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ABSTRACT

Significant effort has been made over the last few decades to develop automated passive

acoustic monitoring (PAM) systems capable of classifying cetaceans at the species level;

however, these systems often require tuning when deployed in different environments.

Anecdotal evidence suggests that this requirement to adjust a PAM system’s parameters is

partially due to differences in the acoustic propagation characteristics. The environment-

dependent propagation characteristics create variation in how a cetacean vocalization

is distorted after it is emitted. If these difference are not accounted for it could reduce

the performance of automated PAM systems. An aural classifier developed at Defence

R&D Canada (DRDC) has been used successfully for inter-species discrimination of

cetaceans. Accurate results are obtained by using perceptual signal features that model the

features employed by the human auditory system. In this thesis, a combination of an at-sea

experiment and simulations with modified bowhead and humpback whale vocalizations

was conducted to investigate the robustness of the classifier performance to signal distortion

as a function of propagation range. It was found that in many environments classification

performance degraded with increasing range, largely due to decreased signal-to-noise ratio

(SNR); however, in some environments as much as 40 % of the performance reduction

was attributed to signal distortion resulting from environment-dependent propagation. It

was found that sound speed profiles resulting in considerable boundary interaction were

important for producing sufficient signal distortion to affect PAM performance, relative to

the impacts of SNR. Therefore, in some environments the ocean acoustic properties should

be taken into account when characterizing performance of automated PAM systems. For

the environments in which signal-to-noise issues dominate, the use of multi-element arrays

is expected to increase the performance of automated recognition systems beyond the

minor improvements to be gained from adjusting a PAM system’s parameters. Nonetheless,

propagation modelling should be used to complement PAM experiments to account for

bias in probability of detection estimates resulting from environment-dependent acoustic

propagation.
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by noise or propagation)

xt,p WATTCH-simulated time series

X Continuous variable for decision process

yt,n Time series comprised of signal and noise

yt,p Time series comprised of simulated signal
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Symbol Description Units

yt,r Time series comprised of simulated signal and

noise

z Depth m

zr Receiver depth m

zs Source depth m

α Compressional attenuation dB/λp

β Weight used to scale noise vector to achieve

desired SNR

λ Wavelength m

λp Wavelength of compressional wave m

μSL Mean source level dB re 1 μPa @ 1 m

μSNR,R Mean SNR for a particular range dB

ρ Density g/cm3

σaccuracy Standard deviation of accuracy %

σAUC Standard deviation of AUC

σ2
n Noise variance

σ2
s Signal variance

σ2
s+n Combined signal and noise variance

σSL Standard deviation of source level dB re 1 μPa @ 1 m

σSNR Standard deviation of SNR dB

σ2
SNR,R Variance of SNR at a particular range dB2

τ Decision threshold value

ω Angular frequency rad
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Passive acoustic monitoring (PAM) is widely used to study cetaceans in their natural

habitats [1, 2, 3]. The PAM process has become increasingly automated since it has

been recognized that there is a requirement for automated detection and classification

methods to deal with large volumes of data [1, 3]. The utility of automated PAM systems

is dependent on their ability to operate across a wide range of environmental conditions [4].

Since cetaceans are found in all ocean basins, their habitats span diverse underwater

environments. For example, PAM has been used successfully in the tropical waters off the

Brazilian coast to study humpback whale behaviour [3]; in the temperate waters of the

Gulf of Maine for real-time detection of three baleen whale species from ocean gliders [5];

and in the polar waters of the Beaufort Sea to assess the impact of seismic air gun surveys

on migrating bowhead whales [6]. PAM of even a single species can be complicated by

the numerous environments covered by their distribution range. For example, humpback

whales have a truly global distribution — they are found in tropical, temperate, and sub-

polar waters worldwide [7]. Humpback whales in the northern hemisphere spend the

summer on feeding grounds in the biologically productive areas of higher latitudes and

migrate southwards in the winter to sub-tropical and tropical waters to breed and calve

[8, 9]; thus, an individual humpback whale will encounter many different ocean regions

during its annual migration.

Properties of the ocean environment — such as sound speed profile (SSP), bathymetry,

sediment properties, and ambient noise characteristics — can be markedly different
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among regions where PAM is used to observe cetaceans. This results in environment-

dependent sound propagation characteristics [10, 11, 12, 13] and leads to differences

in how a cetacean vocalization is distorted as it propagates along the source-receiver

path. Environmental properties also vary over the spatial scales (tens to hundreds of

kilometres) [1, 14, 15] at which many cetacean species can be acoustically detected. This

means that the acoustic environment must often be considered as range-dependent. In

addition to spatial variability, temporal variability also plays an important role in the ocean

environment. For example, temporal variability occurs due to diurnal and seasonal changes

of the SSP in the upper ocean [10, 11, 13, 16]. All of these factors combine to produce a

complex, dynamic environment that affects propagating acoustic signals. This sentiment is

well-summarized by Walter Munk’s comment, “The very essence of ocean acoustics is its

inherent variability [13, p. xiii].”

It is well known that properties of the ocean environment distort sound propagating

through the ocean medium [10, 11, 12, 16, 17]. Signal distortion arises due to differences

in travel times along different propagation paths between the source and receiver (referred

to as multipath or time-spreading) [10]. This causes a signal’s phase and amplitude to vary

in a complex manner [13]. Urick [10] notes that, “it may not be an exaggeration to say

that the effects of multipaths in the sea are deleterious to the detection of long-range sonar

targets as well as in many short-range applications.” In terms of PAM of cetaceans, Helble

et al. [18] state, “The ocean bottom properties, bathymetry, and temporally varying sound

speed act to distort and reduce the energy of the original waveform produced by the marine

mammal. In addition, constantly varying ocean noise further influences the detectability of

the calls. This ever-changing acoustic environment creates difficulties when comparing

marine mammal recordings between sensors, or at the same sensor over time.”

Since many PAM systems rely on the time-frequency characteristics of the vocalizations

for detection and classification [1, 4, 19, 20, 21, 22, 23, 24], signal distortion has the

potential to negatively affect the accuracy of PAM systems [10, 22, 25]; however, little

research has been directed towards this problem. Some authors acknowledge that propa-

gation effects likely impact the accuracy of PAM systems, but do not analyze how their

system is affected. Thode et al. [6] discuss how waveguide effects, resulting from a shallow

water environment, substantially alter the time-frequency characteristics of air gun signals

and increase the false alarm rate in their automatic detection/classification of bowhead
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whale vocalizations. Mouy et al. [23] state that the performance of automatic detection

and classification methods is dependent on the acoustic properties of the environment.

They note that fin and blue whale calls often appear distorted and ‘warped’ in time and

that this degrades the accuracy of detection and classification algorithms. To test the

robustness of their processing and classification methods, the authors chose calls that

represented different noise and multipath conditions and ensured that data for training and

testing the classifier were recorded at different locations and times. While this method

provides a preliminary indication of the capability of their method to accommodate signal

distortion due to propagation, they do not explicitly consider how changes in the acoustic

properties impact their system. At the end of their paper, Zimmer et al. [26] conclude that,

“Because the performance of passive acoustic detection depends heavily on environmental

conditions, it must be implemented carefully to compensate, at least partially, for the effect

of these conditions.”

One of the few studies that included transmitting signals similar to whale vocalizations

was conducted by Mercado et al. [27]; however, their research was not focused on PAM,

but rather on investigating if a listening whale can use the propagation characteristics of

its habitat for information to estimate the range to a vocalizing whale. Using the spectral

information of the transmitted signals, they were able to train a neural network to recognize

the range (‘near’ or ‘far’ and as originating from one of 10 range steps) over which the

signals had propagated. Their results indicate that the time-frequency characteristics are

substantially changed by propagation effects, which the authors conclude indicates that

whales can use the signal distortion as a clue for estimating the range over which the

vocalizations travelled. This further suggests that the information content in a vocalization

is modified by the ocean acoustic environment, which inevitably will affect features

extracted from the vocalizations for automated recognition.

In some cases, simple propagation effects are taken into account during the detection

process by incorporating geometrical spreading and/or frequency-dependent attenuation

(e.g., in Zimmer et al. [26] and Samaran et al. [28]); however, little has been done to

investigate this issue using more advanced propagation models. When more advanced

propagation models are employed it is often when the focus is on density estimation (e.g., in

Marques et al. [29] and Küssel et al. and [30]) or localization/tracking of individual whales

(e.g., in Simard and Roy [25], Nosal and Frazer [31], and Chapman [32]). Nonetheless,
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there are a few examples of research that implement more advanced propagation models.

For instance, a distinct seasonality in baleen whale call detection rates in the Gulf of

Alaska was noted by Stafford et al. [33]; transmission loss results obtained with a parabolic

equation model indicated that the seasonality in call detection rates was a result of seasonal

changes to the SSP which affected the detection range. Širović et al.’s [4] study is one of

the first examples in which a computational propagation model was included to normalize

the calling rates of blue and fin whales by the modelled detection area to estimate cetacean

abundance. In another case, Helble et al. [22] use a parabolic equation propagation

model to demonstrate the significant impact of the ocean’s environmental properties on

the detection stage of PAM. The authors simulated calls recorded on a fixed receiver that

propagated from virtual sources placed at various ranges and angles with respect to the

receiver. Their results show that the probability of detecting a humpback whale call is a

function of the environmental properties and can “vary by factors of 10 or more” among

monitoring locations or at the same sensor over time [22]. To date, this research seems to

be unique in the marine mammal community as it employs a full wave-field model that

allows the transmitted humpback signals to attenuate correctly with respect to frequency,

and accounts for phase distortions due to dispersion and multi-path. Furthermore, it

comprehensively considers the effects of transmission, ambient noise, and the detection

process to develop a realistic model of the probability of detection [34].

1.2 Investigating the Impacts of Environment-
Dependent Propagation on an Automated Aural
Classifier

From evidence in the literature, presented in the previous section, one can conclude

that there ought to be a thorough understanding of how the environment impacts the

detection/classification performance in order to develop an automatic recognition system

capable of operating effectively under numerous environmental conditions. In spite of this

general consensus, there is no study published in the literature that systematically analyzes

the impacts of propagation on an automated classifier, using both underwater propagation

experiments and complementary simulations. To address this deficiency, this thesis assesses

the robustness of an automated aural classifier under various environmental conditions,

through a combination of transmission and simulation experiments with modified bowhead
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and humpback vocalizations. The aural classifier extracts perceptual signal features to

inform the classification decision; the development of these features is motivated by

the ability of a human listener to distinguish between sounds with similar temporal and

frequency characteristics [35, 36]. Application of the aural classifier assumes a two-stage

process: a detection stage followed by a classification stage. First, a general automatic

detector is implemented with detection parameters set to achieve a high detection rate,

while recognizing that this will likely generate many false detections. Then an automatic

classifier is used to considerably reduce the number of false detections and identify the

cetacean species [19]. This philosophy for detection/classification is employed to ensure

that cetacean presence is noted, which is of particular importance when monitoring for

at-risk species, or those that vocalize infrequently. It should be noted that the focus herein

is on the impact of the environment on just the classification part of this process, and the

effects on the detection stage are ignored.

Throughout this thesis a distinction is made between the two factors which define

environment-dependent acoustic propagation characteristics — signal attenuation and

signal distortion. Although cetacean vocalizations are modified by both processes as they

propagate through the ocean environment, we choose to concentrate on the impacts of

distortion resulting from multipath addition. This choice was made because less attention

has been given in the literature to the effect of signal distortion in the context of PAM of

cetaceans, whereas it is accepted that lower signal-to-noise ratio (resulting from signal

attenuation) makes it more difficult to detect and classify sounds.

Preliminary research has shown the potential of the computer-based aural classifier for

automatic species recognition [19, 37]. To build on the initial success of the classifier, we

now seek to understand how robust the aural classifier is for conducting PAM in various

marine environments. An initial investigation by Murphy and Hines [38] considers the

temporal robustness of the automated aural classifier for discriminating between active

sonar returns; the results of this investigation are extended to PAM of marine mammals

and incorporate both an at-sea experiment and complementary simulations. A robust,

fully characterized, automated recognition system is beneficial for population monitoring,

determining habitat use, and/or conducting surveys that are required to mitigate the impacts

of naval exercises and natural resources exploration on marine mammals.
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1.2.1 Thesis Outline
Following this introduction, further details on the aural classifier and how its performance

is evaluated are provided in Chapter 2. The initial data set, composed of bowhead and

humpback vocalizations, is described in Chapter 3. Two types of whale vocalizations —

biogenic and synthetic vocalizations — are used as source signals for the experiments

and simulations. The development of the synthetic vocalizations is explained, and a

comparison with the biogenic calls is conducted. After the signals in the initial data set

are presented, details on how the signals were processed for the experiments and detected

from experimental recordings are provided. One of the key processing steps included

up-sampling signals in the biogenic and synthetic data sets, based on restrictions imposed

by the at-sea experiment, such that the signals were transmitted in a higher frequency band

than real bowhead and humpback vocalizations.

Chapter 4 describes at-sea propagation experiments that were conducted to gain valuable

insight into how real environmental conditions impact the signals as they propagate through

the water. Environmental parameters (e.g., SSPs and sediment characteristics) are also

analyzed to gain insight into the acoustic environment experienced by the signals. The

aural classifier is trained on signals with minimal signal attenuation and distortion and

validated on signals that increasingly interacted with the ocean environment (such that

increasing attenuation and distortion is expected), as a means of investigating the impact of

acoustic propagation on the classifier performance. These experiments provide a baseline

for modelling work, since the recorded signals include real propagation effects, resulting

from the complex ocean environment.

In Chapter 5 pulse propagation modelling is introduced. A background discussion

on the different types of propagation models is provided to motivate the selection of a

ray-theoretic pulse propagation model. This model is then used to simulate the Gulf of

Mexico experiment. The benefits of the simulation stage of the research are demonstrated

by putting bounds on the classifier performance, based on realistic within-environment

variability for the Gulf of Mexico experiment.

Further advantages of a simulation approach are demonstrated in Chapter 6, in which the

pulse propagation model is applied to determine the relative impact of signal attenuation

and distortion on the aural classifier performance. It is widely recognized that increasing

signal attenuation decreases the performance of automated PAM systems; however, as
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outlined in the preceding literature review (Section 1.1), little research has been directed

at analyzing the impact of signal distortion. Hence, a novel method to disentangle the

relative impacts of signal attenuation and distortion is introduced, and applied to biogenic

bowhead and humpback calls propagated through two environments. The environments

were motivated by measurements collected during the Gulf of Mexico experiment.

Finally, the techniques developed in previous chapters are applied in Chapter 7 to inves-

tigate the impact of environment-dependent propagation on the automatic recognition of

bowhead and humpback vocalizations in their true frequency band (reversing the effects of

up-sampling for the Gulf of Mexico experiment). The whale calls were propagated through

two simulated environments, one of which was expected to have moderate propagation

characteristics, and the second of which was expected to result in considerable propagation-

induced signal distortion. The simulation case in the last analysis chapter is intended to

provide a connection back to PAM of cetaceans that vocalize in a low frequency band, such

that recommendations may be provided on how best to conduct PAM surveys of baleen

whales.
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CHAPTER 2

AUTOMATED AURAL CLASSIFIER AND
PERFORMANCE METRICS

To study the impact of propagation on classification of cetacean vocalizations, a previously

developed automated classifier was desired. In this thesis, a computer-based aural classifier

developed at Defence Research and Development Canada (DRDC) [35] was employed.

Previous results show it can be used to successfully discriminate vocalizations from several

cetacean species; notably, the classifier was able to distinguish between bowhead and

humpback whale calls with an accuracy of 92 % and an area under the receiver operating

characteristic curve (AUC) of 0.97 [19]. The success of the aural classifier is due to the

perceptual signal features it employs, which provide powerful discrimination cues for

inter-species classification of cetaceans [19]. These features were developed by Young

and Hines [35] to take advantage of evidence [36] that experienced sonar operators can

often hear differences in active sonar returns from man-made metallic objects (targets) and

naturally occurring geologic objects (clutter). The perceptual features are different than

features obtained using conventional signal processing techniques because they take into

account how a human listener perceives sound [19, 35, 38]. For example, conventional

signal processing might employ peak frequency — the frequency corresponding to the

maximum value of the signal spectrum (as in Parks et al. [24]). The analogous perceptual

feature is referred to as the peak loudness frequency, which is the frequency corresponding

to the peak in the loudness spectrum (this includes, for example, the bandpass filtering that

occurs in the ear canal). This chapter provides a brief overview of the aural classifier, and

a discussion on how the performance of the classifier was evaluated; for more detailed

discussion on the classifier, the reader is referred to Young and Hines [35], and Binder
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and Hines [19] .

2.1 The Aural Classifier

In essence, a classification model is a mapping from data samples to predicted classes [39].

In a PAM context, an automatic classifier can be thought of as a predictive model that

is capable of independently identifying a cetacean species based on its vocalizations.

Expert marine mammal analysts can often aurally distinguish between cetacean species

by listening to recordings [1, 20, 40]. Thus, the aural classifier is a convenient tool that

mimics how a human listener distinguishes among cetacean vocalizations. Once trained to

recognize discrimination cues for inter-species classification, the assumption is that it will

be able to identify novel vocalizations with high accuracy.

The classification process begins with calculating the perceptual features from each

of the vocalizations to be classified. To accomplish this, a relatively simple auditory

model is first applied to each of the vocalizations to obtain a perceptual representation

of the signals [19, 35]. A total of 58 features — defined in Young and Hines [35] — are

computed for each signal, 46 of which are one-dimensional time-frequency features (e.g.,

mean subband decay time), and twelve of which are purely spectral features (e.g., peak

loudness frequency). After the perceptual features are determined, the data are split into

training and validation subsets; from the training set the most important aural features

(those with sample class means that are well-separated relative to the overall variance of

the dataset [41]) were identified using the Fisher Linear Discriminant score [19, 38]. These

features are then used to train a Bayesian classifier model.

Each of the perceptual features represents an axis of the feature space. So, if all features

were used for classification the resulting feature space would be 58-dimensional. A

high-dimensional feature space requires many training samples to accurately estimate the

underlying patterns in the data; this is referred to as the ‘curse of dimensionality’ [42].

As described in Chapter 3, the number of samples in the data set was limited. Thus, the

first step in training the classifier is to reduce the dimensionality of the feature space.

The dimensionality is first reduced by selecting those features with a high Fisher Linear

Discriminant score. Discriminant analysis is then used to linearly combine the selected

features to further reduce the dimensionality of the feature space [37] by projecting the
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data onto a single dimension (throughout the thesis this axis is referred to as the ‘Projected

Feature Value’).

A Gaussian-based Bayesian classifier is then applied to the projected data. A Gaussian

probability density function (pdf) is fit to each of the classes; each pdf represents the

likelihood for points along the Projected Feature Value axis to belong to one of the two

possible classes. Bayesian decision theory is used to combine the likelihood probabilities

with prior probabilities (i.e., relative number of samples in each class) to inform the

classification decision. Essentially, the classifier makes its decision based on which class

has the highest likelihood probability, relative to the number of class samples. A simple

Bayesian framework is used for this research rather than one of the many other more

sophisticated classifier architectures available (e.g., neural networks [41, 43, 44] or support

vector machines [41, 44]) to direct focus on the effectiveness of the perceptual features,

rather than the choice of classification algorithm. In the future, it would be possible to

implement a more advanced classifier architecture to potentially gain improvements in

classifier performance; however, such an investigation is beyond the scope of this research.

In summary, the aural classification process is divided into three phases: first, a relatively

simple auditory model is applied; second, the perceptual signal features are computed

for each signal; finally, using a linear combination of the features that best discriminate

among the classes, a Bayesian classifier is applied to determine to which class each sample

belongs [19, 35]. Throughout this process, the classifier is trained with a set of signals

for which the classifier is provided the class labels. The effectiveness of the classifier is

then validated with a second set of signals for which the classifier has no direct knowledge

of the class labels. Validation is an essential step that ensures the classifier has not been

over-trained on the data in the training set, but will maintain good performance when

presented with unknown data [45].

2.1.1 Validation of Classifier Performance

An essential step in developing a classifier is to assess its generalization, since we desire a

classifier that is not merely tuned to the training set, but will perform well when presented

with unknown data [44, 45]. The simplest method to assess the generalization error of a

classifier is to randomly split the set of data samples into two parts, with no duplication

of samples between the two subsets. One of these sets is used to train the classifier (i.e.,
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adjust model parameters in the classifier) and the other, known as the validation set, is

used to estimate the generalization error [45]. The classifier is then trained with data for

which the classifier is provided a class label. By generalizing the underlying patterns in

the training set, predictions can be made about data that do not have a known class label.

The effectiveness of the classifier is then validated by imposing the assumptions of the

classifier on a dataset for which the classifier has no direct knowledge of the class label.

To evaluate the performance of the classifier in generalizing to novel data points, the class

label assigned by the classifier to each vocalization in the validation set is compared to the

known true label. This process is referred to as cross-validation. The generalization error

is low if the classifier maintains similar performance between the training and validation

subsets. In brief, cross-validation is an empirical approach to asses classifier performance;

once the classifier is trained using cross-validation, the validation error provides an estimate

of the classifier performance when it is applied to a novel dataset [45].

In this work, simple validation was used to generate decision regions to visualize

the discriminability of the data (see conceptual example in Figure 2.5 and example of

experimental results in Figure 3.4). Decision regions are generated by projecting each

sample in the training or validation subset onto the ‘Projected Feature Value’ determined

from discriminant analysis, then binning the data to generate class-specific histograms; the

decision threshold is set at the point of equal likelihood. One is able to verify classification

decisions visually by noting on which side of the decision threshold a data sample lies.

This comparison is facilitated by the background colour of the plots; for example, a red bar

on the red background represents samples that were correctly classified, whereas a red bar

on the blue background indicates incorrectly identified samples. It is also possible to assess

the discriminability qualitatively by noting the separation between class means and the

overlap between the class distributions (total discriminability is attained when class means

are well separated and there is no overlap). This simple validation method is accomplished

by randomly splitting the data into training and validation subsets such that half of the

signals for each class were placed in the training set and the other half in the validation set.

There is no duplication of signals between the training and validation subsets, i.e., these

are disjoint sets. This is an important point since it is essential that the validation set not

include any of the signals used to train the classifier, resulting in a methodological error

referred to as “testing on the training set [45].”
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Figure 2.1: Illustration of k-fold cross-validation; the specific case shown is for k = 5.

Each box represents a disjoint data subset that is 1/k the size of the complete dataset. The

white boxes represent those used to train the classifier, and the black boxes the validation

subset. The classifier is trained and validated for each fold, then the results are averaged

together to estimate the performance of the classifier.

A generalization of the simple cross-validation method is known as k-fold cross-

validation. In this method, the dataset is divided into k disjoint sets of equal size n/k,

where n is the total number of signals in the dataset. The classifier is trained k times,

with one subset of the data withheld as the validation set and the union of the remaining

(k − 1) sets used for training [44, 45]; this technique is illustrated in Figure 2.1, in which

each box represents one of the data subsets. The estimated performance of the classifier

is then the mean value of the k computed performance metrics [44, 45] and the standard

deviation of the metrics is used as an estimate of the generalization error. There is no

prescribed rule for choosing the proportion of the data set to be used as the validation

subset; however, it is generally accepted that a smaller portion (less than half) of the data

set be used for validation than was used to train the classifier. Additionally, k is selected to

balance the competing requirements of having enough samples in the training set so as

not to bias the performance estimate, while leaving enough samples in the validation set

to minimize the variance of the performance estimate. With the exception of generating

decision regions, it was found a choice of k = 5 resulted in a convenient proportion of

samples in the validation subset. By performing k-fold cross-validation, any potential bias

associated with having an outlier in either the training or validation set is accounted for.
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2.2 Performance Metrics

Since the goal of this thesis is to evaluate how the classifier performance is impacted

by propagation effects, the method used to evaluate classification performance must be

carefully considered. In evaluating the performance, metrics are desired that are relatively

easy to implement, provide useful information, and are simple to interpret. To achieve

these goals, two performance metrics were selected: classification accuracy and AUC.

Discriminating between bowhead and humpback whale vocalizations is a dichotomous

decision process. The decision is made using a threshold-based rule on a continuous

variable, X , that yields the decision, D, as a positive (p) or negative (n) instance according

to,

D =

⎧⎨
⎩

p, if X ≥ τ

n, if X < τ
, (2.1)

where τ is the value of the threshold [46]. Throughout this section, the conventional

decision theory terminology — X , positive and negative — will be employed for simplicity

and to be consistent with the literature; however, it should be recognized that this is an

arbitrary designation. The class labels can be switched from ‘positive’ and ‘negative’

to ‘bowhead’ and ‘humpback’, and ‘Projected Feature Value’ may be substituted for X ,

without any loss in meaning.

Accuracy, which is sometimes referred to as the classification rate, is a performance

measure which is defined as the ratio of correctly classified samples to the total number of

samples, n, or,

accuracy =
TP + TN

n
, (2.2)

where TP and TN are the number of correctly identified positive and negative signals,

respectively. Although accuracy is an intuitive metric, it can be limited in its usefulness;

namely, it assumes equal risk associated with all incorrect decisions, and it treats all

outcomes as being equally likely [46]. Therefore, it is necessary to use an additional

measure of classifier performance, such as the AUC, to enhance insight into the classifier

performance.

An example of distributions representing the occurrence of positive and negative events

is provided in Figure 2.2. By and large, X is able to discriminate between positive and
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Figure 2.2: Illustration of the occurrence of positive and negative events. Three example

thresholds (τ1, τ2, or τ3) are shown — a positive event decision is made for X ≥ τ . The

choice of decision threshold determines the true positive and false positive rates.

negative events, since the class means are separated and there is a relatively small amount

of overlap between the distributions. Three possible decision thresholds are also depicted in

the figure. At threshold τ1 calling all events with X ≥ τ1 positive would correctly identify

a small proportion of all positive events, but also erroneously label a large proportion of

the positive events as negative. The benefit of excluding negatives is made at the cost of

missing many positive events. At threshold τ2 a more even balance is struck in which the

majority of positive and negative events would be correctly identified while also incorrectly

classifying some negative events. Finally at τ3, all positive events are correctly identified,

but a large proportion of the negative events have been inappropriately labelled as positive.

This example highlights how the choice of decision threshold influences classification

accuracy.

At each threshold there are four possible outcomes from the decision process; these

are tabulated in the confusion matrix in Figure 2.3. The cells along the major diagonal

represent the correct decision, and the cells off the major diagonal represent the errors

(or confusion) between the classes [39]. For example, a true positive occurs when the

classifier correctly identifies a signal as a positive, whereas a false negative is a result of

the classifier incorrectly identifying a positive signal as a negative. Receiver operating

characteristic (ROC) curves illustrate the tradeoffs between the benefits (true positives)

and costs (false positives) of a classifier model [39], by plotting the true positive (tp) rate
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Figure 2.3: Confusion matrix for the two-class classification problem. The symbols p and

n represent the truth value (positive or negative) of a signal, whereas Y and N represent

the decision made by the classifier (after Fawcett [39]).

versus the false positive (fp) rate. These rates are defined as,

tp rate =
TP
P

, (2.3)

and

fp rate =
FP
N

, (2.4)

where TP is the number of positive signals correctly classified, P is the total number of

positive signals, FP is the number of negative signals incorrectly classified, and N is the

total number of negative signals. A ROC curve is generated by sweeping the decision

threshold through values of X to add points to the curve. Example ROC curves are shown

in Figure 2.4. To move away from the chance ROC curve (red solid line) toward the ideal

curve (blue dashed line), a classifier must exploit information in the data set [39]. Thus, it

can be seen that the ROC curve provides a simple graphical representation of the tradeoffs

between true positive and false positive rates, as well as the general discriminating power

of X for distinguishing positive from negative events [46].

Much of the information in a ROC curve can be distilled down to a single value —

the area under the ROC curve. The AUC is a non-parametric summary measure, and

unlike the accuracy, it is independent of the choice of decision threshold [46]. It also has

a convenient statistical interpretation; Green and Swets [47] showed that the AUC can
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Figure 2.4: Example ROC curves. The blue dashed curve indicates the ideal case in which

all samples are correctly identified, the red solid curve represents a useless decision process

in which the decision variable has no discriminating power, and the black dotted curve

shows a typical result.

be interpreted as the probability that the classifier will correctly discriminate a randomly

selected pair of positive and negative samples. It is also an indication of how well

separated the class distributions are — a large value of AUC indicates little overlap

between the distributions. The AUC varies between 1 (indicative of an ideal classifier) and

0.5 (equivalent to randomly assigning a classification decision). In general, a larger AUC

implies better average classifier performance [39]. When assessing classifier performance

in terms of the AUC the following general guidelines from the literature [38, 48] may

be followed: AUC = 0.5 indicates no discrimination, 0.7 ≤ AUC < 0.8 is considered

acceptable discrimination, 0.8 ≤ AUC < 0.9 is considered excellent discrimination, and

AUC ≥ 0.9 is considered outstanding discrimination.

By examining both the AUC and the accuracy, one is able to distinguish between

discriminability and decision bias. The former is an inherent property of the classifier, while

the later is dependent on the choice of (changeable) threshold [41]. Hence, both metrics

are required to interpret fully how propagation impacts classification results [49, 50]. For

example, it is possible to achieve an ideal AUC but not attain 100 % accuracy, which may

seem counterintuitive; however, one must carefully consider what each performance metric

describes. The AUC represents the probability that a randomly selected pair of positive

and negative samples will be correctly classified [46]. The accuracy, on the other hand,

imposes a threshold and measures the resulting accuracy with respect to that threshold [39].

Clearly the threshold has greater generalization error than the ROC curve in the case
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Figure 2.5: Illustration of (top panel) both excellent accuracy and AUC, and (bottom panel)

poor accuracy but excellent AUC. Correct classification occurs when the distribution falls

on the corresponding background colour.

where the AUC indicates an ideal classifier but the accuracy is less than perfect. The class

distributions in Figure 2.5 depicts such a scenario. Ultimately, both the accuracy and AUC

are required to assess classifier performance to gain a full understanding of the decision

process.

17



CHAPTER 3

BIOGENIC AND SYNTHETIC
VOCALIZATION DATA SET

Two types of signals are used in this thesis: biogenic and synthetic whale calls. Biogenic

calls are those derived directly from recorded whale calls, i.e., their origin is purely

biological; whereas the synthetic calls were generated artificially to mimic whale calls.

The synthetic calls were generated due to the desire to transmit calls that had not been

subjected to propagation effects prior to the experiments or simulations. Further details

on these two types of signals are found in the following sections. The remainder of this

chapter discusses how the signals were conditioned for the experiments and simulations,

and briefly describes the detector used to isolate calls from the recordings.

3.1 Biogenic Whale Calls

Bowhead (Balaena mysticetus) and humpback (Megaptera novaeangliae) whale vocaliza-

tions were selected to study the impact of propagation on the performance of the aural

classifier. Calls from these species were used in a previous study of the effectiveness of

the aural classifier for PAM of marine mammals [19]. Of the whale species considered in

Binder and Hines [19], bowhead and humpback vocalizations were the most challenging

for the aural classifier to discriminate due to the similar frequency content and duration

of many of the calls produced by these species; nonetheless, the classifier was able to

discriminate between the vocalizations with 92 % accuracy and an AUC = 0.97 [19]. The

bowhead and humpback calls were thought to provide a sufficiently challenging classi-

fication scenario to test the robustness of the perceptual features, given the similarity of

18



Table 3.1: Frequency range and duration of vocalizations in the biogenic data set. Note

that these are not representative of the full vocal repertoire of the species, but only for the

vocalizations used in this study.

Vocalization Type Frequency Range (Hz) Duration (s)

Humpback unit 1 200 to 600 2.5 to 3.0

Humpback unit 2 150 to 700 1.0 to 1.5

Humpback unit 3 100 to 2000 ∼1.0

Humpback unit 4 500 to 1300 1.5 to 2.0

Bowhead 50 to 800 2.5 to 3.0

frequency band and duration of the calls.

Both of these species are known to produce song; that is the hierarchical organization

of vocalizations used by some baleen whale species [8]. Within a whale song there is a

high degree of repetition. As originally described by Payne and McVay [8], the shortest

sound that is continuous to a human ear is referred to as a unit; a few units are repeated

in a prescribed order to form a phrase, and the phrase is repeated several times within a

theme, and so on. Thus, an automatic classifier likely only needs to be trained on a select

few song units because they are repeated often enough within a song for the classifier to

inform a decision as to what species is/are present.

Recordings of example bowhead and humpback vocalizations were obtained from the

MobySound website [51, 52]. The MobySound database contained samples of bowhead

song endnotes and complete recordings of humpback songs. A humpback song repertoire

contains a large variety of sounds, including a wide range of durations and frequency

content [8]. Of the many different sounds (often referred to as ‘units’), four song units

were selected for the classification research. These sound units were the same as those

used in the previous study of the effectiveness of the aural classifier for PAM of cetaceans

[19]. They were selected because the frequency band and duration of the units overlapped

with the bowhead vocalizations (see Table 3.1). Spectrograms of example bowhead and

humpback calls are shown in Figure 3.1. The similarity of calls between these two species

makes it difficult for some automatic detectors (e.g., the band-limited energy detector

discussed in Bougher et al. [21] and Hood et al. [53]) to discriminate between the species,

19



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.1: Example spectrograms of (a) bowhead, and (b) synthetic bowhead vocaliza-

tions; as well as the humpback song units referred to as (c) humpback1, (d) humpback2,

(e) humpback3, (f) humpback4, and (g) an example synthetic humpback vocalization.

Spectrograms are produced using Hann-weighted windows of length 512 and 256 samples

for the bowhead and humpback vocalizations, respectively, and 70 % overlap.
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so they were considered a challenging case, in the context of this thesis, to test the

robustness of the perceptual features.

Since information on the location of the whales with respect to the recorder and propaga-

tion conditions at the time of recordings was not available, a subset of high signal-to-noise

ratio (SNR) calls was generated. In doing this, the assumption was made that high SNR

signals likely indicated that the vocalizing whale was relatively close to the recording unit.

This suggested that fewer propagation effects were contained in the recorded signals, such

that after the propagation experiments were conducted, the main source of signal distortion

due to propagation would result from the environment at the experimental site. For this

reason, 155 of the high SNR vocalizations from the set of bowhead song endnotes and

humpback song units used in the previous PAM research [19] were selected for use in the

propagation experiments; all vocalizations in the resulting subset had SNR > 15 dB.

3.2 Synthetic Whale Calls

As previously discussed, the bowhead and humpback calls obtained from the MobySound

website were subject to unknown propagation effects. Consequently, synthetic signals

were developed to provide known starting signals that contained no propagation effects

prior to the experiment. These were transmitted in addition to the biogenic bowhead and

humpback vocalizations.

The goal in generating the synthetic signals was to produce signals that were similar,

in terms of the aural classifier, to the biogenic whale vocalizations. That is, the synthetic

calls were considered to be similar to the biogenic calls if the class means and variances of

the perceptual features were comparable between the biogenic and synthetic signals for

the features that had high Fisher Linear Discriminant scores. Due to the complex nature

of the aural classifier algorithm (i.e., it involves several non-linear transformations and

yields a set of perceptual features that are inter-related in complex ways), it was decided to

generate synthetic calls directly from the biogenic calls rather than assuming a functional

form for the calls’ time series and/or the temporal envelopes of the frequency subbands, as

one might intuitively be tempted to do.

The synthetic signals were based on an example set of high SNR bowhead song end

notes and one of the humpback song units (unit 3, as described in Section 3.1). To
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generate the synthetic signals, each example call was first denoised using wavelet analysis.

The denoising process is a means of recovering the true whale call from the recording

and eliminating a considerable portion of the noise [54]. This ensured that when the

synthetic signals were generated the noise characteristics of the recording sites were not

replicated, and that the synthetic signals were constructed as much as possible from the

whale vocalization portion of the signal. Figure 3.2 demonstrates the effect of denoising

an example signal. This illustration highlights how denoising with wavelet analysis differs

from merely applying a bandpass filter to remove out-of-band noise, which is the commonly

used alternative; the distinction is particularly obvious in the 1 to 1.5 s time range, where

the frequency band from which the noise has been removed is markedly different than for

adjacent time periods. In contrast, a bandpass filter would remove the same frequency

content across the entire signal.

After removing the noise from the example recordings, the information in the sample

recordings was summarized in terms of the mean signal and the eigenvectors of the

covariance matrix. This is similar to methods employed to predict sound speed profiles

from a database of historical measurements [55]. More specifically, the mean signal and

empirical orthogonal functions (EOFs) [55] were calculated from the wavelet-transformed

vocalizations for each species. The wavelet-transformed representation was used to

emphasize the importance of the two types of perceptual features (time-frequency and

purely spectral) used by the aural classifier. Note that this process was applied separately

for the bowhead and humpback signals, that is, a mean signal and EOFs were generated

(a) (b)

Figure 3.2: Spectrograms of an example bowhead vocalization from the MobySound

dataset (a) before, and (b) after it was denoised using wavelet analysis. Spectrograms are

produced using Hann-weighted windows of length 512 samples and 70 % overlap.
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from the biogenic bowhead calls, and another mean signal and set of EOFs were generated

from the biogenic humpback calls.

To generate a single synthetic whale vocalization, random weights were applied to the

EOFs that contained 95 % of the variance. The weights for each EOF were generated by

randomly drawing numbers from a zero-mean Gaussian distribution with standard deviation

given by the square root of the EOF eigenvalue [56]. Then the weighted EOFs were added

to the mean signal, and the inverse wavelet transform was performed to obtain the time-

domain signal. Applying different randomized weights to the EOFs for each synthetic

signal generated a set of 155 signals per species. Finally, a brief analysis was completed to

ensure that the resulting collection of synthetic calls were sufficiently representative of

whale vocalizations. This included comparing the time-frequency content of the biogenic

and synthetic signals, and comparing the aural classifier results (as described below).

3.2.1 Comparison of Synthetic Calls with Biogenic Whale Calls

One of the simplest methods to determine how well the synthetic whale calls approximate

the biogenic calls is to compare the frequency and time-frequency content of the signal

by way of their pressure spectra and spectrograms. Spectra comparing the biogenic and

synthetic signals are presented in Figure 3.3 — these spectra were generated by computing

the average of the RMS spectral levels. Note that the synthetic signals were lowpass

filtered to facilitate comparison with the biogenic call spectra; this was reasonable because

the high frequency portion of the signals was merely noise that was filtered out in later

processing. These spectra clearly show that the frequency content of the biogenic and

synthetic signals was similar across the majority of the frequency band. There was,

however, a noticeable discrepancy at low frequencies for the bowhead vocalizations —

fortunately this discrepancy was unimportant since only the 200 to 800 Hz frequency

band was transmitted during the experiments (see Section 3.3 for full details). Figure

3.1 shows spectrograms of example biogenic and synthetic vocalizations, for comparison

of their time-frequency characteristics. The spectrograms reinforce the similarity of the

biogenic and synthetic signals since the shape of the synthetic signals in the spectrograms

is consistent with those of the biogenic calls they were mimicking. They were not a perfect

match though. The time-frequency ‘track’ of the humpback3 synthetic call was broader

than its biogenic counterpart and the harmonics were not as distinct. The broadening of

23



0 500 1000 1500 2000
Frequency (Hz)

−20

−10

0

10

20

30

U
nc

al
ib

ra
te

d 
Pr

es
su

re
−

Sq
ua

re
d 

(d
B

)

Biogenic

Synthetic

(a)

0 500 1000 1500 2000
Frequency (Hz)

−20

−10

0

10

20

30

U
nc

al
ib

ra
te

d 
Pr

es
su

re
−

Sq
ua

re
d 

(d
B

)

Biogenic

Synthetic

(b)

Figure 3.3: Spectra of biogenic and synthetic (a) bowhead, and (b) humpback3 units. Syn-

thetic signals were lowpass filtered prior to determining the spectra to facilitate comparison

with the biogenic calls.

the time-frequency ‘track’ was more noticeable for the bowhead synthetic call, for which it

appeared that several bowhead calls were added together. While achieving an approximate

match between the time-frequency characteristics of the biogenic and synthetic whale

calls is important, it is the similarity of the aural classifier performance and highly-ranked

perceptual features that is more important for the purposes of this thesis.

The aural classifier was trained separately on the biogenic and synthetic vocalizations,

with the freedom to select the features that best discriminated between the bowhead

and humpback calls. The resulting ranking of perceptual features, in terms of their

discriminant score [38], was compared for the two cases. Within the highly-ranked

perceptual features the biogenic and synthetic calls had five features in common. The five
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Table 3.2: The five features that best discriminated between bowhead and humpback

whale calls for both the biogenic and synthetic signals.

Feature Description

Duration Time delay between the start and end of the signal.

Global mean sub-
band decay time

Average time delay between the peak of the temporal envelope

and the end of the signal.

Local maximum
subband decay time

Maximum time delay between the peak of the temporal enve-

lope and end of the signal; each subband considered individu-

ally.

Frequency of global
maximum subband
attack time

The centre frequency of the filter bank channel which contains

the maximum subband attack time (i.e., the time delay between

the start of the signal and the peak of the temporal envelope).

Peak loudness value Maximum value of the perceptual loudness spectrum.

perceptual features that were considered important for discriminating between bowhead

and humpback vocalizations (either biogenic or synthetic) are listed in Table 3.2, including

a qualitative description of each feature.

To ensure that the classifier results are similar for the biogenic and synthetic calls, the

classifier was trained using the five features listed in Table 3.2. The resulting decision

regions are presented in Figure 3.4. In general, the decision regions shared many similar

characteristics — specifically, the shapes of the bowhead and humpback distributions were

much alike. The main difference evident between the two decision regions was the greater

overlap between the biogenic bowhead and humpback distributions than between the syn-

thetic vocalization distributions. Notwithstanding this difference, the performance metrics

were similar using 5-fold cross-validation: classification of the biogenic calls resulted

in an accuracy of (97 ± 3) % and AUC of 0.99 ± 0.01, and the synthetic vocalization

classification produced an accuracy of 100 % and AUC= 1.00 (note that no uncertainty is

provided for the synthetic vocalizations since all five folds produced the same performance

metrics). Further to these classification results, the means and standard deviations of the

bowhead and humpback classes for each of the individual perceptual features were found to

be comparable between the biogenic and synthetic vocalizations. As a result of these three

methods for comparing the biogenic and synthetic whale calls, it was determined that the

synthetic calls were sufficiently similar to the biogenic calls to be used for the experiments.
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(a)

(b)

Figure 3.4: Comparison of aural classifier decision regions for (a) biogenic and (b) synthetic

bowhead and humpback whale vocalizations. The aural classifier was trained using the

five perceptual features found to be important for classification of bowhead and humpback

calls (listed in Table3.2).
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3.3 Conditioning and Upsampling of Signals for
Experiments

Both the biogenic and synthetic whale vocalizations underwent a conditioning process

prior to being transmitted during the experiments. This was largely motivated by the fact

that bowhead and humpback whales vocalize at relatively low frequencies and across a

wide frequency band. As highlighted in Table 3.1, bowhead and humpback vocalizations

included in the biogenic data set had frequency content predominantly in the 50 to 800 Hz

and 100 to 2000 Hz range, respectively. No projector was readily available for the experi-

ments that was capable of transmitting signals over the approximately five-octave band of

the vocalizations, particularly at these low frequencies. To address these two issues (i.e.,

low frequency and wide bandwidth) all signals were filtered and scaled for transmission

from an ITC-2010 projector. This acoustic source has a two-octave passband from 1 to

4 kHz, based on its transmitting voltage response (TVR) curve (reproduced in Figure 3.5).

Pre-processing of the signals was done to take advantage of this two-octave flat frequency

band when transmitting the signals. The RMS spectral levels of each species’ vocalizations

were averaged (results shown in Figure 3.6) to identify a two-octave band that contained

sufficient signal content to be representative of the full-bandwidth calls. The energy was

integrated for the full-bandwidth signals and compared with the energy in the 200 to

800 Hz range; based on the averaged spectra, this reduced frequency band contained 74 %

of the total energy in the bowhead vocalizations and 72 % of the energy in the humpback

calls. Thus, a relatively large proportion of the the vocalization energy was contained in

the 200 to 800 Hz band.

To test if this reduced frequency band contained sufficient information for aural classifi-

cation, each of the vocalizations were bandpass filtered and classification was performed

on both the full-bandwidth and reduced-bandwidth signals; the results are shown in Figure

3.7. The decision regions were remarkably similar, such that the decision threshold was the

same for the two cases. Qualitatively, there was little distinction between the class distribu-

tions after the bandwidth was reduced. One would expect a similar amount of variation

merely from reshuffling the signals between the training and validation data sets. Using

5-fold cross-validation it was found that the full-bandwidth signals resulted in (92 ± 1) %

classification accuracy and an AUC= 0.978 ± 0.004; when using the reduced-bandwidth
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Figure 3.5: Transmitting voltage response (TVR) curves for the ITC-2010 transducer

(replicated from manufacturer specifications [57]) and the complete amplifier and ITC-

2010 transducer system.

signals the classification performance was not significantly altered (accuracy of (92 ± 4) %

and AUC of 0.97 ± 0.02). Many of the same perceptual features were highly ranked dis-

criminators for the full-bandwidth and reduced-bandwidth vocalizations. Taken altogether,

this evidence indicates that applying a 200 to 800 Hz bandpass filter to the vocalizations

did not remove the essential information required for calculating the important perceptual

features and that enough of the signal content was contained in this frequency band to

accurately represent both species’ vocalizations. Hence, all signals transmitted during the

experiments were bandpass filtered to include only frequency content in the 200 to 800 Hz

range.

The final step in processing the signals for transmission was to increase the playback

speed of each of the filtered signals by a factor of five to scale the signals into the passband

of the ITC-2010 source. The results obtained from the frequency-scaled signals were

therefore not directly indicative of how propagation impacts the classification of bowhead

and humpback whales. Consequently, one must be cautious in applying the numerical

results from the higher band signals; however, these signals are useful in establishing

general conclusions about how propagation impacts an automated classifier. Simulations

in the true frequency band of bowhead and humpback vocalizations (i.e., 200 to 800 Hz)

are conducted in Chapter 7 in order to confirm the applicability of the general conclusions

to PAM of bowhead and humpback whales.
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Figure 3.6: Comparison of full- and reduced-bandwidth spectra for (a) bowhead and (b)

humpback whale calls. The 200 to 800 Hz bandpass-filtered spectra are also shown to

highlight that the bandpass-filtered signals capture the majority of the power unique to

each whale call.

Of course, it would have been preferable to transmit the vocalizations in their original

frequency band; however, there are several advantages resulting from the necessity of

shifting the frequency band of both the biogenic and synthetic vocalizations:

• experiments were approximately five times shorter in duration due to the time

compression of the signal sequence;

• by scaling the signals up in frequency it was possible to note propagation effects on

the signals at smaller spatial scales [58], allowing for lower source levels;

• the higher frequency signals attenuate more rapidly than lower frequency signals,
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so that the spatial extent of the experiments was decreased, thereby reducing the

environmental impact, in combination with the lower source levels; and

• the potential of behavioural impact on marine mammals in the area was limited

because the signals would not be recognized as real whale vocalizations by marine

life.

(a)

(b)

Figure 3.7: Results of training the classifier on biogenic bowhead and humpback vocaliza-

tions that were (a) full band and (b) bandpass filtered between 200 to 800 Hz.
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In summary, the biogenic and synthetic data set for the experiment was prepared using

the following steps: high SNR biogenic signals were selected, and synthetic signals were

generated to mimic bowhead and humpback whale calls; all signals were bandpass filtered

between 200 to 800 Hz; and then the playback speed was increased by a factor of five so

that signals were transmitted in the 1 to 4 kHz passband of the transducer.

3.3.1 Time Series for Transmission

The time series for transmission during the experiments were generated by concatenating

the conditioned signals with several marker signals. The same call types were transmitted

in groups; that is, all the biogenic bowhead calls were transmitted, then the biogenic

humpback vocalizations, the synthetic bowhead signals, and finally the synthetic humpback

calls. A 1 s long linear frequency modulated (LFM) chirp, sweeping across the 1 to 4 kHz

frequency band, was transmitted at the beginning of each of these groups. The matched-

filtered LFMs could be used to accurately locate the beginning of each pulse sequence (as

described in Section 3.4), which was particularly useful when the received level was low

compared to the ambient noise level. Additionally, every 10th signal in the series was a 1 s

long pulsed Continuous Wave (CW) with the tone stepping up in frequency between 1 to

4 kHz. These CWs were useful for determining how far into any particular time series the

recording was. Including all the whale calls and marker signals, the biogenic bowhead and

humpback time series were each 13.5 minutes long with a vocalization once every 4.0 s

and at least 3.6 s of quiet time between calls. Similarly, the time series composed of the

synthetic whale calls were each 11.25 minutes long with a vocalization once every 4.0 s

and at least 3.0 s of quiet time between calls. When all four time series were played in

succession the approximate transmission time was 50 minutes.

3.4 Signal Detection

After the signals were transmitted and recorded, and before applying the classifier, the

signals must be identified in the acoustic record. To do this, a matched filter was used to

determine the location (in time) of the LFMs that mark the beginning of each signal set.

Starting at the detected LFM, a portion of the acoustic record was extracted that included

all transmitted signals in the set, taking advantage of the characteristics of the transmitted

time series. A bandpass filter with low- and high-frequency cutoffs of 0.1 kHz and 6 kHz,
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respectively, was applied to remove the DC-offset, low frequency noise, and high frequency

dolphin whistles. The band-limited energy detector, described in Hood et al. and Bougher

et al., was applied using the following detection parameters: FFT parameters were selected

that resulted in a frequency resolution of 15.625 Hz and time resolution of 0.0192 s, the

frequency band spanned the full 1 to 4 kHz range of the signals, and the detection threshold

(i.e., difference in dB between the signal and noise estimates) was set at 2 dB. These

detection parameters were chosen to produce a large number of true detections, and as such

there were also many false detections. False detections were removed by comparing the

time of the detection with the a priori information on the spacing between recorded signals.

Thus, for examining the effects of propagation on classification, the experimental dataset

comprised the detected signals. This detection process was not applied to the signals which

were artificially propagated through the modelled environments.
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CHAPTER 4

PROPAGATION EXPERIMENTS

4.1 Introduction

No methodical experiment has been published in the open literature that considers transmit-

ting whale or whale-like signals to assess the impact of environment-dependent propagation

on a classifier algorithm designed for PAM of cetaceans. As discussed in the literature

review (Section 1.1), some researchers, like Mouy et al. [23], attempt to evaluate the

robustness of their detection/classification algorithms by selecting recorded whale calls

for training and validation sets that incorporate various ambient noise characteristics and

multipath propagation. Mercado et al. [27] did transmit whale-like signals to evaluate the

effects of propagation on the calls; however, their end goal was not to evaluate the impact

on a PAM system, rather it was to determine if there is sufficient information in a received

call to estimate the range to a conspecific1. Although there is a vast body of literature on

ocean acoustic propagation experiments with many different applications, little of this

has been applied in the context of PAM of cetaceans; therefore, performing a propagation

experiment to study the impact on PAM of cetaceans is novel.

An initial investigation of the temporal robustness of the aural classifier was performed

for the active sonar implementation. Murphy and Hines [38] describe two experiments

that were conducted at the same location, separated in time by approximately two years.

The experimental procedure of the trials was consistent, so that the difference between the

results of the two experiments was driven by substantial changes in ambient noise and sound

propagation conditions. The ambient noise changes resulted from a significant difference

1A member of the same species

33



in sea state — Beaufort force 5 to 6 seas were observed during the first experiment

and Beaufort force 1 seas throughout the second experiment. The sound speed profiles

(SSPs) also underwent significant change; a downward refracting profile was measured

in the first year, whereas an approximately isospeed profile was measured in the second

year. Even though there were considerable changes in the propagation conditions, the

aural classifier maintained excellent discrimination [48] (the AUC was found to be 0.86)

when the classifier was trained with data from the first experiment and validated on the

data collected two years later. This result indicates that, for the environment considered,

propagation effects did not significantly impact the performance of the aural classifier;

however, the scope of this investigation was somewhat limited since it only considered

changes in ambient noise and SSP. The effect of geophysical properties of the seafloor

were not considered. Additionally, the signal types used during the Murphy and Hines [38]

experiment were chosen for their relevance to active sonar research. The work presented

in this chapter describes an experiment designed explicitly to consider the effects of

propagation on the aural classifier using signals relevant to PAM of cetaceans (i.e., the

biogenic and synthetic vocalization data set described in Chapter 3).

4.2 Experimental Set-up

A two-day sea trial was conducted in the Gulf of Mexico, approximately 74 km south

of Panama City, FL, from 30 April to 1 May 2013. Figure 4.1a contains a map with

the trial area delineated by the red box. Two moorings were deployed on each day of

the experiment, each with at least two hydrophones at different depths within the water

column (refer to Table 4.1 for depths and Appendix A for mooring diagrams). Once

the moorings were deployed the complete set of signals (both biogenic and synthetic

vocalization sets with marker signals as described in Section 3.3.1) were transmitted to the

moored receivers. An ITC-2010 projector deployed from the stern of DRDC’s research

ship, CFAV2 QUEST, was used to transmit the signals while the ship drifted. The sound

source was deployed at 20 m depth on day 1 and 40 m depth on day 2. In addition to the

moored receivers, transmissions were monitored in real-time and recorded using a Reson

TC4032 hydrophone deployed from QUEST’s forward welldeck. The separation between

the sound source and monitor hydrophone was approximately 70 m. A pictorial summary

2Canadian Forces Auxiliary Vessel
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Figure 4.1: (a) Map of the experimental location with Panama City, FL represented by the

white star, and the trial location in the area defined by the red box. (b) Map with ship tracks

shown for both days of the experiment, including location of the moorings, CTD casts,

and free falling cone penetrometer measurements. Elements from the first day and second

days of the experiments are represented by blue- and red-coloured symbols, respectively.

Contour lines represent isobaths, with depth in meters as labelled. This map is an enlarged

and detailed version of the trial area represented by the red box in (a)
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Table 4.1: Hydrophones deployed during the Gulf of Mexico sea trial on which the trans-

mitted signals were recorded. Note that due to technical issues, not all of the hydrophones

listed here collected data (the recorders which did not collect data are shown in grey

text). Simulated results in subsequent chapters are compared with data from representative

recorders, which are denoted by an asterisk (*).

Recording device Mooring number Depth (m) Notes
30 April 2013
Reson TC4032 0 30 Used to monitor transmissions

in real-time

SHARP upper 1 40 No data recorded

SHARP lower 1 50 No data recorded

icLISTEN HF 2 36

Whalesong SM2M 2 45

1 May 2013
Reson TC4032 0 35 Used to monitor transmissions

in real-time

icLISTEN HF* 3 17

SHARP upper 3 28.5

SHARP lower 3 41.5 No data recorded

Whalesong SM2M 4 19

icLISTEN HF* 4 29

of the experimental setup is given in Figure 4.2. After the transmissions were completed

(about one hour), the range to the moored receivers was increased and the transmissions

were repeated. On the first day of the experiment the signal set was transmitted three

times, over ranges of approximately 2, 5 and 10 km. The complete signal sequence was

transmitted four times on the second day of the experiment, over ranges of approximately

1, 5, 10 and 20 km.

A detailed map of the experimental site, including the ship tracks in relation to the

moorings, is provided in Figure 4.1b; precise transmission ranges are given in Table 4.2.

The intent was to complete a different experimental geometry on each day: the first with

transmission along an isobath, and the second with transmission across isobaths such that

the water depth at the transmission locations would increase. Unfortunately, the northward

current was much stronger during the first day than anticipated so that the ship drifted

farther north than intended by the time the moorings were placed. Mooring 1 was located
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Table 4.2: Transmission ranges of signals during the Gulf of Mexico sea trial.

Transmission Set Mooring 2 (km)
30 April 2013

1 1.7 to 3.4

2 3.7 to 5.5

3 10.8 to 11.0

Mooring 3 (km) Mooring 4 (km)
1 May 2013

1 1.6 to 2.0 0.9 to 2.0

2 5.9 to 8.0 5.7 to 7.9

3 9.6 to 11.6 9.4 to 11.6

4 19.9 to 22.0 19.8 to 21.9

chapter, the focus (particularly for the modelling discussed in subsequent chapters) is on

data collected during day 2, since there were fewer technical issues with the recordings

and the geometry was more straightforward.

4.2.1 Acoustic Recording Equipment

Four different recording units were used throughout the experiment. As previously stated,

a Reson TC4032 hydrophone was deployed from CFAV QUEST to monitor transmissions

in real-time; the acoustic data measured by the hydrophone were recorded on a Reach Tech-

nologies’ Analog Data Recorder [59]. The data recorded using the monitor hydrophone

was useful for training the aural classifier, since they underwent the same transform applied

by the transmission equipment, as the signals recorded on the moored units, but should

have been minimally affected by propagation since the transmission range was two orders

of magnitude shorter. The remaining three recording units were used as moored devices —

the depths at which the recordings were made are listed in Table 4.1. The first of the

moored units were the Subsurface High-fidelity Audio Recording Packages (SHARPs)

developed by DRDC, configured to simultaneously record audio from two hydrophones.

The remaining recorders are self-contained commercially available recording units with

built in hydrophones: Wildlife Acoustics’ Song Meter SM2M recording package [60]

(referred to throughout this thesis as the Whalesong), and Ocean Sonics’ icListen HF

recording units [61, 62]. Each recording package had slightly different sampling schemes
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Table 4.3: Sampling formats for acoustic recording packages.

Recording Package Bit Depth Sample Rate
(bits/sample) (kHz)

Reach 16 44.1

SHARP 24 44.1

Whalesong SM2M 24 48

icListen HF 24 32

due to the configuration options available; configuration parameters for each of these

recorders are listed in Table 4.3. Although the sampling formats are inconsistent, it should

be noted that this is not likely to impact the results since the Nyquist frequency for each

recorder significantly exceeds the maximum frequency of the transmitted signals.

4.3 Ocean Environment Measurements

As a complement to the acoustic measurements, monitoring of the ocean environment was

an important component of the propagation experiment, necessary for understanding the

propagation conditions at the time of the experiments, as well as for supporting propagation

modelling efforts (discussed in Chapter 5). Wind speed information was derived from

measurements made onboard CFAV QUEST and the surface conditions were noted in

terms of the Beaufort Sea State Code [63]. The ambient ocean noise was examined by

determining the spectrum levels in the band of interest during times in which no signals

were transmitted. Information on the sediment characteristics was obtained from Free-

Falling Cone Penetrometer (FFCPT) casts [64] taken along the ship’s track on the second

day of the experiment. Conductivity-Temperature-Depth (CTD) casts were performed at

each transmission location, represented by the triangles in Figure 4.1b, to characterize the

water column properties. The results of each of these environmental measurements are

summarized in the remainder of this section.

4.3.1 Wind Speed and Surface Roughness Conditions

During the first day of the experiment the wind was from the east and increased slowly

throughout the day from approximately 5 to 8 m/s, as measured by the ship’s anemome-

ter. Since some whitecaps (i.e., breaking waves) were observed throughout the day, the
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conditions were assessed to be consistent with sea state 2 to 3. During the second day of

the experiment there was also an easterly wind, with speed increasing from approximately

9.5 to 14.5 m/s. This resulted in the surface conditions evolving during the course of the

experiment from sea state 2 to 3 with a few whitecaps noted, to sea state 4 to 5 with many

breaking waves and some spray observed.

4.3.2 Ambient Noise

Samples of the ambient ocean noise were extracted from the acoustic recordings to facilitate

analysis of the noise characteristics. An hour-long period of ambient noise recorded by

the icListen hydrophone on the first day of the experiment was selected to represent the

noise characteristics of day 1. There were no signal transmissions in this data segment.

This same period of ambient noise was used as the source of additive noise in Chapter 7.

Snippets of experimental noise from the time between recordings of the biogenic whale

call transmissions conducted at 18:00 UTC, were used to represent the noise characteristics

on day 2. The time period of these extracted snippets was carefully selected to ensure no

transmissions were contained in them, and that the received level had returned to ambient

conditions. These noise samples were recorded on the icListen hydrophone located at

29 m depth, and were used as additive noise in Sections 5.2 and 5.3.

Ambient noise pressure spectra (Figure 4.3) were generated from the representative

data for day 1 and day 2. These were produced using a Hann-weighted window with

65 536 samples and 50 % overlap. The observed noise spectra are compared with noise

spectra measured in coastal waters by Piggott [65] for wind speeds of approximately 5 and

8 m/s,. In the frequency bands of interest (200 to 800 Hz and 1 to 4 kHz), the noise spectra

corresponded closely to the wind conditions at the time of the ambient noise measurements.

The difference in spectral levels between day 1 and day 2 of the experiments was attributed

to an increase in the wind speed between the two days. It is also worth noting that the

measured ambient noise levels are significantly higher than the estimated system noise

spectral levels 3.

3Estimates of the system noise spectral density were provided by Ocean Sonics for their icListen HF

recording units: the reported levels were 41 dB re 1 μPa2/Hz at 100 Hz [personal communication], and

30 dB re 1 μPa2/Hz at 10 kHz [62].
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Figure 4.3: Ambient noise pressure spectra (solid lines) typical of noise recorded on day

1 and day 2 of the Gulf of Mexico Experiment. Piggott’s [65] ambient noise spectra for

coastal waters (dashed lines) with wind speeds of 5 and 8 m/s are included for comparison.

4.3.3 Sediment Properties

Sediment properties were measured using a FFCPT, which is an instrument that collects in

situ sediment properties by dropping a probe into the sea floor while a ship is underway [66].

The FFCPT measurements allow one to estimate the sediment type (e.g., silty-clay, sand,

etc.) based on the probe’s acceleration, as a function of penetration depth and the dynamic

sediment pore pressure [64]. Geoacoustic parameters of the sediment can then be estimated

from the grain size and sediment-type using the Applied Physics Laboratory University of

Washington’s (APL-UW) ocean environmental acoustic models handbook [67].

Figure 4.4 shows the results of the FFCPT analysis. The along-track range is referenced

to the location of mooring 3. FFCPT results were not available along the complete track;

however, there was sufficient data collected that it is possible to make general assumptions

about the bottom type. The left axis of the plot shows the probe penetration depth — this

can be read from the plot by observing the lowest point at which a bin contains colour. The

penetration depth indicates how deep measurements were available for the sediment type.

The Robertson zone is expressed by the colour of each bin. For reference, the water depth

is also plotted (solid black line), with associated values on the right axis. The sediment

in this area was predominantly Robertson zones five and six, which are “sand mixtures”
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Figure 4.4: Sediment type, in terms of the Robertson zone, obtained from Freefall Cone

Penetrometer measurements. In ascending order, the numerical values for the Robertson

zones correspond to the qualitative sediment descriptions: fine, organic, clays, silts, sand

mix, sands, and gravels. The water depth is indicated by the solid black line. Range is

referenced such that R = 0 km is the location of mooring 3.

and “sands,” with patches of finer grained sediments. A thin layer of clay and, at one drop

location, gravel, overlaid the main sediment type. This surface layer was thin enough,

compared to the wavelength of the acoustic waves, that it was neglected when performing

propagation modelling. Observations of the sediment type were consistent with other

measurements in the area, including Steele and Pecknold [66] at an experimental site closer

to shore, and Balsam and Beeson’s [68] analysis that showed the primary sediment type in

the region is quartz sand.

4.3.4 Sound Speed Profiles

Each of the sound speed profiles, resulting from the CTD casts4 conducted at the locations

shown in Figure 4.1b, are shown in Figure 4.5. The three SSPs closest to mooring 2

measured on 30 April showed (what is referred to here as) an “anti-duct,” that is, a

maximum sound speed at depth that causes acoustic refraction away from the anti-duct

axis. This term is used as a contrast to the more commonly used “duct,” which has a region

4Sound speed values were output by the CastAway CTD [69], which used the Chen-Millero [70] equation

to derive sound speed from measured temperature, salinity, and pressure.
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Figure 4.5: Sound speed profiles (SSP) in m/s observed (a) on day 1 and (b) day 2.

Locations of the measurements are indicated on the map in Figure 4.1b. The solid grey

line ( ) indicates the source depth; dotted lines ( . . . . ) represent depth of receivers on

moorings 2 and 4, and the dashed lines ( ) represent receivers on mooring 3. Ranges

listed below each SSP provide the horizontal range between the location at which the

SSP was measured and mooring 2 for day 1 profiles, and mooring 3 for day 2 profiles.

The profiles are presented in order of increasing range, such that they are not necessarily

ordered chronologically.
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of minimum sound speed that causes refraction towards the duct axis. The SSP observed

10.7 km away from the mooring had a structure distinct from the others. It had an ap-

proximately isovelocity component to about 45 m depth, then a steep gradient to a sound

speed minimum. The first SSP measured on the second day was downward refracting. The

second profile was similar to the “anti-duct” profiles measured on the previous day. The

last three SSPs developed an isovelocity layer near the surface that deepened during the

day. The deepening of the isovelocity layer may be explained by the increased wind/wave

height later in the day, leading to mixing in the upper water column.

The two anomalous sound speed profiles (measured at 19:10 on day 1 and 14:45 on

day 2) are challenging to explain since both the time and spatial scales are relatively

small for many oceanographic processes. Temperature-salinity (T-S) analysis [71] (results

in Appendix C) indicated that all SSPs contained similar characteristics, except for the

profiles measured at 19:10 on day 1 and 14:45 on day 2. This was a result of each of

the profiles containing only 2 of the three water masses incorporated in all other profiles.

From the available data, it is not possible to ascertain if this was a purely spatial or

temporal phenomenon, in part because this is a dynamic region with significant inter-

annual variability during the spring [72]. Nonetheless, based on the SSP observations

and T-S analysis, a spatio-temporal event seems to be the most likely explanation. The

best indication of this is the spatial separation of the SSP collected at 19:10 on the first

day from the other SSPs collected the same day, and the proximity of this SSP with

those observed at 16:20 and 17:25 on the second day. These profiles are separated by

only a few kilometres but by more than 21 hours. Considering this evidence, a possible

explanation for the anomalous SSPs is the passage of an eddy drawing in colder water

from the shelf break [72], which was about 130 to 150 km away from the experiment

location. Although the cause of the disparate SSPs remains uncertain, this discussion

makes it apparent that the sound speed characteristics during the course of the experiment

were range-dependent. This is an important point for understanding the propagation

characteristics and for selecting an appropriate propagation model.

As previously mentioned, the ocean environment measurements are essential for the

propagation modelling that is presented in subsequent chapters of this thesis. An extension

of this requirement is that the environment properties were sufficiently sampled to be

able to replicate the experimental location as a virtual environment. Unfortunately, this
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condition was not adequately met for the sound speed data, as the CTD casts did not

extend the full depth of the water column. To develop a comprehensive understanding of

the propagation characteristics during the experiments, it was necessary to have a viable

estimate of the water properties for depths greater than those reached by the CTD. Jochens

et al. [72] provides a synthesis of the hydrography of the Northeastern Gulf of Mexico

region which was used to produce such an estimate. Based on the data contained in the

Jochens et al. report [72], at depths greater than 100 m the water characteristics were likely

associated with Sargasso Sea Water. With this in mind, estimates for water properties at

two depths were generated: at z = 150 m a value for temperature of 17 ◦C and salinity of

36.2 PSU were assumed, and at z = 200 m values of T = 17 ◦C and S = 36.0 PSU were

estimated. The Mackenzie equation [73] was used to convert these temperature and salinity

data to sound speed — values of c =1516.7 m/s and c =1517.3 m/s for the 150 m and

200 m depths, respectively, were thus added to the sound speed profiles to ensure accurate

representation of the propagation characteristics at depth. It is worth noting that these

hydrography-based estimates compare favourably with deep sound velocity measurements

obtained using the sound velocity profiler on the FFCPT probe.

4.4 Source Level Estimates

To understand the impacts of propagation on the transmitted signals, one must first have

reliable knowledge of the signals which were transmitted. One key aspect of the signals is

their source level, SL. Based on the power supplied to the transducer during the course of

the experiments, a reasonable estimate of the source level is possible; however, due to the

difficulty of calibrating the complete system in advance of the trial, and adjusting operating

parameters during the trial, the acoustic power transmitted into the water was somewhat

uncertain. Thus, it was desirable to obtain a dependable source level estimate. With this

in mind, a small section of this thesis is dedicated to discussing how the SL estimates

were conducted, as there are several subtleties. Source level estimates are also useful

for conducting follow-on modelling work (Chapter 5), when experimental conditions are

replicated.

To corroborate source level estimates, two different methods were used; one method is

based on transducer theory and the other on acoustic propagation theory. Full details of

both these methods and results are outlined in the following sections. The first method
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incorporated knowledge of the drive voltage levels of the transducer and its transmitting

voltage response (TVR) to convert these into acoustic power. As there is some uncertainty

in the exact voltage drive levels supplied to the transducer and the transmitting voltage

response, a second method was used to confirm the transducer-based SL estimates. The

second method determined the source level from the signals recorded on the monitor

hydrophone deployed from the forward welldeck of the ship (see Section 4.2 and Figure

4.2 for full details on the experimental set-up). Received levels are subject to larger

uncertainties because of variability in the path the signals travel between source and receiver

due to small-scale fluctuations in ocean properties. For these reasons, it is beneficial

to use two different methods to calculate source levels and compare the estimates for

consistency. Once SL estimates are obtained using these two methods, they are compared

with the maximum possible source levels based on the combined TVR for the amplifier

and transducer system.

A few assumptions were made for both SL estimate methods that are worth noting here.

First, in making the source level estimates, an omnidirectional source was assumed. This

is a reasonable approximation since the the transducer has a toroidal beampattern such

that it is omnidirectional in the horizontal. Neglecting the directional vertical component

was valid since the mainlobe is quite wide (i.e., the vertical beamwidth is 70◦ and 90◦ at

the 1 kHZ and 2.5 kHz resonance frequencies, respectively [57]) Secondly, only the LFMs

transmitted at the beginning of each signal set (as described in Section 3.3.1) were used

to estimate source level. This was done because LFMs are much simpler signals than the

whale calls such that the SL was a more intuitive measure of emitted acoustic power for

the LFMs than for the whale calls. Additionally, the propagation-based method relies on

matched filtering to isolate the acoustic energy associated with the direct path arrival; in

this case the LFM provides a clear advantage over the whale calls, as the matched-filter

response for the LFM has a narrower peak and lower sidelobes than the matched-filter

response of a whale call.

4.4.1 Method 1: Transmit Sensitivity and Transducer Input Voltage

The first method considers the manner in which the signals are generated to estimate

the source level, and thus relies on transducer theory. To generate sound in the water a

transducer is driven with a signal generator and power amplifier. The transducer may be

characterized by the transmit sensitivity [74, p. 132], SV , typically given in terms of the
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source level per volt of drive. Thus, the root-mean-square (RMS) source level, SL, in

dB re 1 μPa @ 1 m can be determined using,

SL = SV + 20 log Vin , (4.1)

where Vin is the RMS voltage at the input of the transducer [14, p. 29] and SV is in units of

dB re 1 μPa/V @ 1 m.

The TVR from calibration of the ITC 2010 transducer (refer to Figure 3.5) was used to

estimate the transmit sensitivity. In the bandwidth of interest (i.e., 1 to 4 kHz) the TVR

yielded a transmit sensitivity of SV = (126 ± 1) dB re 1 μPa/V @ 1 m. In equation 4.1 only

Vin will vary for each signal transmission since SV is a constant for the transducer. During

the experiments the value of Vin was monitored and recorded by the Reach recording unit.

During the recording process the Vin time series was digitized, thus the recordings must

first be converted from counts, C, (as they were recorded in the WAV file) to voltage, to be

used in the SL calculation. This is accomplished by noting that 16 bits were used to record

the voltage, which was scaled so that the maximum signal extent was ±5 V peak-to-peak.

Thus, the conversion from counts to voltage may be completed as follows,

216−1 = 5Vp

215 =
5√
2
VRMS , (4.2)

where Vp is the peak voltage and VRMS is the RMS voltage. Noting that 5√
2
= 21.82 gives,

215 = 21.82VRMS

CTS = 20 log

(
213.18C

VRMS

)

= 79.35 dB re 1C / VRMS , (4.3)

where CTS is a conversion factor, in dB, necessary to convert from bits to voltage. Sub-

stituting this conversion into Equation 4.1 gives the following equation to determine the
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source level of the transmitted signals,

SL = 20 log (1000C) + SV − CTS

= 20 log (1000C) + 126 dB re 1 μPa/V@ 1m

−79.35 dB re 1C / VRMS , (4.4)

where a scaling factor of 1000 is applied to C to take into account that the voltage recording

was configured such that 1 mV in the recording represented 1 V supplied to the transducer.

4.4.2 Method 2: Received Signal Level on Monitor Hydrophone

The propagation method makes use of the signals recorded on the Reson monitor hy-

drophone. Recall that this hydrophone was deployed near the bow of CFAV QUEST, with

approximately 65 to 70 m separation from the acoustic source (as in Figure 4.2). The sonar

equation [10, 75] was used to estimate the source level in decibels,

SL = RL + SH + TL , (4.5)

where RL is the sound pressure level, in dB re 1 μPa, received at the hydrophone, SH is the

hydrophone sensitivity in dB re 1 V/μPa, and TL is the one-way transmission loss in dB.

Based on calibration of the monitor hydrophone, a value of SH = (167 ± 1) dB re 1 V/μPa

was used.

A free-field measurement is typically required when calculating SL from the RL;

however, this was not possible given the experimental setup. Thus, one must be careful to

include only the signal energy from the direct arrival and to exclude contributions from

successive arrivals (e.g., surface and bottom reflections). This is accomplished by matched

filtering [16, 76] the hydrophone recording and time-gating the signal around the direct

arrival. The time-bandwidth product determines the temporal resolution, Δt, of a matched

filter such that Δt = 1/B, where B is the bandwidth of the matched filter [77]. Thus, the

time-gating method was possible since the LFM had a 3 kHz bandwidth, which provided

a 0.3 ms temporal resolution. An example of the envelope of the matched-filter output is

shown in Figure 4.6. The time scale is defined such that the signal transmission occurred at

time t = 0 s. The peak at t = 0 s is cross-talk from the amplifier and was used to compute

the range between the source and receiver; this is discussed in greater detail in Appendix
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Figure 4.6: Envelope of matched-filter results showing arrival structure of an example

LFM recorded on the Reson monitor hydrophone. The time scale is defined such that the

signal transmission is at time t = 0 s.

D. The arrival structure shows the direct arrival at t = 0.0428 s, a strong surface reflection

at t = 0.0594 s and a weaker bottom reflection at t = 0.1745 s. A 0.01 s segment, centred

around the peak associated with the direct arrival, was extracted from the matched-filter

output, convolved with an LFM that was scaled to the same signal level as the transmitted

LFMs, and then the RMS value of the resulting LFM, CMF,RMS, was computed. Thus, the

source level was determined from the signals recorded on the monitor hydrophone using,

SL = 10 logCMF,RMS − CTS + SH + TL . (4.6)

Bellhop was used to estimate TL with sound speed profiles and bottom properties

measured during the experiment as inputs. Of course spherical spreading could have been

used to estimate the transmission loss, but because multiple reflections were evident in the

arrival structure (Figure 4.6) a ray model was used to obtain a more accurate TL estimate

than would have been possible if a free-field environment was assumed. The following

input values for the experimental geometry were used for the TL modelling: source depths
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of zs =20 m and zs = 40 m were used on 30 April and 1 May, respectively. Likewise,

the receiver depths were set at zr =30 m for day 1 and zr = 22 m for day 2. These depth

values were obtained from pressure loggers located on the source and the Reson monitor

hydrophone. Values for water depth, h, changed throughout the course of the experiment.

It was found that TL modelling was not sensitive to changes of a few meters in h, so the

following values were used for modelling transmission loss: h = 75 m on 30 April, and

h = 110 m for signals transmitted at 17:00 and h = 160 m at 19:00 on 1 May.

The transmission loss value in Equation 4.6 could vary between transmissions because

the source-receiver separation was not constant throughout the course of the experiment,

due to the relative motion of the source and receiver induced by the drifting ship. It is

worth noting that this effect was not large enough to alter the signal coherence during

a transmission, rather it just affected the transmission range on a signal-by-signal basis.

For each received signal used to estimate SL, time of flight was used to determine the

source-receiver separation, r1,

r1 = cΔtdirect , (4.7)

where Δtdirect is the time delay between the signal transmission and when the direct arrival

was received, and c is the sound speed in water assuming an isospeed profile. The value

of Δtdirect was determined from the time difference between the peaks of the enveloped

matched-filter output associated with the transmission and the direct arrival. A value

of c = 1530 m/s was assumed, based on sound speed profiles measured in situ. The

transmission range determined from Equation 4.7 was also used as an input to the Bellhop

model to estimate TL.

4.4.3 Source Level Results and Discussion

The first step in estimating the source levels using the received levels from signals recorded

by the Reson hydrophone on the well-deck of CFAV QUEST was to determine the distance

the signals were transmitted following the method outlined in Section 4.4.2. The one-way

incoherent transmission loss between the source and receiver — required to estimate the

SL in Equation 4.6 — was determined using Bellhop with the source-receiver separation,

r1, estimated from the time-of-flight (refer to Table D.1 in Appendix D for exact values)

rounded to the closest five meter multiple, that is, a value of either 65 or 70 m was used for

r1. Modelling was done using the center frequency of the band of interest, f = 2500 Hz.
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Figure 4.7: Sound speed profiles used to calculate the transmission loss for estimating the

source level from signals recorded on the monitor hydrophone.

Three different environment models were used to estimate TL: two for 30 April because of

markedly different sound speed profiles, and one for 1 May. The sound speed profiles used

for the transmission loss modelling are shown in Figure 4.7. A sandy bottom was used

for both days, with a sound speed of 1650 m/s, density of 1.9 g/cm3, and compressional

attenuation of 0.8 dB/λp [11, 78]. The Beckmann Spezzichino surface loss option was

selected, with the wind speed set at 20 kts. TL results from the Bellhop model are given in

Table 4.4.

Table 4.4: Transmission loss values used for estimating the source level of transmitted

signals.

Date Range (m) TL (dB)
65 37.630 April 2013
70 38.3

65 37.61 May 2013
70 38.2
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Table 4.5: Estimated source level of transmitted signals. All source levels are given in

units of dB re 1 μPa @ 1 m. The number of signals, n, used to produce each estimate is

also listed.

Transducer Vin RL on Monitor Hydrophone
Date n μSL σSL μSL σSL

30 April 2013 9 175 2 174 1

1 May 2013 6 184.4258 0.0005 184.9 0.1

Finally, the source levels of the signals were estimated for each day of the experi-

ment using Equations 4.4 and 4.6; results are presented in Table 4.5. It can be con-

cluded from these results that on 30 April SL = 174 dB re 1 μPa @ 1 m and on 1 May

SL = 184 dB re 1 μPa @ 1 m. The difference in source levels between the two days arose

from the fact that the 1000 V tap was used on the amplifier on 30 April, and the 2000 V tap

was used on 1 May. Also of note is that σSL is larger on the first day of the trial, this was

because settings (e.g., attenuation in signal generation software, amplifier attenuation) were

adjusted more frequently on 30 April to achieve a balance between obtaining maximum

source level while avoiding clipping of the signal. On both days σSL is larger for the

second method since the parameters used to calculate SL are subject to greater fluctuations.

Some sources of variability include those outlined in Appendix D for estimating Δtsb, as

well as fluctuations in properties of the ocean medium, inhomogeneities in boundary layer

properties, and change in angle of the source such that it was possible the main beam was

not directed towards the receiver.

The amplifier and transducer combination used for this experiment was calibrated ap-

proximately a month in advance of the experiments. From the TVRs generated from these

calibration results, it was predicted that the maximum source level possible from the 1000 V

tap on the amplifier was approximately 180 dB re 1 μPa/V @ 1 m, or 186 dB re 1 μPa/V @ 1 m

if the 2000 V amplifier tap was used. Comparing the source level estimates from the ex-

periments with the TVR levels shows that on day 1 the source levels of the transmissions

were well below the maximum possible SL, but that the level of signals transmitted on day

2 were closer to the theoretical maximum power. The difference on the first day may be

attributed to adjustment of hardware and software settings in the signal generation chain,

and that the waveforms supplied to the signal generator were not scaled to the maximum
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level of the 16-bit WAVE file (this was corrected by the second day). Determining the

SL using these different methods demonstrates the importance of confirming back-of-the-

envelope calculations. If only the simple method (i.e. estimating from TVR) to determine

SL had been implemented, the estimates could have been off by up to 6 dB re 1 μPa @ 1 m

if the gains/attenuations in the signal generation chain had not been included. Because

these values were changed frequently, especially on 30 April, there was some uncertainty

that they had all been properly documented. This is a general concern when experiments

are being conducted at an operational pace and automatic logging cannot be employed. To

compensate for this there must be a thorough quality control and analysis of experimental

data, as is done here. In addition to providing SL estimates, this section also illustrates

the care that one must take when estimating source levels as there are many subtleties that

need to be properly addressed.

4.5 Experimental Results and Discussion

Now that all aspects of the experimental setup have been addressed, the acoustic recordings

can be examined in the context of investigating the impact of signal attenuation and

distortion on the performance of the aural classifier. The acoustic data collected during the

experiment were processed as follows: The signals were identified in the recordings using

a frequency band-limited energy detector and compared to the known time that signals

were transmitted to remove false detections, as described in detail in Section 3.4. After

each signal was detected, a 4 s segment of the signal was extracted with the detection

located approximately in the centre of the segment. Each extracted detection was saved

to a WAVE file and bandpass filtered to remove the DC-offset applied by the recording

equipment, as well as some of the low-frequency noise and high-frequency odontocete

clicks interspersed through the recordings. The received signals were then processed using

the aural classifier algorithm, as described in Chapter 2. Throughout the presentation of

the following results, and subsequent discussion, recall that the experimental results are

representative of the trends one would expect when performing PAM of bowhead and

humpback whales — one must be careful in using the absolute values since the signals

were transmitted in a frequency band five times higher than the band of the whale calls.
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Table 4.6: Number of detections and classifier performance for biogenic bowhead and

humpback calls recorded by the icListen unit on mooring 4. No uncertainty estimates are

provided here for the classifier performance results because k-fold cross-validation was

not implemented.

Number of Detected Calls Performance Results
Transmission Biogenic Biogenic
Range (km) Bowhead Humpback

Accuracy (%) AUC

0.07 155 155 97 0.99

1 151 151 93 0.97

5 128 132 55 0.64

10 21 82 33 0.56

20 0 0 – –

4.5.1 Example Decision Regions

The classifier was trained on data recorded by the monitor hydrophone and validated on

data transmitted through the water over ranges of 0.9 to 22 km. Examining and comparing

the decision regions for signals transmitted over each of the ranges enabled a qualitative

analysis of the classifier’s robustness to propagation. Example decision regions for the

biogenic and synthetic vocalizations recorded on the icListen recorder deployed on mooring

4 are depicted in Figures 4.8 and 4.9. Bear in mind that fewer signals were classified at

the longer ranges because only detected signals were provided to the aural classifier. The

resulting number of detected calls which were classified are summarized in Tables 4.6

and 4.7. From these tables, the reader will observe that none of the calls transmitted over

20 km were detected as there was insufficient signal level. Thus, none of these calls are

included in the subsequent analysis of aural classifier performance. In future experiments,

in order to be able to analyze the impact of propagation on signals transmitted over ranges

greater than 10 km, the source level should be increased; alternatively, an array of receivers

could be used to take advantage of array gain. Tables 4.6 and 4.7 also provide a summary

of the classification performance metrics. No uncertainty estimates are provided with

these values, as cross-validation was not implemented — instead they are the performance

metrics associated with the decision regions in Figures 4.8 and 4.9, for which all the

detected signals in each range set were included in either the training or validation data set.

Let us first consider the biogenic decision regions. These were produced using twenty
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(a) (b)

(c) (d)

Figure 4.8: Decision Regions generated by training on data from the monitor hydrophone

(training results shown in (a)) and testing on data transmitted over approximately (b) 1 km,

(c) 5 km, and (d) 10 km. The biogenic bowhead and humpback calls were used that were

recorded by the icListen unit on mooring 4. No uncertainty estimates are provided here for

the classifier performance results because k-fold cross-validation was not implemented.

of the best perceptual features selected using the discriminant score ranking method with

the signals in the training data set. The training decision region is presented in Figure 4.8a;

in combination with the performance results in Table 4.6, it can be seen that the classifier

produces outstanding discrimination between the biogenic whale vocalizations. Although

the same can be said of the classifier performance when the classifier was validated on the

signals transmitted over 1 km, it was no longer the case when signals were transmitted

over the two longer ranges. The classifier performance was significantly degraded for the

vocalizations transmitted over the 5 and 10 km ranges. From the decision regions it can be

seen that this was a result of the humpback distribution increasingly shifting towards the

bowhead humpback distribution, such that the overlap between the distributions increased.

Additionally, there was a trend for the width of the distributions (i.e., within class variance)

to increase as well. Both of these factors drove a decrease in accuracy and AUC as a
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(a) (b)

(c) (d)

Figure 4.9: Decision Regions generated by training on data from monitor hydrophone

(training results shown in (a)) and testing on data transmitted over approximately (b) 1 km,

(c) 5 km, and (d) 10 km. The synthetic bowhead and humpback calls were used that were

recorded by the icListen unit on mooring 4. No uncertainty estimates are provided here for

the classifier performance results because k-fold cross-validation was not implemented.

function of transmission range by reducing the information used to discriminate between

the bowhead and humpback classes.

The decision regions and classifier performance results obtained using the synthetic

vocalizations displayed a similar trend as noted for the biogenic vocalizations — as the

transmission range increased, fewer signals were detected and the classifier performance

decreased. There were a few differences, however. A greater number of synthetic calls

were detected at the 5 and 10 km ranges than the number of detected biogenic calls at the

same ranges. This may have been because there was greater variability in the biogenic

calls than the synthetic, such that it was possible to better tune the detector to the synthetic

calls. Classification performance for the synthetic training data set and signals transmitted

over 1 km was greater than for the biogenic calls. Moreover, classification performance

did not degrade as quickly for the synthetic vocalizations — classification was acceptable
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Table 4.7: Number of detections and classifier performance for synthetic bowhead and

humpback calls recorded by the icListen on mooring 4. No uncertainty estimates are

provided here for the classifier performance results because k-fold cross-validation was

not implemented.

Number of Detected Calls Performance Results
Transmission Synthetic Synthetic
Range (km) Bowhead Humpback

Accuracy (%) AUC

0.07 155 155 100 1.00

1 148 148 100 1.00

5 148 148 83 0.97

10 119 87 71 0.79

20 0 0 – –

(following the terminology defined in Section 2.2) at the 10 km range for the synthetic

calls, whereas there was almost no discrimination between the bowhead and humpback

vocalizations for the biogenic case. The shift of the humpback distribution was more

obvious for the biogenic calls than the synthetic calls, and the within class variance

increased less for the synthetic calls; for example, for the biogenic case the mean value of

the humpback distribution decreased by 3.5 and the within class variance increased by 3.5

from the training case to 5 km range scenario, whereas the mean value only changed by

1.7 and the within class variance by 0.9 for the synthetic humpback calls. This difference

between the synthetic and biogenic calls was likely due to the fact that the initial biogenic

call data set had higher variability, in particular four humpback units were included in the

biogenic data set but only one was used for the humpback synthetic calls. Nevertheless, the

key point is that the general trend of decreasing aural classifier performance with increasing

transmission range was consistent between the biogenic and synthetic vocalizations.

So far the focus of this discussion has been on the the degradation of the aural classifier

performance in general. It is important to realize that this was a result of how the individual

perceptual features were altered by the impacts of propagation. For instance, the duration

of the biogenic bowhead calls tended to decrease with increasing transmission range, partly

because it became difficult to determine the precise beginning and ending of each signal in

low SNR circumstances. This is just one particular example of how the perceptual features

may be impacted by signal distortion and decreasing SNR. The full details of how the
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individual perceptual features are altered are left for future work, since the way in which

propagation impacted the individual features was non-trivial. Instead, the focus of the

current work is on how the combination of perceptual features used by the aural classifier,

as measured by the classifier performance, is impacted by propagation. Regardless, it is

important to realize at this point that, although examining the individual features provides

insight into how the physics of propagation impacts the aural classifier, it is difficult to

link a single physical phenomenon with decreasing classifier performance. Based on the

evidence presented thus far it is only possible to discuss performance in generalities; that

is, in general, the aural classifier performance degrades with increasing transmission range

as a result of increased overlap between the class distributions. Further sections of this

thesis will provide more clarity on the mechanism responsible for the observed decrease in

classifier performance.

4.5.2 Summary of Performance Results
The previous results exhibited classifier performance for a single recording unit (the

icListen on mooring 4). Insight into how the class distributions shifted relative to the

distributions used to train the classifier, and relative to each other at longer ranges, was

gained from analyzing the decision regions. Now that an understanding of what drives

changes in the performance metrics has been developed, the focus is shifted to summarizing

classifier performance for all received signals and examining how performance changes as

a function of range and signal-to-noise ratio.

Performance results, in terms of classification accuracy and AUC, as a function of

transmission range for data recorded on each of the recording units are presented in Figures

4.10 and 4.11 for the biogenic and synthetic calls, respectively. As before, the classifier

was trained on data from the monitor hydrophone (represented by the black circle on each

plot) and validated on data transmitted over successively longer ranges. Error bars are

provided for each data point — the vertical error bars represent one standard deviation of

the performance as determined from 5-fold cross-validation and the horizontal error bars

indicate the ranges at which the signal transmissions started and ended. Here, the data

were plotted for each recording device individually to determine if there was a significant

difference in performance that may be attributed to the depth of the recording device.

As expected, the classifier performance for both the biogenic and synthetic vocalizations

was found to be range-dependent. In particular, the performance monotonically decreases
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Figure 4.10: Experimental classification performance as a function of range for the

biogenic whale calls. The vertical error bars are one standard deviation of the classification

performance based on 5-fold cross-validation, and the horizontal error bars define the

shortest and longest transmission range for each transmitted signal set.

with increasing transmission range (if one considers the data from each recorder indi-

vidually). Consider the classifier performance for the biogenic vocalizations: for short

transmission ranges the performance was outstanding, as the transmission range increased

the performance gradually decreased until it approached the lower limit for performance

when signals were transmitted over approximately 10 km. Interestingly, although the

performance for the synthetic calls also decreased with increasing range, the decrease was

not as gradual as for the biogenic vocalizations. Instead, the AUC still showed excellent

discrimination between classes when signals were transmitted over approximately 7 km.

As discussed in the previous section, this was likely due to the increased separation be-

tween the bowhead and humpback classes and the smaller within class variance for the
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Figure 4.11: Experimental classification performance as a function of range for the

synthetic whale calls. The vertical error bars are one standard deviation of the classification

performance based on 5-fold cross-validation, and the horizontal error bars define the

shortest and longest transmission range for each transmitted signal set.

synthetic calls prior to transmission, relative to the biogenic vocalizations.

The results presented in Figures 4.10 and 4.11 indicate that there was little difference

in performance as a function of recorder depth, as there was no obvious trend associated

with depth across the complete transmission range. There was, however, greater spread

in the performance values at the 10 km range than at closer ranges, both in terms of data

from the different recorders, and increased variance in the cross-validation results for

data from a single recorder. Based on the performance results (of the synthetic signals

in particular) at the longest range, it is tempting to suggest that performance decreases

with decreasing recorder depth; however, there are insufficient data points to make such a

general conclusion. If this were a real trend, then it is likely an environment-specific one.
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One can imagine an environment, for example, that would produce maximum classifier

performance mid-watercolumn and decreased performance at greater depths due to the

presence of a sound-speed minimum. Thus, the remainder of this discussion is focused

on the variation of performance results at the longest range for which there were signals

detected (i.e., the 10 km range). There are three factors which may contribute to this

increased variation, relative to that of the performance at the closer ranges. First, as

signals were transmitted over longer ranges, they were subjected to more small scale

oceanographic fluctuations. At the longer ranges these fluctuations may compound so that

there was greater variance between each instance of the ocean environment that each signal

experienced, leading to an increased variance in classifier performance. The second factor

was that there were fewer calls detected at the 10 km range. In some cases there were as

few as two bowhead and four humpback synthetic calls included in the validation set. Bear

in mind that the training dataset was the same size for all cases. One would expect the

variance in performance to increase with a smaller sample size. Finally, the third factor

contributing to performance differences between recorders was related to signal-to-noise

ratio. Since several different types of recorder were used, each with a different noise floor,

there may be a difference in performance results that was recorder-dependent. To clarify,

this dependence is not due to differences in propagation characteristics as a function of

depth, but rather to which recording unit the signal was recorded on. For example, signals

recorded on the Whalesong unit typically had lower SNR than those on the icListen at a

similar depth. In short, although signals were transmitted over similar ranges, the SNR of

the recorded signal could be different.

As an initial effort to disentangle the effects of transmission range and SNR the per-

formance was plotted with SNR as the independent variable in Figures 4.12 and 4.13 for

the biogenic and synthetic calls, respectively. As with the previous plots of performance

results, the vertical error bars represent one standard deviation from the mean performance

value, as determined from 5-fold cross-validation. From each transmission set, the mean

and standard deviation of the SNR was calculated — the horizontal location of the data

points on the plots corresponds to the mean SNR and the horizontal error bars represent

one standard deviation of the SNR values. In this way there is an equivalence between

each data point in Figures 4.10 and 4.11, and Figures 4.12 and 4.13.

A striking feature of these plots is the wide SNR range covered by the uncertainty
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Figure 4.12: Experimental classification performance as a function of SNR for the bio-

genic whale calls. The vertical error bars are one standard deviation of the classification

performance based on 5-fold cross-validation, and the horizontal error bars define one

standard deviation of the SNR of the corresponding recorded signal set.

estimates for some of the data points, specifically for the biogenic signals recorded by

the WhaleSong and icListen on the first day of the experiments with mean SNR ≥ 8 dB

(the blue ‘X’s and cyan triangles in Figure 4.12). As mentioned in Sections 4.2 and

4.4.3, the signal SL varied throughout the course of the first day of the experiment as the

signal generation scheme was optimized. This resulted in a wide range of SNRs for the

biogenic calls. This was not as much of an issue with the synthetic calls on the first day

of the experiment because they were transmitted after all the biogenic calls, such that the

configurations affecting the SL were already locked in by the time the synthetic signals

were transmitted.

Considering the extreme ends of the classification performance range, one expects that
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Figure 4.13: Experimental classification performance as a function of SNR for the syn-

thetic whale calls. The vertical error bars are one standard deviation of the classification

performance based on 5-fold cross-validation, and the horizontal error bars define one

standard deviation of the SNR of the corresponding recorded signal set.

increasing SNR beyond a certain point would not provide any additional information, so

that classification should reach a maximum value once a certain SNR threshold is attained.

At the other extreme, when SNR is low enough that the signal is no longer distinguishable

from the noise, decreasing SNR will not cause the performance to decrease further because

it has already achieved the point at which a random classification decision is assigned.

Thus, at high SNR the performance should tend to the maximum performance limit, and at

low SNR the performance will approach the limit where AUC = 0.5 and accuracy ≤ 50%.

One would expect the performance to monotonically increase as a function of SNR between

these two extremes. Figures 4.12 and 4.13 show that the classifier performance determined

from the experimental data behaved in exactly the anticipated manner — performance
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generally increased with increasing SNR, and reached the upper performance limit at high

SNR and the lower performance limit at low SNR values. Murphy and Hines [79] posit

a linear relationship between AUC and SNR in the mid-SNR/performance range, based

on Shannon’s [80] theory that the information capacity of any transmission channel (in

this case the ocean) is proportional to SNR (in units of dB). Bear in mind, however, that a

linear relationship between AUC and SNR will only occur when SNR effects dominate

in an environment; one would anticipate that if propagation-induced distortion has a

significant impact on the classifier performance a linear trend will not adequately describe

the relationship between SNR and AUC. Unfortunately, there were too few data points

to quantify the relationship between SNR and performance in the mid-SNR/performance

range, so it is not possible with the experimental data to verify the accuracy of Murphy

and Hines’ hypothesis. This topic will be addressed in further detail in Chapter 6 with the

aid of propagation modelling to increase the SNR-resolution of the data set.

From the plots of performance as a function of range or SNR it was clear that the aural

classifier performance was range-dependent. It was also apparent, both from the plots and

theory, that SNR was an important contributor to this relationship. However, the question

remains: what are the relative contributions to degraded aural classifier performance

that arise from decreasing SNR and from propagation-induced signal distortion due to

multipath? The data collected during the experiments was insufficient to answer this

question; unfortunately, performing additional experiments with sufficient resolution is

costly, so we must rely on propagation modelling to augment the experimental data.

The results of propagation modelling may also guide what data should be collected

in future experiments, and at what ranges to transmit signals, in order to resolve the

SNR-performance relationship. Disentangling the relative importance of SNR and other

propagation effects is a sufficiently broad subject that it will be addressed in a subsequent

chapter (Chapter 6).

4.5.3 Training Set Selection

By training the classifier on data recorded by the shipboard monitor hydrophone it has

been established that classifier performance falls off with increasing transmission range.

In this section, we consider if high SNR signals recorded close to the sound source are the

best for training the aural classifier. Murphy and Hines [79] concluded in their research

with active sonar echoes that given two or more datasets with different SNR, the aural
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classifier performed better across multiple SNR regimes when the classifier was trained on

a low SNR dataset. They ascribed this finding to the perceptual feature subset selected

based on the signals contained in the training set — features selected from a high SNR

training set did not perform well at low SNRs because the signal characteristics these

features depended on became lost in the noise as SNR decreased, whereas features that

were selected from the low SNR signals relied on signal characteristics that were still

present in the higher SNR signals. Based on these conclusions, the selection of the training

set is re-evaluated here to determine if a more robust training strategy could be employed.

To investigate the effect of the transmission range of signals included in the training set,

classifier performance matrices (Figures 4.14 and 4.15) were constructed showing average

performance. These are similar to the graphics produced by Murphy and Hines [79]

to analyze the SNR-dependence of aural classification for active sonar. Performance

matrices were constructed by training the classifier on data transmitted over range x and

then validating the classifier on data transmitted over range y. The value of each element

in the performance matrices represents the average AUC or accuracy determined from

performing 5-fold cross-validation on the detected signals, using the twenty features that

best discriminated between the bowhead and humpback vocalizations. For example, the

square in the fifth column and third row of Figure 4.14b represents a mean AUC = 0.80

determined by training the aural classifier on signals transmitted over 10 km and then

validating the classifier on data transmitted over 1 km. These performance matrices

provide a comprehensive picture for evaluating the robustness of the aural classifier to

propagation effects as a function of range while also addressing the issue that it is unlikely

in a real PAM scenario to always have high SNR/close range transmissions with which to

train the classifier.

In general, the performance matrices generated using data from each recording unit

displayed similar trends — the example results in Figure 4.14 were generated from data

measured by the Sharp recorder on the second day of the experiment and are representative

of the majority of the results. Only data from one recorder (the icListen unit on mooring

4) exhibited a different trend, and are presented in Figure 4.15 for comparison. Here, the

0 km range refers to the original signals (either biogenic or synthetic) after up-sampling,

but not subjected to the signal conditioning designed to flatten the TVR curve of the

amplifier/transducer, other transformations not accounted for by the shipboard electronics,
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(a) (b)

(c) (d)

Figure 4.14: Confusion matrices displaying results of how transmission range of training

and validation signals impacted the classifier performance. These results were derived

from signals recorded by the Sharp unit on day 2, and are typical of five of the six recorders.

Classifier performance is given in terms of the (a) accuracy and (b) AUC for the biogenic

whale calls, and the (c) accuracy and (d) AUC for the synthetic calls.

nor transmitted into the water. The 70 m range refers to signals which were recorded

on the monitor hydrophone. The last column/row, labelled “Rand.”, indicates that the

corresponding subset of signals was composed of a random selection of transmitted signals

from all ranges between 0.07 to 10 km.

First consider the results presented in Figure 4.14, which were representative of the

majority of results. These plots confirm the range-dependent component of the classifier

performance that was previously noted. The standard deviation associated with these
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performance results covered the ranges σaccuracy = 1 to 10 % and σAUC = 0.008 to 0.2 for

the biogenic signals, and σaccuracy = 0 to 20 % and σAUC = 0 to 0.4 for the synthetic signals.

For both the biogenic and synthetic signals the errors were typically σaccuracy ∼ O (1%)

and σAUC ∼ O (0.01), with only a few of the cases with low performance values at the

higher end of the ranges listed previously. Generally, the elements along and above the

main diagonal (top left corner to bottom right corner) contain better performance than those

(a) (b)

(c) (d)

Figure 4.15: Confusion matrices displaying results of how transmission range of training

and validation signals impacted the classifier performance. These results were derived

from signals recorded by the icListen system on mooring 4 during the second day of

the experiment, and are atypical of results from the other five recorders used during the

experiment. Classifier performance is given in terms of the (a) accuracy and (b) AUC for

the biogenic whale calls, and the (c) accuracy and (d) AUC for the synthetic calls.
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below the main diagonal, excluding the row associated with the random-range validation

subset. A similar pattern was noted in the SNR-dependence investigation of Murphy and

Hines [79], further suggesting that SNR, at least in part, was responsible for driving the

observed decrease in classifier performance. Mouy et al. [23] also noted that false negative

rates increased as SNR decreased. As previously noted, these experimental data were too

limited to determine fully the relative importance of complex propagation effects versus

decreasing SNR as signals propagated over longer ranges. This issue will be addressed

fully in Chapter 6. Also of note was that the classifier generally did not perform as well

when trained on the original data. This was especially clear for the synthetic data set.

This may be because the signals were somewhat distorted by the transmission process,

or merely may be a result of no propagation effects being included in the training data

such that the classifier was less able to cope with even the minimal time and frequency

spreading applied to signals recorded by the monitor hydrophone.

The performance matrices generated from the data recorded by the icListen on mooring

four (Figure 4.15) are included here because they do not agree with Murphy and Hines’

[79] conclusion that if a discrepancy in SNRs between the training and validation sets is

expected, it is best to train with lower SNR data. Instead, for the 5 and 10 km ranges, the

opposite was true — better performance for signals transmitted over longer ranges was

obtained by training the classifier on signals which propagated over shorter ranges, or not

at all. The cause of this was not clear, especially in light of the evidence that data from all

other recorders produced the expected results.

Of particular interest, were the performance results when the classifier was trained with

data from a random selection of ranges. For all of the performance matrices shown, the

random mixture of signals included in the training set produced the most robust classifier

when validated on data across all ranges. One can make sense of this result intuitively, by

considering that the classifier was able to select features that distinguished between the

bowhead and humpback vocalizations that resulted in good generalization of the classifier.

In contrast, when the classifier was trained on data from a single range it was able to learn

the signal characteristics well for all data transmitted over a similar range; however, it was

not flexible enough to accommodate slight differences in signals transmitted over longer

ranges. This can be thought of as overfitting the classifier to a specific dataset [41, 81].

In summary, for best classifier performance across a wide variety of transmission
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ranges, one ought to train the classifier using signals transmitted across any equally large

assortment of ranges. If this is not possible — for instance, when only a limited amount

of data is available for training purposes — then it is best to select low SNR calls to be

included in the training set, bearing in mind that there must still be sufficient SNR to

identify the discriminating features.

4.6 Chapter Summary

In the preceding sections, details of an experiment designed to consider the effects of

propagation on the aural classifier using biogenic and synthetic whale calls were presented.

The ocean acoustic environment was described using surface conditions derived from wind

speed, sound speed profiles obtained at each location which transmissions were made,

and sediment properties were inferred from FFCPT measurements made along the ship

track on the second day of the experiment. Aural classification results were presented

for both days of the experiment. In general, it was shown that classifier performance was

range-dependent, such that the performance decreased with increasing transmission range.

Generating performance matrices showed that to obtain the best classification performance

across a wide variety of transmission ranges it is best to train the classifier on a training set

including an equally varied assortment of ranges; however, if there are restrictions on the

training data set, it is best to train on relatively low SNR calls.

Examination of the aural classifier results left an outstanding question. When the clas-

sifier performance was examined with respect to SNR, it was noted that the classifier

performance decreased with decreasing SNR. Together with the range-dependent classifier

performance, this evidence suggested that SNR is an important contributor to the degra-

dation of classifier performance. This makes sense intuitively — as the signal-to-noise

ratio decreases there is less information unique to the signals of interest available to inform

the classifier’s decision. In spite of this clear range-dependence, it was not possible to

determine definitively, if the classifier performance is also impacted by signal distortion

due to acoustic propagation. At this point, it has not been possible to address the relative

impacts of SNR and signal distortion on the classifier performance. Propagation modelling

is required to adequately address this issue. Nonetheless, the experimental data were

shown to be invaluable for analyzing how classifier performance is altered as signals are

propagated over increasingly long ranges in a real ocean acoustic environment. These
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results provide a baseline for the propagation modelling in subsequent chapters.
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CHAPTER 5

PULSE PROPAGATION MODELLING

Propagation modelling is an important component of this thesis that both complements

and augments results obtained from the propagation experiments. A pulse propagation

model was used to transmit signals through a virtual environment to synthesize how the

environment distorts a signal as it propagates through the water. Using a model has several

important advantages over sea trials. Modelling is less time-consuming and expensive

than performing sea trials, which makes it possible to model different environments, and

multiple scenarios for the same environment. The ability to finely control the modelled

environment is useful for examining how changes to an environmental variable impact

the total signal distortion and the classifier’s performance. Additionally, it is possible to

increase the range resolution and extend results to longer ranges to provide a better indica-

tion of how classifier performance changes with respect to propagation range. By applying

propagation models, one is also able to gain a better understanding of experimentally

collected data.

5.1 Background

A variety of numerical techniques have been developed to study acoustic propagation

in the ocean. These include ray tracing, normal mode, parabolic equation, wavenumber

integration, and finite element models [11, 82, 83]. While each has its advantages, no

single method is suitable for handling all possible environmental conditions, frequencies,

and transmission ranges that are dictated by real-world applications [17]. Thus, one must

carefully consider which type of model is most appropriate based on the parameters of a

particular research problem. There were essential considerations, as well as some desired
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features, taken into account when selecting the model to be used in this research. The

essential features of the propagation model were:

• It must produce an accurate representation of bottom interactions since this research

predominantly examines the shallow-water acoustic environment in which PAM of

cetaceans typically occurs [1].

• It must be capable of handling a large frequency range; this includes the low fre-

quency range of real bowhead and humpback vocalizations (extending down to

approximately 50 Hz) as well as the higher frequencies used for the propagation

experiments (1 to 4 kHz).

• It must be accurate over the spatial scales for which baleen whale calls are typically

detected (tens of kilometres [1]).

• It must also be capable of performing pulse propagation that can accurately simulate

a time-domain representation of a signal after it has been propagated through a

modelled environment.

In addition to these required features, it was also desirable for the model to be:

• range-dependent, because shallow-water environments often exhibit range-dependence,

• ‘public-domain’ or non-proprietary to facilitate possible modifications to the source

code and ease of access, and

• reasonably straight-forward to implement.

A model based on ray tracing theory was selected for pulse propagation, that was

first validated using a wavenumber integration model (Section 5.1.2.1) because the latter

has a larger user community [32, 83, 84, 85, 86, 87, 88]. The following provides a

brief overview of some of the benefits and drawbacks of each numerical technique, to

illustrate the motivation for choosing this model type. No explicitly time-domain models

are considered in the summary since Jensen et al. [11] state, “Our experience is that

most problems of practical importance in underwater acoustics (long-range propagation

of pulses of ‘finite’ bandwidth) clearly favour the Fourier synthesis technique.” The key

points of the following discussion are summarized in Table 5.1, at the end of this section.
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Ray-tracing models are often an attractive choice because they are computationally

efficient, provide a simple pictorial representation, and allow for range-dependent en-

vironments. Conversely, a ray description of the acoustic field is not necessarily the

most appropriate representation in shallow water environments due to multiple bottom

interactions. These multiple boundary interactions provide challenges with respect to

accurate representation of the signal phase. It also does not properly handle diffraction

and caustics [17]. Additionally, the ray solution to the wave equation is a high-frequency

approximation, where a guideline for ‘high-frequency’ is provided by Etter [82] as,

f >
10c

h
, (5.1)

where f is frequency, c is the sound speed, and h is the water/duct depth. For example,

using a representative sound speed of 1500 m/s and water depth of 100 m, ray-theory

becomes applicable for frequencies above 150 Hz. This simplified calculation shows

that, while ray theory may be useful for understanding the propagation experiments in

which signals were transmitted in the 1 to 4 kHz band, its applicability may be limited

for understanding propagation of real bowhead and humpback vocalizations which have

considerable energy below 150 Hz, as discussed in Section 3.3. Nevertheless, Xian [89]

used a ray-tracing model (Bellhop) to simulate the effect of the propagation environment

on the performance of a Short Time Fourier Transform detector for detecting synthetic

North Atlantic right whale calls. For comparison purposes, it is important to note that

right whales vocalize in a similar frequency band as the bowhead and humpback whale

calls selected for this research. Porter and Liu [90] point out that typical problems suited

for ray tracing are those with a high-frequency broadband source in range-dependent

environments. Thus, ray models are usually used for active sonar modelling and ocean

acoustic tomography. Of particular interest here, is that ray-tracing methods are known to

handle broadband problems more efficiently than full wave methods, since many parts of

the solution are frequency-independent and so each new frequency does not require a full

model run [90].

Normal mode models have been used in underwater acoustics as far back as the

1940s [91] and have undergone significant development since then [11], so that spe-

cific models have an established pedigree [83]. Some advantages of this model type are

that waveguide dispersion effects are inherently incorporated [82], mode functions do
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not have to be calculated for intermediate ranges between source and receiver [17] and

can be easily determined for all potential receiver locations (range from the source and

depth in the water column), given the frequency and depth of the sourcem which is in

contrast with ray models which must be executed for each change in source or receiver

depth [82]. Normal mode methods can also handle many phenomena relevant to shallow

water propagation (e.g., reverberation [92]). A potential disadvantage is the degree of

knowledge about the sediment structure that is required to produce an accurate representa-

tion [82]. Normal mode models are primarily suitable for range-independent environments;

however, it is possible to extend this method to encompass range-dependent environments,

typically at the cost of computational efficiency [11, 17]. Normal mode approaches are

best suited to low-frequency (less than 500 Hz) applications because the number of modes

increases with frequency, but many numerical implementations treat frequencies up to a

few kilohertz [82]. Mercado and Frazer suggest that normal mode theory is well-suited

to propagation modelling in the acoustic environments inhabited by humpback whales

because bottom properties are only “moderately variable” and the propagation ranges of

interest are suitable for a normal mode model.

Parabolic equation (PE) models are the most popular technique for range-dependent

ocean acoustic propagation problems [11, 17]. The greatest advantage of PE models is that

they are computationally efficient due to an approximating assumption that transforms the

elliptic Helmholtz equation — which is solved in the other numerical methods discussed

here — to the parabolic equation. Computational advantage is gained because solutions

for the entire water column are obtained by marching the solution forward in range, rather

than solving for all range-depth pairs [17, 82]. The paraxial approximation that gives rise

to the parabolic equation is also the greatest disadvantage of PE models — because of this

assumption, solutions are approximate and not as precise as other methods [17], leading to

phase errors as a function of angle [11]. PE models are neither applicable nor practical at

high frequencies in shallow water [17, 82]. Helble et al. [18] used a PE model to propagate

humpback whale calls to estimate site-specific probability of detection functions with

respect to range, and azimuth. Širović et al. [4] also used the PE numerical technique

to normalize the number of blue and fin whale call detections by the modelled detection

ranges.

Wavenumber integration techniques (sometimes referred to as Fast Field Programs, or
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FFP) were first applied to the field of underwater acoustics in 1948 by Pekeris [91]. He

considered acoustic propagation in horizontally stratified waveguides using environmental

models with only two and three fluid layers [11, 91] (i.e., what is commonly referred to as

the ‘Pekeris waveguide’). This technique was later applied to ‘few’-layer waveguides in

the 1950s; however, it was not until the 1980s when efficient and numerically stable imple-

mentations of wavenumber integration were developed [93, 94, 95, 96]. The wavenumber

integration approach is closely related to normal mode models [11, 17]; however, unlike

the normal mode approach, the Green’s function solutions provided by the wavenumber in-

tegration technique are ‘essentially exact’ in the far-field and give the full wave solution for

the acoustic field [11, 17, 93, 94]. That is, the wavenumber integration approach directly

solves the Green’s function, with deviations from the exact solution arising only from

necessary discretization. This is in contrast to the normal mode technique, which contains

inherent approximations. Some of the disadvantages of this method include that solutions

are generally restricted to horizontally stratified environments (i.e., range-independent)

[11, 17, 93, 94], and although this method “is not too demanding computationally [17],”

efficiency can be a concern for pulse propagation [83], in particular for the frequency band

in which signals were transmitted during the experiments.

Table 5.1 summarizes the key points of each model type. As a general rule, the division

between low and high frequencies is set at 500 Hz, following Etter [82]; he selected this

threshold somewhat arbitrarily but it does reflect that above 500 Hz some techniques

become computationally intensive, and below it the physics of some ray-tracing methods

may be ‘questionable,’ given the inherent high-frequency approximation of these methods.

Given the frequency band and water depths of the Gulf of Mexico experiment, a more

appropriate threshold between low and high frequencies, specific to this experiment,

is 200 Hz. This threshold was determined using Equation 5.1 with c = 1530 m/s and

h = 75 m. The shallow water regime includes all water depths for which the sound

significantly interacts with the bottom boundary — the Gulf of Mexico experiment was

conducted in a shallow water environment, and most examples of baleen whale PAM on

the continental shelf may be considered to occur in shallow water environments. The

column entitled ‘Pulse propagation’ considers numerical techniques that are known to have

already implemented a pulse propagation capability. The column labelled ‘non-proprietary’

indicates whether there is an available model implementation that is well-established, as
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well as freely-available. Only a single example implementation is given in this table,

although many other implementations exist. The examples listed here are well-known in

the ocean acoustics research community, and are freely available on the Ocean Acoustics

Library website [88]. From this table it is evident that each numerical technique has many

benefits — the primary motivators for selecting a ray-theoretic model were the frequency

band of the experiments, the availability of a model (and access to its source code) with

pulse propagation implemented, and its implicit range-dependence.

5.1.1 Broadband Modelling with Fourier Synthesis

The pulse propagation models that will be discussed in the following sections generate the

expected pressure time series at a receiver for each source signal. They accomplish this

with a Fourier approach to broadband modelling, that is, they solve the pulse propagation

problem in the frequency-domain by Fourier synthesis of single-frequency (continuous

wave, or CW) results [11]. A brief description of the frequency-domain approach to pulse

propagation is discussed here, recognizing that it is a general approach which can be

implemented using any of the numerical techniques listed in Table 5.1.

The most common approach to broadband modelling, also referred to as pulse prop-

agation, in the ocean acoustics community is to make use of the frequency domain

representation. In fact, Jensen et al. [11] state that, “Our experience is that most problems

of practical importance in underwater acoustics (long-range propagation of pulses of

‘finite’ bandwidth) clearly favour the Fourier synthesis technique.” In the Fourier synthesis

approach a propagation model is executed multiple times at discrete frequencies over

the frequency band of interest [11, 82, 97]. The resulting time-domain signal is then

reconstructed, using Fourier techniques, as

p (R, z, t) =
1

2π

∫ ∞

−∞
S (ω) p (R, z, ω) e−iωt dω , (5.2)

where S(ω) is the source spectrum, and p(R, z, ω) is the spatial transfer function [11].

It is this spatial transfer function which is generated through repeated executions of a

CW propagation model for a discrete number of frequencies, within the frequency band

of interest [97]. The evaluation of the integral (Equation 5.2) is then accomplished by

application of the Fast Fourier Transform (FFT) at each spatial position (R, z) for which

the pulse response is desired [11, 97]; in practice one must truncate the integration interval
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such that Equation 5.2 becomes,

p (R, z, t) =
1

2π

∫ ωmax

−ωmax

S (ω) p (R, z, ω) e−iωt dω , (5.3)

where it is assumed that the source signal emits negligible energy for frequencies greater

than ωmax [11]. In this way, the frequency domain wave equation, which is valid for a

single frequency CW signal, may be extended to treat broadband signals through use of

Fourier synthesis of the individual CW solutions [82]. In this description of the Fourier

synthesis approach the continuous version of the Fourier transform is employed; in practice

Equations 5.2 and 5.3 must be discretized and evaluated via the Discrete Fourier Transform.

This approach to pulse propagation modelling is attractive because of its simplicity and

versatility. Any of the single-frequency numerical techniques listed in Table 5.1 may be

employed to generate the spatial transfer functions. This means that it is possible to select

the most appropriate propagation model based on the parameters of a given problem (e.g.,

frequency, water depth, spatial scale, etc.) to model the propagation physics, then the pulse

result can be generated with little additional effort through application of Fourier synthesis.

Before moving on to discuss the details of the pulse propagation model employed in this

research, it is worth making a few comments on how to implement this Fourier synthesis

approach for practical problems. If a single source signal is considered, then the task

of pulse propagation is straightforward, and accomplished exactly as described above: a

propagation model is run at a series of different frequencies corresponding to the Fourier

components of the initial waveform, then the resulting waveform is reconstructed through

summation of the propagated output with the appropriate weightings. However, when

multiple signals must be artificially transmitted through a simulated environment this is

not the best approach. Instead, the most efficient means of broadband modelling for a large

number of signals is to simulate the propagation of a bandlimited impulse function, which

can then be convolved with each of the signals of interest. For example, to generate the

bandlimited impulse response of the ocean channel, a sinc function,

s(t) =
sin (2πfmaxt)

2πfmaxt
, (5.4)

with maximum frequency, fmax, can be supplied as the input waveform (the time- and

frequency-domain representations of this function are given in Figure 5.1). After the sinc
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Figure 5.1: Time and frequency response of the sinc function input to WATTCH to generate

an environment’s channel impulse response. Note that only a narrow time interval is plotted

for the temporal representation of the sinc function to demonstrate its structure.

function has undergone the attenuation and distortion predicted by the propagation model,

it can be convolved with any number of other signals. In this way, the more computationally

intensive pulse propagation modelling needs to be performed only a single time for a large

number of input signals [98]. This can be thought of as constructing an environmental

transfer function using the broadband model, and then convolving it with the waveforms

of interest [99].

5.1.2 Waveform Transmission Through a Channel (WATTCH) Prop-
agation Model and Bellhop

The WATTCH model is a frequency- and phase-dependent (i.e., coherent) pulse prop-

agation model [98, 99] that is essentially an implementation of the general broadband

Fourier synthesis methods described above. As such, it simulates the effect of transmitting

a waveform through an underwater acoustic environment [98, 99]. In essence, it uses

acoustic propagation information supplied by any tonal propagation model to transform an

input acoustic waveform; it then outputs the signal expected at a set of receivers, depen-

dent on the range and depth of the receivers [98]. In its current configuration, WATTCH

is supplied with the output of a ray-tracing model. For example, the propagation data

from ray-tracing models may include source and arrival angles, travel time, cumulative

phase changes due to boundary interactions, and amplitude information indicating the

frequency-dependent attenuation (Note that the launch and arrival angles are not necessary
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for WATTCH to reconstruct the signal because they are not required by Equation 5.3.) [99].

This propagation data may be computed by any ray-tracing model. Here, the relevant data

are generated by the Gaussian beam model, Bellhop [100], which is supplied with a model

of the acoustic environment, simulation geometry, and the relevant frequency band. As

described for the general case in the previous section, each of the frequency components of

the input waveform propagate through the environment, then the propagated components

are reconstructed to produce the waveform predicted at the receivers [98]. Specifically,

given an input signal and the propagation data supplied by Bellhop, WATTCH performs

an FFT on the input waveform then, using frequency-interpolated propagation data for

FFT magnitudes and phases, integrates the data to calculate the acoustic magnitude and

phase spectra at the receiver [99]. By integrating only the phase and amplitude data it is

implicitly assumed that arrival times are frequency-independent, further assuming that the

medium is non-dispersive.

WATTCH linearly interpolates the magnitude and phase data across frequencies to

increase computational efficiency by decreasing the number of times the single-frequency

propagation model must be run. In doing this, it is assumed that the magnitude and phase

behave linearly between the frequencies for which the propagation model is executed;

however, it is necessary to interpolate the data to obtain the required resolution in the time

and frequency domains for reconstructing the received waveform. As outlined by Jensen et

al. [11], if one seeks to determine the acoustic response at a point (R, z) in a time window

of length T , the sampling parameters for time, Δt, and frequency, Δf , satisfy the relations,

Δt =
1

fs
, and (5.5)

Δf =
1

NΔt
(5.6)

=
1

T
, (5.7)

where fs is the sampling frequency of the source/output waveform, and N is the number

of samples included in the time window. Naturally, N and T are related by T = NΔt.

It is also important to note that the choice of time and frequency sampling interval must

satisfy the sampling relation,

ΔtΔf =
1

N
. (5.8)
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The necessary discretization in frequency to evaluate Equation 5.3 introduces periodicity

of T in time. Thus, one must be careful in selecting the appropriate sampling parameters

so as to avoid wrap-around (aliasing) of later arrivals to the beginning of the time window.

In particular, the choice of T requires a tradeoff between computational efficiency and

the elimination of any aliasing — it is desirable to choose T to be as short as possible to

decrease computational effort, but one must be careful to include a large enough window

to encompass the complete response at each receiver to eliminate any wrap-around. While

it is important to select sample parameters to remove aliasing due to wrap-around, one

must also take the Nyquist criterion into account. To ensure the entire spectrum of interest

is included, fs should be selected such that,

fs =
1

Δt
> 2fmax , (5.9)

where fmax is the maximum frequency of interest [11].

Because a ray-tracing model is used to supply the propagation data to WATTCH,

simulations with WATTCH are subject to both the benefits and limits of this propagation

model type (refer to Table 5.1). In general, ray-tracing methods are a tradeoff between

lower accuracy (relative to a full wave model) and faster processing times for higher

frequencies. Bear in mind, however, that the accuracy of ray-tracing solutions improves

at higher frequencies [90]. Since many simulations were conducted over the course of

this research, the benefits of fast run times greatly outweighed the lower accuracy of the

results.

The specific choice of the Bellhop ray model was motivated by its availability, ease

of use, and wide use in the ocean acoustics community. Additionally, Bellhop is set

up to easily produce the information required for broadband pulse propagation — one

need only select an ‘arrivals’ run type in the model configuration files [101]. The output

‘arrivals’ file contains amplitude, phase, and time delay data for each ray path [101, 102],

which is easily input to the WATTCH convolver. One should be aware that a limitation

of the Bellhop model is that it does not model frequency spreading; that is, it does not

transfer energy between frequencies. Due to the fact that Bellhop is a widely-known

propagation model, it is useful to be aware that the version of Bellhop used throughout this

research [102] is a modified version of Porter’s freely available Bellhop software [88, 101].
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Some of the modifications to Bellhop include the ability to calculate bottom losses for a

two-layer fluid bottom with volume attenuation, and Rayleigh reflection coefficients at the

interfaces [103].

Overall, the WATTCH model, with Bellhop supplying the acoustic propagation pre-

dictions, is a powerful and efficient tool for simulating signals propagating through the

ocean medium. The theoretical basis of WATTCH is rooted in the techniques of broadband

modelling with Fourier synthesis. Its efficiency stems from the relative computational ease

with which Bellhop is run.

5.1.2.1 Model Validation

Since WATTCH has a relatively small user-community, it was necessary to first verify its

accuracy. This was accomplished using two methods, to be certain of WATTCH’s ability to

capture the physical phenomena important to ocean acoustic pulse propagation. A simple

approach was first employed to ensure that WATTCH produces the correct levels of signal

attenuation in a spherical spreading environment. Then a more complex environment

was generated, through which a band-limited impulse was propagated. The results from

WATTCH were then compared against results from a benchmark model. The remainder of

this section presents full details and results from this validation exercise.

A simple diagnostic tool for verifying a pulse propagation model is to check that it is

able to properly estimate transmission loss. To this end, an environment was constructed

such that the expected signal attenuation would be close to that of spherical spreading,

i.e., little or no interaction of the sound field with the boundaries. A 10 km deep isospeed

environment was generated with c = 1454.25 m/s. With a source and receiver placed

at mid-watercolumn (zs = zr = 5 km) a 1 to 4 kHz LFM pulse was transmitted over

0.5, 1, 2, 3 and 5 km. The power of each of the received signals was then calculated

and used to determine the transmission loss, which could then be compared with the

transmission loss expected for spherical spreading. The results of this comparison are

depicted in Figure 5.2. The solid line shows the transmission loss for spherical spreading

with the addition of Thorp attenuation (about 0.15 dB/km at the LFM centre frequency of

2.5 kHz) [75, 104, 105]. On the whole, the WATTCH model shows good agreement with

the analytic results, although WATTCH starts to over-predict TL at longer ranges. This

may be because additional loss mechanisms are included in WATTCH (e.g., bottom loss)

that are not captured by the simple analytic model.
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Figure 5.2: Comparison of transmission loss values determined from the WATTCH model

and those predicted using spherical spreading with Thorp attenuation.

Although the first validation exercise showed that WATTCH correctly estimates trans-

mission loss — a metric that captures much of the important propagation physics — it

did not provide verification of other important features of a pulse propagation model, like

accurately simulating timing and relative strength of arrivals. With this in mind, a second

investigation was conducted to test this aspect of the WATTCH model. Channel impulse

response results generated by WATTCH were compared to those generated by the fast-field

model OASES. A more complete description of OASES follows.

The Ocean Acoustics and Seismic Exploration Synthesis (OASES) model uses the

wavenumber integration method for modelling seismoacoustic propagation in horizontally

stratified waveguides [94]. OASES can determine the acoustic field with multiple sources

and receivers simultaneously [17, 94]. It is an up-to-date version of the Seismo-Acoustic

Fast field Algorithm for Range-Independent environments (SAFARI) model [83, 94]

developed by Schmidt for the SACLANT Undersea Research Centre [93] and has the

reputation of being efficient, relative to other wavenumber integration models [17, 83].

Be that as it may, in general, it is considerably less efficient than models based on the

other numerical techniques summarized in Table 5.1, since its run-time increases with

both maximum transmission range and frequency of interest. The slower run-time was

acceptable for producing benchmark results, but would not have been feasible for the main

model runs presented in this thesis.

In terms of this research, OASES’ strength is its pulse propagation module [94], referred
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to as OASES-OASP, which can be used to propagate signals through a user-defined

environment. OASES-OASP calculates the acoustic transfer function at each receiver by

evaluating the wavenumber integral [94]. The model outputs the received pressure time

series for each source signal. Like WATTCH, the output time series is representative of a

signal recorded on a hydrophone located at depth z in the water column after the signal was

transmitted range R through the ocean environment. OASES has previously been used for

many applications, including as a pulse propagation model for baleen whale vocalizations.

Chapman[32] used the OASES model in his efforts to localize North Atlantic right whales

because he required a model that could properly treat the physical effects typical of a

shallow-water waveguide. Most importantly, for a horizontally stratified ocean waveguide

the wavenumber integration technique employed by OASES constitutes a benchmark

solution against which other approximate solutions, like those generated by ray-based

models, can be verified [97].

Similar to Pecknold et al. [99], a band-limited impulse waveform (with frequency

content equally spread across the 1 to 4 kHz band), was propagated through a constant

sound speed environment. The environment was characterized by an isovelocity sound

speed profile with c = 1454.25 m/s, water depth of 120 m, bottom density of 1.9 g/cm3 and
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Figure 5.3: Comparison of arrival time series generated by the WATTCH and OASES

pulse propagation models for a band-limited impulse function at 2 km distance in a shallow

isovelocity ocean environment. Reduced time is defined as t−R/c.
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compressional sound speed of 1650 m/s. Simulated arrivals were generated for a transmis-

sion range of 2 km with a source depth of 20 m and receivers located at 100 m depth, as

shown in Figure 5.3. Comparing the timing of the arrivals between the two propagation

models shows the arrival times are consistent. The main difference is that the arrivals

generated by WATTCH are generally of lower amplitude — this is particularly noticeable

for the last two arrival bundles. This is likely because of differences in how boundary

interactions are treated between the two models (particularly the ocean-bottom interface).

For the purposes, of this research, the absolute levels of the arrivals were not as important

as the relative levels; therefore, overall, the models show sufficiently good agreement for

the intended use.

5.2 Simulation of Experimental Conditions

To ensure that the WATTCH model was capable of accurately simulating true ocean condi-

tions, the Gulf of Mexico experiment was reconstructed with WATTCH. Comparison of the

simulation and experimental results provided a useful baseline and increased confidence in

the WATTCH model. In this section the focus is only on experimental results from 1 May

2013 (day 2 of the experiment). This decision was made since there was less variability in

source levels than on the first day, and sediment properties were measured along much of

the ship’s track (which had not been done for the track on day 1). Furthermore, the ship

moved away from the moored recorders in a straight line on day 2 which was straightfor-

ward to model, whereas the ship’s track was more complicated on day 1. The simulation

was done only for the shallowest and deepest recorders since experimental results showed

little difference in performance as a function of recorder depth. Recall from the discussion

of the experimental results that the biogenic and synthetic whale calls produced similar

results. Since no additional information was gained from the synthetic signals, the focus in

the remainder of this chapter will be on the biogenic whale calls.

5.2.1 Environment and Model Configuration

The experimental geometry and environmental measurements collected during the Gulf

of Mexico sea trial (refer to Sections 4.2 and 4.3) were the primary inputs for Bellhop’s

environment model. The environment model, illustrated in Figure 5.4, consisted of a

water column with range-dependent depth varying from 70 to 160 m. The five measured

85



cp = 1630 m/s

 ρ = 1.3 g/cm
3

αp = 0.6 dB/λp

0 5 10 15 20
Range (km)

0

50

100

150

D
ep

th
 (

m
)

1520 1530
R = 0 km

1520 1530
R = 6.5 km

1520 1530
R = 10.4 km

1520 1530
   R = 14.8 km

1520 1530
R = 21.1 km

Figure 5.4: Schematic of environment configuration used to simulate the experimental

acoustic propagation conditions. The range-dependent sound speed field of the water col-

umn is defined in terms of the five sound speed profiles shown (units of m/s). Bathymetry

is represented by the thick solid black line. The source and receiver depths are depicted by

the horizontal solid and dashed grey lines, respectively. Note the geoacoustic parametriza-

tion using the FFCPT data and the APL-UW formulae yielded values of c and ρ lower

than those typically associated with sand and sand mixtures; this is discussed further in

Appendix E.

sound speed profiles were used to define a range-dependent sound speed field in the

ocean medium. A range-independent fluid bottom half space was used with geoacoustic

parameters (refer to Figure 5.4 for values) consistent with the sand/sand-mixture bottom

type measured by the FFCPT drops; refer to Appendix E for further discussion on the

process used to determine the geoacoustic parameters. The source depth was set at 40 m

and two receiver depths were modelled at 17 and 29 m. Note that the 17 m deep receiver

was on mooring 4 and the 29 m deep receiver on mooring 3, so that the transmission ranges

during the experiments were slightly different.

The WATTCH model was used to simulate the received time series by running it for 61

frequencies equally spaced in the 1 to 4 kHz band. These results were then interpolated

to provide a 1 Hz frequency spacing and 67 μs temporal spacing, such that when the
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Table 5.2: Ranges over which signals were propagated through the WATTCH model for

each of the receiver depths. These ranges were based on the mid-ranges over which signals

were transmitted during the experiments.

Depth (m) Ranges (km)
17 1.5, 6.5, 10

29 1, 6.5, 10

30 0.07

inverse Fourier Transform was performed, it produced the acoustic response in a 1 s long

time window with a 15 kHz sampling rate. These parameters were selected such that the

resulting time window used for the inverse FFT contained all multipath arrival information,

while maintaining computational efficiency. A channel impulse response was generated

for the ranges relevant to the experimental geometry (refer to Table 5.2), after which the

impulse response for each range was convolved with the individual biogenic bowhead

and humpback calls. The signals were then centred in their own 3 s long WAVE file —

selected to ensure that the output time series was sufficiently long to include the longest

duration call with multipath time-spreading and sufficient noise context before and after the

signal. Bear in mind, however, that at this point no noise has been added to the simulated

signals. Addition of ambient noise is discussed in the following section as there are several

subtleties that must be addressed to ensure the correct SNR for signals transmitted over

each range.

5.2.2 Noise Addition

One cannot directly account for SNR in a pulse propagation model since the input signal

has infinite SNR. To account for the SNR effects, noise was added to the signal at the

output of the model. The SNR of experimentally recorded signals which were transmitted

over the shortest range, coupled with spreading and absorption predicted by Bellhop, were

used to adjust the noise level at each range. It is important to realize that if one were to add

noise to the source signal, in an attempt to match the correct SNR at the source, the noise

would also propagate along with the signal. This may have unintended consequences by

affecting the resulting colouring of the noise. The remainder of this section provides full

details of how noise was added to each simulated signal.

Adding ambient noise at the correct level is an important aspect of simulating the signals
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which were recorded during the experiments, especially since the experimental results

indicated a relationship between SNR and classifier performance. To achieve the most

realistic noise characteristics, snippets of experimental noise were added to each of the

biogenic bowhead and humpback signals (155 of each) that were propagated through

the WATTCH model. These 2.75 s long samples of experimental noise were extracted

during the ‘quiet’ time between recordings of the biogenic whale call transmissions from

the icListen recorders located at 17 and 29 m depth. Specificially, 310 noise snippets

were extracted corresponding to each range over which the signals were transmitted, for

a total of 930 experimental noise samples for each recorder. The duration of the noise

samples and time delay after a recorded signal were both selected to ensure that the

signals transmitted during the experiments did not contaminate the noise snippets. The

same process was followed to extract noise snippets recorded by the monitor hydrophone.

These noise samples were then added to the biogenic whale calls which underwent the

WATTCH-simulated distortion. This was done in such a way that the resulting SNR for

the group of signals transmitted over range R had a similar mean to a modelled estimate

of SNR at range R. Thus, the addition of noise was motivated by the need to achieve an

accurate representation of the SNR distribution for the simulated signals.

The first step in adding noise at a desired SNR is to determine the power of the WATTCH-

propagated signal, Sp, using,

Sp =
1

L

L−1∑
i=0

|xi|2 , (5.10)

where L is the signal length and xi is the ith signal sample. To do this in practice, the signal

variance was used with the assumption that the signal had zero-mean. In order to maintain

consistency with the way the aural classifier code calculates the SNR, only a portion of the

signal near the peak (i.e., greatest deviation from zero) was used to determine the signal

power. The portion of the signal used to estimate the signal power consisted of 75 samples

before and 75 samples after the peak (refer to Figure 5.6). Also note that throughout

this process, the following definition of SNR (in units of decibels) was employed for

consistency with the aural classifier code,

SNRdB = 10 log

(
σ2
s+n

σ2
n

)
, (5.11)
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Figure 5.5: Incoherent transmission loss modelled at f =2 kHz using Bellhop for the

environment depicted in Figure 5.4. The modelled TL was used to estimate the SNR of

signals propagated through the WATTCH model. Red circles represent range-SNR pairs

selected for simulation of the experimental results.

where σ2
s+n is the combined signal and noise variance, and σ2

n is the noise variance.

The desired SNR, SNRdB , of each signal is based on a combination of the SNR statistics

from the set of signals transmitted over range R and SNR estimates obtained using Bellhop.

In practice, this was done by using Bellhop with the same environment inputs provided to

WATTCH (refer to Figure 5.4) to model the TL. The TL curve was then transformed into

an SNR estimate by shifting the curve so that the modelled SNR at R = 1.5 km matched

the mean SNR of the corresponding set of signals recorded on the icListen hydrophone

at 17 m depth. This relationship between modelled TL and SNR is demonstrated in

Figure 5.5. The TL curves were generated at a frequency of 2 kHz, the geometric mean

(fm =
√
f1f2, where f1 and f2 are the lower and upper limits of the frequency band of

interest) of the 1 to 4 kHz band, which is a standard approach for estimating the TL of a

broadband signal [82]. The SNR curve was then used as a look-up table for determining

the mean value of SNR, μSNR,R, for a particular value of R. This is highlighted in Figure

5.5 by the red circles placed at the range-SNR pairs used to provide an estimate of the

desired SNR. Thus, when adding noise to a signal the desired SNR value, SNRdB, is

defined as,

SNRdB = μSNR,R + uσ2
SNR,R , (5.12)

where σ2
SNR,R is the variance of the SNR of the set of signals transmitted over range R.
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Note that a weight, u, randomly drawn from the uniform distribution U (−0.5, 0.5) is

applied to σ2
SNR,R to randomize the desired SNR of each signal. In this way the set of

simulated signals has similar SNR statistics as the experimental signals transmitted over

the same range.

Next, the desired SNR, which is in units of decibels, is converted to linear SNR, SNRlin,

SNRlin = 10
SNRdB

10 , (5.13)

and the weight, β, to be applied to the noise vector to achieve the desired SNR is determined

using,

β =

√
Sp

NSNRlin

, (5.14)

where N is the noise power, estimated as the variance of the noise time series (with the

assumption that it is zero-mean).

Finally, the resulting time series, yt,r, is obtained simply by adding the noise time series,

nt, with the appropriate weight, β to the WATTCH-simulated signal, xt,p,

yt,r = xt,p + βnt . (5.15)

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0.0 0.5 1.0 1.5 2.0 2.5
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1.2 1.5

xt

nt

ytxt + βnt

Figure 5.6: Schematic representation of noise addition to a signal propagated through the

WATTCH model. The red vertical lines shown on yt demarcate the region of the signal

used to calculate SNR.
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This process was repeated for each of the biogenic signals propagated through WATTCH

until the appropriate level of noise was added to each signal to produce an ensemble of

simulated signals with SNR statistics representative of the experimental signals being

simulated. A pictorial summary of this process is provided in Figure 5.6

5.2.3 Results and Discussion

After the signals were propagated through the environment with the WATTCH model,

and noise was added to provide the SNR level predicted by Bellhop, each of the signals

was processed through the aural classifier algorithm. This process was intended to be

analogous to the method employed to process the signals recorded during the experiments;

there was, however, one notable exception. The band-limited energy detector (refer to

Section 3.4) which was used to extract signals from the experimental recordings was not

applied to the simulated signals. The detection step was deemed unnecessary because the

SNR statistics were similar to those of the detected calls. Additionally, by not applying the

detector there was also a larger set of calls to work with at the longer ranges.

Classifier performance results for the simulated calls as a function of range are presented

in Figure 5.7; these results are also compared to the experimental results they are intended

to simulate. For the simulated calls, the classifier was trained with signals which were

simulated as if they had been recorded on the monitor hydrophone. Similarly, the experi-

mental performance results were generated by training the classifier on signals recorded

by the monitor hydrophone and validating the classifier on signals transmitted over the

longer ranges. The experimental results are the same as those presented in Figure 4.10.

The reader will note that no horizontal error bars have been included for the simulated

results — this was because only a single range was used to produce the simulated results

as the model was not capable of easily simulating the ship drift experienced during the

experiments. In general, the performance results from the simulated calls produce a good

match to the experimental results, although at the two longer ranges (R = 6.5 and 10 km),

the classification accuracies determined for the simulated calls were higher than the exper-

imental results. Overall, a better match between the experimental and simulated results

was obtained for the AUC than for the accuracy. This means that the simulation results

did well at predicting how the bowhead and humpback class distributions shift relative

to each other, but not quite as well at estimating how they shift relative to the decision
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Figure 5.7: Classification performance as a function of range for the simulated biogenic

whale calls that were propagated through the WATTCH model, compared with exper-

imental results. The vertical errors bars show ±σaccuracy and ±σAUC based on 5-fold

cross-validation, and the horizontal error bars define the shortest and longest transmission

range for each transmitted signal set.

threshold defined by the training dataset. This indicates that the decision threshold was

more sensitive to environmental uncertainty than the AUC.

Since SNR is assumed to be an important contributor to decreased performance, it is

also important that the WATTCH model capture the same relationship between classifier

performance and SNR that was noted in the experimental results. As the model is necessary

for separating the performance dependence on SNR and acoustic propagation-induced

distortion, it is critical that the model be able to reproduce the correct SNR-performance

trend. Thus, simulated performance results were compared against the experimental data

in Figure 5.8, with SNR as the independent variable. As can be seen from this figure,
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Figure 5.8: Classification performance as a function of SNR for the simulated biogenic

whale calls that were propagated through the WATTCH model, compared with exper-

imental results. The vertical errors bars show ±σaccuracy and ±σAUC based on 5-fold

cross-validation, and the horizontal error bars define ±σSNR of the corresponding recorded

signal set.

the simulated calls generally did a good job reproducing the trend established from the

experimental results (i.e., increasing SNR caused classifier performance to increase). There

are a few features of this plot that must be addressed. First, the modelled SNR for the

simulated signals did not provide an exact match to the experimentally-derived SNR values.

In general, Bellhop overestimated the SNR at each range, indicating there was some loss

mechanism in the measured data that was either not accounted for (e.g., transfer of energy

into shear waves in the bottom, scattering in the water column) or underestimated (e.g,

scattered energy at the boundaries, bottom loss). Nonetheless, the SNR estimates for the

simulated signals and experimental data were within one standard deviation of each other
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for matching ranges. Second, given that for the majority of cases the model overestimated

the SNR, it is interesting to note that for the signals received at 17 m depth/10 km range,

the model estimated an SNR marginally lower than that observed experimentally. The

reader will also note that the horizontal error bars are wider for the simulated results

than for the experimental results. This was likely a result of a bias in the experimental

SNR estimate caused by the detection process that shifted the SNR estimate to a higher

value. As a result of the detection process, lower SNR calls were removed from the set of

experimental signals, which resulted in an increase in the mean SNR value and a decrease

in the standard deviation. Since the simulated signals were not subjected to the detection

process, there was no such change in their SNR statistics. Finally, viewing the performance

results with respect to SNR suggests that the classifier performance was generally higher

at each range step for the simulated whale calls because the mean SNR was also greater

than for the experimental results. As has previously been noted, classifier performance has

a strong dependence on the SNR of the signals being classified.

In summary, the WATTCH model did a remarkably good job of matching the exper-

imental performance results, both in terms of range (Figure 5.7) and SNR (Figure 5.8),

given the highly dynamic ocean environment encountered during the experiments. The

degree of model-data mismatch shown in these results was considered acceptable since,

as Jensen [97] points out, the performance of a model in replicating experimental results

depends on the predictability of ocean acoustic propagation. The ocean is a complex

environment with both temporal1 and spatial variability that cannot always be captured

in a deterministic modelling approach [97]. This statement is particularly relevant based

on the broad range of ocean environment measurements collected during the experiments.

Recall from the discussion in Section 4.3, that significant change of the ocean acoustic

environment (e.g., surface roughness and sound speed profiles) occurred throughout the

course of the experiment. Consequently, it was difficult to choose model parameters to

accurately capture those changes. This was partly because the environment sampling

strategy — which is a widely used method — confounded temporal and spatial changes;

in future experiments, environmental moorings should be used to complement ship-based

environmental measurements. Furthermore, environmental uncertainty accumulated for

1In the modelling approach taken here, a ‘frozen ocean’ was implicitly assumed. That is, this thesis has

made use of representative SSPs, when in fact the ‘true’ SSPs are best represented as functions of both depth

and time, c(z, t) = c(z) + dc(z, t), where dc(z, t) represents fluctuations in the sound speed that may occur

over relatively small values of t.
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the longer ranges/later transmission times. For example, when signals were transmitted

over the 10 km range, did they experience a water column near the moorings that could

be characterized by the SSP shown for the 0 km range in Figure 5.4? This is a difficult

question to answer definitively, given that the SSP near the moorings was measured at

least three hours prior to the transmissions at the 10 km range. In this way, the model-data

mismatch could be a result of sensitivity of the classifier performance to environmental

parameters; this issue will be considered in the following section.

Ultimately, the performance results for the simulated calls compared favourably with

those derived from the experimental data; hence the model was validated and can be

used to explore aspects of the classifier performance in terms of environment-dependent

propagation that cannot be addressed merely with the data collected during the Gulf of

Mexico experiment.

5.3 Sensitivity to Environmental Parameters

The overarching goal of this thesis is to examine if and how the aural classifier perfor-

mance is impacted by environment-dependent acoustic propagation. Up to this point, the

experimental and model results have indicated that the classifier performance decreased as

a function of range and/or SNR. So far, only a single propagation environment has been

considered — the one encountered during the experiments. It is difficult to draw general

conclusions about the environment-dependence of the classifier without considering other

environments, or understanding how certain environment conditions impact the classifier

performance. Additionally, propagation modelling can often be sensitive to the choice of

input parameters, as alluded to in the previous section. To address this, an exploratory

sensitivity analysis is conducted in this section.

Ocean acoustic propagation sensitivity analysis is a broad topic and has been the subject

of several conferences (including Refs. [106, 107]) and a U.S. Office of Naval Research

(ONR) Directed Research Initiative that culminated in a journal special issue (Ref. [108]).

Sensitivity studies typically examine the influence of environmental parameters on prop-

agation in a particular environment. Sensitivity analyses may also be used to identify

parameters that have the greatest effect on the acoustic field; these parameters are important

to identify since errors or uncertainties in model inputs for these parameters can generate

95



errors in model predictions [109].

From an extensive review of the literature addressing the sensitivity of acoustic prop-

agation to the ocean environment, Giles [110] concluded that the water column sound

speed profile often has the greatest impact on acoustic propagation. Additionally, Dosso et

al. [109] found that there was a significant sensitivity to the water column sound speed

profile and a relative insensitivity to other environmental parameters (e.g., geoacoustic

parameters of the sediment) for the environment which they were considering. Further-

more, an environmental parameter may be considered sensitive in an environment where

its uncertainty is large, since its variability can significantly affect acoustic fields [12].

Given that there was a large variation in the characteristics of the SSPs measured during

the Gulf of Mexico experiments (not just small perturbations from a mean SSP, but distinct

changes in the shape of the SSP), one would expect that the uncertainty in the propagation

modelling was dominated by the SSP in the ocean medium, and the impact of the other

environmental parameters to be small in comparison. Based on these points, the sensitivity

analysis discussed here will focus solely on changes in the acoustic field (and thus the

classifier performance) due to the SSP input to the WATTCH model. Further analysis of

the sensitivity of other environmental parameters was considered to be beyond the scope

of this investigation.

The approach for this sensitivity analysis was to examine the impact of SSP on aural

classifier performance by comparing the results from the detailed environmental model

employed in the previous analysis (Section 5.2) with environmental models for which the

water column properties were defined using a range-independent sound speed field. The

intent was to focus on environmental measurements collected during the experiment, and

to adjust the SSP within the bounds of the observed data. In this way, it is possible to

comment on the importance of accurately representing the acoustic environment to achieve

an acceptable model-data match.

5.3.1 Environment and Model Configurations

The environment and model configurations for this sensitivity analysis were the same

as for the propagation model described in Section 5.2.1, with the exception of the SSP

used to define the properties of the ocean medium. Four cases were considered; three

range-independent cases, each defined by a single SSP:
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1. Well-mixed. This refers to the SSP which was approximately isospeed in the upper

60 m of the water column, shown at R = 21.1 km in the environment configuration

figure (Figure 5.4);

2. Downward refracting. This refers to the SSP located at R = 0 km in the configuration

figure;

3. Anti-duct. This refers to the SSP which had a sound speed maximum approximately

mid-watercolumn, shown at R = 6.5 km in the configuration figure;

and the fully range-dependent case used to simulate the experimental results in Section

5.2. As before, noise was added to each of the signals at an appropriate level based on

Bellhop TL modelling. The results of the TL modelling for each environment configu-

ration are shown in Figure 5.9. Note the large variability in TL (e.g., more than a 15 dB

difference between the anti-duct and downward refracting cases measured at R = 6.5 km

and z = 29 m), and thus SNR. This was a significant difference, bearing in mind the only

difference between the environments was the SSPs. Also of interest were the relatively

large differences in the TL values based on receiver depth, especially for the downward

refracting sound speed profile. These TL curves demonstrate that the propagation model

exhibited a high degree of sensitivity to the input SSP, but the question remains: how does

this impact the aural classifier results?

5.3.2 Results and Discussion

Following the same steps outlined in Section 5.2, signals were propagated through the

environment with the WATTCH model and noise was added at the correct level for each of

the environments under consideration. The classifier was then trained on signals propagated

over a 70 m range and validated on signals propagated over the longer ranges. Classifier

performance results are exhibited in Figures 5.10 and 5.11 as a function of range and

SNR, respectively. There was a large spread in performance values, based on the choice

of SSP, for signals transmitted over the 6.5 km and 10 km ranges. The mean performance

results were consistently larger for signals propagated through the downward refracting

water column than for the other cases. Surprisingly, there was little difference between

the well-mixed and anti-duct cases — intuitively one may have presumed that since

the characteristics of the SSPs were so different they would have produced significantly
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different results. That the opposite was true may have been a result of the source/receiver

geometry, particularly for the anti-duct case. If, for example, the source was ∼10 m deeper

it would have been below the sound speed minimum which would have restricted the

amount of energy incident on either receiver, and likely would provide a greater contrast

between the anti-duct and well-mixed cases.

Nevertheless, these results showed a clear environment-dependence. The propagation

model’s sensitivity to the properties of the ocean medium, as characterized by the SSP, was

sufficiently large that one may conclude it to be a significant contributor to the model-data

mismatch observed in Section 5.2, especially given the wide variation in SSPs measured

over the course of the experiment. This is a key result as it reinforces the necessity to

characterize the ocean acoustic environment as fully as possible during an experiment,

especially if one plans to augment experiments with propagation modelling. This may

seem obvious; however, consider if only a single SSP had been measured when the

moorings were deployed. One would then necessarily assume that it was applicable for

the surrounding medium and thus generate an environment model using the downward

refracting SSP. This would have resulted in a significant model-data mismatch with no
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Figure 5.9: Incoherent transmission loss modelled at f = 2 kHz using Bellhop for four

different sound speed fields. The SSPs used as inputs to the model are shown in Figure 5.4;

well-mixed (mixed) SSP at R = 21.1 km, downward refracting (d. r.) SSP at R =0 km,

anti-duct (a. d.) SSP at R = 6.5 km, and the experimental simulation (exp.) sound speed

field with all five SSPs (the values of R are referenced to Figure 5.4). For each sound

speed field case, the solid line ( ) represents TL values for a receiver at 17 m depth,

and the dashed line ( ) for a receiver at 29 m depth.
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obvious explanation. Therefore, one must consider the relevant oceanographic scales

that may impact acoustic propagation and implement an environment sampling strategy

accordingly.

Examining the performance results in terms of SNR provided some explanation for

the difference between environments, first noted by examining the performance as a

function of range. As with previous results, there was a clear relationship between

performance and SNR. An interesting feature of these plots is that the performance values

for signals transmitted over 10 km through the downward refracting environment bore the
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Figure 5.10: Sensitivity of classification performance to choice of sound speed profile

as a function of range for the biogenic whale calls propagated through WATTCH model.

Experimental results (red triangles and green squares) are included for reference. The

vertical errors bars show ±σaccuracy and ±σAUC based on 5-fold cross-validation, and the

horizontal error bars on the experimental results define the shortest and longest transmission

range for each transmitted signal set.
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Figure 5.11: Sensitivity of classification performance to choice of sound speed profile

as a function of SNR for the biogenic whale calls propagated through WATTCH model.

Experimental results are included for reference. The vertical errors bars show ±σaccuracy

and ±σAUC based on 5-fold cross-validation, and the horizontal error bars define ±σSNR

of the corresponding recorded signal set.

most similarity to the performance of signals propagated over only 6.5 km in the other

cases — this was likely because the mean SNRs for the downward refracting case at the

10 km range were more similar to the mean SNRs for the other cases at the 6.5 km range

(i.e., between 5 to 15 dB). It is therefore tempting to conclude that the sensitivity of the

classifier performance was a result of environment-dependent TL (i.e., signal attenuation)

and neglect the impact of signal distortion induced by time-spreading. Although there

clearly could be a large performance difference between environments, one cannot ignore

that there was, in general, an insignificant difference within environments. To clarify,

performance results for a particular environment were similar for the two receiver depths,

even though in some cases there were relatively large SNR differences for these receivers.
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Table 5.3: Example performance values for signals propagated through the WATTCH

model over 6.5 km through the downward refracting environment.

Depth (m) SNR (dB) Accuracy AUC
17 11.14 ± 2.47 0.81 ± 0.04 0.87 ± 0.04

29 22.02 ± 2.67 0.81 ± 0.04 0.92 ± 0.04

Consider again the downward refracting case for signals propagated over 6.5 km — despite

the ∼10 dB difference between the mean SNR values for the two receiver depths, there

was no difference in the accuracy and a negligible difference in the AUC values (refer

to Table 5.3 for comparison of these values). This indicates that, although SNR explains

much of the change in performance, signal distortion may also account for some of the

performance degradation.

To recap, regardless of the source mechanism, it was shown that the classifier per-

formance was sensitive to changes in the acoustic propagation field that resulted from

differences in the sound speed profiles. Furthermore, differences in environment-dependent

attenuation largely contributed to the performance degradation. Nevertheless, there was

evidence that suggested signal distortion due to time-spreading also contributed to the

environment-dependent differences in classifier performance.

5.4 Chapter Summary

In this chapter, the WATTCH model was introduced and validated for broadband pulse

propagation. It was then used to simulate the environmental conditions experienced during

the Gulf of Mexico experiments, resulting in an acceptable model-data match and further

validating the applicability of the WATTCH model. Since WATTCH is much more flexible

and efficient than performing multiple at-sea experiments, it was an ideal tool to conduct

an exploratory sensitivity analysis. Variation in classifier performance related to water

column properties were explored through changes to the sound speed field. The results

clearly showed variability in the classifier performance results based on the properties

of the ocean medium. Additionally, it was demonstrated that these differences could

largely be explained by disparity in the environment-dependent TL; however, some of
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the characteristics of the sensitivity analysis indicated that signal distortion due to time-

spreading as a result of multipath addition may also have been important. The combination

of propagation model results and sensitivity analysis reinforced the need to study how

much of the classifier performance degradation is explained merely by decreasing SNR

and how much may be attributed to environment-dependent distortion of the signals. Due

to the flexibility of the WATTCH model, it is possible to use it to investigate the relative

impacts of SNR and other propagation effects.
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CHAPTER 6

RELATIVE IMPACT OF SNR AND
OTHER PROPAGATION EFFECTS

6.1 Introduction

Both the experimental results presented in Chapter 4 and the propagation modelling results

presented in Chapter 5 suggested that signal-to-noise ratio (SNR) was an important contrib-

utor to decreasing classifier performance as signals were transmitted over increasing range.

This finding was consistent with previous PAM results, including those of Helble et al. [18],

for example, which show the probability of detecting humpback whale units changes con-

siderably on both short and long time scales with altering ocean noise characteristics.

Mouy et al. [23] also noted that false negative rates increased as SNR decreased. Murphy

and Hines [79] observed a similar trend of decreasing performance in their investigation of

the SNR-dependence of the aural classifier when applied to active sonar echoes. Mellinger

and Clark [52] explicitly state that, “The lower the signal-to-noise ratio of a sound, the

more difficult it is, in general to detect and classify the sound.” Certainly, it is not a new

idea to suggest that SNR has an impact on automated detectors and classifiers. The novel

elements of this chapter are the consideration given to environment-dependent propagation

effects and the methods employed to disentangle the relative impacts of SNR and signal

distortion caused by time-spreading.

In discussing the theory of communication over a channel with noise, Shannon [80]

distinguishes two cases: distortion and noise. In the first case, a transmitted signal always

produces the same received signal, though it is different from the original transmission.

The received signal is a definite function of the transmitted signal and the process which
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transforms the transmitted signal is referred to as distortion. In the second case the signal

does not always undergo the same change in transmission, i.e., the received signal is a

function of both the transmitted signal and a random variable referred to as noise [80].

A convenient way to distinguish these two cases is that, in the case of distortion, it is

theoretically possible to predict the received signal precisely if the input signal and transfer

function of the channel are known; it is not possible to predict the received signal exactly

for a noisy channel since the noise is non-deterministic. In general, signals recorded during

ocean acoustic experiments are subject to transformation by both distortion and noise —

the distortion is a result of deterministic propagation effects due to time and frequency

spreading, and the irreversible changes to the transmission may be attributed to the ambient

ocean noise. This chapter of the thesis investigates the relative impacts of distortion and

noise on the aural classifier’s performance by considering how each individually alters the

classifier performance.

The combination of experimental and modelling results presented in Chapters 4 and 5,

results presented in the literature, and Shannon’s communication theory all indicate that

SNR plays a part, and may even drive, the decrease in classifier performance as signals are

transmitted over increasingly longer ranges. However, propagation-induced distortion may

also impact the performance of an automated classifier. The question therefore becomes,

what are the relative contributions to reduced classifier performance that arise from

decreasing SNR and from propagation-induced signal distortion? While it is complicated

to design at-sea experiments to separate the effects of SNR from propagation-induced

signal distortion, a pulse propagation model can easily separate the influences of SNR and

propagation. Accordingly, a simulation study using the biogenic bowhead and humpback

whale calls was performed by individually considering the impacts of decreasing SNR and

increasing distortion due to propagation effects, as well as investigating the combination

of these factors. The simulations consisted of three test cases:

1. Noise-only: This first case simulated the scenario in which only SNR contributes to

decreasing the classifier performance. To accomplish this, noise was added to each of

the signals to achieve a desired SNR. Initially, noise was added to the signals at levels

consistent with modelled TL for the ranges over which signals were transmitted

during the experiment (i.e., R = {0.07, 1, 6.5, 10} km) to facilitate comparison

with experimental results (in Section 6.2). After validation of the methods, the

104



process was repeated with increased range/SNR resolution (in Section 6.3) for two

environments, each defined by a different range-independent SSP.

2. Propagation-only: This second case simulated the scenario that only propagation

effects are applied to the signal. No noise was added to these signals, such that the

SNR was infinite. As described in Chapter 5, the WATTCH pulse propagation model

was used to determine the acoustic response at the same points, (R, z), simulated in

the noise-only case. After the range-independent impulse responses were determined,

they each were convolved with the biogenic bowhead and humpback vocalizations.

3. Noise and propagation: This final case is the closest to reality, since both noise

and propagation effects were added to the signals. Noise was added to each of

the simulated signals, generated for the propagation-only case, to achieve the SNR

predicted from the modelled TL.

Further details are given in the following section of how each of these three cases were

constructed. Although the use of the WATTCH pulse propagation model was validated in

Chapter 5, experimental data are also included throughout this chapter, when appropriate,

as a means to validate the methods by ensuring sufficient model fidelity.

6.2 Separating Contributions of Propagation-Induced
Distortion and SNR

The first simulation scenario was motivated by experimental measurements and the results

of the sensitivity analysis in Chapter 5. Here, the key difference was that the influences of

SNR and other propagation effects must be considered separately. Data were simulated

as if they had been received by the icListen recorder on mooring 4 (i.e., at a depth

of 29 m). The ocean bottom was described using a sand/sand-mixture bottom and the

measured bathymetery (refer to Figure 5.4). The water properties were assumed to

be range-independent and characterized by the anti-duct SSP. This SSP was selected

since the sensitivity analysis conducted in Section 5.3 showed that, in general, signals

propagated through the anti-duct SSP environment produced performance results similar

to the experimentally observed results. It is worth noting that the signals with both additive
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propagation and noise (case three) were the same as those used in the sensitivity analysis

in Section 5.3.

Two methods were considered for adding noise to the signals. These consisted of

adding either snippets of experimentally recorded noise, or white noise (referred to as

additive white Gaussian noise, or AWGN). Both of these methods have been used by

other researchers in the past; for example, samples of experimentally recorded noise

were added to whale calls that were artificially propagated through an ocean acoustic

environment to analyze a generalized power-law detector’s performance [111] and to

investigate the impact of ambient noise and site-specific propagation effects on a detector’s

performance [18]. On the other hand, Xian [89] used additive white noise to investigate

the effectiveness of a Short Time Fourier Transform detector in different ocean acoustic

propagation environments. Both types of additive noise have benefits — the experimental

noise samples provide the most accurate representation of the experimental conditions,

whereas the statistics of the white noise are well understood, such that it is possible to

produce many samples. Both methods are investigated to determine if one is clearly

preferable for simulations.

6.2.1 Case 1: Adding Noise

The technical details of how noise was added to the signals are given in Section 5.2. In fact,

the additive noise with propagation results shown in Figures 6.1 and 6.2 are the same data

points as in Figures 5.10 and 5.11. The same methods were used here with one exception:

for this noise-only case, noise was added directly to the biogenic bowhead and humpback

vocalizations without any simulation of the propagation effects. Thus, the resulting time

series, yt,n, was obtained simply by adding the noise time series, nt, with the appropriate

weight, β, to the signal, xt,

yt,n = xt + βnt . (6.1)

This process was repeated for each of the bowhead and humpback biogenic signals until

the appropriate level of noise was added to each signal to achieve an ensemble of signals

with SNRs similar to that estimated using Bellhop (refer to Figure 5.9). Bear in mind that

this process was conducted twice using either additive experimental noise or AWGN.
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6.2.2 Case 2: Adding Propagation Effects

The WATTCH model was used to compute the impulse response of the ocean environ-

ment based on in situ measurements collected on the second day of the Gulf of Mexico

experiment. Water depth was defined by the experimentally measured bathymetry, and

bottom parameters consistent with the type of sediment measured by the FFCPT were

selected: c = 1630 m/s, ρ = 1.3 g/cm3, α = 0.6 dB/λp. The water column properties were

characterized by the anti-duct SSP. The acoustic response was determined for a receiver at

depth zr = 29 m and transmission ranges of R = {1, 6.5, 10} km. Additionally, signals

received by the monitor hydrophone were simulated by placing a receiver at 30 m depth

and 70 m range.

The channel impulse responses produced by the WATTCH model were convolved with

each of the bowhead and humpback biogenic signals. This process is represented succinctly

by,

yt,p = xt ∗ ht (R, z) , (6.2)

where yt,p is the output time series, xt is one of the biogenic whale calls, and ht (R, z) is

the channel’s range- and depth-dependent impulse response. No noise was added to these

so that propagation effects could be examined in the absence of SNR considerations; this

has the side effect that the SNR was infinite.

6.2.3 Case 3: Adding Noise and Propagation Effects

This final case combines the methods of the noise-only and propagation-only cases. Noise

was added to the signals from case 2 at a level to match the SNR modelled by Bellhop, for

each value of R. The resulting time series, yt,r, is obtained using,

yt,r = xt ∗ ht (R) + βnt . (6.3)

This is merely a combination of Equations 6.1 and 6.2.

6.2.4 Results and Discussion

Classifier performance results obtained from training the classifier on data from the 70 m

range and validating the classifier on signals propagated over each of the longer ranges

are presented in Figure 6.1, for each of the three cases described in Sections 6.2.1 to 6.2.3.
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Figure 6.1: Comparison of classifier performance as a function of range for the biogenic

whale calls in five different cases: (i) experimental noise (AN), (ii) simulated propagation

effects, (iii) both experimental noise and simulated propagation effects, (iv) white Gaus-

sian noise (AWGN), and (v) both AWGN and propagation effects added to the signals.

Performance results from these simulated scenarios are also compared with results from

experimental data. Note that data points for signals transmitted over the same range have

been offset in range to reduce overlap, thereby facilitating comparison of the performance

results.

Each data point represents the mean performance value (either in terms of accuracy or

AUC) derived from 5-fold cross-validation and the vertical error bars show one standard

deviation of the cross-validation results. The same data are plotted in Figure 6.2 as a

function of the mean SNR of the signals; the signals to which only propagation effects

were added are not included in this plot as the SNR was infinite. Experimental data are

also included in both Figures 6.1 and 6.2 to facilitate model-data comparison.

The classifier’s performance for the noise-only case behaved as one would expect:

performance decreased with increasing range and decreasing SNR. As the SNR decreased,

the signal information used by the classifier to discriminate between the vocalizations
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Figure 6.2: Comparison of classifier performance as a function of SNR for the biogenic

whale calls in five different cases: (i) experimental noise (AN), (ii) simulated propagation

effects, (iii) both experimental noise and simulated propagation effects, (iv) white Gaus-

sian noise (AWGN), and (v) both AWGN and propagation effects added to the signals.

Performance results from these simulated scenarios are also compared with results from

experimental data.

became buried in the noise to the point where noise dominated and no unique signal

information was discernible. At this point the classifier decision was essentially based

on chance since there was no information available to differentiate between the signals.

Surprisingly, when only propagation effects were applied to the signals, the classifier’s

performance did not show any significant change as signals were transmitted over longer

ranges even though the signal distortion due to multipath effects increased with increasing

range. For this environment, and over these ranges, the classifier was robust to signal

distortion due to propagation effects. In the third case, in which the impacts of SNR and

propagation were considered simultaneously, the performance decreased with increasing

range/decreasing SNR. This seemed to be predominantly a result of decreasing SNR
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since, in general, the performance results for cases 1 and 3 were within one standard

deviation of each other. Also of note, is that the performance results generated from using

either additive experimental noise or white noise were consistent with one another (i.e.,

within one standard deviation) when results are plotted in terms of range and SNR. The

conclusion that AN and AWGN produce similar performance results is limited to the

specific case examined here (the AN recorded in the 1 to 4 kHz band during the Gulf of

Mexico experiment), and is not intended to be a general conclusion. One must reevaluate

this result if applying these techniques to different circumstances, particularly for signals

in a lower frequency band in which wind is not the dominant noise generation process.

Nonetheless, based on the evidence that there was little difference in performance when AN

or AWGN was used, it was concluded that little was gained by using additive experimental

noise. Bear this in mind when additive noise is discussed in the context of increasing the

range resolution of these results.

The SNR-dominated results (i.e., results for cases 1 and 3) were consistent with results

obtained in Murphy and Hines [79] in which the authors noted a gradual approach to

AUC = 1 at high SNR, an approximately linear relationship between AUC and SNR in

the mid-performance range, and predicted a gradual approach to AUC = 0.5 at low SNR.

A linear relationship between SNR and AUC suggests that AUC ∝ SNR (in units of dB).

This is consistent with Shannon’s theorem [80] that the capacity of a signal transmission

channel, C, in the presence of white noise is proportional to,

C ∝ log

(
S +W

W

)

∝ SNR , (6.4)

where S is the average signal power, W is the average white noise power, and recognizing

that SNR = log
(
S+W
W

)
[79, 80] and that the transmission channel here is the ocean

medium. If this conclusion is correct, then for transmission of sound through the ocean

medium, any deviation from this linear relationship would be attributed to non-SNR

impacts — principally propagation effects.

Unfortunately, the range/SNR resolution of the experimental results and these model

results simulating the experimental conditions was too coarse (i.e., there was only one data

point in the mid-performance region) to be able to draw any conclusions on this account.
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Hence, the range resolution must be increased through modelling. Although the simulated

classifier results for signals that contained both noise and propagation effects were not in

perfect agreement with the experimental data (values of performance metrics at the 6.5 km

range were more than one standard deviation apart), the simulated results did capture the

general trends in the data. Based on the sensitivity analysis results, this was likely due

to using a range-independent SSP. Recall that a range-independent anti-duct SSP was

selected for the environmental model — this was done to decrease the WATTCH model

run time and because there was uncertainty about how the sound speed field during the

experiments evolved over both time and space. Given the uncertainty in the measurements,

the environmental model was considered to be sufficiently accurate to draw conclusions

from the simulated data, and can be used to obtain higher resolution results.

6.3 Increased Range Resolution

The results of the previous section were useful for developing a preliminary understanding

of how to separate the contributions of SNR and propagation-induced distortion; however,

they were limited in their ability to describe the fine-scale features of how classifier

performance degrades, since there were only a few data points. The intermediate ranges

are of the most interest, since one might expect a linear relationship between SNR and

performance if SNR drives the decrease in performance as signals are propagated over

longer ranges. By comparing how, and at what range/SNR, the classifier performance

degrades for the simulated signals from case 3 with the noise-only case, it will be possible

to determine the relative importance of SNR and signal distortion resulting from time-

spreading. To confirm this hypothesis, increased range/SNR resolution is required.

6.3.1 Methods

Using propagation modelling to increase the range resolution is straightforward — it is

simply a matter of running the pulse propagation model with smaller range steps, thereby

increasing the number of simulated signals. It is a simple matter to generate signals for

the propagation-only case with increased range resolution; however, increasing the range

resolution for cases 1 and 3 requires more attention. One must consider the mechanism for

adding noise to the signals. When experimental results were simulated, it was natural to

use samples of experimental noise; however, there was no clear extension of this when
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increasing the range/SNR resolution. Although the recorders contained hours of ambient

noise recordings, there was no convenient way to determine which portions to use since

the noise characteristics changed over the course of the experiment. Additionally, the

experimental noise was quite complex and could contain recordings of marine mammal

vocalizations (one must be careful not to include these as they would likely contaminate the

bowhead and humpback calls and confuse the classifier). Fortunately, the results presented

in Figures 6.1 and 6.2 showed that there was no advantage to using experimental noise, as

the performance results for signals with either additive experimental or white noise were

in agreement (within one standard deviation). Given the concerns with using experimental

noise and the similarity of performance results when using AWGN, white Gaussian noise

was added to the signals with increased range resolution.

As in the previous section, the environmental measurements collected during the Gulf

of Mexico sea trial motivated the definition of the environment model for WATTCH.

Two environment models were considered here. The first was exactly the same as the

environment model employed in the previous section (i.e., a sand/sand-mixture bottom,

water depth increasing with range, and the anti-duct SSP). The second environment was

the same except that the measured downward refracting SSP (refer to Figure 4.5) was used

to characterize the properties of the ocean medium. The sensitivity analysis conducted in

Section 5.3 showed that these two environment models produced the greatest differences

in both the propagation fields and performance results. As such, by considering both

environment models, we may be able to put bounds on the relative contributions of SNR

and signal distortion to reducing classifier performance.

The incoherent TL curves for both the anti-duct and downward refracting environments

were predicted using Bellhop — the resulting curves are depicted in Figure 6.3. The TL

curves were transformed into SNR estimates by shifting them so that they matched the

mean SNR of the signals transmitted over the 1 km range during the experiments. These

curves were used to determine the ranges to which the signals should be transmitted, with

the goal of decreasing the SNR by approximately 3 dB for each range step. The red circles

(anti-duct) and blue squares (downward refracting) in Figure 6.3 indicate the range-SNR

pairs selected for the simulations. The WATTCH model was then used to generate the

acoustic response at these ranges for a recorder at 29 m depth. Noise was added at a level

to match the modelled SNR (with σSNR ≈ 1 for each range set), for the noise-only, and
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Figure 6.3: Incoherent transmission loss modelled at f = 2 kHz using Bellhop for en-

vironments defined by either an anti-duct or downward refracting (D.R.) sound speed

profile. The modelled TL was used to estimate the SNR of signals propagated through

the WATTCH model. Red circles and blue squares represent range-SNR pairs selected for

adding noise to the propagated signals for the anti-duct and downward refracting cases,

respectively.

propagation with noise cases. Note that when noise was added a different definition of

SNR was employed. Here, SNR was calculated using,

SNRdB = 10 log

(
σ2
s

σ2
n

)
, (6.5)

where σ2
s is just the signal variance. This is in contrast with the previously employed

definition of SNR (given in Equation 5.11), for which the numerator provided an estimate

of the combined signal and noise variance. The new definition of SNR was necessary to

produce the negative SNR values predicted by the Bellhop model.

Previous results have shown performance in terms of both range and SNR. From the

range plots it was easy to understand intuitively how performance changes as a function of

transmission range. Plotting the performance results as a function of SNR qualitatively

demonstrated that a large portion of the performance decrease could be explained by

decreasing SNR. With increased range resolution it is possible to determine how much of

this decrease is attributable to SNR; if SNR is the only contributor then one would expect

a linear relationship between SNR and classifier performance (recall Equation 6.4) in the

mid-performance region. Deviations from this linear relationship may be attributed to
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signal distortion caused by time-spreading as signals propagate through the environment.

To quantify this relationship, least-squares linear regression is used to fit a line to the data.

The coefficient of determination, R2, is then used to determine how well a linear equation

describes the relationship between SNR and performance. If R2 is ∼1 then one would

conclude that SNR is the only significant contributor to decreasing classifier performance.

6.3.2 Results and Discussion

Performance results for the anti-duct environment are given in Figure 6.4a in terms of range

and in Figure 6.4b in terms of SNR. First consider the results as a function of range; It is

once again surprising to note that, even though multipath propagation increasingly distorted

the signals with range, there was little change in performance for the propagation-only

case. However, when noise was added to these signals, the performance decreased below

that of the noise-only case. This indicates that with sufficient SNR, multipath propagation

has minimal impact on classifier performance. Lowering the SNR not only decreased the

performance, it also amplified the degradation due to signal distortion. This effect was not

noted in previous results because the range resolution of the experiments was too coarse.

The classification accuracy showed a greater difference between the noise-only case and

the noise plus propagation case than was exhibited for the AUC. Recall that when the

accuracy is lower than AUC this is indicative of the training data not being general enough,

such that the accuracy is low; however, there is still sufficient information available to

distinguish between the classes, resulting in acceptable or excellent discrimination. The

simulation results, therefore, imply that the separation between class distributions is less

sensitive to propagation effects than is the choice of decision threshold.

Now consider the performance results as a function of SNR (as plotted in Figure 6.4b).

The noise-only case behaved exactly as predicted: at high values of SNR, near-perfect

performance was attained, and at low SNR the threshold of random chance classification

was attained. Between these extremes the noise-only case shows a linear relationship, in

agreement with Shannon information theory [80]. Linear regression was performed on

the data points for which either the accuracy was less than 90 % or AUC ≤ 0.9 and to

the point at which approximately random classification was attained. Seven data points

were included in the fit to the accuracy results and 16 were included in the fit to the AUC

results for the noise-only case. The linear fit to both performance metrics resulted in

an R2 value of 0.98, indicating that the relationship between performance and SNR was
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Figure 6.4: Comparison of classifier performance for the anti-duct environment as a

function of (a) range and (b) SNR when either additive white Gaussian noise, or both white

noise and propagation effects are added to the biogenic whale calls. Linear regression

results are represented by the dashed lines in (b); the R2 values corresponding to both

regressions are also provided. Note that the SNR axis has been reversed, such that SNR
decreases towards the right.

115



well explained by a linear model. When noise was added to the WATTCH-simulated

signals the accuracy decreased at higher values of SNR than for the noise-only case;

nonetheless, the relationship between accuracy and SNR was linear with a coefficient of

determination (R2 = 0.97) close to that of the noise-only case. While the AUC for the

noise and propagation case qualitatively looked similar to the noise-only case (performance

drops off at similar values of SNR, similar slope, and chance classification reached at

similar SNR value), there was a greater difference between the R2 values for the two cases

than was noted for the accuracy. This suggested that although SNR accounted for the

majority of the decrease in the AUC (91 %), a non-negligible portion may be attributed to

signal distortion due to time-spreading.

Figure 6.5 contains the performance results for the downward refracting environment.

In general, similar conclusions may be drawn from these data; that is, the performance

of the classifier was not significantly impacted by modifying signals with increasing

levels of propagation-induced distortion. The combination of noise and propagation

caused the performance to decrease below the noise-only case — again this was more

apparent for the accuracy metric. The most noticeable difference between the anti-duct

and downward refracting environments was the range at which the performance began to

decrease. Near-perfect performance was maintained for longer ranges in the downward

refracting environment — performance started to decrease at about 8 km, compared

to about 3 km for the anti-duct environment. This was likely a result of the acoustic

propagation environment (refer to Figures 6.3 and 6.6), which caused the received signal

level to drop off quicker for R < 17 km in the anti-duct environment. This is confirmed

by the fact that the change in performance occurred at similar values of SNR for the

two environments. Other differences between these environments can be seen in the

performance plots as a function of SNR. Although the mid-performance region for the

propagation with AWGN and noise-only cases were bounded by similar values of SNR in

the downward refracting environment, there was a difference in the R2 values (relative to

the noise-only case) for both the accuracy and AUC.

Incoherent TL fields for both the anti-duct and downward refracting environments were

modelled with Bellhop (see Figure 6.6) to examine differences in the acoustic propagation

characteristics between environments that could explain performance differences. A

relatively large portion of the acoustic energy travels along a narrow collection of ray paths
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Figure 6.5: Comparison of classifier performance for the downward refracting environment

as a function of (a) range and (b) SNR when either additive white Gaussian noise, or both

white noise and propagation effects are added to the biogenic whale calls. Linear regression

results are represented by the dashed lines in (b); the R2 values corresponding to both

regressions are also provided. Note that the SNR axis has been reversed, such that SNR
decreases towards the right.
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Figure 6.6: Incoherent transmission loss fields for the (a) anti-duct and (b) downward

refracting ocean acoustic environments. The TL fields were modelled at the geometric

mean of the signal band (f = 2 kHz) using Bellhop. The horizontal dashed lines indicate

the simulated receiver depth.
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in the anti-duct environment. Conversely, the acoustic energy in the downward refracting

environment exhibits a more diffuse nature. Consider how this may impact the distortion

of received signals — in the anti-duct environment it is more likely that the received signal

was composed of a limited collection of rays, especially at long ranges, since rays that

strike the bottom at low grazing angles were likely to be refracted back towards the bottom

and not reach the depth of the receiver. This is in contrast with the downward refracting

environment, in which a received signal may be composed of rays with a broad range of

ray path lengths, since it is more likely for both bottom- and surface-interacting rays to be

included. Signals containing a broader assortment of ray path lengths — and therefore ray

arrival times — will likely result in increased signal distortion due to time-spreading. This

may explain why both the accuracy and AUC for the propagation with noise case showed

a difference from the linear relationship of the noise-only case.

One positive outcome is that the results suggest that in these environments long range

propagation does not inherently (or only minimally) degrade the classifier performance.

That is to say, one could substantially enhance long range classifier performance simply

by increasing SNR. This could be done with directional receivers such as towed arrays

or vector sensors. Urick [10] shows that in the limit of a perfectly coherent signal and

incoherent noise, the array gain for an m-element array is 10 log(m). For example, an 8-

element array would provide a maximum array gain of 9 dB. In the anti-duct environment,

an 8-element array may have increased the classification accuracy by as much as 10 % and

the AUC by 0.14 at the 12 km range, assuming that SNR was the dominant contributor to

decreasing classifier performance.

6.4 Chapter Summary

In this chapter the relative impacts of SNR and propagation-induced distortion on the

aural classifier performance were investigated. This investigation was accomplished by

considering the impacts of propagation and noise independently, and also the combination

of these two effects. The WATTCH simulations proved to be very useful for disentangling

the relative importance of distortion and SNR to reduced classifier performance. For the

two environments considered, classifier performance was not significantly degraded by

signal distortion caused by time-spreading; however, when noise was added to these signals

the performance became less than that of the noise-only case. Furthermore, the effects of
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propagation can cause performance to drop off at shorter transmission ranges than if SNR

was the only contributor to reducing performance.

By employing Shannon information theory — which states that the maximum amount of

information contained in a transmission channel is proportional to the SNR — it was found

that for these simulations the majority (91 to 94 % ± 2 %) of the decrease in performance

as signals were transmitted over longer ranges may be explained by decreasing SNR. This

leaves a relatively small fraction (6 to 9 % ± 2 %) that may be attributed to propagation-

induced distortion. Note that these results were specific to the Gulf of Mexico environment.

Further work needs to be done to determine if there are realistic environments in which

propagation effects have a greater impact, or if the bowhead and humpback calls in the

lower (true) frequency band are more affected because they travel over greater distances

with less attenuation. An initial analysis is conducted in Chapter 7 to address this issue,

by propagating the lower frequency bowhead and humpback vocalizations through two

simple acoustic environments.
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CHAPTER 7

IMPACT OF
ENVIRONMENT-DEPENDENT
PROPAGATION ON AUTOMATIC
RECOGNITION OF BOWHEAD AND
HUMPBACK VOCALIZATIONS

Now that many aspects of the experimental data have been addressed, it is appropriate

to extend the investigation of the impact of environment-dependent acoustic propagation

on the PAM of cetaceans to other scenarios. Up to this point, results presented in this

thesis have been primarily derived from the upsampled biogenic bowhead and humpback

calls. In addition, only environmental properties inspired by the Gulf of Mexico trial

location were considered. This was useful for understanding the experimental results;

nonetheless we wish to make conclusions about the impact of environment-dependent

acoustic propagation on PAM of cetaceans in general. To generalize the findings one must

consider the bowhead and humpback whale calls in their true frequency band and consider

other types of propagation conditions. Collecting data at sea in many different environments

with low-frequency baleen whale calls is not feasible given the time-consuming and

costly nature of performing range-dependent propagation experiments. These issues are

compounded when signals are transmitted in a lower frequency band because the signals

do not attenuate as rapidly with range, thereby increasing the range over which signals

must be transmitted. Additionally, the experiments would require more time at each range

since signals would not need to be time compressed as they were for the Gulf of Mexico
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experiments. Consequently, in this penultimate chapter, the analysis is extended to include

low frequency whale calls propagated through different environments, by applying the

pulse propagation simulation techniques developed in the previous chapters.

To this end, WATTCH was used to propagate bowhead and humpback whale vocaliza-

tions in their original frequency band through two simplified, but realistic, ocean acoustic

propagation environments. There is one caveat, however — the frequency band of the

vocalizations was limited to 200 to 800 Hz Restricting the frequency band was deemed

necessary due to the limitations of ray-tracing theory; consider that for an environment

with a 1500 m/s isospeed profile and a water depth of 100 m, Equation 5.1 shows that

the application of a ray-tracing model becomes questionable below 150 Hz. Since the

full-bandwidth vocalizations include frequencies below the nominal 150 Hz limit (in fact,

as discussed in Section 3.1, they contain considerable energy down to approximately

50 Hz) the suitability of employing Bellhop for modelling may be called into question.

By removing the lower frequencies from consideration, any issues with the applicability

of a ray-tracing model were avoided. This was considered a reasonable approximation

since it was shown in Section 3.3 that limiting the frequency band did not result in a large

difference in the classifier performance.

7.1 Environment and Model Configurations

The WATTCH model was used to simulate the received time series by running the Bellhop

model for 61 frequencies equally spaced in the 200 to 800 Hz band. These results were

interpolated to provide a 0.5 Hz frequency spacing and 125 μs temporal spacing and the

acoustic response was generated in a 3.85 s long window. A time window longer than

that which was used to simulate results in the 1 to 4 kHz frequency band was necessary

because the lower frequency signals are longer duration and it was anticipated that there

would be stronger multipath arrivals with a broader range of arrival times. A longer time

window was therefore necessary to eliminate potential wrap-around of the later arrivals

into the beginning of the time window. The channel impulse response was determined for

a source placed at mid-water column and for 35 ranges, in range steps of 100 m for the

first kilometre, and then for 2 km range steps (starting at 2 km).

Two range-independent acoustic propagation environments were considered, that were
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designed to be at (realistic) extremes. Schematics of the two environments are provided in

Figure 7.1. The first environment was designed to be relatively benign in terms of acoustic

propagation effects. It was defined by a sandy bottom half-space and an isospeed SSP

(c = 1500 m/s) in the water column. This is a typical environment that one may encounter

on a sandy continental shelf, with a well-mixed water column. The second environment was

designed to have acute propagation effects (i.e., many boundary interactions and relatively

small bottom loss); the water column properties were characterized by a downward

refracting SSP, and a sedimentary rock bottom half-space was selected. This environment

was inspired by measurements from the Sur Ridge [22]. In both environments a constant

water depth of 100 m was employed. The source depth was set at zs = 20 m based on

literature reports of the vocalization depths of humpback whales [112, 113].

The incoherent transmission loss fields modelled using Bellhop for these two environ-

ments are compared in Figure 7.2. These figures demonstrate the contrast between the

environments. In the isospeed environment the acoustic energy decayed with range as one

cp = 1650 m/s

 ρ = 1.9 g/cm
3

αp = 0.8 dB/λp

0 10 20 30 40 50
Range (km)

0

50

100D
ep

th
 (

m
)

1480 1500 1520
c (m/s)

(a)

cp = 2375 m/s

 ρ = 1.97 g/cm
3

αp = 0.04 dB/λp

0 10 20 30 40 50
Range (km)

0

50

100D
ep

th
 (

m
)

1480 1500 1520
c (m/s)

(b)

Figure 7.1: Schematics of environment configurations used to simulate propagation of the

bowhead and humpback calls in their true frequency band. Two cases were considered: (a)

a moderate propagation environment with an isospeed SSP and sandy bottom, and (b) an

extreme propagation environment with a downward refracting SSP and sedimentary rock

bottom. The solid grey line indicates the source depth, and the dashed grey line indicates

the receiver depth.
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Figure 7.2: Incoherent transmission loss fields for the (a) isospeed and (b) downward

refracting ocean acoustic environments. The TL fields were modelled at the geometric

mean of the signal band (f = 400 Hz) using Bellhop. The horizontal dashed line in each

figure indicates the receiver depth.
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would expect based on a hybrid spherical/cylindrical spreading scenario — the acoustic

energy filled the the water column, and there were no obvious preferred ray paths. In

contrast, the transmission loss field for the downward refracting environment showed a

clear range-dependent interference pattern. Such differences in the transmission loss field

were indicative of a disparity in how a signal was distorted as it propagated through each

of the environments.

7.1.1 Noise Addition

A strategy for adding noise to the bowhead and humpback whale calls similar to that

presented in Section 5.2.2 was employed for the low frequency bowhead and humpback

calls, with two notable changes — both the way in which the noise samples were pro-

cessed and selected, and the transformation from modelled TL to an SNR estimate were

different. Subtle changes to the noise addition method were necessary due to the shift in

the vocalization frequency band and the removal of the constraint to match source level to

experimental results (now the source level should match that of real whale calls).

Experimentally recorded ambient noise was added to the simulated signals rather than the

white Gaussian noise used in Chapter 6, to ensure a realistic colouring of the noise spectrum.

White noise was an acceptable approximation for the higher frequency vocalizations

since the noise spectrum was approximately flat in that frequency band; however, at low

frequencies this flat noise spectrum approximation is less applicable. Fortunately, ambient

noise recordings were available from the Gulf of Mexico experiments that were sampled

during times when no transmissions occurred. An hour-long period of ambient noise

recorded by the icListen hydrophone on the first day of the experiment was used as the

source of additive noise. The ambient noise was bandpass filtered to include frequency

content in only the 200 to 800 Hz band. It was then divided into 423 segments, each 8.5 s

long. A random noise snippet was selected to be added to each simulated signal, such that

a noise snippet was only used once for signals propagated over the same range.

Estimating the desired SNR is straightforward. Using the passive sonar equation [75], an

estimate of the range-dependent SNR, SNR(R), of the simulated signal may be obtained

by,

SNR(R) = SL− TL(R)− NL , (7.1)

where TL(R) is the range-dependent transmission loss modelled by Bellhop, and NL
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is an estimate of the ambient noise level. A constant SL of 175 dB re 1 μPa @ 1 m is

assumed based on Frazer’s [113] report of humpback whale source levels in the 175 to

188 dB re 1 μPa @ 1 m range, and Au et al.’s [112] measurement of maximum source levels

of humpback song units in the 151 to 173 dB re 1 μPa @ 1 m range. For both the isospeed

and downward refracting environments an ambient noise level of 89.8 dB re 1 μPa for the

200 to 800 Hz frequency band is assumed. This noise level is based on Piggott’s [65] report

of average noise spectrum levels on a continental shelf, which was in agreement with the

Merklinger-Stockhausen noise model [114]. Other than the method used to estimate the

SNR, all aspects of adding noise to the simulated signals to achieve the correct SNR is the

same as described in Section 5.2.2.

Application of Equation 7.1 produced the TL/SNR relationship shown in Figure 7.3, in

which the TL curves for the isospeed and downward refracting environments are generated

for a receiver at zr = 50 m. The difference between the two environments is evident upon

comparison of the curves. In the isospeed environment, the TL monotonically decayed

as a function of range, whereas the TL curve for the downward refracting environment

exhibited many fluctuations as a result of multipath. At the longer ranges (R > 20 km)

there was a greater discrepancy between the two curves which was likely a result of the
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Figure 7.3: Incoherent transmission loss modelled at f = 400 Hz using Bellhop for envi-

ronments defined by either an isospeed or downward refracting sound speed profile. The

modelled TL was used to estimate the SNR of signals propagated through the WATTCH

model. Red circles and blue squares represent range-SNR pairs selected for adding noise

to the propagated signals for the isospeed and downward refracting cases, respectively.
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larger bottom loss in the isospeed environment. The range-SNR pairs selected for the

simulations are indicated on the TL/SNR curves. It is worth noting that the oscillatory

nature of the downward refracting curve was captured by the choice of the simulated

ranges; that is, the selected points included (approximately) local maxima, minima, and

points in between. Since the variations in the TL curve may be symptomatic of differences

in propagation-induced distortion, incorporating simulated signals that lie within varying

points of these oscillations should capture differences in the signal distortion. One might

then expect to observe greater differences in performance as a result of propagation-induced

distortion.

7.2 Results and Discussion

7.2.1 Isospeed Environment

As in Chapter 6, the impacts on classifier performance were considered for SNR effects and

propagation-induced distortion independently, and in combination. Results are presented

as a function of range in Figure 7.4a for the isospeed environment. The classifier was

trained on signals either propagated over the shortest range (R = 100 m), or with the

lowest level of additive noise (SNR = 45 dB). The classifier performance for signals

with additive noise behaved as expected based on previous results; i.e., the classification

accuracy and AUC decayed smoothly as a function of propagation range. There was a

notable deviation from previous results for the WATTCH-simulated signals with no noise

added — in this environment there was a small change in both the accuracy and AUC. The

classifier performance decreased such that the mean accuracy changed by approximately

10 %, and an approximately 0.13 decrease in the mean AUC was noted. These were small,

but significant changes, that occurred for signals propagated between 0.7 to 4 km, after

which the performance values remained relatively constant as signals were propagated

over longer ranges.

As previously noted, the AUC values for simulated signals to which noise was added,

were less than those for the noise-only case (for 9 km ≤ R ≤ 18 km); however, a similar

trend was not noted for the performance in terms of accuracy. Instead, for signals propa-

gated over ranges of 10 to 42 km the accuracy was actually greater than for the noise-only

case. This is interesting, especially given that the AUC did not mirror this result. Unlike
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Figure 7.4: Comparison of classifier performance of the whale calls in their true frequency

band for the isospeed environment. Performance results are presented as a function of

(a) range and (b) SNR when either additive noise, or both noise and propagation effects

are added to the biogenic whale calls (in (a) propagation effects are also independently

considered). Linear regression results are represented by the dashed lines in (b); the R2

values corresponding to both regressions are also provided. Note that the SNR axis has

been reversed, such that SNR decreases towards the right.
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previous results derived from the upsampled biogenic whale calls propagated through

environments inspired by the Gulf of Mexico experiment, here we see that the impact of

propagation could enhance classification accuracy relative to the noise-only case. This

suggests that for this scenario, even though there was increasing overlap between class

distributions (decreasing AUC) the choice in decision threshold was relatively insensitive

to the impacts of distortion for signals transmitted over ranges greater than 10 km.

Consider the performance results in terms of the SNR, as presented in Figure 7.4b.

For both performance metrics, for signals to which only noise was added, performance

decreased monotonically with decreasing SNR, with a linear relation between the perfor-

mance extremes (R2 = 0.97 and 0.98 for the accuracy and AUC, respectively), as predicted

by Shannon information theory. When propagation impacts were included, the perfor-

mance began to decrease at higher SNR values. A similar criterion as for the noise-only

case was used to select which performance-SNR points to include in the linear regression:

data points were included for which the accuracy ≤ 90 % or AUC ≤ 0.9, and for which

the minimum expected performance was not reached. This resulted in 19 data points being

included in the regression analysis for the accuracy, and 13 points for the AUC. The

resulting R2 values for accuracy and AUC (R2 = 0.96 and 0.75, respectively) showed that

a linear model was a good fit for the accuracy metric, but not for the AUC. One may think

that including higher SNR data points than for the noise-only case may bias this result;

however, if the data selected for the linear regression are limited to an equivalent SNR

range, R2 values of 0.86 and 0.83 result. This outcome does not affect the conclusion that

bowhead and humpback whale vocalizations propagated through an isospeed environment

were impacted, not only by the effects of decreasing SNR, but also by propagation-induced

signal distortion. In conclusion, bowhead and humpback vocalizations were sufficiently

distorted as they were propagated through this isospeed environment that between 4 to

14 % of the decrease in classification accuracy, and 17 to 25 % of the decrease in AUC, was

explained by time-spreading caused by multipath propagation. This was a surprising result,

considering that the acoustic propagation environment was designed to have relatively

benign propagation characteristics.

7.2.2 Downward Refracting Environment

Now let us consider the performance results for an environment for which propagation

effects are expected to be acute — the downward refracting environment with a hard bottom.
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Figure 7.5a shows performance results for signals propagated through the downward

refracting environment as a function of range. A surprising result is that there was little

change in the performance for the scenario in which the signals were transformed by

only propagation effects. A larger impact on the propagation-only case might have been

expected based on the relatively extreme nature of this propagation environment. As with

the isospeed case, the addition of noise to the signals simulated by WATTCH, caused the

AUC to decrease below the noise-only case; however, the accuracy metric did not mirror

this result, but instead the accuracy was consistently greater (when R ≥ 8 km) for this case.

Again, the choice of decision threshold was quite robust for this environment.

To determine the relative proportions of changes in performance that may be explained

by SNR versus propagation-induced signal distortion, the above results are re-plotted as a

function of SNR in Figure 7.5b. These results show that the performance begins to decay

at higher values of SNR for the simulated signals with additive noise than for the signals

to which only noise was added. As with the isospeed environment, at high SNR, the

classification accuracy for signals distorted by multipath addition is less than for signals

with just additive noise, but this is reversed for SNR≤ 22 dB. Surprisingly, at low values

of SNR, the addition of propagation effects leads to an increase in classification accuracy,

relative to the performance for the additive noise signals. The AUC did not follow this

trend — instead the AUC for the noise and propagation case was consistently less than

that of the noise-only case.

One noteworthy feature of the AUC graph is the vertical scatter of data points with

SNR≈ 15 dB. These data points all have similar mean SNR values, but produced a spread

of AUC values indicative of the role played by propagation-induced distortion for altering

classifier performance. To quantify this role, both performance metrics were fit to a linear

model, using the same criteria as outlined for the isospeed environment in the previous

section. The linear regression results are also plotted in Figure 7.5b. Not only was there

an obvious difference in the slopes of the regression lines between the two cases for both

metrics, there was also a relatively large difference between the values of R2. A linear

model only described 83 % of the variance for the accuracy and 60 % of the variance for the

AUC. The values of R2 increase to 0.86 and 0.76 for the accuracy and AUC, respectively,

if the regression is performed on data points in the same SNR range as was used for the

noise-only case; nonetheless, there was a significant impact of propagation-induced disto-
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Figure 7.5: Comparison of classifier performance of the whale calls in their true frequency

band for the downward refracting environment. Performance results are presented as a

function of (a) range and (b) SNR when either additive noise, or both noise and propagation

effects are added to the biogenic whale calls (propagation effects are also independently

considered in (a)). Linear regression results are represented by the dashed lines in (b); the

R2 values corresponding to both regressions are also provided. Note that the SNR axis has

been reversed, such that SNR decreases towards the right.
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rtion observed in this environment that could not be explained solely by changes in SNR.

Even though it seemed, once again, that the relationship between SNR and performance

was the only significant contributor to decreasing classifier performance, upon closer

inspection it was clear that propagation-induced distortion was also a significant contributor.

In this downward refracting environment the results indicated that many of the large scale

features may be explained by signal attenuation, and the impact of propagation-induced

distortion contributed changes to the performance on a finer scale. This was consistent

with the TL field depicted in Figure 7.2b — the ‘background’ TL smoothly decayed

as a function of range, much like in the isospeed environment. Superimposed on top

of this, however, were oscillations in received level as a function of range that resulted

from interference of ray paths. These small scale variations could make it difficult to

predict performance if one were only to assume a linear dependence between SNR and

noise, thereby discounting the impacts of propagation-induced distortion. If signals were

detected at close range, and/or with high SNR, propagation would be unlikely to have any

significant impact on classifier performance. On the other hand, if detected signals have

intermediate SNR (i.e., they fall within the mid-performance region) there could be an

impact on performance due to multipath addition that would be ignored if one assumed a

linear relationship between the performance metrics and SNR. Additionally, as a result of

signal distortion, the performance begins to decrease at SNR levels for which one would

likely assume there was still sufficient SNR to make excellent classification decisions.

Realistically, this would have the result of biasing an estimate of the number of vocalizing

whales, relative to what one may expect if SNR was the only significant contributor to

decreasing classifier performance; furthermore, it would also result in an underestimate of

the uncertainty associated with the abundance estimate.

Consider, for instance, the impact on density estimation; Marques et al. [29, 115] lay

out a framework that has become the standard in the PAM community. A critical step in

obtaining an accurate density estimate is determining the detection function. Detection

functions are used to map the SNR of a detected vocalization to the probability of detection

and correct classification. Many researchers use a simple geometric spreading assumption

to approximate this function, which in some environments may not be appropriate for

capturing the correct relationship between SNR and detection range. Other researchers,

like Küssel et al. [30], incorporate acoustic propagation modelling to characterize the

132



relationship between SNR and the PAM system’s performance. Even though application

of an acoustic propagation model is necessary for characterizing the relationship between

SNR and the detection function, it overlooks a potentially important factor: propagation-

induced distortion. As shown through these simulations, propagation-induced signal

distortion does impact the performance of automated PAM methods. Therefore, in order

to obtain the best possible estimate of the detection function, one should also incorporate

the impacts of multipath propagation. This in turn will provide a more accurate density

estimate and a better understanding of the associated uncertainty.

7.3 Chapter Summary

In this chapter we have extended the analysis of environment-dependent acoustic propaga-

tion effects on the automated classifier performance to consider bowhead and humpback

whale vocalizations in their true frequency band. The vocalizations in this lower frequency

band were propagated through two simplified, but realistic, environments using WATTCH.

On the surface, the performance results were similar to those observed for previous scenar-

ios — the performance decreased with increasing range and decreasing SNR. In spite of

this general similarity, there were some unexpected results. The classification accuracy

for signals transformed by both propagation and noise was greater than for the noise-only

case at long range/low SNR in the isospeed and downward refracting environments. A

surprising result was that the propagation-only case showed a decrease in performance

with increasing propagation range for the isospeed environment but not for the downward

refracting environment. Intuitively one would expect that multipath addition which in-

cluded ray paths with strong bottom returns would enhance distortion, thereby having

a greater impact on performance. However, it was shown that what appeared to be a

relatively benign environment can indeed have an impact on performance. Even though the

propagation-only case for the downward refracting environment did not show a significant

change in performance with increased time-spreading due to multipath addition, it was

found that propagation-induced distortion played a relatively large role in determining

how the classifier performed on the simulated signals with additive noise. Specifically, in

the downward refracting environment it was found that between 60 to 83 % of the change

in the mid-performance region was explained by changes in SNR, implying that 17 to

40 % of the performance change was caused by propagation-induced distortion. This is a
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non-trivial proportion. Thus, one may conclude that it is necessary to consider the ocean

acoustic propagation characteristics for the frequency band and environment of interest in

order to determine to what degree multipath addition will impact automated classification

of cetacean vocalizations.
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CHAPTER 8

CONCLUSIONS

Through the use of an at-sea experiment and simulations, the results presented in this

thesis have aided in understanding the impacts of environment-dependent acoustic prop-

agation on passive acoustic monitoring of cetaceans. To ground results in reality, an

experiment was designed and conducted in the Gulf of Mexico during the spring of 2013.

During the experiment, biogenic and synthetic whale calls were transmitted over ranges

of approximately 1 to 10 km. In general, it was found that classifier performance was

range-dependent, such that both the classification accuracy and AUC decreased with

increasing transmission range. Through the use of performance matrices generated by

training and validating the aural classifier on signals transmitted over each range pair, it

was found that the best classification performance across a wide variety of transmission

ranges was obtained when the classifier was trained on an equally varied assortment of

ranges. If a large and varied data set is not available for training the classifier, then it is

best to train it on relatively low SNR calls. While the motivation for developing synthetic

whale calls was well-founded (the desire to examine signals that had not been previously

subjected to propagation effects) it was found that they provided little added value since

results were similar to those obtained from the biogenic calls. Therefore, simulations were

only conducted with the biogenic calls. Further effort could be made in future to generate

synthetic signals using an alternative method.

The WATTCH model was validated and used to perform broadband pulse propagation.

WATTCH was first used to simulate experimental conditions encountered during the Gulf

of Mexico experiment, resulting in acceptable model-data fidelity. With confidence in

the simulation process established, an exploratory sensitivity analysis was conducted. By
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varying only the sound speed profile and maintaining all other environmental parameters

the same between simulations, it was found that classifier performance was altered by as

much as 23 %. It was demonstrated that the differences in performance could largely be

explained by disparity in the environment-dependent transmission loss.

As the experimental and simulated results were analyzed it became clear that SNR was

an important contributor to decreasing classifier performance as signals propagated over

increasingly longer ranges; however, the influence of propagation-induced signal distortion

was not clear. Hence, Chapter 6 was devoted to developing a method to disentangle

the impacts of signal attenuation and distortion. This was accomplished by considering

their impacts separately as well as in combination, for which the WATTCH simulations

proved very useful. The environments considered were inspired by the environmental

measurements made during the Gulf of Mexico experiment and the results of Chapter 5’s

sensitivity analysis. Classifier performance was not significantly degraded by the impacts

of signal distortion alone; however, when noise was added to the simulated signals, the

performance dropped below that for the noise-only case. Additionally, it was found that the

effects of propagation caused the performance to begin to degrade at shorter transmission

ranges than if SNR had been the only contributor.

Shannon information theory predicts a linear relationship between SNR and classifi-

cation performance. With this in mind, linear regression was performed on performance

data points for attenuated and distorted signals which were plotted as a function of SNR.

The coefficient of determination was used as an indicator of the relative proportion of

performance change explained by SNR. From this method, it was found that as much as

(94 ± 2) %, or as little as (91 ± 2) %, of the decrease in performance could be attributed to

attenuation as signals were transmitted through the Gulf of Mexico environment. Therefore,

a relatively small proportion — (6 ± 2) % to (9 ± 2) % — was a result of propagation-

induced signal distortion. This result indicated that there are likely many environments

in which signal-to-noise issues dominate. A positive outcome is that, by employing

multi-element arrays, one is able to increase the SNR of recorded vocalizations by taking

advantage of array gain, thereby increasing the performance of the classifier with minimal

effort. In fact, in SNR-dominated environments, this is expected to produce performance

improvements beyond the minor gains from adjusting a PAM system’s parameters to

account for environment-dependent signal-distortion.
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The final scenario considered was that of bowhead and humpback vocalizations in

their true frequency band (not the frequency band of the upsampled calls used for the

experiments). The bowhead and humpback whale vocalizations were propagated through

two simulated environments designed to represent propagation extremes. These consisted

of an isospeed water column with a sandy bottom, and a downward refracting sound

speed profile with a sedimentary rock bottom. A small change in performance (i.e.,

difference in accuracy of ∼10 %) was noted for the WATTCH-simulated signals without

additive noise in the isospeed environment. Although the general characteristics of the

performance changes were similar to those noted for the Gulf of Mexico experiment

(e.g., decreasing performance with increasing propagation), performance results from the

downward refracting environment highlighted that signal distortion can have a significant

impact. Specifically, in the downward refracting environment, as much as 40 % of the

decay in the mid-performance region was attributed to time-spreading due to multipath

addition. Therefore, in at least some environments the ocean acoustic properties which

result in signal distortion should be taken into account when characterizing performance

of automated PAM systems.

Many of the results in this thesis were derived from bowhead and humpback whale

vocalizations scaled to the 1 to 4 kHz band. The frequency scaling was necessary to take

advantage of the passband of the source used during the Gulf of Mexico experiment.

Unfortunately, this meant that the applicability of the experimental results in Chapter

4, and the simulation results in Chapters 5 and 6, to PAM of bowhead and humpback

whales was limited to the general trends. For instance, from the higher frequency band

results, it was possible to conclude that classifier performance was range-dependent, the

effects of both signal distortion and SNR needed to be accounted for when characterizing

classifier performance, and classifier performance can be significantly impacted by changes

in the ocean SSP. The lower frequency band results presented in Chapter 7 confirmed the

validity of the general conclusions made from the higher frequency band results. It is also

important to note that, despite the limitations for the bowhead and humpback vocalizations,

the results may be directly applied to other kinds of transient signals in this frequency band

(e.g., anthropogenic signals, or other cetacean vocalizations that exist in the 1 to 4 kHz

band).

Although the aural classifier was used throughout this thesis, the methods developed
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may be applied to any automated PAM system. This could be especially useful for

detection/classification systems which are more susceptible to the impact of environment-

dependent propagation than the aural classifier, based on the types of features they extract;

for example, Baumgartner et al. [5] state that the low-frequency detection and classification

system (LFCDS) they employ is ‘particularly vulnerable’ to missing faint calls because

it must detect the presence of a sound and estimate the shape of the pitch track from

the spectrogram. Baumgartner et al. raise the issue of SNR, but neglect the impact of

propagation-induced distortion, which can reasonably be expected to alter the shape of a

vocalization in a spectrogram. An investigation such as the one conducted in this thesis

would be useful for fully characterizing the performance of such systems to develop an

understanding of their limitations.

Since propagation-induced signal distortion is a deterministic process, it is theoretically

possible to reverse the effects of propagation and recover the source signal (plus noise).

With the propagation-induced distortion removed it would be possible to perform classifi-

cation on the inverted signal. There is a large body of inversion-theory literature that could

aid in this. Given that ocean acoustic propagation inversion is relatively complicated and

computationally intensive (due to the large number of influencing parameters), and that

only a small gain is anticipated, this approach is not recommended in general, since, as we

have seen throughout this thesis, the SNR issue tends to swamp the impacts of propagation.

It may be worth considering for environments with extreme propagation effects.

Throughout much of this thesis whale vocalizations have been treated as convenient

source signals for investigating the impacts of environment-dependent propagation on the

performance of automated classifiers, without much regard for the biological aspects of

the whale vocalizations. That is to say, the intent behind whale vocalizations has not been

considered. In general, there are two possibilities — first, the whales are propagation-

agnostic, and second the whales actually make use of the effects of propagation. In the first

case, it is reasonable to assume that the whale vocalizations were evolutionarily designed

to be robust to the impacts of propagation so that as the calls are transmitted through the

ocean medium, the integrity of the encoded information is maintained. In fact, Mercado

and Frazer [15] point out that animals that communicate over long distances typically use

sound repertoires that remain discriminable even after considerable signal distortion. This

could explain why the influence of SNR dominated the decrease in classifier performance
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with only a relatively small portion attributed to propagation effects. In the second case, a

vocalizing whale may make use of the propagation to encode information about its location.

For example, the received call may contain cues as to relative distance between the source

and receiving whales. Through simulation, Mercado et al. [27] show that there is sufficient

information contained in received humpback whale calls to suggest that, “Listening whales

should be able to range singers using distance-dependent changes in frequency content.”

Although two distinct possibilities were initially suggested here, there is a third scenario

that is a combination of these two — since whales have a large repertoire of calls it is

conceivable that they choose calls based on the desired effect. For instance, if they wish

to convey their location to conspecifics they may use a call that will be impacted by

propagation. On the other hand, if they need to communicate some information, they may

employ a call that is minimally impacted by propagation effects. This makes the design of

a PAM scenario somewhat complicated, since one would want to select calls that a whale

produces frequently and is robust to the effects of propagation. Otherwise, the impact of

environment-dependent propagation should be taken into account when considering the

performance of an automated classifier. As a final comment, the methods developed here

for PAM of cetaceans may be even more applicable to anthropogenic signals which were

not optimized for discriminability after distortion by the ocean medium. The methods

employed in this thesis would be equally well-suited to any passive sonar discrimination

task.

Future work should be done on a few topics, including considering other environments in

which propagation effects drive performance; the waveguide invariant parameter [116, 117]

may be implemented in advance of simulations to identify dispersive environments that

would result in appreciable propagation-induced distortion. This thesis mainly considered

the effects of changing the SSP; the impact of other bathymetry profiles, bottom types, and

ambient noise conditions, should also be investigated. Furthermore, the effects of surface

roughness were not fully incorporated in simulations. In future, simulations should include

frequency-spreading resulting from boundary interactions. After incorporating frequency-

spreading, it would be interesting to investigate how propagating signals through an

environment with a high sea state and an upward-refracting SSP impacts the performance

of the aural classifier over long ranges, since one would expect a lot of signal distortion

from this type of environment. Extending the modelling results of Chapter 7 to include
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range-dependent propagation environments (e.g., sloping bottom) would also be useful.

Performing additional experiments with high source levels (to allow for longer transmis-

sion ranges) and in an environment with more stable properties than observed during the

Gulf of Mexico sea trial would be beneficial. As one cannot count on stable ocean proper-

ties, future experiments would benefit from more extensive environment measurements;

for example, employing both environmental moorings and ship-based measurements to

disentangle spatial and temporal information. Conducting a sensitivity analysis in advance

of future experiments would be useful to determine which environment properties are

critical to sample, and with what required resolution. Such a simulation prior to future

experiments or PAM surveys is highly recommended, as the results could also be used to

determine the extent to which SNR would be likely to affect the performance of automatic

recognition systems. This would help decide if the added cost of a multi-element array is

necessary, and at what depth in the water column the recorder should be placed to obtain

the best SNR for received vocalizations.

Future work could also be done to investigate the impact of environment-dependent

propagation on other cetacean species; for example, humpback and North Atlantic right

whales. The time-frequency characteristics of these species’ vocalizations are similar,

which would provide a challenging test case. Applying the methods employed in this

thesis to other species, and different locations, would be useful to assess how well the

results presented in this thesis generalize to other typical PAM scenarios.

Finally, it would be interesting to determine how environment-dependent propagation

impacts the individual perceptual features employed by the aural classifier. Statistical

measures could be used to analyze if individual features are significantly changed, so

that general comments and recommendations could be made reflecting the robustness of

both the individual perceptual features and the aural classification process as a PAM tool.

If it is found that propagation does significantly impact the features, then the next step

would be to rank the features in order of their sensitivity to propagation-related effects. A

recommendation could be made to remove those features which are especially sensitive

to the acoustic environment. Alternatively, it may be found that many of the perceptual

features are environment-sensitive and therefore it is unreasonable to exclude all of these

features. If this is the case, a strategy may instead be developed to generate training sets

for the classifier that take propagation-related signal distortion into account.
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APPENDIX A

MOORING DIAGRAMS

Figures A.1 through A.4 show diagrams of the moorings deployed during the Q350 sea

trial in the Gulf of Mexico during the spring of 2013. Each mooring was bottom-mounted,

with hydrophones attached to the moorings at different depths within the water column

(refer to Table 4.1 for hydrophone depths). An acoustic release was used to allow the

moorings to be easily recovered after experiments were completed. The Vibration Isolation

Modules (VIMs) were used to reduce strumming sounds in the recordings associated with

vibrations along the moorings.

Due to recording errors, no acoustic measurements were made with either hydrophone

on Mooring 1 (Figure A.1) and data from only a single Reson hydrophone on Mooring

3 (Figure A.3) was recorded. Appendix B discusses which hydrophone’s data may have

been recorded by the SHARP recording unit and asesses the importance of accurately

determining which hydrophone was recorded.
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Figure A.1: Diagram of the SHARP mooring deployed on 30 April 2013 (Mooring 1). The

acoustic data from both Reson hydrophones (H/P) are digitally recorded on the SHARP

recording unit, on either the left (L) or right (R) channel of an audio track.
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Figure A.2: Diagram of the Whalesong mooring deployed on 30 April 2013 (Mooring 2).
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Figure A.3: Diagram of the SHARP mooring deployed on 1 May 2013 (Mooring 3). The

acoustic data from both Reson hydrophones (H/P) are digitally recorded on the SHARP

recording unit, on either the left (L) or right (R) channel of an audio track.
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Figure A.4: Diagram of the Whalesong mooring deployed on 1 May 2013 (Mooring 4).
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APPENDIX B

DETERMINATION OF HYDROPHONE
DEPTH ON SHARP MOORING

B.1 Background

As first mentioned in Section 4.2, due to electronic problems there were almost no data

recorded to the right channel of the audio files by the SHARP recording unit on 1 May

2013. Four WAVE files, three approximately 2 hours and 15 minutes and the fourth

approximately an hour and 40 minutes long, were created by the SHARP recorder. Of

these four files, only one minute and 42 seconds of data were recorded to the right channel

in the first file. As shown in the mooring diagram depicted in Figure B.1, the hydrophones

were intended to be connected such that the left channel of the audio file would record

acoustic signals from the upper hydrophone, and the right channel should have contained

recordings from the lower hydrophone.

One potential explanation for only a single channel being recorded is that the audio

jack was not correctly connected, such that the left channel on the audio jack aligned

with the right channel of the audio port (refer to Figure B.2 for a representation of an

audio jack and socket). Due to the design of the audio connector, this would result in

the upper hydrophone being recorded on the right channel and the lower hydrophone not

being recorded at all. If the internal Sony recorder handles a single input data channel by

recording it to the left channel, regardless of where it originated then, this would result

in the lower hydrophone appearing to be recorded on the left channel; however, based

on post-trial bench experimentation the more likely explanation is that due to the tight

fit in the pressure case, a force was applied that caused the connector to bend upwards
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Figure B.1: Diagram of the SHARP mooring deployed on 1 May 2013. The VIMs shown

on the diagram are Vibration Isolation Modules. The acoustic data from both Reson

hydrophones (H/P) are digitally recorded on the SHARP recording unit, on either the left

(L) or right (R) channel of an audio track. This figure is a copy of the diagram shown in

Figure A.3.

and disengage the right channel of the audio jack from the port. When this was simulated

during bench tests, a recording was made on the left channel, but not on the right channel.

Given these possibilities, there is some uncertainty about which of the two hydrophones

was actually recorded by the SHARP. In an effort to determine which hydrophone was

recorded, the arrival structures of signals transmitted over the shortest range during the

experiment were examined. As these results were inconclusive the effect of hydrophone

depth on classification performance was examined through simulations to determine if
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Figure B.2: Schematic of an audio jack and cross section of half an audio port.

it was necessary to know the exact depth at which the signals were recorded or if the

hydrophone depth had little impact on the classifier’s performance.

B.2 Determining Hydrophone Depth Via Ray Theory

This section discusses how ray theory was applied in an attempt to determine the depth

of the hydrophone that was recorded by the SHARP recorder. The possible hydrophone

depth was either 28.5 m or 41.5 m, as measured by the pressure loggers attached to the

hydrophones on the SHARP mooring.

B.2.1 Method

This analysis makes use of an LFM transmitted at the beginning of the first signal set that

was broadcast on day 2 of the experiment. This signal was transmitted at approximately

14:20 UTC when the separation between the source and SHARP mooring was 743.6 m, as

determined from the GPS co-ordinates of where the SHARP mooring was deployed and

the location of CFAV QUEST at the time of the transmission. Ray-tracing performed by

Bellhop was used to estimate the times rays associated with the direct path, and surface and

bottom reflections would arrive at the receivers. The centre frequency of the transmission

bandwidth (f = 2500 Hz) was used for ray-tracing. Environmental measurements collected

during the experiments were used as inputs to the Bellhop model. The source depth was

set at 40 m, as measured by a pressure logger on the source, the water depth was set at

75 m. Geoacoustic parameters for sand were selected (c = 1650 m/s, ρ = 1.9 g/cm3, α =

0.8 dB/(m kHz)), and the sound speed profile sampled in situ was used and is shown in

Figure B.3.
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Figure B.3: Sound speed profile measured in situ and used as Bellhop model input to

calculate ray travel times.

There were 501 rays launched from the source location in a fan between 25◦ and −25◦,

measured from the horizontal. Unfortunately, since Bellhop does ray tracing by using a

fan of rays rather than eigenrays (i.e., rays that connect the source and receiver) [90] it is

not possible to specify a range-depth coordinate at which the ray arrival times are required.

Instead one must define a range-depth box and analyze the rays that pass through the box

to estimate the arrival times. This introduces some uncertainty as to the precise timing

of when the rays arrive at the modelled receivers. The boxes used for determining the

arrival times at the hydrophones were defined such that the range was (743 ± 2) m and

the depths were (29 ± 1) m or (42 ± 1) m. After the ray arrival times for the direct arrival,

surface and bottom reflections were determined, the two modelled results for the possible

hydrophone depths were then compared to the signal measured during the experiments.

To determine the timing of the arrivals from the experimental data, the recorded LFM

was matched filtered against a replica LFM. The time difference between the direct arrival

and surface reflection, Δtd,s, and between the direct arrival and bottom reflection, Δtd,b

were then compared against the modelled results to determine the depth at which the
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signals were recorded.

B.2.2 Results and Discussion

The envelope of the matched filtered response for the signal recorded on the SHARP is

shown in Figure B.4. An inset in the figure shows a zoomed in view of the first cluster of

arrivals. This cluster of arrivals contains the direct arrival, surface and bottom reflections.

Through comparison with Bellhop results, the first peak was identified as the direct arrival

with a high level of confidence. The second peak is likely the surface reflection; however,

it becomes difficult to confidently identify which peak is associated with the bottom

reflection. Normally one would model the experimental geometry and use the predicted

arrival times to identify each peak, whereas in this case the goal is to use the arrival

structure to fill in the gap in our knowledge of the geometry. It therefore becomes difficult

to identify the peak associated with the bottom reflection since this is an underdetermined

problem (i.e., fewer pieces of evidence than unknowns).

0 50 100 150
Time(ms)

100

110

120

130

140

150

M
at

ch
ed

 F
ilt

er
 O

ut
pu

t (
dB

)

−5 0 5 10
100

150

Figure B.4: Envelope of matched filter results showing arrival structure of LFM recorded

by the SHARP recording unit. The time scale is defined such that the direct arrival is at

time t = 0 s. The inset figure shows a zoomed in view of the first cluster of arrivals.
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Table B.1: Comparison of the experimental and Bellhop-modelled time differences

between the direct arrival, and the surface and bottom reflections. Three possibilities are

given for the experimental value of Δtd,b since it was unclear from the arrival structure in

Figure B.4 which peak resulted from the bottom-reflected ray.

Experimental Modelled
29 m 42 m

Δtd,s (ms) 1.0 1.1 2.0
1.8

Δtd,b (ms) 2.5 1.4 2.9
3.1

Table B.1 compares the arrival times derived from the recored LFM with the ray-

tracing results. Listed values are time differences between the relevant peak and the direct

arrival. Note that three values are listed for the experimental Δtd,b, this is because it

was unclear which of the peaks in the arrival cluster resulted from the bottom reflection.

Upon comparing the delay times for the experimental arrival structure with the two

modelled hydrophone depth possibilities it was still unclear which hydrophone produced

the recordings. The experimental result for Δtd,s matches the modelled result for the 29 m

hydrophone, although none of the possibilities for the experimental value of Δtd,b match

the modelled result for the 29 m hydrophone but are close to the modelled result for the

42 m hydrophone. Consequently, it is not possible to identify the depth of the hydrophone

recorded by the SHARP using these ray-tracing results.

Unfortunately several sources of error compounded such that ray-tracing was not a

viable option for identifying the hydrophone depth. One source of uncertainty results from

the need to define a range-depth box for the ray-tracing solutions, such that the arrival

times could be off by as much as 2.5 ms (assuming a sound speed of 1525 m/s and using a

ray passing through the box corner, i.e., furthest away from the centre of the box). Such

a large box was nessecary to capture the direct, surface- and bottom-reflected rays; if a

smaller box was used one of these rays was not included. There is also uncertainty in the

environmental parameters which affects the model fidelity. Additionally, the relative scale

of the experimental geometry is such that it is difficult to distinguish arrivals within a few

meters of depth; the range over which the signals were transmitted is much larger than

the ∼10 m depth difference of the hydrophones (i.e., R 
 Δz), so that the path lengths
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for the rays used for the analysis were too similar for the two depths considered. Finally,

the sum of the uncertainties in the exact mooring placement, horizontal location of the

hydrophone due to currents moving the mooring, and the horizontal location of the source

relative to the ship’s GPS produce a range uncertainty on the order of 10 to 15 m, which is

at least as large as the depth difference to be resolved. Ultimately, it was not possible to

use ray-tracing to determine the depth of the hydrophone recorded by the SHARP.

B.3 Determining Importance of Recorder Depth to the
Aural Classifier Performance

Since it proved too difficult to determine which hydrophone was recorded by the SHARP,

the next obvious question was, “Does the hydrophone depth significantly impact classifier

performance?” If the aural classifier performance is not sensitive to the depth of the receiver,

for the given experimental geometry and environment conditions, then determining which

hydrophone was recorded by the SHARP becomes irrelevant. This section describes the

simulation that was conducted to examine the sensitivity of classifier performance to

hydrophone depth.

B.3.1 Method

To determine the impact of the hydrophone depth on the classifier performance the

WATTCH model was used to simulate bowhead and humpback synthetic signals prop-

agated over three of the ranges signals were transmitted during the experiments (R =

0.75, 7 and 11 km). The model was configured such that signals were “received” at both

hydrophone depth possibilities. The aural classifier was then used to discriminate between

the synthetic bowhead and humpback calls for each of the range-depth combinations.

Then the simulated classifier performance results were compared with each other and the

experimental results to determine if classifier performance was significantly impacted by

the hydrophone depth.

The WATTCH model was configured to simulate the environment observed on 1 May

2013. Bathymetry and sound speed profiles measured in situ (refer to Figure B.5) were used

as inputs. A source depth of 40 m and possible receiver depths of 29 and 42 m were used.

As described in Section B.2.1, geoacoustic parameters for a sandy bottom were selected.

After the signals were propagated using the WATTCH model, snippets of experimental

152



0 5 10 15
Range (km)

0

20

40

60

80

100

120

140

D
ep

th
 (

m
)

1520 1530
R = 0 km

1520 1530
R = 6.5 km

1520 1530
R = 10.4 km

Figure B.5: Bathymetry and sound speed profiles used as environmental inputs to the

WATTCH model for simulating the impact of hydrophone depth on the aural classifier

performance. The sound speed profiles are given in units of m/s.

noise were added to each signal in such a way as to match the mean and standard deviation

of the SNR of the signals recorded by the SHARP unit during the experiment. The method

of adding noise to signals propagated through WATTCH is fully described in Section 6.2.1.

This process was designed to replicate the signals transmitted during the sea trial, after

which the the aural classifier was then applied to discriminate between the bowhead and

humpback synthetic signals using 5-fold cross-validation. Performance results in terms

of AUC and classification accuracy were analyzed to determine if there is any significant

impact on classifier performance associated with the hydrophone depth.

B.3.2 Results and Discussion

Aural classifier performance results are presented in Figure B.6. Each data point represents

the average performance and the vertical error bars are one standard deviation, computed

using 5-fold cross-validation. There are three obvious groupings of data points along the

range axis — within each of these groups the signals were propagated over the same range,

the data points are offset along the range axis merely to reduce overlapping data points to

facilitate comparison. It is worth noting that error bars on these plots do not include all
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Figure B.6: Effect of SHARP hydrophone depth on classifier performance. Modelled

results are compared with results obtained from signals recorded by the SHARP recording

unit. Note that groups of data points are slightly offset along the range axis to ease

comparison of data obtained at the same range.

sources of error, rather they only capture the classification error. If all errors (e.g., errors in

the experimental geometry, errors in sound speed measurement, etc.) were included the

errors bars would be larger; therefore, the error bars shown in this plot are an optimistic

view of the true error.

From the plots in Figure B.6 it can be seen that the aural classifier’s performance in

discriminating the simulated signals is statistically similar to its performance in discrimi-

nating between the signals transmitted during the experiment, which provides model-data

validation. Perhaps more importantly, the difference in performance between the two depth

possibilities is minute, and not statistically significant. Thus, it may be concluded that it is

inconsequential which of the two hydrophones was actually recorded when interpreting

the aural classifier performance results for signals recorded by the SHARP unit. This is

an encouraging result, since it was not possible using ray theory (refer to Section B.2) to

determine which hydrophone was recorded by the SHARP unit. It also reaffirms the power

of the aural classification method — even though the signal waveforms received at each

hydrophone depth may look different, the aural characteristics remain the same and so the
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aural classifier is not sensitive to relatively small changes in experimental geometry.

It is is important, nonetheless, to realize that the conclusion that hydrophone depth does

not impact classifier performance is not a general conclusion, but rather is specific to the

experimental geometry and ocean environment simulated. There may in fact be cases

in which the hydrophone depth would impact classifier performance; for example, one

can imagine a scenario in which both a hydrophone and source are in a surface duct and

another hydrophone is below the surface duct. In this scenario the signals recorded on

the hydrophone would have much different received levels at the same range from the

source, which would be reflected in a difference in classifier performance since it was

demonstrated in Chapter 6 that SNR influences the aural classifier performance.

B.4 Summary Remarks

Unfortunately, it was not possible to determine the depth of the hydrophone recorded

to the left channel of the SHARP recorder using ray theory due to the relatively large

uncertainties in transmission range compared to the relative depths of the hydrophones.

Ultimately, this did not matter as it was shown through the use of simulations that classifier

performance was not significantly influenced by either hydrophone depth possibility for

the acoustic environment encountered in the experiment. With this in mind, and given the

results of the post-trial bench tests, it was decided to assume that the left channel recorded

signals from the upper hydrophone, as intended.
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APPENDIX C

TEMPERATURE-SALINITY DIAGRAMS

Temperature-salinity (T-S) diagrams [71] are provided in Figure C.1 — these were gener-

ated during analysis of the anomalous sound speed profiles (SSPs) discussed in Section

4.3.4. The data associated with the anomalous SSPs are represented here by the red triangle

data series in Figure C.1a and the black circle data series in Figure C.1b. Three regions

have been labelled on each diagram, as ‘A’, ‘B’, and ‘C’ — these regions are each asso-

ciated with a parent water type. The majority of the profiles show mixing lines between

‘A’/‘B’ and ‘B’/‘C’; however, the anomalous SSPs do not follow this trend. Instead, the

profile measured at 19:10 on day 1 is predominantly of the ‘B’ water type with some

mixing with water mass ‘C,’ but not with the lower salinity water mass ‘A.’ The profile

taken at 14:45 on day 2 is even more distinct from the other profiles when viewed on the

T-S diagram. Represented in this way, it is clear that the difference in this profile is a result

of the ‘B’ type water not being included — instead the water sampled at this point in space

and time only includes the ‘A’ and ‘C’ water masses with a mixing line connecting those

two water types directly. No explanation is offered here for the cause of this. For further

comments on the hydrography of the Northern Gulf of Mexico region and the impact of

the anomalous SSPs on this research, refer to Section 4.3.4.

156



23.6

24.2

24.9

25.5

26.1

A

B

C

34 35 36 37
Salinity (psu)

19

20

21

22

23

T
em

pe
ra

tu
re

 (
°C

)

15:40 UTC
17:10 UTC
19:10 UTC
21:10 UTC

(a)

23.6

24.2

24.9

25.5

26.1

A

B

C

34 35 36 37
Salinity (psu)

19

20

21

22

23

T
em

pe
ra

tu
re

 (
°C

)

14:45 UTC
16:20 UTC
17:25 UTC
19:20 UTC
21:10 UTC

(b)

Figure C.1: Temperature-salinity diagrams from (a) day 1 and (b) day 2 of the Gulf of

Mexico experiment.
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APPENDIX D

ARRIVAL STRUCTURE

While calculating the source levels of signals transmitted during the experiment the

matched-filter responses of LFMs were generated to determine the range between the

source and receiver, refer to Section 4.4 for full details. A plot showing an example

envelope of the matched-filter output was first presented in Figure 4.6 and is reproduced in

Figure D.1 for the reader’s convenience. The reader should recall that this matched-filter

response was the result of matched filtering the signal recorded by the monitor hydrophone

with an LFM kernel. When first examining this then, one might assume that the first peak

(located at t = 0 s) corresponds to the direct arrival. Upon closer inspection, the lower

level of the first peak compared with the later arrivals calls this conclusion into question,

since for short range propagation one would typically expect the direct arrival to have the

strongest response in the matched-filter output.

An alternate hypothesis is that the peak at t = 0 s is actually a recording of the transducer

drive voltage, as a result of cross-talk between channels of the recording system. To confirm

this, the delay times predicted by ray theory for the direct arrival, and surface and bottom

reflections were compared with the delay times determined from the experimental data.

The method for accomplishing this is laid out in the following section. This exercise also

has the added benefit that the enveloped matched-filter output provides the opportunity to

verify the experimental geometry.

D.1 Method

The experimental geometry used to calculate the path lengths for the direct arrival, and

bottom and surface reflections is defined in Figure D.2. The direct arrival travels along the
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Figure D.1: Envelope of matched-filter results showing arrival structure of an example

LFM recorded on Reson monitor hydrophone. The time scale is defined such that the

signal transmission is at time t = 0 s. This is a reproduction of the Figure 4.6.

path r1. This path length was determined from the time of flight where,

r1 = cΔtdirect , (D.1)

Δtdirect is the time delay between the signal transmission and when the direct arrival was

received, and c is the sound speed in water assuming an isospeed profile. It is expected

that r1 should be approximately 65 to 70 m, since CFAV QUEST’s length is 76 m [118].

Let Rsb be the path length of the ray representing the surface reflection defined by,

Rsb = r2 + r3 , (D.2)

where r2 and r3 are defined in Figure D.2. From the Pythagorean Theorem,

Rsb =
√

r2sb + z2s +

√
(Δr − rsb)

2 + z2r . (D.3)

Since the angle of incidence at the surface boundary is equal to the angle of reflection, the
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Figure D.2: Experimental geometry used to predict the arrival times of the direct arrival,

surface reflection, and bottom reflection. Since an isospeed profile was assumed the rays

can be approximated as straight lines.

following relationship is true,

tan θ1 =
zs
rsb

=
zr

Δr − rsb
, (D.4)

where rsb is the horizontal range between the source and where the ray reflects from the

surface, Δr is the horizontal source-receiver separation, and zs and zr are the depths of the

source and receiver, respectively. After rearranging,

rsb =
zs +Δr

zr + zs
, (D.5)

and noting that

Δr =
√
r21 −Δz2 , (D.6)

where Δz is the vertical source-receiver separation. Finally, the time delay between the
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signal transmission and reception of the surface reflection is,

Δtsb =
Rsb

c
. (D.7)

Following a similar method as laid out for the surface reflection, the path length travelled

by the ray which reflects off the bottom is,

Rbb = r4 + r5

=

√
r2bb + (h− zs)

2 +

√
(Δr − rbb)

2 + (h− zr)
2

, (D.8)

where h is the water depth and the horizontal range between the source and the location

where the bottom reflection occurs is,

rbb =
h− zs

2h− zr − zs
Δr . (D.9)

The time delay between signal transmission and the bottom reflection arrival is,

Δtbb =
Rbb

c
. (D.10)

The analysis of the arrival structure described above requires input values for the

experimental geometry to set up these calculations. Values for the source depths of

zs =20 m and zs = 40 m were used on 30 April and 1 May, respectively. Likewise, the

receiver depths were set at zr =30 m for 30 April and zr = 22 m for 1 May. These depth

values were obtained from pressure loggers located on the source and the Reson monitor

hydrophone. Values for water depth, h, changed throughout the course of the experiment.

It was found that the ray calculations were not sensitive to changes of a few meters in h,

so the following values were used for modelling transmission loss: h = 75 m on 30 April,

and h = 110 m for signals transmitted at 17:00 and h = 160 m at 19:00 on 1 May.

The time delays predicted by Equations D.7 and D.10 are then easily compared with

the time delays determined from the time difference between the peak associated with the

transmission, and those with the surface and bottom reflections.
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Table D.1: Comparison of the predicted and experimental delay times for the surface and

bottom reflections. Source-receiver separation, r1, was determined from Equation 4.7, and

Equations D.7 and D.10 were used to predict the time delays of the surface and bottom

reflections, respectively.

Δtsb (ms) Δtbb (ms)
Date Time r1 (m) Predicted Experimental Predicted Experimental

16:00 67.2 5.86 5.40 7.86 7.69

16:14 67.4 5.87 5.36 7.87 7.60

16:28 68.9 5.94 5.42 7.96 7.96

16:40 67.5 5.87 5.37 7.88 7.9730 April 2013
17:00 68.4 5.92 5.39 8.11 8.08

17:14 70.1 6.00 5.49 8.21 8.15

17:28 69.1 5.95 5.40 8.15 8.21

17:40 68.5 5.92 5.45 8.12 8.22

Daily Average – 68.4 5.92 5.41 8.02 7.99
17:29 70.9 6.04 5.95 11.68 11.96

17:42 66.5 5.83 5.93 11.52 11.43

17:53 65.6 5.78 5.72 11.49 11.69

1 May 2013 18:04 66.3 5.82 5.78 11.51 11.98

19:23 65.5 5.78 5.94 17.57 17.45

19:33 66.1 5.81 5.88 17.58 17.51

19:44 69.9 5.99 5.78 17.67 17.95

Daily Average – 67.3 5.86 5.85 14.15 14.28

D.2 Results and Discussion

Table D.1 compares the results of the predicted and experimental time delays for the

surface and bottom reflections determined from matched filtering the LFMs recorded on

the monitor hydrophone, assuming that the peak at t = 0 s corresponds to the transmission.

The difference between predicted and experimental values for Δtsb are larger on the

first day of the experiment than on the second day. This may be because the isospeed

assumption is more applicable on 1 May since the measured sound speed profiles were less

complex and had weaker gradients than those measured on 30 April. Additional sources of

error include: variability in depth of the source and monitor hydrophone (zs and zr), and

variability in water depth (h). Nevertheless, the predicted and experimental time delays

are sufficiently within agreement, that the peaks in the matched-filter results (e.g., Figure

4.6) were confidently identified as rays associated with the surface and bottom reflections.
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Additionally, the values of r1 determined from the time-of-flight calculations for the first

and largest peak in the matched-filter response were within the range expected for the

source-receiver separation, so that this peak was positively identified as the direct arrival,

and can be used for source level estimates.
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APPENDIX E

SELECTION OF SEDIMENT
PARAMETERS

The latter chapters of this thesis employed pulse propagation models to study the impacts

of signal attenuation and distortion on classifier performance. In general, environmental

models are used to define the volumetric properties of the ocean and quantify the boundary

conditions at the sea surface and sea floor — in this way the behaviour of the ocean as an

acoustic medium is characterized [84]. The environmental models employed in Chapters 5

and 6 were based on measurements collected during the Gulf of Mexico sea trial. This

Appendix considers in detail how the geoacoustic parameters used in the environmental

models were determined.

Recall from Section 4.3, Ocean Environment Measurements, that in situ sediment prop-

erties were measured during the the Gulf of Mexico experiment using a FFCPT. Following

the method outlined in Pecknold and Osler [103], the Robertson zone sediment types were

translated into grain size, from which the geoacoustic parameters were calculated using

formulae contained in the APL-UW Environmental Modelling Handbook [67]. For the

Gulf of Mexico region, the FFCPT drops indicated a surficial sediment type consistent

with “sand mixtures” and “sand,” resulting in a mean grain size of 3.24φ (or 0.106 mm).

Using this mean grain size, the APL-UW formulae produced the geoacoustic parameters

listed in the first row of Table E.1. Following the procedure in the APL-UW handbook,

the sediments were modelled as a semi-infinite fluid bottom, that was assumed to be

statistically homogenous in all directions.

The sound speed and density values obtained using this approach are lower than those

typically associated with sand and sand mixtures [16, 78]. For comparison, the canonical
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Table E.1: Sediment parameters for geoacoustic modelling.

Bottom Type Method c (m/s) ρ (g/cm3) α (dB/λp)
APL-UW 1630 1.3 0.60

Hamilton — silty-sand 1630 1.8 0.60

Hamilton paper gives values for fine-grained sand of c = 1749 m/s and ρ = 1.9 g/cm3,

and for silty-sand of c = 1646 m/s and ρ = 1.8 g/cm3. The sound speed values from the

APL-UW method are comparable with Hamilton’s values for silty-sand; however, the

density value is considerably lower than that reported by Hamilton. In fact, the author

of the APL-UW handbook acknowledges that, for intermediate values of the grain size

(between 1φ and 9φ), the sound speed and density values obtained using the formulae

contained in the handbook, are known to be lower than those reported by Hamilton.

While it is recognized that the sediment density used in the environment models in

Chapters 5 and 6 is lower than typically reported, it is believed that the use of the method

to convert the FFCPT data to geoacoustic parameters is justified. The FFCPT is a robust

tool that facilitates collection of in situ sediment properties; however, the nature of the

FFCPT sampling method only characterizes the surficial sediment. To correspond with

this sampling method, the geoacoustical parameterization in the APL-UW handbook was

employed, due to its emphasis on the surficial sediment layer.

A key difference between the APL-UW handbook’s and Hamilton’s sediment parameters

is the method in which they were measured. Hamilton reports values of c and ρ measured

from sediment cores [78], whereas the APL-UW formulae are empirical relationships

derived from reflection loss and backscatter data. The physics of the method used by

the APL-UW handbook to obtain the geoacoustic parameters is consistent with how the

Bellhop propagation model represents bottom interactions. That is, the Bellhop model

determines a Rayleigh plane wave reflection coefficient at the water-sediment interface,

and does not allow sound to propagate through the sediment. Although the resulting

value of density is different from literature reports of the geoacoustic parameters of

sand/sand mixtures, employing this combination of geoacoustic parameters should still

produce an appropriate reflection coefficient at the bottom boundary. It is the reflection

coefficient which is critical for modelling the acoustic field in the ocean medium. Therefore,
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employing the smaller surficial sediment geoacoustic parameters, rather than the bulk

values reported in other literature, is believed to be an acceptable approach.

E.1 Impact of Sediment Density on Propagation Effects
and Classifier Performance

Since there may be some uncertainty about the best choice of sediment density for prop-

agation modelling, it is germane to examine the impact of the two extremes of possible

ρ. The two extremes are defined as the value obtained using the APL-UW handbook and

a typical value reported in the literature for the sand/sand mixtures bottom type. Recall

the sensitivity analysis conducted in Section 5.3, which considered the impact of SSP on

the aural classifier performance by using an environmental model inspired by the Gulf of

Mexico experiment. Here, one of the same environment models is used to determine if

choosing a higher sediment density would impact the propagation or classifier performance

results. The water column properties were characterized by the downward refracting SSP

measured at R = 0 km, and range-dependent water depth measured during the experiment

(refer to Figure 5.4). The downward refracting SSP was selected since it ensured the

most bottom interaction. A source and receiver were placed at zs = 40 m and zr = 29 m,

respectively. The geoacoustic parameters used throughout this thesis were compared with

parameters consistent with those reported in Hamilton [78] — these are summarized in

Table E.1.

The TL curves obtained using these two bottom parameterizations are shown in Figure

E.1. There was little difference in TL over much of the range, indicating that the bottom

density value had little effect on signal attenuation for ranges less than about R = 8 km.

Next, the impact on the aural classifier performance was examined by comparing perfor-

mance results as a function of range for these two environments (distinguished only be a

difference in density). Following the steps outlined in Section 5.2, signals were propagated

through the WATTCH model and snippets of experimental noise were added to achieve

the estimated SNR, consistent with each environment. Results of training the classifier on

signals propagated over a 70 m range and validating on signals propagated over 1, 6.5 and

10 km are shown in Figure E.2. Note that the results for ρ = 1.3 g/cm3 (blue squares) are

the same as the results for the downward refracting environment in Figure 5.10. Comparing

166



0 2 4 6 8 10
Range (km)

40

50

60

70

80

T
L

 (
dB

)

ρ=1.3g⁄cm
3

ρ=1.8g⁄cm
3

Figure E.1: Incoherent transmission loss modelled at f =2 kHz using Bellhop for sediment

densities used for modelling throughout the thesis (ρ = 1.3 g/cm3) and a typical value for

silty-sand (ρ = 1.8 g/cm3).

the performance results for each range, between the two sediment densities, shows that

there was no significant difference in performance. Therefore, using a lower sediment

density than the typical bulk densities for sand reported in the literature did not have a

significant impact on the results presented throughout this thesis.

E.2 Summary Remarks

In summary, the geoacoustic model used in Chapters 5 and 6 was based on sediment

characteristics measured in situ by FFCPT casts taken during the Gulf of Mexico experi-

ment. With the mean grain size obtained from the FFCPT data, formulae in the APL-UW

Environmental Modelling Handbook were used to determine the geoacoustic parameters to

model the ocean bottom as a fluid half-space. It was noted that, in particular, the sediment

density obtained using this process was lower than other literature reports. Use of this lower

value was justified by the fact that the FFCPT only samples the surficial sediments, the

correspondence between the experimental methods used to obtain the APL-UW formulae

and the representation of the ocean bottom in Bellhop, and that parameters calculated from

APL-UW’s empirical formulae are likely to produce the correct reflection coefficient at

the water-sediment interface. Furthermore, there was little difference between the two

TL curves for bottoms with densities corresponding to either the APL-UW handbook’s

167



0 1 2 3 4 5 6 7 8 9 10 11
50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

0 1 2 3 4 5 6 7 8 9 10 11
Transmission Range (km)

0.5

0.6

0.7

0.8

0.9

1

A
U

C

 = 1.3 g/cm3

 = 1.8 g/cm3

Figure E.2: Comparison of classifier performance as a function of range for sediment

densities used for modelling throughout the thesis (ρ = 1.3 g/cm3) and a typical value for

silty-sand (ρ = 1.8 g/cm3). The vertical errors bars show ±σaccuracy and ±σAUC based on

5-fold cross-validation.

formula or the silty-sand density reported by Hamilton. A key finding of this Appendix

was that no significant difference in the aural classifier performance results was attributed

to a difference in sediment density.
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