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ABSTRACT 
 
 
In this thesis, we analyse competing risks data using the two-parameter bathtub (TPBT) distribution. The 

hazard rate of the TPBT distribution can be either increasing or a bathtub-shaped, which allows it to be a 

good fit for several data sets. In competing risks data, it is assumed that the object (system) is under attack 

of many risks (causes of failure) that compete to destroy it. In this study, we assume that the system will be 

destroyed by only one cause and all risks are independent. We discuss two models. The first does not allow 

covariates while the second does. We used the maximum likelihood and Bayes methods to estimate the 

model parameters, the relative risks and some of the reliability measures of the system. The likelihood 

equations of the unknown parameters have no analytic solution and numerical methods will be used to get 

the maximum likelihood estimations. Also, the posterior distribution of the parameters is not in a 

convenient form, therefore we used Markov Chain Monte Carlo (MCMC) method to simulate random 

draws from the posterior distribution and then use it to obtain the Bayes estimates of the parameters, the 

relative risks and the system’s reliability measures. Furthermore, to study the performance of the two 

estimation techniques used, we provided a simulation study. This paper is illustrated on two real datasets. 
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Chapter 1: Introduction 
 
 
 
The statistical analysis of lifetime data, which has been referred to as survival time or failure time, is 

essential in many fields, including the biomedical, engineering, and social sciences (Lawless, 2011). 

The most common applications of lifetime distribution are to study humans' diseases, treatment, and 

components (Lawless, 2011). As an example of disease, human immunodeficiency virus (HIV) is a 

blood-borne pathogen transmitted primarily through unprotected sexual intercourse (Bertozzi et al., 

2006). It has been found that there is a much higher risk of HIV infection in men who have sex with men 

(MSM) than in heterosexual couples possibly due to the increased prevalence of anal intercourse (Mayer 

et al., 2013). The mucosal tissue in the rectum is thinner than the vaginal mucosa and susceptible to 

micro-tears due to friction during intercourse, which elevates the risk of HIV viral infection (Zhou et al., 

2013). Moreover, the rates of unprotected intercourse and having multiple sexual partners appear to be 

higher in the MSM population, serving as additional risk factors for HIV transmission (Newcomb et al., 

2014). Since 1970, the statistical analysis of lifetime data has been developed, including the 

methodology, theory, and fields of application (Lawless, 2011).  

 

In the competing risks model, it is assumed that the data contain the time-to-event and an indicator 

presents the type of event, which can be either the cause of failure or censored. There are two types of 

the life data including the complete data and censored data. The complete data consider all the 

information about time-to-failure for each subject in the lifetime test. In the case of censored data, there 

are different types of censoring scheme, such as right-censoring, left-censoring, and interval-censoring; 

however, Type-I and Type-II censoring schemes are the most commonly used in practice. On the one 

hand, the Type-I censoring schemes can describe the situation when the experiment continues up to a 
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pre-specified time. On the other hand, the type-II censoring schemes can describe the situation when the 

experiment continues until a pre-specified number of failures occur. 

 

For statistical inferences, many methods can be used to analyze lifetime data for interpreting research 

accurately and drawing appropriate conclusions based on the competing risks model assumptions, by 

using both parametric and non-parametric setups. To apply the parametric setups, suppose each (survival 

time or failure time) follows a specific parametric lifetime distribution. Statistical inference uses 

different competing risks models to determine how each subject is at the risk of failure due to different 

possible causes (Laake & Fagerland, 2015) when the occurrence of one cause of failure precludes all 

other causes of failure from occurring. The competing risk system can represent risk factors such as 

death, disease, treatment, etc.  

 

1.1 Statement of the problem  

 

The hazard rate function plays an important role in analysing the lifetime data because it can be either 

increasing-shaped or bathtub-shaped, which allows it to be a good fit for several data sets. Distribution 

with bathtub-shaped hazard function is common when following an individual life from actual birth to 

death. In competing risks data, it is assumed that the subject (system) is under attack by many risks 

(causes of failure) that compete to destroy it. In this study, we assume that only one cause can destroy 

the object and all risks are independent, but when the object has not received any attack during the study 

period, it will be considered as a censored observation. The maximum likelihood and Markov Chain 

Monte Carlo (MCMC) methods will be used to estimate the unknown parameters included in competing 

risks models without and with covariates when the risks follow TPBT distribution with different 

parameters and the relative risk rates of each cause of failure in the presence of all other causes. Also, 
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some of the reliability measures of the system can be used to analyze the lifetime data such as 

cumulative distribution function (CDF) and probability density function (PDF), which can be defined as, 

 

𝐹𝐹(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡) = � 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑡𝑡

0
   

 

𝑓𝑓(𝑡𝑡) = lim
∆𝑡𝑡→0

𝑃𝑃(𝑡𝑡 < 𝑇𝑇 ≤ 𝑡𝑡 + ∆𝑡𝑡)
∆𝑡𝑡

 

 

The survival and hazard functions can be defined as, 

 

𝑆𝑆(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡) = � 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑
∞

𝑡𝑡
= 1 − 𝐹𝐹(𝑡𝑡) 

 

ℎ(𝑡𝑡) = lim
Δt→0

�
P(t ≤ T < t + Δt|T ≥ t)

Δt
� 

 

The relationships between the reliability measures of the system, which are common in practical 

situations, can be written as following: 

 

The relationship between the hazard function and survival function can be obtained as  

ℎ(𝑡𝑡) =
𝑓𝑓(𝑡𝑡)
𝑆𝑆(𝑡𝑡)

 

                 =
𝑓𝑓(𝑡𝑡)

1 − 𝐹𝐹(𝑡𝑡)
 

                                 = − 𝑑𝑑
𝑑𝑑𝑑𝑑

ln(1 − 𝐹𝐹(𝑡𝑡)) 

                         = −
𝑑𝑑
𝑑𝑑𝑑𝑑

ln(𝑆𝑆(𝑡𝑡)) 
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The cumulative hazard function 
 

H(t) = � h(u)du
t

0
 

= − ln�1 = 𝐹𝐹(𝑡𝑡)� =  − ln 𝑆𝑆(𝑡𝑡) 

So, 

𝑆𝑆(𝑡𝑡) = 𝑒𝑒−𝐻𝐻(𝑡𝑡) 

The probability density function (PDF) can be obtain by using the following formula 

𝑓𝑓(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

   =  −  𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

  

𝑓𝑓(𝑡𝑡) = ℎ(𝑡𝑡)𝑒𝑒−𝐻𝐻(𝑡𝑡) 

 

So, in order to be able to evaluate and compare the results from MCMC and the maximum likelihood 

methods, a simulation study will be used. Additionally, this paper will include two real-life data sets. 

The first data set is from the Amsterdam Cohort Studies on HIV infection and AIDS. The second data 

set is the survival time of electrical appliances. All analyses and the simulation study are performed 

using the statistical software R. Under specific assumptions, the competing risks models without and 

with covariates will be explained to analyse competing risks data using the cause-specific hazard 

function. 

 

1.1.1 Competing risks without covariates 

 

The cause-specific hazards function is an essential measure in competing risks setting. The hazard 

function of the TPBT distribution will be used because it can be either increasing when the shape of λ ≥1 

or  bathtub-shaped when the shape of λ<1, to analyze competing risks data. In these cases, the data 
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consider only the time to event and the status. As an example, the data from the Amsterdam Cohort 

Studies on HIV infection and AIDS will be analyzed. In the case of this study, it will be assumed that in 

competing risks system there are only two causes of failure, and these causes of failure are assumed to 

be independent. As an example, the high risk of human immunodeficiency virus (HIV) infection for men 

who have sex with men (MSM) leads to physical health problems such as Acquired Immunodeficiency 

Syndrome (AIDS) and Syncytium Inducing (SI) HIV phenotype which are considered as causes of 

failure. 

 

1.1.2 Competing risks with covariates 

 

Under the competing risks setting, Cox regression model will be used to estimate the effect of covariates 

on the cause-specific hazard function. For example, the data from the Amsterdam Cohort Studies on 

HIV infection and AIDS will be analysed. In this case, we have only two causes of failure, which are 

assumed to be independent and known as Acquired Immunodeficiency Syndrome (AIDS) and 

Syncytium-Inducing (SI) HIV phenotype each with coefficients of the CCR5 genotype on HIV infection 

and age at HIV infection. 

 

1.2 Literature Review 

 

Fundamentally, the competing risks problem has been discussed in a lot of statistical literature. The 

competing risks problem from different angles has been discussed in various (see, e.g. Crowder, 2001; 

Pintilie, 2006; Beyersmann et al., 2012; Marubini & Valsecchi, 1995; Kalbfleisch & Prentice, 2002; 

Klein & Moeschberger, 2003). Pintilie (2011) states that since the 18th century, competing risks 

problem has been part of survival analysis that is used to analyze an event. Hence, Daniel Bernoulli 
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(1760) was the first one who used the competing risks model to estimate the mortality rate when 

smallpox appeared as the cause of death (Chiang, 1991). 

 

Competing risks problem arises in different fields such as medical and engineering that have been 

discussed by many authors (Haller, Schmidt & Ulm, 2013).  For example, according to Pepe & Mori 

(1993), competing risks is widely used in medical research particularly in studying cancer. The event of 

interest is the time from treatment initiation to tumor-related death, but if death occurs from other causes 

such as cardiovascular disease, it is considered as a competing event. Another example can be seen in 

engineering studies, where the analysis of a series of systems shows if one component in the system 

fails, it leads to the failure of all systems.  

 

According to Pintilie (2006) and Beyersmann et al (2012), in statistical literature, there are two 

approaches that can be used to present competing risks data such as the latent failure times approach and 

bivariate variables approach. To apply the latent failure times approach to present competing risks 

problem, their random variables 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝐾𝐾 are assumed for the time to different risks that lead to 

failure. This approach considers minimum time to failure, 𝑇𝑇 = min {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝐾𝐾 } , which means only 

the observed time to the first cause of failure. Consequently, as Gichangi & Vach (2005) put it, it is an 

indicator of variable to present the type of the observed event.  

 

Another approach that can be used to represent competing risks data is a bivariate random variable for 

each individual subject on life test, which includes two random variables (T, C) T is represent the 

lifetime of subject and C is an indicator for the types of case of failure, C∈{1,2, … ,𝐾𝐾}  or if subject 

does not fail by these risks and will have censored, then 𝛿𝛿 is an indicator represents the event type  

 

 𝛿𝛿 = �1,  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
0, censored 
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In fact, there are different reasons that can be explained why censored time event occurs. For example, 

as Noordzij & Leffondré et al. (2013) explained occasionally during the study, a patient, might lost to 

follow-up before the end of the study period, for any plausible reason such as migration. Additionally, 

the experiment period may end before each individual subject has experienced the event of interest or 

may have experienced a different type of event that is not being considered in the study, which makes 

the follow-up difficult (Noordzij et al., 2013).  

 

Noordzij et al. (2013) further explain that researchers have used competing risks analysis in different 

studies to give more information about causes of failure that can occur. These can help them to make a 

design to face any problem, especially in medical studies. The important quantities in competing risks 

problem are the cause-specific hazard (CSH) and the cumulative incidence function (CIF). Additionally, 

according to Gray (1988) and Pepe (1991), various authors mention differences between the effects of 

covariates on the CIF and CSH functions when focusing on a specific risk.  

 

In this study, we will consider only two cases of the cause-specific hazard function to present competing 

risks data. In practical medical applications, for the analysis of competing risks data, typically, the 

cause-specific hazard function is used to estimate each risk. Similarly, in the case of studying regression 

model, the covariates are dependent on the cause-specific hazard function that is used to present the 

competing risks data.  Recently, various medical researchers applied the CSH function with the 

independent assumption to analyse competing risks data, in case, the CSH function is based on 

regression that is used to study the association between covariates. For example, according to the World 

Health Organization (WHO), many people who have obesity will have increased risks of other diseases 

which negatively affect their health. According to Berrington de Gonzalez et al. (2010), Flegal et al. 

(2013), Gupta et al. (2014), Haque et al. (2014), and Wu et al. (2014), the relationships between obesity 
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and other diseases such as breast cancer, cardiovascular disease, diabetes and muscular disorders are 

significant. As another example, Putter et al. (2007) analyzed the data from the Amsterdam Cohort 

Studies on HIV infection and AIDS, and the total participants in this study are 329 men who have sex 

with men by using non-parametric setups. These data can be considered as competing risks data with 

two risks as AIDS and syncytium-inducing (SI) HIV phenotype. There are some individuals in the study 

left with no infection switch or death. Those are considered as censored observations. It estimated the 

relative risk rates of each cause of failure in the presence of all other by using the Kaplan–Meier 

estimate. Additionally, the regression approaches was used to estimate the effect of covariates on the 

cause-specific hazard function and the cumulative incidence function. 

 

For statistical inferences, many authors have applied the maximum likelihood method to estimate 

unknown parameters of the competing risks model such as Chen (2000) and Sarhan et al. (2010). 

Another approach in statistical literature is Bayesian analysis, the ideas of which date back to Thomas 

Bayes in the 18th-century, which are known as "Bayes' theorem" for deriving the posterior distribution. 

Bayesian methods started in 1990, and with time developed to the point that they have many more 

applications in the leading-edge research.  

 

According to Ashby & Smith (2000), generally, the goal of using Bayesian inference is to obtain the 

posterior distribution to do all analyses on the unknown parameters of interest. In Bayesian 

epidemiology, many applications cover the cancer disease, routine data, case-control and cohort studies. 

Breslow (1990) and Ashby & Hutton (1996) further elaborate on this method. According to them, in 

Bayesian applications of epidemiology, all the analysis focuses on the description of the design study 

and explain the relationship between the variables, which can help in understanding the problem 

especially when the number of covariates is large as Ashby & Smith (2000) state.   
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1.3 Outline of Dissertation 

 

In chapter 2, the competing risks problem will be explored with reference to two cases. In the first case, 

the competing risks model, which is dependent on the cause-specific hazard function, will be considered. 

In the second case, the regression model will be used to present competing risks data when the cause-

specific hazard function is based on covariates. Furthermore, the important factors in competing risks 

analysis will be considered. Some parametric distributions will also be discussed and the approximate 

estimate for each case to present competing risks data will be included. In chapter 3, the concepts of 

Bayesian inference will be described. In section 3.2, the prior distributions for each unknown parameters 

in the competing risks model are assumed and the posterior distribution is obtained. In section 3.3, the 

prior distributions for each unknown parameters in the competing risks regression model are assumed, 

and the posterior distribution was assumed. Similarly, Normal approximation and MCMC methods are 

explained in section 3.4 and 3.5. The simulation study will be applied using the MCMC and the 

maximum likelihood methods in section 3.6. In chapter 4, a particular problem of HIV infection in the 

Amsterdam Cohort Studies, about men who have sex with men (MSM), will be explained.  The 

competing risks models without and with covariates, which will be discussed in chapter 2, will be used 

to analyse the AIDSSI dataset. Additionally, setting up a Bayesian problem in R for both competing 

risks and regression models to present competing risks data will be described. In section 4.2, we will 

describe the AIDSSI dataset for both cases of this study. The normal approximation and MCMC 

methods will be applied for both cases. In section 4.3, the data set “survival time of electrical 

appliances” will be analysed under the cause specific hazard function. All results of both data sets will 

be discussed in section 4.4. In chapter 5, the main ideas for competing risks problem on both cases will 

be summarized and some future work on competing risks problem will be proposed with reference to 

bladder cancer studies. 
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Chapter 2: Competing risks problem 
 

2.1 Introduction 

Competing risks problem arise when a subject is under risk of K different types of cause of failure. The 

risk of K different types of cause of failure compete to attack or kill the subject, but the subject in life 

test experiment can fail only once by one of any risks. The causes of failure can be independent or 

dependent based on the assumptions of the study. Figure 2.1 shows the general competing risks system 

of one subject under multiple risks. We will explore the competing risks problem under two cases. In the 

first case, we consider the competing risks model, when dependent only on the cause-specific hazard 

function. In the second case, we consider regression model, where two different approaches can be used 

to present the competing risks data, such as the cause-specific hazard function (CSHF) and the 

cumulative incidence function (CIF), where both approaches depend on covariates (Dignam et al., 

2012). Regression approaches are used to analyse competing risks data in epidemiologic research, (Lau, 

Cole & Gange, 2009). Additionally, competing risks regression models are used in clinical cancer 

research (e.g. Dignam, Zhang & Kocherginsky; Chappell, 2012). 

 

In the competing risks model, it is assumed that the data contain the time-to-event and an indicator 

presents the type of event, which can be either the cause of failure or censored. In the case of censored 

data, there are different types of censoring, such as right-censored, left-censored, and interval-censored, 

however Type-I and Type-II censoring schemes are the most commonly used in practice.On one hand, 

the Type-I censoring schemes can describe the situation when the experiment continues up to a pre-

specified time. While the type-II censoring schemes can describe the situation when the experiment 

continues until a pre-specified number of failures occur. 
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So, in the case of regression model, the data have similar assumptions as in competing risks model but 

with covariates to exploit the effect on the lifetime. Several authors have studied competing risks model 

by using both parametric, and non-parametric setups. To apply parametric setups, suppose each (survival 

time or failure time) follows a specific parametric lifetime distribution, such as the exponential, gamma, 

Weibull, generalized exponential or exponentiated Weibull; there are many studies about the parametric 

setups (see e.g. Berkson & Elveback, 1960; Cox, 1959; David & Moeschberger, 1978; Kundu & Basu, 

2000; Park, 2005; Kundu & Sarhan, 2006; Sarhan, 2007; Sarhan et al., 2010). To apply the non-

parametric setups do not assume the survival time or failure time follow specific distribution. Numerous 

studies in the non-parametric method have been carried out by several researchers (e.g. Efron, 1987; 

Kaplan & Meier, 1958; Peterson, 1977). The analysis of competing risks data in both cases that are 

mentioned above in various studies, such as the clinical, epidemiologic, demographic, basic science, and 

industrial literature, (Prentice et al., 1978).  

 

In section 2.2, the concept of competing risks setting, which is important to use in analysis of competing 

risks data will be discussed. In section 2.3, the properties of the two-parameter bathtub distribution will 

be discussed. In section 2.4, a competing risks problem for each case under specific assumptions will be 

explained. In section 2.5, the relative risk rate will be discussed under competing risks model and 

competing risks regression model.  In section 2.6, the maximum likelihood estimation will be described 

in general and the likelihood functions for competing risks model and competing risks regression model 

will be provided. 
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Figure 1: The competing risks model with K different types of risks. 

 

2.2 Measurement in competing risks setting  

 

Each object in an environment can fail due to several risks but in a competing risks system only one 

specific cause of failure can occur. In case of failure, we observe a pair of two quantities (T, C); T is a 

positive random variable that denotes the time to failure and C represents the type of cause of failure.  

In this section, we describe the most important concepts that are used to analyse competing risks data. 

The most important functions that can be used to analyse competing risks data are the survival function 

and hazard rate function. The cause-specific density represents the probability of the risk that has an 

effects a subject in the competing risks model that leads to the death at time t by cause j, j=1,…,K,  

 

fj(t) = lim
∆t→0

{
P(t ≤ T < t + ∆t, C = j)

∆t
} 
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=  hj(t) S(t) 

The total probability density function of the individual under K causes of failure (risks) is 

f(t) = � fj(t)
k

j=1

. 

The cause-specific hazard rate for event type j, hj(t), provides an individual’s probability of failing from 

an cause j in a small time interval t to t + Δt. Additionally, the cause-specific hazard rate describes the 

failure by cause j at time t for an individual, given that the individual has survived up to time t. That is, 

 
 

                hj(t) = lim
Δt→0

�P�t ≤ T < t + Δt, C = j�T ≥ t�
Δt

�                           

The cause-specific hazards for all K risks at time t sum up to the overall hazard rate for failing from any 

cause at t 

                                             𝐡𝐡𝐨𝐨𝐨𝐨.(𝐭𝐭) = �𝐡𝐡𝐣𝐣(𝐭𝐭)
𝐤𝐤

𝐣𝐣=𝟏𝟏

                                       

  

The cumulative cause-specific hazard rate for cause j at time t is the integral over the cause-specific 

hazard function from zero to t 

H𝑗𝑗(t) = � hj(u) du
t

0
 

The overall survivor function, 𝑆𝑆𝑜𝑜𝑜𝑜.(t), denoting the probability of being free from any failure up to time t, 

depends on the (cumulative) cause-specific hazard functions for all K types of risks, which sums up to 

the overall (cumulative) hazard rate 

 

S𝑜𝑜𝑜𝑜.(t) =  e−H𝑜𝑜𝑜𝑜.(t)  
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2.3 Causes distributions 

Let Tj be the time at which the risk from cause j might hit the individual, j=1,…,K. The random 

variable 𝑇𝑇𝑗𝑗has a lifetime distribution with a probability density function (pdf), say fj(t), hazard rate 

function hj(t), survival function sj(t) and cumulative distribution function Fj(t). These all four 

functions are related to each other. One we know one of them, we can get the others. Below are the 

relationships between these functions: 

 Given the pdf fj(t), the cdf is,  

𝑭𝑭𝒋𝒋(𝒕𝒕) = 𝑷𝑷�𝑻𝑻𝒋𝒋 ≤ 𝒕𝒕� = � 𝒇𝒇𝒋𝒋(𝒖𝒖) 𝒅𝒅𝒅𝒅 ,
𝒕𝒕

𝟎𝟎
 

the survival function is 

𝒔𝒔𝒋𝒋(𝒕𝒕) = 𝑷𝑷�𝑻𝑻𝒋𝒋 > 𝒕𝒕� = 𝟏𝟏 − 𝑭𝑭𝒋𝒋(𝒕𝒕) 

the hazard function is 

𝒉𝒉𝒋𝒋(𝒕𝒕) =
𝒇𝒇𝒋𝒋(𝒕𝒕)
𝒔𝒔𝒋𝒋(𝒕𝒕)

   . 

Or, given the cdf 𝑭𝑭𝒋𝒋(𝒕𝒕), then the pdf is 

𝒇𝒇𝒋𝒋(𝒕𝒕) =
𝒅𝒅𝑭𝑭𝒋𝒋(𝒕𝒕)
𝒅𝒅𝒅𝒅

 

then we can use all above relations to set the rest of function. In this study, the properties for the two-

parameter bathtub distribution (TPBT) will be introduced. According to Sarhan et al. (2010) in 

“Reliability Engineering and System Safety” the Chen distribution is used in competing risks model to 

estimate unknown parameters using maximum likelihood method. In this study, we will use the same 

distribution but called the two-parameter bathtub distribution (TPBT). Additionally, Chen et al. (2000) 

explained that when analyzing lifetime data the hazard rate can be either increasing or have bathtub 

shape. In the case of the competing risks problem, we assumed independent identical distribution for 

each lifetime due to cause j, j=1,2…,k.  
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2.3.1 Two-parameter bathtub distribution 

The two-parameter bathtub distribution is defined to have a two-parameter shape 𝛼𝛼𝑗𝑗  and 𝜆𝜆𝑗𝑗  , 𝑗𝑗 =

1,2, . . ,𝐾𝐾, and the probability density function of the TPBT distribution (pdf), 𝒇𝒇𝒋𝒋(𝒕𝒕), is 

 

𝒇𝒇𝒋𝒋(𝒕𝒕) =  𝜶𝜶𝒋𝒋𝝀𝝀𝒋𝒋 𝒕𝒕𝝀𝝀𝒋𝒋−𝟏𝟏 𝒆𝒆𝒕𝒕
𝝀𝝀𝒋𝒋   𝒆𝒆𝜶𝜶𝒋𝒋(𝟏𝟏−𝒆𝒆𝒕𝒕

𝝀𝝀𝒋𝒋)      , 𝒕𝒕 > 𝟎𝟎,𝜶𝜶𝒋𝒋,𝜷𝜷𝒋𝒋 > 𝟎𝟎 

 

According to Chen (2000), the hazard function, 𝒉𝒉𝒋𝒋(𝒕𝒕), has a bathtub shape when 𝝀𝝀𝒋𝒋 < 𝟏𝟏 or a increasing 

shape when 𝝀𝝀𝒋𝒋 ≥ 𝟏𝟏 

𝒉𝒉𝒋𝒋(𝒕𝒕) = 𝜶𝜶𝒋𝒋𝝀𝝀𝒋𝒋 𝒕𝒕𝜆𝜆𝒋𝒋−𝟏𝟏 𝒆𝒆𝒕𝒕
𝝀𝝀𝒋𝒋    

The survival function, 𝑺𝑺𝒋𝒋(𝒕𝒕), is 

𝑺𝑺𝒋𝒋(𝒕𝒕) = 𝒆𝒆𝜶𝜶𝒋𝒋(𝟏𝟏−𝒆𝒆𝒕𝒕
𝝀𝝀𝒋𝒋)       

 

The cumulative hazard distribution function, 𝑯𝑯𝒋𝒋(𝒕𝒕), is 

 

𝑯𝑯𝒋𝒋(𝒕𝒕) = 𝟏𝟏 −  𝒆𝒆𝜶𝜶𝒋𝒋(𝟏𝟏−𝒆𝒆𝒕𝒕
𝝀𝝀𝒋𝒋)       

 

2.4 Competing risks setting 

In next two subsections, the assumptions for both the competing risks and the competing risks regression 

models will be discussed, which is helpful for presenting the competing risks data and analysing a 

variety of real lifetime data sets.  
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2.4.1 Cause specific hazard rate 

 
The competing risks problem can occur in various areas, particularly in electrical engineering, 

biomedical and biological studies, where the subject (or system) could be attacked by or break down due 

to more than one risk which may be present at the same time (Sarhan, 2007). For example, in biomedical 

research, competing risks models are very commonly used, particularly in cancer studies. Each patient 

will be under two risks, either the relapse or death in remission, which lead to failing treatment (Klein, 

2006). Many researchers are interested in estimating a certain risk in the presence of other risk factors. 

Statistically, this procedure is known as the competing risks model. In this study, we analysed the 

competing risks model where multiple independent risks are assumed to compete for the failure of an 

individual, but each subject individually on life test can fail only by one risk. To analyze competing risks 

data, this study assumed the data contain three random variables: the time to event (failure or censored), 

an indicator 𝛿𝛿 = 1 for failure and 0 for censoring and cause failure (in the failure case). In some cases, 

the cause of failure might be unknown and this case is called as the incomplete data (Sarhan, 2007). In 

this study we assume that the causes of failure is known. 

To apply the parametric setups suppose, each (survival time or failure time) follows a distribution, such 

as the exponential, gamma, Weibull, generalized exponential and exponentiated Weibull. There are 

many studies about the parametric setups (see e.g. Berkson & Elveback, 1960 ; Cox, 1959; David & 

Moeschberger, 1978; Kundu & Basu, 2000; Park, 2005; Kundu & Sarhan, 2006; Sarhan, 2007; Sarhan et 

al., 2010).  

 

In this study, we study the competing risks model in consider an incomplete and censored observations 

when each risk follows the two-parameter bathtub distribution. The two-parameter bathtub distribution 

was selected because the hazard rate can have a bathtub shape when the shape parameter 𝜆𝜆 < 1, and an 

increasing shape when the shape parameter λ ≥1, which is more helpful and efficient to use for analyzing 

the lifetime data sets, (Chen, 2000). 
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Generally, suppose n identical and independent subjects are put on life test. Let Ti, a random variable 

represent the lifetime of subject i, i=1,2,…,n, and 𝐶𝐶𝑖𝑖 ,a random variable, represent the causes of failure. 

The causes of failure can be either independent or dependent of the lifetime, but this study, assumes that 

the object will be destroyed by only one cause and all risks are independent. Each subject is at the risk of 

failure due to different possible causes, but the occurrence of one cause of failure precludes all other 

causes of failure from occurrence. Additionally, each subject who enters to experiment but does not 

receive any causes of failure by the end of study or become lost to follow up before the end of the study 

period is censored. In this situation, let indicator δi equal a value of one if any one of the causes of 

failure is observed but equal a value of zero for a censored time. Assume a random variable, Tij, which 

represents the time of the failure due to cause j, j=1,...,k. Only observe the minimum life time, Ti = min 

�Tij� where j=1,2,…,k. When the subject fails in competing risks system, there are three observable 

quantities (Ti, Ci, δi), Ti is the lifetime of subject i and Ci is the cause of failure, Ci ∈ {1,2, … , k}. So, 

when the cause of failure is observed, δi = 1, otherwise we will use only one observable quantity, δi= 0, 

which represents censored time. Furthermore, assume that  Tij the time of the failure due to cause j, 

j=1,...,k., follow specific distribution and the probability density function fj(t), therefore, the pdf of 

Tican be written in terms of fj and Sj as: 

 

𝒇𝒇(𝒕𝒕) =  �𝒇𝒇𝒋𝒋(𝒕𝒕)
𝒌𝒌

𝒋𝒋=𝟏𝟏

 �𝑺𝑺𝓵𝓵(𝒕𝒕)
𝒌𝒌

𝓵𝓵=𝟏𝟏
𝓵𝓵≠𝒋𝒋

 

Using  𝒇𝒇𝒋𝒋(𝒕𝒕) = 𝒉𝒉𝒋𝒋(𝒕𝒕)𝑺𝑺𝒋𝒋(𝒕𝒕), we get 

= �𝒉𝒉𝒋𝒋(𝒕𝒕) �𝑺𝑺𝓵𝓵(𝒕𝒕)
𝒌𝒌

𝓵𝓵=𝟏𝟏

𝒌𝒌

𝒋𝒋=𝟏𝟏

, 
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and the hazard rate function of 𝑇𝑇𝑖𝑖 h(𝒕𝒕), is 

𝒉𝒉(𝒕𝒕) = �  𝒉𝒉𝒋𝒋(𝒕𝒕) 
𝒌𝒌

𝒋𝒋=𝟏𝟏

 

 

and the survival rate function of 𝑇𝑇𝑖𝑖 S(𝒕𝒕), is 

 

𝑺𝑺(𝒕𝒕) = �𝑺𝑺𝒋𝒋(𝒕𝒕)
𝒌𝒌

𝒋𝒋=𝟏𝟏

 

More specifically, assume that  𝑇𝑇𝑖𝑖𝑖𝑖 the time of the failure of the subject i due to cause j, j=1,...,k., follows 

the two-parameter bathtub distribution with unknown parameters 𝛼𝛼𝑗𝑗  and 𝜆𝜆𝑗𝑗 ,𝑇𝑇𝑖𝑖𝑖𝑖~ 𝑇𝑇𝑇𝑇𝐵𝐵𝑇𝑇�𝛼𝛼𝑗𝑗 , 𝜆𝜆𝑗𝑗�, for 𝑖𝑖 =

1, … , 𝑛𝑛 and 𝑗𝑗 = 1, … , 𝑘𝑘.  

2.4.2 Cause specific hazard regression  

 

In this study, a regression model will be used to analyse competing risks data, and the definition of the 

cause-specific hazard function with covariates is equal to, 

 

𝒉𝒉𝒋𝒋�𝒕𝒕�𝜷𝜷(𝒋𝒋),𝒁𝒁� = 𝒉𝒉𝒋𝒋𝟎𝟎(𝒕𝒕)𝒆𝒆𝒆𝒆𝒆𝒆 (𝜷𝜷𝟏𝟏𝟏𝟏𝒁𝒁𝟏𝟏 + 𝜷𝜷𝟐𝟐𝟐𝟐𝒁𝒁𝟐𝟐 + ⋯+ 𝜷𝜷𝒑𝒑𝒑𝒑𝒁𝒁𝒑𝒑) 

= 𝒉𝒉𝒋𝒋𝟎𝟎(𝒕𝒕)𝒆𝒆𝒆𝒆𝒆𝒆 (𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻) 

 

Where 𝒉𝒉𝒋𝒋�𝒕𝒕 �𝜷𝜷(𝒋𝒋),𝒁𝒁�, is the hazard function at time t, 𝒉𝒉𝒋𝒋𝟎𝟎(𝒕𝒕) is an unspecified baseline hazard function 

that can be equal to any distribution, which gives the shape for the hazard function (Lim et al., 2010), 

𝜷𝜷(𝒋𝒋) = (𝜷𝜷𝟏𝟏𝟏𝟏,𝜷𝜷𝟐𝟐𝟐𝟐, … ,𝜷𝜷𝒑𝒑𝒑𝒑) is a vector of regression coefficients, and 𝒁𝒁 = (𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐, … ,𝒁𝒁𝒑𝒑)𝑇𝑇, is the vector of 

all covariates. The cumulative hazard function and the survival function are: 
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𝑯𝑯𝒋𝒋�𝒕𝒕�𝜷𝜷(𝒋𝒋),𝒁𝒁� =  𝑯𝑯𝒋𝒋𝟎𝟎(𝒕𝒕) 𝒆𝒆𝒆𝒆𝒆𝒆�𝜷𝜷𝟏𝟏𝟏𝟏𝒁𝒁𝟏𝟏 + 𝜷𝜷𝟐𝟐𝟐𝟐𝒁𝒁𝟐𝟐 + ⋯+ 𝜷𝜷𝒑𝒑𝒑𝒑𝒁𝒁𝒑𝒑� 

=  𝑯𝑯𝒋𝒋𝟎𝟎(𝒕𝒕)  exp (𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻) 

 

𝑺𝑺𝒋𝒋�𝒕𝒕�𝜷𝜷(𝒋𝒋),𝒁𝒁� =  [𝑺𝑺𝒋𝒋𝟎𝟎(𝒕𝒕)]𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷𝟏𝟏𝒁𝒁𝟏𝟏+𝜷𝜷𝟐𝟐𝒁𝒁𝟐𝟐+⋯+𝜷𝜷𝒑𝒑𝒁𝒁𝒑𝒑) 

= [𝑺𝑺𝒋𝒋𝟎𝟎(𝒕𝒕)]𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻) 

Using the above formulae, we can get the pdf of 𝑇𝑇𝑖𝑖𝑖𝑖 , using the following relation: 

 

𝑓𝑓𝑗𝑗�𝑡𝑡�𝜷𝜷(𝒋𝒋),𝒁𝒁� =  𝒉𝒉𝒋𝒋�𝒕𝒕�𝜷𝜷(𝒋𝒋),𝒁𝒁� 𝑺𝑺𝒋𝒋�𝒕𝒕�𝜷𝜷(𝒋𝒋),𝒁𝒁� 

 

In this study, the purpose of using the competing risks regression model is to evaluate the relationship of 

covariates to cause-specific failures (Dignam et al.,2012). In competing risks regression, we studied the 

relationship between a vector of covariates Z and specific causes of failure; As an example, every 

woman who is wearing an intrauterine device (IUD) can be under many high risks of expelling an IUD 

or accidental pregnancy (Kalbfleisch & Prentice, 2002).  

 

Generally, we suppose n identical and independent subjects are put on life test. Let 𝑇𝑇𝑖𝑖, 

a random variable, represent the lifetime of subject i, i=1,2,…,n, and 𝐶𝐶𝑖𝑖 , a random variable, represent 

the causes of failure.The causes of failure can be either independent or dependent, but this study, 

assumes that the object will be destroyed by only one cause and all risks are independent. Each subject is 

at the risk of failure due to different possible causes, but the occurrence of one cause of failure precludes 

all other causes of failure from occurrence. Additionally, each subject who enters to experiment does not 

receive any causes of failure by the end of study or become lost to follow up before the end of the study 

will be have censored. In this situation, let indicator 𝛿𝛿𝑖𝑖 equal a value of one if any one of the causes of 

failure is observed, but equal a value of zero for a censored time. assume a random variable 𝑇𝑇𝑖𝑖𝑖𝑖, which 
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represent the time of the failure due to cause j, j=1,...,k. Only observe the minimum of life time, 𝑇𝑇𝑖𝑖 = min 

�𝑇𝑇𝑖𝑖𝑖𝑖� where j=1,2,…,k. When the subject fails in competing risks system, there are three observable 

quantities (𝑇𝑇𝑖𝑖, 𝐶𝐶𝑖𝑖 , 𝛿𝛿𝑖𝑖). 𝑇𝑇𝑖𝑖 is the lifetime of subject and 𝐶𝐶𝑖𝑖 is the cause of failure, 𝐶𝐶𝑖𝑖 ∈ {1,2, … ,𝑘𝑘}. So, when 

the cause of failure is observed, 𝛿𝛿𝑖𝑖 = 1, otherwise we will use only one observable quantity, 𝛿𝛿𝑖𝑖= 0, 

which present censored time. In case of regression, let 𝑍𝑍𝑖𝑖  be a vector representing covariates or 

explanatory variables such as age, gender and group of treatment. 

 

More specifically, assume that  𝑇𝑇𝑖𝑖𝑖𝑖 the time of the failure due to cause j, j=1,...,k., follows the two-

parameter bathtub distribution with unknown parameters 𝛼𝛼𝑗𝑗  and 𝜆𝜆𝑗𝑗 ,𝑇𝑇𝑖𝑖𝑖𝑖~ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�𝛼𝛼𝑗𝑗 , 𝜆𝜆𝑗𝑗�, for 𝑖𝑖 = 1, … ,𝑛𝑛 

and 𝑗𝑗 = 1, … ,𝑘𝑘. 

The probability density function of the TPBT distribution (pdf) is 

 

𝒇𝒇𝒋𝒋�𝒕𝒕|𝜷𝜷(𝒋𝒋),𝒁𝒁� =  𝜶𝜶𝒋𝒋𝝀𝝀𝒋𝒋 𝒕𝒕𝝀𝝀𝒋𝒋−𝟏𝟏 𝒆𝒆𝒕𝒕
𝝀𝝀𝒋𝒋  𝒆𝒆𝒆𝒆𝒆𝒆 (𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻)  �𝒆𝒆𝜶𝜶𝒋𝒋(𝟏𝟏−𝒆𝒆𝒕𝒕

𝝀𝝀𝒋𝒋)�
𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻)

     

 

the hazard rate function, h(t),  

𝒉𝒉𝒋𝒋�𝒕𝒕�𝜷𝜷(𝒋𝒋),𝒁𝒁� = 𝜶𝜶𝒋𝒋𝝀𝝀𝒋𝒋 𝒕𝒕𝝀𝝀𝒋𝒋−𝟏𝟏 𝒆𝒆𝒕𝒕
𝝀𝝀𝒋𝒋𝒆𝒆𝒆𝒆𝒆𝒆 (𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻) 

 

and the survival rate function  𝑺𝑺𝒋𝒋(𝒕𝒕|𝜷𝜷,𝒁𝒁)    

𝑺𝑺𝒋𝒋�𝒕𝒕�𝜷𝜷(𝒋𝒋),𝒁𝒁� =  �𝒆𝒆𝜶𝜶𝒋𝒋(𝟏𝟏−𝒆𝒆𝒕𝒕
𝝀𝝀𝒋𝒋)�

𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻)

 

and the cumulative distribution function (CDF) is  

𝑯𝑯𝒋𝒋�𝒕𝒕�𝜷𝜷(𝒋𝒋),𝒁𝒁� = �𝟏𝟏 −  𝒆𝒆𝜶𝜶𝒋𝒋(𝟏𝟏−𝒆𝒆𝒕𝒕
𝝀𝝀𝒋𝒋)�   𝑒𝑒𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻 

Here, 𝜃𝜃 becomes a vector of 𝛼𝛼𝑗𝑗 , 𝜆𝜆𝑗𝑗 ,𝛽𝛽(𝑗𝑗) = (𝛽𝛽1𝑗𝑗,𝛽𝛽2𝑗𝑗, … ,𝛽𝛽𝑃𝑃𝑃𝑃), j=1,2,…,K. That is, 𝜃𝜃 is a vector of (2+P) K 

parameters.  
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2.5 The relative risk rates 

 

The most important characteristics of the competing risks models are the relative risks; a relative risk in 

competing risks system is known as one risk of many competing risks. In this section, we study the 

failure probability distribution of each cause of failure in presence of all other risks which explains each 

risk that is studies due to a specific cause of failure (Bocchetti, Giorgio, Guida, & Pulcini, 2009; Sarhan, 

Hamilton & Smith, 2010). According to Bocchetti et al. (2009) the failure probability of cause j at time t 

in the presence of all other risks is defined as following 

 

𝐹𝐹𝑗𝑗(𝑡𝑡) = � ℎ𝑗𝑗(𝑦𝑦)  �𝑆𝑆ℓ(𝑦𝑦)
𝑘𝑘

ℓ=1

 𝑑𝑑𝑑𝑑,    𝑗𝑗 = 1,2, … ,𝐾𝐾.
𝑡𝑡

0
 

 The risk due to cause j, 𝑗𝑗 = 1,2, … ,𝑘𝑘, is 

𝜋𝜋𝑗𝑗 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→∞

𝐹𝐹𝑗𝑗(𝑡𝑡) =  � ℎ𝑗𝑗(𝑡𝑡)  �𝑆𝑆ℓ(𝑡𝑡)
𝑘𝑘

ℓ=1

 𝑑𝑑𝑑𝑑   
∞

0
 

 

More specifically, in case of the TPBT competing risks model that is discussed in Chapter 2, the relative 

risk rates, 𝝅𝝅𝒋𝒋, can be derived by solving the following integral. In this study, there are only two causes of 

failure, which are assumed to be independent. The relative risk due to cause 𝑗𝑗, 𝑗𝑗 = 1,2, … , K, is 

  

𝝅𝝅𝒋𝒋  =  � 𝜶𝜶𝒋𝒋𝝀𝝀𝒋𝒋𝑡𝑡𝑖𝑖
𝝀𝝀𝑗𝑗−𝟏𝟏 𝒆𝒆𝒕𝒕𝒊𝒊

𝝀𝝀𝐣𝐣
  𝒆𝒆∑ 𝜶𝜶𝓵𝓵(𝟏𝟏− 𝒆𝒆𝒕𝒕𝒊𝒊

𝝀𝝀𝓵𝓵
)𝒌𝒌

𝓵𝓵   𝑑𝑑𝑑𝑑
∞

𝟎𝟎
 

There is no analytic solution for this integral. To calculate the risks, numerical integration methods will 

be applied. 
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Special case: if all the shape parameters of the causes are equal, say 𝜆𝜆𝑗𝑗 = 𝜆𝜆, 𝑗𝑗 = 1,2, … , K. The risk due 

to cause j can be obtained in a closed form as: 

 

𝝅𝝅𝒋𝒋 =
𝜶𝜶𝒋𝒋

∑ 𝜶𝜶𝓵𝓵𝐊𝐊
𝓵𝓵=𝟏𝟏

   ,      𝑗𝑗 = 1,2, . . , K. 

In another case of this study, the TPBT competing risks regression model that is discussed in Chapter 2, 

the relative risk rates, 𝝅𝝅𝒋𝒋, can be derived by solving the following integral. In this study, there are only 

two causes of failure, which are assumed to be independent. The relative risk due to cause 𝒋𝒋, 𝒋𝒋 =

𝟏𝟏,𝟐𝟐, … , K, is 

  

𝝅𝝅𝒋𝒋  =  � 𝜶𝜶𝒋𝒋𝝀𝝀𝒋𝒋𝑡𝑡𝑖𝑖
𝝀𝝀𝑗𝑗−𝟏𝟏 𝒆𝒆𝒕𝒕𝒊𝒊

𝝀𝝀𝐣𝐣
𝒆𝒆(𝛽𝛽(𝑗𝑗)Z𝑇𝑇)  [𝒆𝒆∑ 𝜶𝜶𝓵𝓵(𝟏𝟏− 𝒆𝒆𝒕𝒕𝒊𝒊

𝝀𝝀𝓵𝓵
)𝒌𝒌

𝓵𝓵  ]𝒆𝒆(𝛽𝛽(ℓ)Z𝑇𝑇)  𝑑𝑑𝑑𝑑
∞

𝟎𝟎
 

There is no analytic solution for this integral. To calculate the risks, numerical integration methods will 

be applied. 

Special case: if all the shape parameters of the causes are equal, say 𝜆𝜆𝑗𝑗 = 𝜆𝜆, 𝑗𝑗 = 1,2, … , K. The risk due 

to cause j can be obtained in a closed form as: 

𝝅𝝅𝒋𝒋 =
𝜶𝜶𝒋𝒋𝒆𝒆(𝜷𝜷(𝒋𝒋)𝐙𝐙𝑻𝑻)

∑ 𝜶𝜶𝓵𝓵𝐊𝐊
𝓵𝓵=𝟏𝟏 𝑒𝑒(𝜷𝜷(𝓵𝓵)𝐙𝐙𝑻𝑻)

   ,      𝑗𝑗 = 1,2, … , K. 

 

2.6 Maximum Likelihood Estimation 

 

According to Aldrich (1997), the first one who presented the maximum likelihood was Fisher between 

1912 and 1922, but he did not finish. A few years later more detailed development by many researchers 

depended on his ideas. Many researchers applied the maximum likelihood estimation, which is the most 
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frequently used method in statistical inference to estimate unknown parameters. When any experiment 

depends on a large sample of participants, various researchers will use the maximum likelihood 

estimation because that gives reasonable estimator of 𝜽𝜽. 

Assuming a random sample 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 from a distribution 𝒇𝒇(𝒙𝒙𝒊𝒊,𝜽𝜽), the likelihood function is denoted as 

L(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽), 𝜽𝜽, which is a present vector of unknown parameters. In general, we can write the likelihood 

function as following: 

𝑳𝑳(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|𝜽𝜽) = �𝒇𝒇(𝒙𝒙𝒊𝒊,𝜽𝜽)
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

The maximum likelihood estimator for 𝜃𝜃 is the values of 𝜃𝜃 that maximize the likelihood function or 

logarithm likelihood function (Enders & Bandalos, 2001). The following steps show how we can get 

the MLE in general. Firstly, take the log-likelihood function, which denotes 𝓵𝓵(𝜽𝜽),  

 

𝓵𝓵(𝜽𝜽) = �𝒍𝒍𝒍𝒍𝒍𝒍𝒇𝒇(𝒙𝒙𝒊𝒊,𝜽𝜽)
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

Secondly, take the first and the second derivative of 𝓵𝓵(𝜽𝜽), depending on number of the parameters.  

In case of high-dimensional parameters 𝜽𝜽 = (𝜽𝜽𝟏𝟏,𝜽𝜽𝟐𝟐, … ,𝜽𝜽𝒏𝒏) , here 𝜽𝜽  is vector include all unknown 

parameters. Hence, the Fisher information 𝑰𝑰 (𝜽𝜽) will be have a matrix.  The 𝒊𝒊𝒊𝒊-th is two different entries 

that are 𝒊𝒊-th present number of rows and 𝒋𝒋-th present number of columns. 

 

𝑰𝑰(𝜽𝜽)𝒊𝒊𝒊𝒊 = 𝑬𝑬𝜽𝜽  �
𝝏𝝏
𝝏𝝏𝜽𝜽𝒊𝒊

 𝓵𝓵(𝜽𝜽)
𝝏𝝏
𝝏𝝏𝜽𝜽𝒋𝒋

  𝓵𝓵(𝜽𝜽) � 

 

= −𝑬𝑬𝜽𝜽  � 𝝏𝝏𝟐𝟐

𝝏𝝏𝜽𝜽𝒊𝒊𝝏𝝏𝜽𝜽𝒋𝒋
  𝓵𝓵(𝜽𝜽)    � 
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After we obtained the Fisher information matrix 𝑰𝑰(𝜽𝜽)𝒊𝒊𝒊𝒊, the diagonal of the Fisher information matrix 

𝑰𝑰(𝜽𝜽)𝒊𝒊𝒊𝒊 will provide estimates variances but above and below the diagonal will be covariance. 

 

𝑽𝑽𝜽𝜽 �𝜽𝜽�𝒊𝒊(𝑿𝑿)�  ≈  𝑰𝑰(𝜽𝜽)𝒊𝒊𝒊𝒊
−𝟏𝟏                   𝑪𝑪𝑪𝑪𝑪𝑪𝜽𝜽 �𝜽𝜽�𝒊𝒊(𝑿𝑿),𝜽𝜽�𝒋𝒋(𝑿𝑿)� ≈  𝑰𝑰(𝜽𝜽)𝒊𝒊𝒊𝒊

−𝟏𝟏 

 

In this case, we assumed independent sampling from the probability density function 𝒇𝒇(𝒙𝒙𝒊𝒊,𝜽𝜽), and 𝜽𝜽� 

may be approximated by 𝜽𝜽� ~𝑵𝑵�𝜽𝜽  , 𝑰𝑰�𝜽𝜽� �
−𝟏𝟏
�,  the confidence interval for 𝜽𝜽�𝒊𝒊 is 

𝜽𝜽�𝒊𝒊 ±  𝒁𝒁𝜶𝜶
𝟐𝟐   �𝑰𝑰(𝜽𝜽)𝒊𝒊𝒊𝒊

−𝟏𝟏 

In the next subsections, the likelihood function for both cases will be discussed to present competing 

risks data.   

  

2.6.1The likelihood function for competing risks model 

 

Some notation will be introduced to write general the likelihood function in competing risks model. 

Firstly, assume n independent subject on life test and for subject i=1,...,n. Hence, observe three random 

variables ( 𝑇𝑇𝑖𝑖,𝐶𝐶𝑖𝑖, 𝛿𝛿𝑖𝑖 ). 𝑇𝑇𝑖𝑖 represents the lifetime to failure assumed to be independent identically 

distributed over items i=1,…,n. 𝐶𝐶𝑖𝑖 represents the causes of failure which are assumed to be independent, 

but in this study only one cause of failure can occur. We supposed if 𝛿𝛿𝑖𝑖=1 the causes of failure occur, but 

otherwise 𝛿𝛿𝑖𝑖= 0 which is censored.  

The observed data will be (𝑇𝑇1,𝐶𝐶1, 𝛿𝛿1), (𝑇𝑇2,𝐶𝐶2, 𝛿𝛿2), … , (𝑇𝑇𝑛𝑛,𝐶𝐶𝑛𝑛, 𝛿𝛿𝑛𝑛) dependent on assumptions in 

subsection 2.4.1. In general, the likelihood function and the log-likelihood function for competing risks 

model can be written as following: 
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𝑳𝑳(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|𝜽𝜽) =  ��[𝒇𝒇(𝒕𝒕𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏)   [𝑺𝑺(𝒕𝒕𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟎𝟎)�
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

=  ��[𝒉𝒉(𝒕𝒕𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏) [𝑺𝑺(𝒕𝒕𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏) [𝑺𝑺(𝒕𝒕𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟎𝟎)  �
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

= ��[𝒉𝒉(𝒕𝒕𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏) [𝑺𝑺(𝒕𝒕𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏)+𝑰𝑰(𝜹𝜹𝒊𝒊=𝟎𝟎) �
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

= ���[𝒉𝒉𝒋𝒋(𝒕𝒕𝒊𝒊)]𝑰𝑰(𝑪𝑪𝒊𝒊=𝐣𝐣)  𝑺𝑺𝒋𝒋(𝒕𝒕𝒊𝒊)  �
𝐾𝐾

𝑗𝑗=1

𝒏𝒏

𝒊𝒊=𝟏𝟏

 

Here 𝜽𝜽 is the vector of 2K including all unknown parameters in this model, 𝜽𝜽 =

(𝜶𝜶𝟏𝟏,𝜶𝜶𝟐𝟐, … ,𝜶𝜶𝑲𝑲,𝝀𝝀𝟏𝟏,𝝀𝝀𝟐𝟐, … ,𝝀𝝀𝑲𝑲). The log-likelihood function is 

𝓛𝓛(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|𝜽𝜽) =  ���𝑰𝑰(𝒄𝒄𝒊𝒊 = 𝒋𝒋)  𝒍𝒍𝒍𝒍𝒍𝒍 �𝒉𝒉𝒋𝒋(𝒕𝒕𝒊𝒊)� + 𝒍𝒍𝒍𝒍𝒍𝒍 �𝑺𝑺𝒋𝒋(𝒕𝒕𝒊𝒊)��
𝐾𝐾

𝑗𝑗=1

𝒏𝒏

𝒊𝒊=𝟏𝟏

 

Based on the model assumptions in subsection 2.4.1, the likelihood function and the log-likelihood 

function for the competing risks model can be written in specific form when each cause of failure 

follows the two-parameter bathtub distribution with unknown parameters. 

 

𝐿𝐿(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽) = ���𝑒𝑒
𝛼𝛼𝑗𝑗�1−𝑒𝑒

𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗
�

 � 𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗  𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗−1 𝑒𝑒𝑡𝑡𝑖𝑖

𝜆𝜆𝑗𝑗
�
𝐼𝐼(𝑐𝑐𝑖𝑖=𝑗𝑗)

�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

ℒ(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽) = ����𝛼𝛼𝑗𝑗 �1 − 𝑒𝑒𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗
�� + 𝐼𝐼(𝑐𝑐𝑖𝑖 = 𝑗𝑗) [𝑙𝑙𝑙𝑙𝑙𝑙�𝛼𝛼𝑗𝑗� + 𝑙𝑙𝑙𝑙𝑙𝑙�𝜆𝜆𝑗𝑗� + (𝜆𝜆𝑗𝑗 − 1)𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑖𝑖) + 𝑡𝑡𝑖𝑖

𝜆𝜆𝑗𝑗]�
𝑘𝑘

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

2.6.2 The likelihood function for competing risks regression model 

Some notation will be introduced to write general the likelihood function in competing risks regression 

model. Firstly, assume n independent subject on life test and for individual i=1,...,n. Let 𝑇𝑇𝑖𝑖 as a vector 

represent the lifetime of units which are assumed to be independent identically distributed over items 

i=1,…,n.  Only observe the minimum of life time, 𝑻𝑻𝒊𝒊 = min �𝑻𝑻𝒊𝒊𝒊𝒊� where j=1,2,…,k, and  𝑻𝑻𝒊𝒊𝒊𝒊 is a vector 
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representing the time when the failure due to cause j, j =1,...,k, and 𝑪𝑪𝒊𝒊 is a random variable for the event 

type based on the assumption the relationship between the causes are independent ,but not identically 

distributed over causes j and known. Also, 𝜹𝜹𝒊𝒊 is an indicator representing the events type if the causes of 

failure are observed then 𝜹𝜹𝒊𝒊 = 𝟏𝟏, but otherwise 𝜹𝜹𝒊𝒊 = 𝟎𝟎 which is right censored. Let  𝒁𝒁𝒊𝒊  be a vector 

representing covariates or explanatory variables.  

 

The observed data will be (𝑻𝑻𝟏𝟏,𝑪𝑪𝟏𝟏,𝜹𝜹𝟏𝟏,𝒁𝒁𝟏𝟏), (𝑻𝑻𝟐𝟐,𝑪𝑪𝟐𝟐,𝜹𝜹𝟐𝟐,𝒁𝒁𝟐𝟐), … , (𝑻𝑻𝒏𝒏,𝑪𝑪𝒏𝒏,𝜹𝜹𝒏𝒏,𝒁𝒁𝒏𝒏)  dependent on this 

assumption. The likelihood function and the log-likelihood function in general cases for regression 

model to present competing risks data can be written as following: 

 

𝑳𝑳(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|𝜽𝜽) =  �� [ 𝒇𝒇(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏)   [𝑺𝑺(𝑡𝑡𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟎𝟎)�
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

=  ��[𝒉𝒉(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏) [𝑺𝑺(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏)   [𝑺𝑺(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟎𝟎)�
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

=  ��[𝒉𝒉(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏) [𝑺𝑺(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝜹𝜹𝒊𝒊=𝟏𝟏)+𝑰𝑰(𝜹𝜹𝒊𝒊=𝟎𝟎)   �
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

= ��𝑺𝑺(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)�[𝒉𝒉𝒋𝒋(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝑪𝑪𝒊𝒊=𝒋𝒋)
𝒌𝒌

𝒋𝒋=𝟏𝟏

   �
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

= ���𝑺𝑺𝒋𝒋(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊) [𝒉𝒉𝒋𝒋(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)]𝑰𝑰(𝑪𝑪𝒊𝒊=𝒋𝒋)   �
𝐾𝐾

𝑗𝑗=1

𝒏𝒏

𝒊𝒊=𝟏𝟏
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Here 𝜽𝜽 is the vector of all unknown parameters in the model that includes the cause of failure 

distribution parameters and the coefficients of the covariates. 

 

𝓛𝓛(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|𝜽𝜽) =  ��𝒍𝒍𝒍𝒍𝒍𝒍�𝑺𝑺(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)� + �  𝑰𝑰(𝑪𝑪𝒊𝒊 = 𝒋𝒋)  𝒍𝒍𝒍𝒍𝒍𝒍 �𝒉𝒉𝒋𝒋(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)�
𝒌𝒌

𝒋𝒋=𝟏𝟏

�
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

=  ���𝒍𝒍𝒍𝒍𝒍𝒍�𝑺𝑺𝒋𝒋(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)�+ 𝑰𝑰(𝑪𝑪𝒊𝒊 = 𝒋𝒋)  𝒍𝒍𝒍𝒍𝒍𝒍 �𝒉𝒉𝒋𝒋(𝒕𝒕𝒊𝒊|𝒁𝒁𝒊𝒊)��
𝐾𝐾

𝑗𝑗=1

𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

Based on the model assumptions in subsection 2.4.2, the likelihood function and the log-likelihood 

function for the competing risks regression model can be written as 

 

𝑳𝑳(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|𝜽𝜽) = ����𝑒𝑒𝛼𝛼𝑗𝑗(1−𝑒𝑒𝑡𝑡
𝜆𝜆𝑗𝑗)�

𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽(𝑗𝑗)𝑍𝑍𝑇𝑇)

𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗  𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗−1 𝑒𝑒𝑡𝑡𝑖𝑖

𝜆𝜆𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒 (𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻)�

𝐾𝐾

𝑗𝑗=1

𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

 

𝓛𝓛(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|𝜽𝜽) = ���𝑒𝑒𝛽𝛽(𝑗𝑗)𝑍𝑍𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆𝑗𝑗(𝑡𝑡𝑖𝑖)) + 𝐼𝐼(𝐶𝐶𝑖𝑖 = 𝑗𝑗)  𝑙𝑙𝑙𝑙𝑙𝑙 �ℎ𝑗𝑗(𝑡𝑡𝑖𝑖|𝑍𝑍𝑖𝑖)��
𝒌𝒌

𝒋𝒋=𝟏𝟏

𝒏𝒏

𝒊𝒊=𝟏𝟏

 

 

= ���𝑒𝑒𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻 �𝛼𝛼𝑗𝑗 �1 − 𝑒𝑒𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗
�� + 𝐼𝐼(𝐶𝐶𝑖𝑖 = 𝑗𝑗) [𝜷𝜷(𝒋𝒋)𝒁𝒁𝑻𝑻 + 𝑙𝑙𝑙𝑙𝑙𝑙�𝛼𝛼𝑗𝑗� + 𝑙𝑙og�λj� + (λj − 1)log(ti) + ti

λj]�
𝒌𝒌

𝒋𝒋=𝟏𝟏

𝒏𝒏

𝒊𝒊=𝟏𝟏
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Chapter 3: Bayesian Method 
 
 
3.1 Introduction 

 
 

In this chapter, we start by describing the main components of the Bayesian framework. Firstly, to 

make a Bayesian inference, suppose we have an independent random sample Y1, Y2, … , Ynfrom a 

probability distribution. Fundamentally, all of the Bayesian analyses involve assuming a prior 

distribution for each unknown parameter. There are two main approaches to choosing a prior 

distribution; the first approach is an informative prior distribution and the second approach is a non-

informative prior distribution (e.g. Glickman & van Dyk, 2007). The concept of choosing prior 

distribution is subjective and unscientific, because we do not have enough information on unknown 

parameters. Typically, the primary goal of using the Bayesian statistical analysis is to obtain the 

posterior distribution of model parameters to carry out all the inferences. According to Bayes’ 

theorem, the posterior probability density function of θ, given y, is given by 

 

g(θ|y) =  
𝑔𝑔(𝜃𝜃)𝐿𝐿(𝑦𝑦|𝜃𝜃)

𝑝𝑝(𝑦𝑦)
  

where 

𝑝𝑝(𝑦𝑦) = �
�𝑔𝑔(𝜃𝜃)𝐿𝐿(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑, If 𝜃𝜃 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�𝑔𝑔(𝜃𝜃)𝐿𝐿(𝑦𝑦|𝜃𝜃), If 𝜃𝜃 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

and 

• 𝑔𝑔(𝜃𝜃): The prior distribution of 𝜃𝜃. 

• 𝐿𝐿(𝑦𝑦|𝜃𝜃): The likelihood function. 

• 𝑝𝑝(𝑦𝑦): The marginal distribution of y. 
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There are different pros and cons of using the Bayesian methods in statistical inference to do all data 

analysis, which are explained by various authors (such as Berger, 1985; Berger & Wolpert, 

1988; Bernardo & Smith, 1994; Carlin & Louis, 2000; Robert, 2001; and Wasserman, 2004; Clard and 

Gelfand, 2006). To use the Bayesian methods, we assume a prior distribution for all unknown 

parameters, but there are no methods that can be followed to select the right prior distribution, which is 

one of the cons of using the Bayesian analysis. However, a posterior distribution sometimes can have 

influence based on the selection of prior distribution.  

 

One of the pros is that a posterior distribution can combine information for both a prior distribution and 

a likelihood function. Also, using Bayesian inference has the ability to consider prior opinion or external 

experiential evidence into the results via the prior distribution.  It is not easy to obtain the integral of the 

posterior distribution for high-dimensional parameters, especially when the posterior distribution does 

not have closed form. Also, the lack of computational tools, which made scientists in various fields, 

reluctant to use the Bayesian approaches. However, in recent years many programs are available which 

researcher can use to solve this problem. For example, in R’s specific packages are helpful to use for 

applying different methods in Bayesian analysis. 

 

In Bayesian analysis, there are many techniques that can be applied to estimate unknown parameters, 

such as normal approximations, rejection sampling, importance sampling, sampling importance 

resampling, and Markov Chain Monte Carlo methods. Furthermore, those methods sometimes are 

difficult to apply for various reasons. Each technique has specific conditions that must be achieved such 

as the choice of the proposal density or acceptance rate. However, in this thesis only the Markov Chain 

Monte Carlo (MCMC) methods will be used to obtain the posterior distribution without normalizing the 

constant, which will be discussed in section 3.5. For researchers who are interested to apply different 
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techniques of Bayesian analysis in various areas, many authors can be followed who have done a lot of 

work on Bayesian analysis (such as Albert ,2009; Berger, 2013; Bernardo and Smith, 2001; Box and 

Tiao, 2011; Gelman et al., 2014; O’Hagan and Forster, 2004; Press, 2009). 

 

3.1.1 Basic elements 
 
The essential elements in the Bayesian decision framework will be discussed in general. A loss function 

𝕃𝕃(θ,𝛉𝛉�) defined on ⊝×  ℋ  which represents the loss incurred when the decision 𝛉𝛉� is taken, and the 

parameter is θ. The general form of the loss function takes the form 

 

 
𝕃𝕃�𝛉𝛉,𝛉𝛉�� =  𝛄𝛄(𝛉𝛉)𝐖𝐖(|𝛉𝛉� −  𝛉𝛉|),                                             (3.1) 

 
Where W is a non-negative function of the error |𝛉𝛉� −  θ| such that W(0)=0 and γ is a positive. It is 

frequently assumed that the function γ in (3.1) is a constant. Accordingly, the loss function may be 

written as  

 
 

                                     L�θ,𝛉𝛉�� =  a W��𝛉𝛉� −  θ��,   a > 0.                                                        (3.2) 
 

 

Without loss of generality, we shall assume that a=1.  

3.1.2 The risk function, prior and posterior risks 

 
Let 𝛉𝛉� ∈ ℋ be an estimator for θ. Let 𝕃𝕃 be the loss function. The risks function of 𝛉𝛉� , denoted by R 

(θ,𝛉𝛉�), is defined as the expectation of the loss function L. That is, 

 
                 R �θ,𝛉𝛉�� = Eθ �𝕃𝕃 �θ,𝛉𝛉�(y)� � =  ∫y𝕃𝕃 �θ,𝛉𝛉�(y)�  𝐿𝐿(y|θ) dy,∀θ ∈ ⊝                 (3.3) 
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Here, Eθ means the expectation corresponding to 𝐿𝐿. For given estimator 𝛉𝛉�, the risk function R �θ,𝛉𝛉�� is 

considered to be a function on ⊝. 

 

The prior risk (or Bayes risk) of the estimator 𝛉𝛉� ∈ ℋ with respect to the prior distribution G having 

density g, denoted by R �g,𝛉𝛉��, is defined as the prior expectation of the risk function R (θ,𝛉𝛉�). That is, 

 
                                    𝐑𝐑 �𝐠𝐠, 𝛉𝛉�� = ∫⊝𝐑𝐑 �𝛉𝛉,𝛉𝛉��𝐠𝐠(𝛉𝛉) 𝐝𝐝𝛉𝛉                                                          (𝟑𝟑.4) 

 
Because of this loss function is non-negative (Bartoszewicz, 1989,p.183); therefore, we can write the 

prior risk R�g,𝛉𝛉� �, using (3.4,3.5), to be  

 

 R �g,𝛉𝛉�� =  ∫⊝ �∫y𝕃𝕃�θ,𝛉𝛉�� 𝐿𝐿(y|θ) dy�  g(θ)  dθ                                            (3.5) 
 

The joint probability density of the random vector (Y, θ) is 
 
 

                      g(x, θ) = 𝐿𝐿(y|θ)g(θ) =  g(θ|y) 𝑝𝑝(y)                                              (3.6) 
 
 

Using (3.6 and 3.7) the prior risk may be written as the non-conditional expectation of the loss function 

with respect to the joint probability density g(θ, y), denoted by E [L�θ,𝛉𝛉��]. Namely, 

 
R �g,𝛉𝛉�� =  E�𝕃𝕃�θ,𝛉𝛉��� =  ∫y×⊝𝕃𝕃�θ,𝛉𝛉�� g(y; θ) dy dθ                               (3.7) 

 
Further, the prior risk can be written in the following form. 

 
 

               𝐑𝐑 �𝐠𝐠,𝛉𝛉�� =  ∫𝐲𝐲{∫⊝𝕃𝕃(𝛉𝛉,𝐝𝐝) 𝐠𝐠(𝛉𝛉|𝐲𝐲) 𝐝𝐝𝐝𝐝} 𝐩𝐩(𝐲𝐲) 𝐝𝐝𝐝𝐝                                        (3.8) 

 
The posterior risk of the estimator 𝛉𝛉� ∈ 𝓗𝓗, given Y= y, with respect to being the prior density g, denoted 

by 𝝆𝝆𝒈𝒈�𝛉𝛉��, is defined as the posterior expectation of the loss function 𝕃𝕃�𝜽𝜽,𝛉𝛉��. That is, 

 
       ρg�𝛉𝛉�� =  E�𝕃𝕃�θ,𝛉𝛉��|y� = ∫⊝𝕃𝕃�θ,𝛉𝛉�� g(θ|y) dθ                                            (3.9) 
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It seems from (3.9 and 3.10) that, the prior risk 𝑹𝑹 �𝒈𝒈,𝛉𝛉�� is the expectation of the posterior risk 𝝆𝝆𝒈𝒈�𝛉𝛉��, 

with respect to the marginal distribution of Y under G. 

The Bayes estimator for 𝜽𝜽 with respect to the prior distribution G is defined as that estimator in ℋ, 

which minimizes the posterior risk, given Y. Let 𝜽𝜽�𝑩𝑩(𝒀𝒀) be the Bayes estimator for 𝜽𝜽, then  

 
𝝆𝝆𝒈𝒈�𝜽𝜽�𝑩𝑩(𝒀𝒀)� =  𝒊𝒊𝒊𝒊𝒊𝒊

𝛉𝛉�∈𝓗𝓗
{∫⊝𝕃𝕃�𝜽𝜽,𝛉𝛉�� 𝒈𝒈(𝜽𝜽|𝒚𝒚) 𝒅𝒅𝒅𝒅}                                (3. 10) 

 
 

Note that, the Bayes estimator of 𝜽𝜽 for a given prior distribution G is not necessarily unique. If the loos 

function 𝕃𝕃�𝜽𝜽,𝛉𝛉�� is strictly convex in d for each 𝜽𝜽, then 𝜽𝜽�𝑩𝑩(𝒀𝒀) is virtually unique (see, for example, 

Girshick & Savage, 1951; DeGroot, 1970 and Box & Tiao, 1973). We also note that the Bayes estimator 

𝜽𝜽�𝑩𝑩 minimizes the prior risk. In some textbooks and articles, “for example, Girshick and Savage, (1951) 

and DeGroot & Rao, (1963)” the Bayes estimator is defined as that estimator 𝛉𝛉� ∈ 𝓗𝓗 which minimizes 

the prior risk. Recall that, the Bayes estimate 𝜽𝜽�𝑩𝑩 is the value of a Bayes estimator then 𝜽𝜽�𝑩𝑩(𝒀𝒀). 

 

3.1.3 The Squared error loss function 
 

When the parameter 𝜽𝜽 is one- dimensional, the loss function can be expressed as  
 

                                       𝕃𝕃�𝛉𝛉,𝛉𝛉�� =  𝐚𝐚 � 𝛉𝛉 − 𝛉𝛉��
𝐛𝐛

,                                                                 (3.11) 

 
Where a > 0 (that can be chosen to be a=1), and b > 0. When b = 2, the loss function is quadratic and 

is called a squared error loss function; when b=1, the loss function is proportional to the absolute value 

of the estimation error and is called an absolute error loss function. 

 
The squared error loss function lends itself to mathematical. It also yields a second good approximation to 

the more general loss function 𝑾𝑾��𝜽𝜽 − 𝛉𝛉���, where W(.) can be differentiated at least twice. For these 

reasons, it is the most commonly applies in statistical estimation.  
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3.1.4 The Quadratic loss function 
 
Suppose that we are interested in estimating the parameter vector 𝜽𝜽 = ( 𝜽𝜽𝟏𝟏, … ,  𝜽𝜽𝒌𝒌), where 𝑲𝑲 ≥ 𝟐𝟐.  A 

generalization of the squared error loss function (3.12) is the quadratic loss function 𝕃𝕃 given by 

 

            𝕃𝕃�θ,𝛉𝛉�� =  ∑ (θi − θı� )2K
i=1                                                                  (3.12) 

 

 

3.2 Bayesian competing risks model 

3.2.1 Prior distribution  
 
 
A prior distribution of a parameter is defined as the probability distribution that appears unpredictably 

about the parameter before the current data is inspected. To do Bayesian inference, a prior distribution 

must be assumed for all unknown parameters. There are no specific methods that explain how we can 

choose the right prior, but some researchers decide to choose a prior depending on their knowledge 

about and experience of data which means their choice is highly subjective.  

 

In this study, suppose all unknown parameters in competing risks model are independent and follow a 

gamma distribution. Let  𝛼𝛼𝑗𝑗 follow a gamma distribution with a positive shape parameter 𝑎𝑎𝑗𝑗1and scale 

parameter aj2 , and 𝜆𝜆𝑗𝑗  follow a gamma distribution with a positive shape parameter 𝑣𝑣𝑗𝑗1 and scale 

parameter 𝑣𝑣𝑗𝑗2, for j = 1,2,…, K. Additionally, the total number of unknown parameters in this model 

is four, which is relevant to 2K and K is the present number of causes of failure which equals two in this 

study. Hence, we assume all hyper-parameters �𝑎𝑎𝑗𝑗1,𝑎𝑎𝑗𝑗2, 𝑣𝑣𝑗𝑗1, 𝑣𝑣𝑗𝑗2�, 𝑗𝑗 = 1,2, … , K, are known.  

 

𝛼𝛼𝑗𝑗~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎𝑗𝑗1,𝑎𝑎𝑗𝑗2),   𝑗𝑗 = 1,2, … , K 

𝜆𝜆𝑗𝑗~ 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑗𝑗1, 𝑣𝑣𝑗𝑗2),   𝑗𝑗 = 1,2, … , K 
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Here, 𝜃𝜃 = �𝛼𝛼𝑗𝑗 , 𝜆𝜆𝑗𝑗�,𝑎𝑎𝑎𝑎𝑎𝑎 is a vector including all unknown parameters and the joint prior density function 

of 𝜃𝜃 up to a constant as following: 

 g𝐶𝐶𝐶𝐶(θ) ∝ ∏ 𝑔𝑔𝑖𝑖(𝜃𝜃𝑖𝑖)  4
𝑖𝑖=1  

 

g𝐶𝐶𝐶𝐶(θ) ∝  �𝛼𝛼𝑗𝑗
𝑎𝑎𝑗𝑗1−1𝑒𝑒−𝑎𝑎𝑗𝑗2𝛼𝛼𝑗𝑗   𝜆𝜆𝑗𝑗

𝑣𝑣𝑗𝑗1−1𝑒𝑒−𝑣𝑣𝑗𝑗2𝜆𝜆𝑗𝑗          ,𝛼𝛼𝑗𝑗 , 𝜆𝜆𝑗𝑗 > 0                          
𝐾𝐾

𝑗𝑗=1

 

 
And log prior density function of 𝜃𝜃 can be written as following: 
 

 𝑙𝑙𝑙𝑙𝑙𝑙�g𝐶𝐶𝐶𝐶(𝜃𝜃)� =  ���𝑎𝑎𝑗𝑗1 − 1� log�𝛼𝛼𝑗𝑗� − 𝑎𝑎𝑗𝑗2𝛼𝛼𝑗𝑗 + �𝑣𝑣𝑗𝑗1 − 1� log�𝜆𝜆𝑗𝑗� − 𝑣𝑣𝑗𝑗2𝜆𝜆𝑗𝑗   �
𝐾𝐾

𝑗𝑗=1

                  

 

3.2.2 Posterior distribution  
 

In this subsection, the posterior density, g𝐶𝐶𝐶𝐶(θ|data), is the product of the joint prior density function 

and the likelihood function. Hence, we combined the joint prior distributions in equation 3.2 and the 

likelihood function. The joint posterior density function of θ,  up to a constant, can be written as 

following:  

 
g𝐶𝐶𝐶𝐶(θ|data) ∝ g𝐶𝐶𝐶𝐶(θ) × 𝐿𝐿𝐶𝐶𝐶𝐶(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃) 

 

g𝐶𝐶𝑅𝑅(θ|data) ∝  �𝛼𝛼𝑗𝑗
𝑎𝑎𝑗𝑗1−1𝑒𝑒−𝑎𝑎𝑗𝑗2𝛼𝛼𝑗𝑗   𝜆𝜆𝑗𝑗

𝑣𝑣𝑗𝑗1−1𝑒𝑒−𝑣𝑣𝑗𝑗2𝜆𝜆𝑗𝑗
𝐾𝐾

𝑗𝑗=1

× ��   {𝑒𝑒
𝛼𝛼𝑗𝑗�1−𝑒𝑒

𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗
�

       [𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗  𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗−1 

𝑘𝑘

𝑗𝑗=1

 𝑒𝑒𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗

] 𝐼𝐼(𝑐𝑐𝑖𝑖=𝑗𝑗)} 
𝑛𝑛

𝑖𝑖=1

                                                (3.13)    
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       The normalizing constant is 

 

𝑝𝑝(𝑦𝑦) = � …��𝛼𝛼𝑗𝑗
𝑎𝑎𝑗𝑗1−1𝑒𝑒−𝑎𝑎𝑗𝑗2𝛼𝛼𝑗𝑗   𝜆𝜆𝑗𝑗

𝑣𝑣𝑗𝑗1−1𝑒𝑒−𝑣𝑣𝑗𝑗2𝜆𝜆𝑗𝑗      

𝐾𝐾

𝑗𝑗=1

∞

0

∞

0

 

× ∏ ∏   {𝑒𝑒
𝛼𝛼𝑗𝑗�1−𝑒𝑒

𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗
�

       [𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗  𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗−1 𝑘𝑘

𝑗𝑗=1  𝑒𝑒𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗

] 𝐼𝐼(𝑐𝑐𝑖𝑖=𝑗𝑗)} 𝑑𝑑𝛼𝛼𝑗𝑗𝑑𝑑𝜆𝜆𝑗𝑗               𝑛𝑛
𝑖𝑖=1 (3.14) 

 
 

Here, θ is a vector of all unknown parameters, θ = (α1,α2 … ,αK, λ1, λ2, … , λK). Using the joint posterior 

distribution, we can derive (calculate) the Bayes estimate of each parameter. The Bayes estimate of 𝜃𝜃𝑗𝑗 , 

j=1,2,…,2K, is  

𝜃𝜃�𝑗𝑗 = �…�𝜃𝜃𝑗𝑗  𝑔𝑔(𝜃𝜃|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  𝑑𝑑𝑑𝑑 

and the Bayes estimate for any function of 𝜃𝜃, say 𝜐𝜐(𝜃𝜃), is 

 

𝜐𝜐�(𝜃𝜃) = �…�𝜐𝜐(𝜃𝜃)   𝑔𝑔(𝜃𝜃|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  𝑑𝑑𝑑𝑑 

 

The integrals above do not have analytic solutions, and numerical approaches are required, which will be 

discussed later in section 3.4 and section 3.5. To make all parameters real-valued, we can use the 

logarithmic transformation. That is, we use θ∗ = log�θj� , 𝑗𝑗 = 1,2, … ,2K. and the new transformed vector 

of unknown parameters, say θ∗, is; θ∗ = (log(θ1) , log(θ2) , log(θ3) , log(θ4)). We need to obtain the 

Jacobian term in the transformation as following:  

 

𝐽𝐽 �
𝜃𝜃
𝜃𝜃∗
� =  �

𝑒𝑒𝜃𝜃1∗ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒𝑒𝜃𝜃2𝐾𝐾

∗
� = 𝑒𝑒∑ 𝜃𝜃𝑗𝑗

∗2𝐾𝐾
𝑗𝑗=1  
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log 𝐽𝐽 � 𝜃𝜃
𝜃𝜃∗
� =  ∑ 𝜃𝜃𝑗𝑗

∗2𝐾𝐾
𝑗𝑗=1  

 

The joint posterior density function of the transformed real-valued vector of unknown parameters of 

θ∗ is 

gCR(𝜃𝜃∗|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) =  gCR�𝜃𝜃 = 𝑒𝑒𝜃𝜃∗| 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝐽𝐽 �
𝜃𝜃
𝜃𝜃∗�

 
 

Thus, the log-posterior density function of 𝜃𝜃∗, given data, is 
 

log (gCR(𝜃𝜃∗|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)) = log �gCR�𝜃𝜃 = 𝑒𝑒𝜃𝜃∗| 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�� + �𝜃𝜃𝑗𝑗∗
2𝐾𝐾

𝑗𝑗=1

 

 
 

3.3 Bayesian competing risks regression model  

3.3.1 Prior distributions 
 
 
We assume that all parameters are independent, 𝛼𝛼𝑗𝑗 follows gamma distribution with hyper-parameters 

𝑎𝑎𝑗𝑗1and 𝑎𝑎𝑗𝑗2 , and 𝜆𝜆𝑗𝑗  follows gamma distribution with hyper-parameters 𝑣𝑣𝑗𝑗1and 𝑣𝑣𝑗𝑗2 , for j = 1,2,…,K. 

Furthermore, we assumed that all the regression coefficients  𝛽𝛽ℓ𝑗𝑗, ℓ = 1,2, … , P; 𝑗𝑗 = 1,2, … , K  are 

independent and follow normal distribution with known mean and known variance. That is,  

 

𝛼𝛼𝑗𝑗~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎𝑗𝑗1,𝑎𝑎𝑗𝑗2),   𝑗𝑗 = 1,2, … , K 

𝜆𝜆𝑗𝑗~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑣𝑣𝑗𝑗1, 𝑣𝑣𝑗𝑗2),   𝑗𝑗 = 1,2, … , K 

𝛽𝛽ℓ𝑗𝑗~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝜇𝜇ℓ𝑗𝑗,𝜎𝜎ℓ𝑗𝑗2 �, ℓ = 1,2, … , P, 𝑗𝑗 = 1,2, … , K 
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We use θ to represent the vector of all unknown parameters, where θ =

�α1, … ,αK, λ1, … , λK,β(1), … ,β(K)� and β(j) = �β1j,β2j, … ,βPj�, j = 1,2, … , K. That is 𝜃𝜃 has (2+P) K 

components. The joint prior density function of the vector of all unknown parameters θ is 

 

g(θ) = �𝑔𝑔𝑗𝑗(𝜃𝜃𝑗𝑗)
K

𝑗𝑗=1

  

 

g𝐶𝐶𝐶𝐶𝐶𝐶(θ) ∝  ��𝛼𝛼𝑗𝑗
𝑎𝑎𝑗𝑗1−1𝑒𝑒−𝑎𝑎𝑗𝑗2𝛼𝛼𝑗𝑗  ×  𝜆𝜆𝑗𝑗

𝑣𝑣𝑗𝑗1−1𝑒𝑒−𝑣𝑣𝑗𝑗2𝜆𝜆𝑗𝑗 ×    𝑒𝑒
−∑ �

(𝛽𝛽ℓ𝑗𝑗−𝜇𝜇ℓ𝑗𝑗)2

2𝜎𝜎ℓ𝑗𝑗
2 �𝑃𝑃

ℓ=1
 �                     

𝐾𝐾

𝑗𝑗=1

 

 
 
The logarithm of the joint prior density function of 𝜃𝜃, up to a constant, is 
 
 
 

  log�g𝐶𝐶𝐶𝐶𝐶𝐶(θ)� ∝  ���𝑎𝑎𝑗𝑗1 − 1� log�𝛼𝛼𝑗𝑗� − 𝑎𝑎𝑗𝑗2𝛼𝛼𝑗𝑗 + �𝑣𝑣𝑗𝑗1 − 1� log�𝜆𝜆𝑗𝑗� − 𝑣𝑣𝑗𝑗2𝜆𝜆𝑗𝑗 −��
(𝛽𝛽ℓ𝑗𝑗 − 𝜇𝜇ℓ𝑗𝑗)2

2𝜎𝜎ℓ𝑗𝑗2
�

𝑃𝑃

ℓ=1

   �
𝐾𝐾

𝑗𝑗=1

 

 

3.3.2 Posterior distribution  
 
 
The posterior density, g𝐶𝐶𝐶𝐶𝐶𝐶(θ|data) is the product of the joint prior density function and likelihood 

function. The joint posterior density function of the vector of all unknown parameters 𝜃𝜃, up to a 

constant, as 

 

 

g𝐶𝐶𝐶𝐶𝐶𝐶(θ|data) ∝ g𝐶𝐶𝐶𝐶𝐶𝐶(θ) × 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃) 
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g𝐶𝐶𝐶𝐶𝐶𝐶(θ|data) ∝  � � … � � � αj
aj1e−aj2αj   λj

vj1e−vj2λj     𝑒𝑒
−∑ �

(𝛽𝛽ℓ𝑗𝑗−𝜇𝜇ℓ𝑗𝑗)
2

2𝜎𝜎ℓ𝑗𝑗
2 �𝑃𝑃

ℓ=1
×

∞

0

∞

0

∞

−∞

∞

−∞

𝐾𝐾

𝑗𝑗=1
 

∏ ��𝑒𝑒𝛼𝛼𝑗𝑗(1−𝑒𝑒𝑡𝑡
𝜆𝜆𝑗𝑗)�

𝑒𝑒∑ 𝛽𝛽ℓ𝑗𝑗𝑍𝑍ℓ𝑗𝑗
P
ℓ=1

 𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗−1 𝑒𝑒𝑡𝑡𝑖𝑖

𝜆𝜆𝑗𝑗
𝑒𝑒∑ 𝛽𝛽ℓ𝑗𝑗𝑍𝑍ℓ𝑗𝑗P

ℓ=1 �𝒏𝒏
𝒊𝒊=𝟏𝟏 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑1𝑗𝑗 …𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃              (3.15) 

 

        The normalizing constant is 

            𝑝𝑝(𝑦𝑦) =  ∑ ∫ …∫ ∫ ∫ αj
aj1e−aj2αj   λj

vj1e−vj2λj    𝑒𝑒
−∑ �

(𝛽𝛽ℓ𝑗𝑗−𝜇𝜇ℓ𝑗𝑗)2

2𝜎𝜎ℓ𝑗𝑗
2 �𝑃𝑃

ℓ=1
×∞

0
∞
0

∞
−∞

∞
−∞

𝐾𝐾
𝑗𝑗=1  

∏ ��𝑒𝑒𝛼𝛼𝑗𝑗(1−𝑒𝑒𝑡𝑡
𝜆𝜆𝑗𝑗)�

𝑒𝑒∑ 𝛽𝛽ℓ𝑗𝑗𝑍𝑍ℓ𝑗𝑗
P
ℓ=1

 𝑡𝑡𝑖𝑖
𝜆𝜆𝑗𝑗−1 𝑒𝑒𝑡𝑡𝑖𝑖

𝜆𝜆𝑗𝑗
𝑒𝑒∑ 𝛽𝛽ℓ𝑗𝑗𝑍𝑍ℓ𝑗𝑗P

ℓ=1 �𝒏𝒏
𝒊𝒊=𝟏𝟏 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑1𝑗𝑗 …𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃   (3.16) 

For one of the numerical approximation we use here, we need to transform the parameters to real valued. 

In this case the first 2K elements in 𝜃𝜃 are the positive parameters that should be transformation. That is, 

𝜃𝜃𝑗𝑗∗ = log�𝜃𝜃𝑗𝑗� , 𝑗𝑗 = 1,2, … ,2K.  

Where 

𝜃𝜃𝑗𝑗 = 𝛼𝛼𝑗𝑗 , 𝑗𝑗 = 1,2, … , K 

𝜃𝜃𝐾𝐾+𝑗𝑗 = 𝜆𝜆𝑗𝑗 , 𝑗𝑗 = 1,2, … , K 

As before, the Jacobian is 𝑒𝑒∑ 𝜃𝜃𝑗𝑗
∗2𝐾𝐾

𝑗𝑗=1 . 

 The joint posterior density function of 𝜃𝜃∗, given data, is  

 
gCRR(𝜃𝜃∗|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) =  gCRR�𝜃𝜃1 = 𝑒𝑒𝜃𝜃1∗ , … ,𝜃𝜃2𝐾𝐾 = 𝑒𝑒𝜃𝜃2𝐾𝐾

∗
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖| 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝑒𝑒∑ 𝜃𝜃𝑗𝑗

∗2𝐾𝐾
𝑗𝑗=1  

 
 
Thus, the log-posterior density function of 𝜃𝜃∗, given data, is 

log (gCRR(𝜃𝜃∗|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)) = log �gCRR�𝜃𝜃 = 𝑒𝑒𝜃𝜃∗| 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�� +  �𝜃𝜃𝑗𝑗∗
2𝐾𝐾

𝑗𝑗=1
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The marginal distributions in equations (3.14) and (3.16) does not have an analytic solution; because of 

that, we will use numerical techniques to calculate the posterior distribution of θ without calculating the 

normalized constant. There are several numerical techniques that can be used to do all Bayesian 

analysis. In this study, we will apply Markov Chain Monte Carlo (MCMC) method to get random draws 

from the posterior distributions in (3.13) and (3.15) to be able to calculate the Bayesian estimate for all 

unknown parameters under quadratic loss function.  

 
 

3.4 Normal approximation 

 

When the log joint posterior density function of the transformed parameters is ready, we will apply 

optimization algorithms to obtain an approximation to the posterior distribution. For example, we will 

use the Nelder-Mead method to find the approximate posterior mode and the variance-covariance 

matrix, which can be used in identifying the proposal distribution in the Metropolis-Hastings algorithms 

later. To set up for a particular Bayesian inference problem in R, we must define the log posterior 

density by an R function. Hence, we will use the LearnBayes package in R, which contains the Laplace 

function. The Laplace function is an efficient technique to summarize a posterior distribution before 

applying the MCMC method. According to Geisser el at. (1990), the Laplace method described by 

Erdelyi in 1956 is a frequently used process in statistical theory. In Bayesian inference, researchers use 

the Laplace method to get different quantities such as approximate posterior expectations, marginal 

densities, and predictive densities.  The aim of using the Laplace method in this study is to calculate the 

integration for posterior distributions because the posterior distributions for both cases do not have 

closed form. The Laplace function needs to define the log joint posterior density with intelligent guesses 

for starting values.  
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3.5 Markov Chain Monte Carlo Methods 

 

In this section, we will explain briefly some sources, which present a lot of information about Markov 

Chain Monte Carlo (MCMC) from the past until recently. Tierney (1994) described MCMC as an 

important technique in Bayesian inference that can be used especially when the posterior distributions do 

not have a standard form to which numerical integration techniques cannot be applied. 

Additionally, Albert (2011) in his book “Bayesian Computation with R” described MCMC methods, 

which he used to summarize posterior distribution. MCMC is a computing technique, which is used to 

generate samples from the posterior distribution based on constructing a Markov Chain. Presently, it is 

widely used in various sciences, such as statistics, biology, computer science, etc. MCMC methods 

include the Metropolis–Hastings algorithm, Gibbs sampling, Slice sampling, Multiple try Metropolis, 

and Reversible-jump, but we will focus only on the Metropolis–Hastings algorithm.  

 
 

3.5.1 Metropolis-Hastings Algorithms 
  

The Metropolis-Hastings (M-H) algorithm is named after the American physicist and computer scientist 

Nicholas C. Metropolis. The M-H algorithm is straightforward and practical, and can be used to obtain 

random samples from any complex target distribution of high dimension that is known up to a 

normalizing constant. The essential idea behind that algorithm is to generate a Markov Chain {𝜃𝜃𝑡𝑡, 𝑡𝑡 =

0,1,2,3, … }such that its stationary distribution is the target distribution. 

According to (Albert, 2011) Markov Chain Monte Carlo methods are describe as a strategic way to 

simulate draws from a general posterior distribution. Furthermore, there are essential properties for a 

Markov Chain that are irreducible and periodic. We can say a Markov Chain is irreducible when it 

moves from any state to any other state, in one or more steps. However, we can say Markov Chain is 

periodic when it is given in a particular state, and can only return to the same state at a regular interval. 
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In this part, there are two particular types of Metropolis-Hastings algorithm that are under MCMC 

method, the independence chain and the random walk chain, but we only focus on the random walk 

chain. Suppose we are interested in simulating a sample from a posterior density g(θ|data). Hence, we 

start with the choice of proposal density, which is in this case a multivariate normal distribution 

depending on the variance-covariance matrix we got from the Laplace function and the positive scale 

parameter we selected. We should decide starting values for unknown parameters. Let M, which can be 

any value, represent the number of random draws of the chain. Here, we will explain the notation for this 

method.  

 

The following steps summarize Metropolis-Hastings algorithm:   

1. The starting point of the chain, θ0 

2. The number of the random draws, M. 

3. We need to repeat the following steps for i=1,…,M: 

• Set 𝜃𝜃 =  𝜃𝜃𝑖𝑖−1 

• Generate a candidate 𝜃𝜃∗ from a proposal distribution 𝑝𝑝(𝜃𝜃∗|𝜃𝜃) 

• Calculate the acceptance probability Y as Y = min{1, R}  , where 

𝑅𝑅 =
𝑔𝑔(𝜃𝜃∗|. )𝑝𝑝(𝜃𝜃|𝜃𝜃∗)
𝑔𝑔(𝜃𝜃|. )𝑝𝑝(𝜃𝜃∗|𝜃𝜃)

 

• Set 𝜃𝜃𝑖𝑖 = 𝜃𝜃∗ with probability Y or otherwise set 𝜃𝜃𝑖𝑖 = 𝜃𝜃. 

 

3.6 Simulation Study 

In this section, we use the simulation techniques to test the performance of the methods that are applied 

in this study to estimate the model parameters. Without loss of generality, we will perform this 
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simulation when K=2. There are various measures can be used to make the comparison between the 

maximum likelihood and the Markov Chain Monte Carlo methods. 

We use the simulation of time-to-event-data using the inversion method to test the performance of the 

methods that are applied in this study to estimate the model parameters.  

 

This simulation of competing risks data is conducted based on the following scheme: 

1. Set the parameters' values of 𝜃𝜃 = (𝛼𝛼1,𝜆𝜆1,𝛼𝛼2, 𝜆𝜆2). 

2. Set different samples size n. 

3. Determine the percentage of censored data, say P. 

4. Simulate a random sample with different size n from the competing risks model with TPBT 

(𝛼𝛼𝑗𝑗 , 𝜆𝜆𝑗𝑗), j=1,2, of the risks. 

5. Calculate the point estimates and 95% confidence interval for each parameter using the MLE 

method. 

6. Calculate the Bayes estimates and 95% probability interval for each parameter using the Markov 

Chain Monte Carlo method. 

7. Repeat steps 3-6 N times. 

8. Compute the mean squared error (MSE) and the coverage probability (CP) of the interval 

estimates for MCMC and MLE methods using the following formula: 

• The MSE of the 𝜃𝜃� 

𝑀𝑀𝑀𝑀𝑀𝑀�𝜃𝜃�� =  �
(𝜃𝜃�𝑖𝑖 −  𝜃𝜃)2

𝑁𝑁

𝑁𝑁

𝑖𝑖=1

 

Where 𝜃𝜃�𝑖𝑖 = (𝛼𝛼�1𝑖𝑖 , 𝜆̂𝜆1𝑖𝑖 ,𝛼𝛼�2𝑖𝑖 , 𝜆̂𝜆2𝑖𝑖 ) is the point estimate of 𝜃𝜃 using the generated sample in the 𝑖𝑖𝑡𝑡ℎ  iteration. 

• The coverage probability (CP) is 

𝐶𝐶𝐶𝐶 =
∑ 𝐷𝐷𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

Where  𝐷𝐷𝑖𝑖= 1 if the confidence interval in the 𝑖𝑖𝑡𝑡ℎiteration captures the true parameter and zero otherwise. 
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We applied the simulation study with 1000 iterations, and specified different sample sizes of n= 

25,50,100,200 and 300. We selected the true values of the parameters θ = (.5, .8, .5,1.2) because that 

will give a bathtub shape when 𝝀𝝀𝟏𝟏 < 𝟏𝟏 and increasing shape when 𝝀𝝀𝟐𝟐 ≥ 𝟏𝟏 of the hazard function.  

 

 
As results show in Table 1 and Table 2, the mean square error of each parameter is decreasing for the 

Markov Chain Mote Carlo and the maximum likelihood methods. Moreover, the averages of MSE 

decreases when sample size increases for both methods that were applied. The MSE from both methods 

for 𝛼𝛼1, 𝜆𝜆1, 𝛼𝛼2and 𝜆𝜆2 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 slightly close values when the percentage of censored data equals to zero 

and 5%. Additionally, as shown in Table 3 and Table 4, the coverage probability remains close to the 

nominal level of 95% for each parameter in the Markov Chain Monte Carlo method when the percentage 

of censored data is zero and 5. In general, the coverage probability increases with sample size increases. 
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MSE-MCMC 
 

n p 𝛼𝛼1 𝜆𝜆1 𝛼𝛼2 𝜆𝜆2 Averages 
25 0 0.02645 0.06315 0.02916 0.09715 0.21590 
50 0 0.01138 0.02381 0.01111 0.03260 0.07890 
100 0 0.00549 0.01117 0.00565 0.01493 0.03724 
200 0 0.00281 0.00493 0.00260 0.00697 0.01731 
300 0 0.00176 0.00367 0.00170 0.00448 0.01160 

                                                                MSE-MLE 
 
 25   0 0.02510 0.05573 0.02740 0.09262 0.20085 
 50 0 0.01166 0.02328 0.01266 0.03323 0.08082 
 100 0 0.00536 0.01056 0.00511 0.01525 0.03629 
 200 0 0.00250 0.00457 0.00275 0.00671 0.01653 
 300 0 0.00166 0.00348 0.00170 0.00451 0.01135 

     Table 1: The mean squared errors for α1, λ1,α2 and λ2 by using MCMC and MLE 
                 methods at   θ = (.5, .8, .5,1.2) and p = 0. 
 
 
 
 
 
 

MSE-MCMC 
 

n p 𝛼𝛼1 𝜆𝜆1 𝛼𝛼2 𝜆𝜆2 Averages 
 25 5 0.03127 0.08256 0.03022 0.10767 0.25173 

 50 5 0.01218 0.02559 0.01185 0.03395 0.08357 

100 5 0.00569 0.01138 0.00575 0.01717 0.03999 
200 5 0.00262 0.00531 0.00272 0.00754 0.01819 

300 5 0.00157 0.00333 0.00176 0.00455 0.01122 

MSE-MLE 
 

  25   5 0.02477 0.07130 0.03361 0.11886 0.24854 
 50 5 0.01128 0.02471 0.01095 0.03361 0.08055 

100 5 0.00558 0.01192 0.00535 0.01477 0.03763 

200 5 0.00295 0.00534 0.00294 0.00710 0.01832 

300 5 0.00224 0.00340 0.00218 0.00428 0.01209 

      Table 2: The mean squared errors for α1, λ1,α2 and λ2 by using MCMC and MLE 
       methods at   θ = (.5, .8, .5,1.2) and p = 5. 
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                                         CP-MCMC 
 

n p 𝛼𝛼1 𝜆𝜆1 𝛼𝛼2 𝜆𝜆2 
  25 0 92.7 92.3 91.5 91.6 
 50 0 92.6 93.2 91.9 91.8 
100 0 93.0 92.8 92.5 92.9 
200 0 93.5 93.0 93.2 93.7 
300 0 94.3 93.2 93.2 94.6 

CP-MLE 
 

 25 0 91.3 91.5 90.1 90.3 
 50 0 92.8 92.1   92.7 90.1 
100 0 93.0 92.5 93.0 91.0 
200 0 93.7 93.9 92.8 92.5 
300 0 94.0 94.4 93.5 93.8 

                 Table 3: The coverage probability (CP) for α1, λ1,α2 and λ2 by using MCMC and  
                 MLE methods at θ = (.5, .8, .5,1.2) and p = 0. 

 
 
 
 
 

                                        CP-MCMC 
 

n p 𝛼𝛼1 𝜆𝜆1 𝛼𝛼2 𝜆𝜆2 
  25 5 91.2 90.0 91.3 90.6 
 50 5 92.8 91.1 92.0 90.6 
100 5 91.2 92.7 93.5 92.0 
200 5 93.0 93.0 91.1 92.3 
300 5 94.1 93.8 93.1 92.7 

CP-MLE 
 

  25 5 90.6 90.2 90.1 90.0 
 50 5 91.9 92.6 90.0 90.9 
100 5 92.0 93.5 92.0 92.1 
200 5 93.5 94.0 93.3 93.2 
300 5 94.3 94.3 94.0 93.1 

   Table 4: The coverage probability (CP) for α1, λ1,α2 and λ2 by using MCMC and  
   MLE methods at θ = (.5, .8, .5,1.2) and p = 5. 
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Chapter 4: Applications 
 
 

4.1 Introduction 

 

In this section, the maximum likelihood and MCMC methods will be used to estimate the parameters of 

all the risks and some of the reliability measures of the system for both the competing risks model and 

competing risks regression model. Additionally, this study will include two real-life datasets. The first 

data set is from the Amsterdam Cohort Studies on HIV infection and AIDS, which considers a particular 

problem about HIV infection among men who have sex with men (MSM) (Koblin et al., 2003). There 

are various types of studies, which analyzed data of HIV infection using different techniques in statistics 

to explain the high risk of this behavior to physical health. The second data set is survival time of 

electrical appliances from Lawless (2003). All analysis in this chapter is by using R.  

 

4.2 AIDSSI dataset 

 
We will analyse AIDSSI dataset, which is available in “mstate” package in R program, about human 

immunodeficiency virus (HIV) infection in the Amsterdam Cohort Studies. The total participants in this 

study were 329 selected from the Amsterdam Cohort (see Geskus et al., 2000 and 2003). This study 

explained high-risk behaviours, which are due to different physical health problems, among men who 

have sex with men. There are only two causes of failure, which are AIDS and syncytium-inducing (SI) 

HIV phenotype. We used the same dataset to analyse both case study 1 and case study 2. In the next 

subsection, we explain each case and what variables will be considered. We are interested in the time to 

failure whatever the cause of failure, which competes to attack or kill participants, was. Additionally, in 

this situation, only one cause can occur but we do not know which cause will occur first. Table 5 shows 

more details about each variable. 
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The variable Definition 
Time This variable presents time from HIV infection to first of SI appearance and 

AIDS, or last follow-up 
Status This variable gives indicator for each event such as: 0 = censored, 1 = AIDS, 2 = SI 

appearance 
CCR 5 This is C-C chemokine receptor type 5, also known as CCR5 which is has two level 

"WW" (wild type allele on both 
chromosomes), "WM"(mutant allele on one 
chromosome), we give indicator for each 
levels:0=”WW” and 1= “WM”. 

 

  
 

Age This variable presents age at HIV infection. 

        
  Table 5: The description of all variables listed in the AIDISS dataset. 

 

4.2.1 Case study 1 

 

In this case, we will explain the competing risks model that considers only the time to event and the 

status. Let (T, 𝐶𝐶, 𝛿𝛿) be random vectors, where T denotes failure time, C denotes cause of failures and 

𝛿𝛿 denotes indicator status. If the causes of failure are observed (𝛿𝛿 = 1), but otherwise (δ = 0) which 

represents Type-I censoring. In the competing risks model each patient is under two risks of failure, 

which are known as acquired immunodeficiency syndrome (AIDS) and syncytium inducing (SI) HIV 

phenotype. Furthermore, we need to specify particular assumptions to explain competing risks model:  

 Suppose the TPBT lifetime distribution for each cause of failure 𝑇𝑇𝑖𝑖 = min{𝑇𝑇𝑖𝑖1, 𝑇𝑇𝑖𝑖2}, where 

𝑇𝑇𝑖𝑖1~ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝛼𝛼1,𝜆𝜆1) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑇𝑇𝑖𝑖2~ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝛼𝛼2, 𝜆𝜆2), and only observe the 𝑇𝑇𝑖𝑖 . 
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                    Figure 2: The diagram explains the variables of competing risks model. 

 

4.2.1.1 The result of competing risks  
 
 
In this study, we used TPBT model to analyze AIDSSI data set by using the maximum likelihood and 

Bayesian methods. In order to calculate the asymptotic confidence intervals for each parameter, we 

computed the inverse of the Fisher information matrix that approximates the variance-covariance matrix 

for the maximum likelihood estimates of the vector of unknown parameters 𝜃𝜃 = (𝛼𝛼1,𝝀𝝀𝟏𝟏,𝜶𝜶𝟐𝟐,𝝀𝝀𝟐𝟐). The 

maximum likelihood estimates and 95% confidence intervals of the four model parameters are shown in 

Table 6 and Table 7. 

 

 
 

Method 𝜶𝜶𝟏𝟏 𝝀𝝀𝟏𝟏 𝜶𝜶𝟐𝟐 𝝀𝝀𝟐𝟐 

MLE 0.01346 0.56534 0.02122 0.50220 

BE 0.013730 0.5645 0.02160 0.5004 

              Table 6: Estimates the parameters by maximum likelihood and Bayesian methods. 

 
 

 
 
 

Patient with HIV

AID

SI

Censored
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 The inverse of the Fisher information matrix: 
 
 
 

𝛪𝛪−1 =

⎝

⎜
⎛

 7.613204𝑒𝑒 − 06   

−5.128713𝑒𝑒 − 05

2.048718𝑒𝑒 − 16

−1.317940𝑒𝑒 − 15

−5.128713𝑒𝑒 − 05

4.353662𝑒𝑒 − 04

−1.801692𝑒𝑒 − 15

1.159028𝑒𝑒 − 14

   2.048718𝑒𝑒 − 16   

−1.801692𝑒𝑒 − 15

1.698079𝑒𝑒 − 05

−8.252388𝑒𝑒 − 05

−1.317940𝑒𝑒 − 15

1.159028𝑒𝑒 − 14

−8.252388𝑒𝑒 − 05

5.308760𝑒𝑒 − 04 ⎠

⎟
⎞

 

 

 
 Confidence intervals 

Parameters Lower bound Upper bound 

𝜶𝜶𝟏𝟏 0.008051313 0.01886739 

𝝀𝝀𝟏𝟏 0.524447107 0.60623959 

𝜶𝜶𝟐𝟐 0.013147822 0.02930126 

𝝀𝝀𝟐𝟐 0.457045017 0.54736474 

Table 7: The asymptotic confidence intervals at 95% using maximum likelihood method. 

 
 
 
Under Bayes methods, we applied MCMC technique. We suppose all unknown parameters in this 

model to be independent random variables and follow gamma distribution when all the hyper-

parameters are known and equal to 0.001 to reflect non-informative prior. We assumed a small value for 

all hyper-parameters because of the ”low information” for selecting prior distribution, which is 

reasonable since its mean equals one while the variance is 1000.We used the normal approximation 

method to estimate the unknown parameters. To apply MCMC, the proposal density is a multivariate 

normal distribution with mean vector zero and the variance-covariance matrix was obtained from the 

normal approximation method and a positive value for scale parameter as 0.7. 
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We applied Metropolis random walk algorithm to simulate 10000 samples of draws from the posterior 

distribution. The acceptance rate of the draws was 51.66%. We discarded the first 50% of the draws. The 

rest of the draws is used to conduct inferences on the four unknown parameters by computing Bayes 

point estimates and the 95% credible intervals as shown in Table 6, Table 8 and Table 9. Further more, 

the marginal posterior distributions of the four parameters are estimated as shown Figure 3. The 

measures of central tendency for α1 and α2  both have means larger than their medians, because that 

histogram is right-skewed, but the measures of central tendency for λ1 and λ2  both have means larger 

than their medians, because that histogram is right-skewed. 

 
 Probability intervals 

Parameters Lower bound Upper bound 

𝛼𝛼1 0.008711196 0.019453637 

𝜆𝜆1 0.5256610 0.6078643 

𝛼𝛼2 0.01423233 0.03050542 

𝜆𝜆2 0.4570505 0.5452463 

Table 8: The 95% credible intervals for the four parameters. 

 
 

Measures 𝛼𝛼1 𝜆𝜆1 𝛼𝛼2 𝜆𝜆2 

Min. 0.005909 0.4933 0.01021 0.4321 

First Quartile 0.011680 0.5488 0.01841 0.4838 

Median 0.013550 0.5637 0.02133 0.4994 

Mean 0.013730 0.5645 0.02160 0.5004 

Third Quartile 0.015660 0.5794 0.02437 0.5172 

Max. 0.027040 0.6310 0.03806 0.5802 

Table 9: The measures of central tendency of all model parameters. 
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Figure 3: Estimated marginal posterior distributions of the model parameters. 

 

Furthermore, all diagnostics test results on the simulations draws, which is instructive to determine if 

they approximately represent the posterior distribution of interest. Figure 4, the trace plots, shows the 

simulated draws of the transformed parameters with a poor choice of start values and scale factor. We 

plotted the same graph in Figure 5, but after discarding the early 5000 draws due to the poor choice of 

start values which shows better combination of simulated draws. Also, the autocorrelation plots in 

Figure 6, which show the lag decreases to zero very quickly, which mean the draws become more 

independent over time. The estimates of the relative risk rate of each cause of failure in the presence of 

all other causes are given in Table 12. The trace plots of the draws of πj, j = 1,2, and the corresponding 

marginal posterior density functions are provided in Figure 7. 
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Figure 4: The trace plots of the10000 simulated draws of the transformed parameters. 

 
      

Figure 5: The simulated draws after discarding the early 50% of the draws. 
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Figure 6: The autocorrelation plots of simulated draws after discarding the early 50% of the draws. 

 

 

Methods 𝜋𝜋�1 𝜋𝜋�2 

MLE 0.5431876 0.4568124 

BE 0.5451378 0.4548611 

                      Table 10: The estimation of the relative risk for the two causes. 
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Measures 𝜋𝜋1(𝑡𝑡) 𝜋𝜋2(𝑡𝑡) 

Min. 0.4094 0.3417 

First Quartile 0.5217 0.4316 

Median 0.5458 0.4542 

Mean 0.5451 0.4549 

Third Quartile 0.5684 0.4783 

Max. 0.6583 0.5906 

                                
Table 11: The measures of the central tendency for both two relative risks. 

 

 

 Probability intervals 

The risks Lower bound Upper bound 

𝜋𝜋�1 0.4756934 0.6131275 

𝜋𝜋�2 0.3868725 0.5243066 

      
           Table 12: The 95% credible intervals for both two relative risks. 
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                      Figure 7: The marginal posterior density and trace plots for each relative risk πj(t),j=1,2. 
 

 

 

Also, we estimated the hazard function and survival function of each risk at the mean of the sample (say 

𝑡𝑡0) are estimated using the maximum likelihood and MCMC methods as shown in Tables 13-16 and 

Figures 8 and 9. The measures of central tendency for hazard functions all have means larger than their 

medians, because the histogram shape are right-skewed. 

 

Methods ℎ1(𝑡𝑡0) ℎ2(𝑡𝑡0) 

MLE 0.06487106 0.05708413 

BE 0.06469 0.05641 

Table 13: The estimation of the hazard function by maximum likelihood and MCMC methods.  
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Measures ℎ1(𝑡𝑡) ℎ2(𝑡𝑡) 

Min. 0.04484 0.03916 

First Quartile 0.06065 0.05241 

Median 0.06461 0.05630 

Mean 0.06469 0.05641 

Third Quartile 0.06863 0.06027 

Max. 0.08398 0.07891 

Table 14: The measures of the central tendency for the hazard functions of both two risks. 

 
 
 

 Probability intervals 

Hazard Functions Lower bound Upper bound 

ℎ1(𝑡𝑡) 0.05274782 0.07667317 

ℎ2(𝑡𝑡) 0.04537678 0.06778769 

Table 15: The 95% credible intervals for the hazard functions of both two risks. 
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Figure 8: The posterior density for the hazard functions of both two risks. 

 
 
 
 

Methods 𝑆𝑆1(𝑡𝑡) 𝑆𝑆2(𝑡𝑡) 

MLE 0.7769016 0.7585281 

BE 0.7768 0.7598 

    Table 16: The estimation of the survival function by maximum likelihood and MCMC methods. 
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Measures 𝑆𝑆1(𝑡𝑡) 𝑆𝑆2(𝑡𝑡) 

Min. 0.7070 0.6810 

First Quartile 0.7620 0.7458 

Median 0.7773 0.7602 

Mean 0.7768 0.7598 

Third Quartile 0.7910 0.7742 

Max. 0.8543 0.8237 

                      
Table 17: The measures of the central tendency for the survival functions of both two risks. 

 
 
 

 Probability intervals 

Hazard Functions Lower bound Upper bound 

𝑆𝑆1(𝑡𝑡) 0.7360718 0.8188732 

𝑆𝑆2(𝑡𝑡) 0.7147731 0.8028594 

Table 18: The 95% credible intervals for the survival functions of both two risks. 
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                                    Figure 9: The posterior density for both two survival functions of the risks. 
 
 

 

4.2.2 Case study 2 
 
In this subsection, we will explain each variable that is used in the competing risks regression model. 

For each patient the following variables are observed: the time to event, indicator status, C-C chemokine 

receptor type 5 (CCR5) level and age at HIV infection in years. Figure 10, the diagram explains the data 

for the competing risks regression model. We will use the competing risks regression model when the 

cause specific hazard function is based on the covariates. Hence, we assumed the shape of baseline 

hazard function hj0(t), j=1,2, equal to the two-parameter bathtub distribution. 
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Figure 10: The diagram explains the variables of competing risks regression model. 

 

4.2.2.1 The result competing risks regression 
 
In this study, we used the TPBT model to analyze the AIDSSI data set by using the maximum likelihood 

and Bayesian methods. In order to calculate the asymptotic confidence intervals for each parameter, we 

computed the inverse of the Fisher information matrix to approximate the variance-covariance matrix 

for the maximum likelihood estimates of the vector of unknown parameters 𝜃𝜃 =

(𝛼𝛼1, 𝜆𝜆1,𝛼𝛼2, 𝜆𝜆2,𝛽𝛽11,𝛽𝛽12,𝛽𝛽21,𝛽𝛽22). The maximum likelihood estimates and 95% confidence intervals of 

the four model parameters are shown in Table 19 and Table 20. 

Parameters MLE MCMC 
𝛼𝛼1 0.01387 0.00943 
𝜆𝜆1 0.27238 0.5814 
𝛼𝛼2 0.01633 0.01446 
𝜆𝜆2 0.46619 0.5055 
𝛽𝛽11 0.07006 -1.2846 
𝛽𝛽12 0.04401  0.01666 
𝛽𝛽21 0.48551 -0.3326 
𝛽𝛽22 0.0071 0.0161 

Table 19: Estimates the parameters by the maximum likelihood and Bayesian methods. 

 

Patinet with 
HIV

AIDS
CCR5

Age at 
infection

SI
CCR5

Age at 
infection
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 Confidence intervals 

Parameters Lower bound Upper bound 

𝛼𝛼1 0.00839 0.01933 

𝜆𝜆1 0.22543 0.3193 

𝛼𝛼2 0.00834 0.02430 

𝜆𝜆2 0.41766 0.51472 

𝛽𝛽11 -0.4079 0.54812 

𝛽𝛽12 0.03165 0.05636 

𝛽𝛽21 0.0685 0.90248 

𝛽𝛽22 -0.0088 0.02319 

Table 20: The 95% confidence intervals of the eight model parameters. 

 
Under Bayes Method, we applied MCMC technique. We suppose all unknown parameters in this 

model assumed to be independent random variables and follow gamma distribution when all the hyper-

parameters are known and equal to 0.001 that reflects non-informative prior. We assumed small value 

for all hyper-parameter because of the ”low information” prior that is a reasonable since its mean equal 

one while the variance is 1000.We used the normal approximation method to estimate the unknown 

parameters.  

 

To apply MCMC, the proposal density is a multivariate normal distribution with mean vector zero and 

the variance-covariance matrix that obtained from the normal approximation method and a positive 

value for scale parameter as 0.7. We applied Metropolis random walk algorithm to simulate 10000 

samples of draws from the posterior distribution. The acceptance rate of the sample draws was 21.99%. 

We discarded the first 50% of the draws. The rest of the draws is used to conduct inferences on the eight 

unknown parameters by computing Bayes point estimates and the 95% credible intervals model as 

shown in Table 19, Table 21 and Table 22. Furthermore, the marginal posterior distributions of the eight 
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parameters are estimated as show in Figure 11. The measures of central tendency for α1  and α2  both 

have means larger than their medians because that the shape of histogram is right-skewed, but the rest of 

parameters have means equal to their medians, because that the shape of histogram is symmetric. 

 

 Probability intervals 

Parameters Lower bound Upper bound 

𝛼𝛼1 0.003541812  0.022076149 

𝜆𝜆1 0.5445942  0.6260562 

𝛼𝛼2 0.004886771  0.036369654 

𝜆𝜆2 0.4682408  0.5628071 

𝛽𝛽11 -1.8973189  -0.6908312 

𝛽𝛽12 -0.01174524  0.03736942 

𝛽𝛽21 -0.8086315 0.1119790 

𝛽𝛽22 -0.01561741 0.04017148 

        Table 21: The 95% credible intervals for the eight parameters. 

 
Measures 𝛼𝛼1 𝜆𝜆1 𝛼𝛼2 𝜆𝜆2 𝛽𝛽11 𝛽𝛽12 𝛽𝛽21 𝛽𝛽22 

Min. 0.002151 0.5192 0.002715 0.4379 -2.380 -0.026561 -0.9663 -0.028941 

First Quartile 0.006376 0.5680 0.008817 0.4932 -1.476 0.007528 -0.4865 0.007424 

Median 0.008319 0.5845 0.012419 0.5104 -1.262 0.015298 -0.3162 0.015675 

Mean 0.009597 0.5828 0.014261 0.5107 -1.282 0.015144 -0.3202 0.015673 

Third Quartile 0.011234 0.5966 0.017064 0.5258 -1.052 0.024111 -0.1418 0.024030 

Max. 0.034226 0.6421 0.090389 0.5731 -0.418 0.050399 0.4098 0.052792 

Table 22: The measures of central tendency of all model parameters. 
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Figure 11: Estimated marginal posterior distributions of the model parameters. 
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Furthermore, all diagnostics test results on the simulations draws, which is instructive to determine if 

they approximately represent the posterior distribution of interest are provided. Figure 12, the trace plots 

show the simulated draws of the transformed parameters with a good choices of start values and scale 

factor. We plotted the same graph in Figure 13, but after discarding early the 5000 draws due to the poor 

choice of start values and to show better combination of simulated draws than before. Hence, we 

provided autocorrelation plots of simulated draws of α1, λ1,α2 and λ2for the random walk chain after 

discarding the first 50% of the draws in Figure 14. Additionally, the autocorrelation plots show the lag 

decreases to zero very quickly, which means that the draws become independent over time. The 

estimates of the relative risk rates of each cause of failure in the presence of all other causes are 

shown in Table 23. 

 
                   Figure 12: The trace plots of the10000 simulated draws of the transformed parameters. 



 65 

 

Figure 13: The simulated draws after discarding the early 50% of the draws. 

 
 

 
Figure 14: The autocorrelation plots of simulated draws after discarding the early 50% of the draws. 
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Methods 𝜋𝜋�1 𝜋𝜋�2 

MLE 0.3078404 0.6921596 

BE 0.4084329 0.5915671 

    Table 23: The estimation of the two causes at the mean of age infection and CCR5 is "WM". 
 
 
 

 
Figure 15: The marginal posterior density and trace plots for each relative risk at the mean of age 

infection and CCR5 is "WM". 
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Methods 𝜋𝜋�1 𝜋𝜋�2 

MLE 0.01060627 0.9893937 

BE 0.2230407 0.7769593 

      Table 24: The estimation of the two causes at the mean of age infection and CCR5 is "WW". 
 
 
 

 
Figure 16: The marginal posterior density and trace plots for each relative risk at the mean of age 

infection and CCR5 is "WW". 
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Based on the output from the MCMC method, we selected the last 50% of the simulated draws which 

come from the posterior density for each parameter. As shown in Table 25, we estimated hazard function 

by using the maximum likelihood and MCMC methods and computed the measures of central tendency 

shown in Table 26 and the 95% credible intervals for the hazard function at each cause of failure shown 

in Table 27. Hence, we can use the measures of central tendency in Table 26 to describe the histogram 

shapes in Figure 17. The measures of central tendency for hazard functions all of them have means 

larger than the medians because that the histogram shape is right-skewed. 

 

 

Methods ℎ1(𝑡𝑡0) ℎ2(𝑡𝑡0) 

MLE 0.05323 0.033724 

BE 0.06478 0.05888 

Table 25: The estimation hazard function by maximum likelihood and MCMC methods.  

 
 
 
 

Measures ℎ1(𝑡𝑡) ℎ2(𝑡𝑡) 

Min. 0.04592 0.04185 

First Quartile 0.05983 0.05475 

Median 0.06443 0.05886 

Mean 0.06478 0.05888 

Third Quartile  0.06891 0.06309 

Max. 0.09001  0.07478 

                                Table 26: The measures of central tendency for hazard functions. 
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 Probability intervals 

Hazard Functions Lower bound Upper bound 

ℎ1(𝑡𝑡) 0.05207902 0.07798570 

ℎ2(𝑡𝑡) 0.04717179 0.07134012 

Table 27: The 95% credible intervals for hazard functions. 

 

 

 
 

Figure 17: The posterior density for the hazard functions of both two risks evaluated at the mean of the 
available data. 

 

As shown in Table 28, we estimated survival function by using the maximum likelihood and MCMC 

methods and computed the measures of central tendency shown in Table 29 and 95% credible intervals 



 70 

for the survival function for each cause of failure shown in Table 30. The measures of central tendency 

for survival functions both have mean equal to the median because that the histogram shape is 

symmetric as shown in Figure 18. 

 

Methods 𝑆𝑆1(𝑡𝑡) 𝑆𝑆2(𝑡𝑡) 

MLE 0.80661 0.72594 

BE 0.7884 0.7585 

     Table 28: The point estimate of survival function by maximum likelihood and MCMC methods. 

 

 
Measures 𝑆𝑆1(𝑡𝑡) 𝑆𝑆2(𝑡𝑡) 

Min. 0.7231 0.7009 

First Quartile 0.7738  0.7448 

Median 0.7891  0.7576 

Mean 0.7884 0.7585 

Third Quartile  0.8048 0.7703 

Max. 0.8577 0.8251 

Table 29: The measures of central tendency for survival functions. 

 
 
 
 

 Probability intervals 

Hazard Functions Lower bound Upper bound 

𝑆𝑆1(𝑡𝑡) 0.7436079 0.8326959 

𝑆𝑆2(𝑡𝑡) 0.7140227 0.8010096 

Table 30: The credible intervals at 95% for survival functions. 
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Figure 18: The posterior density for both two survival functions of the risks evaluated at the mean of the 

available data. 

 

 

4.3 Survival times of electrical appliances  

In this section, we will analyse the survival times of the electrical appliances data set containing the 

cause of failure and censored data from Lawless (2003). The total number of appliance subjects is 36, 

which are under an automatic life test. The data consist of two causes of failure; the first cause is failure 

mode 9, and the second cause includes all other failure modes. 
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4.3.1 The result of competing risks model  
 
 
In this study, we used the TPBT model to analyze the survival times of electrical appliances data set by 

using the maximum likelihood and Bayesian methods. In order to calculate the asymptotic confidence 

intervals for each parameter, we computed the inverse of the Fisher information matrix to approximate 

the variance-covariance matrix for the maximum likelihood estimates of the vector of unknown 

parameters 𝜃𝜃 = (𝛼𝛼1, 𝜆𝜆1,𝛼𝛼2, 𝜆𝜆2). The maximum likelihood estimates and 95% confidence intervals of the 

four model parameters are shown in Table 30 and Table 31. 

 

Method 𝜶𝜶𝟏𝟏 𝝀𝝀𝟏𝟏 𝜶𝜶𝟐𝟐 𝝀𝝀𝟐𝟐 

MLE .001625 0.216 0.000598 0.231 

BE 1.071e-03 0.2258 0.013370 0.1655 

                     
                        Table 31: Estimates the parameters by maximum likelihood and Bayesian methods. 

 
 Confidence intervals 

Parameters Lower bound Upper bound 

𝛼𝛼1 0.0010036 0.0022463 

𝜆𝜆1 0.21554682 0.2165431 

𝛼𝛼2 0.0003095 0.00088669 

𝜆𝜆2 0.23084136 0.2311586 

             
            Table 32: The asymptotic confidence intervals at 95% using maximum likelihood method. 

 

In Bayes Method, we applied the Markov Chain Mont Carlo (MCMC) technique. We suppose all 

unknown parameters in this model to be independent random variables and follow gamma 
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distribution when all the hyper-parameters are known and equal to 0.001, reflecting non-informative 

prior. We assumed a small value for all hyper-parameter because of the ”low information” prior that is 

reasonable since its mean equals one while the variance is 1000.We used the normal approximation 

method to estimate the unknown parameters.  

To apply MCMC, the proposal density is a multivariate normal distribution with mean vector zero and 

the variance-covariance matrix, is obtained from the normal approximation method and a positive value 

for scale parameter as 0.7. We applied Metropolis random walk algorithm to simulate 10000 samples of 

draws from the log posterior density distribution. The acceptance rate of the sample draws was equal to 

35.22%. Furthermore, after discarding the first 50% of the draws which have from random walk chain 

method, we can provide more inference on the four unknown parameters by computing Bayes point 

estimates and the 95% credible intervals of the fours model parameters which shown in Table 30 and 

Table 31. Hence, we can use the link between the measures of central tendency in Table 33 and the 

histogram shapes in Figure 17. The measures of central tendency for α1 and α2  both of them have 

means larger than the medians because of that histogram is right-skewed but the measures of central 

tendency for λ1 and λ2  both have means smaller than their medians, because that histogram is left-

skewed. 

 

 Probability intervals 

Parameters Lower bound Upper bound 

𝛼𝛼1 0.0001705914 0.0034735502 

𝜆𝜆1 0.2013185 0.2481062 

𝛼𝛼2 0.003107298 0.036062242 

𝜆𝜆2 0.1265825 0.1986200 

                    Table 33: The 95% credible intervals at for the four parameters. 
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Measures 𝛼𝛼1 𝜆𝜆1 𝛼𝛼2 𝜆𝜆2 

Min. 2.364e-05 0.1854 0.001278 0.1078 

First Quartile 4.846e-04 0.2177 0.007046 0.1539 

Median 8.196e-04 0.2261 0.011070 0.1660 

Mean 1.071e-03 0.2258 0.013370 0.1655 

Third Quartile 1.369e-03 0.2349 0.017580 0.1779 

Max. 8.501e-03 0.2663 0.077190 0.2144 

      Table 34: The measures of central tendency of all model parameters. 

 

 

Figure 19: Estimated marginal posterior distributions of the model parameters. 
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Furthermore, all diagnostics test results on the simulations draws, which is instructive to determine if 

they approximately represent the posterior distribution of interest. Figure 18, the trace plots, shows the 

simulated draws of 𝜃𝜃𝑖𝑖 =  log(𝛼𝛼1), log(𝜆𝜆1) , log(𝛼𝛼2) , log(𝜆𝜆2) , 𝑖𝑖 = 1, … 4, for an MCMC chain with poor 

choices of start values and scale factor. We plot the same graph in Figure 19, but after removing the first 

5000 draws due to the poor choice of start values and to show better combination of simulated draws 

than before. Hence, we provided autocorrelation plots of simulated draws of α1, λ1,α2 and λ2for the 

random walk chain after discarding the first 50% of the draws in Figure 20. Additionally, the 

autocorrelation plots show the lag decreases to zero very quickly, which means the draws become 

independent over time. The estimates of the relative risk rates of each cause of failure in the 

presence of all other causes are shown in Table 34. The trace plots of the draws of 𝜋𝜋𝑗𝑗 , 𝑗𝑗 = 1,2, and the 

corresponding marginal posterior density functions are shown in Figure 21. 

 

Figure 20: The trace plots of the10000 simulated draws of the transformed parameters. 
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Figure 21: The simulated draws after discarding the early 50% of the draws. 

 

 
Figure 22: The autocorrelation plots of simulated draws after discarding the early 50% of the draws. 
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Methods 𝜋𝜋�1 𝜋𝜋�2 

MLE 0.6921 0.3078 

BE 0.5378 0.4621 

                   Table 35: The estimation of the relative risk for the two causes. 
 
 

Measures 𝜋𝜋1(𝑡𝑡) 𝜋𝜋2(𝑡𝑡) 

Min. 0.1796 0.3990 

First Quartile 0.3407 0.5633 

Median 0.3889 0.6111 

Mean 0.3888 0.6112 

Third Quartile 0.4367 0.6593 

Max. 0.6010  0.8204 

                             Table 36: The measures of central tendency for each risk. 
 
 

 Probability intervals 

The risks Lower bound Upper bound 

𝜋𝜋�1 0.2494453 0.5239376 

𝜋𝜋�2 0.4760624 0.7505547 

      Table 37: The 95% credible intervals for each risk. 
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Figure 23:The posterior density and trace plots for each risk 𝛑𝛑𝐣𝐣(𝐭𝐭),j=1,2. 

 

Based on the output from the MCMC method, we selected the last 50% of the simulated draws, which 

come from the posterior density for each parameter. As shown in Table 38 and Table 41, we estimated 

hazard and survival functions by using the maximum likelihood and MCMC methods and computed the 

measures of central tendency shown in Table 39 and Table 42. The 95% credible intervals for the hazard 

and survival functions are shown in Table 40 and Table 43.  

Hence, we can use the measures of central tendency in Table 39 and Table 42 to describe the histogram 

shapes in Figure 24 and Figure 25. The measures of central tendency for hazard functions all have means 
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larger than their medians because that the histogram shape is right-skewed but survival functions all 

have means smaller than their medians because that histogram shape is left-skewed. 

 

Methods ℎ1(𝑡𝑡0) ℎ2(𝑡𝑡0) 

MLE 0.0004599476 
 

0.0004796583 

BE 0.02144639 
 

0.0219011 

              Table 38: The estimation hazard function by maximum likelihood and MCMC methods. 

 

 
Measures ℎ1(𝑡𝑡) ℎ2(𝑡𝑡) 

Min. 0.04553  0.03794 

First Quartile 0.05991  0.05230 

Median 0.06395  0.05635 

Mean 0.06402  0.05643 

Third Quartile 0.06807  0.06022 

Max. 0.08553  0.07614 

              
Table 39: The measures of central tendency for hazard functions evaluated at the mean of the available 

data 
 
 
 
 
 

 Probability intervals 

Hazard Functions Lower bound Upper bound 

ℎ1(𝑡𝑡) 0.05257848  0.07694172 

ℎ2(𝑡𝑡) 0.04542480  0.06868057 

Table 40: The 95% credible intervals for hazard functions evaluated at the mean of the available data. 
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Figure 24: The posterior density for the hazard function of both two risks evaluated at the mean of data. 

 
Methods 𝑆𝑆1(𝑡𝑡) 𝑆𝑆2(𝑡𝑡) 

MLE 0.5800188 0.6121732 

BE 0.7095  0.6274 

Table 41: The estimation survival function, evaluated at the mean of the observations, by maximum 
likelihood and MCMC methods. 

 

Measures 𝑆𝑆1(𝑡𝑡) 𝑆𝑆2(𝑡𝑡) 

Min. 0.4422  0.3431 

First Quartile  0.6650  0.5796 

Median  0.7142  0.6303 

Mean 0.7095  0.6274 

Third Quartile 0.7612  0.6760 

Max. 0.8681  0.8288 

   Table 42: The measures of the central tendency for the survival function of both two risks. 
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 Probability intervals 

Hazard Functions Lower bound Upper bound 

𝑆𝑆1(𝑡𝑡) 0.5599332 0.8183467 

𝑆𝑆2(𝑡𝑡) 0.4831888 0.7598601 

     
Table 43: The 95% credible intervals for the survival function of both two risks. 

 
 
 
 
 

 

Figure 25:The posterior density for both two survival function, evaluated at the mean of the 
observations, of the risks. 
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4.4 Discussion  

Putter et al. (2007) analysed the data from the Amsterdam Cohort Studies on HIV infection and AIDS 

using non-parametric setups. The relative risk rates of each cause of failure in the presence of all other 

risks are estimated by using the Kaplan–Meier estimate. Additionally, the regression approaches was 

used to estimate the effect of CCR5 with age at HIV infection on the cause-specific hazard function and 

the cumulative incidence function.  

 

In this study, we analyzed the AIDSSI data set using parametric setups. The objectives of this study is to 

estimate the unknown parameters included in competing risks models without and with covariates when 

the risks follow TPBT distribution with different parameters and the relative risk rates of each cause of 

failure in the presence of all other causes using MLE and MCMC methods. Also, we estimated some of 

the reliability measures of the competing risks system. 

 

In case study 1, Table 6, shows the maximum likelihood and Bayes point estimates of the four model 

parameters Table 7 and Table 8 show asymptotic 95% confidence intervals and credible intervals of the 

four unknown parameters. Table 10, shows the estimated risks using both two methods. The results from 

both methods are similar. As a diagnostic test for the MCMC, as shown in Figure 4,5,6, the trace plots 

show good mix of the sampled draws and the autocorrelation plots show that the lag decreases, which 

indicates that the draws become approximately independent over time. 

 

In case study 2, Table 19, shows the maximum likelihood and Bayes point estimates of the eight model 

parameters. Table 20 and Table 21 show asymptotic 95% confidence intervals and credible intervals of 

the eight unknown parameters. Table 23 and Table 24; show the estimated risks using both two methods. 

The results from both methods are different because of the effect of CCR5 and age at HIV infection. As 
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a diagnostic test for the MCMC, as shown in Figure 12,13,14 the trace plots show good mix of the 

sampled draws and the autocorrelation plots show that the lag decreases, which indicates that the draws 

become approximately independent over time. 
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Chapter 5: Conclusions 
 

 
Recently more lifetime distributions have been used to analyse competing risks data. In this study we 

used the two-parameter bathtub (TPBT) distribution because the hazard rate can be either increasing or a 

bathtub-shaped, which allows it to be a good fit for several data sets. In competing risks data, it is 

assumed that the subject is under attack of many risks that compete to destroy it, but only one risk can 

occur, and all risks are independent. Also, there is a chance that the subject may not received any attack 

during the study period and in this case, we observe the length of such period (censored time, there is no 

failure).  

 

The maximum likelihood and Bayes methods were used to estimate the parameters of all risks and some 

of reliability measures of the system. There was no analytic solution for the likelihood equations of the 

unknown parameters in case of both the competing risks model and competing risks regression model, 

therefore numerical methods were used to get the maximum likelihood estimations. In Bayes methods, 

the Markov Chain Monte Carlo (MCMC) method was applied to obtain the Bayes estimates of the 

parameters and system’s reliability measures, because the posterior distribution of the unknown 

parameters was not in a convenient form. In this thesis we considered two different real dataset. The first 

dataset on HIV infection and AIDS from Amsterdam Cohort Studies for men who have sex with men 

(Geskus et al.; 2000, 2003). The second dataset contains 36 small electrical appliances (Lawless, 2003). 

 

5.1 Future work  

Recently bladder cancer has been studied widely due to prevalence new cases and different causes of 

failure leading to death (Dyrskjøt et al., 2007; Hecker et al., 2013). The competing risks data with high-

dimensional covariates in bladder cancer will be analyzed using different regression approaches, such as 
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the cause-specific hazards model, sub-distribution hazards model, and mixture model. Parametric setups 

will be assumed to study this problem under independent and dependent assumptions. The purpose of 

analyzing phenotypic data is to determine which a subset of genes, has more significant correlation with 

time-to-event response (Engler & Li, 2009). 
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