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Abstract

On the Internet today, mobile malware is one of the most common attack methods.

These attacks are usually established via malicious mobile apps. One technique

used to combat this threat is the deployment of mobile malware detectors. In this

thesis, I aim to explore the similarity between artificial evolution and the cycle of

developmental adaptation between malware and cyber security developers. Mo-

bile malware is often a derivative of past results, only modified slightly to avoid

detection. In turn, this requires the security, malware detectors, to react and im-

prove. The result is a cycle of modifications of malware and improvements of secu-

rity. Using this cycle, I shape an artificial evolutionary arms race between mobile

malware and malware detectors to consider how this structure will allow for the

adaptation of detectors to evolving threats. To model this interaction, I present a

co-evolution of two genetic algorithms in the roles of malware and malware detec-

tor. The experimental evaluations on publicly available malicious / non-malicious

mobile apps and their variants generated by the artificial arms race show that this

approach improves the detector’s understanding of the problem. During the ex-

periments, the detectors generated were simpler then when not using an artificial

arms race, and required less data from each malware sample to detect the mali-

cious behaviours. Given the variety of apps available, I also considered how this

approach performs when trained with different sources of non-malicious apps. I

considered apps from: F-Droid, an open source app repository for Android; and

Google Play, the default installed app store on Android devices. Each source was

used to train detectors with one set as a baseline and then testing performance

with the other set. I found that the F-Droid trained detectors performed better

than the Google Play trained detectors at differentiation between malware and

non-malicious apps outside of the source they were trained on. In conclusion, al-

though my evaluations were performed using Android malware, this approach is

sufficiently generic that it could be extended to other forms of malware on other

platforms.
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Chapter 1

Introduction

Malware detection remains a challenging task as malware is created specifically to

avoid discovery by malware detectors. In turn, malware detectors are designed to

overcome this elusive opponent by constantly improving their detection methods

and techniques. From this vantage point, there exists a type of arms race between

those attempting to manufacture malware and those attempting to detect it. As

one’s performance improves, the other’s is reduced. Malware strength is partly

based on how undetectable it is, while the performance of detectors is entirely

based on how well it correctly classifies malware from benign files.

Evolutionary arms races are a natural phenomenon and can be compared to

co-evolution. With research into the evolutionary creation of malware, such as

Mystique[17], the adaptation for use with an evolutionary malware detector be-

comes a natural path to explore[28].

As such, my new contribution to the field of mobile malware security presented

in this thesis is the introduction of a methodology to create a simulated competi-

tion between mobile malware and malware detectors that improves the ability of

the detector to adapt to the evolving threats / malware. I aim to create the arti-

ficial arms race framework by using a bio-inspired malware generator and a bio-

inspired malware detector under a co-evolutionary paradigm. In this framework,

the malware detection module could function in conjunction with the malware

generation module, or as an independent module. To better simulate this direct

adversarial intent of malware, this thesis presents a method of training a malware

detector using a malware generator as a co-evolved genetic algorithm.

The methodology used in this work defines two populations with competitive

goals, each individually striving towards its own goal and being rewarded based

on how well it performs. Given that the parts of the populations that survive are

those that outperformed, or were closest to outperforming, members of the other
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population, this grows the knowledge of the population beyond the static sets used

in other algorithms. The first population consists of a genetic program deployed

to detect malware using feature-based analysis. This serves as the detector which

can be evolved to classify as either malware or benign. The second population con-

sists of malware which attempts to become as strong a sample as possible, given

that it must remain simultaneously undetectable. This is the population represent-

ing the changing malware in the arms race. The malware begins simple and is

rewarded for both achieving greater levels of control of the target system, and by

being misclassified by the detector population. The premise is based on the logic

that the generated malware is used to show what the detectors are lacking and in-

form them of what future changes are required. Simultaneously, the malware will

learn from the results of the detectors as to the kind of malware that is classified

incorrectly, providing a dataset for new malware that is more difficult to classify.

The malware generator and malware detector are both independently explored

in the literature, however, the novel process of combining these parts within a co-

evolution framework is the main contribution introduced here. The aim of this

approach is to improve the detector’s understanding of the problem, as well as

to provide meaningful datasets to represent real life situations for further analysis

and measurements. My results show that the signatures / solutions obtained for

malware detectors are simpler then not using an artificial arms race, and require

less data from each malware sample to be detected / classified accurately. I have

also generated results for the adaptability of the solutions to other datasets using

different sources of benign software. The comparison of this new method is made

to both a traditional genetic program, and a deterministic algorithm, namely the

C5.0 Decision Tree.

The rest of the thesis is organized as follows: Literature review and background

works are summarized in Chapter 2. The methodology used to generate malware

and the detector side of the artificial arms race, along with an explanation of their

co-evolution and the experimental setup, is introduced in Chapter 3. The results

are presented next in Chapter 4, and finally, conclusions are drawn and the future

works are discussed in Chapter 5.



Chapter 2

Literature Review

This chapter will discuss the background behind the proposed methodology. There

are several factors involved to create the chosen methodology. First, in section 2.1,

I will discuss the methods of detecting malware using genetic algorithms. Next,

in section 2.2, I will continue with the discussion of genetic algorithms, this time

for the creation of malware. Following the discussion of both sides of this evolu-

tion, I move on to the artificial arms race in section 2.3. Finally in section 2.4, I will

discuss the benefits and prior research using the Android environment.

2.1 Evolutionary Malware Detection

As with other malware detector, the mobile malware detector must be able to clas-

sify malware and benign software in some meaningful way. The state of mobile

malware, such as malware on the Android platform, is changing as new malware

is developed, creating a moving target for malware detectors. Although the meth-

ods become more complex, the basic ideas behind the detection methods remain

the same.

2.1.1 Feature Based Detectors

Feature based detection requires using a preprocessor to prepare the specimen into

a sequence of identifiable values. The performance of feature based detectors is

better when the feature set is tailored to the task [13]. As apps have layers of

encryption and structures where byte patterns have different meanings depending

on context, human thought needs to go into what features may be relevant to the

detection process.

Permission based detection with Android malware has proven to be very suc-

cessful [26]. A large amount of malware can be classified using only permissions.

3
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This method works because the permissions decide what actions the app is able to

perform, with some shown to be more dangerous then others. Permission evalu-

ation also becomes an issue as apps may request more permissions then they ac-

tually need [4]. Even if an app is not malicious, requesting additional permissions

than required is a security risk.

2.1.2 Malware Detectors

Previous research indicates that by building a more scalable deeper understand-

ing of the malware’s method, the application itself is able to better predict future

trends [18]. Furthermore, for the task at hand, when feature based analysis was

used, previous research using machine learning has produced results showing that

indeed malware may be categorized through machine learning approaches. For a

Bayesian classifier, it was found that 15 to 20 features were optimal for the detec-

tion of android malware [27]. The mobile malware detection space has expanded

research on using external app resources to help detect malware. Some detectors

have been built to use Battery Life and App Permission for heuristically predicting

what may be malware. Skovoroda and Gamayunov discussed that external val-

ues such as these could be combined with both static and dynamic analysis, and

machine learning to create more robust detectors[24].

2.2 Evolutionary Malware Generation

Malware, in the mobile space, is focused on apps. These apps are often from dif-

ferent malware families, each with their own goals and malicious intents. Due to

the structure of Android systems, most malware are modified versions of exist-

ing apps that contain added hidden malicious functions. Many apps of the same

family have similar feature combinations, required for the exploits or actions they

intend to use[2]. Earlier research in this field include vulnerability analysis tools

which aim to evolve new variants of known malicious behaviour such as buffer

overflow attacks[19, 17] , where Kayacik et. al. [15, 14] evolved using genetic pro-

gramming against open source anomaly detectors (stide, ph) [9] and intrusion de-

tection systems (snort)[21]. Furthermore, Fraser et al. employed a similar approach
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to demonstrate a similar concept in “Return-oriented programme evolution with

ROPER: a proof of concept” for evolving a ROP-chain to be used as a payload by

jumping between different chunks of code within a static binary[10]. Additionally,

Noreen et al. and Meng et al. researched similar approaches for evolving mobile

malware in [19] and [17], respectively. These methods depend on external malware

detectors that do not change over the course of the evolutionary system. The de-

tectors can take many forms, such as some pre-trained machine learning methods

used in Mystique[17]. In summary, the above previous works demonstrate that

by using existing malware, a form of abstract representations, and an evolution-

ary algorithm, new malware can be created to evolve beyond the capacity of the

static detectors. Evolved malware is given the opportunity to find the flaws in the

detectors. In doing so, the researchers aim to improve the detectors before such

malware is introduced into any Android marketplace.

2.3 Co-evolution and Artificial Arms Races

Arms race is used here to represent the struggle between opposing goals, creating

tension which leads to the necessity for adaptation. A good representation found

in nature is that of an evolutionary arms race. A predator may have its survival

linked to its goal of catching prey. Prey on the other hand would have its sur-

vival linked to the goal of avoiding the predator. Both sides’ survival depends on

the others ability to not perform its goal. The individuals that are able to complete

their goal are more likely to create offspring with individual traits that made it able

to complete said goal. The predators over time build up there ability to hunt as the

prey improve there ability to evade. The predator and prey relationship expressed

here is an asymmetric evolutionary arms race[6]. The model is similar to the en-

gineered artificial evolutionary arms race between malware developers and cyber

security developers. The continued development of new malware techniques is

compounded with the number of old attacks that still function[16]. Reacting and

improving security becomes a full time endeavour to counteract the adapting and

improving malware.

With the advent of the use of AI to aid in the creation of malware, some protec-

tions must be taken on the defensive side. The purely reactionary model for new
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technology is less effective when the system performing the attacks is adapting as

its attacks are caught.

Evolutionary algorithms are naturally exploitative, in a similar way that mal-

ware developers poke around existing systems. This makes it a good option for us-

ing this technique as a method of developing malware, as was done with Mystique[17].

The framework of co-evolution allows for the building of a detector that simulates

attacks against itself, thereby finding ways to defend against attacks tailored to the

detector.

Concurrent research involving a similar methodology was performed by Sen

et. al. [23]. The method used a co-evolved system to allow for the same reasoning

of discovery. The method involves many of the same aspects, such as a population

of malware and a population of malware detectors, referred to as anti-malware

software.

The detector in [23] used a different malware generator extended from previous

work by the same authors[3]. The abilities of that generator greatly outperform

the generator created for this thesis, which allows for a more versatile malware

generation process, beginning with an existing piece of malware and mutating it.

In contrast, the malware generation process presented in this thesis is based on

Mystique[17] and uses a framework app combined with custom pieces of mali-

cious functionality to build a new piece of malware without the need of an initial

sample.

In [3], the performance of the malware sample was entirely based on how well it

was able to avoid detection, and not about the actual ability of the malware. Here,

the payload was fixed from an existing malware family, only the obfuscation of

the malware was evolved to avoid detection. Due to the structure of the proposed

system, some malware would not fit the structure required to evolve.

In [23], the actual detection used feature based analysis, however, the features

chosen were quite different than the ones used in this thesis. In total, their detector

used up to 146 features, many of which are similar to those use in my detector.

Forty features were a selection of permissions, with another hundred, the presence

or absence of specific API calls. This means that there was a total of 140 analysis

points of chosen binary features. In addition, six numerical values were chosen:
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half were related to counting permissions and API calls, with the remainder count-

ing the number of classes, number of methods, and number of goto statements1.

The detector used was a genetic program tree2. This tree constructs a single

comparison. This method allows a tree to be trained to distinguish between two

classes. Tree GP is only able to distinguished between two classes.

2.4 Android and the Mobile Malware Landscape

The Android operating system has a key place in the mobile market, making it

ideal for the experiments done for this thesis. Android has been the most widely

used mobile operating system since 2011 and, as with previous popular leaders in

the mobile space, it has been the target of choice for most of today’s malware.

The operating system, developed by Google, was built on top of Linux and

attempts to reduce the attack surface accessible to user installed software. These

apps have a very defined structure and are sand-boxed to limit their interaction

with the rest of the system [7]. This has not stopped Android malware, but has

shaped it, distinctly from that of traditional operating systems, but similarly to

other mobile operating systems, such as iOS which also locks apps with restrictive

sand boxing [12].

The structure of an Android app is quick and easy to read with a mostly consis-

tent structure. All apps require external actions to be noted statically in a manifest

file, categorized into small groups of actions called permissions. These permissions

alone are an effective way to determine what exploits and potential harm an app

could accomplish [22]. Also, as previously described, there has already been some

direct research in the automatic evolution of Android malware with the intent of

avoiding this kind of detector[17].

The above reasons indicate that Android is a good starting point on which to

perform exploratory research on mobile devices. Thus, in my research, I make use

of the Android platform and available Android apps to be able to evaluate my

proposed system and present it in conjunction with the previous work in this area.

1two code features are the same as my chosen code features: Number of Classes, and Number
of Methods

2The trees function similarly to the linear GP that was used by me during this thesis, although
they produce a different form of solution, and may favour different solutions.
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2.5 Summary

From the review of the literature, it would seem that the next logical step in co-

evolution is to combine a malware generator and malware detector. Concurrent

research proving that this method works well indicates this.

The variable methods of creating detectors shows that many different paths are

viable. The minimal inputs needed to provide a performant detector is one such

variable that differs between methods. Machine learning, the literature indicates,

require few input features to reach an acceptable performance.

Android, being the largest market share of mobile devices makes it the key

platform on which to focus. With research into creating and detecting malware on

Android being the most advanced of the mobile platforms, it is clear that the next

step of combining these methods into one would likely yield interesting results.



Chapter 3

Methodology

This chapter will detail the exact methods that have been designed and developed

to implement the artificial arms race proposed in this thesis. Firstly, in section 3.1,

I will go over the C5.0 algorithm that will be used as a control and standalone

baseline in this research. Secondly, section 3.2 will be an overview of: the larger

structure; how the genetic algorithms work; and the various component purposes,

inputs, and outputs will be described. Thirdly, section 3.3 will go over in more de-

tail the genetic algorithm structure separately from the modules implementations.

Next, section 3.4 will discuss the details of the created implementation along with

an example of how a program within the implementation is run. The following

two sections, 3.5 and 3.6, detail how each module, Malware detector and Malware

generator respectively, is built into a genetic algorithm. Section 3.7 will cover the

details of bringing the modules disused into the co-evolution framework.

The remainder of the chapter details how I prepared experiments for this method.

Section 3.8 details the frameworks that are used for my experiments. Next, section

3.9 will discuss the datasets used.

Finally, to conclude this chapter, a short summery can be found in section 3.10

3.1 C5.0 Decision Tree

The C5.0 algorithm is based on the C4.5 algorithm, a decision tree and rule building

algorithm. I have used the decision tree part of the algorithm as a control and

baseline method, using a proprietary release of the software.

C4.5 uses data entropy to decide what feature holds the most information gain

for predicting the target feature, in this case, malware or not malware. The dataset

is split into subsets based on the decided feature, and then this same tree process

is repeated until the data has been split into homogeneous sets of only malware

samples or non-malware samples. The tree is formed from the decisions of what

9
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SEND_SMS = t : malware
SEND_SMS = f :
: . READ_SMS = t : malware

READ_SMS = f : c lean

Figure 3.1: Simple example of a decision tree

features were used to split the dataset at each step. For example, the tree found in

figure 3.1 was split using the attribute of SEND_SMS first, the ’t’ half must have been

homogeneous with respect to the target value, where as the ’f’ half must have been

split again. This half would now have the most data entropy on READ_SMS, causing

a split again to produce two leaf nodes.

When a created dataset is homogeneous on the target attribute, it becomes a

leaf node. The leaf node is marked with the value of the target attribute. In the

case of one of these leaf datasets not being homogeneous, then the most common

feature is chosen to represent the set. This can happen because all other features

have been used, leaving no other option but to create a leaf node, or because a

decision was made to not over fit the data1. In the example tree in figure 3.1,

the dataset where SEND_SMS = t must have a target attribute label homogeneously

(or majority) with the label of malware. The same would have been the case for

the sets SEND_SMS = f and READ_SMS = t and SEND_SMS = f and READ_SMS = f,

which were chosen to have the labels malware and clean respectively.

To decide the class of a new sample, the features of the sample are compared

along the tree until a result is reached. As an example, see figure 3.1. This tree

would take in a new sample, and check the value of SEND_SMS. If the value is ’t’,

here meaning true or present, then the sample would be marked as malware. If

the value of SEND_SMS is ’f’, meaning false or not present, then we must make

a new decision. So, by checking the result of the READ_SMS, we get to either a

malware classification or a clean classification. Either way, our tree will finish the

classification with a result for the sample.

C5.0 is an improvement that addresses the limitations of C4.5 [11]. This new

1One of the features added in C5.0
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implementation features elements such as the ability to process other forms of

data, such as numerical inputs and boosting which improves the resulting tree.

The results of C5.0 are often smaller trees featuring fewer splits and nodes which

improves the computational resources required [11].

3.2 Overview of the Proposed System

The method proposed is a co-evolved system involving two genetic algorithms,

each with their own goal and requirements. The two share incremental results over

the generations of each algorithm and progress towards their individual goals.

As discussed earlier, the primary goal of this research is to explore whether

creating this artificial arms race / simulated competition between mobile malware

and detectors could improve the ability of the detector to adapt to the evolving

threats / malware. This will be the output of the malware detector module.

As a secondary goal, this methodology creates new versions of potential mal-

ware as a dataset to analyze and to produce signatures / detectors. This byproduct

of the methodology naturally provides us with a dataset that can be shared and

used among other researches working in the field of mobile malware detection.

This will be the output of the malware generator module.

To augment a genetic malware detector, I aim to create the artificial arms race

framework by using a bio-inspired malware generator and a bio-inspired malware

detector under a co-evolutionary paradigm. To this end, I will use genetic algo-

rithms and genetic programming. This will be how the two independent modules

/ components interact.

3.2.1 Malware Generation Module

Independently, the malware generation module has the goal of generating a pop-

ulation of effective malware. The process of generating malware is simple enough

with the complexity coming from the fact that results created must be effective.

The exact nature of what is considered to be effective differs greatly based on what

kind of malware is being considered.

I mean to separate this reliance on the specific goals of malware and focus
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purely on a more generic approach that could be applied to any form of malware.

To accomplish this goal, the method of evaluation for the malware generator is

defined by three objectives:

• Aggressiveness: A catch all term for any aggressive action that could be taken

by the malware.

• Detectability: This is a measure of how well the malware is able to go un-

detected. Malware, by its very nature, is malicious and therefore unwanted.

The less detectable the malware is, the more effective it is at reducing the

number of unwanted detections and subsequent removals. In practice, this

means blending in with benign software to such a degree that there is no

meaningful way of distinguishing the malware from other apps.

• Evasion: Evasive actions are non-vital and purely exist to to avoid detection.

It helps malware increase its effectiveness by ensuring that less aggressive ac-

tion will be taken towards it. However, using a minimum amount of evasive

tactics is preferable for malware, as it adds to the complexity of construction.

Aggressiveness and Evasion are internal factors that depend solely on the app

itself, where Detection is an external factor depending not just on the malware

itself, but the abilities of an external tool.

The malware generation process must begin with a malware template that can

be tweaked and altered to find the efficient solution. The generation process for an

individual sample of malware is the application of these alterations. The alteration

process performs a search of the parameter space to find an effective solution with

the goal of optimizing for high aggressiveness, low detection, and low evasion.

The malware generation module used in this thesis is based on the Mystique

method introduced by Meng et. all [17]. While sufficiently generic, this method’s

definition of effectiveness and search procedure was created with the intent of find-

ing the effectiveness of privacy leaking malware. As this form of malware was also

the target malware for this thesis, this model is a good fit for my methodology.
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3.2.2 Malware Detection Module

Independently, the malware detection module has the goal of generating a singular

solution with the ability to classify various malware and benign samples.

The detection process can be considered as a classification task for the purposes

of applying machine learning with the two classes of malware and benign.

In this case, the method of evaluation for the malware detector is defined by a

single goal:

• Performance: The degree to which the detector is able to properly classify.

Due to the risks of misclassification, adding unbalanced penalties to perfor-

mance is an option. For example, it may be less damaging to mark benign soft-

ware as malware than it would be to classify malware as benign. In this case,

unbalanced penalties may be an option, providing less of a penalty for one type of

misclassification than another. For the series of experiments in this thesis, this was

not performed, as penalties to performance were treated the same for any kind of

misclassification.

3.2.3 Co-evolution

The important factors to understand why an arms race is a logical next step in

this research is how the metrics of ’Detection’ for the malware generator and of

’Performance’ for the detector are the same concept viewed from two different

perspectives. These two are based on external factors, whereas ’Aggressiveness’

and ’Evasion’ are based on internal factors.

There are performance metrics that depend on outside factors and are therefore

influenced by the external information. Moreover, the two external factors are

related to the same goal of detection. These are the active and passive forms of

detection2.

To illustrate, the measure of ’Detection’ is based on external detectors, as the act

is performed on the malware. The detector is asked if a sample presented is mal-

ware. Therefore the amount of detectability is not only determined by the sample,

2Active being the detector attempting to classify, and passive being the action of being classified
by the detector.
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Figure 3.2: The proposed artificial arms race

but also the detector. Having a consistent detector, as when evaluating during co-

evolution between modifications of the population, removes the factor of being

tested and leaves the only changing part to be the malware being tested.

Similarly, the same logic can be applied to malware detection ’Performance’. If

the malware remains static, the opposite case, then only the active role of detect-

ing is modified. The detector can have its performance compared against other

detectors as a separate measure that is unrelated to the ’Detection’ measurement.

Both methods are simultaneously measured when testing every combination,

ranking malware samples against detectors, and detectors in terms of malware

samples. This dual use is what leads to the core idea of co-evolution as the core

idea behind the artificial arms race.

The arms race is a summary of the intended behaviour of this relationship. A

diagram of the process can be seen in Figure 3.2. The process starts with initial-

izing some form of malware, and some form of detectors. These detectors can be

random, however applying rules to create useful programs in the initial popula-

tion may be used. The evaluation process discussed above measures the perfor-

mance for the detector and detection for the malware. Each sits in a population
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that is initially random. The evaluation process compares both the malware and

the detectors. This information is then used to modify both the malware and the

detectors, with the included calculated values of Aggression and Evasion to create

the next population. This cycle may be repeated any number of times in order to

produce a population of detectors and a population of malware that approach the

solutions of their respective tasks. The advantage of the shared evaluation allows

for incremental improvements for the next generation to be based off of the failings

from the current.

3.3 Genetic Algorithm Implementations

Genetic algorithms are based on biological evolution. In the biological analogy:

• There exists a population.

• The population changes over time.

• New elements in the population are created from the existing ones, either one

or more.

• When an element creates offspring, that offspring is similar to each of its

parents.

• Any element has the potential to create new offspring, but those that are more

fit will be more likely to create more offspring.

Applying these basic points to the a computational problem creates a genetic

algorithm. The population is used to create a solution by delving into a search

space and use the principals of evolution to arrive at a solution.

For this to function, here is what is needed:

• A representation of the solution in a modifiable state, called a genotypic state.

• Each solution can be modified to create new solutions, either by taking a

random step, called mutation, or by combining multiple solutions, called

crossover.
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• Given that offspring are similar to their parents, the application of the solu-

tion should be as well.

• The value of fitness is now based on how well the given task was performed.

By making this comparison, many of the ways that biological evolution suc-

ceeds can be replicated to create a genetic algorithm. The main focus depends on a

few key factors: the representation of a solution, the methods of modification, and

the method of evaluating the individual solutions.

3.3.1 Solution Representation

The representation of a solution has a great impact on the way the algorithm is im-

plemented, however, the method of representation may have a lot of variety. Most

problems will require solutions in a form that would be hard to modify. Therefore,

most problems have two representations, genotypic and phenotypic, each form

having a specific use. The genotypic form has two requirements: to be modifiable

and to be convertible into a usable form; and the phenotypic form has just one

requirement: to be an active solution for the problem.

Phenotypic solutions are the end goal, whereas genotypic ones are the forms

built for alteration through the genetic algorithm. The analogy with biology would

be DNA for the genotypic form, and the active protein as the phenotypic form.

An advantage of the genotypic representation is a mapping, such that every

genotypic representation should be directly mappable to a phenotypic solution.

These should be viewed as one and the same solution, and the fitness expressed

in the phenotypic state should apply to the genotypic representation. Secondly,

most, if not all, genotypic solutions should be valid. The more errors found, the

less quickly the algorithm will be able to find valid solutions. Finally, solutions’

representation should be transferable, that is, a part of a solution in the genotypic

form should have the same or similar effect in other solutions.

In this thesis, two methods of genotypic representation are used. The first rep-

resentation that is used is feature based, which will be discussed in section 3.3.2.

The other representation is genetic programming, which will be discussed in more

detail in section 3.3.2.
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3.3.2 Solution Modification

Solution modification has a few requirements. Firstly, the domain can be a large

search space, and finding a good solution may be difficult without guidance. Sec-

ondly, by modifying old solutions, we start from an evaluated point within the

search space before taking a step within the search space.

• Mutation, using a single parent

• Crossover, using two or more parents

The solution will be modified versions of the parents. Mutation will take the

single value and modify it randomly. Crossover, in this implementation, will take

two solutions, combines them, to create a single solution that has aspects of both3.

During crossover, some mutation of the resulting solution may also be performed.

It is also possible that crossover can create as many children as parents.

Feature Based Representation

One way of breaking down a solution is into independently acting features. Each

feature is unique and can only be modified with valid options for that feature. It

becomes easy to see that such features can be representative of a large or small

concept and the search space will have one dimension per feature. For example,

evolving a byte string can be implemented where each feature is a binary value.

The values for each feature are 0 and 1, and the number of features is the number

of bits in the string.

When more complex features are considered, there must be an implemented

method of transferring between the features and the phenotypic representation.

Although, the reverse is not necessary, it can be useful to have a one to one map-

ping. This feature based system has the advantage where complex ideas, that can

be in multiple states, can be made as important as any small change. At the genetic

level, they behave the same.

The breakdown of a solution into features requires a large amount of thought

into how the representation should work. However, the method is adaptive to

3To determine how the solutions are combined, randomness can be introduced.
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many different kinds of values. The methodology of modifying a feature depends

on the kind of feature it is.

Of the notable options, the most important for this work is that of the binary

feature. A binary feature can either be on or off, as with the byte example from

earlier. These features are easy to work with, but have no middle ground or alter-

native forms. Many features may be required before a large enough search space

is created. However, they do not directly represent bytes, which aids in the expres-

siveness of the features.

Feature based representations have a simple mechanism for mutation. Each

feature is considered independently and is mutated randomly. This can either take

the current state into account, which means that the values are similar to the orig-

inal, or be completely random. The option must be decided based on each par-

ticular feature. In either case, the mutation should be with respect to the way the

feature is specified.

Crossover for feature based representations can be achieved in a few different

ways. Firstly, if there is no given order to the features, they can be randomly as-

sembled between the two chosen parents chosen. This creates two new feature

sets built from the previous. If there is order, a less chaotic, often better, solution

is to order the features and then perform one or two point crossover. To perform

crossover, randomly select the intended number of points between features (e.g.

for two point crossover, two points would be selected, perhaps after the third fea-

ture and another before the last). Then, select one parent, and begin copying fea-

tures in order to the child. At the selected point, switch to the other parent as

the source of values, repeating this process for each point. Additional methods of

crossover may be performed. For example, if it is possible for the parents’ values

to be averaged, that may be a valid alternative.

Genetic Programming

Genetic Programming is the representation of a solution in a programming lan-

guage. As such, this method has rules and must function according to some simu-

lation of programming.

This method relies on the fact that, like assembly languages, simple commands
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can build up to create more complex strategies. Here, a program will be the in-

tended solution. The representation can be stored as a sequence of instructions.

Each instruction is executed independently and affects the state of the machine.

After all instructions are executed, the result comes from the final state.

As programs can get highly unpredictable, as many programs as possible should

be valid. Validity also includes mention of the halting problem, as there is no assur-

ance that any program will ever complete. Considering that these programs may

be initially random, the problem is amplified. In summary, the programs should

be valid in as many circumstances as possible.

One solution to the halting problem comes with the definition of the instruc-

tion set to use. If there are no instructions that could cause an infinite loop, then

the problem is solved. Although reducing the expression of the programs, it is a

possible solution to the problem.

For dealing with the complexity of the instruction set, edge cases that are usu-

ally considered to be programmer error must be considered valid. Operations

should be consistent when performing the unexpected behaviours. For example,

when dividing by zero, the program should not crash and instead recover; The

actual effect is not important, as long as some consistent result takes place and the

remainder of the program is run.

To create a state that is understandable and limited enough to function with

short programs, many, including this one, use registers to act as a fixed number

of variables. The state of the machine when read will compare the registers to

decide the result. To have a singular output result, a single value from the first

register could be used. If more are needed, more registers can be considered for

the results.

Instructions themselves do not have an intended order and can be moved around

and still maintain their context. However, the order of the instructions in small

chunks remains important, maintaining the logic learned into the programs.

Mutation can be performed in a few ways. Firstly, individual instructions can

be modified. Instruction modification can be the replacement of a full instruction

or just a part of an instruction. Secondly, new instructions can be added randomly

to programs. Finally, instructions can be removed. All these mutations can be done
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on a single program, as long as the order of remaining instructions is preserved.

Crossover is performed similarly to that of feature based representation. Using

crossover points, the first half of one program is mixed with the ending of another.

The points chosen to break apart the programs do not need to be the same. Using

one or two point crossover, the endings, or a middle section can be replaced within

the programs. This is also useful in preserving the order and placement of instruc-

tions. However, not requiring a consistent size nor exact placement leads to more

variation within the limitations of crossover.

3.4 Implementation of Genetic Programming

A genetic program, or GP, will be used as a classifier, to decide whether a given

app is malware or not. The steps involved to achieve this are Preparation(3.4.1),

Execution(3.4.2), and Evaluation(3.4.3).

3.4.1 Preparation

To prepare for evaluation, a app must first be broken down into input that can be

accepted. Then, this acceptable data can be modified to allow for better distribu-

tion of the input.

This thesis’ implementation of GP uses all floating point values. To prepare

the app, it is broken down into input features from a few different sets of chosen

inputs.

Feature set A, the app permissions, has the representation of either true or false

values. In this case, the numbers 1 and 0 are used respectively. Feature set B, the

code features, has integer values of different code features seen within the pro-

gram. These integers are converted to floating point, otherwise these values are

ready to be used.

For the preprocessing to be more effective, knowing ranges of values as well

as averages aid in mean and variance standardization. For most experiments, the

part of the dataset that will be seen by the detectors will be used to collect this

information. Mean and variance standardization has the advantage of creating a

diverse range of values caused by the distribution of probabilities of each feature
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in the training set, including those that are binary options.

After features are converted to numerical form, mean and variance standard-

ization of the constants is applied to the input values. Once this is performed, the

input values are now ready to be used as inputs for the detector. Where possible,

the results are saved in order to avoid this process again as this input will be the

same for every detector in every generation.

3.4.2 Execution

This thesis’ implementation uses a fixed number of registers. Each register is given

a number to uniquely identify it. Before the evolutionary algorithm is started, the

number of of registers must be decided. The more registers, the larger the search

space will be. While this may slow down the process of discovering good solu-

tions, the number of registers matters for both how to get a result and intermediary

values.

All registers start off the program at 0.

Some instructions are taken from the input stream, and as these values are not

in registers and cannot be altered, they are only used as inputs.

Constants, as will be described later, are integers from 0 to 255 as decided by

the format.

The chosen implementation uses the following options for instructions:

• Arithmetic operations

• If statement

• Function call

These basic operations are mostly independent from each other and can be built

up together into a single program. Afterwards, the instructions can be reviewed

and reduce to those those actually executed based on the inputs and outputs of

each.

To visually represent which values are being used, the following syntax is be

applied:
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• Registers are indicated by r[0], where the number 0 is replaced by the num-

ber of the register.

• Inputs are named, and are written as in[inputName], where inputName is

replaced by the name of the input.

Register Operations

Arithmetic operations are the most common type of instruction and involves an

operation between a register and either another register, an input value, or a con-

stant. The operation is executed using these two values, and the result is stored in

a register.

The four options chosen that the register operations can be used with are:

• Addition

• Subtraction

• Multiplication

• Division

Examples of instructions printed in a programming language fashion are as

follows:

• r[1] = r[5] / r[2]

• r[4] = r[1] * in[value 5]

• r[6] = r[6] + 9

If Statements

If statements control access to the next instruction based on a comparison. If the

comparison succeeds, then the next instruction is executed, otherwise, the instruc-

tion is skipped. Sequential if statements get compounded with ’and’ logic. The

first non if statement instruction will be conditionaly executed only if all if state-

ments before it are evaluated as true.
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The actual comparisons that can be performed are register to register, register

to input, and register to constant, using one of the following:

• Less than or equal to

• Greater than

Equal to is not often used, so it is added onto less than arbitrarily.

Some examples of instructions printed in a programming language fashion are

as follows:

• if( r[6] <= r[5] )

• if( r[0] <= 162 )

• if( r[5] > in[value 3] )

Function Calls

The final type of instruction is a single parameter modifier, or function call. These

are usually mathematical functions which can be useful in building up more com-

plex equations in the process of solving the problem.

The chosen functions are:

• sin

• cos

• square root

• exponent

• log

These instructions can be performed with either registers or inputs. Some ex-

amples of instructions printed in a programming language fashion are as follows:

• r[6] = sin(r[5])

• r[5] = sqrt(r[7])

• r[5] = exp(in[value 1])
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3.4.3 Evaluation

To evaluate a program, the program will be decoded into a list of the above men-

tioned instructions. Any optimization will be performed to remove any instruc-

tions that will have no result on the output. For each input given to be evaluated,

the program will begin with zeros in each register and run linearly through the

program.

To get a result from a program, the chosen method depends on the number

of registers. To decide between n options, you can use n registers to bid for each

option. Each register holds a floating point value, and the final returned result is

the option associated with one of the first n registers. This requires that the number

of registers must be greater than n from which to select the options.

3.4.4 A GP Example

The process described uses simple instructions to build up complex behaviours.

Running through a simple example, here is a short genetic program:

r[0] = r[1] + in[value 5]

r[1] = r[0] * in[value 2]

if( r[0] > 2 )

r[0] = r[0] * r[1]

r[2] = cos(r[4])

This five line program is simple enough to compute by hand.

First, I begin by initializing all values related to this program. All registers start

off as zero.

The first line sets register 0 to the 5th value of the input, since the value of

register 1 is still the default value of 0. Next, the value of register 1 is then set to

the value of the 5th input multiplied by the 2nd input. Then, if the 5th input is

greater then 2, the value of register 0 will be set to itself multiplied by register 1.

This would set register 0 to the value of the 5th input squared times the value of

input 2. Finally the value of register 2 is set to the value of 1 because register 4 is

still its initial value of 0. The program is now over and the registers are compared

to each other.
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Depending on how many output values are expected, calculating a result may

be different. Assuming three output values, the first three registers will be com-

pared. Registers 0, 1 and 2 will be compared to see which contains the higher

value. This output hides much of the complexity of the program, and yet results in

a clear general use method for constructing and using what can amount to complex

mathematical comparisons which are built, expressed and executed using very few

computational resources.

3.5 Malware-Detection

The detector begins with the implementation of a linear GP as described in Sec-

tion 3.4, along with a framework for evolving and evaluating the programs in-

volved.

3.5.1 Fitness Score

The program is tested on each item in the dataset. The fitness value is based on

how many elements it correctly classifies. If the inputs from a malware sample gets

classified as malware, or if a benign input is marked as benign, then a fitness point

is awarded to that sample. Alternative approaches which increased the complexity

of this fitness process were not effective at improving the score. Therefore, this

counting approach was chosen.

3.5.2 Variation Method

The approach taken to evolve the generation is proportional selection. This de-

pends on the relative scores between different fitness values. Before that, the top

performers are preserved for the next generation. This is to ensure that there is not

a regression in the best performers for the training set.

To perform proportional selection, I select an individual from the population

with a probability related to its fitness value. This probability is fitness score
total fitness of all . The

values used here ensure that similar fitness values are treated equally, with greater

distinctions leading to larger changes within the population. When selecting mul-

tiple individuals, such as for crossover, the same individual cannot be chosen more
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than once.

With the inclusion of the best previous individuals, new populations will be

comprised of better performers, modified in an attempt to improve the solutions

with each generation. New material is introduced, as any instruction, when being

moved to a new individual, has a small chance of being changed into a new in-

struction. These new instructions are mutations applied to the child program and

ensure that the entire population does not converge too quickly on a single solu-

tion. This new material also reduces the likelihood of an initial population that

may be missing key instructions being unable to recover an unlucky start.

3.5.3 Detector Inputs

The inputs selected are from two sources. Previous research indicated that detec-

tors of this kind used a variety of sources, leaving the number of features around

20, so this was also my target from the outset. Two sources were selected: 15 An-

droid permissions, and 8 code features.

Android permissions that an app uses are declared in a metadata file known as

the Android manifest. Permissions can enable hardware access, operating system

features, or access to other apps. There are over 100 officially supported permis-

sions, however, an app can create a new permission for it to accept. For this reason,

any number of permissions may be found, in addition to the official Android per-

missions.

In the first phase of this research, I employed the full list of official permissions

from 600 of the apps I planned as the training set, 300 malware and 300 benign,

and evaluated two classifiers on these permissions to test which classifier would

identify a malicious apps more accurately. To this end, I used the C5.0 decision

tree classifier as a representative of the state of the art classifiers, and the linear

GP classifier, which I intended to use in my artificial arms race framework. The

results of these tests are displayed in Appendix A, Tables A.1 and A.2. The results

show that the C5.0 classifier reaches up to 91% using all permissions, whereas

the linear GP classifier reaches in average 76% accuracy using all the permissions.

To improve this, I focused on a smaller set of permission list features based on

previous research [27, 26] and further empirical evaluations. At the end of these
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Table 3.1: Selected 15 Permission features
INTERNET
READ_SMS
SEND_SMS
READ_CONTACTS
READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE
INSTALL_PACKAGES
BIND_DEVICE_ADMIN
BIND_ACCESSIBILITY_SERVICE
RECEIVE_BOOT_COMPLETED
READ_PHONE_STATE
CAMERA
RECORD_AUDIO
READ_CALENDAR
ACCESS_FINE_LOCATION

evaluations, I choose the most relevant 15 permissions that are likely to be used for

malware detection. These 15 permissions are listed in Table 3.1, and results of the

evaluations are shown Appendix A Tables A.3 and A.4. Given that both classifiers

are very comparable in their accuracy, I concluded that these 15 permissions are

more consistent at representing the normal and benign behaviours of the apps.

On the other hand, Android code features are associated with the creation of

the code of an app. Every app will include these features to a lesser or greater

degree as they are the number of occurances of common features within the code.

They include, but are not limited to: the number of classes, the number of inter-

faces, and the number of instanced variables. In the literature, these features are

considered to be representative of the structure and the use of the code [25]. The

chosen Android code features are listed in Table 3.2.

Using the aforementioned Android permission and code based features, the

linear GP based detector is trained on a subset of Android app samples to set up

the artificial arms race framework. In this case, the method of evaluation for this

malware detector is defined by a single goal: performance – the number of cor-

rectly classified malware samples. It should be noted here that the performance

value is measured evenly, so that the imbalances in the dataset will not affect the

overall accuracy.
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Table 3.2: Android Code Features
Number of Classes
Number of Classes using interfaces
Number of Classes containing annotations
Number of Direct methods
Number of Virtual methods
Number of Abstract methods
Number of Static Member variables
Number of Instanced Member variables

3.6 Malware-Generation

The malware generation breaks down into two sub-modules, the evolutionary

method and the malware generation process.

3.6.1 Malware evolution

The core task of this module is to produce better malware. As I am evolving apps, I

would like to produce a malware sample that is both effective as a piece of malware

and performs well in my test of undetectability. This leads to a multi-objective op-

timization for the proposed co-evolutionary process. Also, note that this property

of the proposed framework makes it different from [23].

A population of malware will be created. Each sample is given random features

turned on and off from a list of features, fully listed in Appendix C. The measure-

ment of aggressiveness, evasion, and detectability is performed for each member

of the population.

These measures of aggressiveness, evasion, and detectability form the three

dimentions used in the multi-objective optimization. To match these measures to

the objectives, the objectives are matched with the goals presented in Section 3.2.1.

Aggressiveness is optimized for the maximum value. Evasion is optimized for

the minimum value. Detectability, while minimized for, instead targets a value

of 80% maximum possible score to prevent disconnect during co-evolution. The

purpuse of this multiobjective structure is because the surviving elements of each

generation are the non-dominated elements within this three dimensional space.

A sample is said to be dominated by another sample when, for all dimensions
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it is scored on, no values are greater than in the other sample. For instance, a

point at (3, 4) is dominated by the points (4, 4), because of the eclipsed first value

with identical other dimensions, and (4, 5), because both values are eclipsed. If one

value is lower, as in (2, 5), then the point is not dominated even if other dimensions

are higher.

The non-dominated samples are preserved, and the rest are forgotten with each

generation, making this similar to dominance rank sorting and only keeping the

members of the generation that are zero. In accordance with the feature based

representation discussed earlier, the input for any given app should be a number

of features to either include or not in the sample. The features are marked based

on the functionality that the feature will have on the solution. Features are ei-

ther aggressive(meaning the feature adds some malicious action to the payload or

method for the payload to activate) or defensive(the feature provides some evasive

action), and from this I get the Aggressiveness and Evasion of an individual. Ag-

gressiveness is the count of the aggressive features, whereas Evasion is the number

of defensive features used to attempt avoidance of detectors.

To get the detectability of the app, it needs to be constructed and let the detec-

tors examine it. These detectors can be external, as within the previous research of

Mystique, or, as in the case of this research, the detectors are created by an evolu-

tionary process. In either case, the result for detectability is the number of detectors

that are alerted.

The detectability should be minimized. However, I would like to discourage

the malware becoming a runaway success, leaving the detector with too difficult

of a problem to solve. This is a problem known as disengagement and results in

the detectors being unable to differentiate bad solutions from good solutions as

all solutions fail to classify most or all malware. Therefore, a target value for the

malware to hit was created. The arbitrary value of 80% was chosen as the target

number of detectors to deceive. Obtaining 100% undetected would therefore be

20% off of the goal, and a 0% undetected rate would, likewise, be 80% off of the

goal.
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After the values are computed for the entire population, the algorithm contin-

ues with the selection process4. A selection of the best samples are stored from this

generation. These chosen samples are those that were non-dominated by other el-

ements in the generation. The next generations are built on this stored repository,

through mutation or crossover with samples from this storage, which gets larger

with each generation.

This process can be ended at any point. In previous work, the ending was

reached when no new malware was added to the library due to duplication. How-

ever, for this thesis, the generations are forcibly continued for co-evolution. The

ending result is not an individual, but a library, pruned to only include the non-

dominated.

3.6.2 Malware Generation

Malware generation is done through an independent process, separate from the

evolutionary process improving the selection of features. The input is a list of

features to include. The output is a signed APK file, an app package file that can

be installed directly on the target version of Android.

The initial list of features is a list of desired end results. To actually assemble the

app, the full list of requirements is extracted from a dependency table. These de-

pendencies are mostly Android permissions, and may be used in multiple features.

Therefore, the process removes duplicate code, giving the app more authenticity,

as code duplication looks more formulaic and auto generated.

The feature list, now complete, can be applied to the Android app template.

The template shares the structure of the source code directory of the app. The

template files create a normal app, with some added tagged locations waiting for

the template to replace them. These tags are replaced with the code specified by

each feature.

Not all features introduce code. Many of the evasive features require post pro-

cessing of the app to apply scripts to the byte code after it has been generated.

In addition to tags, features can specify some special values which alter the build

4This method is similar to IBEA((Indicator-Based Evolutionary Algorithm) search as used in
Mystique[17]
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process, such as including optional files of the template, or specify build process

functions. In this latter case, the build process functions that are changed are set-

tings for the compiler or the use of features within Droidchameleon[20], a tool for

adding malware obfuscation to an app.

After tags are inserted, all the files are moved into an Android project and the

compiling process is performed. The tool, Droidchameleon [20] is used after com-

piling the app. The selected features add parameters to the Droidchameleon com-

mand and turn on functionality in the obfuscation software. The instantiation pro-

cess can be done independent of the genetic algorithm, making it possible to create

custom malware of this sort very easily for a user.

However, the proposed malware evolution methodology may raise a large prob-

lem that cannot be ignored, which is the automated process of turning out a new

variant of a malware family very quickly.

Targeted Malware

The malware generated from this method is targeting a simple-to-make and cus-

tomized malware, Privacy Leakers. Privacy Leakers malware does not rely on

exploits or other sensitive material. This class of malware takes information it has

access to and slips it off of the device to be collected somewhere else. In this case,

Android has a wealth of information that apps can request, so all this malware

needs to do is to send it out of the phone to be read by a waiting server.

The type of software determines the types of features. Therefore, this malware

has four kinds of features, of which at least one source, one sink, and one trigger

are required. There are no such restrictions imposed on the forth type of feature,

evasion strategies.

A source is the source of data from which the app will be drawing. Most of

these are part of the Android API to retrieve information such as phone number,

model, or more personal information such as the history of received SMS mes-

sages.

A sink is the method of moving the information retrieved out of the device.

Usually this is through HTTP requests or SMS traffic, something that would go

unnoticed, and is best not to be a completely new protocol.
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Figure 3.3: Co-evolution diagram

A trigger is the method that starts the source and sink processes. Starting on

boot is usually easier to detect, however, if some odd check is done and the cor-

rect event triggers, then the malware will run. It can also be helpful to trigger in

multiple ways along multiple malware paths.

Evasion strategies are the features that determine which obfuscation techniques

to use to hide the true purpose of the app. Most evasion tasks are handled though

a tool known as Droidchameleon[20] which was used to perform the automated

obfuscation of these apps.

The features considered for the aggressiveness fitness are: the sources, sinks,

and triggers. Evasion strategies add to our evasiveness score.

3.7 Co-evolution Setup

Competitive co-evolution is the technique I employ to implement the artificial

arms race between the malware detector and the malware generator. With the de-

tails of both methods described independently, I consider how they work together

within the co-evolution framework.

The structure of the technique is to start up both processes with a message

passing system to share data between each other. While both processes loop inde-

pendently, the internal structure is more of a loop as seen in figure 3.3.

Within this diagram, I illustrate the intended behaviour of the processes. The

Devil Android mascot represent the malicious intent. Starting with the malware
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features, the malware generator will generate all the android permissions, fol-

lowed by forming an APK file. This file is then examined and the results are sent

to the malware detector. The detector uses as input a selected 15 permissions, rep-

resented as the gold section of the android mascot, along with the code features of

the malware, and determines it to be malware or not. The co-evolved section of

code relies on small changes to both modules and a message passing system that

keeps the process ordered.

3.7.1 Malware Generator Co-evolution Changes

For the generator, the change is simple. The app is preprocessed the same way as

other apps, revealing the features that will be input for the detector. A summary is

created for each sample in the population, and then the entire sample set is passed

to the evaluator process.

The response is a number of labels and scores representing how many detec-

tors were able to detect that particular sample. The labels are matched and the

evaluation completed. The malware then continues with the evolution process.

This method is similar to the non-co-evolved version of this method, since an

external detector used for testing already required this summary and response pro-

cess. The biggest difference, largely done out of convenience, is to create a sum-

mary that is able to be passed to the detector in the form required, rather than

passing a full APK file and having to extract the small amount of data required.

3.7.2 Malware Detector Co-evolution Changes

Upon review of the goals of each module (malware generator vs malware detec-

tor), it becomes clear that each task is directly at odds with the other. Thus, the

natural tension between the goals of the malware generator module and the mal-

ware detector module are used to increase the performance of each module.

• The malware detector attempts to classify malware, while avoiding to clas-

sify safe software as malware. Naturally, the classifier is only considered to

be successful, if it can detect the malware.
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• The malware generator creates malware. Malware is only considered to be

successful, if it can evade detection of the malware detector.

Due to the malware specific goal of avoiding classification, the classifier is a

direct adversary. Likewise, malware attempting to be unclassifiable becomes an

adversary of any detector. Detectability can swing between the malware and the

detectors, but both cannot be optimal at once.

Algorithm 1 Co-evolution main loop
Input: input_dataset, generation_count, archive_max

Output: malware_detector_population

Initialisation :

1: pop_d← random_population_GP()

2: pop_m← random_population_Malware()

3: archive← []

LOOP for each generation

4: for i = 0 to generation_count do

5: malware_dataset = input_dataset ∪ pop_m ∪ archive

6: eval← Evaluate(pop_d, malware_dataset)

7: Sort pop_m by eval

8: Append first archive_amount of pop_m to archive

9: Append last archive_amount of pop_m to archive

10: Reduce archive to archive_max

11: pop_d← GP_Evolve(pop_d, eval)

12: pop_m← IBEA_Evolve(pop_m, eval ∩ pop_m)

13: end for

14: return pop_d

To operate under the co-evolution, the process summarized in Algorithm 1 op-

erates the cycle of evolution and evaluation. The inputs are a static dataset to be

used during evaluation, the number of generations to be performed and the maxi-

mum size of the archive. Initialization is performed on lines 1-2. An empty archive

is initialized on line 3. Each generation goes through the lines 5-12. The malware

used to evaluate the current generation of malware detectors is compiled on line
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5 from the static input dataset, the malware in the current malware population

along with malware in the archive. Line 6 performs the evaluation testing each

malware on each detector, along with calculating any additional required evalu-

ations such as the calculation of Aggressiveness and Evasiveness. eval represents

the results calculated, with enough detail that a count of how many detectors cor-

rectly identified a malware sample as malware could be derived. Lines 7-10 are

considered with the archive. Line 7 performs a sort of the malware population by

the dominance rank5. Line 8 and 9 add the best performers and the worst per-

formers to the archive. The intention here is to add diversity to the content in the

archive by purposefully picking what should be easy to identify malware, given

that having the worst dominance rank means that sample was the most detected.

When appending malware to the archive, duplicates should be removed. Line 10

performs maintenance on the archive, ensuring that the maximum is retained by

removing random elements from the archive until a predetermined maximum size

is reached6. Line 11 and 12 performs the evolution steps of selection and modifica-

tion of both the malware detector population and the malware population respec-

tively. Finally, the detector population is returned at the end of the process on line

14.

Starting with random initialized populations, to perform a generation, the mal-

ware detector population is evaluated using both a static dataset and the malware

population. Given that the malware detectors were evaluated using the popula-

tion of malware, the intersection of that evaluation and the malware population is

the detection rate of the malware. The aggressiveness and evasion values are com-

puted using only the malware population, as those measures only use the sample’s

genotypic form. With the population evaluations done, both are evolved using

their respective evolutionary procedures.

To better adapt to the changes in the apps / malware, and to ensure that the

final result is robust, as the populations change, an archive is used to select features

of the malware population to preserve and to use for detection (evaluations) over

5Dominance rank is sorting by the number of other members in the population that dominate a
given point. The samples that perform better are closer to zero. [8]

6During all experiments discussed within this thesis, the size of the archive was not reached, as
such this step was not performed.
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generations.

3.8 Evaluated Algorithms

As discussed in previous chapters, I have employed two machine learning algo-

rithms, namely C5.0 and GP, to generate a malware detector. Thus, I performed the

following sets of evaluations in order to explore how far I could push the proposed

framework:

1. The C5.0 based detector uses both a malware dataset and a benign app set.

This creates a decision tree to classify the apps into malware and benign.

The complexity of the generated decision tree is the number of nodes present

in the tree. Additionally, because C5.0 algorithm uses information gain, the

decision tree is capable of choosing the most important features among all the

features given. This enabled me to choose the most relevant 15 permissions

from the set of all available permissions (149) that represents an app.

2. The GP based detector also uses both a malware dataset and a benign app set

without the addition of generated malware. In this case, I can also measure

the complexity of the classifier using the number of instructions in the chosen

solution’s program. Again, GP classifier is able to identify the most impor-

tant features from the set of all features given. This enabled me to choose the

most relevant 15 features agreed on by all used classifiers.

3. Finally, the proposed co-evolved method can be used in one of two ways. Ei-

ther a benign dataset alone can be used or a benign dataset along with a mal-

ware dataset. As malware is created through the process, it is not required to

have static dataset. The GP based detector, chosen because of its co-evolution

capability, is used in the artificial arms race framework. The same measure-

ments of complexity can be directly compared to other GP evolved detectors,

giving a good comparative benchmark between the static and the co-evolved

classifiers.
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3.9 Datasets Used in This Thesis

The malware provided was a large dataset, and as such, subsampling was em-

ployed. The C5.0 classifier was used to verify that the randomly selected apps

were comparable to the full version of the dataset. I achieved this by splitting the

dataset into the intended size of a training set using random selection of app sam-

ples from the full dataset. Building a tree using the subsection compared to the

full dataset, I measured the accuracy and calculated the number of features most

used in the tree. Randomly selecting the subset for the training set, and verifying

the similarity of a well tested algorithm’s ability to train, enables the verification

of the selected subset. It is important to choose the training set to be as small as

possible to decrease the training time. However, at the same time, it is important

not to lose accuracy for detection. In the end, the selected training dataset has 0.4%

difference in accuracy and includes the top 10 features which were also present in

the tree generated by the full dataset.

3.9.1 Dataset Sources

There were two kinds of datasets used during this thesis: Malware and Benign

datasets. As discussed in section 3.8, C5.0 and GP without co-evolution require

one of each, where the co-evolved algorithm requires only a benign source with an

optional malware source.

Malware Sources

Several sources of malware software were used during this research. They are as

follows:

1. The Drebin project, which provides a malware dataset specifically for re-

search use [2]. This dataset contains thousands of instances of malware taken

as they were submitted to the Google Play Store. In this thesis, I took a subset

of one thousand apps. Importantly, 300 apps were chosen to be the test set

used in both the F-Droid and Google Play test sets to be discussed later.
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2. The other source of malware used during training, as discussed in the method-

ology, is the malware generator used during co-evolution. A collection of ten

thousand apps was collected for testing, however, when performing train-

ing, the dataset was generated during the training for co-evolved malware

detectors.

3. For a final verification, a small selection of malware was found outside of the

dataset provided. This was done to confirm the effectiveness of the detectors

on real world malware. The website GetJar, a public Android app reposi-

tory, was found to possess a large amount of malware. The majority of the

apps found on this website are identified as malware according to VirusTotal,

an on-line collection of actively used, publicly available, malware detectors.

Some apps were investigated as well, to see if improvements could be made

over other automated methods.

Benign Software Sources

Benign apps are notoriously difficult to download en masse. Many of these app

sources are online app repositories or stores. A large portion of the apps available

are free, which allows for a very diverse array of benign samples. A random subset

of 1000 apps was selected to make the data easier to manage.

There were three benign app sources used in this thesis, compared against the

three aforementioned malware app sources. The benign app sources are:

1. F-droid open source Android repository, abbreviated in the results as Fdroid

2. Google play app store, abbreviated in the results as Gplay

3. Data created from the co-evolution of previous runs, abbreviated as live, as

the data is created from a living dataset.

These sources are all sampled to have 1000 apps at least. The live dataset was

sourced for 10 000 apps, because the source was simple enough to collect from.
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3.9.2 Dataset Setup

The dataset used in this work for the input malware samples is a random subset,

1000 malware apps, of the Drebin dataset [2]. Along with this, I also use 1000

benign apps to train a malware detector. Selecting these apps was performed ran-

domly. In total, I have 2000 apps where half of them are malware and half of them

are benign. I then use 70% of this dataset for training and 30% for testing. There-

fore, there are 1400 samples in the training datasets and 600 samples in the testing

datasets.

3.10 Summary

The method described here is best summarized in Figure 3.2. The co-evolution

happens in two loops, one for malware generation, and one for malware detection.

There is a population for both, and they are evaluated using each other. Each

population is then independently modified based on the performance from their

previous evaluation.

Malware generation is based on creating malware that is aggressive and un-

detectable, while discouraged from being overly evasive. A single sample knows

how aggressive and evasive it is, but can only know how undetectable it is when

tested with a malware detector, or in this case, many malware detectors. The mal-

ware generated used a template of a privacy leaking malware, as well as a variety

of components implementing the features of such malware, to construct a single

malware sample.

Malware detection requires many samples to learn the difference between what

is, and what is not, malware. The malware detector writes many short programs

and uses Genetic Programming to combine and modify them to construct a supe-

rior program that is capable of classifying inputs properly. The malware generated

is combined with a static dataset of malware samples to help guide the evolution.

To judge the detectors, I took benign malware samples from several sources.

F-Droid was my first source, as it is an open source app repository. My other

source was Google Play, the largest store for apps on Android. For malware, I

used Drebin, a dataset provided by Google for research. I also collected many of
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the samples generated when performing the co-evolution process for testing. In

addition, some malware was collected from a website called GetJar to represent

malware found currently for android.

There are two controls used during this set of experiments: a decision tree algo-

rithm called C5.0, and a standalone linear GP, not co-evolved, that is trained using

only static datasets.



Chapter 4

Evaluations

The results of evaluating the proposed artificial arms race are presented in this

chapter.

In section 4.1, I discuss the results of the early co-evolution tests that were per-

formed. I start by evaluating the proposed system against only the F-Droid dataset,

then look into how the inputs were reduced to become the 23 that were used.

In section 4.2, all subsequent tests are discussed. The detectors trained were

the 6 control and 6 experimental configurations seen in Table 4.1. This adds five

additional experimental configurations to the one present in the preliminary re-

search, along with four other control configurations. I examine various interesting

features of individual and average results generated, to consider why the results

presented themselves the way they did. Finally, I look at some values generated

from a recent real world test that shows the potential capability and benefits of an

artificially co-evolved and improved mobile malware detector.

A full listing of the summary results, along with best samples, are available in

Appendix B.

4.1 Preliminary Experiments

In the preliminary test phase of this thesis, ten runs were performed for each tech-

nique to get an idea of the performance differences. The measures used for these

evaluations were: (i) the number of apps/samples correctly classified, (ii) the min-

imization of the number of features used, and (iii) the simplicity of the solutions

generated.

The goal of detecting mobile malware accurately is the only guiding principal

in the proposed artificial arms race framework. Features used and the complexity

of the solution were selected during the training phase of the classifiers. While

there is no bias for simple solutions or minimal features, creating simpler solutions

41
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Table 4.1: Listing of trained detectors
Method Training Benign Training Malware

C5.0 F-Droid Drebin
C5.0 Google Play Drebin
C5.0 F-Droid & Google Play Drebin
GP F-Droid Drebin
GP Google Play Drebin
GP F-Droid & Google Play Drebin
GP F-Droid Drebin & Co-evolved malware
GP Google Play Drebin & Co-evolved malware
GP F-Droid & Google Play Drebin & Co-evolved malware
GP F-Droid Co-evolved malware
GP Google Play Co-evolved malware
GP F-Droid & Google Play Co-evolved malware

seems to be a bi product of this method.

Appendix A shows some results used to define the methodology. These incre-

mental results show various inputs on the methods involved. Using 149 permis-

sions with both GP and C5.0 show the difficulty of GP to handle large amounts of

input on a short training period of 30 generations.

4.1.1 Permission Feature Selection

As discussed in section 3.5.3, a decision was made to reduce the number of features

used as input to the malware detector. The method of determining what features

were used began with tests using a set of 149 permissions. Figure 4.1 shows which

features were used and their level of importance in the tree generated by C5.0

trained on this set.

4.1.2 Code Feature Selection

As the next step, I employed the aforementioned eight code features listed in Fig-

ure 3.2 together with the 15 permission features listed in Figure 3.1 to represent

an app using 23 features to the detector. Table A.5 shows the performance of the

GP based standalone malware detector under this representation. Table A.6 and

Figure 4.2 show the performance of the C5.0 based detector and the resulting tree

rules using 23 features on the same data respectively. By adding the code features
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100% android.permission.SEND_SMS
68% com.android.launcher.permission.UNINSTALL_SHORTCUT
63% android.permission.RECEIVE_BOOT_COMPLETED
62% android.permission.CHANGE_WIFI_STATE
56% android.permission.READ_SMS
54% android.permission.DELETE_PACKAGES
50% android.permission.ACCESS_WIFI_STATE
42% android.permission.READ_LOGS
41% android.permission.SYSTEM_ALERT_WINDOW
40% android.permission.ACCESS_FINE_LOCATION
32% android.permission.CHANGE_COMPONENT_ENABLED_STATE
11% android.permission.READ_PHONE_STATE
10% android.permission.CAMERA
8% android.permission.WRITE_EXTERNAL_STORAGE
4% android.permission.SET_WALLPAPER
3% android.permission.ACCESS_NETWORK_STATE
3% android.permission.CALL_PHONE
3% android.permission.ACCESS_COARSE_LOCATION
2% android.permission.RESTART_PACKAGES
2% android.permission.INTERNET
1% android.permission.READ_EXTERNAL_STORAGE

Figure 4.1: Permission features used by C5.0 when trained with 149 Android per-
missions on a 700 F-Droid dataset
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READ_PHONE_STATE = f :
: . SEND_SMS = t :
: : . c l a ss es_ wi t h_ ann ot a t i on <= 3 7 : malware
: : c la ss es_ wi t h_ ann ot a t i on > 3 7 : c lean
: SEND_SMS = f :
: : . a b s t r a c t _ c o u n t > 5 6 2 : c lean
: a b s t r a c t _ c o u n t <= 5 6 2 :
: : . INTERNET = f : c lean
: INTERNET = t :
: : . s t a t i c _ c o u n t <= 7 0 : malware
: s t a t i c _ c o u n t > 7 0 :
: : . c l a sse s_w i t h_a nno ta t io n <= 2 : c lean
: c l as ses _w i th _an no ta t ion > 2 :
: : . c l ass es_ wi th_ an not a t i on <= 2 3 : malware
: c l as ses _wi th _an not a t ion > 2 3 : c lean
READ_PHONE_STATE = t :
: . c l a s s e s _ w i t h _ i n t e r f a c e > 5 5 8 :

: . ACCESS_FINE_LOCATION = t : malware
: ACCESS_FINE_LOCATION = f : c lean
c l a s s e s _ w i t h _ i n t e r f a c e <= 5 5 8 :
: . BIND_ACCESSIBILITY_SERVICE = t : c lean

BIND_ACCESSIBILITY_SERVICE = f :
: . INTERNET = f :

: . SEND_SMS = t : malware
: SEND_SMS = f : c lean
INTERNET = t :
: . READ_CALENDAR = t :

: . WRITE_EXTERNAL_STORAGE = t : malware
: WRITE_EXTERNAL_STORAGE = f : c lean

READ_CALENDAR = f :
: . a b s t r a c t _ c o u n t <= 5 1 : malware

a b s t r a c t _ c o u n t > 5 1 :
: . d i r e c t _ c o u n t > 4 1 8 : malware

d i r e c t _ c o u n t <= 4 1 8 :
: . c l a s s e s _ w i t h _ i n t e r f a c e <= 3 7 : malware

c l a s s e s _ w i t h _ i n t e r f a c e > 3 7 : c lean

Figure 4.2: C5.0 tree using 15 permissions and 8 code features, trained on F-Droid

to the representation of an app, I obtained a 5% increase in the performance of GP

and 8% increase in the performance of the C5.0. When I analyzed what the detec-

tors learned in these experiments, I observed that GP used, on average, 12 of the

23 features while C5.0 used 11.
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Figure 4.3: Accuracy vs. Complexity

Then, using the same training and test data, I implemented the artificial arms

race framework and added in the co-evolution system. Table A.7 shows the perfor-

mance of one of the GP based malware detectors evolved via this arms race. The

results of the evolved detectors are comparable with the results of the C5.0 and

GP based detectors that were trained standalone, i.e. outside of the artificial arms

race framework. Moreover, the co-evolved malware detector, on average, uses

fewer features compared to the standalone ones. The degree to which this average

changes is not significant and may be circumstantial, including how the same test

performed on 100 generations increases in complexity rather then reducing it.

4.1.3 Dataset Size

Table 4.2 shows the results of a set of experiments I conducted to observe the

sensitivity of the training data size on the performance of standalone detectors. In

these experiments, I varied the training set size for each category of apps, from 300

to 1000, and observed the precision and recall rates to determine the most suitable

training dataset size. Based on these results, I chose the training dataset size to be

700 benign and 700 malware apps.

While there is no significant difference in accuracy with this kind of approach,

other aspects begin to show differences, although not significant enough in it’s
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Figure 4.4: Accuracy vs. Number of Features

Table 4.2: Precision and Recall of different data sizes
Test Precision Recall
GP 300 97% 88%
GP 500 96% 89%
GP 700 97% 89%
GP 1000 96% 89%
C5.0 300 99% 96%
C5.0 500 86% 96%
C5.0 700 96% 97%
C5.0 1000 96% 97%
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present state. Figure 4.3 shows that the average number of instructions, which is

used to measure complexity, is reduced without significantly alternating the accu-

racy of the process. The same holds true regarding the average number of features

selected by the learning algorithm from the given set of features, as is seen in Fig-

ure 4.4.

4.1.4 Co-evolved Solutions

Below is one of the simpler linear GP programs, automatically generated by the

co-evolved solution to detect a malware using the proposed artificial arms race

framework. As discussed earlier, in this framework, the detector is co-evolved

against the malware generator to detect the generated malware. The resulting de-

tector solution is in the form of a program:

r [ 6 ] = exp ( in [READ_PHONE_STATE] )

r [ 1 ] = r [ 6 ] − 200

r [ 0 ] = exp ( in [ d i r e c t method count ] )

where the final value of r[1] is the bid for malware and r[0] is the bid for benign,

the higher one becoming the program’s resulting choice.

This particular solution focuses on two values:

1. READ_PHONE_STATE

2. Number of Direct methods

The resulting rules followed by this program amount to: If app has READ_PHONE_STATE

and a low value for Direct methods, then it is malware. The performance of this

solution program’s rules is presented in Table A.7.

On the other hand, if we analyze a simple solution of a GP based detector that

was trained standalone, outside of the artificial arms race framework, the solution

program appears as the following:

i f ( r [ 5 ] <= 62 )

i f ( r [ 0 ] > r [ 1 ] )

r [ 4 ] = r [ 1 ] / in [INSTALL_PACKAGES]

i f ( r [ 0 ] > in [SEND_SMS] )
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r [ 0 ] = r [ 4 ] − 31

r [ 4 ] = log ( r [ 0 ] )

i f ( r [ 4 ] > in [READ_PHONE_STATE] )

r [ 1 ] = s i n ( in [RECEIVE_BOOT_COMPLETED ] )

where, once again, r[1] is the bid for malware and r[0] is the bid for benign.

The first part can be manually removed as the statement on the second line is

always false. This particular solution focuses on the three values:

1. SEND_SMS

2. READ_PHONE_STATE

3. READ_BOOT_COMPLETED

Although this is also a simple program, on average, non-co-evolved detectors

have 1 more feature, and 5 more instructions. The performance of the above pro-

gram is given in Table A.5. The resulting rules followed by this program amount

to: If the program has READ_PHONE_STATE and SEND_SMS, then it is malware.

READ_BOOT_COMPLETED in this situation has no effect on the final result.

To better understand how the evolved solutions - the population - under the

artificial arms race framework compares with the single best solution, I analyzed

the diversity of the solutions in Figure 4.5. The population’s combined coverage

of knowledge reaches a very high accuracy (100%) given the collaboration of the

top 20 solutions (programs) out of the 100 solutions evolved. This indicates that

the solutions evolved have enough diversity to be able to recognize different mali-

cious behaviours in the apps. From a co-evolutionary perspective, this ensures the

survival of useful programs, even if they are not the single best solution. In other

words, this diversity enables us to generate (evolve) different rules that have the

potential of detecting different variants of malware.

Over the course of the evolution, it can be seen that there is indeed an arms race

happening. In figure 4.6, the lines representing score move from being in favour

of the malware to that of the detector. The detectors over generations are learning

and improving overall.
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Figure 4.5: Accuracy vs. Populations accumulated knowledge

Figure 4.6: Co-Evolved Tug of war: How detectors get better over time
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Table 4.3: Results of training C5.0 trees
Trained with F-Droid Google Play F-Droid & Google Play
Complexity 17 11 23

Feature Count 11 8 13
Tested on fdroid gplay fdroid gplay fdroid gplay
Accuracy 96% 88% 84% 98% 96.3% 97.5%

4.2 Experiments Performed

Given the collected datasets, experiments were performed for each of the three

methods discussed in 3.8. A total of twelve configurations, listed in table 4.1, were

chosen given the two benign training app sources and the single external training

Malware source. The three benign sources trained on were F-Droid, Google Play,

and a combination of the two.

For C5.0, three trees were built given the three benign app sources and the

required malware source:

• C5.0 tree trained using F-Droid apps, and Drebin malware, shown in figure

4.2

• C5.0 tree trained using Google Play apps, and Drebin malware, shown in

figure 4.7

• C5.0 tree trained using F-Droid and Google Play apps, and Drebin malware,

shown in figure 4.8

A table of C5.0 results can be seen in Table 4.3.

Next, the same training sets were used as input for a GP without co-evolution.

Unlike C5.0, this method includes randomness. In addition to the need for multi-

ple solutions, individual solutions are often unclear at first glance, as explained in

section 4.1.4. Therefore, where possible, I focus on the solution statistics by aver-

aging multiple tests.

All GP results were tested at two configurations. One allowed for 30 genera-

tions of evolution, and the other 100.

The different GP without co-evolution experiments were:
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c l a s s _ c o u n t _ w i t h _ i n t e r f a c e <= 4 5 8 :
: . READ_EXTERNAL_STORAGE = t :
: : . READ_SMS = t : malware
: : READ_SMS = f :
: : : . ACCESS_FINE_LOCATION = f : c lean
: : ACCESS_FINE_LOCATION = t :
: : : . c l a s s _ c o u n t _ w i t h _ i n t e r f a c e <= 1 0 3 : c lean
: : c l a s s _ c o u n t _ w i t h _ i n t e r f a c e > 1 0 3 : malware
: READ_EXTERNAL_STORAGE = f :
: : . READ_PHONE_STATE = t : malware
: READ_PHONE_STATE = f :
: : . c l a s s _ c o u n t _ w i t h _ i n t e r f a c e <= 1 7 3 : malware
: c l a s s _ c o u n t _ w i t h _ i n t e r f a c e > 1 7 3 :
: : . d i r e c t _ c o u n t <= 37 56 : c lean
: d i r e c t _ c o u n t > 37 56 : malware
c l a s s _ c o u n t _ w i t h _ i n t e r f a c e > 4 5 8 :
: . v i r t u a l _ c o u n t > 11710 : c lean

v i r t u a l _ c o u n t <= 11710 :
: . READ_PHONE_STATE = f : c lean

READ_PHONE_STATE = t :
: . RECORD_AUDIO = t : c lean

RECORD_AUDIO = f :
: . c l a s s _ c o u n t _ w i t h _ i n t e r f a c e <= 8 7 6 : malware

c l a s s _ c o u n t _ w i t h _ i n t e r f a c e > 8 7 6 : c lean

Figure 4.7: C5.0 tree using 15 permissions and 8 code features, trained on Google
Play

• GP trained using F-Droid apps, and Drebin malware

• GP trained using Google Play apps, and Drebin malware

• GP trained using F-Droid and Google Play apps, and Drebin malware

A table of GP results for 30 generations can be seen in Table 4.4, and for the

corresponding 100 generations, in Table 4.6.

The final method, with the artificial arms race, used six different configurations

of additional training sets. External malware is not strictly required for the co-

evolution process, as malware is created through the process itself. This makes the

six configurations the same three used for both C5.0 and GP without co-evolution

plus the same three stripped of the Drebin malware.
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Table 4.4: Average GP Results at 30 generations without co-evolution
Trained with F-Droid Google Play F-Droid & Google Play
Complexity 17.7 18.3 16.2

Feature Count 5.7 5.3 5.4
Scored on fdroid gplay live fdroid gplay live fdroid gplay live
Precision 96.5% 91.7% 37.9% 68% 92.5% 38.3% 96.6% 96.6% 49.8%

Recall 88.7% 91.4% 37.9% 99.1% 98.5% 38.3% 84.8% 88% 49.8%

Again, all GP results were tested at both 30 generations and 100 generations of

evolution, which applies to the co-evolved solutions as well.

The different co-evolved GP experiments were therefore as follows:

• Co-evolved GP trained using F-Droid, and Drebin malware

• Co-evolved GP trained using Google Play apps, and Drebin malware

• Co-evolved GP trained using F-Droid and Google Play apps, and Drebin mal-

ware

• Co-evolved GP trained using F-Droid

• Co-evolved GP trained using Google Play apps

• Co-evolved GP trained using F-Droid and Google Play apps

A table of co-evolved GP results for 30 generations can be seen in Table 4.5, and

for the corresponding 100 generations, in Table 4.7.

4.2.1 Portability of Solutions

The results of comparing datasets show the differences inherent between the kinds

of benign apps being used for training. Naturally, when asked to classify the test

set comprised of benign software from the same grouping, the detectors are at their

best. When the same detector is asked to classify the test set containing benign soft-

ware from a different source, the performance drops. The portability of a detector

is dependent on how well its performance is maintained given such a difference in

source. A lower drop in performance means an increases in its portability, which

is a useful feature of the detector overall.
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Table 4.5: Average GP Results at 30 generations with co-evolution
With Drebin malware

Trained with F-Droid Google Play F-Droid & Google Play
Complexity 13.3 19.4 16.6

Feature Count 5.1 6.25 5.4
Scored on fdroid gplay live fdroid gplay live fdroid gplay live
Precision 96.3% 82.8% 100% 65.1% 91.4% 100% 97.6% 95.5% 100%

Recall 89.0% 92.5% 100% 99.5% 99.5% 100% 87.2% 91.5% 100%
Without external malware

Trained with F-Droid Google Play F-Droid & Google Play
Complexity 8.7 14.3 8.7

Feature Count 3.6 4.5 3.9
Scored on fdroid gplay live fdroid gplay live fdroid gplay live
Precision 92.9% 67.7% 100% 78.28% 90.5% 100% 92.0% 87.1% 100%

Recall 18.8% 20.29% 87.6% 40.1% 43.2% 78.7% 13.4% 15.5% 49.7%

Table 4.6: Average GP Results at 100 generations without co-evolution
Trained with F-Droid Google Play F-Droid & Google Play
Complexity 38.7 30.0 41.2

Feature Count 8.3 6.6 7.9
Scored on fdroid gplay live fdroid gplay live fdroid gplay live
Precision 97.2% 93.0% 16.8% 70.6% 93.6% 59.2% 97.0% 97.3% 54.5%

Recall 90.8% 92.7% 16.8% 99.3% 98.8% 59.2% 89.8% 92.2% 54.5%

Table 4.7: Average GP Results at 100 generations with co-evolution
With Drebin malware

Trained with F-Droid Google Play F-Droid & Google Play
Complexity 53.0 34.9 29.7

Feature Count 11 7.8 6.2
Scored on fdroid gplay live fdroid gplay live fdroid gplay live
Precision 96.8% 88.7% 99.97% 67.7% 93.0% 99.98% 97.5% 97.8% 100%

Recall 90.5% 93.4% 99.97% 99.5% 99.1% 99.98% 88.6% 92.1% 99.97%
Without external malware

Trained with F-Droid Google Play F-Droid & Google Play
Complexity 22.5 23.6 22.1

Feature Count 5.8 7 6.2
Scored on fdroid gplay live fdroid gplay live fdroid gplay live
Precision 81.2% 50.0% 100% 50.7% 72.6% 100% 89.0% 92.9% 100%

Recall 4.5% 5.1% 98.6% 25.0% 24.0% 92.3% 25.2% 26.3% 90.5%
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From early tests, it was seen that portability was not symmetric between the

main datasets. F-Droid trained detectors have a much higher portability than those

trained on Google Play apps. There is a surprisingly large gap between the perfor-

mance of F-Droid trained detectors’ ability to classify Google Play apps as benign,

and the ability of Google Play trained detectors’ ability to classify F-Droid apps as

benign. This is more apparent in the GP results, with and without co-evolution.

4.2.2 Using F-Droid and Google Play

Perhaps one of the best overall detectors would be one of the combined dataset

detectors, trained using F-Droid and Google Play along with the co-evolved mal-

ware. The solution is 11 lines long, and uses 5 inputs:

1. READ_CALENDAR

2. Direct function count

3. Virtual function count

4. READ_PHONE_STATE

5. Class count

Obtaining a precision of 97% and recall of 93% for F-Droid’s test set, and 98%

precision and 95% recall for Google Play’s test set, this may be one of the best

performers, even though it was only trained for 30 generations.

Training using both F-Droid and Google play appears to have a more com-

pounding impact on the results. The performance retained within the same amount

of complexity and limited features results in an overall improved detector. What

is not clear is how the co-evolution of malware affected this dataset.

At 30 generations, the statistics for the co-evolved detectors are very similar

to the control GP not using co-evolution. Higher recall overall, along with higher

precision for F-Droid, is all that can be seen. There is loss of complexity or feature

reduction. However, the 100 generation tables (4.6 and 4.7) show the trend over

time to become more complex without the influx of new malware samples.

Considering a detector that was trained for 100 generations, may give insight

into how co-evolution effects the training process. In the Figure 4.9, a breakthrough
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is discovered, that would have gone unnoticed without co-evolution. The amount

of fitness given to the detectors that use this new breakthrough quickly spread

through the population. This can be seen by the spike in detector performance

early in the 40th generation. This hidden feature is likely what dramatically im-

proves test scores a few generations later. This shift is all but invisible to the static

set, as around the 40 generation mark, there is hardly any change in performance,

as can seen in the left graph.

As seen in figure 4.10, the number of features used is not significantly different

from non co-evolved solutions. There is however a larger drop in the average

number of features used.

4.2.3 Complexity

Consider the results of C5.0 in table 4.3. The behaviour is as expected with a large

number of features in use. Although the Google Play dataset performed the best,

creating a small tree, it suffered from the portability issue previously described,

making it likely that it was a property of the dataset itself.

Looking at the complexity range in Figure 4.11, we cannot say that there is a

significant change in complexity. However, there seems to be more consistency

with results obtained, leading to an overall lower average, when co-evolution is

employed.

When comparing the equivalent experiments at 30 generations and at 100 gen-

erations, the complexity climbs. This is most likely a failing of the method used as

larger programs act as protection against changes and therefore produce offspring

making smaller changes though crossover then small programs. This was unin-

tentional as there was no incentive to have a short program. In addition a longer

program gives more chances that there is useful active features present within the

program. While there was no intentional bias in the changing of a programs length,

it appears as if this problem caused growth simply over generations.

The average results of training without co-evolution are shown in table 4.4, and

the equivalent with co-evolution is seen in table 4.5. The most interesting aspect

to note is that the results of reduced complexity and feature count are unique to

the F-Droid trained data. There is, however, an across the board improvement for
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recall, with no significant loss in performance of precision.

The largest improvement is the incorporation of the live data. The live instances

are taken from multiple runs and are a representative sample of the malware be-

ing generated for co-evolution. Most detectors had little trouble in identifying the

malware generated, however, without co-evolution, only about half of the detec-

tors were able to detect the same malware. The averages here hide the fact that

most detectors were achieving either 100% or 0% with very few detectors in the

middle ground.

Our malware analysis shows that the generated malware was not as diverse

and varied as other malware families, and future improvements to this process

could include the generation of other malware families.

The combination of training with a source of benign samples from both F-Droid

and Google Play create the best all-around results. Unlike the C5.0 results, the GP

results do not use more features, and remain at the same performance level as

when trained using only F-Droid samples.

4.2.4 Variation and Exploratory Results

Results of the co-evolved system show a higher level of quality of exploration

caused by the introduction of the co-evolution. The real impact of the search can

be seen by analyzing the performance of the test set as in figure 4.9. Furthermore,

figure 4.12 and 4.13 show the results of the best performing non co-evolved and

co-evolved GP on the test set, respectively.

4.2.5 Real World Results

To confirm the effectiveness of the detectors on real world malware, apps from the

GetJar[1] website were analyzed with the co-evolved mobile malware detectors

and the standalone malware detectors. It should be noted here that the majority of

the apps found on this website are malware, either viruses or adware.

By tossing random apps found on this site into VirusTotal, which is a collec-

tion of malware detection and classification tools, most were marked as malware.

VirusTotal offers a breakdown of which detectors detected positive (malware), and

which detected negative (benign). Moreover, for the purpose of this research, any
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Table 4.8: Selection of apps from GetJar with detection rates
Virus Total C5.0 GP Arms race GP

MicrowaveRecipies 31% 100% 100% 100%
God of war Wall paper 36% 100% 100% 100%
Facebook Password Hacker 22% 100% 100% 100%
Footcare salon 0% 0% 0% 100%
Application 46% 100% 100% 100%
Saavn_getjar 5% 100% 100% 100%
PS4 emulator 11% 100% 0% 100%
Subway Servers Hack and cheat 9% 100% 100% 100%
Miss You - Whatsapp 24% 100% 100% 100%
Cam Scanner License 27% 100% 100% 100%

GetJar app that was detected as malware was considered to be malware after my

manual inspection also confirmed that it was malware. In these tests, the game

’Footcare Salon’ was manually inspected. Opening up the app using APK Tool,

it was determined to be adware using a unique package that was not detected by

VirusTotal.

A selection of apps presented in table 4.8 shows that the standalone trained

models of C5.0 and GP, as well as co-evolved GP, were able to detect apps at vary-

ing degrees of effectiveness. The proposed co-evolved detector was able to detect

more malicious malware in this situation, and that may be the case in others as

well. More importantly, limitations that are present in the standalone approach

are avoided by using the proposed artificial arms race, i.e. co-evolution, approach.

Furthermore, the resulting detectors of this thesis identified the app version

of the GetJar site itself to be structured like malware, as C5.0, GP, and our co-

evolved GP, all were convinced of the malicious nature of the app store itself, while

VirusTotal did not see it as malicious.

4.3 Summary

The results of my evaluations show that the co-evolution method allows for a more

exploratory search. The resulting solutions, while not necessarily performing sig-

nificantly better in terms of accuracy, are learning the problem faster and more

diversely, resulting in solutions that are not significantly different from previous
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attempts at solving this classification problem.

The results show that detectors trained on F-Droid were more portable solu-

tions, while those that were trained on Google Play performed worse on malware

that was from F-Droid. The portability also extends to the generated malware fam-

ily, as those that were not trained using co-evolution may not have detected these

malware as being malicious.
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a b s t r a c t _ c o u n t > 6 1 9 :
: . s t a t i c _ c o u n t > 351 9 : c lean
: s t a t i c _ c o u n t <= 35 19 :
: : . READ_PHONE_STATE = f : c lean
: READ_PHONE_STATE = t :
: : . RECORD_AUDIO = t : c lean
: RECORD_AUDIO = f : c l a s s _ c o u n t <= 23 22 : malware otherwise c lean
a b s t r a c t _ c o u n t <= 6 1 9 :
: . READ_PHONE_STATE = t :

: . INTERNET = f :
: : . SEND_SMS = t : malware otherwise c lean
: INTERNET = t :
: : . READ_CALENDAR = t :
: : . WRITE_EXTERNAL_STORAGE = t : malware
: : WRITE_EXTERNAL_STORAGE = f : c lean
: READ_CALENDAR = f :
: : . READ_EXTERNAL_STORAGE = t :
: : . READ_SMS = t : malware
: : READ_SMS = f :
: : : . ACCESS_FINE_LOCATION = f : c lean
: : ACCESS_FINE_LOCATION = t :
: : : . c l a s s _ c o u n t <= 2 6 2 : c lean otherwise malware
: READ_EXTERNAL_STORAGE = f :
: : . a b s t r a c t _ c o u n t <= 5 1 : malware
: a b s t r a c t _ c o u n t > 5 1 :
: : . d i r e c t _ c o u n t > 4 1 8 : malware
: d i r e c t _ c o u n t <= 4 1 8 :
: : . c l a s s _ c o u n t _ w i t h _ i n t e r f a c e <= 3 7 : malware otherwise c lean
READ_PHONE_STATE = f :
: . SEND_SMS = t : malware

SEND_SMS = f :
: . INTERNET = f : c lean

INTERNET = t :
: . s t a t i c _ c o u n t <= 7 0 :

: . READ_EXTERNAL_STORAGE = t : c lean otherwise malware
s t a t i c _ c o u n t > 7 0 :
: . c lass_count_with_annotat ion <= 2 : c lean

c lass_count_with_annotat ion > 2 :
: . c l a s s _ c o u n t _ w i t h _ i n t e r f a c e <= 1 3 2 : malware

c l a s s _ c o u n t _ w i t h _ i n t e r f a c e > 1 3 2 :
: . v i r t u a l _ c o u n t <= 654 8 : c lean otherwise malware

Figure 4.8: C5.0 tree using 15 permissions and 8 code features, trained on both
F-Droid and Google Play
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Figure 4.9: Training over time for a co-evolved detector trained using F-Droid and
Google play apps with Drebin malware for 100 generations. (left) The fitness of
the best individual on the static dataset. (middle) The fitness of the best individual
on the test dataset. (right) The fitness of the population on generated malware.

5 10 15 20

GP

Arms race GP

Figure 4.10: Boxplot of the number of features used in program solution for F-
Droid and Google play trained detectors at 100 generations
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Arms race GP

Figure 4.11: Boxplot of program complexity for F-Droid and Google play trained
detectors at 100 generations

Figure 4.12: Non Co-Evolved score of best performer on test set
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Figure 4.13: Co-Evolved the score of best performer on test set



Chapter 5

Conclusion

By looking at how mobile malware changes over time, I was able to identify, and

provide a solution to an existing problem of the evasive nature of malware families.

The solution was to internalize the problem and create a method that simulates

the change in malware to more completely understand it. I think that simulating

this change could be an effective way of countering malware changes in the wild.

While presenting this idea, I also present some interesting results of this proposed

system.

Beginning with an idea of how I could automate a battle going on lead to the

idea of using a form of co-evolution. This developed into the methodology pro-

posed and created. Using previous research into the subject, I combined a malware

generator and a malware detector into a single solution that developed a detector

that was better able to understand the problem it was set to solve.

5.1 Interesting Features

While there was a core area of research I wanted to focus on, there were many

interesting side notes that were not directly related to the core idea of simply cre-

ating the artificial arms race. This includes the interesting distinction found be-

tween Google Play apps and F-Droid apps, as well as how the population changes

throughout the process.

Initial findings indicate that the building of teams from the co-evolved detec-

tors may lead to a more robust solution compared to building teams from stand

alone detectors. This is thought to be due to the diversity within an individual

population. As discussed in the previous chapter, a team of solutions outperform

an individual solution. Using teams of programs seems to result in a more ro-

bust performance, while producing / discovering small efficient solutions with

low computation.

63
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In short, the performance of the framework demonstrates that it is possible to

generate new rules with high accuracy against the new variants of malware using

a co-evolution process to automatically emulate an artificial arms race between

malware and detectors. The programs, if processed carefully, may be converted

to a list of rules, given the simple nature of the instructions built. The internal

workings of the programs give hints towards performing rule mining, and a clear

representation of what the inputs do.

Finally, previous work in [18] indicates that the co-evolved training within an

artificial arms race framework shows an increase in knowledge about the task.

This observation seems to be the case in my research as well. Moreover, it appears

that the more knowledge the detector has, the better it can adapt to future malware

behaviours.

5.2 Limitations of the Malware Generator

While this method seems like a solid solution, its main issue appears to be the

malware generator. This component functions well enough for a proof-of-concept

research, as within this thesis. However, the malware generated by this component

lacks variety, since the generated malicious behaviour / malware all belong to

the same family, namely privacy leaking. The malware does not rename files or

packages, and the template is the same for each. It is a limitation that produces

detectors only for this type of malicious behaviour / malware. In other words, the

malware generator can be improved to include other malware families as well.

5.3 Future Works

The advantage of the proposed artificial arms race is the modularity of the differ-

ent elements. The framework is not strictly held to the requirements of a particu-

lar malware generator or detector. As long as the algorithms used are evolution-

ary computation techniques, the malware generator can be replaced with another.

From the perspective of the proposed framework, a malware generator needs to

produce a population of malware, output these for evaluation, and then accept
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feedback for its evolution. Any program that can replicate those inputs and out-

puts may fill the role of malware generator.

The same abstraction as above may be made with the malware detector. The

malware detector must accept additions to the training set, and provide granular

results using the additions it is provided. By this definition, other machine learn-

ing approaches can be used in place of linear genetic programming, while still

incorporating the core methodology.

In this thesis, the proposed framework was evaluated using Android apps. By

making both detector and generator modular, other platforms may also be consid-

ered. Given that the approach is not using features dependent on the platform and

/ or architecture, it could be applied to other mobile platforms, apps, and malware.

While sufficiently different to not be considered yet, IOS feature based detection is

indeed a viable solution [5]. The features of the detector and generator were only

a limited selection of possible Android features. Other features, Android or oth-

erwise, could be added and extracted from the malware of whichever platform it

was designed for.

As discussed above, the proposed framework opens up several potential av-

enues for future research. The possibilities that arise from introducing different

malware generators are enormous. There is even the potential to consider mul-

tiple malware generators, focusing on different families, methods, or even plat-

forms. All together, they may aid in the performance of a detector. The method

employed by the detector as well may be improved to evaluate how other learning

algorithms compare with this research.
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Appendix A

Sample Results

Results displayed here were quick results performed to help define the methodol-

ogy. The dataset used was 700 malware samples from the Drebin dataset [2], along

with 700 non malware samples from F-Droid.

Table A.1: Results of GP with 149 permissions
True class

Malware Benign Total

Predicted class Malware 167 12 93%
Benign 133 288 68%

Total 56% 96% 76%

Table A.2: Results of C5.0 with 149 permissions
True class

Malware Benign Total

Predicted class Malware 272 28 91%
Benign 27 273 91%

Total 91% 91% 91%

Table A.3: Results of GP with 15 permissions only
True class

Malware Benign Total

Predicted class Malware 272 28 90%
Benign 56 244 81%

Total 83% 90% 86%

Table A.4: Results of C5.0 with 15 permissions only
True class

Malware Benign Total

Predicted class Malware 260 29 90%
Benign 40 271 87%

Total 87% 90% 88%
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Table A.5: Results of GP with 15 permissions and 8 code features
True class

Malware Benign Total

Predicted class Malware 278 22 93%
Benign 15 285 95%

Total 95% 93% 94%

Table A.6: Results of C5.0 with 15 permissions and 8 code features
True class

Malware Benign Total

Predicted class Malware 289 12 96%
Benign 11 288 96%

Total 96% 96% 96%

Table A.7: A Sample Result of GP with 15 permissions and 8 code features with
co-evolution

True class
Malware Benign Total

Predicted class Malware 294 6 98%
Benign 39 261 87%

Total 88% 98% 92%



Appendix B

Expanded Table of Results

Table B.1: Table Legend
Column Description Desired Value

Complexity The number of Instructions used in the chosen
solution. Low values are desirable

Clean raw The number of benign software samples correctly
classified The value of the Benign count for the chosen test set

Malware raw The number of malware samples correctly classified The value of the Malware count for the chosen test set

Score The sum of the Clean raw and Malware raw.
This is the raw numerical version of the CR The value of the Total sample count for the chosen test set

Total The total sample count for the chosen dataset, this
is Benign count + Malware count This value is a constant for each dataset.

CR

Classification rate. The ratio of correctly
classified instances and the total number of instances:
(TP + TN)/(TP + FP + FN + TN)
or Score/Total

A value of 100% is desirable

Input Count The number of inputs provided that were consulted in
a chosen solution Low values are desirable

check_time The number of solutions required to have full
correct coverage of the entire dataset

Low values indicate a more diverse population and therefore are
more desirable

TP Percentage of the dataset that is malware and was
correctly classified as malware

High values are desirable. The maximum possible value is 50%
for fdroid and gplay and 100% for live data

FP Percentage of the dataset that is Benign software
and was incorrectly classified as malware

Low values are desirable
The maximum possible value is 50% for fdroid and gplay and live data
will always have a value of 0%

FN Percentage of the dataset that is malware and was
incorectly classified as Benign software

Low values are desirable. The maximum possible value is 50% for
fdroid and gplay and 100% for live data

TN Percentage of the dataset that is Benign software
and was correctly classified as Benign software

High values are desirable. The maximum possible value is 50%
for fdroid and gplay will live data will always have a value of 0%

Precision The fraction of data instances predicted as positive
that are actually positive: TP/(TP+FP) High values are desirable

Recall
The fraction of Malware that is correctly
classified. Also known as Detection
Rate: TP/(TP+FN)

High values are desirable
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Appendix C

Malware Feature List

C.1 Sink

HTTP::URL_CONNECTION_GET, HTTP::URL_CONNECTION_POST,

HTTP::SOCKET_GET, HTTP::SOCKET_POST

C.2 Source

CONTACT::CONTACT, TELEPHONY::IMEI, TELEPHONY::IMSI,

TELEPHONY::PHONE_NUMBER, TELEPHONY::SIM_COUNTRY,

TELEPHONY::SIM_SERIAL, TELEPHONY::SIM_OPERATOR,

TELEPHONY::SIM_OPERATOR_NAME, TELEPHONY::NETWORK_COUNTRY,

TELEPHONY::NETWORK_OPERATOR, TELEPHONY::NETWORK_OPERATOR_NAME,

SMS::INBOX

C.3 Trigger

BROADCAST::Android.intent.action.BATTERY_CHANGED, MAIN::STARTUP,

BROADCAST::Android.provider.Telephony.SMS_RECEIVED,

BROADCAST::Android.intent.action.WALLPAPER_CHANGED,

BROADCAST::Android.intent.action.PACKAGE_ADDED,

BROADCAST::Android.intent.action.PACKAGE_REMOVED,

BROADCAST::Android.intent.action.PACKAGE_CHANGED,

BROADCAST::Android.intent.action.TIME_TICK,

BROADCAST::Android.intent.action.TIME_SET,

BROADCAST::Android.intent.action.TIMEZONE_CHANGED,

BROADCAST::Android.intent.action.BOOT_COMPLETED,

78
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BROADCAST::Android.intent.action.PHONE_STATE,

BROADCAST::Android.intent.action.SCREEN_ON,

BROADCAST::Android.intent.action.SCREEN_OFF,

BROADCAST::Android.intent.action.NEW_OUTGOING_CALL,

BROADCAST::Android.intent.action.MEDIA_UNMOUNTED,

BROADCAST::Android.intent.action.MEDIA_MOUNTED,

BROADCAST::Android.intent.action.MEDIA_REMOVED,

BROADCAST::Android.net.wifi.WIFI_STATE_CHANGED,

BROADCAST::Android.intent.action.AIRPLANE_MODE,

BROADCAST::Android.bluetooth.adapter.action.STATE_CHANGED,

BROADCAST::Android.intent.action.ACTION_POWER_CONNECTED,

BROADCAST::Android.intent.action.INPUT_METHOD_CHANGED,

BROADCAST::Android.intent.action.USER_PRESENT,

BROADCAST::Android.net.wifi.STATE_CHANGE,

BROADCAST::Android.intent.action.PACKAGE_INSTALL,

BROADCAST::Android.intent.action.PACKAGE_REPLACED,

BROADCAST::Android.media.RINGER_MODE_CHANGED,

BROADCAST::Android.intent.action.BATTERY_LOW,

BROADCAST::Android.intent.action.BATTERY_OKAY,

BROADCAST::Android.intent.action.GTALK_CONNECTED,

BROADCAST::Android.intent.action.PACKAGE_RESTARTED,

BROADCAST::Android.intent.action.MEDIA_SCANNER_SCAN_FILE,

BROADCAST::Android.intent.action.MEDIA_SCANNER_STARTED,

BROADCAST::Android.intent.action.REBOOT,

BROADCAST::Android.intent.action.MEDIA_EJECT,

BROADCAST::Android.intent.action.MEDIA_SHARED,

BROADCAST::Android.intent.action.CAMERA_BUTTON,

BROADCAST::Android.intent.action.ACTION_SHUTDOWN,

BROADCAST::Android.intent.action.DEVICE_STORAGE_LOW,
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BROADCAST::Android.intent.action.DEVICE_STORAGE_OK,

BROADCAST::Android.intent.action.MEDIA_BAD_REMOVAL,

BROADCAST::Android.intent.action.MEDIA_SCANNER_FINISHED,

BROADCAST::Android.intent.action.MEDIA_CHECKING,

BROADCAST::Android.bluetooth.adapter.action.DISCOVERY_FINISHED,

BROADCAST::Android.bluetooth.adapter.action.DISCOVERY_STARTED,

BROADCAST::Android.bluetooth.adapter.action.LOCAL_NAME_CHANGED,

BROADCAST::Android.bluetooth.adapter.action.SCAN_MODE_CHANGED,

BROADCAST::Android.bluetooth.device.action.ACL_DISCONNECTED,

BROADCAST::Android.bluetooth.device.action.NAME_CHANGED,

BROADCAST::Android.bluetooth.device.action.FOUND,

BROADCAST::Android.bluetooth.device.action.BOND_STATE_CHANGED

C.4 Evasion

renameclasses,

reverseorder,

encString,

encArrays,

remDebugInfo,

reorder,

nontrivialjunk,

insertnops,

insertFunctionIndirection,

doci
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