
DESIGN OF A SURROGATE ASSISTED (1 + 1)-ES

by

Arash Kayhani

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2018

c© Copyright by Arash Kayhani, 2018

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . viii

List of Abbreviations and Symbols Used ix

Acknowledgements . xiii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Context . 2
1.2.1 Evolution Strategy . 2
1.2.2 Step-size Adaptions . 3
1.2.3 Regression and Gaussian Process 3
1.2.4 Contribution and Outline . 5

Chapter 2 Background and Related Work 8

2.1 Evolution Strategies . 8
2.1.1 Mutation Operators . 9
2.1.2 Quadratic Sphere Function . 9
2.1.3 The (1 + 1)-ES . 10
2.1.4 The 1/5th Rule . 13

2.2 Surrogate-Assisted Evolution Strategy (SA-ES) 15
2.2.1 Quality Measurement . 15
2.2.2 Evolution Control . 16

2.3 Modeling Techniques . 18
2.3.1 Gaussian Process Regression 18
2.3.2 Polynomial Regression . 23
2.3.3 Artificial Neural Network . 25
2.3.4 Support Vector Regression . 25

2.4 General Test Functions . 26
2.4.1 Ill-Conditioned Functions . 26
2.4.2 Multi-Modal Functions . 27
2.4.3 Constrained Functions . 28

ii

Chapter 3 Analysis . 29

3.1 Overview . 29

3.2 Simulation of SA-(1 + 1)-ES on a Quadratic Sphere 30

3.3 Simulation of SA-(1 + 1)-ES with Respect to Noise-to-Signal Ratio . 34

3.4 Step-size Adaptation of the Simulated SA-(1 + 1)-ES 36

3.5 Evaluation of the Model Error . 38

3.6 Adaptation of Hyperparameters . 42
3.6.1 Length-Scale . 42
3.6.2 Training Set . 46

Chapter 4 Surrogate-Assisted (1+1) Evolution Strategy and Exper-
iments . 49

4.1 Test Functions . 49

4.2 Step-Size Adaptation . 51

4.3 Performance with Respect to the True Positive Rate 54

4.4 Performance with Respect to the Evaluation Rate 54

4.5 Performance with Respect to the Number of Dimensions 56

4.6 Performance with Adaptive Length-Scale 59

Chapter 5 Conclusion . 61

5.1 Summary . 61

5.2 Future Work . 63

Bibliography . 65

iii

List of Tables

Table 2.1 Well-known stationary covariance functions that can be used as
kernel functions in Equation 2.14. 20

Table 4.1 Test functions and parameters of the test 51

Table 4.2 Median number of objective calls (1 + 1)-ES 51

iv

List of Figures

Figure 2.1 This figure from [2] shows z′A = zA ∗ σ and z′B = zB ∗ σ as the
two components of the mutation vector z′. 10

Figure 2.2 Expected fitness gain and success probability of (1+1)-ES based
on theoretical analysis (solid line) and experimental results for
n = 10 (circles) and n = 100 (stars). 14

Figure 2.3 Yellow curve is the real objective function (quadratic sphere).
The blue curve uses a GP with normalization based on the
function value of the parent. The green curve is GP with nor-
malization over the mean of training data. 24

Figure 3.1 Expected fitness gain of simulated surrogate-assisted (1 + 1)-
ES based on theoretical analysis n → ∞ (solid line) and ex-
perimental results for n = 10 (stars) and n = 100 (circles).
The algorithm was tested for five values of normalized noise
strength: σ∗ε = 0 (yellow), σ∗ε = 2 (red), σ∗ε = 4 (green), σ∗ε = 6
(dark blue). 35

Figure 3.2 True positive rate and evaluation rate of surrogate-assisted (1+
1)-ES based on theoretical analysis n → ∞ (solid line) and
experimental results for n = 10 (stars) and n = 100 (circles).
The algorithm was tested for five values of normalized noise
strength: σ∗ε = 0 (yellow), σ∗ε = 2 (red), σ∗ε = 4 (green), σ∗ε = 6
(dark blue). 36

Figure 3.3 Optimal fitness gain and optimal normalized step-size as a func-
tion of noise-to-signal ratio when the step-size has the opti-
mal value on quadratic spheres. Experimental results are for
quadratic spheres with 10 (yellow stars), and 100 (red circles)
dimensions. The theoretical result are for a quadratic sphere,
where n → ∞ (orange). The solid blue line represents the
(1 + 1)-ES without surrogate modeling. 37

Figure 3.4 Optimal evaluation rate and optimal true positive rate as a
function of noise-to-signal ratio when the step-size has the op-
timal value. Experimental results are for quadratic spheres with
10 (yellow stars), and 100 (red circles) dimensions. The theo-
retical result are for a quadratic sphere, where n→∞ (blue). 37

v

Figure 3.5 Normalized expected fitness gain and normalized step-size as
a function of noise-to-signal ratio when n → ∞ for different
values of true positive rate. The solid blue line displays the
case where the step-size has the optimum value. Other lines
are the cases where the true positive rates of the algorithm are
50% (red), 30% (green) and 10% (orange). 39

Figure 3.6 Normalized expected fitness gain divided by the optimum fit-
ness gain, for different values of true positive rate. Lines display
cases where the true positive rate of the algorithm has the val-
ues of 50% (red), 30% (green) and 10% (orange). 39

Figure 3.7 σ∗ε Normalized noise strength, noise strength and objective func-
tion. The values of normalized step-size in the experiments are
σ∗ = 0.8 (red), σ∗ = 1.2 (green), σ∗ = 1.6 (blue). 41

Figure 3.8 Modeling error. The blue histogram and curve represent the
results of histogram and KDE of error, green histogram and
curve are for a normal function with the same variance and
mean. 42

Figure 3.9 Modeling error variance and mean, as a function of length-scale. 43

Figure 3.10 Length-scale (blue), step-size (orange), objective function value
(blue) and relative length-scale (blue) as a function of objective
function call, when the value of normalized step-size is 1.2. . . 44

Figure 3.11 True positive rate as a function of number of dimensions, when
the model selects the offspring randomly (figure on the left)
which provides a true positive rate equal to the success proba-
bility of the algorithm, and the true positive rate when we use
a relatively well-trained surrogate model (figure on the right). 45

Figure 3.12 Length scale as a function of number of dimensions using the
maximum likelihood estimate with 150 restarts (blue line) and
3.5σ
√
n (red stars). 46

Figure 3.13 True positive rate as a function of number of training points
for different number of dimensions. For the experiments, we
used spheres with four (blue), eight (orange), 16 (green) and 32
dimensions (red). 47

Figure 4.1 Number of objective function calls as a function of number of
dimensions. Lines display the median and error bars show the
range of the results of 101 runs of the algorithm. 52

vi

Figure 4.2 Speed-up as a function of true positive rate. Lines display the
median result of 10 runs of the algorithm. Error bars show the
range of the values of speed-up. 55

Figure 4.3 Speed-up as a function of number of dimensions. Figure dis-
plays the speed-up for Kramer’s approach (blue), SA-(1+1)-ES

when length-scale= 3.5σ
√
N (green) and SA-(1+1)-ES when

length-scale is tuned using MLE (orange). 57

Figure 4.4 Objective function value as a function of number of objective
function call. True positive rate and evaluation rate as a func-
tion of number of dimensions. The value of length-scale in the
experiments is = 3.5σ

√
N . 58

Figure 4.5 Objective function value as a function of number of objective
function call. True positive rate and evaluation rate as a func-
tion of number of dimensions. The length-scale is adapted using
the MLE. 60

vii

Abstract

The information gained from previous iterations of an evolution strategy (ES) can be

used to create a surrogate model based on the real objective function. While surrogate

models are not as accurate as objective functions, they could distinguish more promis-

ing candidate solutions. To develop a better understanding of surrogate-assisted ESs,

we simulate the behavior of a surrogate-assisted (1 + 1)-ES on the quadratic sphere.

These simulations are made using a noisy objective function as the surrogate model.

We introduce some measures to quantify the trade-off of saving expensive objective

function evaluations at the cost of taking poorer steps. Using these findings, we

present a mechanism to adapt the step-size based on model accuracy. We empirically

evaluate the performance of this step-size adaptation mechanism in surrogate-assisted

(1 + 1)-ES and compare it to that of the canonical (1 + 1)-ES on several simple test

functions.

viii

List of Abbreviations and Symbols Used

D
√
n+ 1

C Covariance matrix

I Identity matrix

K Covariance function

N Probability density function of a normal distribu-
tion

Φ Cumulative distribution function of the standard
normal distribution

η The average fitness improvement in each iteration
of the original fitness evaluation in SA-ES

f̂ Model’s prediction

1 The indicator function 1 is equal to one if the con-
dition of the indicator is true and is equal to zero
if the condition is false.

σ Step-size

σ∗ Normalized step-size

σ∗ε Normalized noise strength

x Input space location

x1, x′ Space location of offspring

c1, c2, c3 Coefficients of SA-ES step-size adaptation mecha-
nism

exp The exponential function

f Objective function

l Length-scale

m Mean function

p Probability density function

psucc Success rate

ptruepositive Probability of an offspring being superior to its par-
ent based on the true fitness function

q∗ Normalized fitness gain

ix

q∗ε Noisy fitness gain

t Time or iteration index

A Least square error function

R Distance between parent and the location of the
optimizer

β Parameters of a model

ε Error

κ Noise-to-signal ratio

x̃ Vandermonde matrix

∇f The gradient of f

σ(0) The initial value of the step-size

σε Noise strength

z, zA, zB A vector of n normally distributed elements. See
page 10.

C̃ Covariance matrix of the training data and the pa-
rameter space location

ξ+i , ξ−i See page 26

d Distance between two points

f Objective function value

fstop Stop criteria

h The distance to move in input space before the
function value changes significantly

peval Success probability of the model evaluation

p
(acc)
q∗ The probability of an individual offspring being se-

lected by the surrogate model

pstep The probability of an offspring being better than
its parent

q Fitness gain

r Distance between offspring and location of the op-
timizer

x(0) The initial value of the step-size

z1 Standard normally distributed variable

x

(µ/ρ +, λ) See page 2

k Covariance between the parameter space location x
and the training data

ANN Artificial neural network

BBOB Black-Box Optimization Benchmarking

BFGS Broyden-Fletcher-Goldfarb-Shanno

CMA Covariance Matrix Adaptation

COBRA Constrained Optimization By RAdial basis func-
tion interpolation

CPU Central Processing Unit

CSA Cumulative Step-size Adaptation

EA Evolutionary Algorithms

ES Evolution Strategy

GP Gaussian Process

GPR Gaussian Process Regression

KDE Kernel Density Estimation

LWR Locally Weighted Regression

MLE Maximum Likelihood Estimation

MM-ES Meta-Model assisted ES

n Number of dimensions

P Training set

xi

RBF Radial Basis Function

SA-ES Surrogate-Assisted Evolution Strategy

SVM Support Vector Machine

SVR Support Vector Regression

xii

Acknowledgements

I would like to express my sincere gratitude to Prof. Dirk V. Arnold for his support

throughout the research. His insightful guidance and contributions to this study are

gratefully acknowledged.

xiii

Chapter 1

Introduction

1.1 Motivation

Evolution strategies are a class of evolutionary algorithms introduced by Ingo Rechen-

berg [43] and Hans-Paul Schwefel [47] that have been widely studied for optimization

in continuous search spaces. Notably, they are known for their use in the optimization

of black-box problems, where there is no information about derivatives or differentia-

bility of the problem. One drawback of these algorithms is that they need a high

number of evaluations to find the optimal solution and, therefore, they are considered

expensive for some real-world problems with expensive objective functions, where a

function evaluation might cost much money, time or human resources.

A class of powerful approaches that were employed to enhance the performance

of evolution strategies are surrogate-assisted evolution strategies (SA-ES). In these

approaches, using information gained from previous iterations of the optimization,

and by incorporating a modeling technique, the objective function (fitness function)

can be approximated. This approximated model is cheaper but has lower accuracy

compared to the real fitness function. A study by Grefenstette and Fitzpatrick [18],

was one of the first where information gained from past iterations was used to benefit

the algorithm.

Loshchilov [34] reports a continuous increase in the number of publications in the

field of surrogate-assisted evolution strategies since 1990. A survey by Jin [27] high-

lights various approaches that recently have been suggested to improve the surrogate-

assisted evolutionary algorithms. These approaches combined multiple heuristics that

reportedly enhanced the performance of the surrogate-assisted evolutionary algo-

rithms, but the precise effects of each of these strategies are not well understood.

One aspect of surrogate-assisted evolution strategies that has been relatively under-

examined is the finding of the trade-off between using the expensive but accurate

fitness function, and cheap but inaccurate surrogate model. This issue plays a crucial

1

2

role in the overall performance of the surrogate-assisted evolution strategies as the

surrogate modeling is beneficial only if the benefit of the reduced cost of using the

model evaluation is more than the drawback from taking poorer steps due to the

inaccuracy of the model evaluation.

Additionally, the suggested surrogate-assisted evolution strategies in the litera-

ture employ step-size adaption mechanisms that were initially designed for evolution

strategies without surrogate model assistance. These step-size adaption mechanisms

might work perfectly well when no surrogate model is used, but they may be less than

optimal if models are incorporated in the algorithm. Therefore, it is also desirable

to develop a new step-size adaptation mechanism designed explicitly for surrogate-

assisted evolution strategies, and in correlation with the model uncertainty.

This study reflects our opinion that the research on surrogate-assisted evolution

strategies needs to go more in-depth on understanding the behavior of these algo-

rithms and on designing a step-size adaption interface in support of the uncertainty

of the surrogate model. In the next sections, we suggest a new approach to develop

a better understanding of surrogate-assisted evolution strategies by simulating the

behavior of the surrogate model. We use these simulations in an attempt to answer

some of the unanswered questions in this field like how much the use of surrogate

models benefits the evolution strategies. We also use this approach to improve the

design configurations, particularly the step-size adaptation mechanism, for a simple

surrogate-assisted evolution strategy.

1.2 Context

1.2.1 Evolution Strategy

An evolution strategy is a generational algorithm that solves the optimization prob-

lems by implementing a repeated process of taking consecutive stochastic variations

(mutation) and selection procedures. These algorithms are usually recognized in the

form of (µ/ρ +, λ)- ES, where µ, ρ and λ are, respectively, number of parents, num-

ber of parents used in the recombination and number of offspring produced in each

generation (in some cases ρ might be unspecified). ’Plus’ and ’comma’ (+ and ,)

define the type of selection procedure, where in ’plus’-selection, µ best of parents and

3

offspring are selected, and in ’comma’-selection, µ best of the offspring are selected

for the next generation.

1.2.2 Step-size Adaptions

The parameters of the mutation operator play a key role in the convergence speed and

efficiency of the optimization process. The parameters of the mutation operator can

be adapted using the following three classes of parameter adaptation mechanisms.

• The 1/5th Success Rule Defining success probability as the average probabil-

ity of having an offspring being superior to its parent, for a symmetric mutation

operation on a linear function the success probability of the mutation operator

is 50%. Based on the Taylor series approximation of smooth functions, as the

step-size decreases, fitness difference becomes more linear and, therefore, the

success probability becomes closer to 50%. Step-size is the variance of the mu-

tation. On most functions if step-size goes to very large values, the success rate

decreases to zero. As a result, for an isotropic mutation, we can use the suc-

cess probability to control the relative step-size. Rechenberg [43], by studying

two simple test functions (corridor and sphere) showed that the optimal success

rates for a (1 + 1)-ES with the isotropic mutation is approximately 1/5. He fur-

ther used the 20% success probability as a switching point between decreasing

and increasing the value of the step-size.

• Self-Adaptation In this strategy the mutation parameters are also included

in the optimization process and therefore, they also mutate and evolve during

the optimization process.

• Derandomized Self-Adaptation This strategy, also known as the cumulative

step-size adaptation (CSA), employs a weighted sum of successful steps to adapt

the current step-size.

1.2.3 Regression and Gaussian Process

Surrogate-assisted evolution strategies are employed using various machine learning

algorithms. Loshchilov et al. [35] used Support Vector Regression (SVR). Bajer [8]

4

used Radial Basis Function (RBF) networks and Gaussian Process. Other modeling

techniques like Artificial Neural Networks (ANNs) and Polynomial Regression are

also used in [33], [25] and [30]. They were also implemented in discrete platforms like

discrete genetic algorithms [46] [9]. These machine learning methods are thoroughly

explained in chapter 2.

Based on the definition provided by Rasmussen and Williams [42], a Gaussian

Process (GP) is a collection of random variables, where every finite number of those

variables has a normal joint distribution. A Gaussian Process Regression (GPR) is

a machine learning method that uses the concept of GP to describe a function. In

this research, we use a Gaussian process regression for SA-ES. Bajer [8] described

GP as ”a model with a decent number of parameters” that can regress a variety of

different continuous fitness landscapes. GPR is commonly used for surrogate mod-

eling, as they do not have some of the disadvantages of their counterparts. ANNs,

for instance, are popular surrogate modeling approaches, but they are more difficult

to work with. Specially determining a proper structure for ANNs has been a chal-

lenging issue for researchers who used ANNs for optimization. Cross-validation and

Maximum Likelihood Estimation (MLE) are the most popular approaches for tun-

ing the main hyperparameters of GP. In the next chapters, we further investigate

the process of Maximum Likelihood Estimate as well as its accuracy in tuning the

hyperparameters of the surrogate-assisted (1 + 1)-ES.

Perhaps closest studies to surrogate-assisted (1 + 1)-ES are studies by Ulmer et

al. [49] and Oliver Kramer [32], in which they use modeling techniques on the plat-

form of, respectively, (1 + 1)-ES and steady-state (µ + 1)-ES. Kramer explores a

broad range of possible ways that machine learning algorithms can improve (1 + 1)-

ES, including dimension reduction and problem visualization, but does not study

parameter settings, particularly step-size adaption mechanism of a surrogate-assisted

(1 + 1)-evolution strategy. In this research, we use a similar approach to Kramer’s

to implement surrogate modeling. Ulmer et al. [49], implements a surrogate-assisted

(µ+ 1)-ES with a median selection step-size mechanism, suggested by Wakunda and

Zell [50]. Then they compare it with steady-state (µ + 1)-ES with and without me-

dian selection, but these step-size adaption mechanisms are not designed to work with

surrogate modeling, and it is not clear whether they can find the optimum value of

5

the step-size.

1.2.4 Contribution and Outline

Contributions

In this research by studying the benefits and limitations of surrogate-assisted evolu-

tion strategies (SA-ES) compared to normal evolution strategies, we introduce new

approaches to investigate the behavior of SA-ES. We study the parameters that affect

the performance of SA-ES such as step-size, training data and the hyper-parameters of

the modeling technique. Choosing a proper approach for selecting the training data-

set of the modeling technique affects the accuracy and efficiency of the model. We

will further discuss these parameters in the next chapter. Our research in SA-(1 + 1)-

ES consists of expanding the analysis of the surrogate-assisted evolution strategies

and simulating the modeling techniques in SA-ES. For the former, we use (1 + 1)-ES

which is much easier to be interpreted compared to other evolution strategies. For the

latter, we use a normalized Gaussian error to simulate the behavior of an inaccurate

model.

To limit the possible unforeseen side effects of the interactions between the evolu-

tion strategy and the machine learning method, in this study, we choose the simplest

evolution strategy: (1 + 1)-ES. One potential pitfall for using evolutionary strategies

with larger population size is that if λ is larger than optimal, the surrogate modeling

can improve the performance of the algorithm by simply selecting a smaller portion

of the solutions for the next generation. In this case, the improvement in the perfor-

mance is because of reducing the population size instead of the surrogate modeling.

Furthermore, we use the approach that was suggested by Arnold and Beyer [3] and

Arnold [1] to analyze noisy fitness functions. In [2], they assumed that the fitness

error is Gaussian. They showed that this assumption has a limited effect on results

when the noise function is not Gaussian. These analyses are further explained in

chapter 3.

We use the analysis from simulations to find mechanisms for adapting the param-

eters of the algorithm with regard to the problem dimension. One of the mechanisms

that we are most focused on is the step-size adaptation mechanism. We use an ap-

proach similar to the 1/5th rule which uses the success probability of the algorithm

6

to adapt the step-size.

Furthermore, we evaluate the performance of the new designed surrogate-assisted

evolution strategy on some simple test functions. These test functions are all un-

constrained, non-noisy and uni-modal. That is because we want to investigate only

the effects of surrogate modeling on evolution strategies by removing the side effects

that any complementary extension can have on these algorithms. For instance, multi-

modal and anisotropic problems can be better optimized, if we use evolution strategies

with bigger values of µ and λ, or if we use covariance matrix adaptation in addition

to the surrogate modeling. These complementary features are further explained in

chapter 2.

This research expands our work [29] in surrogate assisted (1 + 1) evolution strate-

gies, where we used a new mechanism for step-size adaption of surrogate assisted

(1 + 1)-ES. In this research we were able to reach a similar degree of speed-up com-

pared to our research [29] on most of the benchmark problems. However, on more

ill-conditioned problems such as Quartic function, we were able to improve the algo-

rithm’s performance.

The contributions of this thesis are as follows:

• A modification of surrogate-assisted (1+1)-ES, is introduced. This modification

is based on the Kramer’s meta-model assisted ES [32] in which the real function

only evaluates solutions that are likely to have a better fitness value based on the

surrogate model evaluation. We modify the step-size adaption mechanism and

the modeling technique to improve the performance of the surrogate-assisted

(1+1)-ES on the benchmark problems. We follow an approach similar to 1/5th

rule to develop a step-size adaptation mechanism based on the characteristics

of the proposed surrogate-assisted ES.

• Theoretical analyses of the behavior of the surrogate-assisted (1 + 1)-ES on a

quadratic sphere are derived from simulating the behavior of the inaccurate

surrogate model, using the objective function with additive Gaussian noise.

These analyses include quality measurements of the optimization algorithm such

as fitness gain and success probability (which are defined in chapter 2) in light

of the inaccuracy of the surrogate model.

7

• The proposed strategy is evaluated on a set of simple uni-modal test functions

to optimize the strategy’s parameters such as the hyper-parameters of the sur-

rogate model and the number of training points, and also to evaluate the quality

of the new step-size adaptation mechanism. By comparing the performance of

the proposed strategy with a (1 + 1)-ES, this research reports to what extent

surrogate modeling can improve the performance of (1 + 1)-evolution strategies

on the benchmark problems.

Thesis Outline

In chapter 2, we further describe related work and the necessary background for

this research. Chapter 3 describes my methodology, including analysis to explore

surrogate-assisted evolution strategies. This chapter also designs and implements a

new step-size adaptation mechanism. In chapter 4 we study the performance of the

new surrogate-assisted (1 + 1)-ES on some simple uni-modal test functions. Finally,

chapter 5 gives an overview of the whole study and future work.

Chapter 2

Background and Related Work

In this chapter, we review the previous studies about evolution strategies, especially

the (1 + 1)-ES. Then, we compare the different approaches that have been suggested

for surrogate-assisted evolution strategies based on their type of evolution control and

their type of modeling technique. Evolution control is a mechanism that determines

when the model should evaluate the offspring and when the real objective function

should evaluate them. We also review surrogate-assisted algorithms that were de-

signed for general cases, where test functions are not spherical and contain certain

types of difficulties: multi-modal, constrained and ill-conditioned problems. We do

not consider these difficulties for evaluation of the surrogate-assisted (1+1)-ES. How-

ever, we will review some strategies that were used in surrogate assisted EAs to deal

with the difficulties, as in future studies these strategies can be implemented in the

surrogate-assisted (1 + 1)-ES to generalize the algorithm for real-world problems.

2.1 Evolution Strategies

One of our main aims in this study is to analyze the behavior of surrogate-assisted

ES, and as much as possible eliminate any possible side effects that other features of

these algorithms, other than the surrogate modeling, might have on the optimization

process. Therefore, we use a simple evolution strategy (ES) on simple optimization

problems. The optimization problems can be defined as minimization of an objective

function (fitness function) f : Rn → R for any input parameter space location x ∈ Rn.

As was discussed earlier in the introduction, evolution strategies contain two main

processes: selection and variation (mutation). In this section, we introduce different

mutation operators, and then we analyze the performance of the (1 + 1)-ES on test

functions with spherical fitness countours. These analyses will be further used in

chapter 3 to investigate the behavior of a surrogate-assisted (1 + 1)-ES.

8

9

2.1.1 Mutation Operators

As a part of every evolution strategy procedure, unbiased variations known as mu-

tations are added to solutions of the parent generation. These variations are de-

rived from a multivariate normal distribution N(0, C) , where zero is the mean and

C ∈ Rn∗n is the covariance matrix of the mutation. Hansen et al. [21], categorize the

mutation operators into three categories.

• Isotropic where the covariance matrix is proportional to the identity matrix.

Therefore, the mutation can be denoted as x + σN(0, I), where x is a solution

and σ ∈ R+ is the step-size.

• Axis-parallel where the principal axes of the mutation distribution are parallel

to the axes of the coordinate system.

• General where there is a mutation operator with a symmetric and positive

definite covariance matrix.

In this study, we only use the isotropic mutation operator. That is because isotropic

mutation operators are easier to analyze and they perform efficiently on simple test

functions like the quadratic sphere. Techniques such as covariance matrix adaptation

(CMA) can be used in future studies to transform other test functions to isotropic

and near-isotropic test functions and generalize the results of this study to real-world

test functions.

2.1.2 Quadratic Sphere Function

The quadratic sphere is a well-known optimization problem whose optimization re-

sults have significant importance, while it is simple enough to be analyzed. As simple

as this optimization problem is, any optimization algorithm that cannot efficiently

solve the quadratic sphere, it most likely cannot solve the other optimization prob-

lems as well. Arguably, we can further generalize this test problem using covariance

matrix adaptation (which will be discussed in the next section) as CMA in some cases

might be able to transform other functions into the sphere. The quadratic sphere can

be defined as

f(x) =
n∑
i=1

(xi − xoi)
2 (2.1)

10

Figure 2.1: This figure from [2] shows z′A = zA ∗ σ and z′B = zB ∗ σ as the two
components of the mutation vector z′.

where x ∈ Rn is an input space location and xo ∈ Rn is the optimizer space location.

2.1.3 The (1 + 1)-ES

In this section, we will review previous studies and theoretical analysis around the

(1 + 1)-ES. The (1 + 1)-ES is a simple evolution strategy that unless weighted recom-

bination is considered, is more efficient for the sphere than any other (µ/ρ +, λ)-ES.

In (1 + 1)-ES, in each iteration, a new offspring is created using a mutation operator.

The mutation x + zσ includes a vector of n normally distributed elements z and a

step-size of σ (also known as mutation strength). In a minimization problem using

this definition, the new offspring replaces its parent only if it has a lower objective

function value than its parent (Equation 2.2).

f(x) > f(x + zσ) (2.2)

The performance of (1 + 1)-ES can be evaluated using fitness gain. Fitness gain q of

an input space location x ∈ Rn with mutation vector of zσ is

q(z, σ) = f(x)− f(x + zσ) (2.3)

Using the approach used by Rechenberg [43] the mutation vector can break into

two vectors zA and zB, where zA is the component of z in the direction of the negative

11

gradient −∇f at the parent space location, and zB is orthogonal to the direction of

zA. We can use the isotropic nature of the mutation to, without loss of generality,

transform the vectors in a way that zA = (z1, 0, ..., 0)T and zB = (0, z2, ..., zn)T (Figure

2.1). Using the distance between parent and the location of the optimizer (R) and

the distance between offspring and location of the optimizer (r) , in a quadratic sphere

we can conclude
r2 = (R− σz1)2 + σ2‖zB‖2

= R2 − 2Rσz1 + σ2z21 + σ2‖zB‖2
(2.4)

Since ‖zB‖2 is the sum of squares of n − 1 standard normally distributed random

variables, ‖zB‖2 has a mean of n − 1 and a variance of 2(n − 1). Therefore, when

n → ∞, ‖zB‖
2

n
→ 1. We can also state that when n → ∞ the value of z21 can be

neglected compared to the value of ‖zB‖2. Therefore, the fitness gain can be written

as

q(z, σ) = R2 − r2

= 2Rσz1 − nσ2
(2.5)

Furthermore, we can use the normalized mutation strength and normalized fitness

gain definitions as it was introduced by Rechenberg [43]

σ∗ = σ
n

R
(2.6)

q∗ = q
n

2R2
(2.7)

From Equations (2.5), (2.6) and (2.7), it can be concluded that the potential fitness

gain of a mutation is

q∗ = σ∗z1 −
σ∗2

2
(2.8)

Therefore, the distribution of normalized fitness gain of mutation on a quadratic

sphere has the mean of −σ∗2/2 and variance of σ∗2, and the probability density

function of

pq∗(x) =
1√

2πσ∗
exp

(
−1

2

(
x + σ∗2/2

σ∗

)2
)

(2.9)

Another measurement that can be used to describe the behavior of the (1 + 1)-ES

12

is the success probability of the algorithm. In (1 + 1)-ES, success probability can be

defined as the probability of an offspring being superior to its parent. From equation

(2.8), the (1 + 1)-ES is only successful if σ∗z1− σ∗2

2
> 0, and therefore z1 >

σ∗

2
. Since

z1 is a standard normal random variable, the success probability of (1 + 1)-ES on a

quadratic sphere is

psucc = Prob

[
σ∗z1 −

σ∗2

2
> 0

]
= Prob

[
z1 >

σ∗

2

]
= 1− 1√

2π

∫ σ∗
2

−∞
e−

1
2
t2dt

= 1− Φ

(
σ∗

2

)
(2.10)

where Φ is the cumulative distribution function of the standard normal distribution.

Φ (x) =
1√
2π

∫ x

−∞
e−

1
2
t2dt (2.11)

In each iteration the (1 + 1)-ES with the probability of (psucc = Prob[z1 >
σ∗

2
])

has a normalized fitness gain of σ∗z1− σ∗2

2
and with the probability of 1− psucc has a

normalized fitness gain of zero. Therefore, we can find the average normalized fitness

gain using the following formula

E
[
q∗+
]

=
1√
2π

∫ ∞
σ∗
2

(
σ∗z1 −

σ∗2

2

)
e−

1
2
z2dz1

=
σ∗√
2π
e
−1
8
σ∗2 − σ∗2

2

[
1 + Φ

(
σ∗

2

)] (2.12)

These equations are made for a quadratic sphere, where n→∞. In the next step,

we examine the accuracy of Equations 2.10 and 2.12 for the success probability and

the normalized fitness gain on quadratic functions with a finite number of dimensions.

In this experiment, we use quadratic spheres with 10 and 100 dimensions. Then, we

find the fitness gain for different values of the normalized step-size between zero and

ten. We sample 10,000 offspring for each value of σ∗, then, we measure the average

13

fitness gain and success probability of the samples. The step-size is calculated using

the distance of the parent to the optimum R and the normalized step-size definition

σ∗ = σ n
R

. The average normalized fitness gain can be calculated by averaging over the

differences between the function values of the successful offspring and their parent.

The success probability can be measured by dividing the number of samples that

offspring are superior to their parent by the total number of samples of the algorithm.

Figure 2.2 shows the values of the average normalized fitness gain and success

probability both for the finite dimensions and the theoretical formulas provided in

Equations 2.12 and 2.10. Equations 2.12 and 2.10 represent the fitness gain and

success probability for infinite dimension. Figure 2.2 shows that the results of the

theoretical and experimental analysis of (1 + 1)-ES approximately match and there-

fore, we can use Equations 2.12 and 2.10 to study the behavior of (1 + 1)-ES on the

quadratic spheres that n is not ∞.

2.1.4 The 1/5th Rule

In Figure 2.2, the values of the normalized fitness gain for various values of the nor-

malized step-size suggests that the maximum normalized fitness gain for a quadratic

sphere is 0.202. This performance can be achieved when the normalized step-size is

1.224 and the success probability of the algorithm is 27%. Rechenberg [43], used the

optimum success probability of the quadratic sphere alongside the optimum success

probability of the corridor function, which is 0.184, to develop a step-size adaption

mechanism for (1 + 1)-ES. These two functions are both simple but very different

from each other. Therefore they represent a range of problems. Corridor function

can be defined as

f(x) =

x1 if |xi| < 1 for i = 1, 2, ..., n

∞ otherwise
(2.13)

He argued that (1 + 1)-ES reaches its optimum step-size for those test functions

when the success probability of the optimization is approximately 1/5. In this ap-

proach, known as the 1/5th rule, the step-size is controlled in a way that the success

probability remains approximately 20%. Algorithm 1 is an implication of the 1/5th

14

Figure 2.2: Expected fitness gain and success probability of (1 + 1)-ES based on
theoretical analysis (solid line) and experimental results for n = 10 (circles) and
n = 100 (stars).

15

rule for (1 + 1)-ES. We introduce this implementation in order to use it in the next

chapters to find a similar approach for adapting the step-size of the surrogate as-

sisted evolution strategies. This implementation is based on an approach suggested

by Kern et al. [30] where they used an innovative way for the algorithm to reach the

20% success rate. In each iteration of the algorithm , the step-size is increased by the

factor of e0.8/D when the offspring is superior to its parent. Otherwise, the step-size

is decreased by the factor of e−0.2/D. D controls the speed of changes in the step-size

value. Hansen et al. [21], suggested that D should be
√
n+ 1. The indicator function

1 is equal to one if the condition of the indicator is true and is equal to zero if the

condition is false.

Algorithm 1 (1 + 1)-ES with 1/5th rule

1: initialize σ ∈ R+,x ∈ Rn

2: while not happy do
3: x1 ← x + σ ∗N(0, I)
4: σ ← σ exp1/D(1f(x1)≤f(x) − 1/5)
5: if f(x1) ≤ f(x) then
6: x← x1

7: end if
8: end while

2.2 Surrogate-Assisted Evolution Strategy (SA-ES)

2.2.1 Quality Measurement

Compared to other evolutionary algorithms, surrogate-assisted evolutionary algo-

rithms have the benefit of using the simulated cheap fitness functions instead of the

original expensive function. The efficiency of surrogate-assisted evolution strategies

can be measured based on the number of fitness evaluations that the algorithm needs

to find the optimal solution with a certain accuracy. Based on this definition of effi-

ciency, Büche et al. [13] and Kern et al. [30], respectively reported speed-up by the

factor of four to five and two to eight, when they compared their surrogate-assisted

evolution strategies with the evolution strategies that do not use the surrogate mod-

eling on uni-modal test functions like quadratic sphere, Schwefel’s function. However,

for other test functions such as Rosenbrock, Büche et al. reported a smaller factor

16

of speed-up, and for Rastrigin’s function, they stated that the algorithm performs ei-

ther similar or with less efficiency than its counterparts without the surrogate model.

It can be assumed that for some optimization problems model assisted evolutionary

algorithms need less number of objective function evaluations to reach the optimal

solution. That is because they have an extra selection procedure which eliminates

offspring that are not promising based on the picture that fitness prediction develops

from the search space.

Unlike the number of function evaluations, CPU cost of the surrogate-assisted evo-

lutionary algorithms might be higher than other evolutionary algorithms. CPU cost

of the surrogate-assisted evolutionary algorithms depends on the CPU cost required

for building a surrogate model and the number of model evaluations. Although model

assisted evolutionary algorithms need less number of function evaluations than nor-

mal EAs, model approximation procedure is computationally expensive. Emmerich

et al. [16] assert that the CPU cost required for building a surrogate model is not

significant compared to the cost for an objective function evaluation in real-world

problems.

The main focus of this research is to improve the efficiency of the surrogate-

assisted EAs based on their number of fitness evaluations. However, in chapter 3,

we redefine and use measures like fitness gain and success rate to study the behavior

of surrogate-assisted evolution strategies. In chapter 4, in addition to the number

of objective function evaluations, we reduce the number of model evaluations that

algorithm needs to select an offspring.

2.2.2 Evolution Control

Evolution control is used to find a trade-off between using the expensive but accurate

objective function and cheap but inaccurate model. It determines the number of

model evaluations that need to be done, before using the real fitness function. Jin

[26] categorized the SA-ESs based on their evolution control technique into three

categories: no evolution control, fixed evolution control, and adaptive evolution control.

• No Evolution Control No evolution control is when the surrogate model is

made from the information that is given at the beginning of the optimization

17

process. After that, the entire optimization is only based on the information

that the surrogate model provides.

• Fixed Evolution Control In fixed evolution control, the real objective func-

tion is used in every iteration or after a fixed number of iterations that the

surrogate model is used to evaluate the offspring. The number of model evalu-

ation per real objective function evaluation in a surrogate-assisted ES is known

as life-length. Bajer et al. in [10] and [11] used fixed values of 1 to 5 for the

life-length.

• Adaptive Evolution Control Since the fidelity of the model changes during

the optimization process, adaptive evolution control was introduced to tune the

life-length. Loshchilov [37] used the model error to adjust the life-length. If

the error is 0, the life-length gets the maximum value. Otherwise, life-length

decreases as the model error increases.

In this study, we follow a simple approach for evolution control. We evaluate each

offspring with the model; if the offspring is successful based on the model evaluation,

then we use the real objective function for evaluation of the offspring, if not we choose

another point for model evaluation. This approach was implemented by Kramer.

Kramer [32] implemented a surrogate-assisted (1 + 1)-ES, in which in every iteration

an offspring is evaluated by the real fitness function, only if, it is better than tth best

solution in the training set based on the prediction of the model. Algorithm 2 shows

the Kramer’s Meta-Model ES (MM-ES) where xt is the tth last solution and f̂(x)

is the model prediction of a location x. Depending on the type of the test function

and the value of step-size, the objective function can be used for every offspring (life-

length of one), or it might be used after a considerable number of model evaluations.

x1 is the most recent solution and has the highest objective function value in the

training set. Therefore, setting t = 1 is the highest standard that the algorithm can

have for determining if an offspring is promising. However, Kramer uses different

values of t for different test functions. In Kramer’s approach the value of t sometimes

should be set to values from 10 to 50. That is because in some cases the model might

overestimate the function value of the offspring and therefore, reject all solutions. In

our research we fixed this problem using an approach known as normalization that

18

removes the bias in the training data. Moreover, Kramer used the 1/5th rule for the

step-size adaptation, in future chapters we will investigate whether this mechanism,

derived by Rechenberg [43], provides the optimal step-size for surrogate-assisted ES.

Algorithm 2 Kramer [32] MM-ES

1: initialize σ ∈ R+,x ∈ Rn

2: while not happy do
3: adapt σ with Rechenberg
4: x′ ← x + σN(0, I)
5: if f̂(x′) ≤ f(xt) then
6: update f̂ ← (x′, f(x′))
7: if f(x′) ≤ f(x) then
8: x← x′

9: end if
10: end if
11: end while

2.3 Modeling Techniques

In this section, we discuss the four most popular modeling techniques that have been

used in surrogate-assisted ES: Gaussian process regression, polynomial regression,

Artificial neural networks, and finally support vector regression .

2.3.1 Gaussian Process Regression

Gaussian process (GP) is a powerful machine learning method with a limited number

of hyper-parameters which can be tuned using the Maximum Likelihood Estimate

(MLE) technique. This machine learning method was employed in many studies of

surrogate-assisted evolutionary algorithms such as [16]. Another characteristic of GP

is that it is based on probabilistic (Gaussian) prediction; it can provide confidence

intervals for prediction of every point. This quality can be further used to tune the

parameters of the model and to make a balance between using the model evaluation

and the fitness evaluation (evolution control). This feature has also been used to

control the exploitation vs. exploration of the optimization process. For instance,

Emmerich et al. [16] used GP for modeling, and they added the mean squared error

of the estimation to the model function to give higher priority to the points that have

19

higher uncertainty. In what follows we further discuss the GP as well as a strategy

to tune the parameters of the GP.

In probability theory, random processes are used to describe functions. In a specific

type of random process, known as Gaussian Process, each point x in the search space

is assigned to a random variable, where the joint distribution of any finite subset of

the random variables is Gaussian. Therefore, a Gaussian Process can be defined using

a mean function m(x) and a covariance function K.


f(x1)

f(x2)

...

f(xn)

 ∼ N




m(x1)

m(x2)

...

m(xn)

 ,


K(x1,x1) ... K(x1,xn)

K(x2,x1) ... K(x2,xn)

...

K(xn,x1) ... K(xn,xn)



 (2.14)

Random processes are categorized into stationary and non-stationary random pro-

cesses. The distribution of the random variables in a stationary process is invariant

to translation in the search space. Therefore, the average of the distribution of a sta-

tionary Gaussian Process is a constant value (m(x) = m, ∀x ∈ R), and the covariance

function should only depend on the distance between the data points.

Covariance functions, also known as kernels, are the core functions in the Gaus-

sian Process that define and measure the relationship of the input data in the search

space and in correlation with other data points. This relationship in stationary ran-

dom processes can be measured by a stationary kernel, which measures the distance

between inputs invariant to translations in the search space, e.g., the Euclidean dis-

tance function. Quality of the kernels mostly depends on the type of function that is

being approximated. Certain kernels can measure particular types of relationships,

like isotropic kernels which are invariant to the rotation in the search space and

therefore they are suitable for spherical test functions.

Bajer et al. [11] used three types of kernels: kSquaredExponential, kMaternv=3/2
,

kMaternv=5/2
, which are all stationary kernels (Table 2.1). One reason that we use

these kernels is that the accuracy of the regression relies mostly on the tuning of one

20

main hyper-parameter — length-scale. Rasmussen and Williams [42] informally define

Length-scale as ”the distance you have to move in input space before the function

value can change significantly”. In this research, we use kSquaredExponential because it

is isotropic and one of the most common kernels for GP.

Name Function

Squared Exponential kSquaredExponential = exp
(
− r2

2l2

)
Matern (v = 3/2) kMaternv=3/2

= (1 +
√
3r
l

)exp(−
√
3r
l

)

Matern (v = 5/2) kMaternv=5/2
= (1 +

√
5r
l

+ 5r2

l2
)exp(−

√
5r
l

)

Table 2.1: Well-known stationary covariance functions that can be used as kernel
functions in Equation 2.14.

In this research we use the GP to create a model based on the objective func-

tion. We want to approximate the objective function f using the training data, and

a stationary Gaussian process. Gaussian process describes f as a probability density

function

p(f(x)|f(x1), ..., f(xn)) =
p(f(x), f(x1), ..., f(xn))

p(f(x1), ..., f(xn))

=
N(f(x), f(x1), ..., f(xn))|m, C̃)

N(f(x1), ..., f(xn)|m,C)

(2.15)

where N is the probability density function of a normal distribution. Based on Gaus-

sian process theorem any finite subset of the random variables in a Gaussian Process is

normally distributed. Therefore, as Equation (2.15) suggests both p(f(x1), ..., f(xn))

and p(f(x), f(x1), ..., f(xn)) can be defined as normal distributions. C is the covari-

ance matrix of the training data.

C =


K(0) K(|x1 − x2|) ... K(|x1 − xn|)

K(|x2 − x1|) K(0) ... K(|x2 − xn|)
...

K(|xn − x1|) K(|xn − x2|) ... K(0)

 (2.16)

and C̃ is the covariance matrix of the training data and the parameter space location

21

x

C̃ =



K(0) K(|x− x1|) K(|x− x2|) ... K(|x− xn|)
K(|x1 − x|) K(0) K(|x1 − x2|) ... K(|x1 − xn|)
K(|x2 − x|) K(|x2 − x1|) K(0) ... K(|x2 − xn|)

...

K(|xn − x—) K(|xn − x1|) K(|xn − x2|) ... K(0)


(2.17)

This Equation can be simplified as

C̃ =

(
K(0) kT

k C

)
(2.18)

where k is the covariance between the parameter space location x and the training

data

k =


K(|x− x1|)
K(|x− x2|)

...

K(|x− xn|)

 (2.19)

Lemma 1 (Conditional Normal Distribution [15]) If a set of normally distributed

random variables X is divided to two normally distributed sets

(
X1

X2

)
with means(

µ1

µ2

)
and covariance between the two sets defined by Cov(X) =

(
Σ11 Σ21

Σ12 Σ22

)
, the

probability distribution of the the conditional distribution of X1 given X2 = x2 is equal

to

p(X1|X2 = x2) = N(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21) (2.20)

Equation 2.15 can be interpreted as a conditional distribution of a normally dis-

tributed vector containing the parameter space location x ∈ Rn and the training data.

For µ1 = µ2 = m, and the covariance matrix equal to C̃ and by using Lemma 1, it

can be concluded that the probability density of the function value of the parameter

space location x (Equation 2.15) using GP can be approximated as

22

N(f(x)|µ, σ2) (2.21)

where µ and σ2 are the mean and the variance of the distribution, and can be denoted

as

µ = µ1 + Σ12Σ
−1
22 (x2 − µ2)

= m+ kTC−1


f(x1)−m
f(x2)−m

...

f(xn)−m


σ2 = Σ11 − Σ12Σ

−1
22 Σ21

= K(0)− kTC−1k

(2.22)

A detailed proof of the lemma 1 is available in [15].

In the next step, we have to tune the hyper-parameters of the kernel. Maximum

Likelihood Estimate (MLE) is a strategy that can be used for setting the GP’s hyper-

parameters. In this strategy, we use an optimization algorithm to find the best value

for the length-scale l that maximizes the following function

max
l
N(f(x1), ..., f(xn)|m,C)) (2.23)

In this paper, we use the Broyden-Fletcher-Goldfarb-Shanno algorithm, also known

as BFGS [14], to optimize Equation 2.23. The main problem when using MLE is that,

as Mackay [39] described it, the optimization landscape of length-scale is multimodal.

Büche et al. [13] use a combination of different search methods to find the global

optimum of the hyperparameters. First, they used CMA-ES with 3000 iterations.

Then, they used BFGS ten times. After that, they used the CMA-ES again to avoid

local optima of the search space of the length-scale. These searches add a consider-

able amount of computational cost to the optimization process. They also reported

numerical difficulties when they used the CMA-ES for optimizing the likelihood func-

tion. We further discuss the maximum likelihood estimate and the hyper-parameters

of the GP in the next chapters.

23

In a GP model, the fitness estimation of points that are too far from the training

points by default converges into the average function value of the training points

(known as normalization). However, the behavior of surrogate-assisted (1 + 1)-ES

suggests that offspring are most likely to be selected in the vicinity of the parent.

Moreover, in Figure 2.3 we can see that in some cases the average function value

of training points might be much higher than the new offspring and therefore it

might result in a model that rejects all offspring. Therefore, in this study, we use

the function value of the parent for normalization. Figure 2.3 compares the two

approaches for the normalization with models created from three and four training

points on a one dimension quadratic sphere. The training points are generated by

(1 + 1)-ES algorithm. At some arbitrary iterations, we stop the optimization and

make two models from the two approaches of normalization of the Gaussian Process.

Figure 2.3 compares the models with the real objective function. Based on the figure,

the model that is normalized based on the value of parent predicts smaller and most

likely better values for the offspring in the close vicinity of the parent.

2.3.2 Polynomial Regression

Polynomial regression is a modeling technique in which the relationship between the

input variable x ∈ Rn and the fitness function f : Rn → R is modelled to a polynomial

model function f̂ = x̃T β, where β contains the coefficients of the model. The value

of the x̃ depends on the type of model. For a linear model x̃ is (x1, x2, ..., xn, 1)T and

for a quadratic model x̃ = (x21, x
2
2, ..., x

2
n, x1, x2, ..., xn, 1)T , where x = [x1, x2, ..., xn]T .

The parameters of the model β can be selected by minimizing the least square

error function A

A =
l∑

i=1

[
(f̂(xi,β)− yi)2

]
(2.24)

where xi and yi are, respectively, space locations and function values of the training

set (xi ∈ Rn, yi ∈ R, i = 1, ..., l) and l is the number of training points.

In [30], Kern et al. used a locally weighted regression technique (LWR) for mod-

eling. This technique makes the regression more locally accurate by weighting the

24

Figure 2.3: Yellow curve is the real objective function (quadratic sphere). The blue
curve uses a GP with normalization based on the function value of the parent. The
green curve is GP with normalization over the mean of training data.

training set based on their distance to the offspring.

A(q) =
l∑

i=1

[
(f̂(xi,β)− yi)2K

(
d(xi,q)

h

)]
(2.25)

where q ∈ Rn is a query point, and K is a kernel function which has the same role

as the kernel functions in GPR, and h (like length-scale for GPR) is the distance to

move in input space before the function value changes significantly, and d finds the

distance between two points.

25

2.3.3 Artificial Neural Network

Artificial neural networks (ANNs) inspired by the biological neural networks are prob-

ably the most popular class of machine learning algorithms [34]. They were popular-

ized after Rumelhart, Hinton and Williams [45] introduced the error-backpropagation

as a technique to adjust the parameters of a multilayer perceptron. Choosing the

structure of the ANNs including the number of hidden layers, the number of neurons

in each layer and the number of connections between neurons is one of the drawbacks

of using ANNs for surrogate modeling. Ulmer et al. [49] use a three-layered ANN

with a RBF (radial basis function) activation kernel to implement a surrogate-assisted

evolution strategy, but they do not provide any evidence that the values they used

for the number of layers and the number of nodes in each layer are optimized and

whether we should use different structures for higher dimensions.

2.3.4 Support Vector Regression

Support Vector Regression (SVR) is a class of machine learning algorithms. They are

designed to find the optimal hyperplane which is the model that estimates the values

of the objective function for all training points with the margin of error of ε. A linear

model with a weight vector w can be defined as

f(x) = w0 + wTx (2.26)

where w0 is the offset and x ∈ Rn is an input data location. The objective function

can be approximated by minimizing the ‖w‖22 while the training points are within

the ε distance from the values of the model.

minimize :
1

2
‖w‖22

subject to

yi −wTxi − w0 < ε

−yi + wTxi + w0 < ε

(2.27)

where xi ∈ Rn and yi ∈ R are the training data space location and objective function

value. This type of optimization problem can be solved using quadratic programming.

In this approach we assumed that there is a function that can approximate all training

26

points with ε accuracy. However, this might not be feasible. A more advanced version

of SVR, known as soft SVR, uses two more factors ξ+i ∈ R+ and ξ−i ∈ R+, that stores

the amount of deviation that the model has from each training data. This capability

makes the regression more flexible and capable of modeling complex optimization

problems.

minimize :
1

2
‖w‖22+

1

l
C

l∑
i=1

(ξ+i + ξ−i)

subject to

yi −wTxi − w0 < ε+ ξ+i

−yi + wTxi + w0 < ε+ ξ−i

(2.28)

where C controls the effect of w vs.
∑l

i=1(ξ
+
i +ξ−i). We can also use a kernel function

to make the machine learning algorithm more suitable for modeling of non-linear

data. The classification version of SVR, known as Support Vector Machine (SVM),

has been implemented for surrogate modeling. Loshchilov [34] used a modification of

SVM, known as Ranking SVM, as the surrogate modeling alongside CMA-ES. The

Ranking SVM is trained to estimate the ranking of the points, which suits better

with the ranking based selection procedure of the CMA-ES.

2.4 General Test Functions

As was mentioned earlier, in this study, we only consider well-conditioned test func-

tions to evaluate the performance of the surrogate-assisted ES. However, in this sec-

tion, we review other types of test functions with certain types of difficulties and the

strategies that have been proposed to address these difficulties. These strategies can

be used in future work to generalize the results of this study to other test functions

and real-world problems.

2.4.1 Ill-Conditioned Functions

Optimization of ill-conditioned problems is difficult because the value of the step-size

in different directions differs significantly. In some ill-conditioned problems, this dif-

ference is too big to be handled without the use of Covariance Matrix Adaptation.

27

Covariance Matrix Adaptation (CMA), initially introduced in [24], has the potential

to transform some optimization problems to near spherical problems. CMA uses the

cumulative successful mutations from past iterations to adapt the mutation covari-

ance matrix. CMA-ES showed the best performance in the Black-Box Optimization

Benchmarking (BBOB) 2009 [22], and many real-world problems [19] compared to

other algorithms used in those papers. CMA based surrogate-assisted evolutionary

algorithms were used in several papers including [37] and [34]. Loshchilov et al. [37]

improved the performance of the support vector machine (SVM) by using the cumu-

lative information recorded in the CMA from the past iterations a priori to create a

better kernel for the modeling technique. Orekhov [41] follows the same approach to

use the CMA to adapt the kernel of the Gaussian process. In this way, kernels are

updated based on the type of problem that is being optimized.

2.4.2 Multi-Modal Functions

A location x̃ ∈ Rn is a local minimizer of function f if there is an ε > 0 that for every

point x̃ that satisfies ||x− x̃|| < ε,

f(x̃) ≤ f(x) (2.29)

The function value of the local minimizer is called local minimum. A global minimizer

of function f is a location x̃ ∈ Rn where for every point x ∈ Rn ,

f(x̃) ≤ f(x) (2.30)

The function value of the global minimizer is called global minimum.

Multi-modal functions are functions that have more than one local optimum. The

main difficulty when optimizing these functions is that the optimization algorithm

might converge into a local optimum instead of the global optimum. In [4], to handle

multi-modal functions a restart strategy for the CMA-ES, called IPOP-CMA-ES, was

introduced. This algorithm contains multiple independent restarts of the optimiza-

tion process, where the population size of offspring increases in each restart. Later

another multi-start algorithm known as BIPOP-CMA-ES [20] used two strategies:

one with growing population size where the population is doubled in each restart

28

and the other with a small but varying population size where population size varies

in [λdefault, λdefault/2]. λdefault is a relatively small population size that is adapted

for uni-modal functions. Loschilov et al. used both strategies in [36] and [38] to

reduce the chance of getting stuck in local optima in surrogate-assisted evolution

strategies. Based on the evaluation of these algorithms on COCO benchmark [23],

these algorithms were able to provide, the best result compared to other evolutionary

algorithms on some of the tests cases used in the study [38].

2.4.3 Constrained Functions

Surrogate-assisted optimization algorithms were also implemented for solving con-

strained optimization. COBRA (Constrained Optimization By RAdial basis function

interpolation), introduced by Regis [44], uses radial basis functions (RBF) to approx-

imate both the objective and the constraint functions. In [7] an implementation of

COBRA with R was able to outperform a non-model based optimization strategy on

a subset of well-known constrained problems, known as G-problems [40]. Bagheri [6]

further investigates the behaviour of COBRA with different settings and a parameter

adaptation mechanism which lead to better performance of the algorithm in higher

dimensions and especially on a benchmark of high dimensional constrained industrial

problems known as MOPTA08 [28].

Chapter 3

Analysis

3.1 Overview

As was mentioned in previous chapters, in this study, we design a surrogate-assisted

(1+1)-ES (SA-(1+1)-ES) based on the approach suggested by Kramer [32]. Kramer’s

approach used the last tth solution as a threshold to determine which offspring should

be evaluated by the objective function and which offspring should be neglected. The

choice of t seemed to be arbitrary. Kramer doesn’t suggest any strategy for choosing

the t value. In this research, we only consider t = 1, which means that if the offspring

is better than its parent based on the model evaluation, it is promising enough to be

selected for objective function evaluation. t = 1 is easier to analyze and compared

to t > 1, requires a higher standard for the offspring. In each iteration of the SA-

(1 + 1)-ES, an offspring is evaluated by the real objective function, only if, it is

promising based on the predicted fitness value of the surrogate model. We also use

a new approach for step-size adaptation. Kramer’s step-size adaptation is based on

the 1/5th rule. He uses the success rate of the objective function and the model

to adapt the step-size. In other words, one out five generations should result in an

offspring that is better than its parent based on both model and objective function

evaluation. However, in this study, we argue that the step-size in a surrogate-assisted

algorithm should be based on the accuracy of the model instead of the success rate

of the algorithm and the success rate should be only used when we want to optimize

the number of model evaluation. In this chapter, we use a noisy fitness function to

simulate the behaviour of the surrogate model, and then we use the simulation to set

the parameters of the step-size adaptation technique and to tune the hyperparameters

of the modeling algorithm.

29

30

3.2 Simulation of SA-(1 + 1)-ES on a Quadratic Sphere

In this section, we simulate the performance of the SA-(1 + 1)-ES on a Quadratic

Sphere. We follow the approach that was suggested by Beyer [12] to analyze the

performance of (1+1)-ES on noisy fitness functions. We use this approach to simulate

the modeling error in the form of Gaussian noise. Then, we investigate how this error

can affect the quality of the SA-(1 + 1)-ES. The quality of the SA-(1 + 1)-ES is

measured based on its fitness gain, true positive rate, and evaluation rate. Fitness

gain was defined in chapter 2; in this chapter, we define the evaluation rate and

true positive rate as measures to study the behaviour of surrogate-assisted evolution

strategies.

For a quadratic sphere, we can denote the predicted objective function f̃ as

f̃(x + σz) = f(x + σz) + ξ (3.1)

where ξ is the error and f is the objective function. We assume that our approxi-

mation of the objective function contains a Gaussian error. This Gaussian error is a

normally distributed scalar with a standard deviation of σε (known as noise strength).

More accurate surrogate models have smaller values of σε. We also assume that our

modeling techniques are capable of removing the systematic error in the approxima-

tion and therefore the mean of the Gaussian error in the simulations are set to zero.

Therefore, the error can be described by the following probability density function

pξ(x) =
1√

2πσε
exp(−1

2
(
x

σε
)2) (3.2)

We normalize the noise strength in the same way that we did for fitness gain in

the previous chapter

σ∗ε = σε
n

2R2
(3.3)

Where R is the distance between the parent and the optimizer.

We argue that the SA-(1 + 1)-ES can be simulated in the form of Algorithm 3. In

Algorithm 3, first, a new offspring x1 ∈ Rn is evaluated using a noisy function that

represents the model. If successful, it will be evaluated by the real objective function.

31

Otherwise, another offspring will be selected for evaluation. Throughout this process,

step-size is adapted using a mechanism that keeps the mutation strength value σ

constant with respect to distance to the optimum. This is not a real optimization

algorithm but rather a simulation of the performance of SA-(1+1)-ES on a quadratic

sphere.

Algorithm 3 Simulated SA-(1 + 1)-ES on a quadratic sphere

1: initialize σ∗ε ∈ R,x ∈ Rn

2: while not happy do

3: σ ←
σ∗

√
n∑
i=1

(xi−xoi)2

n

4: σε ←
σ∗ε

n∑
i=1

(xi−xoi)
2

n

5: Do
6: x1 ← x + σN(0, I)
7: while f(x1) + σεN(0, 1) > f(x)
8: evaluate f(x)− f(x1) to measure the fitness gain q
9: end while

In Algorithm 3, the fitness value of the parent is always accurate as it is measured

by the real objective function, but the offspring is evaluated by a noisy objective

function (surrogate model). Using the notation of noise strength, the model error can

be denoted as ξ = σεzε where zε is a standard normally distributed random variable.

Therefore, following the approach used in [1], the noisy fitness gain of the algorithm

when n→∞ can be calculated as

q∗ε = σ∗z1 −
σ∗2

2
+ σ∗ε zε

= q∗ + σ∗ε zε

(3.4)

32

Therefore, the success probability of the model evaluation peval is equal to

peval = Prob [qε∗ > 0]

= Prob

[
σ∗z1 −

σ∗2

2
+ σ∗ε zε > 0

]
= Prob

[
z2
√
σ∗2 + σ∗ε

2 − σ∗2

2
> 0

]

= Φ

(
−σ∗2/2√
σ∗2 + σ∗ε

2

)
(3.5)

where z2
√
σ∗2 + σ∗ε

2 is the sum of the two normally distributed random variables

σ∗z1 and σ∗ε zε. 1/peval represents the average number of model evaluations in each

iteration of the outer loop of Algorithm 3.

The offspring that are superior to their parents, based on the noisy fitness function,

are evaluated by the real objective function. The probability of an offspring being

better than its parent pstep, based on both the model evaluation and the objective

function is

pstep = Prob[qε∗ > 0 ∧ q∗ > 0]

=

∫ ∞
σ∗
2

pq∗(z)p
(acc)
q∗ (z)dz

=

∫ ∞
σ∗
2

pq∗(z)Φ

(
z

σ∗ε

)
dz

=

∫ ∞
σ∗
2

1√
2πσ∗

exp

(
−1

2

(
z + σ∗2/2

σ∗

)2
)

Φ

(
z

σ∗ε

)
dz

=
1√
2π

∫ ∞
σ∗
2

e−
1
2
y2Φ

(
2σ∗y − σ∗2

2σ∗ε

)
dy

(3.6)

where substitution z = (yσ∗ − σ∗2/2) has been used. p
(acc)
q∗ is the probability of an

individual offspring being selected by the inner loop in Algorithm 3 (model approx-

imation). p
(acc)
q∗ depends both on the accuracy of the model and the value of fitness

33

gain. Therefore,

p
(acc)
q∗ (y) = Prob[r2 − ξ < R2]

= Prob[−y < ξ∗]

= Φ

(
y

σ∗ε

) (3.7)

Now, based on these two probabilities pstep and peval, we can evaluate the quality of

the approximation of the value of objective function. We examine the noisy objective

function based on the number offspring that are correctly selected by the simulation.

The true positive rate ptruepositive of a surrogate-assisted ES can be defined as the

probability of an offspring being superior to its parent based on the true fitness

function, presuming that it is already better than the parent based on the model

evaluation. Therefore, using the aforementioned probabilities,

ptruepositive = Prob[q∗ > 0|qε∗ > 0]

=
pstep
peval

=

∫ ∞
σ∗
2

e−
1
2
y2Φ

(
2σ∗y − σ∗2

2σ∗ε

)
dy

√
2πΦ

(
−σ∗2

2
√
σ∗2+σ∗ε

2

)
(3.8)

Since the cost of model evaluation was assumed to be cheap, true positive rate

can be used for step-size adaption of surrogate-assisted ESs. We can also measure

the quality of a SA-ES using the fitness gain alongside the success probability. The

fitness gain of SA-(1 + 1)-ES is the average fitness improvement in each iteration of

the original fitness evaluation, where the offspring are superior to their parent based

34

on the model evaluation (fitness gain cannot have a negative value).

η =

∫ ∞
σ∗
2

zpq∗(z)p
(acc)
q∗ (z)dz

peval

=

∫ ∞
σ∗
2

(
σ∗y − σ∗2/2

)
e−

1
2
y2Φ

(
2σ∗y − σ∗2

2σ∗ε

)
dy

√
2πΦ

(
−σ∗2

2
√
σ∗2+σ∗ε

2

)
(3.9)

where substitution z = (yσ∗ − σ∗2/2) has been used.

In this research, we assume that on a quadratic sphere the noise strength decreases

as the optimal solution is approached. That is because the model cannot accurately

compare two points if their fitness difference is smaller than the value of the noise. In

the next sections, we provide experimental results to support this assumption. Based

on this assumption if the distribution of normalized step-size and normalized nose

remain independent of the iteration number, we can expect the algorithm to converge

linearly, with the rate of fitness gain when n→∞.

3.3 Simulation of SA-(1 + 1)-ES with Respect to Noise-to-Signal Ratio

In the next step, we compare the theoretical quality measurements with experimental

results of using Algorithm 3 on quadratic spheres with finite dimensions. We per-

form multiple optimization tasks with different values of normalized noise-strength

and normalized step-size, and then we compare the real fitness gain of Algorithm 3

with the fitness gain resulted in Equation 3.9. The experimental results come from

performing 10000 iterations of the algorithm 3, in each iteration starting from the

same arbitrary point, on quadratic spheres with 10 and 100 dimensions. From Fig-

ure 3.1 it can be concluded that for small values of σ∗ results are very close, but as

σ∗ increases, the theoretical measurements show much better fitness gain. Figure 3.1

also shows that when σ∗ε = 0, fitness gain increases with respect to σ∗. However, when

σ∗ε > 0, the fitness gain first increases and then decreases. Choosing the right value

35

Figure 3.1: Expected fitness gain of simulated surrogate-assisted (1 + 1)-ES based on
theoretical analysis n → ∞ (solid line) and experimental results for n = 10 (stars)
and n = 100 (circles). The algorithm was tested for five values of normalized noise
strength: σ∗ε = 0 (yellow), σ∗ε = 2 (red), σ∗ε = 4 (green), σ∗ε = 6 (dark blue).

of σ∗ in each iteration should be addressed by a proper step-size adaptation mecha-

nism. Figure 3.2 compares the values of evaluation rate and true positive rate of the

experimental results of the finite dimension quadratic sphere to theoretical results of

using Equations 3.8 and 3.5 for an infinite dimension quadratic sphere. The results

are very close for small values of noise and step-size. However for bigger values of

step-size and noise the results are starting to diverge from each other.

It can be argued that for real modeling algorithms, increasing the step-size itself

can increase the error of the model. Therefore, we look at the behaviour of the

algorithm with respect to the relationship between the noise strength and the step-

size. This relationship is measured using a parameter called noise-to-signal ratio or

κ.

κ =
σ∗ε
σ∗

(3.10)

36

Figure 3.2: True positive rate and evaluation rate of surrogate-assisted (1 + 1)-ES
based on theoretical analysis n→∞ (solid line) and experimental results for n = 10
(stars) and n = 100 (circles). The algorithm was tested for five values of normalized
noise strength: σ∗ε = 0 (yellow), σ∗ε = 2 (red), σ∗ε = 4 (green), σ∗ε = 6 (dark blue).

To further investigate the performance of the algorithm, we look at a case where

step-size is optimal. We use Equation 3.9 to find the optimum step-size for different

values of noise-to-signal ratio: for different values of κ, by changing the value of the

normalized step-size between 0 to 15, we find the step-size that maximizes the fitness

gain. Figure 3.3 displays the fitness gain and normalized step-size as a function of

κ, where step-size is optimum. As κ increases the normalized step-size reaches the

value of 1.224 which is the optimum step-size of (1 + 1)-ES found by Rechenberg

[43]. In addition to step-size, the values of other measures, such as normalized fitness

gain and true positive rate, respectively get closer to the values of normalized fitness

gain and success rate derived by Rechenberg for (1 + 1)-ES (Figures 3.3 and 3.4).

These plots 3.3 and 3.4 also compare the values of theoretical analysis of the fitness

gain, evaluation rate, step-size and true positive rate of the Equations 3.5 and 3.9 to

experimental results.

3.4 Step-size Adaptation of the Simulated SA-(1 + 1)-ES

In this section, we study the effects of the accuracy of the model on the performance

of the simulated SA-(1 + 1)-ES. We use the true positive rate as a measure for the

accuracy of the model. This study follows the Rechenberg’s approach to adapt the

step-size. As was explained in the previous chapter, Rechenberg [43] found out that

37

Figure 3.3: Optimal fitness gain and optimal normalized step-size as a function of
noise-to-signal ratio when the step-size has the optimal value on quadratic spheres.
Experimental results are for quadratic spheres with 10 (yellow stars), and 100 (red
circles) dimensions. The theoretical result are for a quadratic sphere, where n → ∞
(orange). The solid blue line represents the (1 + 1)-ES without surrogate modeling.

Figure 3.4: Optimal evaluation rate and optimal true positive rate as a function of
noise-to-signal ratio when the step-size has the optimal value. Experimental results
are for quadratic spheres with 10 (yellow stars), and 100 (red circles) dimensions.
The theoretical result are for a quadratic sphere, where n→∞ (blue).

38

for (1 + 1)-ES, on certain test functions, the optimal value of the success probability

is about 20% (the 1/5th rule). In this study, we are looking for a similar approach

to adapt the step-size based on the true positive rate, where the step-size increases

if the model can correctly select a superior offspring. Otherwise, the step-size should

decrease till the model becomes accurate enough to predict the objective function.

For different values of noise-to-signal ratio, we use Equation 3.8 to find the step-

sizes that result in arbitrary values of true positive rate. Then, we use those step-sizes

to calculate other quality measures. Figure 3.5 illustrates the values of fitness gain

and step-size as a function of noise-to-signal ratio. The solid blue lines are the values

of the measures when the fitness gain is at its highest. Figure 3.5 shows for the values

of noise-to-signal ratio higher than one, the optimum fitness gain is close to the fitness

gain of the case where true positive rate is 30% and for the values of noise-to-signal

ratio higher than two the values of the optimum fitness gain and the fitness gain of

30% true positive rate, almost match. In the next sections, we will observe that for

a quadratic sphere the values of the noise-to-signal ratio are typically more than one

or very close to one and therefore using the objective true positive rate of 30% leads

to near-optimal performance. This conclusion can be made from Figure 3.6, which

contains the relative fitness gain (normalized fitness gain/optimum fitness gain) as

a function of κ. In the next chapter, we design and examine a step-size adaptation

based on the true positive rate. Using this value also means that theoretically for any

value of κ the algorithm arguably does not perform worse than (1 + 1)-ES. That is

because when the model is inaccurate the algorithm works very similar to the simple

(1 + 1)-ES and the true positive rate has the same effect as the success probability.

Therefore, 30% true positive rate is like using 30% for the success rate.

3.5 Evaluation of the Model Error

In this section, we implement a Gaussian process regression (GPR). Then, we compare

the behaviour of the surrogate model created by GPR with some of the assumptions

that we made earlier in this chapter.

We start by testing Equation 3.3, where it was assumed that the noise strength

is proportionate to the value of the objective function and therefore they were nor-

malized in the same way. We use algorithm 4, which unlike Algorithm 3, uses a real

39

Figure 3.5: Normalized expected fitness gain and normalized step-size as a function
of noise-to-signal ratio when n → ∞ for different values of true positive rate. The
solid blue line displays the case where the step-size has the optimum value. Other
lines are the cases where the true positive rates of the algorithm are 50% (red), 30%
(green) and 10% (orange).

Figure 3.6: Normalized expected fitness gain divided by the optimum fitness gain, for
different values of true positive rate. Lines display cases where the true positive rate
of the algorithm has the values of 50% (red), 30% (green) and 10% (orange).

40

Algorithm 4 Surrogate-assisted (1 + 1)-ES with simulated step-size adaptation for
quadratic sphere

1: initialize x ∈ Rn, P ← ∅, σ∗, h
2: while not happy do

3: σ ←
σ∗

√
n∑
i=1

(xi−xoi)2

n

4: for k ← 1 to h do
5: x1 ← x + σN(0, I)
6: Evaluate x1 using the model, yielding fε(x1)
7: end for
8: P ← P ∪ [x1, f(x1)]
9: Update the Model M
10: if f(x1) < f(x) then
11: x← x1

12: end if
13: end while

modeling algorithm. However, the step-size is chosen manually. The algorithm starts

at a random point with zero mean and unit covariance matrix. The test function

is a quadratic sphere with 10 dimensions. In each iteration of the outer loop of the

Algorithm, we use the points that were evaluated by the objective function in the

past 40 iterations to create a model of the objective function. The model is built

by a Gaussian process regression algorithm with the length-scale of 3.5σ
√
n. As was

stated in the previous chapter the model is normalized based on the minimum value

in the training set (parent). The values of the hyperparameters will be discussed in

the next sections. After making the model, the algorithm generates 1000 (h = 1000)

offspring with the step-size of σ∗. These 1000 offspring does not affect the progress of

the algorithm. They are only generated to evaluate the accuracy of the model. We

measure the variance of the difference between the objective function and the model

prediction. This value is the noise strength of the model. We calculate the normalized

values of the error using Equation 3.3. Figure 3.7 shows the noise strength and the

normalized noise strength for the first 200 iterations of the algorithm for σ∗ = 0.8, 1.2

and 1.6. The value of the noise strength decrease as the algorithm gets closer to the

optimum. The plot of normalized noise strength shows that error values appear to be

from a stable distribution and the error in the modeling seems to be proportionate

to the value of the objective function.

41

Figure 3.7: σ∗ε Normalized noise strength, noise strength and objective function. The
values of normalized step-size in the experiments are σ∗ = 0.8 (red), σ∗ = 1.2 (green),
σ∗ = 1.6 (blue).

Another parameter that needs to be investigated is the relationship between step-

size and noise strength also known as κ. We measure the value of the noise strength

of the model for normalized step-size between 0.5 and 4.5. Figure 3.7 shows the

values of normalized noise strength and the distribution of the normalized error as a

function of step-size after 10 trials of the algorithm. According to Figure 3.7, noise

strength increases with respect to the value of step-size. It also shows that for the

values of normalized step-size higher than one and in the range of the experiment

the value of normalized noise strength is higher than normalized step-size. In other

words, κ is bigger than one. This is important because we assumed in the previous

sections that the value of κ is most likely either higher than one or very close to one

and then based on that we suggested that 30% true positive rate gives us the near

optimal performance on most cases.

42

Next, we look at the probability density of the model error, and we compare that

with a Gaussian function with the same variance. In this comparison, we use the

histogram and the kernel density estimation (KDE) of the error. KDE and histogram

are two standard approaches to estimate the probability density of data. We create

the histogram and KDE for both model error and a normal function with the same

mean and standard deviation. Then, we visually compare them. Figure 3.8 compares

the error of the model with a normal random variable. Results arguably support

the idea of simulating the surrogate model using the objective function with additive

Gaussian noise.

Figure 3.8: Modeling error. The blue histogram and curve represent the results of
histogram and KDE of error, green histogram and curve are for a normal function
with the same variance and mean.

3.6 Adaptation of Hyperparameters

3.6.1 Length-Scale

In addition to the step-size, hyperparameters of the modeling algorithm also affect

the noise strength of the model. Figure 3.9 illustrates the effects of the length-scale

on the noise strength and the bias of the error. This data was gathered from changing

the length-scale of the Gaussian Process from 10 to 100 on the algorithm 4 with the

43

Figure 3.9: Modeling error variance and mean, as a function of length-scale.

same specifications that were mentioned in this section. Length-scale, as the main

hyper-parameter of the GP with a squared exponential kernel, determines the speed

of fluctuations in the model function. The most common approach to adapt the

length-scale is Maximum Likelihood Estimate (MLE). However, as was mentioned in

the earlier chapters, the search space of the Likelihood function, Equation 2.23, is

multi-modal and necessitates a heavy computational cost. In this chapter, we use

some features of the optimization problem and evolution strategy such as the step-

size and number of dimensions of the optimization problem to improve the process of

tuning the length-scale.

First, we use Algorithm 4 to find the best values of the length-scale. In this

approach in each iteration of the outer loop of the algorithm and by changing the value

of the length-scale, we find the value of the length-scale that minimizes the error of the

surrogate model. The length-scale is measured on 850 points with the value of 1.1α,

where α changes from -350 to 500. The modeling algorithm is a GPR with the previous

specifications. This is not a real length-scale adaptation algorithm, but an approach

to study the relationship between length-scale and step-size, while avoiding the local

optima for the length-scale. The optimization problem is a quadratic sphere with

ten dimensions. To create a bigger perspective of the performance of the algorithm,

we set the algorithm to start from a random point with zero mean and the variance

of 1015. Figure 3.10 compares the values of the optimum length-scale and step-size.

From this figure, it can be concluded that there is a direct relation between the values

44

Figure 3.10: Length-scale (blue), step-size (orange), objective function value (blue)
and relative length-scale (blue) as a function of objective function call, when the value
of normalized step-size is 1.2.

of step-size and length-scales.

In the next step, we use the MLE to find the values of the length-scale. As was

mentioned in chapter 2, we use a quasi-Newton method known as BFGS for the

optimization of the length-scale. The number of restarts of the algorithm, starting

point and range of the search are the parameters of the BFGS. In Figure 3.10 it can

be seen that the value of the length-scale is fluctuating between 10−1σ and 106σ. We

can use this information for choosing the range and starting point of the BFGS.

We use algorithm 4 and a benchmark containing quadratic spheres with 4, 8, 10,

16 and 32 dimensions. We change the inner loop of the algorithm to generate and

evaluate new offspring until it finds an offspring which is more promising than its

parent based on the model evaluation. Then we evaluate the point using the real

objective function. In this way, we can find the true positive rate of the algorithm.

In this experiment, we use the normalized step-size of 1.2, which provides the true

positive rate of approximately 30% on a ten-dimensional quadratic sphere. Based on

Figure 2.2 on a quadratic sphere the optimal value for success rate is approximately

30%. The number of the training points are four times number of the dimensions.

45

Other features of the algorithm are the same as the previous experiment.

Figure 3.11 shows that the modeling algorithm has the true positive rate of ap-

proximately 80% for four dimensions and smaller value of true positive rate for bigger

number of dimensions. Figure 3.11 shows that if we select random offspring using

a weak model, the true positive rate of the algorithm is about 30%, which is equal

to the success rate that we picked for the algorithm. This means that as long as

the true positive rate of the modeling algorithm is above 30%, model improves the

performance of the algorithm. We experimented with BFGS with number of restarts

from one to 500. Based on our experiments for the type of test function that we are

using and 40 training data, the number of restarts does not affect the true positive

rate of the algorithm.

Figure 3.11: True positive rate as a function of number of dimensions, when the model
selects the offspring randomly (figure on the left) which provides a true positive rate
equal to the success probability of the algorithm, and the true positive rate when we
use a relatively well-trained surrogate model (figure on the right).

In the next step, we use the values of length-scale provided by the maximum

likelihood estimate to find the relationship between step-size, number of dimensions

and the length-scale. Figure 3.12 compares the values of length-scale divided by step-

size, with the value of a function (3.5σ
√
n). The error bars show the range of values

that the length-scale takes when we use MLE for adapting the length-scale. The figure

shows that choosing 3.5σ
√
n for Gaussian process provides a near optimal length-scale

(based on MLE) for the GP. Therefore, in our experiment on SA-(1 + 1)-ES we use

this value (3.5σ
√
n) for the length-scale.

46

Figure 3.12: Length scale as a function of number of dimensions using the maximum
likelihood estimate with 150 restarts (blue line) and 3.5σ

√
n (red stars).

3.6.2 Training Set

In a surrogate assisted ES after each objective function call, the algorithm stores the

function value and space location of the evaluated offspring. This information can be

used to develop a surrogate model. However, using all of the evaluated points can

substantially increase the CPU cost of the algorithm. Additionally, the more points

we have, the harder it gets for the MLE to find the right value of the hyperparameters

of the algorithm. We can use the local information around the parent to create a local

model that can estimate the function value of the offspring that are being selected

in the vicinity of their parents. Therefore, we need to find a strategy to identify the

number of points k that should be used for training. In addition to the size of the

training set, we need to find the right strategy to select the training set. Selecting the

last k evaluated points, and selecting the k closest points to the minimum point are the

two most popular approaches for choosing the training set. Based on our experiments,

we argue that for the simple test problems considered here the two strategies usually

end up choosing the same training data. That is because as SA-ES gets closer to

47

Figure 3.13: True positive rate as a function of number of training points for different
number of dimensions. For the experiments, we used spheres with four (blue), eight
(orange), 16 (green) and 32 dimensions (red).

the optimum solution, step-size decreases and therefore in each generation the newest

offspring are selected with smallest mutation from the parent.

Next, we use the GPR with the specifications mentioned above to study the effects

of the size of the training set on the performance of the algorithm. For this purpose,

we use the notation of the true positive rate to evaluate the accuracy of the model in

Algorithm 4. For each iteration of the outer loop of the Algorithm 4 we generate 1000

random offspring. We evaluate the random points using both the surrogate model

and the objective function. Then, for different values of the size of the training set

and the number of dimensions (4, 8, 10, 16 and 32) we measure the true positive

rate of the surrogate model. Figure 3.13 shows the true positive rate of the quadratic

spheres as a function of the number of training points. It can be seen that for a

smaller number of training points the value of true positive rate is quite small. In

other words, there is not enough information for creating the model. As we increase

the number of training points the true positive rate gets better, until a certain point.

48

For the values larger than four times number of dimensions, the value of true positive

rate do not get any better. Therefore, in this research we use the most recent 4n

solutions as the training set for our modeling algorithm.

Chapter 4

Surrogate-Assisted (1+1) Evolution Strategy and

Experiments

In the previous chapter, we implemented a simulated version of a surrogate assisted

(1 + 1)-ES on a quadratic sphere. We used those simulations to study different

aspects of SA-ESs. We introduced some quality measures such as fitness gain and true

positive rate. Then, we implemented a series of experiments, using a simple (1 + 1)-

ES, to approximate the optimum values of the hyperparameters of Gaussian process

regression. In this chapter, we implement and test a real surrogate assisted (1 + 1)-

ES with a real step-size adaptation mechanism, designed to work with the surrogate

model. We also use Gaussian process regression for creating the surrogate model. We

use the values that we derived in the previous chapter for the hyperparameters of the

GPR and parameters of the step-size adaptation mechanism.

First, we define the test functions that we use for the evaluation of the algorithm.

Then, we implement and test the parameters of the new step-size adaptation mecha-

nism. Moreover, we use the notation of evaluation rate to reduce the computational

cost of the algorithm. For the length-scale of GPR, we use both 3.5σ
√
n and the

maximum likelihood estimate.

4.1 Test Functions

We use a Schwefel’s function, a Quartic function and three types of sphere function.

These test functions do not represent real-world problems. However, they are simple

and easy to analyze. We can use them to study different aspects of the optimization

algorithms. It is likely that if an optimization algorithm fails on these problems, it

cannot solve real-world problems.

Table 4.1 contains the mathematical definition of each test function and some of

the parameters of the test. σ(0) is the initial value of the step-size. x(0) indicates that

all tests start from a random point with a mean of zero and a variance of one. The

49

50

global minimum of all of these test functions is zero. Based on this notation, fstop

defines the stop criteria of the optimization. The number of objective function calls

that the algorithm needs to reach fstop is considered as a measure for the efficiency

of optimization algorithms.

In the previous chapters, we discussed the importance of the quadratic sphere.

Linear and cubic sphere have many of the characteristics of the quadratic sphere,

and we expect the ES to show a similar behavior on all three spheres. But GP may

be more suitable for one sphere than another. Evaluation of the performance of the

surrogate assisted optimization algorithms on these three cases can develop a broader

understanding of the behavior of these algorithms on spherical test functions.

Schwefel’s Problem 1.2 [48] is a convex quadratic function that has been used

in many benchmarks for optimization. Schwefel [48] estimated that the condition

number of the Hessian of this function, when n = 10, is 175.1. The condition number

of Hessian is used to study the curvature of the test functions. It can be calculated by

dividing the highest eigenvalue of the Hessian matrix by the smallest eigenvalue in the

Hessian matrix. Typically, the smaller the condition number of the Hessian matrix,

the easier would be for the optimization algorithm to find the optimal solution. Büche

et al. [13] asserted that the function’s contours are hyper-ellipsoids which are rotated

relative to the coordinate axes of the search space. Compared to the spheres, it might

be more difficult for our modeling algorithm with an isotropic kernel to model this

type of test function.

The Quartic function is a modification of the function
∑n−1

i=1 [β(xi+1− x2i)2 + (1−
xi)

2] where β = 1 [5]. This test function, when n = 10, has a condition number

of Hessian equal to 49 at the optimizer. It can be considered as a simpler version

of Rosenbrock function. Rosenbrock is a well-known optimization problem β = 100

which has a high value of condition number of Hessian at the optimizer (more than

3,500, when n = 10). As a result, it is very difficult to solve this problem with the

isotropic mutation. Therefore, we use the problem with β = 1 for evaluation of our

SA-(1 + 1)-ES.

Figure 4.1 shows the number of objective function calls that a simple (1 + 1)-ES,

starting from the location of x(0) and step-size of σ(0) needs to reach fstop. The values

are the result of 100 runs of the algorithm. Table 4.2 shows the median value for the

51

number of objective function call. By comparing the number of objective function

calls that the surrogate-assisted ES needs to reach fstop with the values in Table 4.2,

we find to what extent surrogate models can improve our evolution strategy.

Name Function fstop x(0) σ(0)

Linear Sphere flinearsphere = (
∑n

i=1 x
2
i)

1
2 10−8 N(0, I) 1

Quadratic Sphere fquadraticsphere =
∑n

i=1 x
2
i 10−8 N(0, I) 1

Cubic Sphere fcubicsphere = (
∑n

i=1 x
2
i)

3
2 10−8 N(0, I) 1

Schwefel’s function fschwefel′sfunction =
∑n

j=1(
∑j

i=1 xi)
2 10−8 N(0, I) 1

Quartic function fQuartic =
∑n−1

i=1 [(xi+1 − x2i)2 + (1− xi)2] 10−8 N(0, I) 1

Table 4.1: Test functions and parameters of the test

Dimension 4 8 10 16 32

linear sphere 557.5 1038.0 1270.0 1982.0 3887.5
Quadratic sphere 290.5 535.5 673.0 1068.0 2084.0

Cubic sphere 211.0 383.0 472.0 764.5 1517.5
Schwefel’s 397.0 1558.5 2367.0 6294.0 26167.0

Quartic function 1016.0 3164.0 4335.0 7539.0 15970.5

Table 4.2: Median number of objective calls (1 + 1)-ES

4.2 Step-Size Adaptation

Rechenberg in [43] showed that the success rate of an evolution strategy could be used

to adapt the step-size. Using the analysis from the past chapters, we design a new

step size adaptation mechanism with three coefficients for SA-(1 + 1) ES (Algorithm

5) that adapts the step-size based on true positive rate and evaluation rate of the

algorithm.

Evaluation rate is the success rate of a model evaluation, and true positive is the

success rate of a objective function evaluation. Since, the cost of the model evaluation

is usually not considerable compared to the cost of an objective function call, in this

section we only use the true positive rate for adapting the step-size. In chapter 3 and

based on Figures 3.5 and 3.6, we concluded that for a quadratic sphere when n→∞
the optimum value of true positive rate varies based on the value of noise-signal-ratio.

We also assumed based on the experiments on a quadratic sphere in Figure 3.7 that

the noise-to-signal ratio for suitable values of step-size is usually either higher than

52

Figure 4.1: Number of objective function calls as a function of number of dimensions.
Lines display the median and error bars show the range of the results of 101 runs of
the algorithm.

one or some value close to one. Therefore, the optimum value for true positive rate is

approximately 30%. 30% true positive rate also guarantees that on the test function

mentioned above no matter how inaccurate the models are, the fitness gain of the

algorithm is never worse than the (1 + 1)-ES. If we use values of true positive rate

smaller than 20% and the model works inaccurately then the performance of the

surrogate assisted (1+1)-ES might not be even as good as the simple (1+1)-ES with

1/5th rule step-size adaptation mechanism.

We design a SA-(1 + 1)-ES (Algorithm 5), where two coefficients c2 and c3 are

used for adapting the step-size (in this section we do not use one of the coefficients

c1 = 0). Coefficient c2 is used in line 16 where the offspring selected by the model

evaluation is not successful based on the objective function. Second coefficient c3 (line

14) is used to increase the step-size if an offspring is better than the parent based on

the original function evaluation. Finding a balance between the values of these two

coefficients has a crucial effect on the quality of the step-size adaptation mechanism.

The inner loop of the algorithm continues until it finds an offspring that is superior

to the parent based on the model evaluation. For other parameters such as D we use

53

Algorithm 5 Surrogate assisted (1 + 1) ES

1: initialize x ∈ Rn, c1 ≥ 0, c2 > 0, c3 > 0, P ← ∅
2: while not happy do
3: do
4: x1 ← x + σN(0, I)
5: Evaluate x1 using the model, yielding fε(x1)
6: if fε(x1) > f(x) then
7: σ ← σe(−c1/D)

8: end if
9: while fε(x1) > f(x)
10: P ← P ∪ [x1, f(x1)]
11: Update the model fε
12: if f(x1) < f(x) then
13: x← x1

14: σ ← σe(c3/D)

15: else
16: σ ← σe(−c2/D)

17: end if
18: end while

the same values as what we used for Algorithm 1.

As was mentioned in chapter 3 we use ptruepositive as the probability of an offspring,

selected by the model, being better than its parent based on the original function eval-

uation. Therefore, in Equation 4.1 we can expect the step-size to remain unchanged

if

−peval(1− ptruepositive)c2 + peval(ptruepositive)c3 = 0 (4.1)

which can be simplified as

−(1− ptruepositive)c2 + (ptruepositive)c3 = 0 (4.2)

c2
ptruepositive

=
c3

1− ptruepositive
(4.3)

Kern et al. [31] asserted that for (1 + 1)-ES if we use 1 − 0.2 for the coefficient of

having a successful selection and 0.2 for the coefficient of having a failure (offspring

not being better than the parent), the algorithm reaches the success rate of 20%. We

can use a similar approach to reach the true positive rate of h by setting c3 to be 1−h
and c2 = h. These coefficients also keep the balance in the Equation 4.3, which means

54

the true positive rate can be expected to reach the value of h when these coefficients

are applied.

4.3 Performance with Respect to the True Positive Rate

In this section, we evaluate the performance of Algorithm 5 for different values of the

coefficients. The goal in this section is to find the best value of true positive rate.

We use the Gaussian process regression technique with normalization based on the

minimum of the training data. In the last chapter, we showed that for modeling a

quadratic sphere function, it is desirable to use 3.5σ
√
n for the value of length-scale.

The training points of the model are the 4n last points that were evaluated by the

objective function. All of the test function are in ten dimensions. The initialization

and ending criteria of the optimization are based on the information provided in Table

4.1.

Figure 4.2 compares the speed-up of Algorithm 5 on different test functions. Speed-

up is the number of objective function calls of the (1 + 1)-ES, based on the median

results in Table 4.2, divide by the number of objective function calls of the SA-ES.

The figure is based on the median of the results of ten runs of Algorithm 5. Error bars

show the range of the values of speed-up for each value of true positive rate. We see

in this figure that for simple problems like quadratic sphere, the speed-up is slightly

better for the true positive rate of 40% compared to the case where the true positive

rate is 30%. However, for more ill-conditioned problems such as the Quartic function

and Schwefel’s function the true positive rate of 30% provides the best performance.

Therefore, we use the values of h = 0.3 and 1− h = 0.7 for, respectively, c2 and c3.

4.4 Performance with Respect to the Evaluation Rate

The accuracy of the model changes based on the location of the offspring. Points that

are closer to the training data are approximated more accurately compared to the

points that are far from the training data. Therefore, the offspring that are generated

by smaller values of step-size are more accurate than the ones generated by bigger

values of step-size. Although we use the true positive rate to have the model maintain

a certain value of accuracy for the offspring that are generated by the SA-ES, the

55

Figure 4.2: Speed-up as a function of true positive rate. Lines display the median
result of 10 runs of the algorithm. Error bars show the range of the values of speed-up.

optimization algorithm might get into a situation where the accuracy of the model is

too low for the value of step-size and therefore reject most of the generated points. In

this situation, the model might not be able to find an offspring that is better than the

parent for a large number of model evaluations. To prevent this issue, the step-size

needs to decrease until the model evaluation is successful. We implement this strategy

in Algorithm 5, where we use the coefficient c1 to control the evaluation rate.

We evaluate the values of speed-up, true positive rate and evaluation rate for

different values of c1 from zero to 10−1. The true positive rate is determined by

counting the number of objective function calls that are successful divided by the total

number of objective function calls of the algorithm. Evaluation rate is measured by

generating 100 offspring and finding how many of those are superior to their parent

based on the model evaluation. These 100 points do not affect the optimization

procedure; they are only used to find the precise evaluation rate of the algorithm at

each iteration of the outer loop.

Based on our experiments the average number of model evaluations decreases by

a factor of more than 10 when c1 changes from zero to 10−1 on the quadratic sphere.

56

However, c1 > 0 might negatively impact the speed-up of the algorithm on some test

function. For instance the speed-up of the quartic function decreased from 4.5 to

2.1 when c1 changes from zero to 10−1. Based on our experiments changing c1 from

zero to 10−3 does not affect the values of speed-up and true positive rate on our test

functions, but has a considerable impact on the evaluation rate. Therefore, by setting

c1 = 10−3 we can decrease the number of model evaluations without decreasing the

speed-up of the algorithm. In the next experiments we use 10−3 for the value of c1.

4.5 Performance with Respect to the Number of Dimensions

In this section, we investigate the quality of the SA-(1 + 1)-ES as a function of the

number of dimensions. Figures 4.4 and 4.3 display the result of using Algorithm 5

on the benchmark problems. For most of the problems in the benchmark the value

of speed-up decreases with respect to the number of dimensions. This coincides with

results in Figure 3.11 where the value of the true positive rate of the models decreased

when we increased the number of dimensions. Figures 4.4 and 4.3 display that the

values of the true positive rate is mostly constant when we change the number of

dimensions from 4 to 32, however, the speed-up changes significantly.

The values of speed-up vary based on the type of test function and the number

of dimensions. For the linear sphere, the algorithm shows a speed-up by a factor

of two to three. For the four-dimensional quadratic sphere, the algorithm is able to

reach much higher speed-up, up to 5.5 and for the 32-dimensional quadratic sphere

the speed-up by a factor of two is within the algorithm’s reach. For the cubic sphere,

speed-up changes in a smaller range between two and three. In Schwefel’s function the

surrogate model provides a speed-up of 3.5 for lower dimensions, but as the number

of dimensions increases the model becomes almost useless. Speed-up of the Quartic

function reaches a factor of up to 8.5 for four dimensions and decreases to speed-up

of the factor of two for 32 dimensions. The plots also provide the value of objective

function as a function of number of objective function calls which shows that the

algorithm is capable of having linear convergence.

Figure 4.3 also compares the value of speed-up of the Kramer’s approach (t = 1)

with the values of speed-up of our SA-(1 + 1)-ES. Kramer’s approach is a surrogate

assisted ES with 1/5th rule step-size adaptation mechanism. Our SA-(1 + 1)-ES

57

Figure 4.3: Speed-up as a function of number of dimensions. Figure displays the
speed-up for Kramer’s approach (blue), SA-(1+1)-ES when length-scale= 3.5σ

√
N

(green) and SA-(1+1)-ES when length-scale is tuned using MLE (orange).

outperforms Kramer’s approach by a factor of two to three on the Quartic function.

The performance of our approach is either better or equal in all other cases as well.

58

Figure 4.4: Objective function value as a function of number of objective function
call. True positive rate and evaluation rate as a function of number of dimensions.
The value of length-scale in the experiments is = 3.5σ

√
N .

.

On problems with a high number of dimensions (32) Kramer’s approach performance

is slightly worse than the (1 + 1)-ES. On Schwefel’s function with 32 dimensions,

the Kramer’s algorithm sometimes was not able to reach the stop criteria and the

59

step-size decreased to zero during the optimization process.

4.6 Performance with Adaptive Length-Scale

So far we used the value of 3.5σ
√
n for the length-scale. This value was found for

quadratic sphere and might not work on other test functions. In this section, we use

the maximum likelihood estimate for adapting the length-scale. As mentioned before,

we use the BFGS algorithm for finding the optimum length-scale of the MLE. The

BFGS uses one restart in a range that was determined in chapter 3.

Figure 4.3 compares the speed-up of the SA-(1 + 1)-ES when we use the MLE to

the case where we use 3.5σ
√
n for the length-scale. It can be seen that the speed-up

of the algorithm with MLE for the test functions with smaller number of dimensions

very close to the speed-up of SA-(1 + 1)-ES without using MLE. However, for larger

number of dimensions the function 3.5σ
√
n provides better values for the length scale

of the model.

Finally, Figure 4.5 shows the true positive rate and the evaluation rate of the

SA-(1 + 1)-ES with MLE as a function of the number of dimensions. As expected the

value of the true positive rate stays at 30%, and the evaluation rate is similar to the

SA-ES without the MLE.

60

Figure 4.5: Objective function value as a function of number of objective function
call. True positive rate and evaluation rate as a function of number of dimensions.
The length-scale is adapted using the MLE.

Chapter 5

Conclusion

5.1 Summary

Surrogate modeling is a well-known approach that can decrease the cost of opti-

mization by reducing the number of objective function evaluations. Although this

field has been widely studied in the past 30 years, there are still some unanswered

questions worth investigating. In particular for surrogate assisted evolution strate-

gies, arguably the most important questions are how much these algorithms can

improve the performance of evolution strategies and how changing the parameters

of the optimization problem like the number of dimensions, and different types of

difficulties such as noise (introduced in chapter 2) can affect the performance of these

algorithms. Another question worth answering is the compatibility of the current

step-size adaptation mechanisms used for surrogate-assisted evolution strategies, as

they were all initially designed for evolution strategies without the surrogate model,

and it is unclear whether they can provide optimal step-sizes once surrogate modeling

is implemented.

The related work employs multiple heuristics, which makes these algorithms very

difficult to analyze. To address these issues, we implemented a simple surrogate-

assisted (1 + 1) evolution strategy. In this study, we consider simple optimization

problems. We believe that our findings made by analyzing these simple problems can

be further generalized to more complex problems, especially with the help of other

techniques such as Covariance Matrix Adaptation (CMA).

In chapter 3, we simulated the performance of the surrogate model. We replaced

the surrogate model with noisy objective function. Using the theoretical analysis

that exists in support of (1 + 1)-ES, we were able to a certain extent imitate the

performance of a surrogate-assisted (1 + 1)-ES on a quadratic sphere. This analysis

also helped us to suggest a step-size adaptation mechanism based on the quality of

the model. To evaluate the quality of the algorithm, we introduced expected fitness

61

62

gain, true positive rate, and evaluation rate. Expected fitness gain is the average

progress toward the optimum based on the objective function value. True positive

rate evaluates the quality of the model. Evaluation rate is the probability of an

offspring being superior to its parent based on the model evaluation. This measure

affects the number of model evaluations of the algorithm. In this research we want to

optimize both types of cost: the number of objective function calls and the number of

model evaluations while giving more value to the number of objective function calls.

Based on the performance of the simulated algorithms we observed that the value of

true positive rate reaches approximately 30% when the model is very inaccurate. We

also observed that if we set the true positive of the algorithm to 30%, the algorithm

provides near optimal performance in most cases. In chapter 3, we also determined

the values of some of the parameters of the algorithm such as length-scale and number

of training data.

In chapter 4, we used a Gaussian process regression algorithm as the surrogate

modeling technique. We used simple test functions to adjust the parameters of the

new step-size adaptation mechanism. Defining the cost as the number of objective

function evaluations that an optimization algorithm needs to reach the optimal so-

lution within a certain accuracy, the surrogate-assisted (1 + 1)-ES shows a decrease

in cost by a factor of up to 6 in spherical problems and up to 8 for Quartic function

with small number of dimensions (n = 4), compared to the (1 + 1)-ES without the

assistance of the surrogate model. However, as the number of dimensions increases

the value of speed-up decreases.

Our approach shows better performance compared to Kramer’s MM-ES, when t =

1, on most of the test functions. We argue that our step-size adaptation mechanism,

which works based on maintaining the true positive rate of the algorithm at 30%, was

successful at improving the performance of the optimization on the test functions in

our benchmark. We were also able to reduce the number of model evaluations of the

algorithm by introducing a coefficient for increasing the evaluation rate.

Moreover, we used the quadratic sphere to show that the optimum value of the

length-scale changes with respect to the step-size and number of dimensions of the test

problem. For the quadratic sphere with 4 to 32 number of dimensions, we estimated

that the value of length-scale should be set to 3.5σ
√
n. It is fair to say that this value

63

might be suitable only for a quadratic sphere with a small number of dimensions. In

chapter 4, the performance of using a GPR with adaptive length-scale and a GPR

with a length-scale of 3.5σ
√
n almost matched when we used the last 4n evaluated

points for the training of the model. We can use this notation to further improve the

process of hyper-parameter adaption of GP in evolution strategies.

5.2 Future Work

This research considered the most simple test cases to simulate and design a surrogate-

assisted (1 + 1)-ES. Several directions of future research we would like to mention in

this chapter consist of analyzing the behavior of this class of algorithm on problems

with more difficulties.

• Noisy optimization problems This class of optimization problems is con-

sidered important test functions as they represent many real-world problems

where there is no access to the exact value of the objective function. Using the

analysis in chapter 3 and by adding the effects of overvaluation of the parents

(as defined in [1]) to the calculation, we can develop a simulation of the perfor-

mance of a SA-(1 + 1)-ES on a noisy quadratic sphere. These simulations can

further help us to improve the design of surrogate-assisted evolution strategies

for noisy optimization.

• Ill-conditioned optimization problems The idea behind this study was to

understand surrogate-assisted ESs on simple functions, in the hope that it can

be generalized for solving more difficult problems, especially with the help of

complementary strategies such as covariance matrix adaption. To generalize

the results of this study, we recommend a surrogate-assisted (1 + 1)-CMA-ES

with the same evolution control used in this study, should be designed and

evaluated. The parameters of the mutation operator of the CMA-ES might

need to be adjusted once the surrogate modeling is added to the algorithm.

• Parameter adaptation of the modeling algorithm In this research, we

found a direct relationship between the values of length-scale and the values of

step-size and number of dimensions. This approach can be further developed

64

to use the information from past iterations of the algorithm to tune the best

values for the hyperparameters of the algorithm.

Bibliography

[1] Dirk V Arnold. Noisy Optimization with Evolution Strategies, volume 8. Springer
Science & Business Media, 2002.

[2] Dirk V Arnold and Hans-Georg Beyer. Local performance of the (1 + 1)-ES in a
noisy environment. IEEE Transactions on Evolutionary Computation, 6(1):30–
41, Feb 2002.

[3] Dirk V Arnold and Hans-Georg Beyer. A general noise model and its effects on
evolution strategy performance. IEEE Transactions on Evolutionary Computa-
tion, 10(4):380–391, 2006.

[4] Anne Auger and Nikolaus Hansen. A restart CMA evolution strategy with in-
creasing population size. In 2005 IEEE Congress on Evolutionary Computation,
volume 2, pages 1769–1776 Vol. 2, Sept 2005.

[5] Anne Auger, Nikolaus Hansen, JM Perez Zerpa, Raymond Ros, and Marc Schoe-
nauer. Experimental comparisons of derivative free optimization algorithms.
In International Symposium on Experimental Algorithms, pages 3–15. Springer,
2009.

[6] Samineh Bagheri. Efficient Surrogate Assisted Optimization for Constrained
Black-Box Problems. PhD thesis, Leiden University, 2015.

[7] Samineh Bagheri, Wolfgang Konen, Michael Emmerich, and Thomas Bäck. Self-
adjusting parameter control for surrogate-assisted constrained optimization un-
der limited budgets. Applied Soft Computing, 61:377 – 393, 2017.

[8] Lukáš Bajer. Model-Based Evolutionary Optimization Methods. PhD thesis,
Charles University, 2018.

[9] Lukáš Bajer and Martin Holeňa. Surrogate model for continuous and discrete
genetic optimization based on RBF networks. In International Conference on
Intelligent Data Engineering and Automated Learning, pages 251–258. Springer,
2010.

[10] Lukáš Bajer, Zbyněk Pitra, and Martin Holeňa. Benchmarking gaussian pro-
cesses and random forests surrogate models on the BBOB noiseless testbed. In
Proceedings of the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation, pages 1143–1150. ACM, 2015.

[11] Lukáš Bajer, Zbyněk Pitra, and Martin Holeňa. Investigation of gaussian pro-
cesses and random forests as surrogate models for evolutionary black-box op-
timization. In Proceedings of the Companion Publication of the 2015 Annual

65

66

Conference on Genetic and Evolutionary Computation, pages 1351–1352. ACM,
2015.

[12] Hans-Georg Beyer. Ein Evolutionsverfahren zur mathematischen Modellierung
stationärer Zustände in dynamischen Systemen. Hochschule für Architektur und
Bauwesen, 1989.

[13] Dirk Büche, Nicol N Schraudolph, and Petros Koumoutsakos. Accelerating evo-
lutionary algorithms with gaussian process fitness function models. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
35(2):183–194, 2005.

[14] J. Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Society for Industrial and Applied Mathematics, 1996.

[15] Morris L. Eaton. Multivariate Statistics: A Vector Space Approach. Lecture
Notes-Monograph Series. John Wiley and Sons Inc, 1983.

[16] Michael Emmerich, Alexios Giotis, Mutlu Özdemir, Thomas Bäck, and Kyri-
akos Giannakoglou. Metamodel—assisted evolution strategies. In International
Conference on Parallel Problem Solving from Nature, pages 361–370. Springer,
2002.

[17] Alexander Forrester, Andras Sobester, and Andy Keane. Engineering Design via
Surrogate Modelling: A Practical Guide. John Wiley & Sons, 2008.

[18] John J Grefenstette and J Michael Fitzpatrick. Genetic search with approximate
function evaluations. In Proceedings of an International Conference on Genetic
Algorithms and Their Applications, pages 112–120, 1985.

[19] Nikolaus Hansen. References to CMA-ES applications (2009). http://www.lri.fr/
hansen/cmaapplications.pdf.

[20] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009
function testbed. In Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference, pages 2389–2396. ACM,
2009.

[21] Nikolaus Hansen, Dirk V Arnold, and Anne Auger. Evolution strategies. In
Springer Handbook of Computational Intelligence, pages 871–898. Springer, 2015.

[22] Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Poš́ık.
Comparing results of 31 algorithms from the black-box optimization benchmark-
ing BBOB-2009. In Proceedings of the 12th Annual Conference Companion on
Genetic and Evolutionary Computation, pages 1689–1696. ACM, 2010.

67

[23] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter
black-box optimization benchmarking 2009: Noiseless functions definitions. [re-
search report] RR-6829, Institut National de Recherche en Informatique et en
Automatique INRIA. 2009.

[24] Nikolaus Hansen and A. Ostermeier. Adapting arbitrary normal mutation distri-
butions in evolution strategies: the covariance matrix adaptation. In Proceedings
of IEEE International Conference on Evolutionary Computation, pages 312–317,
May 1996.

[25] Martin Holeňa, David Linke, Uwe Rodemerck, and Lukáš Bajer. Neural net-
works as surrogate models for measurements in optimization algorithms. In
International Conference on Analytical and Stochastic Modeling Techniques and
Applications, pages 351–366. Springer, 2010.

[26] Yaochu Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing, 9(1):3–12, 2005.

[27] Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011.

[28] Don Jones. Large-scale multi-disciplinary mass optimization in the auto indus-
try. Presented at the Modeling and Optimization: Theory and Applications
Conference (MOPTA), 2008.

[29] Arash Kayhani and Dirk V Arnold. Design of a surrogate model assisted (1 +
1)-ES. In International Conference on Parallel Problem Solving from Nature,
pages 16–28. Springer, 2018.

[30] Stefan Kern, Nikolaus Hansen, and Petros Koumoutsakos. Local meta-models
for optimization using evolution strategies. In Parallel Problem Solving from
Nature-PPSN IX, pages 939–948. Springer, 2006.

[31] Stefan Kern, Sibylle D Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek,
and Petros Koumoutsakos. Learning probability distributions in continuous evo-
lutionary algorithms–a comparative review. Natural Computing, 3(1):77–112,
2004.

[32] Oliver Kramer. Machine Learning for Evolution Strategies. Springer, 2016.

[33] Dudy Lim, Yew-Soon Ong, Yaochu Jin, and Bernhard Sendhoff. A study on
metamodeling techniques, ensembles, and multi-surrogates in evolutionary com-
putation. In Proceedings of the 9th Annual Conference on Genetic and Evolu-
tionary Computation, pages 1288–1295. ACM, 2007.

[34] Ilya Loshchilov. Surrogate-Assisted Evolutionary Algorithms. PhD thesis, Uni-
versité Paris Sud-Paris XI; Institut National de Recherche en Informatique et en
Automatique INRIA, 2013.

68

[35] Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. A mono surrogate for
multiobjective optimization. In Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation, pages 471–478. ACM, 2010.

[36] Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Black-box optimization
benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012
noiseless testbed. In Proceedings of the 14th Annual Conference Companion on
Genetic and Evolutionary Computation, pages 175–182. ACM, 2012.

[37] Ilya Loshchilov, Marc Schoenauer, and Michele Sebag. Self-adaptive surrogate-
assisted covariance matrix adaptation evolution strategy. In Proceedings of the
14th Annual Conference on Genetic and Evolutionary Computation, pages 321–
328. ACM, 2012.

[38] Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Bi-population CMA-
ES algorithms with surrogate models and line searches. In Proceedings of the
15th Annual Conference Companion on Genetic and Evolutionary Computation,
pages 1177–1184. ACM, 2013.

[39] David JC MacKay. Gaussian Processes - A Replacement for Supervised Neural
Networks? Tutorial Lecture Notes for NIPS, 1997.

[40] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary algorithms for con-
strained parameter optimization problems. Evolutionary Computation, 4(1):1–
32, 1996.

[41] Nikita Orekhov. Using gaussian processes as surrogate models for the CMA
evolution strategy. Master’s thesis, Czech Technical University in Prague, 2016.

[42] Carl Edward Rasmussen and Christopher KI Williams. Gaussian Process for
Machine Learning. MIT press, 2006.

[43] Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
den Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

[44] Rommel G Regis. Constrained optimization by radial basis function interpolation
for high-dimensional expensive black-box problems with infeasible initial points.
Engineering Optimization, 46(2):218–243, 2014.

[45] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):533, 1986.

[46] Michael D Schmidt and Hod Lipson. Coevolution of fitness predictors. IEEE
Transactions on Evolutionary Computation, 12(6):736–749, 2008.

[47] Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mit-
tels der Evolutionsstrategie. Mit einer vergleichenden Einführung in die Hill-
Climbing- und Zufallsstrategie. Birkhäuser, 1977.

69

[48] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley
& Sons, Inc., 1981.

[49] Holger Ulmer, Felix Streichert, and Andreas Zell. Model-assisted steady-state
evolution strategies. In Genetic and Evolutionary Computation Conference,
pages 610–621. Springer, 2003.

[50] Jürgen Wakunda and Andreas Zell. A new selection scheme for steady-state
evolution strategies. In Proceedings of the 2nd Annual Conference on Genetic
and Evolutionary Computation, pages 794–801. Morgan Kaufmann Publishers
Inc., 2000.

