
WORD EMBEDDINGS FOR DOMAIN SPECIFIC SEMANTIC
RELATEDNESS

by

Kyle Tilbury

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

October 2018

c© Copyright by Kyle Tilbury, 2018



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Background and Related Work . . . . . . . . . . . . . . . 3

2.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 fastText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Word Embeddings in Semantic Tasks . . . . . . . . . . . . . . . . . . 5

Chapter 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Pre-trained Word Embeddings . . . . . . . . . . . . . . . . . . . . . . 6
3.1.1 Pre-trained GloVe Embeddings . . . . . . . . . . . . . . . . . 7
3.1.2 Pre-trained fastText Embeddings . . . . . . . . . . . . . . . . 7
3.1.3 Pre-trained Biomedical Embeddings . . . . . . . . . . . . . . . 8

3.2 Developing Domain Specific Biomedical Word Embeddings . . . . . . 8
3.2.1 Training Corpora . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Learning Phrases . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Training Embeddings . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Word Embeddings for Semantic Relatedness . . . . . . . . . . . . . . 15

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Semantic Relatedness Evaluation . . . . . . . . . . . . . . . . 17
3.4.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Evaluation in the General Domain . . . . . . . . . . . . . . . . . . . . 24

ii



4.1.1 General Vocabulary Coverage . . . . . . . . . . . . . . . . . . 24
4.1.2 General Domain Relatedness Results . . . . . . . . . . . . . . 25

4.2 Evaluation in the Biomedical Domain . . . . . . . . . . . . . . . . . . 26
4.2.1 Biomedical Vocabulary Coverage . . . . . . . . . . . . . . . . 27
4.2.2 Biomedical Domain Relatedness Results . . . . . . . . . . . . 28
4.2.3 Pre-trained Biomedical Embeddings vs. Proposed Biomedical

Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 fastText Generated Representations for OOV . . . . . . . . . 29

4.3 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Quality of Nearest Neighbours . . . . . . . . . . . . . . . . . . 32
4.3.2 Capturing Appropriate Word Senses . . . . . . . . . . . . . . 32

4.4 Training Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Training Data for Biomedical Embeddings . . . . . . . . . . . 34
4.4.2 Caution on Preprocessing for Training Embeddings . . . . . . 34
4.4.3 Cost of Generating Domain Specific Embeddings . . . . . . . 36

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Appendix A Embedding Relatedness Full Results . . . . . . . . . . . 45

A.1 General Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.2 Biomedical Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Appendix B Training Better Embeddings . . . . . . . . . . . . . . . . 51

B.1 Using Subword Information . . . . . . . . . . . . . . . . . . . . . . . 51

B.2 Additional Training Data Preprocessing . . . . . . . . . . . . . . . . . 54

B.3 The Number of Phrase Generation Passes . . . . . . . . . . . . . . . 56

iii



List of Tables

3.1 Pre-trained Word Embeddings . . . . . . . . . . . . . . . . . . 7

3.2 The Proposed Biomedical Word Embeddings . . . . . . . . . . 9

3.3 Training Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Embedding Training Parameters . . . . . . . . . . . . . . . . . 14

3.5 General Relatedness Evaluation Datasets . . . . . . . . . . . . 19

3.6 Biomedical Relatedness Evaluation Datasets . . . . . . . . . . . 20

3.7 Candidate Terms for Qualitative Evaluations . . . . . . . . . . 22

4.1 General Out of Vocabulary Results . . . . . . . . . . . . . . . . 25

4.2 Biomedical Out of Vocabulary Results . . . . . . . . . . . . . . 27

4.3 Biomedical Word Embeddings Compared . . . . . . . . . . . . 29

4.4 Net Correlation Change with OOV Generated Embeddings . . 31

4.5 Word Embedding Sense Ambiguity . . . . . . . . . . . . . . . . 33

4.6 Embedding Training Times . . . . . . . . . . . . . . . . . . . . 36

4.7 Biomedical Candidate Terms Nearest Neighbours . . . . . . . . 37

A.1 Full General Relatedness Results - Spearman . . . . . . . . . . 46

A.2 Full General Relatedness Results - Pearson . . . . . . . . . . . 47

A.3 Full Biomedical Relatedness Results - Spearman . . . . . . . . 49

A.4 Full Biomedical Relatedness Results - Pearson . . . . . . . . . 50

B.1 Relatedness Impact - Subword Information (Pubmed) . . . . . 52

B.2 Relatedness Impact - Subword Information (Web) . . . . . . . 53

B.3 Relatedness Impact - Additional Preprocessing . . . . . . . . . 55

B.4 Embedding Differences - Additional Preprocessing . . . . . . . 55

B.5 Phrase Generation Passes . . . . . . . . . . . . . . . . . . . . . 57

iv



B.6 Relatedness Impact - Phrase Generation Passes (Spearman) . . 58

B.7 Relatedness Impact - Phrase Generation Passes (Pearson) . . . 59

v



List of Figures

3.1 Sample of Preprocessed Wikipedia Text - Method A . . . . . . 10

3.2 Sample of Preprocessed Wikipedia Text - Method B . . . . . . 11

3.3 Sample of Preprocessed Pubmed Text . . . . . . . . . . . . . . 12

3.4 Sample of Preprocessed OAS Text . . . . . . . . . . . . . . . . 12

4.1 General Relatedness Results . . . . . . . . . . . . . . . . . . . 26

4.2 Biomedical Relatedness Results . . . . . . . . . . . . . . . . . 28

4.3 Biomedical Relatedness with OOV Generated Embeddings . . 30

4.4 Preprocessing Effects on Relatedness Performance . . . . . . . 35

vi



Abstract

Word embeddings are becoming pervasive in natural language processing (NLP), with

one of their main strengths being their ability to capture semantic relationships be-

tween words. Rather than training their own embeddings many NLP practitioners

elect to use pre-trained word embeddings. These pre-trained embeddings are typi-

cally created and evaluated using general corpora. Thus, there is a deficiency in the

understanding of their performance within a technical domain. In this thesis, we

explore how the nature of the data used to train embeddings can affect their per-

formance when computing semantic relatedness within different domains. The three

main contributions are as follows. Firstly, we find that the performance of general

pre-trained embeddings is lacking in the biomedical domain. Secondly, we provide

key insights that should be considered when working with word embeddings for any

semantic task. Finally, we develop new biomedical word embeddings and provide

them as publicly available for use by others.
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Chapter 1

Introduction

The use of word embeddings (word vectors or word representations) has become

prevalent in many natural language processing (NLP) tasks. These representations

follow the distributional hypothesis idea that the meaning of a word can be derived

from the company it keeps [20]. Word embeddings are typically learned from large

unlabelled text copra. The learned representations are heavily dependant on the

distributional statistics of the training corpus. A main strength is that embeddings

capture the semantic relationships between words. Word representations are being

being used in a wide variety of applications such as dependency parsers, deep learning

approaches for generating image descriptions, sentiment classification, and semantic

textual similarity [9, 23, 43, 42].

Many NLP practitioners rely on publicly available pre-trained word embeddings

rather than training models themselves. Typically, these embeddings are pre-trained

using massive general corpora, including Wikipedia and web crawl data. Many of

these pre-trained representations perform well and competently transfer to new gen-

eral domain problems [30]. However, they have not been thoroughly evaluated in

specialised domains. Using these general pre-trained embeddings in an ad hoc man-

ner in a technical domain could have implications, the extent of which are currently

unknown.

To address this we evaluate popular state-of-the-art general pre-trained embed-

dings within the biomedical domain. We choose the biomedical domain due to the

wealth of domain specific resources that are available such as publicly available data,

semantic relatedness evaluation datasets, and pre-trained biomedical word embed-

dings. We propose and develop new biomedical embeddings using known strategies

to improve word embeddings: the incorporation of phrase representations and the use

of subword information from [31] and [2] respectively.

We measure the performance of the general pre-trained, biomedical pre-trained,
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and the proposed word embeddings quantitatively using semantic relatedness datasets

from both the general and biomedical domains and qualitatively using manual inspec-

tion approaches inspired by [24] and [11].

1.1 Contributions

This thesis focuses on word embeddings for domain specific semantic relatedness. We

are interested in the semantic performance implications of the nature of the training

data used to learn word embeddings. The main contributions of this thesis can be

summarised here as:

• Evaluate state-of-the-art general pre-trained word embeddings in quantitative

and qualitative semantic evaluations within the biomedical domain.

• Provide insights as to necessary precautions when training or working with word

embeddings of any nature for semantic relatedness tasks. Firstly, regarding

the training of word embeddings, we find the following: More training data

does not always equate to better embeddings. A word embedding’s semantic

performance can be greatly impacted by how that embedding’s training data

was preprocessed. Secondly, we further the understanding into the problems

that affect conventional embeddings. We find that the problem of multiple

word senses being embedded into a single representation pervades both general

and biomedical word embeddings trained with conventional methods.

• Develop biomedical word embeddings that outperform current publicly available

pre-trained biomedical embeddings and make them available for future use.



Chapter 2

Background and Related Work

This chapter details the word embedding methods used throughput this thesis and

provides instances where word embeddings are used in semantic tasks.

2.1 Word Embeddings

In this section, the three word embedding methods that pertain to this thesis are

summarised following a brief overview of word embeddings.

A word embedding is a learned mapping of a word to a real valued vector. Embed-

dings are typically learned by optimising an auxiliary objective, such as predicting

a word based on its context, in a large unlabelled corpus [54]. This follows from

the distributional hypothesis that states words that are used and occur in the same

contexts tend to purport similar meanings. As a result, word embeddings depend

heavily on the distributional statistics of the corpus that they are learned from.

Although there are many approaches for learning word embeddings, three of the

most popular methods, Word2vec [31, 29], GloVe [35], and fastText [2], are used

in this thesis. Embeddings created using these methods all exhibit useful linear

properties that capture meaningful semantic or syntactic concepts. For example, word

embeddings capture the underlying concept that distinguishes terms. The distance

between the vectors for “man” and “woman” is the same as the distance between

the vectors for “King” and “Queen”, showing that the intricate concept of gender

is captured by the embeddings. Less intuitive morphological relationships are also

captured. This is exhibited by the distance between “stronger” and “strongest” and

the distance between “darker” and “darkest” being equivalent. Additionally, word

embeddings enable the easy computation of the semantic relatedness between terms.

This is done by simply computing the cosine similarity between the the vectors of

two words.

3
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2.1.1 Word2vec

Word2vec is one of the most well known word embeddings methods. It is a predictive

model where word embeddings are learned by essentially predicting a word based on

its context [29, 31]. There are two main ”approaches” for Word2vec. The first is called

continuous-bag-of-words (CBOW). CBOW computes the conditional probability of a

target word given the context words surrounding it. The second approach, skip-gram,

is the opposite of CBOW. Skip-gram predicts the surrounding context words given

the central target word.

At a high level, either of these approaches can be conceptualised as a shallow

neural network. With skip-gram, the architecture of the network can be considered

as follows. The target word is the input layer. The word’s surrounding context is

the output layer. The middle, hidden layer, which has a dimension smaller than the

input or output layers, is the embedded word representation. Essentially, both the

word and its surrounding context are used to encode a representation of the word.

2.1.2 GloVe

GloVe is another popular approach for learning word embeddings [35]. Where as

Word2vec and fastText are predictive models, GloVe is essentially a count-based

model. GloVe embeddings are trained on the global word-word co-occurrence ma-

trix, which tabulates how frequently words co-occur with one another in a given

corpus. This co-occurrence count matrix is processed by normalising the counts and

smoothing them, followed by factorisation to get lower dimensional representations.

The underlying principle of GloVe is still derived from the distributional hypothesis.

In a context, the co-occurrence ratios between two words are strongly connected to

meaning. Despite being learned in an entirely different manner, GloVe and Word2vec

embeddings are very similar.

2.1.3 fastText

The word embedding method used the most extensively in this thesis is fastText [2]. It

can be viewed as an extension of Word2vec where word representations are replaced

with the set of character n-grams appearing in that word. Like Word2vec, it has
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both the CBOW and skip-gram models. The use of character n-grams, or subword

information, allows the embeddings to perform better in morphological tasks as the

n-grams approximate the morphemes of the words. This subword information also

has the additional benefit of enabling the generation of representations for terms

that were not in the training vocabulary. Since embeddings are learned for sets of

characters n-grams, these n-gram embeddings can be used to build an embedding

corresponding to the n-grams of an out of vocabulary (OOV) term.

2.2 Word Embeddings in Semantic Tasks

Word embeddings and word embedding based features have been used in many se-

mantic based tasks. Semantic similarities and patterns of key phrases in scientific

publications were explored using pre-trained word embedding models [25]. This work

proposed Word Embedding Distance Pattern, which uses the head noun word em-

bedding to generate distance patterns based on labelled keyphrases, as a feature to

enhance conventional Named Entity Recognition. In another work, pre-trained word

embeddings were used to construct sentence embeddings and the cosine similarity

between sentence embeddings was used as a feature in a ridge regression model for

sentence similarity [42].



Chapter 3

Methodology

This chapter begins with summaries of the pre-trained embeddings that we utilise

throughout this thesis. This is followed by detailing the new proposed biomedical do-

main embeddings. Finally, we discuss using word embeddings for semantic relatedness

and define the evaluation procedures.

3.1 Pre-trained Word Embeddings

This section outlines the five pre-trained word embeddings that are employed in

this thesis. Three of these are popular, cutting edge pre-trained general embeddings

trained using GloVe and fastText on massive general corpora. These corpora include

Common Crawl, Wikipedia, the UMBC WebBase corpus, and the statmt.org news

dataset. Common Crawl is a corpus containing petabytes of web crawl data collected.

Wikipedia is an online open content encyclopedia. The UMBC WebBase corpus

is a dataset of high quality English paragraphs containing over three billion words

derived from a 2007 web crawl. The statmt.org news dataset consists of political and

economic commentary crawled from news articles. The three embeddings trained on

these corpora are the main focus of the evaluation of general word embeddings in a

technical domain.

Since we are working in the biomedical domain we have access to available high

quality pre-trained domain specific embeddings which are the two additional pre-

trained embeddings compared in this work. Both of these biomedical embeddings

are pre-trained on Pubmed which is a collection of citations for biomedical literature

from life science journals and online books.

All of the pre-trained embeddings we use in this work are summarised in Table 3.1.

6
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Embeddings
Vocabulary

Size
Training Size

(Tokens) Reference

GloVe-Web 2.2 million 840 billion [35]
fastText-Web 2 million 600 billion [30]
fastText-WikiNews 1 million 16 billion [30]

Word2vec-Pubmed-[10] 2.2 million 2.9 billion [10]
Word2vec-Pubmed-[27] 2.7 million 3.6 billion [27]

Table 3.1: Pre-trained Word Embeddings: Summary of the pre-trained word embed-
dings used in this work. The first three rows are general pre-trained embeddings and
the last two rows are pre-trained biomedical embeddings.

3.1.1 Pre-trained GloVe Embeddings

The available general pre-trained GloVe embeddings are a popular resource for many

machine learning and NLP practitioners. The specific pre-trained GloVe embeddings

that we analyze in this work are:

• glove.840B.300d.zip: 2.2 million 300-dimensional word vectors trained on Com-

mon Crawl (840B tokens) which we refer to as GloVe-Web. Taken from [36].

3.1.2 Pre-trained fastText Embeddings

Recent work in pre-trained word embeddings combines a number of heuristics to train

state-of-the-art, high quality, large pre-trained word emebddings which are made pub-

licly available [30]. Pre-trained embeddings trained on a corpus of Wikipedia+News

data and embeddings trained on Common Crawl web data are provided. We as-

sess the quality of these embeddings when applied to relatedness in the biomedical

domain. The embeddings we use are:

• wiki-news-300d-1M-subword.vec.zip: 1 million 300-dimensional word vectors

trained with subword information on a Wikipedia dump from 2017, the UMBC

webbase corpus and the statmt.org news dataset (16B tokens) which we refer

to as fastText-WikiNews. Taken from [13].

• crawl-300d-2M-subword.zip: 2 million 300-dimensional word vectors trained

with subword information on Common Crawl (600B tokens) which we refer
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to as fastText-Web. Taken from [13].

3.1.3 Pre-trained Biomedical Embeddings

Within the biomedical domain there has been work to develop quality domain specific

embeddings and provide high quality pre-trained biomedical word embeddings [10, 22,

27]. In this thesis, we use two different pre-trained trained biomedical embeddings.

First, the embeddings developed in [10]:

• PubMed-shuffle-win-2.bin: 2.2 million 200-dimensional word vectors trained on

Pubmed (2.89B tokens) which we refer to as Word2vec-Pubmed-[10]. Taken

from [8].

The embeddings were trained using the Word2vec model with a substantial amount

of work into parameter optimisation. For further details of the embedding training

parameters we refer to [10].

Second, the more recent pre-trained biomedical embeddings from [27]:

• pubmed2018 w2v 200D.bin: 2.7 million 200-dimensional word vectors trained on

Pubmed (3.58B tokens) which we refer to as Word2vec-Pubmed-[27]. Taken

from [4].

The Word2vec-Pubmed-[27] embeddings are trained on the 2018 Pubmed baseline

which is also used as an embedding training resource in this thesis. For further

details on these embeddings refer to [5].

The main difference between these two pre-trained biomedical embeddings is that

Word2vec-Pubmed-[10] embeddings are trained using Pubmed data from 2016, where

as Word2vec-Pubmed-[27] embeddings are trained on the 2018 Pubmed baseline. Ad-

ditionally, this Pubmed text was extracted and cleaned using different approaches for

each of the embeddings.

3.2 Developing Domain Specific Biomedical Word Embeddings

This section delves into the development of domain specific word embeddings. First,

we outline the corpora used to train embeddings in this thesis. Secondly, we describe

a brief exploration of the effects data preprocessing can have on trained embeddings
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and detail the data preprocessing used on the training corpora. Third, we enrich word

embeddings by incorporating phrases into the learning process. Finally, we expound

the training process with the fastText library [16, 15]. As stated above fastText

word representations improve over more conventional word methods by incorporating

subword information into the representations. We propose three different biomedical

embeddings using two biomedical datasets and a combination of them. These are

summarised in Table 3.2.

Embeddings
Vocabulary

Size
Training Size

(Tokens)

fastText-Pubmed 1.0 million 3.4 billion
fastText-OAS 3.9 million 10.9 billion
fastText-Pub+OAS 4.4 million 14.3 billion

Table 3.2: The Proposed Biomedical Word Embeddings: Summary of the biomedical
word embeddings trained in this work. Three embedding models trained on:

(a) Pubmed citations containing the titles and abstracts from biomedical articles

(b) Pubmed Central Open Access Subset (OAS) plain text full biomedical articles

(c) Both Pubmed and OAS

3.2.1 Training Corpora

Two main corpora are used for training biomedical word embeddings in this thesis.

Pubmed is a database of citations that contain the titles and abstracts for more

than 26 million articles [46]. Pubmed is distributed in XML format. We extract

27.84 million <ArticleTitle> and <AbstractText> from the articles in the 2018 base-

line [49]. It should be noted that of these articles approximately 10 million articles

had only titles and no abstracts. We then preprocess these extracted texts.

The Pubmed Central Open Access Subset (OAS) is, as of May 2018, a collection

of around 2 milllion full-text open access biomedical and life science publications [48].

We use a version of OAS distributed in plain text format which contained approxi-

mately 1.64 million documents which we obtained from [47]. These texts have already

gone through some unknown preprocessing steps to transform them into their plain

text formats and we perform further preprocessing on them.
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We additionally utilise a Wikipedia dataset to preform an experiment on pre-

processing data for training word embeddings. An English Wikipedia dump from has

21-Mar-2018 with over 5 million articles was used [51].

3.2.2 Preprocessing

We first describe the preprocessing experiment on the Wikipedia dataset. Justified

by the results of this experiment, we then detail the preprocessing steps used for the

biomedical datasets.

Wikipedia Preprocessing Experiment

We experiment briefly with two preprocessing methods for fastText embedding train-

ing corpora.

The first method of preprocessing Wikipedia, Preprocessing A, is as follows.

We utilise a modified version of the fastText Wikipedia preprocessing script [2].

The original version of the script, called get-wikimedia.sh, is available on the fast-

Text code repository [14]. The modifications made to the script were superficial

and do not change the preprocessing steps. The modified version of the script,

called preprocessing-wiki.sh can be viewed in the code repository for this thesis on

GitHub [44]. This script cleans the Wikipedia text, converts it to lower case, tok-

enizes, and splits and shuffles the sentences. A sample of the data after preprocessing

can be seen in Figure 3.1.

little saigon
timezone cet
in extremely rare cases , severe reactions can happen including
carnivore a system developed by the us fbi to wiretap email .
living people
nifl premiership players
companies of azerbaijan
the body art . biennale de valencia , valencia , spain
establishments in scotland
marco antonio colonna ( march , ) cardinal - priest of ss . xii...

Figure 3.1: Sample of Preprocessed Wikipedia Text - Preprocessing Method A:
A sample of 10 lines from the Wikipedia dataset after initial preprocessing with
preprocessing method A. Note that one line has been truncated.
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We now describe the second method of preprocessing Wikipedia, Preprocessing

B. We make use of the WikiCorpus utility from gensim version 3.4.0 [39]. It is a tool

expressly for the purpose of extracting a text corpus from a Wikipedia dump. We use

the default parameters but without lemmatization. Text is tokenized and cleaned.

A notable difference of this preprocessing method B from method A is the lack of

sentence shuffling. A sample of the data after preprocessing method B can be seen

in Figure 3.2.

anarchism is political philosophy that advocates self governed...
these are often described as stateless societies although...
anarchism holds the state to be undesirable unnecessary and...
anarchism is usually considered far left ideology and much of...
anarchism does not offer fixed body of doctrine from single...
collectivism strains of anarchism have often been divided into...
the word anarchism is composed from the word anarchy and the...
the first known use of this word was in various factions within...
the first political philosopher to call himself an anarchist...
on the other hand some use libertarianism to refer to...

Figure 3.2: Sample of Preprocessed Wikipedia Text - Preprocessing Method B:
A sample of 10 lines from the Wikipedia dataset after initial preprocessing with
preprocessing method B. Note that the lines of text have been truncated.

We show that preprocessing can be a very important step for some of the semantic

relatedness methods that we use. During initial experimentation with generating

fastText embeddings we discovered that the quality of the result can be very sensitive

to preprocessing even when compared to what may seem to be a different but still

reasonable means of preprocessing. We discuss this further and provide the results in

Section 4.4.2.

Biomedical Corpora Preprocessing

We now summarise the preprocessing procedure for the Pubmed and OAS corpora.

We use a different modified version of the script again from [2]. We treat this prepro-

cessing script as a reasonable means of preprocessing text for training the proposed

fastText embeddings for two reasons. First, due to the script being the better per-

forming method in the preprocessing experiment. Second, the original script was

used to preprocess data for many word embeddings across multiple languages. The
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modified version for biomedical text we call preprocessing-bio.sh. It can be viewed on

the GitHub repository for this thesis [44]. The modifications to the script for pre-

processing the biomedical data were more substantial than the modifications for the

Wikipedia preprocessing experiment. However, they were relatively simple in that

it is solely modified to remove the Wikipedia specific steps. Samples of text from

the preprocessed biomedical datasets are shown in Figure 3.3 and Figure 3.4. The

corpora and their size after their respective preprocessing are shown in Table 3.3.

combination of topical methoxsalen and narrowband ultraviolet...
this paper aims to investigate the predictors of good outcome...
identify the types and prevalence of intestinal parasites among...
premature increases in amylase of postnatal rat parotid with...
clinical outcomes and radiologic results after cervical ...
pulmonary langerhans cell histiocytosis ( plch ) is usually...
a conventional patch - clamp technique was used to record the...
luteinizing hormone - releasing hormone receptor targeted ...
the pathognomonic triad of a rheumatoid pleural effusion ( round...
evolutionary dynamics of human rotaviruses balancing reassortment...

Figure 3.3: Sample of Preprocessed Pubmed Text: A sample of 10 lines from the
Pubmed dataset after initial preprocessing. Note that the lines of text have been
truncated.

regional differences in prevalence of hiv - discordance in africa...
a minireview functions of the cumulus oophorus during oocyte...
the correlations of the pre derived distances with the ones ...
consisting of both pgs - pcl ( with its collagenous
and traditional chinese medicine . phytother .
ann clin microbiol antimicrobann . clin . microbiol . antimicrobannals...
treatment results
harwood j james mt entomology in human and animal health new york...
upon review of our rhinoplasty osce , all residents and faculty...
as shown in the table , only bmi and severity of copd were...

Figure 3.4: Sample of Preprocessed OAS Text: A sample of 10 lines from the Pubmed
dataset after initial preprocessing. Note that some of the lines of text have been
truncated.
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Corpus Number of Tokens File Size

PubMed 3.4 billion 19 GB
OAS 10.9 billion 58 GB

Table 3.3: Training Corpora: Training corpora and their respective sizes after initial
preprocessing.

3.2.3 Learning Phrases

One approach that has been shown to enrich word embeddings is generating a to-

ken for each common phrase within the text [31]. The intuition is that words that

appear frequently together and infrequently in other contexts can be combined into

a phrase. This example helps illustrates the idea; ‘New York Times’ and ‘Toronto

Maple Leafs’ would be replaced by unique tokens, such as “New York Times” and

“Toronto Maple Leafs”, in the training data, while a bigram like ’this is’ would re-

main unchanged [31]. Even if the phrase representations are not used directly, they

still improve the quality of the word embeddings overall as shown in [30].

We use the phrase (collocation) detection model from gensim version 3.4.0 [39].

This implementation has two methods of phrase detection inspired by [31] and [3].

We choose to use the method where phrases are detected using the simple statistical

approach:

score(wi, wj) =
(frequency(wiwj)− δ) · |V |

frequency(wi) · frequency(wj)

where wi and wj are unigrams, wiwj is the bigram of the two unigrams, |V | is the size

of the vocabulary, and δ is a discounting coefficient that stops phrases consisting of

infrequent terms from being formed. A phrase is detected if score(wi, wj) is above a

defined threshold. Following phrase detection a phrase generation pass is performed

over the data. Occurrences of the bigram wiwj within the corpus are replaced with

the unigram wi wj where wi and wj are joined by an “ ” character.

We perform three passes of phrase detection and generation over each of the

preprocessed Pubmed and OAS datasets. The phrase generation script, called Gen-

eratePhrases.py, can be seen in the code repository for this thesis on GitHub [44].

We use the default Phrases parameters except for max vocab size. We set

max vocab size = 200 million
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to avoid the chance of any words being pruned. Performing multiple passes over

the data facilitates the creation of sensible phrases that can contain several words

without greatly increasing the size of the vocabulary. For example, on the first phrase

generation pass the phrase “new york” could be formed out of the unigrams “new”

and “york”. During a subsequent phrase generation pass the phrase “new york city”

could be formed out of the now previously generated unigram “new york” and the

unigram “city”.

3.2.4 Training Embeddings

We train three word embeddings models:

• fastText-Pubmed

• fastText-OAS

• fastText-Pub+OAS

The fastText-Pubmed and fastText-OAS embeddings are trained on the Pubmed and

OAS datasets as previously described. For fastText-Pub+OAS, we form the train-

ing dataset by first concatenating the Pubmed and OAS datasets. This Pub+OAS

dataset is then shuffled and used as the training data for fastText-Pub+OAS. Recall

that these embeddings are summarised in Table 3.2.

Parameter Argument Value

Minimum number of word occurrences -minCount 5
Minimum length of char n-gram -minn 3
Maximum length of char n-gram -maxn 6
Loss function -loss ns (negative sampling)
Number of negatives sampled -neg 5
Size of context window -ws 5
Learning rate -lr 0.05
Sampling threshold -t 10−4

Size of vectors -dim 300

Table 3.4: Embedding Training Parameters: The parameters used to train the three
proposed biomedical fastText skip-gram embeddings. For further detail on these
parameters refer to [2, 15, 16].
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We use the fastText library to train the embeddings [16]. As this thesis focuses

on exploring how the nature of the training data affects the resultant embeddings, we

preform no parameter optimisation for the proposed word embeddings. We simply

employ the training parameters used to train a variety of fastText word embeddings

in [2]. These parameters were used to train word embeddings on English, Czech,

French, German and Spanish Wikipedia data, so we treat them as reasonable default

parameters for our embeddings. Table 3.4 shows the embedding training parameters.

3.3 Word Embeddings for Semantic Relatedness

In this section, we describe the process of using embeddings to measure the semantic

relatedness between words and phrases. In this thesis a phrase is considered to be a

multi-word term like “chronic obstructive pulmonary disease” or “bee’s knees”. If a

phrase was learned, as described in Section 3.2.3, then there is a single embedding

corresponding to that phrase. If a phrase was not learned then we construct an

embedding for it provided that its constituent words are in vocabulary.

Semantic relatedness between words or in vocabulary phrases, denoted as wi and

wj, is computed by taking the cosine similarity between the vector representations of

each term, defined as:

Rel(wi, wj) = CosSim(r(wi), r(wj))

where r(wi) = ~wi is the vector representation corresponding to that word or multi-

word term.

When a multi-word term that is out of vocabulary for a set of embeddings is

involved, a single embedding for that phrase is generated using a simple additive

approach. This additive approach for generating an embedding for multiple words

was demonstrated in [31]. Word embeddings exhibit a type of linear property that

makes it possible to combine them to form a meaningful phrase representation by an

element-wise addition of their vector representations. An embedding for a multi-word

term, denoted as p where p = w1, w2, ..., wn, is generated by an element-wise addition

of that phrase’s constituent word embeddings, defined as:

r(p) =
∑

w∈p r(w)
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Then the semantic relatedness between a phrase and a word is computed by taking

the cosine similarity between the composed phrase embedding and the word embed-

ding, defined as:

Rel(p, w) = CosSim(r(p), r(w))

It should be noted that in some cases this approach may not be the best way

to represent a phrase because many phrases have a meaning that is not a simple

composition of the meanings of its individual words. This is demonstrated in [31].

For example, idioms like “hot potato” cannot be represented by the combination of

the meanings of the constituent words. This is why it can be beneficial to directly

learn embeddings for common phrases as described in Section 3.2.3.

Another way to generate a single embedding for a phrase is a simple unweighted

averaging of the word embeddings of a phrase. For a multi-word term, where p =

w1, w2, ..., wn and |p| is the number of words in p , the averaging approach to generate

is a single embedding for that phrase is defined as:

r(p) = 1

|p|

∑
w∈p r(w)

This approach has been found to do well in representing short phrases [1]. How-

ever, when it comes to computing cosine similarity between vectors the averaging

approach is equivalent to the additive approach. This is because cosine similarity

is based on the the angles between vectors and these angles are not changed by the

scaling of the vector’s magnitude with the averaging approach.

Since both the additive and averaging approach have been shown to do well at

representing phrases and are equivalent approaches when it comes to using the em-

beddings for evaluating relatedness of terms using cosine similarity, in this thesis we

use the additive approach to generate embeddings for out of vocabulary phrases.

3.4 Evaluation

We evaluate the different word embeddings on semantic relatedness datasets in both

the general and biomedical domain. We also perform qualitative experiments to

further explore the differences between embeddings.



17

An evaluation of the pre-trained biomedical and the proposed biomedical em-

beddings within the general domain is important. Though the embeddings may be

designed for use in technical domain specific applications, it may still be important

that they capture the semantics of general English and be able to perform well in the

general use case.

Additionally, evaluating the general pre-trained embeddings within the biomedical

domain will give insights as to the ability of the general corpora to capture the specific

language and nuances of the more technical biomedical domain.

It seems natural to have an implicit assumption that the embeddings trained

with technical resources will contain information that enhances their performance in

technical tasks. We examine the correctness of this assumption by evaluating the

embeddings in the following ways:

• Semantic Relatedness Evaluation

1. Gauging the performance of the general pre-trained, biomedical pre-trained

and the proposed biomedical embeddings within the general domain.

2. Thoroughly assessing the general pre-trained, biomedical pre-trained and

the proposed biomedical embeddings in the biomedical domain.

• Qualitative Evaluation

1. Examine similar terms to biomedical candidate terms for general pre-

trained embeddings and the proposed embeddings.

2. Explore how polysemous biomedical terms are embedded by general pre-

trained and the proposed embeddings.

3.4.1 Semantic Relatedness Evaluation

In this thesis, semantic relatedness is defined as any semantic relationship between

terms, for example “car” and “tire’ are semantically related. Semantic relatedness in-

cludes semantic similarity which is considered special case of relatedness, for example

“car” and “automobile” are semantically similar.

The standard method for evaluation on semantic relatedness datasets is followed.

Each dataset consists of many instances of the form:
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(w1, w2, relatedness judgement)

where w1 and w2 are words and/or multi-word terms and relatedness judgement is

a judgement of the relatedness, usually assigned by humans, between w1 and w2 that

is treated as the gold standard of relatedness for that pair.

To evaluate a semantic relatedness measure on these datasets, the measure being

evaluated is used to assign a relatedness score to each word pair. In other words, we

get Rel(w1, w2) for every instance in the dataset. This facilitates the direct testing

of the correlation of the semantic relatedness measures with the human relatedness

judgements. The correlation coefficient used in past works is somewhat inconsistent

between the use of Spearman’s ρ and Pearson’s r. Both measures are reported in

thesis.

In past works involving the evaluation of word embeddings on relatedness or simi-

larity datasets, words that appear in the evaluation dataset but not in an embedding’s

vocabulary are typically omitted from the correlation calculation. Since different sets

of embeddings may have varying vocabulary, this may not be the most fair way to

compare the different embeddings. If certain words exist in one embedding but not in

another, this may lead to computing the correlation between different sets of words

for different embeddings, and the correlations should not be directly compared. This

is especially important in the biomedical domain where the vocabulary differences

between embeddings are drastic. To account for this, the intersection of vocabularies

for all embeddings is computed. Evaluation is done on the pairs in the evaluation

datasets that exist within the vocabulary intersection. This reduces the size of the

evaluation datasets, so the number of pairs being evaluated, after removing the pairs

not in the intersection of the vocabulary, are included where applicable.

Relatedness in the General Domain

First, ten datasets are used to assess each embedding’s performance in the general

domain. Using a wide array of general datasets gives insight into important factors

that are not strictly domain related, but that should still be considered when using a

method for semantic relatedness. These factors include the rareness of words in the
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English language, the part of speech of the words, and the abstractness of the terms.

The datasets are summarised in Table 3.5.

Dataset Word Pairs Reference

MC 30 [32]
MEN 3000 [6]
MTURK 287 [38]
MTURK 771 [19]
RG 65 [41]
RW 2034 [26]
SE 518 [7]
SL 999 [21]
WS 353 [17]
YP 130 [52]

Table 3.5: General Relatedness Evaluation Datasets. We provide these datasets in
the code repository for this thesis on GitHub [44].

Miller and Charles (MC-30) is 30 noun word pairs with a human assigned simi-

larity score [32]. These word pairs are for semantic similarity evaluation.

MEN-3000 consists of 3,000 word pairs together with human assigned relatedness

judgement [6]. Pairs represent a balanced range of relatedness levels. The dataset

contains examples involving both similarity and relatedness.

MTURK-771 contains 771 word pairs along with human assigned relatedness

judgements [19]. Similarly, MTURK-287 contains 287 word pairs with associated

human relatedness judgements [38].

Rubenstein and Goodenough (RG-65) is the most classic dataset for word sim-

ilarity tasks consisting of 65 word pairs with annotation of human similarity judge-

ment [41].

The Rare Word dataset (RW-2034) is a similarity dataset with 2034 word pairs

focusing on rare or morphologically complex words [26].

For a new semantic similarity evaluation dataset, the English word pairs from

SemEval 2017 Task 2: Multilingual and Cross-lingual Semantic Word Similarity [7]

were used. The pairs from both test and trial data were utilised. We refer to this set

as SE-518. It consists of 518 pairs of words and multi-word terms where as all other

general evaluation datasets typically only include pairs of single words.
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SimLex-999 (SL-999) provides 999 pairs and their associated similarity scores [21].

The dataset is structured to focus evaluation of how well measures capture similarity

based around conceptual distinctions including concreteness and part of speech. It

contains a balanced selection of concrete, for example “dog” and “cup”, and abstract

concepts, such as “envy” and “deny”. SimLex-999 is comprised of 666 noun to noun

pairs, 222 verb to verb pairs, and 111 adjective to adjective pairs.

The WordSimilarity-353 Test Collection (WS-353) contains 353 pairs that con-

tain instances of both relatedness and similarity type relationships [17]. The human

scores estimate the relatedness of the word pairs.

Yang and Powers (YP-130) is a dataset of 130 verb pairs specifically designed

for evaluating relatedness between verbs [52].

Relatedness in the Biomedical Domain

Second, the performance of each method on four biomedical domain semantic relat-

edness datasets is evaluated. These datasets are summarised in Table 3.6.

Dataset Word Pairs Reference

Mayo 101 [45]
MiniMayo 29 [34, 28]
UMNRel 587 [33]
UMNSim 566 [33]

Table 3.6: Biomedical Relatedness Evaluation Datasets. We provide these datasets
in the code repository for this thesis on GitHub [44].

Medical Coders Set (Mayo-101) is a set of 101 medical concept pairs manually

rated by medical coders for semantic relatedness. The concepts consist of single words

and many multi-word terms [45].

Medical Coders High Reliability Subset (MiniMayo-29) is a subset of 29 medical

concept pairs, comprised of both single and multi-word terms, manually rated by

medical coders for semantic relatedness with high inter-rater agreement [34, 28].

Medical Residents Relatedness Set (UMNRel-588) is a set of 588 UMLS concept

pairs manually rated for semantic relatedness [33]. Similarly, Medical Residents Sim-

ilarity Set (UMNSim-566) is set of 566 Unified Medical Language System (UMLS)
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concept pairs manually rated for semantic similarity [33]. In both of these datasets

the concepts consist mainly of single words but multi-word terms do appear.

3.4.2 Qualitative Evaluation

Two qualitative experiments are also performed to further explore how the nature of

the training data can affect the resulting embeddings. These evaluations highlight

some overarching problems with conventional word embeddings. Furthermore, they

emphasise the need for caution when using embeddings for semantic tasks without

appropriate considerations.

Nearest Neighbours of Candidate Terms

The first qualitative evaluation in the biomedical domain is inspired by the approach

in [24]. In their approach, the five most similar words, by cosine similarity, to some

selected candidate terms are retrieved and manually inspected. The perceived quality

of these similar words can provide insights into the quality of the embeddings with

how well similar words are mapped within the embedding space.

The approach used in this thesis is as follows. We arbitrarily select one candidate

biomedical term from each of the biomedical relatedness datasets in Table 3.6. The

selected words, chosen such that they exist within the unmodified vocabulary of the

embeddings being compared, can be seen in Table 3.7. For each candidate term we

retrieve the 10 nearest neighbours, i.e. the 10 words with the highest cosine similarity

across the entire vocabulary, for each set of embeddings being compared. Inspecting

these nearest neighbour terms can help understand how the nature of the embedding’s

training data affects their semantics.

Word Embedding Sense Ambiguity

The second qualitative evaluation explores how the embedding of a term with multiple

word senses is affected by the nature of the embedding training data.

Words can have multiple word senses, but conventional embedding training meth-

ods fail to distinguish between them. Consider the term “bat”. The two most obvious

senses of the word, taken from the Oxford English Dictionary, are:
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Term Origin Dataset Qualitative Task

polyp Mayo-101 Nearest Neighbours
antibiotic MiniMayo-29 Nearest Neighbours
prozac UMNRel-587 Nearest Neighbours
cardiomyopathy UMNSim-566 Nearest Neighbours

culture - Ambiguous Word Sense
acid - Ambiguous Word Sense

Table 3.7: Candidate Terms for Qualitative Evaluations: Four arbitrarily selected
biomedical candidate terms for use in the nearest neighbour qualitative evaluation.
Two polysemous terms that relate to the biomedical domain for use in the ambiguous
word sense qualitative analysis.

1. ”An implement with a handle and a solid surface used for hitting a ball in

sports.”

2. ”A mainly nocturnal mammal capable of sustained flight.”

Due to conventional word embeddings learning only one representation per word,

the resulting single representation for “bat” will be an amalgam which attempts to

capture all meanings of the word within the training corpus.

The word sense that is captured by an embedding can be induced by looking at

the nearest neighbours to the word. For example, if the nearest neighbours to the

term “bat” are: batting, baseball, wiffle, corked, ball, etc. then it is clearly the sport

implement word sense that is embedded. If the nearest neighbours to “bat” are:

bats, leaf-nosed, free-tailed, roundleaf, noctule, etc. then the flying mammal sense

is captured by the representation. However, the nearest neighbours will typically

include all these terms as nearest neighbours to “bat” because there is only a single

representation for the word.

There has been development of word embedding approaches that attempt to learn

multiple representations per word [12, 40]. However, these approaches are more com-

putationally intensive and are not so easily accessible when compared to the conven-

tional word embedding approaches.

This qualitative evaluations examines whether the problem of polysemy and con-

ventional word embeddings can be abated in a technical domain by using embeddings
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trained in that domain. Consider the following, an NLP researcher is working on

some problem dealing with the taxonomy of bats and wants to use word embeddings.

Using general pre-trained embeddings could negatively affect their results as the em-

bedding for “bat” represents a mixture of semantic meanings. However, if they used

domain specific embeddings, trained without any text from the sports domain, then

the embedding for “bat” would better represent the desired semantic meaning of the

term. In other words, this evaluation assess whether domain specific embeddings may

be more representative, than general trained embeddings, of the intended meaning of

a polysemous word in that domain.

Like with the previous qualitative task, we perform this analysis by looking at

the nearest neighbours to candidate terms. We arbitrarily selected two terms that

have multiple word senses some of which may be related to the biomedical domain.

These terms, “acid” and “culture”, can be seen in Table 3.7. We then retrieve the 20

most similar terms, by cosine similarity, for each candidate term. With these most

similar terms, terms that are simple alternative word forms of the candidate term

are discarded. For example, with the candidate term “culture” we discard the most

similar term “cultures”. These terms do not help illustrate the word sense being

embedded and thus are treated as extraneous.
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Results

This chapter begins with the presentation of general domain relatedness evaluation

results. This is followed by the biomedical domain relatedness evaluation results.

Then the findings for the qualitative evaluations are provided. Finally, the results

regarding the training of embeddings are reported and discussed.

4.1 Evaluation in the General Domain

In this section, we report the results of the evaluation within the general domain.

We begin with the examination of how well each set of embeddings captures general

vocabulary. This is done by reporting the out of vocabulary (OOV) percentages

of each set of embeddings for the general relatedness datasets. Following this is the

semantic relatedness evaluation for all of the word embeddings in the general domain.

4.1.1 General Vocabulary Coverage

The general pre-trained embeddings are markedly ahead of most of the biomedical

embeddings in terms of learned vocabulary when it comes to the general domain.

The biomedical embeddings, both pre-trained and the proposed, using only Pubmed

have the highest instances of OOV paris in the general evaluation datasets. The

Word2vec-Pubmed-[10] embeddings have the the highest amount of OOV pairs across

all embeddings. There is a clear link between the size of the training corpus and the

number of OOV terms. For embedding training sizes see Table 3.1 and Table 3.2.

It is not necessary to have large amounts of general training data to achieve good

vocabulary coverage in the general domain though. This is shown by the OOV results

for fastText-Pub+OAS which covers very similar amount of vocabulary to fastText-

WikiNews despite fastText-Pub+OAS being trained on biomedical data with 1.7 bil-

lion fewer tokens. The percentages of pairs that are OOV in the general evaluation

datasets for each word embedding model are reported in Table 4.1.

24
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MEN-3000 - - - 0.10% 0.03% - - -
MTURK-287 - - 0.70% 9.41% 0.70% 0.70% 0.35% 0.35%
MTURK-771 - - - 0.13% - - - -

RG-65 - - - 1.54% - - - -
RW-2034 1.72% 1.77% 3.29% 19.62% 14.70% 15.44% 7.03% 5.65%

SE-518 1.16% 0.97% 1.54% 8.69% 1.74% 2.32% 1.35% 1.16%
WS-353 - - - 2.27% - - - -

Table 4.1: General Out of Vocabulary Results: The percentage of pairs from each
general evaluation dataset that are OOV corresponding to each set of embeddings.
A “-” indicates that no pairs were OOV for that dataset and embedding. MC-30,
SL-999, and YP-130 do not appear as none of their pairs were OOV for any set of
embeddings.

4.1.2 General Domain Relatedness Results

The embeddings trained on general data perform the best when it comes to seman-

tic relatedness evaluation between general terms. The state of the art pre-trained

embeddings fastText-WikiNews and fastText-Web performed best. The biomedical

embeddings all performed similarly in the general domain, with the proposed fastText-

Pubmed performing best among biomedical embeddings by a small margin.

Though general training data is not necessary to obtain good vocabulary coverage

of the general domain, it is the case that the lack of general training data has a

measurable negative impact on an embedding’s semantic performance in the general

domain.

We provide the average correlation for all embeddings in Figure 4.1. This average

is across all ten general relatedness datasets from Table 3.5. Both Spearman and

Pearson correlation are illustrated. Recall that these results are for the pairs of terms

that are not OOV across all sets of embeddings.
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Figure 4.1: General Relatedness Results: The average correlation between the human
relatedness judgements and the embedding based relatedness scores across all the
general relatedness evaluation datasets.

4.2 Evaluation in the Biomedical Domain

This section begins with reporting the out of vocabulary percentages on the biomed-

ical relatedness datasets for all methods. This allows us to asses how well each

embeddings training data covers biomedical domain specific terms. We then present

three relatedness evaluations between various sets of embeddings. Firstly, the relat-

edness correlation results of all embeddings, those trained in both the general and

biomedical domains, in the biomedical domain. Secondly, a comparison between the

relatedness performance of the pre-trained biomedical embeddings compared to the

proposed biomedical embeddings. Finally, we report the results when using each

fastText embedding to generate representations for any OOV terms, evaluating the
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embeddings on the entirety of each relatedness dataset.

4.2.1 Biomedical Vocabulary Coverage

It is necessary to have biomedical training data to achieve high learned vocabulary

coverage in the biomedical domain. The general domain GloVe-Web embeddings,

trained on 840 billion tokens, and the general domain fastText-Web embeddings,

trained on 600 billion tokens, have the best biomedical domain coverage of the general

pre-trained embeddings. However, they only approximate the vocabulary coverage

of the biomedical embedding with the most OOV terms, Word2vec-Pubmed. This

is despite these general embeddings being trained with at least 300 times as many

tokens as Word2vec-Pubmed which was trained with 2.9 billion tokens.

Preprocessing can also affect the learned vocabulary of a set of embeddings as

shown by the differences in OOV between the three different embeddings trained on

Pubmed data of similar size. This could also be explained partly by the different

model and training parameters. We report the percentages of pairs that are OOV in

the biomedical evaluation datasets for each word embedding model in Table 4.2.
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Mayo-101 13.9% 12.9% 18.8% 10.9% 6.9% 9.9% 7.9% 7.9%
UMNRel-587 15.3% 18.1% 39.0% 17.2% 5.1% 6.5% 5.6% 2.9%
UMNSim-566 14.1% 16.3% 35.7% 15.0% 3.7% 4.4% 4.4% 2.1%

Table 4.2: Biomedical Out of Vocabulary Results: The percentage of pairs from each
biomedical evaluation dataset that are OOV corresponding to each set of embeddings.
MiniMayo-29 does not appear as none of its pairs were OOV for any set of embeddings.
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4.2.2 Biomedical Domain Relatedness Results

On the biomedical relatedness evaluation datasets, all biomedical embeddings outper-

form general trained embeddings. These results are shown in Figure 4.2. We provide

the average correlation, both Spearman and Pearson, across all four biomedical re-

latedness datasets from Table 3.6. Recall that these results are for the pairs of terms

that are not OOV across all embeddings.
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Figure 4.2: Biomedical Relatedness Results: The average of Spearman’s ρ between
the embedding based relatedness and the human assigned relatedness across all the
biomedical relatedness evaluation datasets
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4.2.3 Pre-trained Biomedical Embeddings vs. Proposed Biomedical

Embeddings

The proposed fastText-Pubmed embeddings achieve the highest performance among

all the biomedical embeddings with fastText-Pub+OAS achieving the second best

performance. We report the full correlation results across the four biomedical datasets

as well as the average of the general datasets, comparing biomedical embeddings in

Table 4.3. Since the proposed embeddings outperform the currently available pre-

trained biomedical embeddings, we will provide them as publicly available for use.

Evaluation
Dataset

Pairs
Evaluated

Word2vec-
Pubmed[10]

Word2vec-
Pubmed[27]

fastText-
Pubmed

fastText-
OAS

fastText-
Pub+OAS

S
pe
ar
m
an

Mayo-101 88 0.484 0.512 0.556 0.522 0.536
MiniMayo-29 29 0.749 0.773 0.804 0.752 0.771
UMNRel-587 472 0.516 0.560 0.608 0.574 0.582
UMNSim-566 471 0.574 0.622 0.659 0.627 0.640

General Datasets - 0.482 0.472 0.497 0.472 0.492

P
ea
rs
on

Mayo-101 88 0.484 0.526 0.560 0.533 0.536
MiniMayo-29 29 0.716 0.717 0.785 0.782 0.796
UMNRel-587 472 0.520 0.567 0.606 0.576 0.584
UMNSim-566 471 0.592 0.641 0.671 0.639 0.654

General Datasets - 0.487 0.485 0.503 0.483 0.496

Table 4.3: Biomedical Word Embeddings Compared: The pre-trained biomedical em-
beddings compared with the proposed biomedical embeddings. The best performance
is highlighted in blue and the second best performance is highlighted in green.

4.2.4 fastText Generated Representations for OOV

Provided a fastText model was trained with subword information, the model can be

used to generate representations for OOV words and phrases. This allows the com-

putation of relatedness between some pairs that are not possible with other models.

For example, some instances of OOV terms in the biomedical relatedness evaluation

datasets are due to misspellings. Instances of these in Mayo-101 are in the terms

“rheumatoid arthriits”, “buterfly rash” and “varicsoe vein”.

Our proposed biomedical fastText embeddings are the least negatively impacted

by generating representations for OOV pairs. This implies that, in addition to having

best vocabulary coverage, the biomedical embeddings generate more accurate, in

terms of semantics, representations for those OOV terms than the general embeddings
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Figure 4.3: Biomedical Relatedness with OOV Generated Embeddings: The perfor-
mance of the fastText embeddings when using each set of embeddings to generate
representations (vectors, embeddings) for all terms. In other words, no OOV pairs in
the evaluation datasets.

do. We present the correlation results after using each fastText embedding model to

generate representations for all OOV terms or phrases in each biomedical relatedness

dataset, except for MiniMayo-29 as all pairs were in vocabulary for every fastText

embedding, in Figure 4.3. In other words we first used the fastText models to generate

representations for OOV terms to obtain 100% vocabulary coverage for Mayo-101,
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UMNRel-587, and UMNSim-566. Then the correlation between the human score and

embedding based relatedness score is computed as normal.

Even though full vocabulary coverage can be achieved with general pre-trained

fastText models, specialised domain trained embeddings still perform better. The net

change in correlation results between the evaluation of embeddings on only in vocab-

ulary pairs and between the fastText embeddings after generating representations for

all OOV terms is shown in Table 4.4.

Correlation
Coefficient

fastText-
Web

fastText-
WikiNews

fastText-
Pubmed

fastText-
OAS

fastText-
Pub+OAS

Spearman -0.059 -0.105 -0.027 -0.013 -0.014
Pearson -0.054 -0.094 -0.016 -0.006 -0.003

Table 4.4: Net Correlation Change with OOV Generated Embeddings: The net
change in correlation results between: (a) Embedding relatedness for all pairs af-
ter generating representations for OOV terms and (b) Embedding relatedness for
only in vocabulary pairs. In other words, this table reports correlation results of (a)
subtract the correlation results of (b).

4.3 Qualitative Evaluation

For the qualitative evaluation, the proposed fastText-Pubmed embeddings are com-

pared with the general pre-trained fastText-WikiNews. Though fastText-WikiNews

performs slightly worse on the relatedness evaluations than fastText-Web, fastText-

WikiNews is used for the following reason. The qualitative evaluation relies on re-

trieving nearest neighbours to a term and the nearest neighbours for most terms in

fastText-Web are just various word forms (i.e. misspellings, containing addition punc-

tuation, etc) of the query word. So, an infeasible amount of nearest neighbour terms

would have to be retrieved to see any terms that are not the same as the candidate

term. Thus, it would be difficult to infer anything meaningful from the results if

was used. Firstly, the evaluation nearest neighbours to biomedical candidate terms

is presented. Then, secondly, the evaluation of word embedding sense ambiguity is

given.
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4.3.1 Quality of Nearest Neighbours

As we are not biomedical domain experts, we cannot speak as to the quality of the

most similar terms given by each embedding. However, we see very clear differences

in the levels of specificity of the nearest neighbour terms between the embeddings.

The nearest neighbours to the biomedical candidate terms for fastText-WikiNews

and fastText-Pubmed are provided in Table 4.7. The fastText-WikiNews nearest

neighbour terms are quite general when compared to fastText-Pubmed which gives

more technical terms. This is best exemplified by the candidate term “prozac”. With

fastText-WikiNews, we can see notable generic terms like “meds” and non-closely

related terms like “oxycontin”.

4.3.2 Capturing Appropriate Word Senses

By looking at a sample of the nearest neighbours to “culture”, we can infer what word

sense is captured by the embeddings. The embeddings pre-trained on WikiNews em-

bed the “the arts and other manifestations of human intellectual achievement regarded

collectively” sense of “culture”. Our proposed embeddings, trained on Pubmed, em-

bed the “the cultivation of bacteria, tissue cells, etc., in an artificial medium contain-

ing nutrients” sense of “culture”.

Through the examination of the nearest neighbours to “acid”, we can infer what

word sense is being embedded by each model. The problem of multiple word senses

being tangled into the single embeddings of “acid” is evident for both the general

and biomedical embeddings. We can see the “mineral (or inorganic)” sense of acid.

This is illustrated by “hydrochloric” and “sulfuric” in the fastText-WikiNews nearest

neighbours and by “hcl” in the fastText-Pubmed nearest neighbours. Additionally,

we can see the “organic compound” sense of acid in both embeddings as well. Shown

by “oxalic” and “butyric” in the fastText-WikiNews nearest neighbours and by “keto”

and “amino” in the fastText-Pubmed nearest neighbours.

The nearest neighbours to “culture” and “acid” that provide an idea of the word

senses embedded by fastText-WikiNews and fastText-Pubmed are presented in Ta-

ble 4.5.

These results highlight two important things. First, we can see that if a word has

multiple word senses, the sense that gets embedded can be affected by the nature
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Embedding Sample of nearest neighbours to “culture”

fastText-WikiNews sub-culture, mass-culture, cultural, multi-culture,
anti-culture, cross-culture, high-culture, multiculture,
culturism, mono-culture, self-culture, non-culture,
politics, sub-cultural, culture-oriented, culturology,
sub-cultures, society

fastText-Pubmed culturing, explant cultures, culture set, cultureable,
culturepal, print cultures, cultivation, cell culture,
subcultures, ecoculture, primoculture, cultured,
batchculture, subculturing, incultured, primocultures,
precultures

Sample of nearest neighbours to “acid”

fastText-WikiNews oxalic, oxoacid, butyric, acidic, hydrochloric, benzoic,
uric, acetic, phosphoric, carbonic, sulfuric, ascorbic

fastText-Pubmed acetic, keto, salicylic, amide, citric, glutamic, ester,
fatty, amino, hyaluronic, hcl, caffeic, palmitic

Table 4.5: Word Embedding Sense Ambiguity: An example of how the nature of
the training data can affect which sense of a word is embedded illustrated using the
polysemous terms “culture” and “acid”.

of the training data. This could have a positive or negative effect when using the

embedding for semantic tasks depending on the intended sense of an embedding

versus the actual embedded sense. Second, it is clear that the issue of multiple word

senses being into embedded into a single vector pervades conventional embeddings in

both the biomedical and general domain. This again could have consequences when

it comes to using word embeddings for semantic tasks. If many senses are tangled

into one vector then that vector will not do a perfect job in semantically representing

the word in any context. These two insights highlight the need for consideration as to

the word senses actually being embedded and caution when using word embeddings

for particularly sensitive semantic relatedness tasks.

4.4 Training Embeddings

This section provides results and discusses insights pertaining to the process of train-

ing embeddings. First, the findings that training with the smaller Pubmed dataset
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results in better embeddings than those trained on the larger OAS corpus. This con-

tradicts the generally accepted notion that more training data always means better

word embeddings. Second, the sensitivity of fastText to preprocessing is shown by

the relatedness results for word embeddings which differ by only the training corpora

preprocessing. Third and finally, the time cost of training embeddings is presented

and discussed.

4.4.1 Training Data for Biomedical Embeddings

While in theory larger training corpora are thought to improve learned word em-

beddings, this is not what we found with our biomedical corpora and embeddings.

Despite the OAS and Pubmed+OAS embeddings being trained with much larger

corpora than the embeddings trained only on Pubmed, they do not perform as well

for semantic relatedness in the general and biomedical domains. This is shown in

Figure 4.1, Figure 4.2, Table 4.3, and Figure 4.3.

An explanation for this is due to the format of the OAS data. The data is full

text of research articles, but they are provided without a thorough explanation of

the format or text extraction process. Manual inspection of text within OAS reveals

that a proportion of the text is not biomedical research content, i.e. references, non-

relevant forewords, etc, and could be adding noise to the data thus negatively affecting

learning.

This finding agrees with previous embedding results in the biomedical domain that

found Word2vec embeddings trained on Pubmed performed better than embeddings

trained on OAS in [10].

4.4.2 Caution on Preprocessing for Training Embeddings

Though both of the preprocessing methods may seem to be a reasonable approaches,

one method performs consistently worse across all relatedness datasets. Recall both

Preprocessing A and Preprocessing B from Section 3.2.2. Preprocessing A

cleans the Wikipedia text by removing markup, converts to lowercase, tokenizes,

and splits and shuffles sentences. Preprocessing B cleans the Wikipedia text by re-

moving markup, removes punctuation, and tokenizing. Embeddings trained on the

data preprocessed with Preprocessing B achieve lower performance than those trained
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Figure 4.4: Preprocessing Effects on Embedding Relatedness Performance: The dif-
ference in Spearman’s ρ between two sets of embeddings trained using the same pa-
rameters and training data, but with different preprocessing applied to the training
data. Preprocessing A and Preprocessing B are detailed in Section 3.2.2.

on data using Preprocessing A. This is illustrated in Figure 4.4. Both embeddings

used the Wikipedia corpus and the fastText model and parameters from Table 3.4

with the difference between the embeddings being the data preprocessing. The most

significant difference between the two preprocessing methods is that Preprocessing B

does not split and shuffle the sentences. Our intuition as to why the lack of shuffling

impacts performance so negatively is as follows. If sentences are not split and shuf-

fled, the word embedding model will be trained on chunks sentences from the same

document. These sentences would be related to the semantics of that document. So

training a word embedding model on a large amount of sentences in one semantic

area could steer the model, too far, into that area. Then, when the sentences of

the next document are reached, the embedding model would be dramatically steered

in a different direction and so on. When training with shuffled sentences the model

would not be biased in a similar way. Sentence order, and thus the semantics of
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the sentences, would be presented in a random order after they are shuffled. This

highlights the sensitivity of word embedding methods, fastText in particular, to data

preprocessing.

4.4.3 Cost of Generating Domain Specific Embeddings

We show that with the availability of the high quality domain specific data from

Pubmed and a modest time investment of 26 hours, it is possible to train embeddings

that achieve state of the art in-domain performance on semantic relatedness tasks.

We trained all models using fastText Version 0.1.0 run on a computer with an Intel

Core i5-3550 CPU, 24 GB of RAM, running Ubuntu 18.04.1. The time cost of training

our proposed embeddings is presented in Table 4.6. Whether training domain specific

embeddings is worth it would depend highly on the application of the embeddings

and data availability. As accessible tools like fastText make it possible to learn high

quality embeddings quickly, careful consideration should be exercised before choosing

to use off-the-shelf general pre-trained embeddings.

fastText-Pubmed fastText-OAS fastText-Pub+OAS

Training Size (Tokens) 3.37 billion 10.92 billion 14.30 billion
Training File Size 19 GB 58 GB 74 GB
Embeddings Learned 1.01 million 3.99 million 4.39 million
User Time 372,923.47 1,138,744.02 1,516,415.28
System Time 1,546.02 5,850.14 7,244.92
Elapsed Time 26:06:42 79:52:10 106:17:12

Table 4.6: Embedding Training Times: The time taken to train each set of embed-
dings on each respective training corpus
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Candidate
Term

Nearest Neighbours
fastText-WikiNews fastText-Pubmed

polyp polyps polyps
cyst polypoid
polypoid polypi
polypus adenoma polyp
adenoma pseudopolyps
tumor polypectomy
Polyps sphenochoanal
nodule ethmochoanal
fibroid antrochoanal
tumour pedunculated

antibiotic antibiotics antibiotics
non-antibiotic antibiotical
antibiotic-resistance antimicrobial
antimicrobial antibioties
antibiotic-resistant polyantibiotic
antibacterial lactam antibiotics
Antibiotic carbapenem
pre-antibiotic vancomycin
post-antibiotic beta lactam
antibacterials fluoroquinolone

prozac Prozac fluoxetine
valium paroxetine
anti-depressants sertraline
anti-depressant citalopram
meds wellbutrin
ritalin norfluoxetine
benzos ssri
anti-psychotics sertralin
antidepressants anti depressants
oxycontin zoloft

cardiomyopathy cardiomyopathies dilated cardiomyopathy
Cardiomyopathy cardiomyopathie
myopathy myocarditis
cardiomegaly tachycardiomyopathy
myopathies dysplasia/cardiomyopathy
angiopathy endomyocardiopathy
arrhythmia hcm
arrhythmogenic cardiomyositis
cardiomyocyte leiomyopathy
amyloidosis endomyocardiopathies

Table 4.7: Biomedical Candidate Terms Nearest Neighbours: A sample of nearest
neighbours to the biomedical candidate terms comparing the pre-trained fastText-
WikiNews embeddings and the proposed fastText-Pubmed embeddings.



Chapter 5

Conclusion

This thesis focused on word embeddings for domain specific semantic relatedness.

We evaluated state-of-the-art general pre-trained word embeddings in quantitative

and qualitative semantic evaluations within the biomedical domain. We compared

these general embeddings performance to domain specific biomedical embeddings and

gained understanding as to the performance implications of the nature of the training

data used to learn word embeddings. The results demonstrated that, for semantic

relatedness in the biomedical domain, general pre-trained embeddings are lacking in

performance when compared to their domain specific counterparts. In more wide-

reaching terms, this supports the idea that these massive general pre-trained embed-

dings should not be hastily used on an ad hoc basis as embeddings that will transfer

to any problem in any domain.

We gained and provided insights as to necessary precautions when training or util-

ising word embeddings for semantic relatedness. For training, an important outcome

was the finding that the commonly touted “more training data = better embeddings”

does not always hold true. This could be very closely linked to the importance of

preprocessing training data appropriately. We highlighted that data preprocessing be-

fore training can have a large impact on an embedding’s semantic performance. Our

findings also provide insights regarding the general broad use of word embeddings.

We showed why consideration should be given to what word sense a representation

actually embeds.

Finally we developed our own biomedical word embeddings. Comparing our pro-

posed biomedical word embeddings to cutting edge pre-trained biomedical embed-

dings demonstrated ours to be superior embeddings in semantic relatedness evalua-

tion. Due to the fact that our biomedical embeddings outperform current publicly

available pre-trained word biomedical embeddings, we make them available for future

use by the public. A possible way to further improve these biomedical embeddings is

38
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through optimisation of the training model. Additionally, we would like to evaluate

the embeddings, both biomedical and general, in downstream NLP tasks, like question

answering, to further assess the performance and differences among the embeddings.

Almost every NLP system based on deep learning uses word embeddings as input

on some level. These deep learning based systems cover many areas including question

answering [50], natural language inference [18], and image captioning [53]. Despite

there being many methods for generating word embeddings that suit very specific

problems, like multi-sense embeddings [37], pre-trained embeddings are a valuable

resource. Pre-trained embeddings provide an quick and easy to use resource for all

of these NLP systems. The insights provided in this thesis are applicable to the

general process of pre-training embeddings. Since pre-trained embeddings are being

widely used, it is necessary to understand them. To help further understanding of

pre-training embeddings, future research into how corpus statistics directly affect

embeddings or into the impact of processes like stemming or lemmatization can be

done. Additionally, this thesis resulted in new state-of-the-art domain specific pre-

trained embeddings. Providing more pre-trained embeddings for varying domains

further increases the applicability and ease of use of pre-trained embeddings as a

whole.
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Appendix A

Embedding Relatedness Full Results

A.1 General Domain

The full correlation results for all the pre-trained general embeddings, pre-trained

biomedical embeddings, and the proposed biomedical embeddings on each of the ten

general relatedness datasets, from Table 3.5, are reported in this section. As these

correlation results are computed on the words that are in the intersection of all the

embedding’s vocabularies, i.e. for the pairs of terms that are not OOV across all sets

of embeddings, the number of pairs evaluated is reported for each dataset. For the

full general domain relatedness results using Spearman’s ρ see Table A.1. For results

using Pearson’s r see Table A.2.
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A.2 Biomedical Domain

The full correlation results on each of the four biomedical relatedness datasets, from

Table 3.6, for all the pre-trained general embeddings, pre-trained biomedical embed-

dings, and the proposed biomedical embeddings are reported in this section. The

number of pairs evaluated is reported per dataset as these correlation results are

computed for the pairs of terms that are not OOV across all sets of embeddings. For

the full biomedical domain relatedness results using Spearman’s ρ see Table A.3. For

results using Pearson’s r see Table A.4.
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Appendix B

Training Better Embeddings

This appendix dives deeper into how various factors influence the semantic relatedness

performance of the proposed embeddings. The following factors are examined:

1. Using subword information when training

2. Additional preprocessing of the training data

3. The number of phrase generation passes done over the training data

The starting point for all embedding training data in this appendix is the Pubmed

dataset as described up to Section 3.2.2. In other words, it is the extracted prepro-

cessed Pubmed corpus but with no phrase generation yet applied.

All word embedding models in this appendix are trained with the parameters from

Table 3.4 unless otherwise specified.

B.1 Using Subword Information

In this section, the performance impact, on using an embedding for semantic relat-

edness, of training a word embedding model with subword information is evaluated.

Two word embedding models are trained:

• fastText-pubmed-Subword: Trained on Pubmed with fastText model pa-

rameters from Table 3.4.

• fastText-pubmed-NonSubword: Trained on Pubmed with fastText model

parameters from Table 3.4 with the exception of not training with subword

information.

The resulting embeddings are evaluated, as described in Section 3.4.1, on both

the general relatedness datasets, Table 3.5, and the biomedical relatedness datasets,

Table 3.6.

51
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The following general pre-trained embeddings, from [2], are also compared:

• crawl-300d-2M: trained on Common Crawl (600B tokens). Retrieved from [13].

• crawl-300d-2M-subword: trained with subword information on Common

Crawl (600B tokens). These are the embeddings used previously in this work

that were referred to as fastText-Web. Retrieved from [13].

Dataset
Pairs

Evaluated

Net Correlation Change
When Trained w/Subword
Spearman Pearson

MC-30 30 -0.0234 -0.0141
MEN-3000 3000 -0.0003 -0.0005

MTURK-287 285 -0.0007 -0.0029
MTURK-771 771 0.0003 -0.0001

RG-65 65 -0.0250 -0.0135
RW-2034 1720 0.0023 0.0009
SE-518 506 0.0035 0.0031
SL-999 999 0.0006 0.0008
WS-353 353 -0.0023 -0.0015
YP-130 130 -0.0019 -0.0013

Mayo-101 91 -0.0029 -0.0027
MiniMayo-29 29 -0.0055 -0.0025
UMNRel-587 549 -0.0031 -0.0026
UMNSim-566 541 -0.0037 -0.0011

Average - -0.0044 -0.0027

Table B.1: Relatedness Impact - Subword Information (Pubmed): The net difference
in correlation on semantic relatedness datasets between word embeddings trained with
subword information versus those trained without. In other words, correlation results
of fastText-pubmed-Subword subtract correlation results of fastText-pubmed-
NonSubword.

Results

In this instance, the proposed biomedical embeddings trained using subword infor-

mation perform slightly worse over all, in terms of correlation with the human se-

mantic relatedness score, than the embeddings trained without the use of subword
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Dataset
Pairs

Evaluated

Net Correlation Change
When Trained w/Subword
Spearman Pearson

MC-30 30 -0.0024 -0.0101
MEN-3000 3000 -0.0308 -0.0307

MTURK-287 287 0.0079 0.0151
MTURK-771 771 -0.0106 -0.0010

RG-65 65 0.0078 -0.0070
RW-2034 1994 -0.0238 -0.0143
SE-518 512 -0.0227 -0.0197
SL-999 999 -0.0321 -0.0225
WS-353 353 -0.0624 -0.0295
YP-130 130 -0.0401 -0.0576

Mayo-101 88 0.0917 0.0521
MiniMayo-29 29 -0.0105 -0.0157
UMNRel-587 475 -0.0152 0.0011
UMNSim-566 469 -0.0216 -0.0151

Average - -0.0118 -0.0111

Table B.2: Relatedness Impact - Subword Information (Web): The net difference in
correlation on semantic relatedness datasets between word embeddings trained with
subword information versus those trained without. In other words, correlation results
of crawl-300d-2M-subword subtract correlation results of crawl-300d-2M.

information. The net differences in correlation per dataset between fastText-pubmed-

Subword and fastText-pubmed-NonSubword is reported in Table B.1. This net differ-

ence is calculated as correlation of fastText-pubmed-Subword subtract correlation of

fastText-pubmed-NonSubword. Similarly, the net correlation change between crawl-

300d-2M-subword and crawl-300d-2M is reported in Table B.2. Embeddings trained

using subword information performing slightly worse over all is also the case with the

embeddings pre-trained on web crawl data from Bowjanowski et al. [2].

The semantic relatedness performance decrease of training using subword informa-

tion is not significant. What cannot be easily quantified is the added utility of being

able to generate representations for OOV terms with a subword trained embedding

model. We would argue that this additional functionality far outweighs the slight

performance impact on the semantic relatedness evaluation datasets. Another area

where the subword information trained embeddings could benefit is in morphology
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dependant tasks as shown in [2].

B.2 Additional Training Data Preprocessing

In this section, the effects of additional training data preprocessing are investigated.

The biomedical preprocessing used, as described in Section 3.2.2, leaves various

forms of punctuation in the training data. We explore the implications that this

possible extraneous training data has on the semantic relatedness performance of a

set of word embeddings. To do this, additional preprocessing is performed in order

to remove the most obvious punctuation characters from the training data. The

following characters are removed:

/$*.^|@#{}~&()_:;%+"=’\’’,‘><?!-

Then the embeddings trained on the data with punctuation are compared with

embeddings trained on the data without punctuation. The two word embedding

models trained are:

• fastText-pubmed Full: Trained with fastText model parameters from Ta-

ble 3.4 on Pubmed dataset preprocessed as described in Section 3.2.2.

• fastText-pubmed NoPunc: Trained with fastText model parameters from

Table 3.4 on Pubmed dataset preprocessed as described in Section 3.2.2 followed

by additional processing to remove obvious punctuation.

To remove the punctuation, a simple shell script is utilised. This script, called

preprocessing-extra.sh, can be seen in the code repository for this thesis on GitHub [44].

Results

In terms of semantic relatedness there is no significant difference between embeddings,

but the embeddings trained on the data with no punctuation do perform better.

The net correlation change between the embeddings trained with the additionally

preprocessed, to remove punctuation, data and the embeddings trained on the full

data is reported in Table B.3.

An interesting result is that fastText-pubmed NoPunc has equal or better vocab-

ulary coverage than fastText-pubmed Full. This is despite fastText-pubmed NoPunc
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Dataset
Pairs

Evaluated

Net Correlation Change
w/Extra Preprocessing
Spearman Pearson

MC-30 30 0.0162 0.0155
MEN-3000 3000 0.0034 0.0039

MTURK-287 285 -0.0001 0.0028
MTURK-771 771 0.0088 0.0024

RG-65 65 0.0078 0.0038
RW-2034 1720 -0.0063 0.0070
SE-518 506 0.0009 0.0019
SL-999 999 0.0021 -0.0041
WS-353 353 -0.0101 -0.0003
YP-130 130 0.0091 0.0003

Mayo-101 91 0.0113 -0.0013
MiniMayo-29 29 0.0122 -0.0022
UMNRel-587 549 -0.0014 -0.0089
UMNSim-566 541 -0.0002 0.0057

Average - 0.0038 0.0019

Table B.3: Relatedness Impact - Additional Preprocessing: The net difference in
correlation on semantic relatedness datasets between word embeddings trained with
the additional preprocessing versus those trained without. In other words, correla-
tion results of fastText-pubmed NoPunc subtract correlation results of fastText-
pubmed Full.

fastText-
pubmed Full

fastText-
pubmed NoPunc

Training Tokens 3.38 Billion 2.88 Billion
Embeddings Learned 999,653 879,757

O
u
t
of

V
o
ca
b
u
la
ry

MTURK-287 1% 1%
RW-2034 16% 15%
SE-518 2% 2%

Mayo-101 10% 10%
UMNRel-587 7% 6%
UMNSim-566 4% 4%

Table B.4: Embedding Differences - Additional Preprocessing: The differences be-
tween the embeddings trained on the full data versus the data with no punctuation.

being trained on approximately 500 million fewer tokens and having 120,000 fewer

words in its vocabulary. The differences between the embeddings in terms of number
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of training tokens, number of embeddings learned, and out of vocabulary statistics

are reported in Table B.4. Note that only the evaluation datasets with OOV pairs,

i.e. MTURK-287, RW-2034, SE-518, Mayo-101, UMNRel-587, UMNSim-566, are

reported.

B.3 The Number of Phrase Generation Passes

This section details the experimentation with how the number of phrase detection

and generation passes on the training data can affect resulting word embedding per-

formance.

All of the following embeddings are trained with the fastText model parameters

from Table 3.4 on the Pubmed dataset with no punctuation as preprocessed in the

previous section. The number of phrase detection and generation passes applied to

the training data, as described in Section 3.2.3, is varied. Then the four following

word embedding models are trained:

• fastText-pubmed Phrased0: Zero passes of phrase generation on the train-

ing data.

• fastText-pubmed Phrased1: One pass of phrase generation on the training

data.

• fastText-pubmed Phrased2: Two passes of phrase generation on the train-

ing data.

• fastText-pubmed Phrased3: Three passes of phrase generation on the train-

ing data.

During each subsequent phrase detection pass the number of phrases detected

increases. We show the number of phrases detected during each pass in Table B.5.

Additionally we can see how many tokens were combined into phrases during each

generation pass from the decreasing corpus size. Desipte the number of detected

phrases increasing each pass, the number of tokens combined into phrases decreases

slightly.
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Phrasing Pass Corpus Size (Tokens) Phrases Detected

1 2.84 Billion 997,551
2 2.67 Billion 6,390,696
3 2.56 Billion 10,520,936

Table B.5: Phrase Generation Passes: The change in corpus size and the number of
phrases detected during each pass.

Results

Phrase detection and generation has a positive impact on embedding semantic re-

latedness performance on average. The embeddings trained on the data with three

phrase generation passes applied achieved a 0.11 stronger correlation, both Spearman

and Pearson, than the embeddings trained on the data with no phrase generation

applied. On some evaluation datasets, like MiniMayo-29 or MTURK-287, embed-

ding relatedness performance got worse or stayed the same as the number of phrase

generations applied to the training data increased. There is no obvious relationship

between the nature of the relatedness evaluation dataset and whether or not phrase

generation improves the performance on that dataset. This phenomena could simply

be attributed to the properties of the Pubmed training dataset. The correlation re-

sults calculated using Spearman’s ρ are reported in Table B.6. Similarly, the results

with Pearson’s r are reported in Table B.7.
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Dataset
Pairs

Evaluated
Spearman’s ρ

Phrased0 Phrased1 Phrased2 Phrased3

MC-30 30 0.555 0.530 0.525 0.553
MEN-3000 3000 0.672 0.668 0.662 0.660

MTURK-287 285 0.460 0.455 0.471 0.461
MTURK-771 771 0.543 0.546 0.550 0.559

RG-65 65 0.470 0.484 0.492 0.471
RW-2034 1714 0.394 0.410 0.415 0.413
SE-518 506 0.522 0.527 0.523 0.539
SL-999 999 0.321 0.323 0.325 0.324
WS-353 353 0.519 0.528 0.526 0.516
YP-130 130 0.430 0.452 0.471 0.487

Mayo-101 91 0.571 0.612 0.660 0.671
MiniMayo-29 29 0.810 0.801 0.770 0.767
UMNRel-587 547 0.584 0.588 0.594 0.594
UMNSim-566 538 0.637 0.634 0.631 0.626

Average - 0.535 0.540 0.544 0.546

Table B.6: Relatedness Impact - Phrase Generation Passes (Spearman): The se-
mantic relatedness correlation results, using Spearman’s ρ, for the embeddings with
varying numbers of phrase generation passes applied to the training data.
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Dataset
Pairs

Evaluated
Pearson’s r

Phrased0 Phrased1 Phrased2 Phrased3

MC-30 30 0.587 0.593 0.579 0.572
MEN-3000 3000 0.656 0.655 0.651 0.650

MTURK-287 285 0.525 0.520 0.531 0.526
MTURK-771 771 0.528 0.537 0.541 0.550

RG-65 65 0.486 0.490 0.499 0.469
RW-2034 1714 0.386 0.400 0.405 0.404
SE-518 506 0.530 0.540 0.539 0.551
SL-999 999 0.311 0.314 0.319 0.319
WS-353 353 0.509 0.514 0.517 0.509
YP-130 130 0.433 0.445 0.470 0.478

Mayo-101 91 0.580 0.607 0.659 0.673
MiniMayo-29 29 0.785 0.787 0.765 0.770
UMNRel-587 547 0.587 0.586 0.591 0.592
UMNSim-566 538 0.649 0.642 0.638 0.634

Average - 0.539 0.545 0.550 0.550

Table B.7: Relatedness Impact - Phrase Generation Passes (Pearson): The semantic
relatedness correlation results, using Pearson’s r, for the embeddings with varying
numbers of phrase generation passes applied to the training data.
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