However, it doesn’t go into detail of explaining what these

elements are, what is their use or how do their attributes alter or enhance their

behavior. In order to gain a solid understanding of the level scheme of Science

Birds, we need to understand the individual elements, and the attributes of

each of these individual elements that make up a Science Birds level. To do so,

we need to examine the sample Science Birds XML level structure step-by-step,

examining one line at each step:

(a) <?xml ve r s i on =”1.0” encoding=”utf−8”?>

This is simply a generic XML file declaration. Without this element, we

wouldn’t be able to claim that a Science Birds level file is indeed, an XML

file, even though it might be composed of elements within angular brackets

and the file extension in a Science Birds level filename is .xml.

(b) <Level>

This is the top-level container element that contains all the other elements

that are necessary to be able to construct a complete, working Science

Birds level. This is actually a container element. It is the only top-level

element apart from the XML declaration line.

(c) <Camera>

This element exists to describe where should be the view be when the level

starts, and what how large should it be.

(d) <Birds>

This is the element that contains all <Bird> elements. In other words,

this is a container element for the <Bird> elements.

(e) <Bird>

20

a Science Birds structure is an aggregation of <Block> elements. Techni-

cally, <Platform> elements and <TNT> elements can be used as part of

a structure as well, along with using a <Pig> element as the enemy. How-

ever, in this programmatic content generator, a Science Birds structure

consists only of <Block> elements.

There are precisely thirteen different shapes of blocks. Each block type

has four integrity conditions. That is, when the blocks hadn’t taken any

damage, they are in perfect condition. As they take more damage, their

condition changes. Finally, after enough damage, a block disappears and

the player gets points from this.

Of the thirteen types of blocks, twelve of them has variations in all three

materials, namely ”ice”, ”wood” and ”stone”. Only one of them can be

drawn in only one material, which is Ice Square.

Each of the four different integrity conditions of the blocks are represented

by a different sprite for each block type. Hence, the total number of sprites

for all blocks is as follows:

12 * 3 * 4 + 4 = 148

The blocks, except the single material type block Ice Square, are the fol-

lowing:

• Small Circle

• Circle

• Triangle

• Triangle with Hole

• Small Square

• Square

• Square with Hole

• Tiny Rectangle

• Small Rectangle

• Medium Rectangle

• Big Rectangle

21

• Fat Rectangle

So, the first two attributes of the <Block> element are now clear. The

type attribute is used to indicate which block type this block should stand

for, where those block types are listed above. On the other hand, the

material attribute is used to specify which material this block should be

of. The possible materials are:

• Ice

• Wood

• Stone

The remaining attributes are x, y and rotation. These have the following

respective purposes:

x: This attribute specifies the location of this block on the X coordinate.

The origin is the top-left location and the X coordinate increases towards

right.

y: This attribute specifies the location of this block on the Y coordinate.

The origin is the top-left location and the Y coordinate increases towards

down.

rotation: This attribute specifies the angle which this block is placed ac-

cording to.

(i) <Pig>

This element specifies a pig. The attributes are as follows:

• type: This attribute specifies the type of the pig. Possible values are:

– BasicBig

– BasicMedium

– BasicSmall

• x: This attribute specifies the location of this pig on the X coordinate.

• y: This attribute specifies the location of this pig on the Y coordinate.

rotation: This attribute specifies the angle which this pig is placed

according to.

22

(j) <TNT>

This element represents a TNT block. A TNT block is a block that is

rigged to blow. Upon activation, a countdown for that TNT block starts

and at the end of the countdown, the TNT block explodes. A TNT block

becomes activated whenever another block hits it. The explosion of a

TNT block destroys blocks and eliminates enemies in the surrounding of

the TNT block, within a certain diameter.

2. After the configuration file has been read, the following parameters are extracted

from it:

(a) LevelPath: This parameter specifies the directory where the Science Birds

levels should be written to, in order to be able to play them upon launching

Science Birds.

(b) PrimaryBlock: This parameter specifies the block that is used to construct

the structure. A structure in Science Birds Programmatic Content Gener-

ator is constructed using two types of blocks: primary block and platform

block. primary block is the block that is structure is initially constructed

from. That is, the structure initially solely consists of primary blocks.

(c) PlatformBlock: This parameter specifies the block that is used to support

the primary blocks that have nothing under them to prevent them from

falling. After the structure is initially constructed solely by using primary

blocks, in most cases, there are some primary blocks that happens to have

nothing under them. Had these blocks be left in this state, they would

simply start free falling upon level start. This is, of course, not a desirable

thing, since in such case, the player would get undeserved points due to

elimination of some blocks because of free falling. Also, the free falling

blocks might result in imbalances in the structure and hence, result in

toppling of the structure as well. Because of these reasons, in order to have

a level with a stable and playable structure, we must make sure that there

shouldn’t be any blocks without anything supporting them below. Hence,

the program determines where exactly to place these platforms and places

23

these platform blocks accordingly. The details of the platform insertion

procedure is examined in detail in the latter parts of this dissertation.

(d) NumberOfPrimaryBlocksOnXAxis: This parameter specifies how many

primary blocks should be placed to X axis. Initially, one might think that

this should be determined by dividing the width of the structure to the

width of the primary block. This is, in general, an accurate and sensible

approach. However, there is a caveat: If the structure too wide, and the

primary block’s width is not wide enough, there will be a lot of blocks

on the X axis, and as a result of this, on the Y axis as well. Hence, the

structure will be composed of too many blocks. Similarly, if the structure

is rather thin, and the primary block’s width is wide relative to the width

of the primary block, there will be too few blocks on the X axis, and as a

result of this, on the Y axis as well. Hence, the structure will be composed

of too few blocks.

Neither of these situations desirable. If the structure happens to be constructed

of too many blocks, there will be three problems:

(a) The rendering of these blocks will take more resources and hence, it might

lead to a degraded experience.

(b) Since there will be too many blocks, it will take more effort to knock

down the structure. Similarly for eliminating all the pigs in the level.

For example, it might require more birds to knock down the structure or

eliminate all the pigs. In most cases, this is something that degrades the

experience. Hence, having more than necessary amount of blocks for a

structure is something to be best avoided.

In the same fashion, having too few blocks in a structure is an undesirable thing

as well. If the structure is composed of too few blocks, it most likely will be

too thin and short. In such case, most likely there won’t be enough space in

the structure to insert platforms and place pigs (enemies). There cannot be

a playable level without any pigs, since the goal of each level is to eliminate

every single pig in that level. For these reasons, having a level with a too thin

structure is not something that we would like either.

25

an issue, we instead proportionate the dimensions of the primary block to the

dimensions required by the specified number of primary blocks on the X axis.

Precisely, we do this as follows:

(a) Divide the width of the structure to the specified number of primary blocks

on the X axis.

(b) Divide this result to the actual width of the primary block. The result of

this gives us the block factor.

(c) Multiply the block factor with the height of the primary block.

(d) Divide the structure height by the result of the calculation done at step 3.

The result will give the number of blocks that should be on the Y axis.

3. After reading the arguments, we read the SVG file in order to determine the

shape and boundaries of the structure that we are about to construct. This is

done as follows:

(a) Read the SVG file.

(b) Find the SVG <polygon> element in it.

(c) Get the list of points in that <polygon> element.

(d) Using this list of points, construct a Polygon object. This is done with the

help of a library called Shapely.

(e) Rotate this polygon object 180 degrees (upside-down). The reason for this

step is that Potrace generates the SVG image in an upside-down form. In

order to properly use the image to construct a Science Birds structure, we

need to access the SVG image’s proper (upright) version.

4. After reading the SVG file and constructing a polygon from it, we initialize a

Structure object. A structure object is an object that represents a Science Birds

structure. It represents every aspect of it. Some of these are:

(a) The original polygon shape that is read from the SVG file.

(b) All of the arguments:

26

i. The level path.

ii. The primary block type.

iii. The platform block type.

iv. Number of primary blocks on X axis.

(c) Number of primary blocks required to cover pig width: In this PCG, the

pigs are placed by removing some primary blocks and placing the pig to

the bottom center of the cavity as a result of this removal. Hence, the

width created by removing the primary blocks should be at least as long

as the pig’s width. Otherwise, the pig simply wouldn’t fit in the cavity

created by removing the pigs. Hence, in order to determine this width, we

make a calculation to determine the number of primary blocks to remove,

so that the width created by this removal will at be at least equal to the

width of a pig.

(d) Number of primary blocks required to cover pig height: This is the same

concept as ”number of primary blocks required to cover pig width”.

(e) Primary block factor: This is the concept that we have mentioned about

in the definition of ”NumberOfPrimaryBlocksOnXAxis” parameter. To

remember what we have stated there, the primary block factor is a ratio

that dictates the factor the primary block dimensions need to be multiplied

with in order to cover the structure width and the structure height. Note

that the structure width and the structure height simply refers to the

width and height of the rectangle that would contain the structure that is

expressed in the SVG file. In other words, the ”width” and ”height” refer

to the containing rectangle of the structure that is expressed in the SVG

file.

(f) Factored primary block width: This is the distance that is calculated by

multiplying the primary block width with the primary block factor.

(g) Factored primary block height: This is the distance that is calculated by

multiplying the primary block height with the primary block factor.

(h) Number of primary blocks on X axis: This is calculated by dividing the

structure width by the factored primary block width.

27

(i) Number of primary blocks on Y axis: This is calculated by dividing the

structure height by the factored primary block height.

(j) Original blocks: This is the matrix (list of lists) that holds the blocks of the

structure location by location. As you can realize, this is not something

that has been passed to the Structure class’ constructor. That means this

must be computed within the Structure class. Precisely, this is done in

the get blocks method of the Structure class. The algorithm is basically

as follows:

i. The structure shape that is obtained from the input SVG is partitioned

into tiles, where the length and width of the tiles are dictated by the

parameters num primary blocks on x axis and num primary blocks on y axis.

ii. Each tile is composed of:

A. Either only by a structure.

B. Or only by void.

C. Or both some structure and some void.

If the area of the structure within that tile is greater than or equal

to half of the area of a tile, we decide that there should be a primary

block inserted for this location. Otherwise, we leave this tile empty.

We repeat this procedure for each tile and in the end, we obtain a

list of lists, that contains True or False values, indicating that there

should be a block in that location or not.

(k) Blocks: This parameter is very similar to original blocks parameter, with

the only difference being that this is the version of original blocks that is

transposed and inverted. The original blocks parameter starts from top-

left and continues towards bottom-right, as this is the natural procession

order in SVG (and most image formats). However, for the purposes of

constructing a Science Birds structure out of a matrix of blocks, the most

practical way is to start from bottom-left and go towards top-right. The

reason is starting from the ground and building a column, then proceeding

to the next column and building it, until all columns have been finished.

(l) Platforms: The platforms are obtained with the following algorithm:

28

i. Determine every block which has nothing underneath it.

ii. Determine the row number of each such block and add this row number

to a set which contains the row indices for platforms to be inserted

under.

iii. Repeat this for every block on the structure.

These steps are for determining the necessary platforms. That is, they are

for determining the rows to place platforms which are necessary in order

to prevent blocks without anything under to free fall upon level start.

In addition to the necessary platforms, there are also extra platforms.

Extra platforms are the platforms inserted to the structure not because of

preventing blocks from free falling, but to create places to be able to insert

more pigs. The algorithm to insert extra platforms is as follows:

i. Determine the topmost and bottommost platform.

ii. Starting from the topmost platform and going above, insert an extra

platform every Nth row, where N is equal to the number of primary

blocks required to cover pig height.

iii. Similar to the previous step, starting from the bottommost platform

and going below, insert an extra platform every Nth row, where N is

equal to the number of primary blocks required to cover pig height.

(m) Platform blocks: In the previous step, we have determined the row indices

where the platforms should be placed under. However, we still don’t have

the information about which lateral distance each platform block should

be centered at. This is something that needs to be calculated. The reason

is that although the primary blocks have fixed places, the platform blocks

have not. That is, unlike the primary blocks, the platform blocks have lat-

eral distances that can vary for each platform. Hence, the lateral distance

of each platform block needs to be calculated individually.

The reason for this is the following: Platform blocks are placed according to

the placement of the primary blocks which the platform is located under.

That is, the main reason for placing platform blocks is to support the

primary blocks that have nothing underneath them. That is, the main

29

reason is to prevent primary blocks without anything underneath them

from free falling. Because of this, if a row is not filled with primary blocks,

that is, if the primary blocks in a row does not start at the left edge of

the shape’s containing rectangle, and end at the end at the right edge of

the shape’s containing rectangle, then the distances of the platform blocks

under that row is not regular, and they need to be custom calculated. The

reason is that in such scenario, the platform blocks start and somewhere

in the middle of the row, and end at somewhere in the middle of the row,

instead of starting at the beginning and ending at the beginning. The

algorithm to calculate the platform block locations is as follows:

i. Determine the leftmost primary block in the row which the platform

is going to be placed under. We do this by determining the column

index of the leftmost primary block in the row which the platform is

going to be placed under.

ii. Determine the rightmost primary block in the row which the platform

is going to be placed under. We do this by determining the column

index of the rightmost primary block in the row which the platform is

going to be placed under.

iii. Using the leftmost primary block index, rightmost primary block in-

dex, and the total number possible primary blocks in a row (which is

obtained using the parameter named ”number of primary blocks on

X axis”), determine how many primary blocks there are between the

leftmost primary block in the row and the rightmost primary block in

the row.

iv. Using the number of blocks between the leftmost primary block in the

row and the rightmost primary block in the row and using the width of

the platform block, calculate the number of platform blocks required

to cover the distance under the number of blocks between the leftmost

primary block in the row and the rightmost primary block in the row,

using platform blocks. This will give us the number of platform blocks

required for that row.

v. Using the number of blocks between the leftmost primary block in the

30

row and the rightmost primary block in the row, compute the center

of the region between the leftmost primary block in the row and the

rightmost primary block in the row.

vi. Starting from the center of the region between the leftmost primary

block in the row and the rightmost primary block in the row, we start

inserting platform blocks. Platform blocks are inserted in a contin-

uous manner. That is, except the initial iteration, at each iteration

two platform blocks are added to the left and right ends of the cur-

rent state of the platform. At the initial iteration, either one or two

platform blocks are inserted. If the calculated number of platform

blocks are odd, one platform block is inserted right at the center of

the distance between the leftmost primary block in the row and the

rightmost primary block in the row. This platform block is inserted in

a manner such that the center of that platform block will correspond

to the center of this distance.

If, on the other hand, the calculated number of platform blocks are even,

then there will be two blocks inserted at the initial iteration. The blocks

will be inserted in such manner that the rightmost edge of the left platform

block, and the leftmost edge of the right platform block will correspond to

the center of the distance between the leftmost primary block in the row

and the rightmost primary block in the row. The rest of the iterations are

the same, two platform blocks are inserted at each iteration, one prepended

to the left edge of the current platform, and the other appended to the right

edge of the current platform.

5. Pig indices: Pigs are inserted under every single platform block, where the

previous platform is at least ”number of primary blocks required to cover pig

height” rows below the platform that contains this platform block. The reason

is straightforward: If the previous platform is not at least ”number of primary

blocks required to cover pig height”, then the pig won’t have enough vertical

space to fit in. This will cause the structure to have imbalances and to knock

over.

31

Another thing to note is that every pig is represented by only a single block

index. That is, every pig is represented by the primary block’s location that is at

the center of the platform block that the pig is located under. Then, using this

index, the pig is inserted to the center of this gap that is created by removing

the blocks. The precise steps followed for block removal and pig insertion are

as follows:

(a) After a platform block is determined to be suitable for inserting a pig

under, the index of the primary block that is right under and at the center

of this platform block is determined. Index is the top-center location of

the pig to be inserted.

(b) This block is removed.

(c) If the ”number of primary blocks required to cover pig width” variable

is greater than one, then additional blocks need to be removed as well.

Removal of additional blocks are performed as follows:

i. Starting with the block that is at the immediate right of the center

block, start removing the blocks by alternating between the block that

is near (after) the rightmost edge of the gaps, and at the leftmost edge

of the gaps.

ii. Repeat this ”number of primary blocks required to cover pig height”

times, going one row down at each step.

To give a concrete example, let’s say that the ”number of primary

blocks required to cover pig width” is 5. Then, the index offsets of the

primary blocks to be cleared are as follows:

0, 1, -1, 2, -2

The ”index offset” refers to the block position that is relative to the

index of the primary block that is right under and that corresponds

to the center of a particular platform block.

Of course, this block removal is repeated as many times as the ”number

of primary blocks required to cover pig height”, starting from the row

that is immediately under the platform block and going downward.

32

(d) After the block removal is completed, the pig is inserted. The exact loca-

tion to insert the pig is calculated as follows:

i. If the ”number of primary blocks required to cover pig width” is an

odd number, then the horizontal distance to place the pig is equal

to the horizontal distance of the center of the primary block that is

located right below the center of the platform block that this pig is

being inserted under. If the ”number of primary blocks required to

cover pig width” is an even number, then we add half of the primary

block’s width to this distance to find the horizontal distance to insert

the pig to.

ii. The vertical distance is calculated as follows:

A. Divide the ”number of primary blocks required to cover pig height”

by two. The division will result in a quotient and a remainder. Of

course, if the ”number of primary blocks required to cover pig

height” is even, the remainder would be zero.

B. Subtract ”quotient + 1” from the row index of the platform that

contains the platform block which the pig is being placed under.

C. Calculate the height of the primary block row that corresponds to

the resulting row index.

D. If the ”number of primary blocks required to cover pig height” is

an even number, subtract half of the primary block’s height from

this height.

This concludes the members of the Structure class.

Chapter 5

Example of the Build Process

This chapter walks through construction of a Science Birds level from a given raster

image step-by-step. The aim is to let the reader to gain a better understanding of

the level construction process.

Let’s assume that the user of the programmatic content generator has obtained

the following image:

Figure 5.1: The raw, unedited cow image

First, the user has to trim this image so that only the cow itself is remaining in

the image. The details of accomplishing this is left to the user. A common method

is to simply use an image editing software to cut out the cow from the whole image.

After the cow is obtained, the image becomes the following:

33

34

Figure 5.2: Edited cow image

After that, this image is converted to black-and-white, denoised and vectorized.

The details of these processes are in chapter 3, hence they won’t be repeated in this

section. For further information, please refer to chapter 3.

After vectorization, the following image is obtained:

35

Figure 5.3: Vectorized cow image

This image represents the silhouette that is obtained from the input image. After

that, this image is fed into the programmatic content generator for the actual level

generation.

In the programmatic content generator, the image is partitioned into a mesh. The

shapes of the individual loops (the identical components that compose the mesh)

are the same as the shape of the primary block that is declared in the configuration

file. The only difference between the two is the size of the loops. According to the

size of the input image, without changing the aspect ratio, the size of the loop can

be shrunken, expanded or kept the same. This is done in order to comply with

the number of primary blocks to have on the X axis, which is again declared in the

configuration file.

36

Figure 5.4: The mesh on the cow image

Since the primary block of our choice for this example has a square shape, the

loops of the mesh are square shaped as well.

Each loop of the mesh is a place to potentially place a primary block. The decision

process of whether of not to insert a primary block to a given loop is done as follows:

1. Calculate the area covered by a loop of the mesh. This computation needs to

be done only once, since every loop of the mesh is identical.

2. Calculate the area within that mesh that belongs to the entity whose silhouette

is being used to construct a structure. In this example, this entity is the cow.

3. If the area found in step 2 is greater than or equal to half of the area found in

step 1, insert a primary block there. Otherwise, leave it empty.

Below, four loops in the mesh of the cow are selected to demonstrate this. The

green ones are the ones where a primary block will be inserted, and the red ones are

the ones where a primary block will not be inserted.

37

Figure 5.5: Individual loops in the mesh that will contain a primary block and that
won’t

After this process is repeated for every loop in the mesh, we obtain a preliminary

structure that consists of only the primary blocks. In this example, this would be as

follows:

Chapter 6

Conclusion

The general goal of PCG is to provide new content through an automated process.

This has the potential to improve the longevity of the game itself as the content is

never explicitly the ‘same’ and/or there is never an ‘end’ to the game. Moreover,

it also implies that the cost of creating new games might decrease because it is no

longer necessary to explicitly design every part of the gaming experience. In this

thesis I am explicitly interested in the issue of PCG under a physics based gaming

environment of which titles such as Angry Birds and Cut the Rope represent well

known examples. Within the context of this work I concentrate on an ‘Angry Birds’

style of task. That is to say, the player has to use their skill in interpreting the

Newtonian physics to aim Angry Bird projectiles with different properties to score

points. Part of the process involves the destruction of objects that could be blocking

the path to the target. Unlike previous work in PCG for this style of game I adopt

an approach in which image data, possibly even captured by the user, represent the

basis for designing the Angry Bird structure in which pigs are placed. The motivation

for doing so is to increase the range of complexity of the resulting structures, while

simultaneously reminding the reader of the original object. I believe that such an

approach will both challenge and entertain the user.

The algorithm adopted first requires that the foreground object from the image is

identified using image editing software, for which several applications are available.

With the target object identified, a corresponding silhouette is extracted. The sil-

houette is used as the basis for defining a low resolution matrix expressing the basic

location for square blocks. However, as soon as the original object (and therefore

the corresponding matrix) has any overhang, then gravity will result in blocks free

falling. I therefore also introduce a process for identifying the overhanging blocks and

replace (sequences) of them with horizontal rectangles, such that the stability of the

resulting structure is initially guaranteed. A final process provides for the automatic

41

42

placement of pigs within the structure, such that holes and supporting structures are

introduced into the structure.

A database of 20 different source images is built in order to illustrate the relative

generality of the approach. A wide range of source objects are considered, from the

face of animals, to profiles of animals, to the profile of well known buildings, to ships

and Jack-O-Lantern. Some builds are definitely more stable than others. However,

the builds as a whole are generally much more complex than previously attempted

by entries to the Angry Birds competition.

Future work will introduce a rule base to identify most likely sources of instabilities

in the initial builds. Specific examples could be to include Newtonian physics into

the assessment of rectangular blocks used to provide overhangs, and the introduction

of minimal inter-block placing (stops blocks from ‘leaning’ against each other, where

such leans appears to introduce instabilities).

Another potential area of development is to consider the use of some recent out-

comes from deep learning in which objects are automatically identified in source

images, therefore further removing the need for human intervention.

Appendix A

Level Screenshots

In this section, some sample images and Science Birds levels that are generated from

these images are presented.

43

Appendix B

Parameter Values

These are some of the parameters present in the structure generator code [3].

Percentage of a mesh block needed to
be covered for a primary block to be
inserted

50 src/python/structure.py

Sigma value for the Gaussian filter 10 src/shell/generate-level.sh
Size value for the median filter 10 src/shell/generate-level.sh
Number of samples to sample the SVG
‘path‘ element to get an SVG ‘polygon‘
element from

1024 src/python/svg path to polygon.py

Table B.1: Hardcoded variables and their default values. These exist in the code not
like a variable per se, but as a part of the code.

LevelPath Specifies the directory for the levels to be
written under.

PrimaryBlock Specifies the block to use as the main com-
ponent of the structure.

PlatformBlock Specifies the block to use to support the pri-
mary blocks without anything under.

NumberOfPrimaryBlocksOnXAxis Specifies how many primary blocks should be
inserted to cover the width of the structure.

Table B.2: Configurable variables and their descriptions. These variables are able to
be configured by the user through a configuration file.

64

Bibliography

[1] Lucas Ferreira and Claudio Fabiano Motta Toledo. A search-based approach
for generating angry birds levels. In 2014 IEEE Conference on Computational

Intelligence and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014,
pages 1–8, 2014.

[2] Lucas N. Ferreira and Claudio Fabiano Motta Toledo. Tanager: A generator
of feasible and engaging levels forangry birds. IEEE Transactions on Games,
10(3):304–316, 2018.

[3] Utku Gultopu. Science Birds PCG. https://github.com/ugultopu/

Science-Birds-PCG, 2018.

[4] Yuxuan Jiang, Tomohiro Harada, and Ruck Thawonmas. Procedural generation
of angry birds fun levels using pattern-struct and preset-model. In IEEE Confer-

ence on Computational Intelligence and Games, CIG 2017, New York, NY, USA,

August 22-25, 2017, pages 154–161, 2017.

[5] Matthew Stephenson and Jochen Renz. Procedural generation of levels for angry
birds style physics games. In Proceedings of the Twelfth AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2016, October

8-12, 2016, Burlingame, California, USA., pages 225–231, 2016.

[6] Matthew Stephenson and Jochen Renz. Generating varied, stable and solvable
levels for angry birds style physics games. In IEEE Conference on Computational

Intelligence and Games, CIG 2017, New York, NY, USA, August 22-25, 2017,
pages 288–295, 2017.

[7] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. Search-based procedural content generation: A taxonomy and survey.
IEEE Trans. Comput. Intellig. and AI in Games, 3(3):172–186, 2011.

65

